]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/slab.c
md: fix for divide error in status_resync
[thirdparty/kernel/linux.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
3f8c2452 119#include <linux/sched/task_stack.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
b9ce5ef4
GC
131#include "slab.h"
132
1da177e4 133/*
50953fe9 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
1da177e4
LT
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
87a927c7 155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 156
1da177e4
LT
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
f315e3fa
JK
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
30321c7b 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 171
1da177e4
LT
172/*
173 * struct array_cache
174 *
1da177e4
LT
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
bda5b655 189 void *entry[]; /*
a737b3e2
AM
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
a737b3e2 193 */
1da177e4
LT
194};
195
c8522a3a
JK
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
e498be7d
CL
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
bf0dea23 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 206#define CACHE_CACHE 0
bf0dea23 207#define SIZE_NODE (MAX_NUMNODES)
e498be7d 208
ed11d9eb 209static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 210 struct kmem_cache_node *n, int tofree);
ed11d9eb 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 215static void cache_reap(struct work_struct *unused);
ed11d9eb 216
76b342bd
JK
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
e0a42726
IM
222static int slab_early_init = 1;
223
ce8eb6c4 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 225
ce8eb6c4 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 231 parent->total_slabs = 0;
f728b0a5 232 parent->free_slabs = 0;
e498be7d
CL
233 parent->shared = NULL;
234 parent->alien = NULL;
2e1217cf 235 parent->colour_next = 0;
e498be7d
CL
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
a737b3e2
AM
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
18bf8541 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
245 } while (0)
246
a737b3e2
AM
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
e498be7d
CL
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
1da177e4 253
4fd0b46e
AD
254#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
b03a017b 256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
a737b3e2
AM
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
1da177e4 263 *
dc6f3f27 264 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
265 * which could lock up otherwise freeable slabs.
266 */
5f0985bb
JZ
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
1da177e4
LT
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
1da177e4
LT
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 303#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
1da177e4 313
a737b3e2
AM
314/*
315 * memory layout of objects:
1da177e4 316 * 0 : objp
3dafccf2 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
3dafccf2 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 321 * redzone word.
3dafccf2 322 * cachep->obj_offset: The real object.
3b0efdfa
CL
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 325 * [BYTES_PER_WORD long]
1da177e4 326 */
343e0d7a 327static int obj_offset(struct kmem_cache *cachep)
1da177e4 328{
3dafccf2 329 return cachep->obj_offset;
1da177e4
LT
330}
331
b46b8f19 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
1da177e4
LT
337}
338
b46b8f19 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 343 return (unsigned long long *)(objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long) -
87a927c7 345 REDZONE_ALIGN);
3b0efdfa 346 return (unsigned long long *) (objp + cachep->size -
b46b8f19 347 sizeof(unsigned long long));
1da177e4
LT
348}
349
343e0d7a 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
354}
355
356#else
357
3dafccf2 358#define obj_offset(x) 0
b46b8f19
DW
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
1da177e4 365/*
3df1cccd
DR
366 * Do not go above this order unless 0 objects fit into the slab or
367 * overridden on the command line.
1da177e4 368 */
543585cc
DR
369#define SLAB_MAX_ORDER_HI 1
370#define SLAB_MAX_ORDER_LO 0
371static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 372static bool slab_max_order_set __initdata;
1da177e4 373
6ed5eb22
PE
374static inline struct kmem_cache *virt_to_cache(const void *obj)
375{
b49af68f 376 struct page *page = virt_to_head_page(obj);
35026088 377 return page->slab_cache;
6ed5eb22
PE
378}
379
8456a648 380static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
381 unsigned int idx)
382{
8456a648 383 return page->s_mem + cache->size * idx;
8fea4e96
PE
384}
385
6fb92430 386#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 387/* internal cache of cache description objs */
9b030cb8 388static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
389 .batchcount = 1,
390 .limit = BOOT_CPUCACHE_ENTRIES,
391 .shared = 1,
3b0efdfa 392 .size = sizeof(struct kmem_cache),
b28a02de 393 .name = "kmem_cache",
1da177e4
LT
394};
395
1871e52c 396static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 397
343e0d7a 398static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 399{
bf0dea23 400 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
401}
402
a737b3e2
AM
403/*
404 * Calculate the number of objects and left-over bytes for a given buffer size.
405 */
70f75067 406static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
d50112ed 407 slab_flags_t flags, size_t *left_over)
fbaccacf 408{
70f75067 409 unsigned int num;
fbaccacf 410 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 411
fbaccacf
SR
412 /*
413 * The slab management structure can be either off the slab or
414 * on it. For the latter case, the memory allocated for a
415 * slab is used for:
416 *
fbaccacf 417 * - @buffer_size bytes for each object
2e6b3602
JK
418 * - One freelist_idx_t for each object
419 *
420 * We don't need to consider alignment of freelist because
421 * freelist will be at the end of slab page. The objects will be
422 * at the correct alignment.
fbaccacf
SR
423 *
424 * If the slab management structure is off the slab, then the
425 * alignment will already be calculated into the size. Because
426 * the slabs are all pages aligned, the objects will be at the
427 * correct alignment when allocated.
428 */
b03a017b 429 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 430 num = slab_size / buffer_size;
2e6b3602 431 *left_over = slab_size % buffer_size;
fbaccacf 432 } else {
70f75067 433 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
434 *left_over = slab_size %
435 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 436 }
70f75067
JK
437
438 return num;
1da177e4
LT
439}
440
f28510d3 441#if DEBUG
d40cee24 442#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 443
a737b3e2
AM
444static void __slab_error(const char *function, struct kmem_cache *cachep,
445 char *msg)
1da177e4 446{
1170532b 447 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 448 function, cachep->name, msg);
1da177e4 449 dump_stack();
373d4d09 450 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 451}
f28510d3 452#endif
1da177e4 453
3395ee05
PM
454/*
455 * By default on NUMA we use alien caches to stage the freeing of
456 * objects allocated from other nodes. This causes massive memory
457 * inefficiencies when using fake NUMA setup to split memory into a
458 * large number of small nodes, so it can be disabled on the command
459 * line
460 */
461
462static int use_alien_caches __read_mostly = 1;
463static int __init noaliencache_setup(char *s)
464{
465 use_alien_caches = 0;
466 return 1;
467}
468__setup("noaliencache", noaliencache_setup);
469
3df1cccd
DR
470static int __init slab_max_order_setup(char *str)
471{
472 get_option(&str, &slab_max_order);
473 slab_max_order = slab_max_order < 0 ? 0 :
474 min(slab_max_order, MAX_ORDER - 1);
475 slab_max_order_set = true;
476
477 return 1;
478}
479__setup("slab_max_order=", slab_max_order_setup);
480
8fce4d8e
CL
481#ifdef CONFIG_NUMA
482/*
483 * Special reaping functions for NUMA systems called from cache_reap().
484 * These take care of doing round robin flushing of alien caches (containing
485 * objects freed on different nodes from which they were allocated) and the
486 * flushing of remote pcps by calling drain_node_pages.
487 */
1871e52c 488static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
489
490static void init_reap_node(int cpu)
491{
0edaf86c
AM
492 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
493 node_online_map);
8fce4d8e
CL
494}
495
496static void next_reap_node(void)
497{
909ea964 498 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 499
0edaf86c 500 node = next_node_in(node, node_online_map);
909ea964 501 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
502}
503
504#else
505#define init_reap_node(cpu) do { } while (0)
506#define next_reap_node(void) do { } while (0)
507#endif
508
1da177e4
LT
509/*
510 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
511 * via the workqueue/eventd.
512 * Add the CPU number into the expiration time to minimize the possibility of
513 * the CPUs getting into lockstep and contending for the global cache chain
514 * lock.
515 */
0db0628d 516static void start_cpu_timer(int cpu)
1da177e4 517{
1871e52c 518 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 519
eac0337a 520 if (reap_work->work.func == NULL) {
8fce4d8e 521 init_reap_node(cpu);
203b42f7 522 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
523 schedule_delayed_work_on(cpu, reap_work,
524 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
525 }
526}
527
1fe00d50 528static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 529{
1fe00d50
JK
530 if (ac) {
531 ac->avail = 0;
532 ac->limit = limit;
533 ac->batchcount = batch;
534 ac->touched = 0;
1da177e4 535 }
1fe00d50
JK
536}
537
538static struct array_cache *alloc_arraycache(int node, int entries,
539 int batchcount, gfp_t gfp)
540{
5e804789 541 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
542 struct array_cache *ac = NULL;
543
544 ac = kmalloc_node(memsize, gfp, node);
92d1d07d
QC
545 /*
546 * The array_cache structures contain pointers to free object.
547 * However, when such objects are allocated or transferred to another
548 * cache the pointers are not cleared and they could be counted as
549 * valid references during a kmemleak scan. Therefore, kmemleak must
550 * not scan such objects.
551 */
552 kmemleak_no_scan(ac);
1fe00d50
JK
553 init_arraycache(ac, entries, batchcount);
554 return ac;
1da177e4
LT
555}
556
f68f8ddd
JK
557static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
558 struct page *page, void *objp)
072bb0aa 559{
f68f8ddd
JK
560 struct kmem_cache_node *n;
561 int page_node;
562 LIST_HEAD(list);
072bb0aa 563
f68f8ddd
JK
564 page_node = page_to_nid(page);
565 n = get_node(cachep, page_node);
381760ea 566
f68f8ddd
JK
567 spin_lock(&n->list_lock);
568 free_block(cachep, &objp, 1, page_node, &list);
569 spin_unlock(&n->list_lock);
381760ea 570
f68f8ddd 571 slabs_destroy(cachep, &list);
072bb0aa
MG
572}
573
3ded175a
CL
574/*
575 * Transfer objects in one arraycache to another.
576 * Locking must be handled by the caller.
577 *
578 * Return the number of entries transferred.
579 */
580static int transfer_objects(struct array_cache *to,
581 struct array_cache *from, unsigned int max)
582{
583 /* Figure out how many entries to transfer */
732eacc0 584 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
585
586 if (!nr)
587 return 0;
588
589 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
590 sizeof(void *) *nr);
591
592 from->avail -= nr;
593 to->avail += nr;
3ded175a
CL
594 return nr;
595}
596
765c4507
CL
597#ifndef CONFIG_NUMA
598
599#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 600#define reap_alien(cachep, n) do { } while (0)
765c4507 601
c8522a3a
JK
602static inline struct alien_cache **alloc_alien_cache(int node,
603 int limit, gfp_t gfp)
765c4507 604{
8888177e 605 return NULL;
765c4507
CL
606}
607
c8522a3a 608static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
609{
610}
611
612static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
613{
614 return 0;
615}
616
617static inline void *alternate_node_alloc(struct kmem_cache *cachep,
618 gfp_t flags)
619{
620 return NULL;
621}
622
8b98c169 623static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
624 gfp_t flags, int nodeid)
625{
626 return NULL;
627}
628
4167e9b2
DR
629static inline gfp_t gfp_exact_node(gfp_t flags)
630{
444eb2a4 631 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
632}
633
765c4507
CL
634#else /* CONFIG_NUMA */
635
8b98c169 636static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 637static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 638
c8522a3a
JK
639static struct alien_cache *__alloc_alien_cache(int node, int entries,
640 int batch, gfp_t gfp)
641{
5e804789 642 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
643 struct alien_cache *alc = NULL;
644
645 alc = kmalloc_node(memsize, gfp, node);
09c2e76e 646 if (alc) {
92d1d07d 647 kmemleak_no_scan(alc);
09c2e76e
CL
648 init_arraycache(&alc->ac, entries, batch);
649 spin_lock_init(&alc->lock);
650 }
c8522a3a
JK
651 return alc;
652}
653
654static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 655{
c8522a3a 656 struct alien_cache **alc_ptr;
e498be7d
CL
657 int i;
658
659 if (limit > 1)
660 limit = 12;
b9726c26 661 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
c8522a3a
JK
662 if (!alc_ptr)
663 return NULL;
664
665 for_each_node(i) {
666 if (i == node || !node_online(i))
667 continue;
668 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
669 if (!alc_ptr[i]) {
670 for (i--; i >= 0; i--)
671 kfree(alc_ptr[i]);
672 kfree(alc_ptr);
673 return NULL;
e498be7d
CL
674 }
675 }
c8522a3a 676 return alc_ptr;
e498be7d
CL
677}
678
c8522a3a 679static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
680{
681 int i;
682
c8522a3a 683 if (!alc_ptr)
e498be7d 684 return;
e498be7d 685 for_each_node(i)
c8522a3a
JK
686 kfree(alc_ptr[i]);
687 kfree(alc_ptr);
e498be7d
CL
688}
689
343e0d7a 690static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
691 struct array_cache *ac, int node,
692 struct list_head *list)
e498be7d 693{
18bf8541 694 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
695
696 if (ac->avail) {
ce8eb6c4 697 spin_lock(&n->list_lock);
e00946fe
CL
698 /*
699 * Stuff objects into the remote nodes shared array first.
700 * That way we could avoid the overhead of putting the objects
701 * into the free lists and getting them back later.
702 */
ce8eb6c4
CL
703 if (n->shared)
704 transfer_objects(n->shared, ac, ac->limit);
e00946fe 705
833b706c 706 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 707 ac->avail = 0;
ce8eb6c4 708 spin_unlock(&n->list_lock);
e498be7d
CL
709 }
710}
711
8fce4d8e
CL
712/*
713 * Called from cache_reap() to regularly drain alien caches round robin.
714 */
ce8eb6c4 715static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 716{
909ea964 717 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 718
ce8eb6c4 719 if (n->alien) {
c8522a3a
JK
720 struct alien_cache *alc = n->alien[node];
721 struct array_cache *ac;
722
723 if (alc) {
724 ac = &alc->ac;
49dfc304 725 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
726 LIST_HEAD(list);
727
728 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 729 spin_unlock_irq(&alc->lock);
833b706c 730 slabs_destroy(cachep, &list);
c8522a3a 731 }
8fce4d8e
CL
732 }
733 }
734}
735
a737b3e2 736static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 737 struct alien_cache **alien)
e498be7d 738{
b28a02de 739 int i = 0;
c8522a3a 740 struct alien_cache *alc;
e498be7d
CL
741 struct array_cache *ac;
742 unsigned long flags;
743
744 for_each_online_node(i) {
c8522a3a
JK
745 alc = alien[i];
746 if (alc) {
833b706c
JK
747 LIST_HEAD(list);
748
c8522a3a 749 ac = &alc->ac;
49dfc304 750 spin_lock_irqsave(&alc->lock, flags);
833b706c 751 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 752 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 753 slabs_destroy(cachep, &list);
e498be7d
CL
754 }
755 }
756}
729bd0b7 757
25c4f304
JK
758static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
759 int node, int page_node)
729bd0b7 760{
ce8eb6c4 761 struct kmem_cache_node *n;
c8522a3a
JK
762 struct alien_cache *alien = NULL;
763 struct array_cache *ac;
97654dfa 764 LIST_HEAD(list);
1ca4cb24 765
18bf8541 766 n = get_node(cachep, node);
729bd0b7 767 STATS_INC_NODEFREES(cachep);
25c4f304
JK
768 if (n->alien && n->alien[page_node]) {
769 alien = n->alien[page_node];
c8522a3a 770 ac = &alien->ac;
49dfc304 771 spin_lock(&alien->lock);
c8522a3a 772 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 773 STATS_INC_ACOVERFLOW(cachep);
25c4f304 774 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 775 }
f68f8ddd 776 ac->entry[ac->avail++] = objp;
49dfc304 777 spin_unlock(&alien->lock);
833b706c 778 slabs_destroy(cachep, &list);
729bd0b7 779 } else {
25c4f304 780 n = get_node(cachep, page_node);
18bf8541 781 spin_lock(&n->list_lock);
25c4f304 782 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 783 spin_unlock(&n->list_lock);
97654dfa 784 slabs_destroy(cachep, &list);
729bd0b7
PE
785 }
786 return 1;
787}
25c4f304
JK
788
789static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
790{
791 int page_node = page_to_nid(virt_to_page(objp));
792 int node = numa_mem_id();
793 /*
794 * Make sure we are not freeing a object from another node to the array
795 * cache on this cpu.
796 */
797 if (likely(node == page_node))
798 return 0;
799
800 return __cache_free_alien(cachep, objp, node, page_node);
801}
4167e9b2
DR
802
803/*
444eb2a4
MG
804 * Construct gfp mask to allocate from a specific node but do not reclaim or
805 * warn about failures.
4167e9b2
DR
806 */
807static inline gfp_t gfp_exact_node(gfp_t flags)
808{
444eb2a4 809 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 810}
e498be7d
CL
811#endif
812
ded0ecf6
JK
813static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
814{
815 struct kmem_cache_node *n;
816
817 /*
818 * Set up the kmem_cache_node for cpu before we can
819 * begin anything. Make sure some other cpu on this
820 * node has not already allocated this
821 */
822 n = get_node(cachep, node);
823 if (n) {
824 spin_lock_irq(&n->list_lock);
825 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
826 cachep->num;
827 spin_unlock_irq(&n->list_lock);
828
829 return 0;
830 }
831
832 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
833 if (!n)
834 return -ENOMEM;
835
836 kmem_cache_node_init(n);
837 n->next_reap = jiffies + REAPTIMEOUT_NODE +
838 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
839
840 n->free_limit =
841 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
842
843 /*
844 * The kmem_cache_nodes don't come and go as CPUs
845 * come and go. slab_mutex is sufficient
846 * protection here.
847 */
848 cachep->node[node] = n;
849
850 return 0;
851}
852
6731d4f1 853#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 854/*
6a67368c 855 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 856 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 857 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 858 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
859 * already in use.
860 *
18004c5d 861 * Must hold slab_mutex.
8f9f8d9e 862 */
6a67368c 863static int init_cache_node_node(int node)
8f9f8d9e 864{
ded0ecf6 865 int ret;
8f9f8d9e 866 struct kmem_cache *cachep;
8f9f8d9e 867
18004c5d 868 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
869 ret = init_cache_node(cachep, node, GFP_KERNEL);
870 if (ret)
871 return ret;
8f9f8d9e 872 }
ded0ecf6 873
8f9f8d9e
DR
874 return 0;
875}
6731d4f1 876#endif
8f9f8d9e 877
c3d332b6
JK
878static int setup_kmem_cache_node(struct kmem_cache *cachep,
879 int node, gfp_t gfp, bool force_change)
880{
881 int ret = -ENOMEM;
882 struct kmem_cache_node *n;
883 struct array_cache *old_shared = NULL;
884 struct array_cache *new_shared = NULL;
885 struct alien_cache **new_alien = NULL;
886 LIST_HEAD(list);
887
888 if (use_alien_caches) {
889 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
890 if (!new_alien)
891 goto fail;
892 }
893
894 if (cachep->shared) {
895 new_shared = alloc_arraycache(node,
896 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
897 if (!new_shared)
898 goto fail;
899 }
900
901 ret = init_cache_node(cachep, node, gfp);
902 if (ret)
903 goto fail;
904
905 n = get_node(cachep, node);
906 spin_lock_irq(&n->list_lock);
907 if (n->shared && force_change) {
908 free_block(cachep, n->shared->entry,
909 n->shared->avail, node, &list);
910 n->shared->avail = 0;
911 }
912
913 if (!n->shared || force_change) {
914 old_shared = n->shared;
915 n->shared = new_shared;
916 new_shared = NULL;
917 }
918
919 if (!n->alien) {
920 n->alien = new_alien;
921 new_alien = NULL;
922 }
923
924 spin_unlock_irq(&n->list_lock);
925 slabs_destroy(cachep, &list);
926
801faf0d
JK
927 /*
928 * To protect lockless access to n->shared during irq disabled context.
929 * If n->shared isn't NULL in irq disabled context, accessing to it is
930 * guaranteed to be valid until irq is re-enabled, because it will be
6564a25e 931 * freed after synchronize_rcu().
801faf0d 932 */
86d9f485 933 if (old_shared && force_change)
6564a25e 934 synchronize_rcu();
801faf0d 935
c3d332b6
JK
936fail:
937 kfree(old_shared);
938 kfree(new_shared);
939 free_alien_cache(new_alien);
940
941 return ret;
942}
943
6731d4f1
SAS
944#ifdef CONFIG_SMP
945
0db0628d 946static void cpuup_canceled(long cpu)
fbf1e473
AM
947{
948 struct kmem_cache *cachep;
ce8eb6c4 949 struct kmem_cache_node *n = NULL;
7d6e6d09 950 int node = cpu_to_mem(cpu);
a70f7302 951 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 952
18004c5d 953 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
954 struct array_cache *nc;
955 struct array_cache *shared;
c8522a3a 956 struct alien_cache **alien;
97654dfa 957 LIST_HEAD(list);
fbf1e473 958
18bf8541 959 n = get_node(cachep, node);
ce8eb6c4 960 if (!n)
bf0dea23 961 continue;
fbf1e473 962
ce8eb6c4 963 spin_lock_irq(&n->list_lock);
fbf1e473 964
ce8eb6c4
CL
965 /* Free limit for this kmem_cache_node */
966 n->free_limit -= cachep->batchcount;
bf0dea23
JK
967
968 /* cpu is dead; no one can alloc from it. */
969 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
517f9f1e
LR
970 free_block(cachep, nc->entry, nc->avail, node, &list);
971 nc->avail = 0;
fbf1e473 972
58463c1f 973 if (!cpumask_empty(mask)) {
ce8eb6c4 974 spin_unlock_irq(&n->list_lock);
bf0dea23 975 goto free_slab;
fbf1e473
AM
976 }
977
ce8eb6c4 978 shared = n->shared;
fbf1e473
AM
979 if (shared) {
980 free_block(cachep, shared->entry,
97654dfa 981 shared->avail, node, &list);
ce8eb6c4 982 n->shared = NULL;
fbf1e473
AM
983 }
984
ce8eb6c4
CL
985 alien = n->alien;
986 n->alien = NULL;
fbf1e473 987
ce8eb6c4 988 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
989
990 kfree(shared);
991 if (alien) {
992 drain_alien_cache(cachep, alien);
993 free_alien_cache(alien);
994 }
bf0dea23
JK
995
996free_slab:
97654dfa 997 slabs_destroy(cachep, &list);
fbf1e473
AM
998 }
999 /*
1000 * In the previous loop, all the objects were freed to
1001 * the respective cache's slabs, now we can go ahead and
1002 * shrink each nodelist to its limit.
1003 */
18004c5d 1004 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1005 n = get_node(cachep, node);
ce8eb6c4 1006 if (!n)
fbf1e473 1007 continue;
a5aa63a5 1008 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1009 }
1010}
1011
0db0628d 1012static int cpuup_prepare(long cpu)
1da177e4 1013{
343e0d7a 1014 struct kmem_cache *cachep;
7d6e6d09 1015 int node = cpu_to_mem(cpu);
8f9f8d9e 1016 int err;
1da177e4 1017
fbf1e473
AM
1018 /*
1019 * We need to do this right in the beginning since
1020 * alloc_arraycache's are going to use this list.
1021 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1022 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1023 */
6a67368c 1024 err = init_cache_node_node(node);
8f9f8d9e
DR
1025 if (err < 0)
1026 goto bad;
fbf1e473
AM
1027
1028 /*
1029 * Now we can go ahead with allocating the shared arrays and
1030 * array caches
1031 */
18004c5d 1032 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1033 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1034 if (err)
1035 goto bad;
fbf1e473 1036 }
ce79ddc8 1037
fbf1e473
AM
1038 return 0;
1039bad:
12d00f6a 1040 cpuup_canceled(cpu);
fbf1e473
AM
1041 return -ENOMEM;
1042}
1043
6731d4f1 1044int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1045{
6731d4f1 1046 int err;
fbf1e473 1047
6731d4f1
SAS
1048 mutex_lock(&slab_mutex);
1049 err = cpuup_prepare(cpu);
1050 mutex_unlock(&slab_mutex);
1051 return err;
1052}
1053
1054/*
1055 * This is called for a failed online attempt and for a successful
1056 * offline.
1057 *
1058 * Even if all the cpus of a node are down, we don't free the
1059 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1060 * a kmalloc allocation from another cpu for memory from the node of
1061 * the cpu going down. The list3 structure is usually allocated from
1062 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1063 */
1064int slab_dead_cpu(unsigned int cpu)
1065{
1066 mutex_lock(&slab_mutex);
1067 cpuup_canceled(cpu);
1068 mutex_unlock(&slab_mutex);
1069 return 0;
1070}
8f5be20b 1071#endif
6731d4f1
SAS
1072
1073static int slab_online_cpu(unsigned int cpu)
1074{
1075 start_cpu_timer(cpu);
1076 return 0;
1da177e4
LT
1077}
1078
6731d4f1
SAS
1079static int slab_offline_cpu(unsigned int cpu)
1080{
1081 /*
1082 * Shutdown cache reaper. Note that the slab_mutex is held so
1083 * that if cache_reap() is invoked it cannot do anything
1084 * expensive but will only modify reap_work and reschedule the
1085 * timer.
1086 */
1087 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1088 /* Now the cache_reaper is guaranteed to be not running. */
1089 per_cpu(slab_reap_work, cpu).work.func = NULL;
1090 return 0;
1091}
1da177e4 1092
8f9f8d9e
DR
1093#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1094/*
1095 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1096 * Returns -EBUSY if all objects cannot be drained so that the node is not
1097 * removed.
1098 *
18004c5d 1099 * Must hold slab_mutex.
8f9f8d9e 1100 */
6a67368c 1101static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1102{
1103 struct kmem_cache *cachep;
1104 int ret = 0;
1105
18004c5d 1106 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1107 struct kmem_cache_node *n;
8f9f8d9e 1108
18bf8541 1109 n = get_node(cachep, node);
ce8eb6c4 1110 if (!n)
8f9f8d9e
DR
1111 continue;
1112
a5aa63a5 1113 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1114
ce8eb6c4
CL
1115 if (!list_empty(&n->slabs_full) ||
1116 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1117 ret = -EBUSY;
1118 break;
1119 }
1120 }
1121 return ret;
1122}
1123
1124static int __meminit slab_memory_callback(struct notifier_block *self,
1125 unsigned long action, void *arg)
1126{
1127 struct memory_notify *mnb = arg;
1128 int ret = 0;
1129 int nid;
1130
1131 nid = mnb->status_change_nid;
1132 if (nid < 0)
1133 goto out;
1134
1135 switch (action) {
1136 case MEM_GOING_ONLINE:
18004c5d 1137 mutex_lock(&slab_mutex);
6a67368c 1138 ret = init_cache_node_node(nid);
18004c5d 1139 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1140 break;
1141 case MEM_GOING_OFFLINE:
18004c5d 1142 mutex_lock(&slab_mutex);
6a67368c 1143 ret = drain_cache_node_node(nid);
18004c5d 1144 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1145 break;
1146 case MEM_ONLINE:
1147 case MEM_OFFLINE:
1148 case MEM_CANCEL_ONLINE:
1149 case MEM_CANCEL_OFFLINE:
1150 break;
1151 }
1152out:
5fda1bd5 1153 return notifier_from_errno(ret);
8f9f8d9e
DR
1154}
1155#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1156
e498be7d 1157/*
ce8eb6c4 1158 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1159 */
6744f087 1160static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1161 int nodeid)
e498be7d 1162{
6744f087 1163 struct kmem_cache_node *ptr;
e498be7d 1164
6744f087 1165 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1166 BUG_ON(!ptr);
1167
6744f087 1168 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1169 /*
1170 * Do not assume that spinlocks can be initialized via memcpy:
1171 */
1172 spin_lock_init(&ptr->list_lock);
1173
e498be7d 1174 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1175 cachep->node[nodeid] = ptr;
e498be7d
CL
1176}
1177
556a169d 1178/*
ce8eb6c4
CL
1179 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1180 * size of kmem_cache_node.
556a169d 1181 */
ce8eb6c4 1182static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1183{
1184 int node;
1185
1186 for_each_online_node(node) {
ce8eb6c4 1187 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1188 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1189 REAPTIMEOUT_NODE +
1190 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1191 }
1192}
1193
a737b3e2
AM
1194/*
1195 * Initialisation. Called after the page allocator have been initialised and
1196 * before smp_init().
1da177e4
LT
1197 */
1198void __init kmem_cache_init(void)
1199{
e498be7d
CL
1200 int i;
1201
9b030cb8
CL
1202 kmem_cache = &kmem_cache_boot;
1203
8888177e 1204 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1205 use_alien_caches = 0;
1206
3c583465 1207 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1208 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1209
1da177e4
LT
1210 /*
1211 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1212 * page orders on machines with more than 32MB of memory if
1213 * not overridden on the command line.
1da177e4 1214 */
ca79b0c2 1215 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
543585cc 1216 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1217
1da177e4
LT
1218 /* Bootstrap is tricky, because several objects are allocated
1219 * from caches that do not exist yet:
9b030cb8
CL
1220 * 1) initialize the kmem_cache cache: it contains the struct
1221 * kmem_cache structures of all caches, except kmem_cache itself:
1222 * kmem_cache is statically allocated.
e498be7d 1223 * Initially an __init data area is used for the head array and the
ce8eb6c4 1224 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1225 * array at the end of the bootstrap.
1da177e4 1226 * 2) Create the first kmalloc cache.
343e0d7a 1227 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1228 * An __init data area is used for the head array.
1229 * 3) Create the remaining kmalloc caches, with minimally sized
1230 * head arrays.
9b030cb8 1231 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1232 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1233 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1234 * the other cache's with kmalloc allocated memory.
1235 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1236 */
1237
9b030cb8 1238 /* 1) create the kmem_cache */
1da177e4 1239
8da3430d 1240 /*
b56efcf0 1241 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1242 */
2f9baa9f 1243 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1244 offsetof(struct kmem_cache, node) +
6744f087 1245 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 1246 SLAB_HWCACHE_ALIGN, 0, 0);
2f9baa9f 1247 list_add(&kmem_cache->list, &slab_caches);
880cd276 1248 memcg_link_cache(kmem_cache);
bf0dea23 1249 slab_state = PARTIAL;
1da177e4 1250
a737b3e2 1251 /*
bf0dea23
JK
1252 * Initialize the caches that provide memory for the kmem_cache_node
1253 * structures first. Without this, further allocations will bug.
e498be7d 1254 */
cc252eae 1255 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
af3b5f87 1256 kmalloc_info[INDEX_NODE].name,
6c0c21ad
DW
1257 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1258 0, kmalloc_size(INDEX_NODE));
bf0dea23 1259 slab_state = PARTIAL_NODE;
34cc6990 1260 setup_kmalloc_cache_index_table();
e498be7d 1261
e0a42726
IM
1262 slab_early_init = 0;
1263
ce8eb6c4 1264 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1265 {
1ca4cb24
PE
1266 int nid;
1267
9c09a95c 1268 for_each_online_node(nid) {
ce8eb6c4 1269 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1270
cc252eae 1271 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
ce8eb6c4 1272 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1273 }
1274 }
1da177e4 1275
f97d5f63 1276 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1277}
1278
1279void __init kmem_cache_init_late(void)
1280{
1281 struct kmem_cache *cachep;
1282
8429db5c 1283 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1284 mutex_lock(&slab_mutex);
1285 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1286 if (enable_cpucache(cachep, GFP_NOWAIT))
1287 BUG();
18004c5d 1288 mutex_unlock(&slab_mutex);
056c6241 1289
97d06609
CL
1290 /* Done! */
1291 slab_state = FULL;
1292
8f9f8d9e
DR
1293#ifdef CONFIG_NUMA
1294 /*
1295 * Register a memory hotplug callback that initializes and frees
6a67368c 1296 * node.
8f9f8d9e
DR
1297 */
1298 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1299#endif
1300
a737b3e2
AM
1301 /*
1302 * The reap timers are started later, with a module init call: That part
1303 * of the kernel is not yet operational.
1da177e4
LT
1304 */
1305}
1306
1307static int __init cpucache_init(void)
1308{
6731d4f1 1309 int ret;
1da177e4 1310
a737b3e2
AM
1311 /*
1312 * Register the timers that return unneeded pages to the page allocator
1da177e4 1313 */
6731d4f1
SAS
1314 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1315 slab_online_cpu, slab_offline_cpu);
1316 WARN_ON(ret < 0);
a164f896 1317
1da177e4
LT
1318 return 0;
1319}
1da177e4
LT
1320__initcall(cpucache_init);
1321
8bdec192
RA
1322static noinline void
1323slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1324{
9a02d699 1325#if DEBUG
ce8eb6c4 1326 struct kmem_cache_node *n;
8bdec192
RA
1327 unsigned long flags;
1328 int node;
9a02d699
DR
1329 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1330 DEFAULT_RATELIMIT_BURST);
1331
1332 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1333 return;
8bdec192 1334
5b3810e5
VB
1335 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1336 nodeid, gfpflags, &gfpflags);
1337 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1338 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1339
18bf8541 1340 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1341 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1342
ce8eb6c4 1343 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1344 total_slabs = n->total_slabs;
1345 free_slabs = n->free_slabs;
1346 free_objs = n->free_objects;
ce8eb6c4 1347 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1348
bf00bd34
DR
1349 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1350 node, total_slabs - free_slabs, total_slabs,
1351 (total_slabs * cachep->num) - free_objs,
1352 total_slabs * cachep->num);
8bdec192 1353 }
9a02d699 1354#endif
8bdec192
RA
1355}
1356
1da177e4 1357/*
8a7d9b43
WSH
1358 * Interface to system's page allocator. No need to hold the
1359 * kmem_cache_node ->list_lock.
1da177e4
LT
1360 *
1361 * If we requested dmaable memory, we will get it. Even if we
1362 * did not request dmaable memory, we might get it, but that
1363 * would be relatively rare and ignorable.
1364 */
0c3aa83e
JK
1365static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1366 int nodeid)
1da177e4
LT
1367{
1368 struct page *page;
e1b6aa6f 1369 int nr_pages;
765c4507 1370
a618e89f 1371 flags |= cachep->allocflags;
e1b6aa6f 1372
75f296d9 1373 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
8bdec192 1374 if (!page) {
9a02d699 1375 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1376 return NULL;
8bdec192 1377 }
1da177e4 1378
f3ccb2c4
VD
1379 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1380 __free_pages(page, cachep->gfporder);
1381 return NULL;
1382 }
1383
e1b6aa6f 1384 nr_pages = (1 << cachep->gfporder);
1da177e4 1385 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1386 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
972d1a7b 1387 else
7779f212 1388 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1389
a57a4988 1390 __SetPageSlab(page);
f68f8ddd
JK
1391 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1392 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1393 SetPageSlabPfmemalloc(page);
072bb0aa 1394
0c3aa83e 1395 return page;
1da177e4
LT
1396}
1397
1398/*
1399 * Interface to system's page release.
1400 */
0c3aa83e 1401static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1402{
27ee57c9
VD
1403 int order = cachep->gfporder;
1404 unsigned long nr_freed = (1 << order);
1da177e4 1405
972d1a7b 1406 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1407 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
972d1a7b 1408 else
7779f212 1409 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
73293c2f 1410
a57a4988 1411 BUG_ON(!PageSlab(page));
73293c2f 1412 __ClearPageSlabPfmemalloc(page);
a57a4988 1413 __ClearPageSlab(page);
8456a648
JK
1414 page_mapcount_reset(page);
1415 page->mapping = NULL;
1f458cbf 1416
1da177e4
LT
1417 if (current->reclaim_state)
1418 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1419 memcg_uncharge_slab(page, order, cachep);
1420 __free_pages(page, order);
1da177e4
LT
1421}
1422
1423static void kmem_rcu_free(struct rcu_head *head)
1424{
68126702
JK
1425 struct kmem_cache *cachep;
1426 struct page *page;
1da177e4 1427
68126702
JK
1428 page = container_of(head, struct page, rcu_head);
1429 cachep = page->slab_cache;
1430
1431 kmem_freepages(cachep, page);
1da177e4
LT
1432}
1433
1434#if DEBUG
40b44137
JK
1435static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1436{
1437 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1438 (cachep->size % PAGE_SIZE) == 0)
1439 return true;
1440
1441 return false;
1442}
1da177e4
LT
1443
1444#ifdef CONFIG_DEBUG_PAGEALLOC
80552f0f 1445static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
40b44137
JK
1446{
1447 if (!is_debug_pagealloc_cache(cachep))
1448 return;
1449
40b44137
JK
1450 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1451}
1452
1453#else
1454static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
80552f0f 1455 int map) {}
40b44137 1456
1da177e4
LT
1457#endif
1458
343e0d7a 1459static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1460{
8c138bc0 1461 int size = cachep->object_size;
3dafccf2 1462 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1463
1464 memset(addr, val, size);
b28a02de 1465 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1466}
1467
1468static void dump_line(char *data, int offset, int limit)
1469{
1470 int i;
aa83aa40
DJ
1471 unsigned char error = 0;
1472 int bad_count = 0;
1473
1170532b 1474 pr_err("%03x: ", offset);
aa83aa40
DJ
1475 for (i = 0; i < limit; i++) {
1476 if (data[offset + i] != POISON_FREE) {
1477 error = data[offset + i];
1478 bad_count++;
1479 }
aa83aa40 1480 }
fdde6abb
SAS
1481 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1482 &data[offset], limit, 1);
aa83aa40
DJ
1483
1484 if (bad_count == 1) {
1485 error ^= POISON_FREE;
1486 if (!(error & (error - 1))) {
1170532b 1487 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1488#ifdef CONFIG_X86
1170532b 1489 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1490#else
1170532b 1491 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1492#endif
1493 }
1494 }
1da177e4
LT
1495}
1496#endif
1497
1498#if DEBUG
1499
343e0d7a 1500static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1501{
1502 int i, size;
1503 char *realobj;
1504
1505 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1506 pr_err("Redzone: 0x%llx/0x%llx\n",
1507 *dbg_redzone1(cachep, objp),
1508 *dbg_redzone2(cachep, objp));
1da177e4
LT
1509 }
1510
85c3e4a5
GU
1511 if (cachep->flags & SLAB_STORE_USER)
1512 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
3dafccf2 1513 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1514 size = cachep->object_size;
b28a02de 1515 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1516 int limit;
1517 limit = 16;
b28a02de
PE
1518 if (i + limit > size)
1519 limit = size - i;
1da177e4
LT
1520 dump_line(realobj, i, limit);
1521 }
1522}
1523
343e0d7a 1524static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1525{
1526 char *realobj;
1527 int size, i;
1528 int lines = 0;
1529
40b44137
JK
1530 if (is_debug_pagealloc_cache(cachep))
1531 return;
1532
3dafccf2 1533 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1534 size = cachep->object_size;
1da177e4 1535
b28a02de 1536 for (i = 0; i < size; i++) {
1da177e4 1537 char exp = POISON_FREE;
b28a02de 1538 if (i == size - 1)
1da177e4
LT
1539 exp = POISON_END;
1540 if (realobj[i] != exp) {
1541 int limit;
1542 /* Mismatch ! */
1543 /* Print header */
1544 if (lines == 0) {
85c3e4a5 1545 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1170532b
JP
1546 print_tainted(), cachep->name,
1547 realobj, size);
1da177e4
LT
1548 print_objinfo(cachep, objp, 0);
1549 }
1550 /* Hexdump the affected line */
b28a02de 1551 i = (i / 16) * 16;
1da177e4 1552 limit = 16;
b28a02de
PE
1553 if (i + limit > size)
1554 limit = size - i;
1da177e4
LT
1555 dump_line(realobj, i, limit);
1556 i += 16;
1557 lines++;
1558 /* Limit to 5 lines */
1559 if (lines > 5)
1560 break;
1561 }
1562 }
1563 if (lines != 0) {
1564 /* Print some data about the neighboring objects, if they
1565 * exist:
1566 */
8456a648 1567 struct page *page = virt_to_head_page(objp);
8fea4e96 1568 unsigned int objnr;
1da177e4 1569
8456a648 1570 objnr = obj_to_index(cachep, page, objp);
1da177e4 1571 if (objnr) {
8456a648 1572 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1573 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1574 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1575 print_objinfo(cachep, objp, 2);
1576 }
b28a02de 1577 if (objnr + 1 < cachep->num) {
8456a648 1578 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1579 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1580 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1581 print_objinfo(cachep, objp, 2);
1582 }
1583 }
1584}
1585#endif
1586
12dd36fa 1587#if DEBUG
8456a648
JK
1588static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1589 struct page *page)
1da177e4 1590{
1da177e4 1591 int i;
b03a017b
JK
1592
1593 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1594 poison_obj(cachep, page->freelist - obj_offset(cachep),
1595 POISON_FREE);
1596 }
1597
1da177e4 1598 for (i = 0; i < cachep->num; i++) {
8456a648 1599 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1600
1601 if (cachep->flags & SLAB_POISON) {
1da177e4 1602 check_poison_obj(cachep, objp);
80552f0f 1603 slab_kernel_map(cachep, objp, 1);
1da177e4
LT
1604 }
1605 if (cachep->flags & SLAB_RED_ZONE) {
1606 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1607 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1608 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1609 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1610 }
1da177e4 1611 }
12dd36fa 1612}
1da177e4 1613#else
8456a648
JK
1614static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1615 struct page *page)
12dd36fa 1616{
12dd36fa 1617}
1da177e4
LT
1618#endif
1619
911851e6
RD
1620/**
1621 * slab_destroy - destroy and release all objects in a slab
1622 * @cachep: cache pointer being destroyed
cb8ee1a3 1623 * @page: page pointer being destroyed
911851e6 1624 *
8a7d9b43
WSH
1625 * Destroy all the objs in a slab page, and release the mem back to the system.
1626 * Before calling the slab page must have been unlinked from the cache. The
1627 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1628 */
8456a648 1629static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1630{
7e007355 1631 void *freelist;
12dd36fa 1632
8456a648
JK
1633 freelist = page->freelist;
1634 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1635 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1636 call_rcu(&page->rcu_head, kmem_rcu_free);
1637 else
0c3aa83e 1638 kmem_freepages(cachep, page);
68126702
JK
1639
1640 /*
8456a648 1641 * From now on, we don't use freelist
68126702
JK
1642 * although actual page can be freed in rcu context
1643 */
1644 if (OFF_SLAB(cachep))
8456a648 1645 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1646}
1647
97654dfa
JK
1648static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1649{
1650 struct page *page, *n;
1651
16cb0ec7
TH
1652 list_for_each_entry_safe(page, n, list, slab_list) {
1653 list_del(&page->slab_list);
97654dfa
JK
1654 slab_destroy(cachep, page);
1655 }
1656}
1657
4d268eba 1658/**
a70773dd
RD
1659 * calculate_slab_order - calculate size (page order) of slabs
1660 * @cachep: pointer to the cache that is being created
1661 * @size: size of objects to be created in this cache.
a70773dd
RD
1662 * @flags: slab allocation flags
1663 *
1664 * Also calculates the number of objects per slab.
4d268eba
PE
1665 *
1666 * This could be made much more intelligent. For now, try to avoid using
1667 * high order pages for slabs. When the gfp() functions are more friendly
1668 * towards high-order requests, this should be changed.
a862f68a
MR
1669 *
1670 * Return: number of left-over bytes in a slab
4d268eba 1671 */
a737b3e2 1672static size_t calculate_slab_order(struct kmem_cache *cachep,
d50112ed 1673 size_t size, slab_flags_t flags)
4d268eba
PE
1674{
1675 size_t left_over = 0;
9888e6fa 1676 int gfporder;
4d268eba 1677
0aa817f0 1678 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1679 unsigned int num;
1680 size_t remainder;
1681
70f75067 1682 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1683 if (!num)
1684 continue;
9888e6fa 1685
f315e3fa
JK
1686 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1687 if (num > SLAB_OBJ_MAX_NUM)
1688 break;
1689
b1ab41c4 1690 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1691 struct kmem_cache *freelist_cache;
1692 size_t freelist_size;
1693
1694 freelist_size = num * sizeof(freelist_idx_t);
1695 freelist_cache = kmalloc_slab(freelist_size, 0u);
1696 if (!freelist_cache)
1697 continue;
1698
b1ab41c4 1699 /*
3217fd9b 1700 * Needed to avoid possible looping condition
76b342bd 1701 * in cache_grow_begin()
b1ab41c4 1702 */
3217fd9b
JK
1703 if (OFF_SLAB(freelist_cache))
1704 continue;
b1ab41c4 1705
3217fd9b
JK
1706 /* check if off slab has enough benefit */
1707 if (freelist_cache->size > cachep->size / 2)
1708 continue;
b1ab41c4 1709 }
4d268eba 1710
9888e6fa 1711 /* Found something acceptable - save it away */
4d268eba 1712 cachep->num = num;
9888e6fa 1713 cachep->gfporder = gfporder;
4d268eba
PE
1714 left_over = remainder;
1715
f78bb8ad
LT
1716 /*
1717 * A VFS-reclaimable slab tends to have most allocations
1718 * as GFP_NOFS and we really don't want to have to be allocating
1719 * higher-order pages when we are unable to shrink dcache.
1720 */
1721 if (flags & SLAB_RECLAIM_ACCOUNT)
1722 break;
1723
4d268eba
PE
1724 /*
1725 * Large number of objects is good, but very large slabs are
1726 * currently bad for the gfp()s.
1727 */
543585cc 1728 if (gfporder >= slab_max_order)
4d268eba
PE
1729 break;
1730
9888e6fa
LT
1731 /*
1732 * Acceptable internal fragmentation?
1733 */
a737b3e2 1734 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1735 break;
1736 }
1737 return left_over;
1738}
1739
bf0dea23
JK
1740static struct array_cache __percpu *alloc_kmem_cache_cpus(
1741 struct kmem_cache *cachep, int entries, int batchcount)
1742{
1743 int cpu;
1744 size_t size;
1745 struct array_cache __percpu *cpu_cache;
1746
1747 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1748 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1749
1750 if (!cpu_cache)
1751 return NULL;
1752
1753 for_each_possible_cpu(cpu) {
1754 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1755 entries, batchcount);
1756 }
1757
1758 return cpu_cache;
1759}
1760
bd721ea7 1761static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1762{
97d06609 1763 if (slab_state >= FULL)
83b519e8 1764 return enable_cpucache(cachep, gfp);
2ed3a4ef 1765
bf0dea23
JK
1766 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1767 if (!cachep->cpu_cache)
1768 return 1;
1769
97d06609 1770 if (slab_state == DOWN) {
bf0dea23
JK
1771 /* Creation of first cache (kmem_cache). */
1772 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1773 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1774 /* For kmem_cache_node */
1775 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1776 } else {
bf0dea23 1777 int node;
f30cf7d1 1778
bf0dea23
JK
1779 for_each_online_node(node) {
1780 cachep->node[node] = kmalloc_node(
1781 sizeof(struct kmem_cache_node), gfp, node);
1782 BUG_ON(!cachep->node[node]);
1783 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1784 }
1785 }
bf0dea23 1786
6a67368c 1787 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1788 jiffies + REAPTIMEOUT_NODE +
1789 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1790
1791 cpu_cache_get(cachep)->avail = 0;
1792 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1793 cpu_cache_get(cachep)->batchcount = 1;
1794 cpu_cache_get(cachep)->touched = 0;
1795 cachep->batchcount = 1;
1796 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1797 return 0;
f30cf7d1
PE
1798}
1799
0293d1fd 1800slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1801 slab_flags_t flags, const char *name,
12220dea
JK
1802 void (*ctor)(void *))
1803{
1804 return flags;
1805}
1806
1807struct kmem_cache *
f4957d5b 1808__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 1809 slab_flags_t flags, void (*ctor)(void *))
12220dea
JK
1810{
1811 struct kmem_cache *cachep;
1812
1813 cachep = find_mergeable(size, align, flags, name, ctor);
1814 if (cachep) {
1815 cachep->refcount++;
1816
1817 /*
1818 * Adjust the object sizes so that we clear
1819 * the complete object on kzalloc.
1820 */
1821 cachep->object_size = max_t(int, cachep->object_size, size);
1822 }
1823 return cachep;
1824}
1825
b03a017b 1826static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
d50112ed 1827 size_t size, slab_flags_t flags)
b03a017b
JK
1828{
1829 size_t left;
1830
1831 cachep->num = 0;
1832
5f0d5a3a 1833 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1834 return false;
1835
1836 left = calculate_slab_order(cachep, size,
1837 flags | CFLGS_OBJFREELIST_SLAB);
1838 if (!cachep->num)
1839 return false;
1840
1841 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1842 return false;
1843
1844 cachep->colour = left / cachep->colour_off;
1845
1846 return true;
1847}
1848
158e319b 1849static bool set_off_slab_cache(struct kmem_cache *cachep,
d50112ed 1850 size_t size, slab_flags_t flags)
158e319b
JK
1851{
1852 size_t left;
1853
1854 cachep->num = 0;
1855
1856 /*
3217fd9b
JK
1857 * Always use on-slab management when SLAB_NOLEAKTRACE
1858 * to avoid recursive calls into kmemleak.
158e319b 1859 */
158e319b
JK
1860 if (flags & SLAB_NOLEAKTRACE)
1861 return false;
1862
1863 /*
1864 * Size is large, assume best to place the slab management obj
1865 * off-slab (should allow better packing of objs).
1866 */
1867 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1868 if (!cachep->num)
1869 return false;
1870
1871 /*
1872 * If the slab has been placed off-slab, and we have enough space then
1873 * move it on-slab. This is at the expense of any extra colouring.
1874 */
1875 if (left >= cachep->num * sizeof(freelist_idx_t))
1876 return false;
1877
1878 cachep->colour = left / cachep->colour_off;
1879
1880 return true;
1881}
1882
1883static bool set_on_slab_cache(struct kmem_cache *cachep,
d50112ed 1884 size_t size, slab_flags_t flags)
158e319b
JK
1885{
1886 size_t left;
1887
1888 cachep->num = 0;
1889
1890 left = calculate_slab_order(cachep, size, flags);
1891 if (!cachep->num)
1892 return false;
1893
1894 cachep->colour = left / cachep->colour_off;
1895
1896 return true;
1897}
1898
1da177e4 1899/**
039363f3 1900 * __kmem_cache_create - Create a cache.
a755b76a 1901 * @cachep: cache management descriptor
1da177e4 1902 * @flags: SLAB flags
1da177e4
LT
1903 *
1904 * Returns a ptr to the cache on success, NULL on failure.
1905 * Cannot be called within a int, but can be interrupted.
20c2df83 1906 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1907 *
1da177e4
LT
1908 * The flags are
1909 *
1910 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1911 * to catch references to uninitialised memory.
1912 *
1913 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1914 * for buffer overruns.
1915 *
1da177e4
LT
1916 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1917 * cacheline. This can be beneficial if you're counting cycles as closely
1918 * as davem.
a862f68a
MR
1919 *
1920 * Return: a pointer to the created cache or %NULL in case of error
1da177e4 1921 */
d50112ed 1922int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1da177e4 1923{
d4a5fca5 1924 size_t ralign = BYTES_PER_WORD;
83b519e8 1925 gfp_t gfp;
278b1bb1 1926 int err;
be4a7988 1927 unsigned int size = cachep->size;
1da177e4 1928
1da177e4 1929#if DEBUG
1da177e4
LT
1930#if FORCED_DEBUG
1931 /*
1932 * Enable redzoning and last user accounting, except for caches with
1933 * large objects, if the increased size would increase the object size
1934 * above the next power of two: caches with object sizes just above a
1935 * power of two have a significant amount of internal fragmentation.
1936 */
87a927c7
DW
1937 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1938 2 * sizeof(unsigned long long)))
b28a02de 1939 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 1940 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
1941 flags |= SLAB_POISON;
1942#endif
1da177e4 1943#endif
1da177e4 1944
a737b3e2
AM
1945 /*
1946 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
1947 * unaligned accesses for some archs when redzoning is used, and makes
1948 * sure any on-slab bufctl's are also correctly aligned.
1949 */
e0771950 1950 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 1951
87a927c7
DW
1952 if (flags & SLAB_RED_ZONE) {
1953 ralign = REDZONE_ALIGN;
1954 /* If redzoning, ensure that the second redzone is suitably
1955 * aligned, by adjusting the object size accordingly. */
e0771950 1956 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 1957 }
ca5f9703 1958
a44b56d3 1959 /* 3) caller mandated alignment */
8a13a4cc
CL
1960 if (ralign < cachep->align) {
1961 ralign = cachep->align;
1da177e4 1962 }
3ff84a7f
PE
1963 /* disable debug if necessary */
1964 if (ralign > __alignof__(unsigned long long))
a44b56d3 1965 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 1966 /*
ca5f9703 1967 * 4) Store it.
1da177e4 1968 */
8a13a4cc 1969 cachep->align = ralign;
158e319b
JK
1970 cachep->colour_off = cache_line_size();
1971 /* Offset must be a multiple of the alignment. */
1972 if (cachep->colour_off < cachep->align)
1973 cachep->colour_off = cachep->align;
1da177e4 1974
83b519e8
PE
1975 if (slab_is_available())
1976 gfp = GFP_KERNEL;
1977 else
1978 gfp = GFP_NOWAIT;
1979
1da177e4 1980#if DEBUG
1da177e4 1981
ca5f9703
PE
1982 /*
1983 * Both debugging options require word-alignment which is calculated
1984 * into align above.
1985 */
1da177e4 1986 if (flags & SLAB_RED_ZONE) {
1da177e4 1987 /* add space for red zone words */
3ff84a7f
PE
1988 cachep->obj_offset += sizeof(unsigned long long);
1989 size += 2 * sizeof(unsigned long long);
1da177e4
LT
1990 }
1991 if (flags & SLAB_STORE_USER) {
ca5f9703 1992 /* user store requires one word storage behind the end of
87a927c7
DW
1993 * the real object. But if the second red zone needs to be
1994 * aligned to 64 bits, we must allow that much space.
1da177e4 1995 */
87a927c7
DW
1996 if (flags & SLAB_RED_ZONE)
1997 size += REDZONE_ALIGN;
1998 else
1999 size += BYTES_PER_WORD;
1da177e4 2000 }
832a15d2
JK
2001#endif
2002
7ed2f9e6
AP
2003 kasan_cache_create(cachep, &size, &flags);
2004
832a15d2
JK
2005 size = ALIGN(size, cachep->align);
2006 /*
2007 * We should restrict the number of objects in a slab to implement
2008 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2009 */
2010 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2011 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2012
2013#if DEBUG
03a2d2a3
JK
2014 /*
2015 * To activate debug pagealloc, off-slab management is necessary
2016 * requirement. In early phase of initialization, small sized slab
2017 * doesn't get initialized so it would not be possible. So, we need
2018 * to check size >= 256. It guarantees that all necessary small
2019 * sized slab is initialized in current slab initialization sequence.
2020 */
40323278 2021 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2022 size >= 256 && cachep->object_size > cache_line_size()) {
2023 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2024 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2025
2026 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2027 flags |= CFLGS_OFF_SLAB;
2028 cachep->obj_offset += tmp_size - size;
2029 size = tmp_size;
2030 goto done;
2031 }
2032 }
1da177e4 2033 }
1da177e4
LT
2034#endif
2035
b03a017b
JK
2036 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2037 flags |= CFLGS_OBJFREELIST_SLAB;
2038 goto done;
2039 }
2040
158e319b 2041 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2042 flags |= CFLGS_OFF_SLAB;
158e319b 2043 goto done;
832a15d2 2044 }
1da177e4 2045
158e319b
JK
2046 if (set_on_slab_cache(cachep, size, flags))
2047 goto done;
1da177e4 2048
158e319b 2049 return -E2BIG;
1da177e4 2050
158e319b
JK
2051done:
2052 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2053 cachep->flags = flags;
a57a4988 2054 cachep->allocflags = __GFP_COMP;
a3187e43 2055 if (flags & SLAB_CACHE_DMA)
a618e89f 2056 cachep->allocflags |= GFP_DMA;
6d6ea1e9
NB
2057 if (flags & SLAB_CACHE_DMA32)
2058 cachep->allocflags |= GFP_DMA32;
a3ba0744
DR
2059 if (flags & SLAB_RECLAIM_ACCOUNT)
2060 cachep->allocflags |= __GFP_RECLAIMABLE;
3b0efdfa 2061 cachep->size = size;
6a2d7a95 2062 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2063
40b44137
JK
2064#if DEBUG
2065 /*
2066 * If we're going to use the generic kernel_map_pages()
2067 * poisoning, then it's going to smash the contents of
2068 * the redzone and userword anyhow, so switch them off.
2069 */
2070 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2071 (cachep->flags & SLAB_POISON) &&
2072 is_debug_pagealloc_cache(cachep))
2073 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2074#endif
2075
2076 if (OFF_SLAB(cachep)) {
158e319b
JK
2077 cachep->freelist_cache =
2078 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2079 }
1da177e4 2080
278b1bb1
CL
2081 err = setup_cpu_cache(cachep, gfp);
2082 if (err) {
52b4b950 2083 __kmem_cache_release(cachep);
278b1bb1 2084 return err;
2ed3a4ef 2085 }
1da177e4 2086
278b1bb1 2087 return 0;
1da177e4 2088}
1da177e4
LT
2089
2090#if DEBUG
2091static void check_irq_off(void)
2092{
2093 BUG_ON(!irqs_disabled());
2094}
2095
2096static void check_irq_on(void)
2097{
2098 BUG_ON(irqs_disabled());
2099}
2100
18726ca8
JK
2101static void check_mutex_acquired(void)
2102{
2103 BUG_ON(!mutex_is_locked(&slab_mutex));
2104}
2105
343e0d7a 2106static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2107{
2108#ifdef CONFIG_SMP
2109 check_irq_off();
18bf8541 2110 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2111#endif
2112}
e498be7d 2113
343e0d7a 2114static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2115{
2116#ifdef CONFIG_SMP
2117 check_irq_off();
18bf8541 2118 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2119#endif
2120}
2121
1da177e4
LT
2122#else
2123#define check_irq_off() do { } while(0)
2124#define check_irq_on() do { } while(0)
18726ca8 2125#define check_mutex_acquired() do { } while(0)
1da177e4 2126#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2127#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2128#endif
2129
18726ca8
JK
2130static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2131 int node, bool free_all, struct list_head *list)
2132{
2133 int tofree;
2134
2135 if (!ac || !ac->avail)
2136 return;
2137
2138 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2139 if (tofree > ac->avail)
2140 tofree = (ac->avail + 1) / 2;
2141
2142 free_block(cachep, ac->entry, tofree, node, list);
2143 ac->avail -= tofree;
2144 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2145}
aab2207c 2146
1da177e4
LT
2147static void do_drain(void *arg)
2148{
a737b3e2 2149 struct kmem_cache *cachep = arg;
1da177e4 2150 struct array_cache *ac;
7d6e6d09 2151 int node = numa_mem_id();
18bf8541 2152 struct kmem_cache_node *n;
97654dfa 2153 LIST_HEAD(list);
1da177e4
LT
2154
2155 check_irq_off();
9a2dba4b 2156 ac = cpu_cache_get(cachep);
18bf8541
CL
2157 n = get_node(cachep, node);
2158 spin_lock(&n->list_lock);
97654dfa 2159 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2160 spin_unlock(&n->list_lock);
97654dfa 2161 slabs_destroy(cachep, &list);
1da177e4
LT
2162 ac->avail = 0;
2163}
2164
343e0d7a 2165static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2166{
ce8eb6c4 2167 struct kmem_cache_node *n;
e498be7d 2168 int node;
18726ca8 2169 LIST_HEAD(list);
e498be7d 2170
15c8b6c1 2171 on_each_cpu(do_drain, cachep, 1);
1da177e4 2172 check_irq_on();
18bf8541
CL
2173 for_each_kmem_cache_node(cachep, node, n)
2174 if (n->alien)
ce8eb6c4 2175 drain_alien_cache(cachep, n->alien);
a4523a8b 2176
18726ca8
JK
2177 for_each_kmem_cache_node(cachep, node, n) {
2178 spin_lock_irq(&n->list_lock);
2179 drain_array_locked(cachep, n->shared, node, true, &list);
2180 spin_unlock_irq(&n->list_lock);
2181
2182 slabs_destroy(cachep, &list);
2183 }
1da177e4
LT
2184}
2185
ed11d9eb
CL
2186/*
2187 * Remove slabs from the list of free slabs.
2188 * Specify the number of slabs to drain in tofree.
2189 *
2190 * Returns the actual number of slabs released.
2191 */
2192static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2193 struct kmem_cache_node *n, int tofree)
1da177e4 2194{
ed11d9eb
CL
2195 struct list_head *p;
2196 int nr_freed;
8456a648 2197 struct page *page;
1da177e4 2198
ed11d9eb 2199 nr_freed = 0;
ce8eb6c4 2200 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2201
ce8eb6c4
CL
2202 spin_lock_irq(&n->list_lock);
2203 p = n->slabs_free.prev;
2204 if (p == &n->slabs_free) {
2205 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2206 goto out;
2207 }
1da177e4 2208
16cb0ec7
TH
2209 page = list_entry(p, struct page, slab_list);
2210 list_del(&page->slab_list);
f728b0a5 2211 n->free_slabs--;
bf00bd34 2212 n->total_slabs--;
ed11d9eb
CL
2213 /*
2214 * Safe to drop the lock. The slab is no longer linked
2215 * to the cache.
2216 */
ce8eb6c4
CL
2217 n->free_objects -= cache->num;
2218 spin_unlock_irq(&n->list_lock);
8456a648 2219 slab_destroy(cache, page);
ed11d9eb 2220 nr_freed++;
1da177e4 2221 }
ed11d9eb
CL
2222out:
2223 return nr_freed;
1da177e4
LT
2224}
2225
f9e13c0a
SB
2226bool __kmem_cache_empty(struct kmem_cache *s)
2227{
2228 int node;
2229 struct kmem_cache_node *n;
2230
2231 for_each_kmem_cache_node(s, node, n)
2232 if (!list_empty(&n->slabs_full) ||
2233 !list_empty(&n->slabs_partial))
2234 return false;
2235 return true;
2236}
2237
c9fc5864 2238int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2239{
18bf8541
CL
2240 int ret = 0;
2241 int node;
ce8eb6c4 2242 struct kmem_cache_node *n;
e498be7d
CL
2243
2244 drain_cpu_caches(cachep);
2245
2246 check_irq_on();
18bf8541 2247 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2248 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2249
ce8eb6c4
CL
2250 ret += !list_empty(&n->slabs_full) ||
2251 !list_empty(&n->slabs_partial);
e498be7d
CL
2252 }
2253 return (ret ? 1 : 0);
2254}
2255
c9fc5864
TH
2256#ifdef CONFIG_MEMCG
2257void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2258{
2259 __kmem_cache_shrink(cachep);
2260}
2261#endif
2262
945cf2b6 2263int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2264{
c9fc5864 2265 return __kmem_cache_shrink(cachep);
52b4b950
DS
2266}
2267
2268void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2269{
12c3667f 2270 int i;
ce8eb6c4 2271 struct kmem_cache_node *n;
1da177e4 2272
c7ce4f60
TG
2273 cache_random_seq_destroy(cachep);
2274
bf0dea23 2275 free_percpu(cachep->cpu_cache);
1da177e4 2276
ce8eb6c4 2277 /* NUMA: free the node structures */
18bf8541
CL
2278 for_each_kmem_cache_node(cachep, i, n) {
2279 kfree(n->shared);
2280 free_alien_cache(n->alien);
2281 kfree(n);
2282 cachep->node[i] = NULL;
12c3667f 2283 }
1da177e4 2284}
1da177e4 2285
e5ac9c5a
RT
2286/*
2287 * Get the memory for a slab management obj.
5f0985bb
JZ
2288 *
2289 * For a slab cache when the slab descriptor is off-slab, the
2290 * slab descriptor can't come from the same cache which is being created,
2291 * Because if it is the case, that means we defer the creation of
2292 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2293 * And we eventually call down to __kmem_cache_create(), which
2294 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2295 * This is a "chicken-and-egg" problem.
2296 *
2297 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2298 * which are all initialized during kmem_cache_init().
e5ac9c5a 2299 */
7e007355 2300static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2301 struct page *page, int colour_off,
2302 gfp_t local_flags, int nodeid)
1da177e4 2303{
7e007355 2304 void *freelist;
0c3aa83e 2305 void *addr = page_address(page);
b28a02de 2306
51dedad0 2307 page->s_mem = addr + colour_off;
2e6b3602
JK
2308 page->active = 0;
2309
b03a017b
JK
2310 if (OBJFREELIST_SLAB(cachep))
2311 freelist = NULL;
2312 else if (OFF_SLAB(cachep)) {
1da177e4 2313 /* Slab management obj is off-slab. */
8456a648 2314 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2315 local_flags, nodeid);
8456a648 2316 if (!freelist)
1da177e4
LT
2317 return NULL;
2318 } else {
2e6b3602
JK
2319 /* We will use last bytes at the slab for freelist */
2320 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2321 cachep->freelist_size;
1da177e4 2322 }
2e6b3602 2323
8456a648 2324 return freelist;
1da177e4
LT
2325}
2326
7cc68973 2327static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2328{
a41adfaa 2329 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2330}
2331
2332static inline void set_free_obj(struct page *page,
7cc68973 2333 unsigned int idx, freelist_idx_t val)
e5c58dfd 2334{
a41adfaa 2335 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2336}
2337
10b2e9e8 2338static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2339{
10b2e9e8 2340#if DEBUG
1da177e4
LT
2341 int i;
2342
2343 for (i = 0; i < cachep->num; i++) {
8456a648 2344 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2345
1da177e4
LT
2346 if (cachep->flags & SLAB_STORE_USER)
2347 *dbg_userword(cachep, objp) = NULL;
2348
2349 if (cachep->flags & SLAB_RED_ZONE) {
2350 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2351 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2352 }
2353 /*
a737b3e2
AM
2354 * Constructors are not allowed to allocate memory from the same
2355 * cache which they are a constructor for. Otherwise, deadlock.
2356 * They must also be threaded.
1da177e4 2357 */
7ed2f9e6
AP
2358 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2359 kasan_unpoison_object_data(cachep,
2360 objp + obj_offset(cachep));
51cc5068 2361 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2362 kasan_poison_object_data(
2363 cachep, objp + obj_offset(cachep));
2364 }
1da177e4
LT
2365
2366 if (cachep->flags & SLAB_RED_ZONE) {
2367 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2368 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2369 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2370 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2371 }
40b44137
JK
2372 /* need to poison the objs? */
2373 if (cachep->flags & SLAB_POISON) {
2374 poison_obj(cachep, objp, POISON_FREE);
80552f0f 2375 slab_kernel_map(cachep, objp, 0);
40b44137 2376 }
10b2e9e8 2377 }
1da177e4 2378#endif
10b2e9e8
JK
2379}
2380
c7ce4f60
TG
2381#ifdef CONFIG_SLAB_FREELIST_RANDOM
2382/* Hold information during a freelist initialization */
2383union freelist_init_state {
2384 struct {
2385 unsigned int pos;
7c00fce9 2386 unsigned int *list;
c7ce4f60 2387 unsigned int count;
c7ce4f60
TG
2388 };
2389 struct rnd_state rnd_state;
2390};
2391
2392/*
2393 * Initialize the state based on the randomization methode available.
2394 * return true if the pre-computed list is available, false otherwize.
2395 */
2396static bool freelist_state_initialize(union freelist_init_state *state,
2397 struct kmem_cache *cachep,
2398 unsigned int count)
2399{
2400 bool ret;
2401 unsigned int rand;
2402
2403 /* Use best entropy available to define a random shift */
7c00fce9 2404 rand = get_random_int();
c7ce4f60
TG
2405
2406 /* Use a random state if the pre-computed list is not available */
2407 if (!cachep->random_seq) {
2408 prandom_seed_state(&state->rnd_state, rand);
2409 ret = false;
2410 } else {
2411 state->list = cachep->random_seq;
2412 state->count = count;
c4e490cf 2413 state->pos = rand % count;
c7ce4f60
TG
2414 ret = true;
2415 }
2416 return ret;
2417}
2418
2419/* Get the next entry on the list and randomize it using a random shift */
2420static freelist_idx_t next_random_slot(union freelist_init_state *state)
2421{
c4e490cf
JS
2422 if (state->pos >= state->count)
2423 state->pos = 0;
2424 return state->list[state->pos++];
c7ce4f60
TG
2425}
2426
7c00fce9
TG
2427/* Swap two freelist entries */
2428static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2429{
2430 swap(((freelist_idx_t *)page->freelist)[a],
2431 ((freelist_idx_t *)page->freelist)[b]);
2432}
2433
c7ce4f60
TG
2434/*
2435 * Shuffle the freelist initialization state based on pre-computed lists.
2436 * return true if the list was successfully shuffled, false otherwise.
2437 */
2438static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2439{
7c00fce9 2440 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2441 union freelist_init_state state;
2442 bool precomputed;
2443
2444 if (count < 2)
2445 return false;
2446
2447 precomputed = freelist_state_initialize(&state, cachep, count);
2448
2449 /* Take a random entry as the objfreelist */
2450 if (OBJFREELIST_SLAB(cachep)) {
2451 if (!precomputed)
2452 objfreelist = count - 1;
2453 else
2454 objfreelist = next_random_slot(&state);
2455 page->freelist = index_to_obj(cachep, page, objfreelist) +
2456 obj_offset(cachep);
2457 count--;
2458 }
2459
2460 /*
2461 * On early boot, generate the list dynamically.
2462 * Later use a pre-computed list for speed.
2463 */
2464 if (!precomputed) {
7c00fce9
TG
2465 for (i = 0; i < count; i++)
2466 set_free_obj(page, i, i);
2467
2468 /* Fisher-Yates shuffle */
2469 for (i = count - 1; i > 0; i--) {
2470 rand = prandom_u32_state(&state.rnd_state);
2471 rand %= (i + 1);
2472 swap_free_obj(page, i, rand);
2473 }
c7ce4f60
TG
2474 } else {
2475 for (i = 0; i < count; i++)
2476 set_free_obj(page, i, next_random_slot(&state));
2477 }
2478
2479 if (OBJFREELIST_SLAB(cachep))
2480 set_free_obj(page, cachep->num - 1, objfreelist);
2481
2482 return true;
2483}
2484#else
2485static inline bool shuffle_freelist(struct kmem_cache *cachep,
2486 struct page *page)
2487{
2488 return false;
2489}
2490#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2491
10b2e9e8
JK
2492static void cache_init_objs(struct kmem_cache *cachep,
2493 struct page *page)
2494{
2495 int i;
7ed2f9e6 2496 void *objp;
c7ce4f60 2497 bool shuffled;
10b2e9e8
JK
2498
2499 cache_init_objs_debug(cachep, page);
2500
c7ce4f60
TG
2501 /* Try to randomize the freelist if enabled */
2502 shuffled = shuffle_freelist(cachep, page);
2503
2504 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2505 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2506 obj_offset(cachep);
2507 }
2508
10b2e9e8 2509 for (i = 0; i < cachep->num; i++) {
b3cbd9bf 2510 objp = index_to_obj(cachep, page, i);
4d176711 2511 objp = kasan_init_slab_obj(cachep, objp);
b3cbd9bf 2512
10b2e9e8 2513 /* constructor could break poison info */
7ed2f9e6 2514 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2515 kasan_unpoison_object_data(cachep, objp);
2516 cachep->ctor(objp);
2517 kasan_poison_object_data(cachep, objp);
2518 }
10b2e9e8 2519
c7ce4f60
TG
2520 if (!shuffled)
2521 set_free_obj(page, i, i);
1da177e4 2522 }
1da177e4
LT
2523}
2524
260b61dd 2525static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2526{
b1cb0982 2527 void *objp;
78d382d7 2528
e5c58dfd 2529 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2530 page->active++;
78d382d7
MD
2531
2532 return objp;
2533}
2534
260b61dd
JK
2535static void slab_put_obj(struct kmem_cache *cachep,
2536 struct page *page, void *objp)
78d382d7 2537{
8456a648 2538 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2539#if DEBUG
16025177 2540 unsigned int i;
b1cb0982 2541
b1cb0982 2542 /* Verify double free bug */
8456a648 2543 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2544 if (get_free_obj(page, i) == objnr) {
85c3e4a5 2545 pr_err("slab: double free detected in cache '%s', objp %px\n",
756a025f 2546 cachep->name, objp);
b1cb0982
JK
2547 BUG();
2548 }
78d382d7
MD
2549 }
2550#endif
8456a648 2551 page->active--;
b03a017b
JK
2552 if (!page->freelist)
2553 page->freelist = objp + obj_offset(cachep);
2554
e5c58dfd 2555 set_free_obj(page, page->active, objnr);
78d382d7
MD
2556}
2557
4776874f
PE
2558/*
2559 * Map pages beginning at addr to the given cache and slab. This is required
2560 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2561 * virtual address for kfree, ksize, and slab debugging.
4776874f 2562 */
8456a648 2563static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2564 void *freelist)
1da177e4 2565{
a57a4988 2566 page->slab_cache = cache;
8456a648 2567 page->freelist = freelist;
1da177e4
LT
2568}
2569
2570/*
2571 * Grow (by 1) the number of slabs within a cache. This is called by
2572 * kmem_cache_alloc() when there are no active objs left in a cache.
2573 */
76b342bd
JK
2574static struct page *cache_grow_begin(struct kmem_cache *cachep,
2575 gfp_t flags, int nodeid)
1da177e4 2576{
7e007355 2577 void *freelist;
b28a02de
PE
2578 size_t offset;
2579 gfp_t local_flags;
511e3a05 2580 int page_node;
ce8eb6c4 2581 struct kmem_cache_node *n;
511e3a05 2582 struct page *page;
1da177e4 2583
a737b3e2
AM
2584 /*
2585 * Be lazy and only check for valid flags here, keeping it out of the
2586 * critical path in kmem_cache_alloc().
1da177e4 2587 */
c871ac4e 2588 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2589 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2590 flags &= ~GFP_SLAB_BUG_MASK;
2591 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2592 invalid_mask, &invalid_mask, flags, &flags);
2593 dump_stack();
c871ac4e 2594 }
128227e7 2595 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
6cb06229 2596 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2597
1da177e4 2598 check_irq_off();
d0164adc 2599 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2600 local_irq_enable();
2601
a737b3e2
AM
2602 /*
2603 * Get mem for the objs. Attempt to allocate a physical page from
2604 * 'nodeid'.
e498be7d 2605 */
511e3a05 2606 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2607 if (!page)
1da177e4
LT
2608 goto failed;
2609
511e3a05
JK
2610 page_node = page_to_nid(page);
2611 n = get_node(cachep, page_node);
03d1d43a
JK
2612
2613 /* Get colour for the slab, and cal the next value. */
2614 n->colour_next++;
2615 if (n->colour_next >= cachep->colour)
2616 n->colour_next = 0;
2617
2618 offset = n->colour_next;
2619 if (offset >= cachep->colour)
2620 offset = 0;
2621
2622 offset *= cachep->colour_off;
2623
51dedad0
AK
2624 /*
2625 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2626 * page_address() in the latter returns a non-tagged pointer,
2627 * as it should be for slab pages.
2628 */
2629 kasan_poison_slab(page);
2630
1da177e4 2631 /* Get slab management. */
8456a648 2632 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2633 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2634 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2635 goto opps1;
2636
8456a648 2637 slab_map_pages(cachep, page, freelist);
1da177e4 2638
8456a648 2639 cache_init_objs(cachep, page);
1da177e4 2640
d0164adc 2641 if (gfpflags_allow_blocking(local_flags))
1da177e4 2642 local_irq_disable();
1da177e4 2643
76b342bd
JK
2644 return page;
2645
a737b3e2 2646opps1:
0c3aa83e 2647 kmem_freepages(cachep, page);
a737b3e2 2648failed:
d0164adc 2649 if (gfpflags_allow_blocking(local_flags))
1da177e4 2650 local_irq_disable();
76b342bd
JK
2651 return NULL;
2652}
2653
2654static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2655{
2656 struct kmem_cache_node *n;
2657 void *list = NULL;
2658
2659 check_irq_off();
2660
2661 if (!page)
2662 return;
2663
16cb0ec7 2664 INIT_LIST_HEAD(&page->slab_list);
76b342bd
JK
2665 n = get_node(cachep, page_to_nid(page));
2666
2667 spin_lock(&n->list_lock);
bf00bd34 2668 n->total_slabs++;
f728b0a5 2669 if (!page->active) {
16cb0ec7 2670 list_add_tail(&page->slab_list, &n->slabs_free);
f728b0a5 2671 n->free_slabs++;
bf00bd34 2672 } else
76b342bd 2673 fixup_slab_list(cachep, n, page, &list);
07a63c41 2674
76b342bd
JK
2675 STATS_INC_GROWN(cachep);
2676 n->free_objects += cachep->num - page->active;
2677 spin_unlock(&n->list_lock);
2678
2679 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2680}
2681
2682#if DEBUG
2683
2684/*
2685 * Perform extra freeing checks:
2686 * - detect bad pointers.
2687 * - POISON/RED_ZONE checking
1da177e4
LT
2688 */
2689static void kfree_debugcheck(const void *objp)
2690{
1da177e4 2691 if (!virt_addr_valid(objp)) {
1170532b 2692 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2693 (unsigned long)objp);
2694 BUG();
1da177e4 2695 }
1da177e4
LT
2696}
2697
58ce1fd5
PE
2698static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2699{
b46b8f19 2700 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2701
2702 redzone1 = *dbg_redzone1(cache, obj);
2703 redzone2 = *dbg_redzone2(cache, obj);
2704
2705 /*
2706 * Redzone is ok.
2707 */
2708 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2709 return;
2710
2711 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2712 slab_error(cache, "double free detected");
2713 else
2714 slab_error(cache, "memory outside object was overwritten");
2715
85c3e4a5 2716 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b 2717 obj, redzone1, redzone2);
58ce1fd5
PE
2718}
2719
343e0d7a 2720static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2721 unsigned long caller)
1da177e4 2722{
1da177e4 2723 unsigned int objnr;
8456a648 2724 struct page *page;
1da177e4 2725
80cbd911
MW
2726 BUG_ON(virt_to_cache(objp) != cachep);
2727
3dafccf2 2728 objp -= obj_offset(cachep);
1da177e4 2729 kfree_debugcheck(objp);
b49af68f 2730 page = virt_to_head_page(objp);
1da177e4 2731
1da177e4 2732 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2733 verify_redzone_free(cachep, objp);
1da177e4
LT
2734 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2735 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2736 }
7878c231 2737 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2738 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2739
8456a648 2740 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2741
2742 BUG_ON(objnr >= cachep->num);
8456a648 2743 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2744
1da177e4 2745 if (cachep->flags & SLAB_POISON) {
1da177e4 2746 poison_obj(cachep, objp, POISON_FREE);
80552f0f 2747 slab_kernel_map(cachep, objp, 0);
1da177e4
LT
2748 }
2749 return objp;
2750}
2751
1da177e4
LT
2752#else
2753#define kfree_debugcheck(x) do { } while(0)
2754#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2755#endif
2756
b03a017b
JK
2757static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2758 void **list)
2759{
2760#if DEBUG
2761 void *next = *list;
2762 void *objp;
2763
2764 while (next) {
2765 objp = next - obj_offset(cachep);
2766 next = *(void **)next;
2767 poison_obj(cachep, objp, POISON_FREE);
2768 }
2769#endif
2770}
2771
d8410234 2772static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2773 struct kmem_cache_node *n, struct page *page,
2774 void **list)
d8410234
JK
2775{
2776 /* move slabp to correct slabp list: */
16cb0ec7 2777 list_del(&page->slab_list);
b03a017b 2778 if (page->active == cachep->num) {
16cb0ec7 2779 list_add(&page->slab_list, &n->slabs_full);
b03a017b
JK
2780 if (OBJFREELIST_SLAB(cachep)) {
2781#if DEBUG
2782 /* Poisoning will be done without holding the lock */
2783 if (cachep->flags & SLAB_POISON) {
2784 void **objp = page->freelist;
2785
2786 *objp = *list;
2787 *list = objp;
2788 }
2789#endif
2790 page->freelist = NULL;
2791 }
2792 } else
16cb0ec7 2793 list_add(&page->slab_list, &n->slabs_partial);
d8410234
JK
2794}
2795
f68f8ddd
JK
2796/* Try to find non-pfmemalloc slab if needed */
2797static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2798 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2799{
2800 if (!page)
2801 return NULL;
2802
2803 if (pfmemalloc)
2804 return page;
2805
2806 if (!PageSlabPfmemalloc(page))
2807 return page;
2808
2809 /* No need to keep pfmemalloc slab if we have enough free objects */
2810 if (n->free_objects > n->free_limit) {
2811 ClearPageSlabPfmemalloc(page);
2812 return page;
2813 }
2814
2815 /* Move pfmemalloc slab to the end of list to speed up next search */
16cb0ec7 2816 list_del(&page->slab_list);
bf00bd34 2817 if (!page->active) {
16cb0ec7 2818 list_add_tail(&page->slab_list, &n->slabs_free);
bf00bd34 2819 n->free_slabs++;
f728b0a5 2820 } else
16cb0ec7 2821 list_add_tail(&page->slab_list, &n->slabs_partial);
f68f8ddd 2822
16cb0ec7 2823 list_for_each_entry(page, &n->slabs_partial, slab_list) {
f68f8ddd
JK
2824 if (!PageSlabPfmemalloc(page))
2825 return page;
2826 }
2827
f728b0a5 2828 n->free_touched = 1;
16cb0ec7 2829 list_for_each_entry(page, &n->slabs_free, slab_list) {
f728b0a5 2830 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2831 n->free_slabs--;
f68f8ddd 2832 return page;
f728b0a5 2833 }
f68f8ddd
JK
2834 }
2835
2836 return NULL;
2837}
2838
2839static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2840{
2841 struct page *page;
2842
f728b0a5 2843 assert_spin_locked(&n->list_lock);
16cb0ec7
TH
2844 page = list_first_entry_or_null(&n->slabs_partial, struct page,
2845 slab_list);
7aa0d227
GT
2846 if (!page) {
2847 n->free_touched = 1;
bf00bd34 2848 page = list_first_entry_or_null(&n->slabs_free, struct page,
16cb0ec7 2849 slab_list);
f728b0a5 2850 if (page)
bf00bd34 2851 n->free_slabs--;
7aa0d227
GT
2852 }
2853
f68f8ddd 2854 if (sk_memalloc_socks())
bf00bd34 2855 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2856
7aa0d227
GT
2857 return page;
2858}
2859
f68f8ddd
JK
2860static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2861 struct kmem_cache_node *n, gfp_t flags)
2862{
2863 struct page *page;
2864 void *obj;
2865 void *list = NULL;
2866
2867 if (!gfp_pfmemalloc_allowed(flags))
2868 return NULL;
2869
2870 spin_lock(&n->list_lock);
2871 page = get_first_slab(n, true);
2872 if (!page) {
2873 spin_unlock(&n->list_lock);
2874 return NULL;
2875 }
2876
2877 obj = slab_get_obj(cachep, page);
2878 n->free_objects--;
2879
2880 fixup_slab_list(cachep, n, page, &list);
2881
2882 spin_unlock(&n->list_lock);
2883 fixup_objfreelist_debug(cachep, &list);
2884
2885 return obj;
2886}
2887
213b4695
JK
2888/*
2889 * Slab list should be fixed up by fixup_slab_list() for existing slab
2890 * or cache_grow_end() for new slab
2891 */
2892static __always_inline int alloc_block(struct kmem_cache *cachep,
2893 struct array_cache *ac, struct page *page, int batchcount)
2894{
2895 /*
2896 * There must be at least one object available for
2897 * allocation.
2898 */
2899 BUG_ON(page->active >= cachep->num);
2900
2901 while (page->active < cachep->num && batchcount--) {
2902 STATS_INC_ALLOCED(cachep);
2903 STATS_INC_ACTIVE(cachep);
2904 STATS_SET_HIGH(cachep);
2905
2906 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2907 }
2908
2909 return batchcount;
2910}
2911
f68f8ddd 2912static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2913{
2914 int batchcount;
ce8eb6c4 2915 struct kmem_cache_node *n;
801faf0d 2916 struct array_cache *ac, *shared;
1ca4cb24 2917 int node;
b03a017b 2918 void *list = NULL;
76b342bd 2919 struct page *page;
1ca4cb24 2920
1da177e4 2921 check_irq_off();
7d6e6d09 2922 node = numa_mem_id();
f68f8ddd 2923
9a2dba4b 2924 ac = cpu_cache_get(cachep);
1da177e4
LT
2925 batchcount = ac->batchcount;
2926 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2927 /*
2928 * If there was little recent activity on this cache, then
2929 * perform only a partial refill. Otherwise we could generate
2930 * refill bouncing.
1da177e4
LT
2931 */
2932 batchcount = BATCHREFILL_LIMIT;
2933 }
18bf8541 2934 n = get_node(cachep, node);
e498be7d 2935
ce8eb6c4 2936 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
2937 shared = READ_ONCE(n->shared);
2938 if (!n->free_objects && (!shared || !shared->avail))
2939 goto direct_grow;
2940
ce8eb6c4 2941 spin_lock(&n->list_lock);
801faf0d 2942 shared = READ_ONCE(n->shared);
1da177e4 2943
3ded175a 2944 /* See if we can refill from the shared array */
801faf0d
JK
2945 if (shared && transfer_objects(ac, shared, batchcount)) {
2946 shared->touched = 1;
3ded175a 2947 goto alloc_done;
44b57f1c 2948 }
3ded175a 2949
1da177e4 2950 while (batchcount > 0) {
1da177e4 2951 /* Get slab alloc is to come from. */
f68f8ddd 2952 page = get_first_slab(n, false);
7aa0d227
GT
2953 if (!page)
2954 goto must_grow;
1da177e4 2955
1da177e4 2956 check_spinlock_acquired(cachep);
714b8171 2957
213b4695 2958 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 2959 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
2960 }
2961
a737b3e2 2962must_grow:
ce8eb6c4 2963 n->free_objects -= ac->avail;
a737b3e2 2964alloc_done:
ce8eb6c4 2965 spin_unlock(&n->list_lock);
b03a017b 2966 fixup_objfreelist_debug(cachep, &list);
1da177e4 2967
801faf0d 2968direct_grow:
1da177e4 2969 if (unlikely(!ac->avail)) {
f68f8ddd
JK
2970 /* Check if we can use obj in pfmemalloc slab */
2971 if (sk_memalloc_socks()) {
2972 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2973
2974 if (obj)
2975 return obj;
2976 }
2977
76b342bd 2978 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 2979
76b342bd
JK
2980 /*
2981 * cache_grow_begin() can reenable interrupts,
2982 * then ac could change.
2983 */
9a2dba4b 2984 ac = cpu_cache_get(cachep);
213b4695
JK
2985 if (!ac->avail && page)
2986 alloc_block(cachep, ac, page, batchcount);
2987 cache_grow_end(cachep, page);
072bb0aa 2988
213b4695 2989 if (!ac->avail)
1da177e4 2990 return NULL;
1da177e4
LT
2991 }
2992 ac->touched = 1;
072bb0aa 2993
f68f8ddd 2994 return ac->entry[--ac->avail];
1da177e4
LT
2995}
2996
a737b3e2
AM
2997static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2998 gfp_t flags)
1da177e4 2999{
d0164adc 3000 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3001}
3002
3003#if DEBUG
a737b3e2 3004static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3005 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3006{
128227e7 3007 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
b28a02de 3008 if (!objp)
1da177e4 3009 return objp;
b28a02de 3010 if (cachep->flags & SLAB_POISON) {
1da177e4 3011 check_poison_obj(cachep, objp);
80552f0f 3012 slab_kernel_map(cachep, objp, 1);
1da177e4
LT
3013 poison_obj(cachep, objp, POISON_INUSE);
3014 }
3015 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3016 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3017
3018 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3019 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3020 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3021 slab_error(cachep, "double free, or memory outside object was overwritten");
85c3e4a5 3022 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b
JP
3023 objp, *dbg_redzone1(cachep, objp),
3024 *dbg_redzone2(cachep, objp));
1da177e4
LT
3025 }
3026 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3027 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3028 }
03787301 3029
3dafccf2 3030 objp += obj_offset(cachep);
4f104934 3031 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3032 cachep->ctor(objp);
7ea466f2
TH
3033 if (ARCH_SLAB_MINALIGN &&
3034 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
85c3e4a5 3035 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3036 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3037 }
1da177e4
LT
3038 return objp;
3039}
3040#else
3041#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3042#endif
3043
343e0d7a 3044static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3045{
b28a02de 3046 void *objp;
1da177e4
LT
3047 struct array_cache *ac;
3048
5c382300 3049 check_irq_off();
8a8b6502 3050
9a2dba4b 3051 ac = cpu_cache_get(cachep);
1da177e4 3052 if (likely(ac->avail)) {
1da177e4 3053 ac->touched = 1;
f68f8ddd 3054 objp = ac->entry[--ac->avail];
072bb0aa 3055
f68f8ddd
JK
3056 STATS_INC_ALLOCHIT(cachep);
3057 goto out;
1da177e4 3058 }
072bb0aa
MG
3059
3060 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3061 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3062 /*
3063 * the 'ac' may be updated by cache_alloc_refill(),
3064 * and kmemleak_erase() requires its correct value.
3065 */
3066 ac = cpu_cache_get(cachep);
3067
3068out:
d5cff635
CM
3069 /*
3070 * To avoid a false negative, if an object that is in one of the
3071 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3072 * treat the array pointers as a reference to the object.
3073 */
f3d8b53a
O
3074 if (objp)
3075 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3076 return objp;
3077}
3078
e498be7d 3079#ifdef CONFIG_NUMA
c61afb18 3080/*
2ad654bc 3081 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3082 *
3083 * If we are in_interrupt, then process context, including cpusets and
3084 * mempolicy, may not apply and should not be used for allocation policy.
3085 */
3086static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3087{
3088 int nid_alloc, nid_here;
3089
765c4507 3090 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3091 return NULL;
7d6e6d09 3092 nid_alloc = nid_here = numa_mem_id();
c61afb18 3093 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3094 nid_alloc = cpuset_slab_spread_node();
c61afb18 3095 else if (current->mempolicy)
2a389610 3096 nid_alloc = mempolicy_slab_node();
c61afb18 3097 if (nid_alloc != nid_here)
8b98c169 3098 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3099 return NULL;
3100}
3101
765c4507
CL
3102/*
3103 * Fallback function if there was no memory available and no objects on a
3c517a61 3104 * certain node and fall back is permitted. First we scan all the
6a67368c 3105 * available node for available objects. If that fails then we
3c517a61
CL
3106 * perform an allocation without specifying a node. This allows the page
3107 * allocator to do its reclaim / fallback magic. We then insert the
3108 * slab into the proper nodelist and then allocate from it.
765c4507 3109 */
8c8cc2c1 3110static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3111{
8c8cc2c1 3112 struct zonelist *zonelist;
dd1a239f 3113 struct zoneref *z;
54a6eb5c
MG
3114 struct zone *zone;
3115 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3116 void *obj = NULL;
76b342bd 3117 struct page *page;
3c517a61 3118 int nid;
cc9a6c87 3119 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3120
3121 if (flags & __GFP_THISNODE)
3122 return NULL;
3123
cc9a6c87 3124retry_cpuset:
d26914d1 3125 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3126 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3127
3c517a61
CL
3128retry:
3129 /*
3130 * Look through allowed nodes for objects available
3131 * from existing per node queues.
3132 */
54a6eb5c
MG
3133 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3134 nid = zone_to_nid(zone);
aedb0eb1 3135
061d7074 3136 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3137 get_node(cache, nid) &&
3138 get_node(cache, nid)->free_objects) {
3c517a61 3139 obj = ____cache_alloc_node(cache,
4167e9b2 3140 gfp_exact_node(flags), nid);
481c5346
CL
3141 if (obj)
3142 break;
3143 }
3c517a61
CL
3144 }
3145
cfce6604 3146 if (!obj) {
3c517a61
CL
3147 /*
3148 * This allocation will be performed within the constraints
3149 * of the current cpuset / memory policy requirements.
3150 * We may trigger various forms of reclaim on the allowed
3151 * set and go into memory reserves if necessary.
3152 */
76b342bd
JK
3153 page = cache_grow_begin(cache, flags, numa_mem_id());
3154 cache_grow_end(cache, page);
3155 if (page) {
3156 nid = page_to_nid(page);
511e3a05
JK
3157 obj = ____cache_alloc_node(cache,
3158 gfp_exact_node(flags), nid);
0c3aa83e 3159
3c517a61 3160 /*
511e3a05
JK
3161 * Another processor may allocate the objects in
3162 * the slab since we are not holding any locks.
3c517a61 3163 */
511e3a05
JK
3164 if (!obj)
3165 goto retry;
3c517a61 3166 }
aedb0eb1 3167 }
cc9a6c87 3168
d26914d1 3169 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3170 goto retry_cpuset;
765c4507
CL
3171 return obj;
3172}
3173
e498be7d
CL
3174/*
3175 * A interface to enable slab creation on nodeid
1da177e4 3176 */
8b98c169 3177static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3178 int nodeid)
e498be7d 3179{
8456a648 3180 struct page *page;
ce8eb6c4 3181 struct kmem_cache_node *n;
213b4695 3182 void *obj = NULL;
b03a017b 3183 void *list = NULL;
b28a02de 3184
7c3fbbdd 3185 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3186 n = get_node(cachep, nodeid);
ce8eb6c4 3187 BUG_ON(!n);
b28a02de 3188
ca3b9b91 3189 check_irq_off();
ce8eb6c4 3190 spin_lock(&n->list_lock);
f68f8ddd 3191 page = get_first_slab(n, false);
7aa0d227
GT
3192 if (!page)
3193 goto must_grow;
b28a02de 3194
b28a02de 3195 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3196
3197 STATS_INC_NODEALLOCS(cachep);
3198 STATS_INC_ACTIVE(cachep);
3199 STATS_SET_HIGH(cachep);
3200
8456a648 3201 BUG_ON(page->active == cachep->num);
b28a02de 3202
260b61dd 3203 obj = slab_get_obj(cachep, page);
ce8eb6c4 3204 n->free_objects--;
b28a02de 3205
b03a017b 3206 fixup_slab_list(cachep, n, page, &list);
e498be7d 3207
ce8eb6c4 3208 spin_unlock(&n->list_lock);
b03a017b 3209 fixup_objfreelist_debug(cachep, &list);
213b4695 3210 return obj;
e498be7d 3211
a737b3e2 3212must_grow:
ce8eb6c4 3213 spin_unlock(&n->list_lock);
76b342bd 3214 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3215 if (page) {
3216 /* This slab isn't counted yet so don't update free_objects */
3217 obj = slab_get_obj(cachep, page);
3218 }
76b342bd 3219 cache_grow_end(cachep, page);
1da177e4 3220
213b4695 3221 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3222}
8c8cc2c1 3223
8c8cc2c1 3224static __always_inline void *
48356303 3225slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3226 unsigned long caller)
8c8cc2c1
PE
3227{
3228 unsigned long save_flags;
3229 void *ptr;
7d6e6d09 3230 int slab_node = numa_mem_id();
8c8cc2c1 3231
dcce284a 3232 flags &= gfp_allowed_mask;
011eceaf
JDB
3233 cachep = slab_pre_alloc_hook(cachep, flags);
3234 if (unlikely(!cachep))
824ebef1
AM
3235 return NULL;
3236
8c8cc2c1
PE
3237 cache_alloc_debugcheck_before(cachep, flags);
3238 local_irq_save(save_flags);
3239
eacbbae3 3240 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3241 nodeid = slab_node;
8c8cc2c1 3242
18bf8541 3243 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3244 /* Node not bootstrapped yet */
3245 ptr = fallback_alloc(cachep, flags);
3246 goto out;
3247 }
3248
7d6e6d09 3249 if (nodeid == slab_node) {
8c8cc2c1
PE
3250 /*
3251 * Use the locally cached objects if possible.
3252 * However ____cache_alloc does not allow fallback
3253 * to other nodes. It may fail while we still have
3254 * objects on other nodes available.
3255 */
3256 ptr = ____cache_alloc(cachep, flags);
3257 if (ptr)
3258 goto out;
3259 }
3260 /* ___cache_alloc_node can fall back to other nodes */
3261 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3262 out:
3263 local_irq_restore(save_flags);
3264 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3265
d5e3ed66
JDB
3266 if (unlikely(flags & __GFP_ZERO) && ptr)
3267 memset(ptr, 0, cachep->object_size);
d07dbea4 3268
d5e3ed66 3269 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3270 return ptr;
3271}
3272
3273static __always_inline void *
3274__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3275{
3276 void *objp;
3277
2ad654bc 3278 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3279 objp = alternate_node_alloc(cache, flags);
3280 if (objp)
3281 goto out;
3282 }
3283 objp = ____cache_alloc(cache, flags);
3284
3285 /*
3286 * We may just have run out of memory on the local node.
3287 * ____cache_alloc_node() knows how to locate memory on other nodes
3288 */
7d6e6d09
LS
3289 if (!objp)
3290 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3291
3292 out:
3293 return objp;
3294}
3295#else
3296
3297static __always_inline void *
3298__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3299{
3300 return ____cache_alloc(cachep, flags);
3301}
3302
3303#endif /* CONFIG_NUMA */
3304
3305static __always_inline void *
48356303 3306slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3307{
3308 unsigned long save_flags;
3309 void *objp;
3310
dcce284a 3311 flags &= gfp_allowed_mask;
011eceaf
JDB
3312 cachep = slab_pre_alloc_hook(cachep, flags);
3313 if (unlikely(!cachep))
824ebef1
AM
3314 return NULL;
3315
8c8cc2c1
PE
3316 cache_alloc_debugcheck_before(cachep, flags);
3317 local_irq_save(save_flags);
3318 objp = __do_cache_alloc(cachep, flags);
3319 local_irq_restore(save_flags);
3320 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3321 prefetchw(objp);
3322
d5e3ed66
JDB
3323 if (unlikely(flags & __GFP_ZERO) && objp)
3324 memset(objp, 0, cachep->object_size);
d07dbea4 3325
d5e3ed66 3326 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3327 return objp;
3328}
e498be7d
CL
3329
3330/*
5f0985bb 3331 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3332 * @list: List of detached free slabs should be freed by caller
e498be7d 3333 */
97654dfa
JK
3334static void free_block(struct kmem_cache *cachep, void **objpp,
3335 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3336{
3337 int i;
25c063fb 3338 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3339 struct page *page;
3340
3341 n->free_objects += nr_objects;
1da177e4
LT
3342
3343 for (i = 0; i < nr_objects; i++) {
072bb0aa 3344 void *objp;
8456a648 3345 struct page *page;
1da177e4 3346
072bb0aa
MG
3347 objp = objpp[i];
3348
8456a648 3349 page = virt_to_head_page(objp);
16cb0ec7 3350 list_del(&page->slab_list);
ff69416e 3351 check_spinlock_acquired_node(cachep, node);
260b61dd 3352 slab_put_obj(cachep, page, objp);
1da177e4 3353 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3354
3355 /* fixup slab chains */
f728b0a5 3356 if (page->active == 0) {
16cb0ec7 3357 list_add(&page->slab_list, &n->slabs_free);
f728b0a5 3358 n->free_slabs++;
f728b0a5 3359 } else {
1da177e4
LT
3360 /* Unconditionally move a slab to the end of the
3361 * partial list on free - maximum time for the
3362 * other objects to be freed, too.
3363 */
16cb0ec7 3364 list_add_tail(&page->slab_list, &n->slabs_partial);
1da177e4
LT
3365 }
3366 }
6052b788
JK
3367
3368 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3369 n->free_objects -= cachep->num;
3370
16cb0ec7
TH
3371 page = list_last_entry(&n->slabs_free, struct page, slab_list);
3372 list_move(&page->slab_list, list);
f728b0a5 3373 n->free_slabs--;
bf00bd34 3374 n->total_slabs--;
6052b788 3375 }
1da177e4
LT
3376}
3377
343e0d7a 3378static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3379{
3380 int batchcount;
ce8eb6c4 3381 struct kmem_cache_node *n;
7d6e6d09 3382 int node = numa_mem_id();
97654dfa 3383 LIST_HEAD(list);
1da177e4
LT
3384
3385 batchcount = ac->batchcount;
260b61dd 3386
1da177e4 3387 check_irq_off();
18bf8541 3388 n = get_node(cachep, node);
ce8eb6c4
CL
3389 spin_lock(&n->list_lock);
3390 if (n->shared) {
3391 struct array_cache *shared_array = n->shared;
b28a02de 3392 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3393 if (max) {
3394 if (batchcount > max)
3395 batchcount = max;
e498be7d 3396 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3397 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3398 shared_array->avail += batchcount;
3399 goto free_done;
3400 }
3401 }
3402
97654dfa 3403 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3404free_done:
1da177e4
LT
3405#if STATS
3406 {
3407 int i = 0;
73c0219d 3408 struct page *page;
1da177e4 3409
16cb0ec7 3410 list_for_each_entry(page, &n->slabs_free, slab_list) {
8456a648 3411 BUG_ON(page->active);
1da177e4
LT
3412
3413 i++;
1da177e4
LT
3414 }
3415 STATS_SET_FREEABLE(cachep, i);
3416 }
3417#endif
ce8eb6c4 3418 spin_unlock(&n->list_lock);
97654dfa 3419 slabs_destroy(cachep, &list);
1da177e4 3420 ac->avail -= batchcount;
a737b3e2 3421 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3422}
3423
3424/*
a737b3e2
AM
3425 * Release an obj back to its cache. If the obj has a constructed state, it must
3426 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3427 */
ee3ce779
DV
3428static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3429 unsigned long caller)
1da177e4 3430{
55834c59 3431 /* Put the object into the quarantine, don't touch it for now. */
ee3ce779 3432 if (kasan_slab_free(cachep, objp, _RET_IP_))
55834c59
AP
3433 return;
3434
3435 ___cache_free(cachep, objp, caller);
3436}
1da177e4 3437
55834c59
AP
3438void ___cache_free(struct kmem_cache *cachep, void *objp,
3439 unsigned long caller)
3440{
3441 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3442
1da177e4 3443 check_irq_off();
d5cff635 3444 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3445 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3446
1807a1aa
SS
3447 /*
3448 * Skip calling cache_free_alien() when the platform is not numa.
3449 * This will avoid cache misses that happen while accessing slabp (which
3450 * is per page memory reference) to get nodeid. Instead use a global
3451 * variable to skip the call, which is mostly likely to be present in
3452 * the cache.
3453 */
b6e68bc1 3454 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3455 return;
3456
3d880194 3457 if (ac->avail < ac->limit) {
1da177e4 3458 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3459 } else {
3460 STATS_INC_FREEMISS(cachep);
3461 cache_flusharray(cachep, ac);
1da177e4 3462 }
42c8c99c 3463
f68f8ddd
JK
3464 if (sk_memalloc_socks()) {
3465 struct page *page = virt_to_head_page(objp);
3466
3467 if (unlikely(PageSlabPfmemalloc(page))) {
3468 cache_free_pfmemalloc(cachep, page, objp);
3469 return;
3470 }
3471 }
3472
3473 ac->entry[ac->avail++] = objp;
1da177e4
LT
3474}
3475
3476/**
3477 * kmem_cache_alloc - Allocate an object
3478 * @cachep: The cache to allocate from.
3479 * @flags: See kmalloc().
3480 *
3481 * Allocate an object from this cache. The flags are only relevant
3482 * if the cache has no available objects.
a862f68a
MR
3483 *
3484 * Return: pointer to the new object or %NULL in case of error
1da177e4 3485 */
343e0d7a 3486void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3487{
48356303 3488 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3489
ca2b84cb 3490 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3491 cachep->object_size, cachep->size, flags);
36555751
EGM
3492
3493 return ret;
1da177e4
LT
3494}
3495EXPORT_SYMBOL(kmem_cache_alloc);
3496
7b0501dd
JDB
3497static __always_inline void
3498cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3499 size_t size, void **p, unsigned long caller)
3500{
3501 size_t i;
3502
3503 for (i = 0; i < size; i++)
3504 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3505}
3506
865762a8 3507int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3508 void **p)
484748f0 3509{
2a777eac
JDB
3510 size_t i;
3511
3512 s = slab_pre_alloc_hook(s, flags);
3513 if (!s)
3514 return 0;
3515
3516 cache_alloc_debugcheck_before(s, flags);
3517
3518 local_irq_disable();
3519 for (i = 0; i < size; i++) {
3520 void *objp = __do_cache_alloc(s, flags);
3521
2a777eac
JDB
3522 if (unlikely(!objp))
3523 goto error;
3524 p[i] = objp;
3525 }
3526 local_irq_enable();
3527
7b0501dd
JDB
3528 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3529
2a777eac
JDB
3530 /* Clear memory outside IRQ disabled section */
3531 if (unlikely(flags & __GFP_ZERO))
3532 for (i = 0; i < size; i++)
3533 memset(p[i], 0, s->object_size);
3534
3535 slab_post_alloc_hook(s, flags, size, p);
3536 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3537 return size;
3538error:
3539 local_irq_enable();
7b0501dd 3540 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3541 slab_post_alloc_hook(s, flags, i, p);
3542 __kmem_cache_free_bulk(s, i, p);
3543 return 0;
484748f0
CL
3544}
3545EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3546
0f24f128 3547#ifdef CONFIG_TRACING
85beb586 3548void *
4052147c 3549kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3550{
85beb586
SR
3551 void *ret;
3552
48356303 3553 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3554
0116523c 3555 ret = kasan_kmalloc(cachep, ret, size, flags);
85beb586 3556 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3557 size, cachep->size, flags);
85beb586 3558 return ret;
36555751 3559}
85beb586 3560EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3561#endif
3562
1da177e4 3563#ifdef CONFIG_NUMA
d0d04b78
ZL
3564/**
3565 * kmem_cache_alloc_node - Allocate an object on the specified node
3566 * @cachep: The cache to allocate from.
3567 * @flags: See kmalloc().
3568 * @nodeid: node number of the target node.
3569 *
3570 * Identical to kmem_cache_alloc but it will allocate memory on the given
3571 * node, which can improve the performance for cpu bound structures.
3572 *
3573 * Fallback to other node is possible if __GFP_THISNODE is not set.
a862f68a
MR
3574 *
3575 * Return: pointer to the new object or %NULL in case of error
d0d04b78 3576 */
8b98c169
CH
3577void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3578{
48356303 3579 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3580
ca2b84cb 3581 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3582 cachep->object_size, cachep->size,
ca2b84cb 3583 flags, nodeid);
36555751
EGM
3584
3585 return ret;
8b98c169 3586}
1da177e4
LT
3587EXPORT_SYMBOL(kmem_cache_alloc_node);
3588
0f24f128 3589#ifdef CONFIG_TRACING
4052147c 3590void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3591 gfp_t flags,
4052147c
EG
3592 int nodeid,
3593 size_t size)
36555751 3594{
85beb586
SR
3595 void *ret;
3596
592f4145 3597 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb 3598
0116523c 3599 ret = kasan_kmalloc(cachep, ret, size, flags);
85beb586 3600 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3601 size, cachep->size,
85beb586
SR
3602 flags, nodeid);
3603 return ret;
36555751 3604}
85beb586 3605EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3606#endif
3607
8b98c169 3608static __always_inline void *
7c0cb9c6 3609__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3610{
343e0d7a 3611 struct kmem_cache *cachep;
7ed2f9e6 3612 void *ret;
97e2bde4 3613
61448479
DV
3614 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3615 return NULL;
2c59dd65 3616 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3617 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3618 return cachep;
7ed2f9e6 3619 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
0116523c 3620 ret = kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3621
3622 return ret;
97e2bde4 3623}
8b98c169 3624
8b98c169
CH
3625void *__kmalloc_node(size_t size, gfp_t flags, int node)
3626{
7c0cb9c6 3627 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3628}
dbe5e69d 3629EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3630
3631void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3632 int node, unsigned long caller)
8b98c169 3633{
7c0cb9c6 3634 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3635}
3636EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3637#endif /* CONFIG_NUMA */
1da177e4
LT
3638
3639/**
800590f5 3640 * __do_kmalloc - allocate memory
1da177e4 3641 * @size: how many bytes of memory are required.
800590f5 3642 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3643 * @caller: function caller for debug tracking of the caller
a862f68a
MR
3644 *
3645 * Return: pointer to the allocated memory or %NULL in case of error
1da177e4 3646 */
7fd6b141 3647static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3648 unsigned long caller)
1da177e4 3649{
343e0d7a 3650 struct kmem_cache *cachep;
36555751 3651 void *ret;
1da177e4 3652
61448479
DV
3653 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3654 return NULL;
2c59dd65 3655 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3656 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3657 return cachep;
48356303 3658 ret = slab_alloc(cachep, flags, caller);
36555751 3659
0116523c 3660 ret = kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3661 trace_kmalloc(caller, ret,
3b0efdfa 3662 size, cachep->size, flags);
36555751
EGM
3663
3664 return ret;
7fd6b141
PE
3665}
3666
7fd6b141
PE
3667void *__kmalloc(size_t size, gfp_t flags)
3668{
7c0cb9c6 3669 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3670}
3671EXPORT_SYMBOL(__kmalloc);
3672
ce71e27c 3673void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3674{
7c0cb9c6 3675 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3676}
3677EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3678
1da177e4
LT
3679/**
3680 * kmem_cache_free - Deallocate an object
3681 * @cachep: The cache the allocation was from.
3682 * @objp: The previously allocated object.
3683 *
3684 * Free an object which was previously allocated from this
3685 * cache.
3686 */
343e0d7a 3687void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3688{
3689 unsigned long flags;
b9ce5ef4
GC
3690 cachep = cache_from_obj(cachep, objp);
3691 if (!cachep)
3692 return;
1da177e4
LT
3693
3694 local_irq_save(flags);
d97d476b 3695 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3696 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3697 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3698 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3699 local_irq_restore(flags);
36555751 3700
ca2b84cb 3701 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3702}
3703EXPORT_SYMBOL(kmem_cache_free);
3704
e6cdb58d
JDB
3705void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3706{
3707 struct kmem_cache *s;
3708 size_t i;
3709
3710 local_irq_disable();
3711 for (i = 0; i < size; i++) {
3712 void *objp = p[i];
3713
ca257195
JDB
3714 if (!orig_s) /* called via kfree_bulk */
3715 s = virt_to_cache(objp);
3716 else
3717 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3718
3719 debug_check_no_locks_freed(objp, s->object_size);
3720 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3721 debug_check_no_obj_freed(objp, s->object_size);
3722
3723 __cache_free(s, objp, _RET_IP_);
3724 }
3725 local_irq_enable();
3726
3727 /* FIXME: add tracing */
3728}
3729EXPORT_SYMBOL(kmem_cache_free_bulk);
3730
1da177e4
LT
3731/**
3732 * kfree - free previously allocated memory
3733 * @objp: pointer returned by kmalloc.
3734 *
80e93eff
PE
3735 * If @objp is NULL, no operation is performed.
3736 *
1da177e4
LT
3737 * Don't free memory not originally allocated by kmalloc()
3738 * or you will run into trouble.
3739 */
3740void kfree(const void *objp)
3741{
343e0d7a 3742 struct kmem_cache *c;
1da177e4
LT
3743 unsigned long flags;
3744
2121db74
PE
3745 trace_kfree(_RET_IP_, objp);
3746
6cb8f913 3747 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3748 return;
3749 local_irq_save(flags);
3750 kfree_debugcheck(objp);
6ed5eb22 3751 c = virt_to_cache(objp);
8c138bc0
CL
3752 debug_check_no_locks_freed(objp, c->object_size);
3753
3754 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3755 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3756 local_irq_restore(flags);
3757}
3758EXPORT_SYMBOL(kfree);
3759
e498be7d 3760/*
ce8eb6c4 3761 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3762 */
c3d332b6 3763static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3764{
c3d332b6 3765 int ret;
e498be7d 3766 int node;
ce8eb6c4 3767 struct kmem_cache_node *n;
e498be7d 3768
9c09a95c 3769 for_each_online_node(node) {
c3d332b6
JK
3770 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3771 if (ret)
e498be7d
CL
3772 goto fail;
3773
e498be7d 3774 }
c3d332b6 3775
cafeb02e 3776 return 0;
0718dc2a 3777
a737b3e2 3778fail:
3b0efdfa 3779 if (!cachep->list.next) {
0718dc2a
CL
3780 /* Cache is not active yet. Roll back what we did */
3781 node--;
3782 while (node >= 0) {
18bf8541
CL
3783 n = get_node(cachep, node);
3784 if (n) {
ce8eb6c4
CL
3785 kfree(n->shared);
3786 free_alien_cache(n->alien);
3787 kfree(n);
6a67368c 3788 cachep->node[node] = NULL;
0718dc2a
CL
3789 }
3790 node--;
3791 }
3792 }
cafeb02e 3793 return -ENOMEM;
e498be7d
CL
3794}
3795
18004c5d 3796/* Always called with the slab_mutex held */
943a451a 3797static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3798 int batchcount, int shared, gfp_t gfp)
1da177e4 3799{
bf0dea23
JK
3800 struct array_cache __percpu *cpu_cache, *prev;
3801 int cpu;
1da177e4 3802
bf0dea23
JK
3803 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3804 if (!cpu_cache)
d2e7b7d0
SS
3805 return -ENOMEM;
3806
bf0dea23
JK
3807 prev = cachep->cpu_cache;
3808 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3809 /*
3810 * Without a previous cpu_cache there's no need to synchronize remote
3811 * cpus, so skip the IPIs.
3812 */
3813 if (prev)
3814 kick_all_cpus_sync();
e498be7d 3815
1da177e4 3816 check_irq_on();
1da177e4
LT
3817 cachep->batchcount = batchcount;
3818 cachep->limit = limit;
e498be7d 3819 cachep->shared = shared;
1da177e4 3820
bf0dea23 3821 if (!prev)
c3d332b6 3822 goto setup_node;
bf0dea23
JK
3823
3824 for_each_online_cpu(cpu) {
97654dfa 3825 LIST_HEAD(list);
18bf8541
CL
3826 int node;
3827 struct kmem_cache_node *n;
bf0dea23 3828 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3829
bf0dea23 3830 node = cpu_to_mem(cpu);
18bf8541
CL
3831 n = get_node(cachep, node);
3832 spin_lock_irq(&n->list_lock);
bf0dea23 3833 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3834 spin_unlock_irq(&n->list_lock);
97654dfa 3835 slabs_destroy(cachep, &list);
1da177e4 3836 }
bf0dea23
JK
3837 free_percpu(prev);
3838
c3d332b6
JK
3839setup_node:
3840 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3841}
3842
943a451a
GC
3843static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3844 int batchcount, int shared, gfp_t gfp)
3845{
3846 int ret;
426589f5 3847 struct kmem_cache *c;
943a451a
GC
3848
3849 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3850
3851 if (slab_state < FULL)
3852 return ret;
3853
3854 if ((ret < 0) || !is_root_cache(cachep))
3855 return ret;
3856
426589f5
VD
3857 lockdep_assert_held(&slab_mutex);
3858 for_each_memcg_cache(c, cachep) {
3859 /* return value determined by the root cache only */
3860 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3861 }
3862
3863 return ret;
3864}
3865
18004c5d 3866/* Called with slab_mutex held always */
83b519e8 3867static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3868{
3869 int err;
943a451a
GC
3870 int limit = 0;
3871 int shared = 0;
3872 int batchcount = 0;
3873
7c00fce9 3874 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3875 if (err)
3876 goto end;
3877
943a451a
GC
3878 if (!is_root_cache(cachep)) {
3879 struct kmem_cache *root = memcg_root_cache(cachep);
3880 limit = root->limit;
3881 shared = root->shared;
3882 batchcount = root->batchcount;
3883 }
1da177e4 3884
943a451a
GC
3885 if (limit && shared && batchcount)
3886 goto skip_setup;
a737b3e2
AM
3887 /*
3888 * The head array serves three purposes:
1da177e4
LT
3889 * - create a LIFO ordering, i.e. return objects that are cache-warm
3890 * - reduce the number of spinlock operations.
a737b3e2 3891 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3892 * bufctl chains: array operations are cheaper.
3893 * The numbers are guessed, we should auto-tune as described by
3894 * Bonwick.
3895 */
3b0efdfa 3896 if (cachep->size > 131072)
1da177e4 3897 limit = 1;
3b0efdfa 3898 else if (cachep->size > PAGE_SIZE)
1da177e4 3899 limit = 8;
3b0efdfa 3900 else if (cachep->size > 1024)
1da177e4 3901 limit = 24;
3b0efdfa 3902 else if (cachep->size > 256)
1da177e4
LT
3903 limit = 54;
3904 else
3905 limit = 120;
3906
a737b3e2
AM
3907 /*
3908 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3909 * allocation behaviour: Most allocs on one cpu, most free operations
3910 * on another cpu. For these cases, an efficient object passing between
3911 * cpus is necessary. This is provided by a shared array. The array
3912 * replaces Bonwick's magazine layer.
3913 * On uniprocessor, it's functionally equivalent (but less efficient)
3914 * to a larger limit. Thus disabled by default.
3915 */
3916 shared = 0;
3b0efdfa 3917 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3918 shared = 8;
1da177e4
LT
3919
3920#if DEBUG
a737b3e2
AM
3921 /*
3922 * With debugging enabled, large batchcount lead to excessively long
3923 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3924 */
3925 if (limit > 32)
3926 limit = 32;
3927#endif
943a451a
GC
3928 batchcount = (limit + 1) / 2;
3929skip_setup:
3930 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3931end:
1da177e4 3932 if (err)
1170532b 3933 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3934 cachep->name, -err);
2ed3a4ef 3935 return err;
1da177e4
LT
3936}
3937
1b55253a 3938/*
ce8eb6c4
CL
3939 * Drain an array if it contains any elements taking the node lock only if
3940 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3941 * if drain_array() is used on the shared array.
1b55253a 3942 */
ce8eb6c4 3943static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 3944 struct array_cache *ac, int node)
1da177e4 3945{
97654dfa 3946 LIST_HEAD(list);
18726ca8
JK
3947
3948 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3949 check_mutex_acquired();
1da177e4 3950
1b55253a
CL
3951 if (!ac || !ac->avail)
3952 return;
18726ca8
JK
3953
3954 if (ac->touched) {
1da177e4 3955 ac->touched = 0;
18726ca8 3956 return;
1da177e4 3957 }
18726ca8
JK
3958
3959 spin_lock_irq(&n->list_lock);
3960 drain_array_locked(cachep, ac, node, false, &list);
3961 spin_unlock_irq(&n->list_lock);
3962
3963 slabs_destroy(cachep, &list);
1da177e4
LT
3964}
3965
3966/**
3967 * cache_reap - Reclaim memory from caches.
05fb6bf0 3968 * @w: work descriptor
1da177e4
LT
3969 *
3970 * Called from workqueue/eventd every few seconds.
3971 * Purpose:
3972 * - clear the per-cpu caches for this CPU.
3973 * - return freeable pages to the main free memory pool.
3974 *
a737b3e2
AM
3975 * If we cannot acquire the cache chain mutex then just give up - we'll try
3976 * again on the next iteration.
1da177e4 3977 */
7c5cae36 3978static void cache_reap(struct work_struct *w)
1da177e4 3979{
7a7c381d 3980 struct kmem_cache *searchp;
ce8eb6c4 3981 struct kmem_cache_node *n;
7d6e6d09 3982 int node = numa_mem_id();
bf6aede7 3983 struct delayed_work *work = to_delayed_work(w);
1da177e4 3984
18004c5d 3985 if (!mutex_trylock(&slab_mutex))
1da177e4 3986 /* Give up. Setup the next iteration. */
7c5cae36 3987 goto out;
1da177e4 3988
18004c5d 3989 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3990 check_irq_on();
3991
35386e3b 3992 /*
ce8eb6c4 3993 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3994 * have established with reasonable certainty that
3995 * we can do some work if the lock was obtained.
3996 */
18bf8541 3997 n = get_node(searchp, node);
35386e3b 3998
ce8eb6c4 3999 reap_alien(searchp, n);
1da177e4 4000
18726ca8 4001 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4002
35386e3b
CL
4003 /*
4004 * These are racy checks but it does not matter
4005 * if we skip one check or scan twice.
4006 */
ce8eb6c4 4007 if (time_after(n->next_reap, jiffies))
35386e3b 4008 goto next;
1da177e4 4009
5f0985bb 4010 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4011
18726ca8 4012 drain_array(searchp, n, n->shared, node);
1da177e4 4013
ce8eb6c4
CL
4014 if (n->free_touched)
4015 n->free_touched = 0;
ed11d9eb
CL
4016 else {
4017 int freed;
1da177e4 4018
ce8eb6c4 4019 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4020 5 * searchp->num - 1) / (5 * searchp->num));
4021 STATS_ADD_REAPED(searchp, freed);
4022 }
35386e3b 4023next:
1da177e4
LT
4024 cond_resched();
4025 }
4026 check_irq_on();
18004c5d 4027 mutex_unlock(&slab_mutex);
8fce4d8e 4028 next_reap_node();
7c5cae36 4029out:
a737b3e2 4030 /* Set up the next iteration */
a9f2a846
VB
4031 schedule_delayed_work_on(smp_processor_id(), work,
4032 round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4033}
4034
0d7561c6 4035void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4036{
f728b0a5 4037 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4038 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4039 unsigned long free_slabs = 0;
e498be7d 4040 int node;
ce8eb6c4 4041 struct kmem_cache_node *n;
1da177e4 4042
18bf8541 4043 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4044 check_irq_on();
ce8eb6c4 4045 spin_lock_irq(&n->list_lock);
e498be7d 4046
bf00bd34
DR
4047 total_slabs += n->total_slabs;
4048 free_slabs += n->free_slabs;
f728b0a5 4049 free_objs += n->free_objects;
07a63c41 4050
ce8eb6c4
CL
4051 if (n->shared)
4052 shared_avail += n->shared->avail;
e498be7d 4053
ce8eb6c4 4054 spin_unlock_irq(&n->list_lock);
1da177e4 4055 }
bf00bd34
DR
4056 num_objs = total_slabs * cachep->num;
4057 active_slabs = total_slabs - free_slabs;
f728b0a5 4058 active_objs = num_objs - free_objs;
1da177e4 4059
0d7561c6
GC
4060 sinfo->active_objs = active_objs;
4061 sinfo->num_objs = num_objs;
4062 sinfo->active_slabs = active_slabs;
bf00bd34 4063 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4064 sinfo->shared_avail = shared_avail;
4065 sinfo->limit = cachep->limit;
4066 sinfo->batchcount = cachep->batchcount;
4067 sinfo->shared = cachep->shared;
4068 sinfo->objects_per_slab = cachep->num;
4069 sinfo->cache_order = cachep->gfporder;
4070}
4071
4072void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4073{
1da177e4 4074#if STATS
ce8eb6c4 4075 { /* node stats */
1da177e4
LT
4076 unsigned long high = cachep->high_mark;
4077 unsigned long allocs = cachep->num_allocations;
4078 unsigned long grown = cachep->grown;
4079 unsigned long reaped = cachep->reaped;
4080 unsigned long errors = cachep->errors;
4081 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4082 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4083 unsigned long node_frees = cachep->node_frees;
fb7faf33 4084 unsigned long overflows = cachep->node_overflow;
1da177e4 4085
756a025f 4086 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4087 allocs, high, grown,
4088 reaped, errors, max_freeable, node_allocs,
4089 node_frees, overflows);
1da177e4
LT
4090 }
4091 /* cpu stats */
4092 {
4093 unsigned long allochit = atomic_read(&cachep->allochit);
4094 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4095 unsigned long freehit = atomic_read(&cachep->freehit);
4096 unsigned long freemiss = atomic_read(&cachep->freemiss);
4097
4098 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4099 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4100 }
4101#endif
1da177e4
LT
4102}
4103
1da177e4
LT
4104#define MAX_SLABINFO_WRITE 128
4105/**
4106 * slabinfo_write - Tuning for the slab allocator
4107 * @file: unused
4108 * @buffer: user buffer
4109 * @count: data length
4110 * @ppos: unused
a862f68a
MR
4111 *
4112 * Return: %0 on success, negative error code otherwise.
1da177e4 4113 */
b7454ad3 4114ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4115 size_t count, loff_t *ppos)
1da177e4 4116{
b28a02de 4117 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4118 int limit, batchcount, shared, res;
7a7c381d 4119 struct kmem_cache *cachep;
b28a02de 4120
1da177e4
LT
4121 if (count > MAX_SLABINFO_WRITE)
4122 return -EINVAL;
4123 if (copy_from_user(&kbuf, buffer, count))
4124 return -EFAULT;
b28a02de 4125 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4126
4127 tmp = strchr(kbuf, ' ');
4128 if (!tmp)
4129 return -EINVAL;
4130 *tmp = '\0';
4131 tmp++;
4132 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4133 return -EINVAL;
4134
4135 /* Find the cache in the chain of caches. */
18004c5d 4136 mutex_lock(&slab_mutex);
1da177e4 4137 res = -EINVAL;
18004c5d 4138 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4139 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4140 if (limit < 1 || batchcount < 1 ||
4141 batchcount > limit || shared < 0) {
e498be7d 4142 res = 0;
1da177e4 4143 } else {
e498be7d 4144 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4145 batchcount, shared,
4146 GFP_KERNEL);
1da177e4
LT
4147 }
4148 break;
4149 }
4150 }
18004c5d 4151 mutex_unlock(&slab_mutex);
1da177e4
LT
4152 if (res >= 0)
4153 res = count;
4154 return res;
4155}
871751e2 4156
04385fc5
KC
4157#ifdef CONFIG_HARDENED_USERCOPY
4158/*
afcc90f8
KC
4159 * Rejects incorrectly sized objects and objects that are to be copied
4160 * to/from userspace but do not fall entirely within the containing slab
4161 * cache's usercopy region.
04385fc5
KC
4162 *
4163 * Returns NULL if check passes, otherwise const char * to name of cache
4164 * to indicate an error.
4165 */
f4e6e289
KC
4166void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4167 bool to_user)
04385fc5
KC
4168{
4169 struct kmem_cache *cachep;
4170 unsigned int objnr;
4171 unsigned long offset;
4172
219667c2
AK
4173 ptr = kasan_reset_tag(ptr);
4174
04385fc5
KC
4175 /* Find and validate object. */
4176 cachep = page->slab_cache;
4177 objnr = obj_to_index(cachep, page, (void *)ptr);
4178 BUG_ON(objnr >= cachep->num);
4179
4180 /* Find offset within object. */
4181 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4182
afcc90f8
KC
4183 /* Allow address range falling entirely within usercopy region. */
4184 if (offset >= cachep->useroffset &&
4185 offset - cachep->useroffset <= cachep->usersize &&
4186 n <= cachep->useroffset - offset + cachep->usersize)
f4e6e289 4187 return;
04385fc5 4188
afcc90f8
KC
4189 /*
4190 * If the copy is still within the allocated object, produce
4191 * a warning instead of rejecting the copy. This is intended
4192 * to be a temporary method to find any missing usercopy
4193 * whitelists.
4194 */
2d891fbc
KC
4195 if (usercopy_fallback &&
4196 offset <= cachep->object_size &&
afcc90f8
KC
4197 n <= cachep->object_size - offset) {
4198 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4199 return;
4200 }
04385fc5 4201
f4e6e289 4202 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
04385fc5
KC
4203}
4204#endif /* CONFIG_HARDENED_USERCOPY */
4205
00e145b6
MS
4206/**
4207 * ksize - get the actual amount of memory allocated for a given object
4208 * @objp: Pointer to the object
4209 *
4210 * kmalloc may internally round up allocations and return more memory
4211 * than requested. ksize() can be used to determine the actual amount of
4212 * memory allocated. The caller may use this additional memory, even though
4213 * a smaller amount of memory was initially specified with the kmalloc call.
4214 * The caller must guarantee that objp points to a valid object previously
4215 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4216 * must not be freed during the duration of the call.
a862f68a
MR
4217 *
4218 * Return: size of the actual memory used by @objp in bytes
00e145b6 4219 */
fd76bab2 4220size_t ksize(const void *objp)
1da177e4 4221{
7ed2f9e6
AP
4222 size_t size;
4223
ef8b4520
CL
4224 BUG_ON(!objp);
4225 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4226 return 0;
1da177e4 4227
7ed2f9e6
AP
4228 size = virt_to_cache(objp)->object_size;
4229 /* We assume that ksize callers could use the whole allocated area,
4230 * so we need to unpoison this area.
4231 */
4ebb31a4 4232 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4233
4234 return size;
1da177e4 4235}
b1aabecd 4236EXPORT_SYMBOL(ksize);