]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/slab.c
[PATCH] set_page_count() macro safety
[thirdparty/kernel/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/seq_file.h>
98#include <linux/notifier.h>
99#include <linux/kallsyms.h>
100#include <linux/cpu.h>
101#include <linux/sysctl.h>
102#include <linux/module.h>
103#include <linux/rcupdate.h>
543537bd 104#include <linux/string.h>
e498be7d 105#include <linux/nodemask.h>
1da177e4
LT
106
107#include <asm/uaccess.h>
108#include <asm/cacheflush.h>
109#include <asm/tlbflush.h>
110#include <asm/page.h>
111
112/*
113 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
114 * SLAB_RED_ZONE & SLAB_POISON.
115 * 0 for faster, smaller code (especially in the critical paths).
116 *
117 * STATS - 1 to collect stats for /proc/slabinfo.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
121 */
122
123#ifdef CONFIG_DEBUG_SLAB
124#define DEBUG 1
125#define STATS 1
126#define FORCED_DEBUG 1
127#else
128#define DEBUG 0
129#define STATS 0
130#define FORCED_DEBUG 0
131#endif
132
1da177e4
LT
133/* Shouldn't this be in a header file somewhere? */
134#define BYTES_PER_WORD sizeof(void *)
135
136#ifndef cache_line_size
137#define cache_line_size() L1_CACHE_BYTES
138#endif
139
140#ifndef ARCH_KMALLOC_MINALIGN
141/*
142 * Enforce a minimum alignment for the kmalloc caches.
143 * Usually, the kmalloc caches are cache_line_size() aligned, except when
144 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
145 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
146 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
147 * Note that this flag disables some debug features.
148 */
149#define ARCH_KMALLOC_MINALIGN 0
150#endif
151
152#ifndef ARCH_SLAB_MINALIGN
153/*
154 * Enforce a minimum alignment for all caches.
155 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
156 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
157 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
158 * some debug features.
159 */
160#define ARCH_SLAB_MINALIGN 0
161#endif
162
163#ifndef ARCH_KMALLOC_FLAGS
164#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
165#endif
166
167/* Legal flag mask for kmem_cache_create(). */
168#if DEBUG
169# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
170 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
171 SLAB_NO_REAP | SLAB_CACHE_DMA | \
172 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
173 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
174 SLAB_DESTROY_BY_RCU)
175#else
176# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
177 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179 SLAB_DESTROY_BY_RCU)
180#endif
181
182/*
183 * kmem_bufctl_t:
184 *
185 * Bufctl's are used for linking objs within a slab
186 * linked offsets.
187 *
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 */
200
fa5b08d5 201typedef unsigned int kmem_bufctl_t;
1da177e4
LT
202#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
204#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
205
206/* Max number of objs-per-slab for caches which use off-slab slabs.
207 * Needed to avoid a possible looping condition in cache_grow().
208 */
209static unsigned long offslab_limit;
210
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
b28a02de
PE
219 struct list_head list;
220 unsigned long colouroff;
221 void *s_mem; /* including colour offset */
222 unsigned int inuse; /* num of objs active in slab */
223 kmem_bufctl_t free;
224 unsigned short nodeid;
1da177e4
LT
225};
226
227/*
228 * struct slab_rcu
229 *
230 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
231 * arrange for kmem_freepages to be called via RCU. This is useful if
232 * we need to approach a kernel structure obliquely, from its address
233 * obtained without the usual locking. We can lock the structure to
234 * stabilize it and check it's still at the given address, only if we
235 * can be sure that the memory has not been meanwhile reused for some
236 * other kind of object (which our subsystem's lock might corrupt).
237 *
238 * rcu_read_lock before reading the address, then rcu_read_unlock after
239 * taking the spinlock within the structure expected at that address.
240 *
241 * We assume struct slab_rcu can overlay struct slab when destroying.
242 */
243struct slab_rcu {
b28a02de
PE
244 struct rcu_head head;
245 kmem_cache_t *cachep;
246 void *addr;
1da177e4
LT
247};
248
249/*
250 * struct array_cache
251 *
1da177e4
LT
252 * Purpose:
253 * - LIFO ordering, to hand out cache-warm objects from _alloc
254 * - reduce the number of linked list operations
255 * - reduce spinlock operations
256 *
257 * The limit is stored in the per-cpu structure to reduce the data cache
258 * footprint.
259 *
260 */
261struct array_cache {
262 unsigned int avail;
263 unsigned int limit;
264 unsigned int batchcount;
265 unsigned int touched;
e498be7d
CL
266 spinlock_t lock;
267 void *entry[0]; /*
268 * Must have this definition in here for the proper
269 * alignment of array_cache. Also simplifies accessing
270 * the entries.
271 * [0] is for gcc 2.95. It should really be [].
272 */
1da177e4
LT
273};
274
275/* bootstrap: The caches do not work without cpuarrays anymore,
276 * but the cpuarrays are allocated from the generic caches...
277 */
278#define BOOT_CPUCACHE_ENTRIES 1
279struct arraycache_init {
280 struct array_cache cache;
b28a02de 281 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
282};
283
284/*
e498be7d 285 * The slab lists for all objects.
1da177e4
LT
286 */
287struct kmem_list3 {
b28a02de
PE
288 struct list_head slabs_partial; /* partial list first, better asm code */
289 struct list_head slabs_full;
290 struct list_head slabs_free;
291 unsigned long free_objects;
292 unsigned long next_reap;
293 int free_touched;
294 unsigned int free_limit;
295 spinlock_t list_lock;
296 struct array_cache *shared; /* shared per node */
297 struct array_cache **alien; /* on other nodes */
1da177e4
LT
298};
299
e498be7d
CL
300/*
301 * Need this for bootstrapping a per node allocator.
302 */
303#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
304struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
305#define CACHE_CACHE 0
306#define SIZE_AC 1
307#define SIZE_L3 (1 + MAX_NUMNODES)
308
309/*
7243cc05 310 * This function must be completely optimized away if
e498be7d
CL
311 * a constant is passed to it. Mostly the same as
312 * what is in linux/slab.h except it returns an
313 * index.
314 */
7243cc05 315static __always_inline int index_of(const size_t size)
e498be7d
CL
316{
317 if (__builtin_constant_p(size)) {
318 int i = 0;
319
320#define CACHE(x) \
321 if (size <=x) \
322 return i; \
323 else \
324 i++;
325#include "linux/kmalloc_sizes.h"
326#undef CACHE
327 {
328 extern void __bad_size(void);
329 __bad_size();
330 }
7243cc05
IK
331 } else
332 BUG();
e498be7d
CL
333 return 0;
334}
335
336#define INDEX_AC index_of(sizeof(struct arraycache_init))
337#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 338
e498be7d
CL
339static inline void kmem_list3_init(struct kmem_list3 *parent)
340{
341 INIT_LIST_HEAD(&parent->slabs_full);
342 INIT_LIST_HEAD(&parent->slabs_partial);
343 INIT_LIST_HEAD(&parent->slabs_free);
344 parent->shared = NULL;
345 parent->alien = NULL;
346 spin_lock_init(&parent->list_lock);
347 parent->free_objects = 0;
348 parent->free_touched = 0;
349}
350
351#define MAKE_LIST(cachep, listp, slab, nodeid) \
352 do { \
353 INIT_LIST_HEAD(listp); \
354 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
355 } while (0)
356
357#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
358 do { \
359 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
360 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
361 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
362 } while (0)
1da177e4
LT
363
364/*
365 * kmem_cache_t
366 *
367 * manages a cache.
368 */
b28a02de 369
2109a2d1 370struct kmem_cache {
1da177e4 371/* 1) per-cpu data, touched during every alloc/free */
b28a02de
PE
372 struct array_cache *array[NR_CPUS];
373 unsigned int batchcount;
374 unsigned int limit;
375 unsigned int shared;
376 unsigned int objsize;
e498be7d 377/* 2) touched by every alloc & free from the backend */
b28a02de
PE
378 struct kmem_list3 *nodelists[MAX_NUMNODES];
379 unsigned int flags; /* constant flags */
380 unsigned int num; /* # of objs per slab */
381 spinlock_t spinlock;
1da177e4
LT
382
383/* 3) cache_grow/shrink */
384 /* order of pgs per slab (2^n) */
b28a02de 385 unsigned int gfporder;
1da177e4
LT
386
387 /* force GFP flags, e.g. GFP_DMA */
b28a02de 388 gfp_t gfpflags;
1da177e4 389
b28a02de
PE
390 size_t colour; /* cache colouring range */
391 unsigned int colour_off; /* colour offset */
392 unsigned int colour_next; /* cache colouring */
393 kmem_cache_t *slabp_cache;
394 unsigned int slab_size;
395 unsigned int dflags; /* dynamic flags */
1da177e4
LT
396
397 /* constructor func */
b28a02de 398 void (*ctor) (void *, kmem_cache_t *, unsigned long);
1da177e4
LT
399
400 /* de-constructor func */
b28a02de 401 void (*dtor) (void *, kmem_cache_t *, unsigned long);
1da177e4
LT
402
403/* 4) cache creation/removal */
b28a02de
PE
404 const char *name;
405 struct list_head next;
1da177e4
LT
406
407/* 5) statistics */
408#if STATS
b28a02de
PE
409 unsigned long num_active;
410 unsigned long num_allocations;
411 unsigned long high_mark;
412 unsigned long grown;
413 unsigned long reaped;
414 unsigned long errors;
415 unsigned long max_freeable;
416 unsigned long node_allocs;
417 unsigned long node_frees;
418 atomic_t allochit;
419 atomic_t allocmiss;
420 atomic_t freehit;
421 atomic_t freemiss;
1da177e4
LT
422#endif
423#if DEBUG
b28a02de
PE
424 int dbghead;
425 int reallen;
1da177e4
LT
426#endif
427};
428
429#define CFLGS_OFF_SLAB (0x80000000UL)
430#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
431
432#define BATCHREFILL_LIMIT 16
433/* Optimization question: fewer reaps means less
434 * probability for unnessary cpucache drain/refill cycles.
435 *
dc6f3f27 436 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
437 * which could lock up otherwise freeable slabs.
438 */
439#define REAPTIMEOUT_CPUC (2*HZ)
440#define REAPTIMEOUT_LIST3 (4*HZ)
441
442#if STATS
443#define STATS_INC_ACTIVE(x) ((x)->num_active++)
444#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
445#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
446#define STATS_INC_GROWN(x) ((x)->grown++)
447#define STATS_INC_REAPED(x) ((x)->reaped++)
448#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
449 (x)->high_mark = (x)->num_active; \
450 } while (0)
451#define STATS_INC_ERR(x) ((x)->errors++)
452#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 453#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
1da177e4
LT
454#define STATS_SET_FREEABLE(x, i) \
455 do { if ((x)->max_freeable < i) \
456 (x)->max_freeable = i; \
457 } while (0)
458
459#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
460#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
461#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
462#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
463#else
464#define STATS_INC_ACTIVE(x) do { } while (0)
465#define STATS_DEC_ACTIVE(x) do { } while (0)
466#define STATS_INC_ALLOCED(x) do { } while (0)
467#define STATS_INC_GROWN(x) do { } while (0)
468#define STATS_INC_REAPED(x) do { } while (0)
469#define STATS_SET_HIGH(x) do { } while (0)
470#define STATS_INC_ERR(x) do { } while (0)
471#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 472#define STATS_INC_NODEFREES(x) do { } while (0)
1da177e4
LT
473#define STATS_SET_FREEABLE(x, i) \
474 do { } while (0)
475
476#define STATS_INC_ALLOCHIT(x) do { } while (0)
477#define STATS_INC_ALLOCMISS(x) do { } while (0)
478#define STATS_INC_FREEHIT(x) do { } while (0)
479#define STATS_INC_FREEMISS(x) do { } while (0)
480#endif
481
482#if DEBUG
483/* Magic nums for obj red zoning.
484 * Placed in the first word before and the first word after an obj.
485 */
486#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
487#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
488
489/* ...and for poisoning */
490#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
491#define POISON_FREE 0x6b /* for use-after-free poisoning */
492#define POISON_END 0xa5 /* end-byte of poisoning */
493
494/* memory layout of objects:
495 * 0 : objp
496 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
497 * the end of an object is aligned with the end of the real
498 * allocation. Catches writes behind the end of the allocation.
499 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
500 * redzone word.
501 * cachep->dbghead: The real object.
502 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
503 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
504 */
505static int obj_dbghead(kmem_cache_t *cachep)
506{
507 return cachep->dbghead;
508}
509
510static int obj_reallen(kmem_cache_t *cachep)
511{
512 return cachep->reallen;
513}
514
515static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
516{
517 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
518 return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
519}
520
521static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
522{
523 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
524 if (cachep->flags & SLAB_STORE_USER)
b28a02de
PE
525 return (unsigned long *)(objp + cachep->objsize -
526 2 * BYTES_PER_WORD);
527 return (unsigned long *)(objp + cachep->objsize - BYTES_PER_WORD);
1da177e4
LT
528}
529
530static void **dbg_userword(kmem_cache_t *cachep, void *objp)
531{
532 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
b28a02de 533 return (void **)(objp + cachep->objsize - BYTES_PER_WORD);
1da177e4
LT
534}
535
536#else
537
538#define obj_dbghead(x) 0
539#define obj_reallen(cachep) (cachep->objsize)
540#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
541#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
542#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
543
544#endif
545
546/*
547 * Maximum size of an obj (in 2^order pages)
548 * and absolute limit for the gfp order.
549 */
550#if defined(CONFIG_LARGE_ALLOCS)
551#define MAX_OBJ_ORDER 13 /* up to 32Mb */
552#define MAX_GFP_ORDER 13 /* up to 32Mb */
553#elif defined(CONFIG_MMU)
554#define MAX_OBJ_ORDER 5 /* 32 pages */
555#define MAX_GFP_ORDER 5 /* 32 pages */
556#else
557#define MAX_OBJ_ORDER 8 /* up to 1Mb */
558#define MAX_GFP_ORDER 8 /* up to 1Mb */
559#endif
560
561/*
562 * Do not go above this order unless 0 objects fit into the slab.
563 */
564#define BREAK_GFP_ORDER_HI 1
565#define BREAK_GFP_ORDER_LO 0
566static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
567
065d41cb 568/* Functions for storing/retrieving the cachep and or slab from the
1da177e4
LT
569 * global 'mem_map'. These are used to find the slab an obj belongs to.
570 * With kfree(), these are used to find the cache which an obj belongs to.
571 */
065d41cb
PE
572static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
573{
574 page->lru.next = (struct list_head *)cache;
575}
576
577static inline struct kmem_cache *page_get_cache(struct page *page)
578{
579 return (struct kmem_cache *)page->lru.next;
580}
581
582static inline void page_set_slab(struct page *page, struct slab *slab)
583{
584 page->lru.prev = (struct list_head *)slab;
585}
586
587static inline struct slab *page_get_slab(struct page *page)
588{
589 return (struct slab *)page->lru.prev;
590}
1da177e4
LT
591
592/* These are the default caches for kmalloc. Custom caches can have other sizes. */
593struct cache_sizes malloc_sizes[] = {
594#define CACHE(x) { .cs_size = (x) },
595#include <linux/kmalloc_sizes.h>
596 CACHE(ULONG_MAX)
597#undef CACHE
598};
599EXPORT_SYMBOL(malloc_sizes);
600
601/* Must match cache_sizes above. Out of line to keep cache footprint low. */
602struct cache_names {
603 char *name;
604 char *name_dma;
605};
606
607static struct cache_names __initdata cache_names[] = {
608#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
609#include <linux/kmalloc_sizes.h>
b28a02de 610 {NULL,}
1da177e4
LT
611#undef CACHE
612};
613
614static struct arraycache_init initarray_cache __initdata =
b28a02de 615 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 616static struct arraycache_init initarray_generic =
b28a02de 617 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
618
619/* internal cache of cache description objs */
620static kmem_cache_t cache_cache = {
b28a02de
PE
621 .batchcount = 1,
622 .limit = BOOT_CPUCACHE_ENTRIES,
623 .shared = 1,
624 .objsize = sizeof(kmem_cache_t),
625 .flags = SLAB_NO_REAP,
626 .spinlock = SPIN_LOCK_UNLOCKED,
627 .name = "kmem_cache",
1da177e4 628#if DEBUG
b28a02de 629 .reallen = sizeof(kmem_cache_t),
1da177e4
LT
630#endif
631};
632
633/* Guard access to the cache-chain. */
b28a02de 634static struct semaphore cache_chain_sem;
1da177e4
LT
635static struct list_head cache_chain;
636
637/*
638 * vm_enough_memory() looks at this to determine how many
639 * slab-allocated pages are possibly freeable under pressure
640 *
641 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
642 */
643atomic_t slab_reclaim_pages;
1da177e4
LT
644
645/*
646 * chicken and egg problem: delay the per-cpu array allocation
647 * until the general caches are up.
648 */
649static enum {
650 NONE,
e498be7d
CL
651 PARTIAL_AC,
652 PARTIAL_L3,
1da177e4
LT
653 FULL
654} g_cpucache_up;
655
656static DEFINE_PER_CPU(struct work_struct, reap_work);
657
b28a02de
PE
658static void free_block(kmem_cache_t *cachep, void **objpp, int len, int node);
659static void enable_cpucache(kmem_cache_t *cachep);
660static void cache_reap(void *unused);
e498be7d 661static int __node_shrink(kmem_cache_t *cachep, int node);
1da177e4
LT
662
663static inline struct array_cache *ac_data(kmem_cache_t *cachep)
664{
665 return cachep->array[smp_processor_id()];
666}
667
dd0fc66f 668static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
1da177e4
LT
669{
670 struct cache_sizes *csizep = malloc_sizes;
671
672#if DEBUG
673 /* This happens if someone tries to call
b28a02de
PE
674 * kmem_cache_create(), or __kmalloc(), before
675 * the generic caches are initialized.
676 */
c7e43c78 677 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
678#endif
679 while (size > csizep->cs_size)
680 csizep++;
681
682 /*
0abf40c1 683 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
684 * has cs_{dma,}cachep==NULL. Thus no special case
685 * for large kmalloc calls required.
686 */
687 if (unlikely(gfpflags & GFP_DMA))
688 return csizep->cs_dmacachep;
689 return csizep->cs_cachep;
690}
691
dd0fc66f 692kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
693{
694 return __find_general_cachep(size, gfpflags);
695}
696EXPORT_SYMBOL(kmem_find_general_cachep);
697
1da177e4
LT
698/* Cal the num objs, wastage, and bytes left over for a given slab size. */
699static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
b28a02de 700 int flags, size_t *left_over, unsigned int *num)
1da177e4
LT
701{
702 int i;
b28a02de 703 size_t wastage = PAGE_SIZE << gfporder;
1da177e4
LT
704 size_t extra = 0;
705 size_t base = 0;
706
707 if (!(flags & CFLGS_OFF_SLAB)) {
708 base = sizeof(struct slab);
709 extra = sizeof(kmem_bufctl_t);
710 }
711 i = 0;
b28a02de 712 while (i * size + ALIGN(base + i * extra, align) <= wastage)
1da177e4
LT
713 i++;
714 if (i > 0)
715 i--;
716
717 if (i > SLAB_LIMIT)
718 i = SLAB_LIMIT;
719
720 *num = i;
b28a02de
PE
721 wastage -= i * size;
722 wastage -= ALIGN(base + i * extra, align);
1da177e4
LT
723 *left_over = wastage;
724}
725
726#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
727
728static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
729{
730 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 731 function, cachep->name, msg);
1da177e4
LT
732 dump_stack();
733}
734
735/*
736 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
737 * via the workqueue/eventd.
738 * Add the CPU number into the expiration time to minimize the possibility of
739 * the CPUs getting into lockstep and contending for the global cache chain
740 * lock.
741 */
742static void __devinit start_cpu_timer(int cpu)
743{
744 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
745
746 /*
747 * When this gets called from do_initcalls via cpucache_init(),
748 * init_workqueues() has already run, so keventd will be setup
749 * at that time.
750 */
751 if (keventd_up() && reap_work->func == NULL) {
752 INIT_WORK(reap_work, cache_reap, NULL);
753 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
754 }
755}
756
e498be7d 757static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 758 int batchcount)
1da177e4 759{
b28a02de 760 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
761 struct array_cache *nc = NULL;
762
e498be7d 763 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
764 if (nc) {
765 nc->avail = 0;
766 nc->limit = entries;
767 nc->batchcount = batchcount;
768 nc->touched = 0;
e498be7d 769 spin_lock_init(&nc->lock);
1da177e4
LT
770 }
771 return nc;
772}
773
e498be7d
CL
774#ifdef CONFIG_NUMA
775static inline struct array_cache **alloc_alien_cache(int node, int limit)
776{
777 struct array_cache **ac_ptr;
b28a02de 778 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
779 int i;
780
781 if (limit > 1)
782 limit = 12;
783 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
784 if (ac_ptr) {
785 for_each_node(i) {
786 if (i == node || !node_online(i)) {
787 ac_ptr[i] = NULL;
788 continue;
789 }
790 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
791 if (!ac_ptr[i]) {
b28a02de 792 for (i--; i <= 0; i--)
e498be7d
CL
793 kfree(ac_ptr[i]);
794 kfree(ac_ptr);
795 return NULL;
796 }
797 }
798 }
799 return ac_ptr;
800}
801
802static inline void free_alien_cache(struct array_cache **ac_ptr)
803{
804 int i;
805
806 if (!ac_ptr)
807 return;
808
809 for_each_node(i)
b28a02de 810 kfree(ac_ptr[i]);
e498be7d
CL
811
812 kfree(ac_ptr);
813}
814
b28a02de
PE
815static inline void __drain_alien_cache(kmem_cache_t *cachep,
816 struct array_cache *ac, int node)
e498be7d
CL
817{
818 struct kmem_list3 *rl3 = cachep->nodelists[node];
819
820 if (ac->avail) {
821 spin_lock(&rl3->list_lock);
ff69416e 822 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
823 ac->avail = 0;
824 spin_unlock(&rl3->list_lock);
825 }
826}
827
828static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
829{
b28a02de 830 int i = 0;
e498be7d
CL
831 struct array_cache *ac;
832 unsigned long flags;
833
834 for_each_online_node(i) {
835 ac = l3->alien[i];
836 if (ac) {
837 spin_lock_irqsave(&ac->lock, flags);
838 __drain_alien_cache(cachep, ac, i);
839 spin_unlock_irqrestore(&ac->lock, flags);
840 }
841 }
842}
843#else
844#define alloc_alien_cache(node, limit) do { } while (0)
845#define free_alien_cache(ac_ptr) do { } while (0)
846#define drain_alien_cache(cachep, l3) do { } while (0)
847#endif
848
1da177e4 849static int __devinit cpuup_callback(struct notifier_block *nfb,
b28a02de 850 unsigned long action, void *hcpu)
1da177e4
LT
851{
852 long cpu = (long)hcpu;
b28a02de 853 kmem_cache_t *cachep;
e498be7d
CL
854 struct kmem_list3 *l3 = NULL;
855 int node = cpu_to_node(cpu);
856 int memsize = sizeof(struct kmem_list3);
857 struct array_cache *nc = NULL;
1da177e4
LT
858
859 switch (action) {
860 case CPU_UP_PREPARE:
861 down(&cache_chain_sem);
e498be7d
CL
862 /* we need to do this right in the beginning since
863 * alloc_arraycache's are going to use this list.
864 * kmalloc_node allows us to add the slab to the right
865 * kmem_list3 and not this cpu's kmem_list3
866 */
867
1da177e4 868 list_for_each_entry(cachep, &cache_chain, next) {
e498be7d
CL
869 /* setup the size64 kmemlist for cpu before we can
870 * begin anything. Make sure some other cpu on this
871 * node has not already allocated this
872 */
873 if (!cachep->nodelists[node]) {
874 if (!(l3 = kmalloc_node(memsize,
b28a02de 875 GFP_KERNEL, node)))
e498be7d
CL
876 goto bad;
877 kmem_list3_init(l3);
878 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 879 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
880
881 cachep->nodelists[node] = l3;
882 }
1da177e4 883
e498be7d
CL
884 spin_lock_irq(&cachep->nodelists[node]->list_lock);
885 cachep->nodelists[node]->free_limit =
b28a02de
PE
886 (1 + nr_cpus_node(node)) *
887 cachep->batchcount + cachep->num;
e498be7d
CL
888 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
889 }
890
891 /* Now we can go ahead with allocating the shared array's
b28a02de 892 & array cache's */
e498be7d
CL
893 list_for_each_entry(cachep, &cache_chain, next) {
894 nc = alloc_arraycache(node, cachep->limit,
b28a02de 895 cachep->batchcount);
1da177e4
LT
896 if (!nc)
897 goto bad;
1da177e4 898 cachep->array[cpu] = nc;
1da177e4 899
e498be7d
CL
900 l3 = cachep->nodelists[node];
901 BUG_ON(!l3);
902 if (!l3->shared) {
903 if (!(nc = alloc_arraycache(node,
b28a02de
PE
904 cachep->shared *
905 cachep->batchcount,
906 0xbaadf00d)))
907 goto bad;
e498be7d
CL
908
909 /* we are serialised from CPU_DEAD or
b28a02de 910 CPU_UP_CANCELLED by the cpucontrol lock */
e498be7d
CL
911 l3->shared = nc;
912 }
1da177e4
LT
913 }
914 up(&cache_chain_sem);
915 break;
916 case CPU_ONLINE:
917 start_cpu_timer(cpu);
918 break;
919#ifdef CONFIG_HOTPLUG_CPU
920 case CPU_DEAD:
921 /* fall thru */
922 case CPU_UP_CANCELED:
923 down(&cache_chain_sem);
924
925 list_for_each_entry(cachep, &cache_chain, next) {
926 struct array_cache *nc;
e498be7d 927 cpumask_t mask;
1da177e4 928
e498be7d 929 mask = node_to_cpumask(node);
1da177e4
LT
930 spin_lock_irq(&cachep->spinlock);
931 /* cpu is dead; no one can alloc from it. */
932 nc = cachep->array[cpu];
933 cachep->array[cpu] = NULL;
e498be7d
CL
934 l3 = cachep->nodelists[node];
935
936 if (!l3)
937 goto unlock_cache;
938
939 spin_lock(&l3->list_lock);
940
941 /* Free limit for this kmem_list3 */
942 l3->free_limit -= cachep->batchcount;
943 if (nc)
ff69416e 944 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
945
946 if (!cpus_empty(mask)) {
b28a02de
PE
947 spin_unlock(&l3->list_lock);
948 goto unlock_cache;
949 }
e498be7d
CL
950
951 if (l3->shared) {
952 free_block(cachep, l3->shared->entry,
b28a02de 953 l3->shared->avail, node);
e498be7d
CL
954 kfree(l3->shared);
955 l3->shared = NULL;
956 }
957 if (l3->alien) {
958 drain_alien_cache(cachep, l3);
959 free_alien_cache(l3->alien);
960 l3->alien = NULL;
961 }
962
963 /* free slabs belonging to this node */
964 if (__node_shrink(cachep, node)) {
965 cachep->nodelists[node] = NULL;
966 spin_unlock(&l3->list_lock);
967 kfree(l3);
968 } else {
969 spin_unlock(&l3->list_lock);
970 }
b28a02de 971 unlock_cache:
1da177e4
LT
972 spin_unlock_irq(&cachep->spinlock);
973 kfree(nc);
974 }
975 up(&cache_chain_sem);
976 break;
977#endif
978 }
979 return NOTIFY_OK;
b28a02de 980 bad:
1da177e4
LT
981 up(&cache_chain_sem);
982 return NOTIFY_BAD;
983}
984
985static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
986
e498be7d
CL
987/*
988 * swap the static kmem_list3 with kmalloced memory
989 */
b28a02de 990static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, int nodeid)
e498be7d
CL
991{
992 struct kmem_list3 *ptr;
993
994 BUG_ON(cachep->nodelists[nodeid] != list);
995 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
996 BUG_ON(!ptr);
997
998 local_irq_disable();
999 memcpy(ptr, list, sizeof(struct kmem_list3));
1000 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1001 cachep->nodelists[nodeid] = ptr;
1002 local_irq_enable();
1003}
1004
1da177e4
LT
1005/* Initialisation.
1006 * Called after the gfp() functions have been enabled, and before smp_init().
1007 */
1008void __init kmem_cache_init(void)
1009{
1010 size_t left_over;
1011 struct cache_sizes *sizes;
1012 struct cache_names *names;
e498be7d
CL
1013 int i;
1014
1015 for (i = 0; i < NUM_INIT_LISTS; i++) {
1016 kmem_list3_init(&initkmem_list3[i]);
1017 if (i < MAX_NUMNODES)
1018 cache_cache.nodelists[i] = NULL;
1019 }
1da177e4
LT
1020
1021 /*
1022 * Fragmentation resistance on low memory - only use bigger
1023 * page orders on machines with more than 32MB of memory.
1024 */
1025 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1026 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1027
1da177e4
LT
1028 /* Bootstrap is tricky, because several objects are allocated
1029 * from caches that do not exist yet:
1030 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1031 * structures of all caches, except cache_cache itself: cache_cache
1032 * is statically allocated.
e498be7d
CL
1033 * Initially an __init data area is used for the head array and the
1034 * kmem_list3 structures, it's replaced with a kmalloc allocated
1035 * array at the end of the bootstrap.
1da177e4 1036 * 2) Create the first kmalloc cache.
e498be7d
CL
1037 * The kmem_cache_t for the new cache is allocated normally.
1038 * An __init data area is used for the head array.
1039 * 3) Create the remaining kmalloc caches, with minimally sized
1040 * head arrays.
1da177e4
LT
1041 * 4) Replace the __init data head arrays for cache_cache and the first
1042 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1043 * 5) Replace the __init data for kmem_list3 for cache_cache and
1044 * the other cache's with kmalloc allocated memory.
1045 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1046 */
1047
1048 /* 1) create the cache_cache */
1049 init_MUTEX(&cache_chain_sem);
1050 INIT_LIST_HEAD(&cache_chain);
1051 list_add(&cache_cache.next, &cache_chain);
1052 cache_cache.colour_off = cache_line_size();
1053 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1054 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4
LT
1055
1056 cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());
1057
1058 cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
b28a02de 1059 &left_over, &cache_cache.num);
1da177e4
LT
1060 if (!cache_cache.num)
1061 BUG();
1062
b28a02de 1063 cache_cache.colour = left_over / cache_cache.colour_off;
1da177e4 1064 cache_cache.colour_next = 0;
b28a02de
PE
1065 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1066 sizeof(struct slab), cache_line_size());
1da177e4
LT
1067
1068 /* 2+3) create the kmalloc caches */
1069 sizes = malloc_sizes;
1070 names = cache_names;
1071
e498be7d
CL
1072 /* Initialize the caches that provide memory for the array cache
1073 * and the kmem_list3 structures first.
1074 * Without this, further allocations will bug
1075 */
1076
1077 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
b28a02de
PE
1078 sizes[INDEX_AC].cs_size,
1079 ARCH_KMALLOC_MINALIGN,
1080 (ARCH_KMALLOC_FLAGS |
1081 SLAB_PANIC), NULL, NULL);
e498be7d
CL
1082
1083 if (INDEX_AC != INDEX_L3)
1084 sizes[INDEX_L3].cs_cachep =
b28a02de
PE
1085 kmem_cache_create(names[INDEX_L3].name,
1086 sizes[INDEX_L3].cs_size,
1087 ARCH_KMALLOC_MINALIGN,
1088 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
1089 NULL);
e498be7d 1090
1da177e4 1091 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1092 /*
1093 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1094 * This should be particularly beneficial on SMP boxes, as it
1095 * eliminates "false sharing".
1096 * Note for systems short on memory removing the alignment will
e498be7d
CL
1097 * allow tighter packing of the smaller caches.
1098 */
b28a02de 1099 if (!sizes->cs_cachep)
e498be7d 1100 sizes->cs_cachep = kmem_cache_create(names->name,
b28a02de
PE
1101 sizes->cs_size,
1102 ARCH_KMALLOC_MINALIGN,
1103 (ARCH_KMALLOC_FLAGS
1104 | SLAB_PANIC),
1105 NULL, NULL);
1da177e4
LT
1106
1107 /* Inc off-slab bufctl limit until the ceiling is hit. */
1108 if (!(OFF_SLAB(sizes->cs_cachep))) {
b28a02de 1109 offslab_limit = sizes->cs_size - sizeof(struct slab);
1da177e4
LT
1110 offslab_limit /= sizeof(kmem_bufctl_t);
1111 }
1112
1113 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
b28a02de
PE
1114 sizes->cs_size,
1115 ARCH_KMALLOC_MINALIGN,
1116 (ARCH_KMALLOC_FLAGS |
1117 SLAB_CACHE_DMA |
1118 SLAB_PANIC), NULL,
1119 NULL);
1da177e4
LT
1120
1121 sizes++;
1122 names++;
1123 }
1124 /* 4) Replace the bootstrap head arrays */
1125 {
b28a02de 1126 void *ptr;
e498be7d 1127
1da177e4 1128 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1129
1da177e4
LT
1130 local_irq_disable();
1131 BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
e498be7d 1132 memcpy(ptr, ac_data(&cache_cache),
b28a02de 1133 sizeof(struct arraycache_init));
1da177e4
LT
1134 cache_cache.array[smp_processor_id()] = ptr;
1135 local_irq_enable();
e498be7d 1136
1da177e4 1137 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1138
1da177e4 1139 local_irq_disable();
e498be7d 1140 BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1141 != &initarray_generic.cache);
e498be7d 1142 memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1143 sizeof(struct arraycache_init));
e498be7d 1144 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1145 ptr;
1da177e4
LT
1146 local_irq_enable();
1147 }
e498be7d
CL
1148 /* 5) Replace the bootstrap kmem_list3's */
1149 {
1150 int node;
1151 /* Replace the static kmem_list3 structures for the boot cpu */
1152 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1153 numa_node_id());
e498be7d
CL
1154
1155 for_each_online_node(node) {
1156 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1157 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1158
1159 if (INDEX_AC != INDEX_L3) {
1160 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1161 &initkmem_list3[SIZE_L3 + node],
1162 node);
e498be7d
CL
1163 }
1164 }
1165 }
1da177e4 1166
e498be7d 1167 /* 6) resize the head arrays to their final sizes */
1da177e4
LT
1168 {
1169 kmem_cache_t *cachep;
1170 down(&cache_chain_sem);
1171 list_for_each_entry(cachep, &cache_chain, next)
b28a02de 1172 enable_cpucache(cachep);
1da177e4
LT
1173 up(&cache_chain_sem);
1174 }
1175
1176 /* Done! */
1177 g_cpucache_up = FULL;
1178
1179 /* Register a cpu startup notifier callback
1180 * that initializes ac_data for all new cpus
1181 */
1182 register_cpu_notifier(&cpucache_notifier);
1da177e4
LT
1183
1184 /* The reap timers are started later, with a module init call:
1185 * That part of the kernel is not yet operational.
1186 */
1187}
1188
1189static int __init cpucache_init(void)
1190{
1191 int cpu;
1192
1193 /*
1194 * Register the timers that return unneeded
1195 * pages to gfp.
1196 */
e498be7d 1197 for_each_online_cpu(cpu)
b28a02de 1198 start_cpu_timer(cpu);
1da177e4
LT
1199
1200 return 0;
1201}
1202
1203__initcall(cpucache_init);
1204
1205/*
1206 * Interface to system's page allocator. No need to hold the cache-lock.
1207 *
1208 * If we requested dmaable memory, we will get it. Even if we
1209 * did not request dmaable memory, we might get it, but that
1210 * would be relatively rare and ignorable.
1211 */
dd0fc66f 1212static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1213{
1214 struct page *page;
1215 void *addr;
1216 int i;
1217
1218 flags |= cachep->gfpflags;
50c85a19 1219 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1220 if (!page)
1221 return NULL;
1222 addr = page_address(page);
1223
1224 i = (1 << cachep->gfporder);
1225 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1226 atomic_add(i, &slab_reclaim_pages);
1227 add_page_state(nr_slab, i);
1228 while (i--) {
1229 SetPageSlab(page);
1230 page++;
1231 }
1232 return addr;
1233}
1234
1235/*
1236 * Interface to system's page release.
1237 */
1238static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1239{
b28a02de 1240 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1241 struct page *page = virt_to_page(addr);
1242 const unsigned long nr_freed = i;
1243
1244 while (i--) {
1245 if (!TestClearPageSlab(page))
1246 BUG();
1247 page++;
1248 }
1249 sub_page_state(nr_slab, nr_freed);
1250 if (current->reclaim_state)
1251 current->reclaim_state->reclaimed_slab += nr_freed;
1252 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1253 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1254 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1255}
1256
1257static void kmem_rcu_free(struct rcu_head *head)
1258{
b28a02de 1259 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1da177e4
LT
1260 kmem_cache_t *cachep = slab_rcu->cachep;
1261
1262 kmem_freepages(cachep, slab_rcu->addr);
1263 if (OFF_SLAB(cachep))
1264 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1265}
1266
1267#if DEBUG
1268
1269#ifdef CONFIG_DEBUG_PAGEALLOC
1270static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
b28a02de 1271 unsigned long caller)
1da177e4
LT
1272{
1273 int size = obj_reallen(cachep);
1274
b28a02de 1275 addr = (unsigned long *)&((char *)addr)[obj_dbghead(cachep)];
1da177e4 1276
b28a02de 1277 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1278 return;
1279
b28a02de
PE
1280 *addr++ = 0x12345678;
1281 *addr++ = caller;
1282 *addr++ = smp_processor_id();
1283 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1284 {
1285 unsigned long *sptr = &caller;
1286 unsigned long svalue;
1287
1288 while (!kstack_end(sptr)) {
1289 svalue = *sptr++;
1290 if (kernel_text_address(svalue)) {
b28a02de 1291 *addr++ = svalue;
1da177e4
LT
1292 size -= sizeof(unsigned long);
1293 if (size <= sizeof(unsigned long))
1294 break;
1295 }
1296 }
1297
1298 }
b28a02de 1299 *addr++ = 0x87654321;
1da177e4
LT
1300}
1301#endif
1302
1303static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
1304{
1305 int size = obj_reallen(cachep);
b28a02de 1306 addr = &((char *)addr)[obj_dbghead(cachep)];
1da177e4
LT
1307
1308 memset(addr, val, size);
b28a02de 1309 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1310}
1311
1312static void dump_line(char *data, int offset, int limit)
1313{
1314 int i;
1315 printk(KERN_ERR "%03x:", offset);
b28a02de
PE
1316 for (i = 0; i < limit; i++) {
1317 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1318 }
1319 printk("\n");
1320}
1321#endif
1322
1323#if DEBUG
1324
1325static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1326{
1327 int i, size;
1328 char *realobj;
1329
1330 if (cachep->flags & SLAB_RED_ZONE) {
1331 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
b28a02de
PE
1332 *dbg_redzone1(cachep, objp),
1333 *dbg_redzone2(cachep, objp));
1da177e4
LT
1334 }
1335
1336 if (cachep->flags & SLAB_STORE_USER) {
1337 printk(KERN_ERR "Last user: [<%p>]",
b28a02de 1338 *dbg_userword(cachep, objp));
1da177e4 1339 print_symbol("(%s)",
b28a02de 1340 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1341 printk("\n");
1342 }
b28a02de 1343 realobj = (char *)objp + obj_dbghead(cachep);
1da177e4 1344 size = obj_reallen(cachep);
b28a02de 1345 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1346 int limit;
1347 limit = 16;
b28a02de
PE
1348 if (i + limit > size)
1349 limit = size - i;
1da177e4
LT
1350 dump_line(realobj, i, limit);
1351 }
1352}
1353
1354static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1355{
1356 char *realobj;
1357 int size, i;
1358 int lines = 0;
1359
b28a02de 1360 realobj = (char *)objp + obj_dbghead(cachep);
1da177e4
LT
1361 size = obj_reallen(cachep);
1362
b28a02de 1363 for (i = 0; i < size; i++) {
1da177e4 1364 char exp = POISON_FREE;
b28a02de 1365 if (i == size - 1)
1da177e4
LT
1366 exp = POISON_END;
1367 if (realobj[i] != exp) {
1368 int limit;
1369 /* Mismatch ! */
1370 /* Print header */
1371 if (lines == 0) {
b28a02de
PE
1372 printk(KERN_ERR
1373 "Slab corruption: start=%p, len=%d\n",
1374 realobj, size);
1da177e4
LT
1375 print_objinfo(cachep, objp, 0);
1376 }
1377 /* Hexdump the affected line */
b28a02de 1378 i = (i / 16) * 16;
1da177e4 1379 limit = 16;
b28a02de
PE
1380 if (i + limit > size)
1381 limit = size - i;
1da177e4
LT
1382 dump_line(realobj, i, limit);
1383 i += 16;
1384 lines++;
1385 /* Limit to 5 lines */
1386 if (lines > 5)
1387 break;
1388 }
1389 }
1390 if (lines != 0) {
1391 /* Print some data about the neighboring objects, if they
1392 * exist:
1393 */
065d41cb 1394 struct slab *slabp = page_get_slab(virt_to_page(objp));
1da177e4
LT
1395 int objnr;
1396
b28a02de 1397 objnr = (objp - slabp->s_mem) / cachep->objsize;
1da177e4 1398 if (objnr) {
b28a02de
PE
1399 objp = slabp->s_mem + (objnr - 1) * cachep->objsize;
1400 realobj = (char *)objp + obj_dbghead(cachep);
1da177e4 1401 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1402 realobj, size);
1da177e4
LT
1403 print_objinfo(cachep, objp, 2);
1404 }
b28a02de
PE
1405 if (objnr + 1 < cachep->num) {
1406 objp = slabp->s_mem + (objnr + 1) * cachep->objsize;
1407 realobj = (char *)objp + obj_dbghead(cachep);
1da177e4 1408 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1409 realobj, size);
1da177e4
LT
1410 print_objinfo(cachep, objp, 2);
1411 }
1412 }
1413}
1414#endif
1415
1416/* Destroy all the objs in a slab, and release the mem back to the system.
1417 * Before calling the slab must have been unlinked from the cache.
1418 * The cache-lock is not held/needed.
1419 */
b28a02de 1420static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp)
1da177e4
LT
1421{
1422 void *addr = slabp->s_mem - slabp->colouroff;
1423
1424#if DEBUG
1425 int i;
1426 for (i = 0; i < cachep->num; i++) {
1427 void *objp = slabp->s_mem + cachep->objsize * i;
1428
1429 if (cachep->flags & SLAB_POISON) {
1430#ifdef CONFIG_DEBUG_PAGEALLOC
b28a02de
PE
1431 if ((cachep->objsize % PAGE_SIZE) == 0
1432 && OFF_SLAB(cachep))
1433 kernel_map_pages(virt_to_page(objp),
1434 cachep->objsize / PAGE_SIZE,
1435 1);
1da177e4
LT
1436 else
1437 check_poison_obj(cachep, objp);
1438#else
1439 check_poison_obj(cachep, objp);
1440#endif
1441 }
1442 if (cachep->flags & SLAB_RED_ZONE) {
1443 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1444 slab_error(cachep, "start of a freed object "
b28a02de 1445 "was overwritten");
1da177e4
LT
1446 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1447 slab_error(cachep, "end of a freed object "
b28a02de 1448 "was overwritten");
1da177e4
LT
1449 }
1450 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
b28a02de 1451 (cachep->dtor) (objp + obj_dbghead(cachep), cachep, 0);
1da177e4
LT
1452 }
1453#else
1454 if (cachep->dtor) {
1455 int i;
1456 for (i = 0; i < cachep->num; i++) {
b28a02de
PE
1457 void *objp = slabp->s_mem + cachep->objsize * i;
1458 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1459 }
1460 }
1461#endif
1462
1463 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1464 struct slab_rcu *slab_rcu;
1465
b28a02de 1466 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1467 slab_rcu->cachep = cachep;
1468 slab_rcu->addr = addr;
1469 call_rcu(&slab_rcu->head, kmem_rcu_free);
1470 } else {
1471 kmem_freepages(cachep, addr);
1472 if (OFF_SLAB(cachep))
1473 kmem_cache_free(cachep->slabp_cache, slabp);
1474 }
1475}
1476
e498be7d
CL
1477/* For setting up all the kmem_list3s for cache whose objsize is same
1478 as size of kmem_list3. */
1479static inline void set_up_list3s(kmem_cache_t *cachep, int index)
1480{
1481 int node;
1482
1483 for_each_online_node(node) {
b28a02de 1484 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1485 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1486 REAPTIMEOUT_LIST3 +
1487 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1488 }
1489}
1490
4d268eba
PE
1491/**
1492 * calculate_slab_order - calculate size (page order) of slabs and the number
1493 * of objects per slab.
1494 *
1495 * This could be made much more intelligent. For now, try to avoid using
1496 * high order pages for slabs. When the gfp() functions are more friendly
1497 * towards high-order requests, this should be changed.
1498 */
1499static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size,
1500 size_t align, gfp_t flags)
1501{
1502 size_t left_over = 0;
1503
b28a02de 1504 for (;; cachep->gfporder++) {
4d268eba
PE
1505 unsigned int num;
1506 size_t remainder;
1507
1508 if (cachep->gfporder > MAX_GFP_ORDER) {
1509 cachep->num = 0;
1510 break;
1511 }
1512
1513 cache_estimate(cachep->gfporder, size, align, flags,
1514 &remainder, &num);
1515 if (!num)
1516 continue;
1517 /* More than offslab_limit objects will cause problems */
1518 if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
1519 break;
1520
1521 cachep->num = num;
1522 left_over = remainder;
1523
1524 /*
1525 * Large number of objects is good, but very large slabs are
1526 * currently bad for the gfp()s.
1527 */
1528 if (cachep->gfporder >= slab_break_gfp_order)
1529 break;
1530
1531 if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
1532 /* Acceptable internal fragmentation */
1533 break;
1534 }
1535 return left_over;
1536}
1537
1da177e4
LT
1538/**
1539 * kmem_cache_create - Create a cache.
1540 * @name: A string which is used in /proc/slabinfo to identify this cache.
1541 * @size: The size of objects to be created in this cache.
1542 * @align: The required alignment for the objects.
1543 * @flags: SLAB flags
1544 * @ctor: A constructor for the objects.
1545 * @dtor: A destructor for the objects.
1546 *
1547 * Returns a ptr to the cache on success, NULL on failure.
1548 * Cannot be called within a int, but can be interrupted.
1549 * The @ctor is run when new pages are allocated by the cache
1550 * and the @dtor is run before the pages are handed back.
1551 *
1552 * @name must be valid until the cache is destroyed. This implies that
1553 * the module calling this has to destroy the cache before getting
1554 * unloaded.
1555 *
1556 * The flags are
1557 *
1558 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1559 * to catch references to uninitialised memory.
1560 *
1561 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1562 * for buffer overruns.
1563 *
1564 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1565 * memory pressure.
1566 *
1567 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1568 * cacheline. This can be beneficial if you're counting cycles as closely
1569 * as davem.
1570 */
1571kmem_cache_t *
1572kmem_cache_create (const char *name, size_t size, size_t align,
1573 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1574 void (*dtor)(void*, kmem_cache_t *, unsigned long))
1575{
1576 size_t left_over, slab_size, ralign;
1577 kmem_cache_t *cachep = NULL;
4f12bb4f 1578 struct list_head *p;
1da177e4
LT
1579
1580 /*
1581 * Sanity checks... these are all serious usage bugs.
1582 */
1583 if ((!name) ||
b28a02de
PE
1584 in_interrupt() ||
1585 (size < BYTES_PER_WORD) ||
1586 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1587 printk(KERN_ERR "%s: Early error in slab %s\n",
1588 __FUNCTION__, name);
1589 BUG();
1590 }
1da177e4 1591
4f12bb4f
AM
1592 down(&cache_chain_sem);
1593
1594 list_for_each(p, &cache_chain) {
1595 kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1596 mm_segment_t old_fs = get_fs();
1597 char tmp;
1598 int res;
1599
1600 /*
1601 * This happens when the module gets unloaded and doesn't
1602 * destroy its slab cache and no-one else reuses the vmalloc
1603 * area of the module. Print a warning.
1604 */
1605 set_fs(KERNEL_DS);
1606 res = __get_user(tmp, pc->name);
1607 set_fs(old_fs);
1608 if (res) {
1609 printk("SLAB: cache with size %d has lost its name\n",
b28a02de 1610 pc->objsize);
4f12bb4f
AM
1611 continue;
1612 }
1613
b28a02de 1614 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
1615 printk("kmem_cache_create: duplicate cache %s\n", name);
1616 dump_stack();
1617 goto oops;
1618 }
1619 }
1620
1da177e4
LT
1621#if DEBUG
1622 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1623 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1624 /* No constructor, but inital state check requested */
1625 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 1626 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
1627 flags &= ~SLAB_DEBUG_INITIAL;
1628 }
1da177e4
LT
1629#if FORCED_DEBUG
1630 /*
1631 * Enable redzoning and last user accounting, except for caches with
1632 * large objects, if the increased size would increase the object size
1633 * above the next power of two: caches with object sizes just above a
1634 * power of two have a significant amount of internal fragmentation.
1635 */
b28a02de
PE
1636 if ((size < 4096
1637 || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1638 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
1639 if (!(flags & SLAB_DESTROY_BY_RCU))
1640 flags |= SLAB_POISON;
1641#endif
1642 if (flags & SLAB_DESTROY_BY_RCU)
1643 BUG_ON(flags & SLAB_POISON);
1644#endif
1645 if (flags & SLAB_DESTROY_BY_RCU)
1646 BUG_ON(dtor);
1647
1648 /*
1649 * Always checks flags, a caller might be expecting debug
1650 * support which isn't available.
1651 */
1652 if (flags & ~CREATE_MASK)
1653 BUG();
1654
1655 /* Check that size is in terms of words. This is needed to avoid
1656 * unaligned accesses for some archs when redzoning is used, and makes
1657 * sure any on-slab bufctl's are also correctly aligned.
1658 */
b28a02de
PE
1659 if (size & (BYTES_PER_WORD - 1)) {
1660 size += (BYTES_PER_WORD - 1);
1661 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
1662 }
1663
1664 /* calculate out the final buffer alignment: */
1665 /* 1) arch recommendation: can be overridden for debug */
1666 if (flags & SLAB_HWCACHE_ALIGN) {
1667 /* Default alignment: as specified by the arch code.
1668 * Except if an object is really small, then squeeze multiple
1669 * objects into one cacheline.
1670 */
1671 ralign = cache_line_size();
b28a02de 1672 while (size <= ralign / 2)
1da177e4
LT
1673 ralign /= 2;
1674 } else {
1675 ralign = BYTES_PER_WORD;
1676 }
1677 /* 2) arch mandated alignment: disables debug if necessary */
1678 if (ralign < ARCH_SLAB_MINALIGN) {
1679 ralign = ARCH_SLAB_MINALIGN;
1680 if (ralign > BYTES_PER_WORD)
b28a02de 1681 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
1682 }
1683 /* 3) caller mandated alignment: disables debug if necessary */
1684 if (ralign < align) {
1685 ralign = align;
1686 if (ralign > BYTES_PER_WORD)
b28a02de 1687 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
1688 }
1689 /* 4) Store it. Note that the debug code below can reduce
1690 * the alignment to BYTES_PER_WORD.
1691 */
1692 align = ralign;
1693
1694 /* Get cache's description obj. */
1695 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1696 if (!cachep)
4f12bb4f 1697 goto oops;
1da177e4
LT
1698 memset(cachep, 0, sizeof(kmem_cache_t));
1699
1700#if DEBUG
1701 cachep->reallen = size;
1702
1703 if (flags & SLAB_RED_ZONE) {
1704 /* redzoning only works with word aligned caches */
1705 align = BYTES_PER_WORD;
1706
1707 /* add space for red zone words */
1708 cachep->dbghead += BYTES_PER_WORD;
b28a02de 1709 size += 2 * BYTES_PER_WORD;
1da177e4
LT
1710 }
1711 if (flags & SLAB_STORE_USER) {
1712 /* user store requires word alignment and
1713 * one word storage behind the end of the real
1714 * object.
1715 */
1716 align = BYTES_PER_WORD;
1717 size += BYTES_PER_WORD;
1718 }
1719#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de
PE
1720 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1721 && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
1da177e4
LT
1722 cachep->dbghead += PAGE_SIZE - size;
1723 size = PAGE_SIZE;
1724 }
1725#endif
1726#endif
1727
1728 /* Determine if the slab management is 'on' or 'off' slab. */
b28a02de 1729 if (size >= (PAGE_SIZE >> 3))
1da177e4
LT
1730 /*
1731 * Size is large, assume best to place the slab management obj
1732 * off-slab (should allow better packing of objs).
1733 */
1734 flags |= CFLGS_OFF_SLAB;
1735
1736 size = ALIGN(size, align);
1737
1738 if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1739 /*
1740 * A VFS-reclaimable slab tends to have most allocations
1741 * as GFP_NOFS and we really don't want to have to be allocating
1742 * higher-order pages when we are unable to shrink dcache.
1743 */
1744 cachep->gfporder = 0;
1745 cache_estimate(cachep->gfporder, size, align, flags,
b28a02de 1746 &left_over, &cachep->num);
4d268eba
PE
1747 } else
1748 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
1749
1750 if (!cachep->num) {
1751 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1752 kmem_cache_free(&cache_cache, cachep);
1753 cachep = NULL;
4f12bb4f 1754 goto oops;
1da177e4 1755 }
b28a02de
PE
1756 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
1757 + sizeof(struct slab), align);
1da177e4
LT
1758
1759 /*
1760 * If the slab has been placed off-slab, and we have enough space then
1761 * move it on-slab. This is at the expense of any extra colouring.
1762 */
1763 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1764 flags &= ~CFLGS_OFF_SLAB;
1765 left_over -= slab_size;
1766 }
1767
1768 if (flags & CFLGS_OFF_SLAB) {
1769 /* really off slab. No need for manual alignment */
b28a02de
PE
1770 slab_size =
1771 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
1772 }
1773
1774 cachep->colour_off = cache_line_size();
1775 /* Offset must be a multiple of the alignment. */
1776 if (cachep->colour_off < align)
1777 cachep->colour_off = align;
b28a02de 1778 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
1779 cachep->slab_size = slab_size;
1780 cachep->flags = flags;
1781 cachep->gfpflags = 0;
1782 if (flags & SLAB_CACHE_DMA)
1783 cachep->gfpflags |= GFP_DMA;
1784 spin_lock_init(&cachep->spinlock);
1785 cachep->objsize = size;
1da177e4
LT
1786
1787 if (flags & CFLGS_OFF_SLAB)
b2d55073 1788 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
1789 cachep->ctor = ctor;
1790 cachep->dtor = dtor;
1791 cachep->name = name;
1792
1793 /* Don't let CPUs to come and go */
1794 lock_cpu_hotplug();
1795
1796 if (g_cpucache_up == FULL) {
1797 enable_cpucache(cachep);
1798 } else {
1799 if (g_cpucache_up == NONE) {
1800 /* Note: the first kmem_cache_create must create
1801 * the cache that's used by kmalloc(24), otherwise
1802 * the creation of further caches will BUG().
1803 */
e498be7d 1804 cachep->array[smp_processor_id()] =
b28a02de 1805 &initarray_generic.cache;
e498be7d
CL
1806
1807 /* If the cache that's used by
1808 * kmalloc(sizeof(kmem_list3)) is the first cache,
1809 * then we need to set up all its list3s, otherwise
1810 * the creation of further caches will BUG().
1811 */
1812 set_up_list3s(cachep, SIZE_AC);
1813 if (INDEX_AC == INDEX_L3)
1814 g_cpucache_up = PARTIAL_L3;
1815 else
1816 g_cpucache_up = PARTIAL_AC;
1da177e4 1817 } else {
e498be7d 1818 cachep->array[smp_processor_id()] =
b28a02de 1819 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d
CL
1820
1821 if (g_cpucache_up == PARTIAL_AC) {
1822 set_up_list3s(cachep, SIZE_L3);
1823 g_cpucache_up = PARTIAL_L3;
1824 } else {
1825 int node;
1826 for_each_online_node(node) {
1827
1828 cachep->nodelists[node] =
b28a02de
PE
1829 kmalloc_node(sizeof
1830 (struct kmem_list3),
1831 GFP_KERNEL, node);
e498be7d 1832 BUG_ON(!cachep->nodelists[node]);
b28a02de
PE
1833 kmem_list3_init(cachep->
1834 nodelists[node]);
e498be7d
CL
1835 }
1836 }
1da177e4 1837 }
e498be7d 1838 cachep->nodelists[numa_node_id()]->next_reap =
b28a02de
PE
1839 jiffies + REAPTIMEOUT_LIST3 +
1840 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1841
1da177e4
LT
1842 BUG_ON(!ac_data(cachep));
1843 ac_data(cachep)->avail = 0;
1844 ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1845 ac_data(cachep)->batchcount = 1;
1846 ac_data(cachep)->touched = 0;
1847 cachep->batchcount = 1;
1848 cachep->limit = BOOT_CPUCACHE_ENTRIES;
b28a02de 1849 }
1da177e4 1850
1da177e4
LT
1851 /* cache setup completed, link it into the list */
1852 list_add(&cachep->next, &cache_chain);
1da177e4 1853 unlock_cpu_hotplug();
b28a02de 1854 oops:
1da177e4
LT
1855 if (!cachep && (flags & SLAB_PANIC))
1856 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 1857 name);
4f12bb4f 1858 up(&cache_chain_sem);
1da177e4
LT
1859 return cachep;
1860}
1861EXPORT_SYMBOL(kmem_cache_create);
1862
1863#if DEBUG
1864static void check_irq_off(void)
1865{
1866 BUG_ON(!irqs_disabled());
1867}
1868
1869static void check_irq_on(void)
1870{
1871 BUG_ON(irqs_disabled());
1872}
1873
1874static void check_spinlock_acquired(kmem_cache_t *cachep)
1875{
1876#ifdef CONFIG_SMP
1877 check_irq_off();
e498be7d 1878 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
1879#endif
1880}
e498be7d
CL
1881
1882static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
1883{
1884#ifdef CONFIG_SMP
1885 check_irq_off();
1886 assert_spin_locked(&cachep->nodelists[node]->list_lock);
1887#endif
1888}
1889
1da177e4
LT
1890#else
1891#define check_irq_off() do { } while(0)
1892#define check_irq_on() do { } while(0)
1893#define check_spinlock_acquired(x) do { } while(0)
e498be7d 1894#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
1895#endif
1896
1897/*
1898 * Waits for all CPUs to execute func().
1899 */
b28a02de 1900static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
1da177e4
LT
1901{
1902 check_irq_on();
1903 preempt_disable();
1904
1905 local_irq_disable();
1906 func(arg);
1907 local_irq_enable();
1908
1909 if (smp_call_function(func, arg, 1, 1))
1910 BUG();
1911
1912 preempt_enable();
1913}
1914
b28a02de
PE
1915static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
1916 int force, int node);
1da177e4
LT
1917
1918static void do_drain(void *arg)
1919{
b28a02de 1920 kmem_cache_t *cachep = (kmem_cache_t *) arg;
1da177e4 1921 struct array_cache *ac;
ff69416e 1922 int node = numa_node_id();
1da177e4
LT
1923
1924 check_irq_off();
1925 ac = ac_data(cachep);
ff69416e
CL
1926 spin_lock(&cachep->nodelists[node]->list_lock);
1927 free_block(cachep, ac->entry, ac->avail, node);
1928 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
1929 ac->avail = 0;
1930}
1931
1932static void drain_cpu_caches(kmem_cache_t *cachep)
1933{
e498be7d
CL
1934 struct kmem_list3 *l3;
1935 int node;
1936
1da177e4
LT
1937 smp_call_function_all_cpus(do_drain, cachep);
1938 check_irq_on();
1939 spin_lock_irq(&cachep->spinlock);
b28a02de 1940 for_each_online_node(node) {
e498be7d
CL
1941 l3 = cachep->nodelists[node];
1942 if (l3) {
1943 spin_lock(&l3->list_lock);
1944 drain_array_locked(cachep, l3->shared, 1, node);
1945 spin_unlock(&l3->list_lock);
1946 if (l3->alien)
1947 drain_alien_cache(cachep, l3);
1948 }
1949 }
1da177e4
LT
1950 spin_unlock_irq(&cachep->spinlock);
1951}
1952
e498be7d 1953static int __node_shrink(kmem_cache_t *cachep, int node)
1da177e4
LT
1954{
1955 struct slab *slabp;
e498be7d 1956 struct kmem_list3 *l3 = cachep->nodelists[node];
1da177e4
LT
1957 int ret;
1958
e498be7d 1959 for (;;) {
1da177e4
LT
1960 struct list_head *p;
1961
e498be7d
CL
1962 p = l3->slabs_free.prev;
1963 if (p == &l3->slabs_free)
1da177e4
LT
1964 break;
1965
e498be7d 1966 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1da177e4
LT
1967#if DEBUG
1968 if (slabp->inuse)
1969 BUG();
1970#endif
1971 list_del(&slabp->list);
1972
e498be7d
CL
1973 l3->free_objects -= cachep->num;
1974 spin_unlock_irq(&l3->list_lock);
1da177e4 1975 slab_destroy(cachep, slabp);
e498be7d 1976 spin_lock_irq(&l3->list_lock);
1da177e4 1977 }
b28a02de 1978 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
1da177e4
LT
1979 return ret;
1980}
1981
e498be7d
CL
1982static int __cache_shrink(kmem_cache_t *cachep)
1983{
1984 int ret = 0, i = 0;
1985 struct kmem_list3 *l3;
1986
1987 drain_cpu_caches(cachep);
1988
1989 check_irq_on();
1990 for_each_online_node(i) {
1991 l3 = cachep->nodelists[i];
1992 if (l3) {
1993 spin_lock_irq(&l3->list_lock);
1994 ret += __node_shrink(cachep, i);
1995 spin_unlock_irq(&l3->list_lock);
1996 }
1997 }
1998 return (ret ? 1 : 0);
1999}
2000
1da177e4
LT
2001/**
2002 * kmem_cache_shrink - Shrink a cache.
2003 * @cachep: The cache to shrink.
2004 *
2005 * Releases as many slabs as possible for a cache.
2006 * To help debugging, a zero exit status indicates all slabs were released.
2007 */
2008int kmem_cache_shrink(kmem_cache_t *cachep)
2009{
2010 if (!cachep || in_interrupt())
2011 BUG();
2012
2013 return __cache_shrink(cachep);
2014}
2015EXPORT_SYMBOL(kmem_cache_shrink);
2016
2017/**
2018 * kmem_cache_destroy - delete a cache
2019 * @cachep: the cache to destroy
2020 *
2021 * Remove a kmem_cache_t object from the slab cache.
2022 * Returns 0 on success.
2023 *
2024 * It is expected this function will be called by a module when it is
2025 * unloaded. This will remove the cache completely, and avoid a duplicate
2026 * cache being allocated each time a module is loaded and unloaded, if the
2027 * module doesn't have persistent in-kernel storage across loads and unloads.
2028 *
2029 * The cache must be empty before calling this function.
2030 *
2031 * The caller must guarantee that noone will allocate memory from the cache
2032 * during the kmem_cache_destroy().
2033 */
b28a02de 2034int kmem_cache_destroy(kmem_cache_t *cachep)
1da177e4
LT
2035{
2036 int i;
e498be7d 2037 struct kmem_list3 *l3;
1da177e4
LT
2038
2039 if (!cachep || in_interrupt())
2040 BUG();
2041
2042 /* Don't let CPUs to come and go */
2043 lock_cpu_hotplug();
2044
2045 /* Find the cache in the chain of caches. */
2046 down(&cache_chain_sem);
2047 /*
2048 * the chain is never empty, cache_cache is never destroyed
2049 */
2050 list_del(&cachep->next);
2051 up(&cache_chain_sem);
2052
2053 if (__cache_shrink(cachep)) {
2054 slab_error(cachep, "Can't free all objects");
2055 down(&cache_chain_sem);
b28a02de 2056 list_add(&cachep->next, &cache_chain);
1da177e4
LT
2057 up(&cache_chain_sem);
2058 unlock_cpu_hotplug();
2059 return 1;
2060 }
2061
2062 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2063 synchronize_rcu();
1da177e4 2064
e498be7d 2065 for_each_online_cpu(i)
b28a02de 2066 kfree(cachep->array[i]);
1da177e4
LT
2067
2068 /* NUMA: free the list3 structures */
e498be7d
CL
2069 for_each_online_node(i) {
2070 if ((l3 = cachep->nodelists[i])) {
2071 kfree(l3->shared);
2072 free_alien_cache(l3->alien);
2073 kfree(l3);
2074 }
2075 }
1da177e4
LT
2076 kmem_cache_free(&cache_cache, cachep);
2077
2078 unlock_cpu_hotplug();
2079
2080 return 0;
2081}
2082EXPORT_SYMBOL(kmem_cache_destroy);
2083
2084/* Get the memory for a slab management obj. */
b28a02de
PE
2085static struct slab *alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
2086 int colour_off, gfp_t local_flags)
1da177e4
LT
2087{
2088 struct slab *slabp;
b28a02de 2089
1da177e4
LT
2090 if (OFF_SLAB(cachep)) {
2091 /* Slab management obj is off-slab. */
2092 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2093 if (!slabp)
2094 return NULL;
2095 } else {
b28a02de 2096 slabp = objp + colour_off;
1da177e4
LT
2097 colour_off += cachep->slab_size;
2098 }
2099 slabp->inuse = 0;
2100 slabp->colouroff = colour_off;
b28a02de 2101 slabp->s_mem = objp + colour_off;
1da177e4
LT
2102
2103 return slabp;
2104}
2105
2106static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2107{
b28a02de 2108 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2109}
2110
2111static void cache_init_objs(kmem_cache_t *cachep,
b28a02de 2112 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2113{
2114 int i;
2115
2116 for (i = 0; i < cachep->num; i++) {
b28a02de 2117 void *objp = slabp->s_mem + cachep->objsize * i;
1da177e4
LT
2118#if DEBUG
2119 /* need to poison the objs? */
2120 if (cachep->flags & SLAB_POISON)
2121 poison_obj(cachep, objp, POISON_FREE);
2122 if (cachep->flags & SLAB_STORE_USER)
2123 *dbg_userword(cachep, objp) = NULL;
2124
2125 if (cachep->flags & SLAB_RED_ZONE) {
2126 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2127 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2128 }
2129 /*
2130 * Constructors are not allowed to allocate memory from
2131 * the same cache which they are a constructor for.
2132 * Otherwise, deadlock. They must also be threaded.
2133 */
2134 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
b28a02de
PE
2135 cachep->ctor(objp + obj_dbghead(cachep), cachep,
2136 ctor_flags);
1da177e4
LT
2137
2138 if (cachep->flags & SLAB_RED_ZONE) {
2139 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2140 slab_error(cachep, "constructor overwrote the"
b28a02de 2141 " end of an object");
1da177e4
LT
2142 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2143 slab_error(cachep, "constructor overwrote the"
b28a02de 2144 " start of an object");
1da177e4 2145 }
b28a02de
PE
2146 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
2147 && cachep->flags & SLAB_POISON)
2148 kernel_map_pages(virt_to_page(objp),
2149 cachep->objsize / PAGE_SIZE, 0);
1da177e4
LT
2150#else
2151 if (cachep->ctor)
2152 cachep->ctor(objp, cachep, ctor_flags);
2153#endif
b28a02de 2154 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2155 }
b28a02de 2156 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2157 slabp->free = 0;
2158}
2159
6daa0e28 2160static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2161{
2162 if (flags & SLAB_DMA) {
2163 if (!(cachep->gfpflags & GFP_DMA))
2164 BUG();
2165 } else {
2166 if (cachep->gfpflags & GFP_DMA)
2167 BUG();
2168 }
2169}
2170
2171static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2172{
2173 int i;
2174 struct page *page;
2175
2176 /* Nasty!!!!!! I hope this is OK. */
2177 i = 1 << cachep->gfporder;
2178 page = virt_to_page(objp);
2179 do {
065d41cb
PE
2180 page_set_cache(page, cachep);
2181 page_set_slab(page, slabp);
1da177e4
LT
2182 page++;
2183 } while (--i);
2184}
2185
2186/*
2187 * Grow (by 1) the number of slabs within a cache. This is called by
2188 * kmem_cache_alloc() when there are no active objs left in a cache.
2189 */
dd0fc66f 2190static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1da177e4 2191{
b28a02de
PE
2192 struct slab *slabp;
2193 void *objp;
2194 size_t offset;
2195 gfp_t local_flags;
2196 unsigned long ctor_flags;
e498be7d 2197 struct kmem_list3 *l3;
1da177e4
LT
2198
2199 /* Be lazy and only check for valid flags here,
b28a02de 2200 * keeping it out of the critical path in kmem_cache_alloc().
1da177e4 2201 */
b28a02de 2202 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
1da177e4
LT
2203 BUG();
2204 if (flags & SLAB_NO_GROW)
2205 return 0;
2206
2207 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2208 local_flags = (flags & SLAB_LEVEL_MASK);
2209 if (!(local_flags & __GFP_WAIT))
2210 /*
2211 * Not allowed to sleep. Need to tell a constructor about
2212 * this - it might need to know...
2213 */
2214 ctor_flags |= SLAB_CTOR_ATOMIC;
2215
2216 /* About to mess with non-constant members - lock. */
2217 check_irq_off();
2218 spin_lock(&cachep->spinlock);
2219
2220 /* Get colour for the slab, and cal the next value. */
2221 offset = cachep->colour_next;
2222 cachep->colour_next++;
2223 if (cachep->colour_next >= cachep->colour)
2224 cachep->colour_next = 0;
2225 offset *= cachep->colour_off;
2226
2227 spin_unlock(&cachep->spinlock);
2228
e498be7d 2229 check_irq_off();
1da177e4
LT
2230 if (local_flags & __GFP_WAIT)
2231 local_irq_enable();
2232
2233 /*
2234 * The test for missing atomic flag is performed here, rather than
2235 * the more obvious place, simply to reduce the critical path length
2236 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2237 * will eventually be caught here (where it matters).
2238 */
2239 kmem_flagcheck(cachep, flags);
2240
e498be7d
CL
2241 /* Get mem for the objs.
2242 * Attempt to allocate a physical page from 'nodeid',
2243 */
1da177e4
LT
2244 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2245 goto failed;
2246
2247 /* Get slab management. */
2248 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2249 goto opps1;
2250
e498be7d 2251 slabp->nodeid = nodeid;
1da177e4
LT
2252 set_slab_attr(cachep, slabp, objp);
2253
2254 cache_init_objs(cachep, slabp, ctor_flags);
2255
2256 if (local_flags & __GFP_WAIT)
2257 local_irq_disable();
2258 check_irq_off();
e498be7d
CL
2259 l3 = cachep->nodelists[nodeid];
2260 spin_lock(&l3->list_lock);
1da177e4
LT
2261
2262 /* Make slab active. */
e498be7d 2263 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2264 STATS_INC_GROWN(cachep);
e498be7d
CL
2265 l3->free_objects += cachep->num;
2266 spin_unlock(&l3->list_lock);
1da177e4 2267 return 1;
b28a02de 2268 opps1:
1da177e4 2269 kmem_freepages(cachep, objp);
b28a02de 2270 failed:
1da177e4
LT
2271 if (local_flags & __GFP_WAIT)
2272 local_irq_disable();
2273 return 0;
2274}
2275
2276#if DEBUG
2277
2278/*
2279 * Perform extra freeing checks:
2280 * - detect bad pointers.
2281 * - POISON/RED_ZONE checking
2282 * - destructor calls, for caches with POISON+dtor
2283 */
2284static void kfree_debugcheck(const void *objp)
2285{
2286 struct page *page;
2287
2288 if (!virt_addr_valid(objp)) {
2289 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2290 (unsigned long)objp);
2291 BUG();
1da177e4
LT
2292 }
2293 page = virt_to_page(objp);
2294 if (!PageSlab(page)) {
b28a02de
PE
2295 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2296 (unsigned long)objp);
1da177e4
LT
2297 BUG();
2298 }
2299}
2300
2301static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
b28a02de 2302 void *caller)
1da177e4
LT
2303{
2304 struct page *page;
2305 unsigned int objnr;
2306 struct slab *slabp;
2307
2308 objp -= obj_dbghead(cachep);
2309 kfree_debugcheck(objp);
2310 page = virt_to_page(objp);
2311
065d41cb 2312 if (page_get_cache(page) != cachep) {
b28a02de
PE
2313 printk(KERN_ERR
2314 "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2315 page_get_cache(page), cachep);
1da177e4 2316 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
b28a02de
PE
2317 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2318 page_get_cache(page)->name);
1da177e4
LT
2319 WARN_ON(1);
2320 }
065d41cb 2321 slabp = page_get_slab(page);
1da177e4
LT
2322
2323 if (cachep->flags & SLAB_RED_ZONE) {
b28a02de
PE
2324 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
2325 || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2326 slab_error(cachep,
2327 "double free, or memory outside"
2328 " object was overwritten");
2329 printk(KERN_ERR
2330 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2331 objp, *dbg_redzone1(cachep, objp),
2332 *dbg_redzone2(cachep, objp));
1da177e4
LT
2333 }
2334 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2335 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2336 }
2337 if (cachep->flags & SLAB_STORE_USER)
2338 *dbg_userword(cachep, objp) = caller;
2339
b28a02de 2340 objnr = (objp - slabp->s_mem) / cachep->objsize;
1da177e4
LT
2341
2342 BUG_ON(objnr >= cachep->num);
b28a02de 2343 BUG_ON(objp != slabp->s_mem + objnr * cachep->objsize);
1da177e4
LT
2344
2345 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2346 /* Need to call the slab's constructor so the
2347 * caller can perform a verify of its state (debugging).
2348 * Called without the cache-lock held.
2349 */
b28a02de
PE
2350 cachep->ctor(objp + obj_dbghead(cachep),
2351 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2352 }
2353 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2354 /* we want to cache poison the object,
2355 * call the destruction callback
2356 */
b28a02de 2357 cachep->dtor(objp + obj_dbghead(cachep), cachep, 0);
1da177e4
LT
2358 }
2359 if (cachep->flags & SLAB_POISON) {
2360#ifdef CONFIG_DEBUG_PAGEALLOC
2361 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2362 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de
PE
2363 kernel_map_pages(virt_to_page(objp),
2364 cachep->objsize / PAGE_SIZE, 0);
1da177e4
LT
2365 } else {
2366 poison_obj(cachep, objp, POISON_FREE);
2367 }
2368#else
2369 poison_obj(cachep, objp, POISON_FREE);
2370#endif
2371 }
2372 return objp;
2373}
2374
2375static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2376{
2377 kmem_bufctl_t i;
2378 int entries = 0;
b28a02de 2379
1da177e4
LT
2380 /* Check slab's freelist to see if this obj is there. */
2381 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2382 entries++;
2383 if (entries > cachep->num || i >= cachep->num)
2384 goto bad;
2385 }
2386 if (entries != cachep->num - slabp->inuse) {
b28a02de
PE
2387 bad:
2388 printk(KERN_ERR
2389 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2390 cachep->name, cachep->num, slabp, slabp->inuse);
2391 for (i = 0;
2392 i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
2393 i++) {
2394 if ((i % 16) == 0)
1da177e4 2395 printk("\n%03x:", i);
b28a02de 2396 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2397 }
2398 printk("\n");
2399 BUG();
2400 }
2401}
2402#else
2403#define kfree_debugcheck(x) do { } while(0)
2404#define cache_free_debugcheck(x,objp,z) (objp)
2405#define check_slabp(x,y) do { } while(0)
2406#endif
2407
dd0fc66f 2408static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2409{
2410 int batchcount;
2411 struct kmem_list3 *l3;
2412 struct array_cache *ac;
2413
2414 check_irq_off();
2415 ac = ac_data(cachep);
b28a02de 2416 retry:
1da177e4
LT
2417 batchcount = ac->batchcount;
2418 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2419 /* if there was little recent activity on this
2420 * cache, then perform only a partial refill.
2421 * Otherwise we could generate refill bouncing.
2422 */
2423 batchcount = BATCHREFILL_LIMIT;
2424 }
e498be7d
CL
2425 l3 = cachep->nodelists[numa_node_id()];
2426
2427 BUG_ON(ac->avail > 0 || !l3);
2428 spin_lock(&l3->list_lock);
1da177e4 2429
1da177e4
LT
2430 if (l3->shared) {
2431 struct array_cache *shared_array = l3->shared;
2432 if (shared_array->avail) {
2433 if (batchcount > shared_array->avail)
2434 batchcount = shared_array->avail;
2435 shared_array->avail -= batchcount;
2436 ac->avail = batchcount;
e498be7d 2437 memcpy(ac->entry,
b28a02de
PE
2438 &(shared_array->entry[shared_array->avail]),
2439 sizeof(void *) * batchcount);
1da177e4
LT
2440 shared_array->touched = 1;
2441 goto alloc_done;
2442 }
2443 }
2444 while (batchcount > 0) {
2445 struct list_head *entry;
2446 struct slab *slabp;
2447 /* Get slab alloc is to come from. */
2448 entry = l3->slabs_partial.next;
2449 if (entry == &l3->slabs_partial) {
2450 l3->free_touched = 1;
2451 entry = l3->slabs_free.next;
2452 if (entry == &l3->slabs_free)
2453 goto must_grow;
2454 }
2455
2456 slabp = list_entry(entry, struct slab, list);
2457 check_slabp(cachep, slabp);
2458 check_spinlock_acquired(cachep);
2459 while (slabp->inuse < cachep->num && batchcount--) {
2460 kmem_bufctl_t next;
2461 STATS_INC_ALLOCED(cachep);
2462 STATS_INC_ACTIVE(cachep);
2463 STATS_SET_HIGH(cachep);
2464
2465 /* get obj pointer */
e498be7d 2466 ac->entry[ac->avail++] = slabp->s_mem +
b28a02de 2467 slabp->free * cachep->objsize;
1da177e4
LT
2468
2469 slabp->inuse++;
2470 next = slab_bufctl(slabp)[slabp->free];
2471#if DEBUG
2472 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
09ad4bbc 2473 WARN_ON(numa_node_id() != slabp->nodeid);
1da177e4 2474#endif
b28a02de 2475 slabp->free = next;
1da177e4
LT
2476 }
2477 check_slabp(cachep, slabp);
2478
2479 /* move slabp to correct slabp list: */
2480 list_del(&slabp->list);
2481 if (slabp->free == BUFCTL_END)
2482 list_add(&slabp->list, &l3->slabs_full);
2483 else
2484 list_add(&slabp->list, &l3->slabs_partial);
2485 }
2486
b28a02de 2487 must_grow:
1da177e4 2488 l3->free_objects -= ac->avail;
b28a02de 2489 alloc_done:
e498be7d 2490 spin_unlock(&l3->list_lock);
1da177e4
LT
2491
2492 if (unlikely(!ac->avail)) {
2493 int x;
e498be7d
CL
2494 x = cache_grow(cachep, flags, numa_node_id());
2495
1da177e4
LT
2496 // cache_grow can reenable interrupts, then ac could change.
2497 ac = ac_data(cachep);
2498 if (!x && ac->avail == 0) // no objects in sight? abort
2499 return NULL;
2500
b28a02de 2501 if (!ac->avail) // objects refilled by interrupt?
1da177e4
LT
2502 goto retry;
2503 }
2504 ac->touched = 1;
e498be7d 2505 return ac->entry[--ac->avail];
1da177e4
LT
2506}
2507
2508static inline void
dd0fc66f 2509cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2510{
2511 might_sleep_if(flags & __GFP_WAIT);
2512#if DEBUG
2513 kmem_flagcheck(cachep, flags);
2514#endif
2515}
2516
2517#if DEBUG
b28a02de
PE
2518static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags,
2519 void *objp, void *caller)
1da177e4 2520{
b28a02de 2521 if (!objp)
1da177e4 2522 return objp;
b28a02de 2523 if (cachep->flags & SLAB_POISON) {
1da177e4
LT
2524#ifdef CONFIG_DEBUG_PAGEALLOC
2525 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de
PE
2526 kernel_map_pages(virt_to_page(objp),
2527 cachep->objsize / PAGE_SIZE, 1);
1da177e4
LT
2528 else
2529 check_poison_obj(cachep, objp);
2530#else
2531 check_poison_obj(cachep, objp);
2532#endif
2533 poison_obj(cachep, objp, POISON_INUSE);
2534 }
2535 if (cachep->flags & SLAB_STORE_USER)
2536 *dbg_userword(cachep, objp) = caller;
2537
2538 if (cachep->flags & SLAB_RED_ZONE) {
b28a02de
PE
2539 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
2540 || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2541 slab_error(cachep,
2542 "double free, or memory outside"
2543 " object was overwritten");
2544 printk(KERN_ERR
2545 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2546 objp, *dbg_redzone1(cachep, objp),
2547 *dbg_redzone2(cachep, objp));
1da177e4
LT
2548 }
2549 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2550 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2551 }
2552 objp += obj_dbghead(cachep);
2553 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2554 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2555
2556 if (!(flags & __GFP_WAIT))
2557 ctor_flags |= SLAB_CTOR_ATOMIC;
2558
2559 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2560 }
1da177e4
LT
2561 return objp;
2562}
2563#else
2564#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2565#endif
2566
dd0fc66f 2567static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
1da177e4 2568{
b28a02de 2569 void *objp;
1da177e4
LT
2570 struct array_cache *ac;
2571
5c382300 2572 check_irq_off();
1da177e4
LT
2573 ac = ac_data(cachep);
2574 if (likely(ac->avail)) {
2575 STATS_INC_ALLOCHIT(cachep);
2576 ac->touched = 1;
e498be7d 2577 objp = ac->entry[--ac->avail];
1da177e4
LT
2578 } else {
2579 STATS_INC_ALLOCMISS(cachep);
2580 objp = cache_alloc_refill(cachep, flags);
2581 }
5c382300
AK
2582 return objp;
2583}
2584
dd0fc66f 2585static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
5c382300
AK
2586{
2587 unsigned long save_flags;
b28a02de 2588 void *objp;
5c382300
AK
2589
2590 cache_alloc_debugcheck_before(cachep, flags);
2591
2592 local_irq_save(save_flags);
2593 objp = ____cache_alloc(cachep, flags);
1da177e4 2594 local_irq_restore(save_flags);
34342e86 2595 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
b28a02de 2596 __builtin_return_address(0));
34342e86 2597 prefetchw(objp);
1da177e4
LT
2598 return objp;
2599}
2600
e498be7d
CL
2601#ifdef CONFIG_NUMA
2602/*
2603 * A interface to enable slab creation on nodeid
1da177e4 2604 */
6daa0e28 2605static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
e498be7d
CL
2606{
2607 struct list_head *entry;
b28a02de
PE
2608 struct slab *slabp;
2609 struct kmem_list3 *l3;
2610 void *obj;
2611 kmem_bufctl_t next;
2612 int x;
2613
2614 l3 = cachep->nodelists[nodeid];
2615 BUG_ON(!l3);
2616
2617 retry:
2618 spin_lock(&l3->list_lock);
2619 entry = l3->slabs_partial.next;
2620 if (entry == &l3->slabs_partial) {
2621 l3->free_touched = 1;
2622 entry = l3->slabs_free.next;
2623 if (entry == &l3->slabs_free)
2624 goto must_grow;
2625 }
2626
2627 slabp = list_entry(entry, struct slab, list);
2628 check_spinlock_acquired_node(cachep, nodeid);
2629 check_slabp(cachep, slabp);
2630
2631 STATS_INC_NODEALLOCS(cachep);
2632 STATS_INC_ACTIVE(cachep);
2633 STATS_SET_HIGH(cachep);
2634
2635 BUG_ON(slabp->inuse == cachep->num);
2636
2637 /* get obj pointer */
2638 obj = slabp->s_mem + slabp->free * cachep->objsize;
2639 slabp->inuse++;
2640 next = slab_bufctl(slabp)[slabp->free];
e498be7d 2641#if DEBUG
b28a02de 2642 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
e498be7d 2643#endif
b28a02de
PE
2644 slabp->free = next;
2645 check_slabp(cachep, slabp);
2646 l3->free_objects--;
2647 /* move slabp to correct slabp list: */
2648 list_del(&slabp->list);
2649
2650 if (slabp->free == BUFCTL_END) {
2651 list_add(&slabp->list, &l3->slabs_full);
2652 } else {
2653 list_add(&slabp->list, &l3->slabs_partial);
2654 }
e498be7d 2655
b28a02de
PE
2656 spin_unlock(&l3->list_lock);
2657 goto done;
e498be7d 2658
b28a02de
PE
2659 must_grow:
2660 spin_unlock(&l3->list_lock);
2661 x = cache_grow(cachep, flags, nodeid);
1da177e4 2662
b28a02de
PE
2663 if (!x)
2664 return NULL;
e498be7d 2665
b28a02de
PE
2666 goto retry;
2667 done:
2668 return obj;
e498be7d
CL
2669}
2670#endif
2671
2672/*
2673 * Caller needs to acquire correct kmem_list's list_lock
2674 */
b28a02de
PE
2675static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects,
2676 int node)
1da177e4
LT
2677{
2678 int i;
e498be7d 2679 struct kmem_list3 *l3;
1da177e4
LT
2680
2681 for (i = 0; i < nr_objects; i++) {
2682 void *objp = objpp[i];
2683 struct slab *slabp;
2684 unsigned int objnr;
2685
065d41cb 2686 slabp = page_get_slab(virt_to_page(objp));
ff69416e 2687 l3 = cachep->nodelists[node];
1da177e4
LT
2688 list_del(&slabp->list);
2689 objnr = (objp - slabp->s_mem) / cachep->objsize;
ff69416e 2690 check_spinlock_acquired_node(cachep, node);
1da177e4 2691 check_slabp(cachep, slabp);
e498be7d 2692
1da177e4 2693#if DEBUG
09ad4bbc
CL
2694 /* Verify that the slab belongs to the intended node */
2695 WARN_ON(slabp->nodeid != node);
2696
1da177e4 2697 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
e498be7d 2698 printk(KERN_ERR "slab: double free detected in cache "
b28a02de 2699 "'%s', objp %p\n", cachep->name, objp);
1da177e4
LT
2700 BUG();
2701 }
2702#endif
2703 slab_bufctl(slabp)[objnr] = slabp->free;
2704 slabp->free = objnr;
2705 STATS_DEC_ACTIVE(cachep);
2706 slabp->inuse--;
e498be7d 2707 l3->free_objects++;
1da177e4
LT
2708 check_slabp(cachep, slabp);
2709
2710 /* fixup slab chains */
2711 if (slabp->inuse == 0) {
e498be7d
CL
2712 if (l3->free_objects > l3->free_limit) {
2713 l3->free_objects -= cachep->num;
1da177e4
LT
2714 slab_destroy(cachep, slabp);
2715 } else {
e498be7d 2716 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
2717 }
2718 } else {
2719 /* Unconditionally move a slab to the end of the
2720 * partial list on free - maximum time for the
2721 * other objects to be freed, too.
2722 */
e498be7d 2723 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
2724 }
2725 }
2726}
2727
2728static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2729{
2730 int batchcount;
e498be7d 2731 struct kmem_list3 *l3;
ff69416e 2732 int node = numa_node_id();
1da177e4
LT
2733
2734 batchcount = ac->batchcount;
2735#if DEBUG
2736 BUG_ON(!batchcount || batchcount > ac->avail);
2737#endif
2738 check_irq_off();
ff69416e 2739 l3 = cachep->nodelists[node];
e498be7d
CL
2740 spin_lock(&l3->list_lock);
2741 if (l3->shared) {
2742 struct array_cache *shared_array = l3->shared;
b28a02de 2743 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
2744 if (max) {
2745 if (batchcount > max)
2746 batchcount = max;
e498be7d 2747 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 2748 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
2749 shared_array->avail += batchcount;
2750 goto free_done;
2751 }
2752 }
2753
ff69416e 2754 free_block(cachep, ac->entry, batchcount, node);
b28a02de 2755 free_done:
1da177e4
LT
2756#if STATS
2757 {
2758 int i = 0;
2759 struct list_head *p;
2760
e498be7d
CL
2761 p = l3->slabs_free.next;
2762 while (p != &(l3->slabs_free)) {
1da177e4
LT
2763 struct slab *slabp;
2764
2765 slabp = list_entry(p, struct slab, list);
2766 BUG_ON(slabp->inuse);
2767
2768 i++;
2769 p = p->next;
2770 }
2771 STATS_SET_FREEABLE(cachep, i);
2772 }
2773#endif
e498be7d 2774 spin_unlock(&l3->list_lock);
1da177e4 2775 ac->avail -= batchcount;
e498be7d 2776 memmove(ac->entry, &(ac->entry[batchcount]),
b28a02de 2777 sizeof(void *) * ac->avail);
1da177e4
LT
2778}
2779
2780/*
2781 * __cache_free
2782 * Release an obj back to its cache. If the obj has a constructed
2783 * state, it must be in this state _before_ it is released.
2784 *
2785 * Called with disabled ints.
2786 */
2787static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2788{
2789 struct array_cache *ac = ac_data(cachep);
2790
2791 check_irq_off();
2792 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2793
e498be7d
CL
2794 /* Make sure we are not freeing a object from another
2795 * node to the array cache on this cpu.
2796 */
2797#ifdef CONFIG_NUMA
2798 {
2799 struct slab *slabp;
065d41cb 2800 slabp = page_get_slab(virt_to_page(objp));
e498be7d
CL
2801 if (unlikely(slabp->nodeid != numa_node_id())) {
2802 struct array_cache *alien = NULL;
2803 int nodeid = slabp->nodeid;
b28a02de
PE
2804 struct kmem_list3 *l3 =
2805 cachep->nodelists[numa_node_id()];
e498be7d
CL
2806
2807 STATS_INC_NODEFREES(cachep);
2808 if (l3->alien && l3->alien[nodeid]) {
2809 alien = l3->alien[nodeid];
2810 spin_lock(&alien->lock);
2811 if (unlikely(alien->avail == alien->limit))
2812 __drain_alien_cache(cachep,
b28a02de 2813 alien, nodeid);
e498be7d
CL
2814 alien->entry[alien->avail++] = objp;
2815 spin_unlock(&alien->lock);
2816 } else {
2817 spin_lock(&(cachep->nodelists[nodeid])->
b28a02de 2818 list_lock);
ff69416e 2819 free_block(cachep, &objp, 1, nodeid);
e498be7d 2820 spin_unlock(&(cachep->nodelists[nodeid])->
b28a02de 2821 list_lock);
e498be7d
CL
2822 }
2823 return;
2824 }
2825 }
2826#endif
1da177e4
LT
2827 if (likely(ac->avail < ac->limit)) {
2828 STATS_INC_FREEHIT(cachep);
e498be7d 2829 ac->entry[ac->avail++] = objp;
1da177e4
LT
2830 return;
2831 } else {
2832 STATS_INC_FREEMISS(cachep);
2833 cache_flusharray(cachep, ac);
e498be7d 2834 ac->entry[ac->avail++] = objp;
1da177e4
LT
2835 }
2836}
2837
2838/**
2839 * kmem_cache_alloc - Allocate an object
2840 * @cachep: The cache to allocate from.
2841 * @flags: See kmalloc().
2842 *
2843 * Allocate an object from this cache. The flags are only relevant
2844 * if the cache has no available objects.
2845 */
dd0fc66f 2846void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2847{
2848 return __cache_alloc(cachep, flags);
2849}
2850EXPORT_SYMBOL(kmem_cache_alloc);
2851
2852/**
2853 * kmem_ptr_validate - check if an untrusted pointer might
2854 * be a slab entry.
2855 * @cachep: the cache we're checking against
2856 * @ptr: pointer to validate
2857 *
2858 * This verifies that the untrusted pointer looks sane:
2859 * it is _not_ a guarantee that the pointer is actually
2860 * part of the slab cache in question, but it at least
2861 * validates that the pointer can be dereferenced and
2862 * looks half-way sane.
2863 *
2864 * Currently only used for dentry validation.
2865 */
2866int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2867{
b28a02de 2868 unsigned long addr = (unsigned long)ptr;
1da177e4 2869 unsigned long min_addr = PAGE_OFFSET;
b28a02de 2870 unsigned long align_mask = BYTES_PER_WORD - 1;
1da177e4
LT
2871 unsigned long size = cachep->objsize;
2872 struct page *page;
2873
2874 if (unlikely(addr < min_addr))
2875 goto out;
2876 if (unlikely(addr > (unsigned long)high_memory - size))
2877 goto out;
2878 if (unlikely(addr & align_mask))
2879 goto out;
2880 if (unlikely(!kern_addr_valid(addr)))
2881 goto out;
2882 if (unlikely(!kern_addr_valid(addr + size - 1)))
2883 goto out;
2884 page = virt_to_page(ptr);
2885 if (unlikely(!PageSlab(page)))
2886 goto out;
065d41cb 2887 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
2888 goto out;
2889 return 1;
b28a02de 2890 out:
1da177e4
LT
2891 return 0;
2892}
2893
2894#ifdef CONFIG_NUMA
2895/**
2896 * kmem_cache_alloc_node - Allocate an object on the specified node
2897 * @cachep: The cache to allocate from.
2898 * @flags: See kmalloc().
2899 * @nodeid: node number of the target node.
2900 *
2901 * Identical to kmem_cache_alloc, except that this function is slow
2902 * and can sleep. And it will allocate memory on the given node, which
2903 * can improve the performance for cpu bound structures.
e498be7d
CL
2904 * New and improved: it will now make sure that the object gets
2905 * put on the correct node list so that there is no false sharing.
1da177e4 2906 */
dd0fc66f 2907void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1da177e4 2908{
e498be7d
CL
2909 unsigned long save_flags;
2910 void *ptr;
1da177e4 2911
ff69416e 2912 if (nodeid == -1)
e498be7d 2913 return __cache_alloc(cachep, flags);
1da177e4 2914
e498be7d
CL
2915 if (unlikely(!cachep->nodelists[nodeid])) {
2916 /* Fall back to __cache_alloc if we run into trouble */
b28a02de
PE
2917 printk(KERN_WARNING
2918 "slab: not allocating in inactive node %d for cache %s\n",
2919 nodeid, cachep->name);
2920 return __cache_alloc(cachep, flags);
1da177e4 2921 }
1da177e4 2922
e498be7d
CL
2923 cache_alloc_debugcheck_before(cachep, flags);
2924 local_irq_save(save_flags);
5c382300
AK
2925 if (nodeid == numa_node_id())
2926 ptr = ____cache_alloc(cachep, flags);
2927 else
2928 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 2929 local_irq_restore(save_flags);
b28a02de
PE
2930 ptr =
2931 cache_alloc_debugcheck_after(cachep, flags, ptr,
2932 __builtin_return_address(0));
1da177e4 2933
e498be7d 2934 return ptr;
1da177e4
LT
2935}
2936EXPORT_SYMBOL(kmem_cache_alloc_node);
2937
dd0fc66f 2938void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4
MS
2939{
2940 kmem_cache_t *cachep;
2941
2942 cachep = kmem_find_general_cachep(size, flags);
2943 if (unlikely(cachep == NULL))
2944 return NULL;
2945 return kmem_cache_alloc_node(cachep, flags, node);
2946}
2947EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
2948#endif
2949
2950/**
2951 * kmalloc - allocate memory
2952 * @size: how many bytes of memory are required.
2953 * @flags: the type of memory to allocate.
2954 *
2955 * kmalloc is the normal method of allocating memory
2956 * in the kernel.
2957 *
2958 * The @flags argument may be one of:
2959 *
2960 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2961 *
2962 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2963 *
2964 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2965 *
2966 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2967 * must be suitable for DMA. This can mean different things on different
2968 * platforms. For example, on i386, it means that the memory must come
2969 * from the first 16MB.
2970 */
dd0fc66f 2971void *__kmalloc(size_t size, gfp_t flags)
1da177e4
LT
2972{
2973 kmem_cache_t *cachep;
2974
97e2bde4
MS
2975 /* If you want to save a few bytes .text space: replace
2976 * __ with kmem_.
2977 * Then kmalloc uses the uninlined functions instead of the inline
2978 * functions.
2979 */
2980 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
2981 if (unlikely(cachep == NULL))
2982 return NULL;
1da177e4
LT
2983 return __cache_alloc(cachep, flags);
2984}
2985EXPORT_SYMBOL(__kmalloc);
2986
2987#ifdef CONFIG_SMP
2988/**
2989 * __alloc_percpu - allocate one copy of the object for every present
2990 * cpu in the system, zeroing them.
2991 * Objects should be dereferenced using the per_cpu_ptr macro only.
2992 *
2993 * @size: how many bytes of memory are required.
1da177e4 2994 */
f9f75005 2995void *__alloc_percpu(size_t size)
1da177e4
LT
2996{
2997 int i;
b28a02de 2998 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
2999
3000 if (!pdata)
3001 return NULL;
3002
e498be7d
CL
3003 /*
3004 * Cannot use for_each_online_cpu since a cpu may come online
3005 * and we have no way of figuring out how to fix the array
3006 * that we have allocated then....
3007 */
3008 for_each_cpu(i) {
3009 int node = cpu_to_node(i);
3010
3011 if (node_online(node))
3012 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3013 else
3014 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3015
3016 if (!pdata->ptrs[i])
3017 goto unwind_oom;
3018 memset(pdata->ptrs[i], 0, size);
3019 }
3020
3021 /* Catch derefs w/o wrappers */
b28a02de 3022 return (void *)(~(unsigned long)pdata);
1da177e4 3023
b28a02de 3024 unwind_oom:
1da177e4
LT
3025 while (--i >= 0) {
3026 if (!cpu_possible(i))
3027 continue;
3028 kfree(pdata->ptrs[i]);
3029 }
3030 kfree(pdata);
3031 return NULL;
3032}
3033EXPORT_SYMBOL(__alloc_percpu);
3034#endif
3035
3036/**
3037 * kmem_cache_free - Deallocate an object
3038 * @cachep: The cache the allocation was from.
3039 * @objp: The previously allocated object.
3040 *
3041 * Free an object which was previously allocated from this
3042 * cache.
3043 */
3044void kmem_cache_free(kmem_cache_t *cachep, void *objp)
3045{
3046 unsigned long flags;
3047
3048 local_irq_save(flags);
3049 __cache_free(cachep, objp);
3050 local_irq_restore(flags);
3051}
3052EXPORT_SYMBOL(kmem_cache_free);
3053
3054/**
dd392710
PE
3055 * kzalloc - allocate memory. The memory is set to zero.
3056 * @size: how many bytes of memory are required.
1da177e4
LT
3057 * @flags: the type of memory to allocate.
3058 */
dd0fc66f 3059void *kzalloc(size_t size, gfp_t flags)
1da177e4 3060{
dd392710 3061 void *ret = kmalloc(size, flags);
1da177e4 3062 if (ret)
dd392710 3063 memset(ret, 0, size);
1da177e4
LT
3064 return ret;
3065}
dd392710 3066EXPORT_SYMBOL(kzalloc);
1da177e4
LT
3067
3068/**
3069 * kfree - free previously allocated memory
3070 * @objp: pointer returned by kmalloc.
3071 *
80e93eff
PE
3072 * If @objp is NULL, no operation is performed.
3073 *
1da177e4
LT
3074 * Don't free memory not originally allocated by kmalloc()
3075 * or you will run into trouble.
3076 */
3077void kfree(const void *objp)
3078{
3079 kmem_cache_t *c;
3080 unsigned long flags;
3081
3082 if (unlikely(!objp))
3083 return;
3084 local_irq_save(flags);
3085 kfree_debugcheck(objp);
065d41cb 3086 c = page_get_cache(virt_to_page(objp));
b28a02de 3087 __cache_free(c, (void *)objp);
1da177e4
LT
3088 local_irq_restore(flags);
3089}
3090EXPORT_SYMBOL(kfree);
3091
3092#ifdef CONFIG_SMP
3093/**
3094 * free_percpu - free previously allocated percpu memory
3095 * @objp: pointer returned by alloc_percpu.
3096 *
3097 * Don't free memory not originally allocated by alloc_percpu()
3098 * The complemented objp is to check for that.
3099 */
b28a02de 3100void free_percpu(const void *objp)
1da177e4
LT
3101{
3102 int i;
b28a02de 3103 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3104
e498be7d
CL
3105 /*
3106 * We allocate for all cpus so we cannot use for online cpu here.
3107 */
3108 for_each_cpu(i)
b28a02de 3109 kfree(p->ptrs[i]);
1da177e4
LT
3110 kfree(p);
3111}
3112EXPORT_SYMBOL(free_percpu);
3113#endif
3114
3115unsigned int kmem_cache_size(kmem_cache_t *cachep)
3116{
3117 return obj_reallen(cachep);
3118}
3119EXPORT_SYMBOL(kmem_cache_size);
3120
1944972d
ACM
3121const char *kmem_cache_name(kmem_cache_t *cachep)
3122{
3123 return cachep->name;
3124}
3125EXPORT_SYMBOL_GPL(kmem_cache_name);
3126
e498be7d
CL
3127/*
3128 * This initializes kmem_list3 for all nodes.
3129 */
3130static int alloc_kmemlist(kmem_cache_t *cachep)
3131{
3132 int node;
3133 struct kmem_list3 *l3;
3134 int err = 0;
3135
3136 for_each_online_node(node) {
3137 struct array_cache *nc = NULL, *new;
3138 struct array_cache **new_alien = NULL;
3139#ifdef CONFIG_NUMA
3140 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3141 goto fail;
3142#endif
b28a02de
PE
3143 if (!(new = alloc_arraycache(node, (cachep->shared *
3144 cachep->batchcount),
3145 0xbaadf00d)))
e498be7d
CL
3146 goto fail;
3147 if ((l3 = cachep->nodelists[node])) {
3148
3149 spin_lock_irq(&l3->list_lock);
3150
3151 if ((nc = cachep->nodelists[node]->shared))
b28a02de 3152 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
3153
3154 l3->shared = new;
3155 if (!cachep->nodelists[node]->alien) {
3156 l3->alien = new_alien;
3157 new_alien = NULL;
3158 }
b28a02de
PE
3159 l3->free_limit = (1 + nr_cpus_node(node)) *
3160 cachep->batchcount + cachep->num;
e498be7d
CL
3161 spin_unlock_irq(&l3->list_lock);
3162 kfree(nc);
3163 free_alien_cache(new_alien);
3164 continue;
3165 }
3166 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
b28a02de 3167 GFP_KERNEL, node)))
e498be7d
CL
3168 goto fail;
3169
3170 kmem_list3_init(l3);
3171 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 3172 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
3173 l3->shared = new;
3174 l3->alien = new_alien;
b28a02de
PE
3175 l3->free_limit = (1 + nr_cpus_node(node)) *
3176 cachep->batchcount + cachep->num;
e498be7d
CL
3177 cachep->nodelists[node] = l3;
3178 }
3179 return err;
b28a02de 3180 fail:
e498be7d
CL
3181 err = -ENOMEM;
3182 return err;
3183}
3184
1da177e4
LT
3185struct ccupdate_struct {
3186 kmem_cache_t *cachep;
3187 struct array_cache *new[NR_CPUS];
3188};
3189
3190static void do_ccupdate_local(void *info)
3191{
3192 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3193 struct array_cache *old;
3194
3195 check_irq_off();
3196 old = ac_data(new->cachep);
e498be7d 3197
1da177e4
LT
3198 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3199 new->new[smp_processor_id()] = old;
3200}
3201
1da177e4 3202static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
b28a02de 3203 int shared)
1da177e4
LT
3204{
3205 struct ccupdate_struct new;
e498be7d 3206 int i, err;
1da177e4 3207
b28a02de 3208 memset(&new.new, 0, sizeof(new.new));
e498be7d 3209 for_each_online_cpu(i) {
b28a02de
PE
3210 new.new[i] =
3211 alloc_arraycache(cpu_to_node(i), limit, batchcount);
e498be7d 3212 if (!new.new[i]) {
b28a02de
PE
3213 for (i--; i >= 0; i--)
3214 kfree(new.new[i]);
e498be7d 3215 return -ENOMEM;
1da177e4
LT
3216 }
3217 }
3218 new.cachep = cachep;
3219
3220 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
e498be7d 3221
1da177e4
LT
3222 check_irq_on();
3223 spin_lock_irq(&cachep->spinlock);
3224 cachep->batchcount = batchcount;
3225 cachep->limit = limit;
e498be7d 3226 cachep->shared = shared;
1da177e4
LT
3227 spin_unlock_irq(&cachep->spinlock);
3228
e498be7d 3229 for_each_online_cpu(i) {
1da177e4
LT
3230 struct array_cache *ccold = new.new[i];
3231 if (!ccold)
3232 continue;
e498be7d 3233 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3234 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3235 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3236 kfree(ccold);
3237 }
1da177e4 3238
e498be7d
CL
3239 err = alloc_kmemlist(cachep);
3240 if (err) {
3241 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3242 cachep->name, -err);
e498be7d 3243 BUG();
1da177e4 3244 }
1da177e4
LT
3245 return 0;
3246}
3247
1da177e4
LT
3248static void enable_cpucache(kmem_cache_t *cachep)
3249{
3250 int err;
3251 int limit, shared;
3252
3253 /* The head array serves three purposes:
3254 * - create a LIFO ordering, i.e. return objects that are cache-warm
3255 * - reduce the number of spinlock operations.
3256 * - reduce the number of linked list operations on the slab and
3257 * bufctl chains: array operations are cheaper.
3258 * The numbers are guessed, we should auto-tune as described by
3259 * Bonwick.
3260 */
3261 if (cachep->objsize > 131072)
3262 limit = 1;
3263 else if (cachep->objsize > PAGE_SIZE)
3264 limit = 8;
3265 else if (cachep->objsize > 1024)
3266 limit = 24;
3267 else if (cachep->objsize > 256)
3268 limit = 54;
3269 else
3270 limit = 120;
3271
3272 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3273 * allocation behaviour: Most allocs on one cpu, most free operations
3274 * on another cpu. For these cases, an efficient object passing between
3275 * cpus is necessary. This is provided by a shared array. The array
3276 * replaces Bonwick's magazine layer.
3277 * On uniprocessor, it's functionally equivalent (but less efficient)
3278 * to a larger limit. Thus disabled by default.
3279 */
3280 shared = 0;
3281#ifdef CONFIG_SMP
3282 if (cachep->objsize <= PAGE_SIZE)
3283 shared = 8;
3284#endif
3285
3286#if DEBUG
3287 /* With debugging enabled, large batchcount lead to excessively
3288 * long periods with disabled local interrupts. Limit the
3289 * batchcount
3290 */
3291 if (limit > 32)
3292 limit = 32;
3293#endif
b28a02de 3294 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3295 if (err)
3296 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3297 cachep->name, -err);
1da177e4
LT
3298}
3299
b28a02de
PE
3300static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
3301 int force, int node)
1da177e4
LT
3302{
3303 int tofree;
3304
e498be7d 3305 check_spinlock_acquired_node(cachep, node);
1da177e4
LT
3306 if (ac->touched && !force) {
3307 ac->touched = 0;
3308 } else if (ac->avail) {
b28a02de 3309 tofree = force ? ac->avail : (ac->limit + 4) / 5;
1da177e4 3310 if (tofree > ac->avail) {
b28a02de 3311 tofree = (ac->avail + 1) / 2;
1da177e4 3312 }
ff69416e 3313 free_block(cachep, ac->entry, tofree, node);
1da177e4 3314 ac->avail -= tofree;
e498be7d 3315 memmove(ac->entry, &(ac->entry[tofree]),
b28a02de 3316 sizeof(void *) * ac->avail);
1da177e4
LT
3317 }
3318}
3319
3320/**
3321 * cache_reap - Reclaim memory from caches.
1e5d5331 3322 * @unused: unused parameter
1da177e4
LT
3323 *
3324 * Called from workqueue/eventd every few seconds.
3325 * Purpose:
3326 * - clear the per-cpu caches for this CPU.
3327 * - return freeable pages to the main free memory pool.
3328 *
3329 * If we cannot acquire the cache chain semaphore then just give up - we'll
3330 * try again on the next iteration.
3331 */
3332static void cache_reap(void *unused)
3333{
3334 struct list_head *walk;
e498be7d 3335 struct kmem_list3 *l3;
1da177e4
LT
3336
3337 if (down_trylock(&cache_chain_sem)) {
3338 /* Give up. Setup the next iteration. */
b28a02de
PE
3339 schedule_delayed_work(&__get_cpu_var(reap_work),
3340 REAPTIMEOUT_CPUC);
1da177e4
LT
3341 return;
3342 }
3343
3344 list_for_each(walk, &cache_chain) {
3345 kmem_cache_t *searchp;
b28a02de 3346 struct list_head *p;
1da177e4
LT
3347 int tofree;
3348 struct slab *slabp;
3349
3350 searchp = list_entry(walk, kmem_cache_t, next);
3351
3352 if (searchp->flags & SLAB_NO_REAP)
3353 goto next;
3354
3355 check_irq_on();
3356
e498be7d
CL
3357 l3 = searchp->nodelists[numa_node_id()];
3358 if (l3->alien)
3359 drain_alien_cache(searchp, l3);
3360 spin_lock_irq(&l3->list_lock);
1da177e4 3361
e498be7d 3362 drain_array_locked(searchp, ac_data(searchp), 0,
b28a02de 3363 numa_node_id());
1da177e4 3364
e498be7d 3365 if (time_after(l3->next_reap, jiffies))
1da177e4
LT
3366 goto next_unlock;
3367
e498be7d 3368 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3369
e498be7d
CL
3370 if (l3->shared)
3371 drain_array_locked(searchp, l3->shared, 0,
b28a02de 3372 numa_node_id());
1da177e4 3373
e498be7d
CL
3374 if (l3->free_touched) {
3375 l3->free_touched = 0;
1da177e4
LT
3376 goto next_unlock;
3377 }
3378
b28a02de
PE
3379 tofree =
3380 (l3->free_limit + 5 * searchp->num -
3381 1) / (5 * searchp->num);
1da177e4 3382 do {
e498be7d
CL
3383 p = l3->slabs_free.next;
3384 if (p == &(l3->slabs_free))
1da177e4
LT
3385 break;
3386
3387 slabp = list_entry(p, struct slab, list);
3388 BUG_ON(slabp->inuse);
3389 list_del(&slabp->list);
3390 STATS_INC_REAPED(searchp);
3391
3392 /* Safe to drop the lock. The slab is no longer
3393 * linked to the cache.
3394 * searchp cannot disappear, we hold
3395 * cache_chain_lock
3396 */
e498be7d
CL
3397 l3->free_objects -= searchp->num;
3398 spin_unlock_irq(&l3->list_lock);
1da177e4 3399 slab_destroy(searchp, slabp);
e498be7d 3400 spin_lock_irq(&l3->list_lock);
b28a02de
PE
3401 } while (--tofree > 0);
3402 next_unlock:
e498be7d 3403 spin_unlock_irq(&l3->list_lock);
b28a02de 3404 next:
1da177e4
LT
3405 cond_resched();
3406 }
3407 check_irq_on();
3408 up(&cache_chain_sem);
4ae7c039 3409 drain_remote_pages();
1da177e4 3410 /* Setup the next iteration */
cd61ef62 3411 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3412}
3413
3414#ifdef CONFIG_PROC_FS
3415
85289f98 3416static void print_slabinfo_header(struct seq_file *m)
1da177e4 3417{
85289f98
PE
3418 /*
3419 * Output format version, so at least we can change it
3420 * without _too_ many complaints.
3421 */
1da177e4 3422#if STATS
85289f98 3423 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3424#else
85289f98 3425 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3426#endif
85289f98
PE
3427 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3428 "<objperslab> <pagesperslab>");
3429 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3430 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3431#if STATS
85289f98
PE
3432 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3433 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3434 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3435#endif
85289f98
PE
3436 seq_putc(m, '\n');
3437}
3438
3439static void *s_start(struct seq_file *m, loff_t *pos)
3440{
3441 loff_t n = *pos;
3442 struct list_head *p;
3443
3444 down(&cache_chain_sem);
3445 if (!n)
3446 print_slabinfo_header(m);
1da177e4
LT
3447 p = cache_chain.next;
3448 while (n--) {
3449 p = p->next;
3450 if (p == &cache_chain)
3451 return NULL;
3452 }
3453 return list_entry(p, kmem_cache_t, next);
3454}
3455
3456static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3457{
3458 kmem_cache_t *cachep = p;
3459 ++*pos;
3460 return cachep->next.next == &cache_chain ? NULL
b28a02de 3461 : list_entry(cachep->next.next, kmem_cache_t, next);
1da177e4
LT
3462}
3463
3464static void s_stop(struct seq_file *m, void *p)
3465{
3466 up(&cache_chain_sem);
3467}
3468
3469static int s_show(struct seq_file *m, void *p)
3470{
3471 kmem_cache_t *cachep = p;
3472 struct list_head *q;
b28a02de
PE
3473 struct slab *slabp;
3474 unsigned long active_objs;
3475 unsigned long num_objs;
3476 unsigned long active_slabs = 0;
3477 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3478 const char *name;
1da177e4 3479 char *error = NULL;
e498be7d
CL
3480 int node;
3481 struct kmem_list3 *l3;
1da177e4
LT
3482
3483 check_irq_on();
3484 spin_lock_irq(&cachep->spinlock);
3485 active_objs = 0;
3486 num_slabs = 0;
e498be7d
CL
3487 for_each_online_node(node) {
3488 l3 = cachep->nodelists[node];
3489 if (!l3)
3490 continue;
3491
3492 spin_lock(&l3->list_lock);
3493
b28a02de 3494 list_for_each(q, &l3->slabs_full) {
e498be7d
CL
3495 slabp = list_entry(q, struct slab, list);
3496 if (slabp->inuse != cachep->num && !error)
3497 error = "slabs_full accounting error";
3498 active_objs += cachep->num;
3499 active_slabs++;
3500 }
b28a02de 3501 list_for_each(q, &l3->slabs_partial) {
e498be7d
CL
3502 slabp = list_entry(q, struct slab, list);
3503 if (slabp->inuse == cachep->num && !error)
3504 error = "slabs_partial inuse accounting error";
3505 if (!slabp->inuse && !error)
3506 error = "slabs_partial/inuse accounting error";
3507 active_objs += slabp->inuse;
3508 active_slabs++;
3509 }
b28a02de 3510 list_for_each(q, &l3->slabs_free) {
e498be7d
CL
3511 slabp = list_entry(q, struct slab, list);
3512 if (slabp->inuse && !error)
3513 error = "slabs_free/inuse accounting error";
3514 num_slabs++;
3515 }
3516 free_objects += l3->free_objects;
3517 shared_avail += l3->shared->avail;
3518
3519 spin_unlock(&l3->list_lock);
1da177e4 3520 }
b28a02de
PE
3521 num_slabs += active_slabs;
3522 num_objs = num_slabs * cachep->num;
e498be7d 3523 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3524 error = "free_objects accounting error";
3525
b28a02de 3526 name = cachep->name;
1da177e4
LT
3527 if (error)
3528 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3529
3530 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
b28a02de
PE
3531 name, active_objs, num_objs, cachep->objsize,
3532 cachep->num, (1 << cachep->gfporder));
1da177e4 3533 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3534 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3535 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3536 active_slabs, num_slabs, shared_avail);
1da177e4 3537#if STATS
b28a02de 3538 { /* list3 stats */
1da177e4
LT
3539 unsigned long high = cachep->high_mark;
3540 unsigned long allocs = cachep->num_allocations;
3541 unsigned long grown = cachep->grown;
3542 unsigned long reaped = cachep->reaped;
3543 unsigned long errors = cachep->errors;
3544 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3545 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3546 unsigned long node_frees = cachep->node_frees;
1da177e4 3547
e498be7d 3548 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
b28a02de 3549 %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
1da177e4
LT
3550 }
3551 /* cpu stats */
3552 {
3553 unsigned long allochit = atomic_read(&cachep->allochit);
3554 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3555 unsigned long freehit = atomic_read(&cachep->freehit);
3556 unsigned long freemiss = atomic_read(&cachep->freemiss);
3557
3558 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3559 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3560 }
3561#endif
3562 seq_putc(m, '\n');
3563 spin_unlock_irq(&cachep->spinlock);
3564 return 0;
3565}
3566
3567/*
3568 * slabinfo_op - iterator that generates /proc/slabinfo
3569 *
3570 * Output layout:
3571 * cache-name
3572 * num-active-objs
3573 * total-objs
3574 * object size
3575 * num-active-slabs
3576 * total-slabs
3577 * num-pages-per-slab
3578 * + further values on SMP and with statistics enabled
3579 */
3580
3581struct seq_operations slabinfo_op = {
b28a02de
PE
3582 .start = s_start,
3583 .next = s_next,
3584 .stop = s_stop,
3585 .show = s_show,
1da177e4
LT
3586};
3587
3588#define MAX_SLABINFO_WRITE 128
3589/**
3590 * slabinfo_write - Tuning for the slab allocator
3591 * @file: unused
3592 * @buffer: user buffer
3593 * @count: data length
3594 * @ppos: unused
3595 */
b28a02de
PE
3596ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3597 size_t count, loff_t *ppos)
1da177e4 3598{
b28a02de 3599 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4
LT
3600 int limit, batchcount, shared, res;
3601 struct list_head *p;
b28a02de 3602
1da177e4
LT
3603 if (count > MAX_SLABINFO_WRITE)
3604 return -EINVAL;
3605 if (copy_from_user(&kbuf, buffer, count))
3606 return -EFAULT;
b28a02de 3607 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3608
3609 tmp = strchr(kbuf, ' ');
3610 if (!tmp)
3611 return -EINVAL;
3612 *tmp = '\0';
3613 tmp++;
3614 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3615 return -EINVAL;
3616
3617 /* Find the cache in the chain of caches. */
3618 down(&cache_chain_sem);
3619 res = -EINVAL;
b28a02de 3620 list_for_each(p, &cache_chain) {
1da177e4
LT
3621 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
3622
3623 if (!strcmp(cachep->name, kbuf)) {
3624 if (limit < 1 ||
3625 batchcount < 1 ||
b28a02de 3626 batchcount > limit || shared < 0) {
e498be7d 3627 res = 0;
1da177e4 3628 } else {
e498be7d 3629 res = do_tune_cpucache(cachep, limit,
b28a02de 3630 batchcount, shared);
1da177e4
LT
3631 }
3632 break;
3633 }
3634 }
3635 up(&cache_chain_sem);
3636 if (res >= 0)
3637 res = count;
3638 return res;
3639}
3640#endif
3641
00e145b6
MS
3642/**
3643 * ksize - get the actual amount of memory allocated for a given object
3644 * @objp: Pointer to the object
3645 *
3646 * kmalloc may internally round up allocations and return more memory
3647 * than requested. ksize() can be used to determine the actual amount of
3648 * memory allocated. The caller may use this additional memory, even though
3649 * a smaller amount of memory was initially specified with the kmalloc call.
3650 * The caller must guarantee that objp points to a valid object previously
3651 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3652 * must not be freed during the duration of the call.
3653 */
1da177e4
LT
3654unsigned int ksize(const void *objp)
3655{
00e145b6
MS
3656 if (unlikely(objp == NULL))
3657 return 0;
1da177e4 3658
065d41cb 3659 return obj_reallen(page_get_cache(virt_to_page(objp)));
1da177e4 3660}
543537bd
PM
3661
3662
3663/*
3664 * kstrdup - allocate space for and copy an existing string
3665 *
3666 * @s: the string to duplicate
3667 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
3668 */
dd0fc66f 3669char *kstrdup(const char *s, gfp_t gfp)
543537bd
PM
3670{
3671 size_t len;
3672 char *buf;
3673
3674 if (!s)
3675 return NULL;
3676
3677 len = strlen(s) + 1;
3678 buf = kmalloc(len, gfp);
3679 if (buf)
3680 memcpy(buf, s, len);
3681 return buf;
3682}
3683EXPORT_SYMBOL(kstrdup);