]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/slab.h
slab: reorganize memcg_cache_params
[thirdparty/kernel/stable.git] / mm / slab.h
CommitLineData
97d06609
CL
1#ifndef MM_SLAB_H
2#define MM_SLAB_H
3/*
4 * Internal slab definitions
5 */
6
07f361b2
JK
7#ifdef CONFIG_SLOB
8/*
9 * Common fields provided in kmem_cache by all slab allocators
10 * This struct is either used directly by the allocator (SLOB)
11 * or the allocator must include definitions for all fields
12 * provided in kmem_cache_common in their definition of kmem_cache.
13 *
14 * Once we can do anonymous structs (C11 standard) we could put a
15 * anonymous struct definition in these allocators so that the
16 * separate allocations in the kmem_cache structure of SLAB and
17 * SLUB is no longer needed.
18 */
19struct kmem_cache {
20 unsigned int object_size;/* The original size of the object */
21 unsigned int size; /* The aligned/padded/added on size */
22 unsigned int align; /* Alignment as calculated */
23 unsigned long flags; /* Active flags on the slab */
24 const char *name; /* Slab name for sysfs */
25 int refcount; /* Use counter */
26 void (*ctor)(void *); /* Called on object slot creation */
27 struct list_head list; /* List of all slab caches on the system */
28};
29
30#endif /* CONFIG_SLOB */
31
32#ifdef CONFIG_SLAB
33#include <linux/slab_def.h>
34#endif
35
36#ifdef CONFIG_SLUB
37#include <linux/slub_def.h>
38#endif
39
40#include <linux/memcontrol.h>
11c7aec2
JDB
41#include <linux/fault-inject.h>
42#include <linux/kmemcheck.h>
43#include <linux/kasan.h>
44#include <linux/kmemleak.h>
7c00fce9 45#include <linux/random.h>
07f361b2 46
97d06609
CL
47/*
48 * State of the slab allocator.
49 *
50 * This is used to describe the states of the allocator during bootup.
51 * Allocators use this to gradually bootstrap themselves. Most allocators
52 * have the problem that the structures used for managing slab caches are
53 * allocated from slab caches themselves.
54 */
55enum slab_state {
56 DOWN, /* No slab functionality yet */
57 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 58 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
59 UP, /* Slab caches usable but not all extras yet */
60 FULL /* Everything is working */
61};
62
63extern enum slab_state slab_state;
64
18004c5d
CL
65/* The slab cache mutex protects the management structures during changes */
66extern struct mutex slab_mutex;
9b030cb8
CL
67
68/* The list of all slab caches on the system */
18004c5d
CL
69extern struct list_head slab_caches;
70
9b030cb8
CL
71/* The slab cache that manages slab cache information */
72extern struct kmem_cache *kmem_cache;
73
af3b5f87
VB
74/* A table of kmalloc cache names and sizes */
75extern const struct kmalloc_info_struct {
76 const char *name;
77 unsigned long size;
78} kmalloc_info[];
79
45906855
CL
80unsigned long calculate_alignment(unsigned long flags,
81 unsigned long align, unsigned long size);
82
f97d5f63
CL
83#ifndef CONFIG_SLOB
84/* Kmalloc array related functions */
34cc6990 85void setup_kmalloc_cache_index_table(void);
f97d5f63 86void create_kmalloc_caches(unsigned long);
2c59dd65
CL
87
88/* Find the kmalloc slab corresponding for a certain size */
89struct kmem_cache *kmalloc_slab(size_t, gfp_t);
f97d5f63
CL
90#endif
91
92
9b030cb8 93/* Functions provided by the slab allocators */
8a13a4cc 94extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
97d06609 95
45530c44
CL
96extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
97 unsigned long flags);
98extern void create_boot_cache(struct kmem_cache *, const char *name,
99 size_t size, unsigned long flags);
100
423c929c
JK
101int slab_unmergeable(struct kmem_cache *s);
102struct kmem_cache *find_mergeable(size_t size, size_t align,
103 unsigned long flags, const char *name, void (*ctor)(void *));
12220dea 104#ifndef CONFIG_SLOB
2633d7a0 105struct kmem_cache *
a44cb944
VD
106__kmem_cache_alias(const char *name, size_t size, size_t align,
107 unsigned long flags, void (*ctor)(void *));
423c929c
JK
108
109unsigned long kmem_cache_flags(unsigned long object_size,
110 unsigned long flags, const char *name,
111 void (*ctor)(void *));
cbb79694 112#else
2633d7a0 113static inline struct kmem_cache *
a44cb944
VD
114__kmem_cache_alias(const char *name, size_t size, size_t align,
115 unsigned long flags, void (*ctor)(void *))
cbb79694 116{ return NULL; }
423c929c
JK
117
118static inline unsigned long kmem_cache_flags(unsigned long object_size,
119 unsigned long flags, const char *name,
120 void (*ctor)(void *))
121{
122 return flags;
123}
cbb79694
CL
124#endif
125
126
d8843922
GC
127/* Legal flag mask for kmem_cache_create(), for various configurations */
128#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
129 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
130
131#if defined(CONFIG_DEBUG_SLAB)
132#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
133#elif defined(CONFIG_SLUB_DEBUG)
134#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 135 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
136#else
137#define SLAB_DEBUG_FLAGS (0)
138#endif
139
140#if defined(CONFIG_SLAB)
141#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
230e9fc2
VD
142 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
143 SLAB_NOTRACK | SLAB_ACCOUNT)
d8843922
GC
144#elif defined(CONFIG_SLUB)
145#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
230e9fc2 146 SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
d8843922
GC
147#else
148#define SLAB_CACHE_FLAGS (0)
149#endif
150
e70954fd 151/* Common flags available with current configuration */
d8843922
GC
152#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
153
e70954fd
TG
154/* Common flags permitted for kmem_cache_create */
155#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
156 SLAB_RED_ZONE | \
157 SLAB_POISON | \
158 SLAB_STORE_USER | \
159 SLAB_TRACE | \
160 SLAB_CONSISTENCY_CHECKS | \
161 SLAB_MEM_SPREAD | \
162 SLAB_NOLEAKTRACE | \
163 SLAB_RECLAIM_ACCOUNT | \
164 SLAB_TEMPORARY | \
165 SLAB_NOTRACK | \
166 SLAB_ACCOUNT)
167
945cf2b6 168int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 169void __kmem_cache_release(struct kmem_cache *);
290b6a58 170int __kmem_cache_shrink(struct kmem_cache *, bool);
41a21285 171void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 172
b7454ad3
GC
173struct seq_file;
174struct file;
b7454ad3 175
0d7561c6
GC
176struct slabinfo {
177 unsigned long active_objs;
178 unsigned long num_objs;
179 unsigned long active_slabs;
180 unsigned long num_slabs;
181 unsigned long shared_avail;
182 unsigned int limit;
183 unsigned int batchcount;
184 unsigned int shared;
185 unsigned int objects_per_slab;
186 unsigned int cache_order;
187};
188
189void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
190void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
191ssize_t slabinfo_write(struct file *file, const char __user *buffer,
192 size_t count, loff_t *ppos);
ba6c496e 193
484748f0
CL
194/*
195 * Generic implementation of bulk operations
196 * These are useful for situations in which the allocator cannot
9f706d68 197 * perform optimizations. In that case segments of the object listed
484748f0
CL
198 * may be allocated or freed using these operations.
199 */
200void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 201int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 202
127424c8 203#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
426589f5
VD
204/*
205 * Iterate over all memcg caches of the given root cache. The caller must hold
206 * slab_mutex.
207 */
208#define for_each_memcg_cache(iter, root) \
9eeadc8b
TH
209 list_for_each_entry(iter, &(root)->memcg_params.children, \
210 memcg_params.children_node)
426589f5 211
ba6c496e
GC
212static inline bool is_root_cache(struct kmem_cache *s)
213{
9eeadc8b 214 return !s->memcg_params.root_cache;
ba6c496e 215}
2633d7a0 216
b9ce5ef4 217static inline bool slab_equal_or_root(struct kmem_cache *s,
f7ce3190 218 struct kmem_cache *p)
b9ce5ef4 219{
f7ce3190 220 return p == s || p == s->memcg_params.root_cache;
b9ce5ef4 221}
749c5415
GC
222
223/*
224 * We use suffixes to the name in memcg because we can't have caches
225 * created in the system with the same name. But when we print them
226 * locally, better refer to them with the base name
227 */
228static inline const char *cache_name(struct kmem_cache *s)
229{
230 if (!is_root_cache(s))
f7ce3190 231 s = s->memcg_params.root_cache;
749c5415
GC
232 return s->name;
233}
234
f8570263
VD
235/*
236 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
f7ce3190
VD
237 * That said the caller must assure the memcg's cache won't go away by either
238 * taking a css reference to the owner cgroup, or holding the slab_mutex.
f8570263 239 */
2ade4de8
QH
240static inline struct kmem_cache *
241cache_from_memcg_idx(struct kmem_cache *s, int idx)
749c5415 242{
959c8963 243 struct kmem_cache *cachep;
f7ce3190 244 struct memcg_cache_array *arr;
f8570263
VD
245
246 rcu_read_lock();
f7ce3190 247 arr = rcu_dereference(s->memcg_params.memcg_caches);
959c8963
VD
248
249 /*
250 * Make sure we will access the up-to-date value. The code updating
251 * memcg_caches issues a write barrier to match this (see
f7ce3190 252 * memcg_create_kmem_cache()).
959c8963 253 */
f7ce3190 254 cachep = lockless_dereference(arr->entries[idx]);
8df0c2dc
PK
255 rcu_read_unlock();
256
959c8963 257 return cachep;
749c5415 258}
943a451a
GC
259
260static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
261{
262 if (is_root_cache(s))
263 return s;
f7ce3190 264 return s->memcg_params.root_cache;
943a451a 265}
5dfb4175 266
f3ccb2c4
VD
267static __always_inline int memcg_charge_slab(struct page *page,
268 gfp_t gfp, int order,
269 struct kmem_cache *s)
5dfb4175 270{
27ee57c9
VD
271 int ret;
272
5dfb4175
VD
273 if (!memcg_kmem_enabled())
274 return 0;
275 if (is_root_cache(s))
276 return 0;
27ee57c9 277
45264778 278 ret = memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
27ee57c9
VD
279 if (ret)
280 return ret;
281
282 memcg_kmem_update_page_stat(page,
283 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
284 MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
285 1 << order);
286 return 0;
287}
288
289static __always_inline void memcg_uncharge_slab(struct page *page, int order,
290 struct kmem_cache *s)
291{
45264778
VD
292 if (!memcg_kmem_enabled())
293 return;
294
27ee57c9
VD
295 memcg_kmem_update_page_stat(page,
296 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
297 MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
298 -(1 << order));
299 memcg_kmem_uncharge(page, order);
5dfb4175 300}
f7ce3190
VD
301
302extern void slab_init_memcg_params(struct kmem_cache *);
303
127424c8 304#else /* CONFIG_MEMCG && !CONFIG_SLOB */
f7ce3190 305
426589f5
VD
306#define for_each_memcg_cache(iter, root) \
307 for ((void)(iter), (void)(root); 0; )
426589f5 308
ba6c496e
GC
309static inline bool is_root_cache(struct kmem_cache *s)
310{
311 return true;
312}
313
b9ce5ef4
GC
314static inline bool slab_equal_or_root(struct kmem_cache *s,
315 struct kmem_cache *p)
316{
317 return true;
318}
749c5415
GC
319
320static inline const char *cache_name(struct kmem_cache *s)
321{
322 return s->name;
323}
324
2ade4de8
QH
325static inline struct kmem_cache *
326cache_from_memcg_idx(struct kmem_cache *s, int idx)
749c5415
GC
327{
328 return NULL;
329}
943a451a
GC
330
331static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
332{
333 return s;
334}
5dfb4175 335
f3ccb2c4
VD
336static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
337 struct kmem_cache *s)
5dfb4175
VD
338{
339 return 0;
340}
341
27ee57c9
VD
342static inline void memcg_uncharge_slab(struct page *page, int order,
343 struct kmem_cache *s)
344{
345}
346
f7ce3190
VD
347static inline void slab_init_memcg_params(struct kmem_cache *s)
348{
349}
127424c8 350#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
b9ce5ef4
GC
351
352static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
353{
354 struct kmem_cache *cachep;
355 struct page *page;
356
357 /*
358 * When kmemcg is not being used, both assignments should return the
359 * same value. but we don't want to pay the assignment price in that
360 * case. If it is not compiled in, the compiler should be smart enough
361 * to not do even the assignment. In that case, slab_equal_or_root
362 * will also be a constant.
363 */
becfda68
LA
364 if (!memcg_kmem_enabled() &&
365 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
b9ce5ef4
GC
366 return s;
367
368 page = virt_to_head_page(x);
369 cachep = page->slab_cache;
370 if (slab_equal_or_root(cachep, s))
371 return cachep;
372
373 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
2d16e0fd 374 __func__, s->name, cachep->name);
b9ce5ef4
GC
375 WARN_ON_ONCE(1);
376 return s;
377}
ca34956b 378
11c7aec2
JDB
379static inline size_t slab_ksize(const struct kmem_cache *s)
380{
381#ifndef CONFIG_SLUB
382 return s->object_size;
383
384#else /* CONFIG_SLUB */
385# ifdef CONFIG_SLUB_DEBUG
386 /*
387 * Debugging requires use of the padding between object
388 * and whatever may come after it.
389 */
390 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
391 return s->object_size;
392# endif
80a9201a
AP
393 if (s->flags & SLAB_KASAN)
394 return s->object_size;
11c7aec2
JDB
395 /*
396 * If we have the need to store the freelist pointer
397 * back there or track user information then we can
398 * only use the space before that information.
399 */
400 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
401 return s->inuse;
402 /*
403 * Else we can use all the padding etc for the allocation
404 */
405 return s->size;
406#endif
407}
408
409static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
410 gfp_t flags)
411{
412 flags &= gfp_allowed_mask;
413 lockdep_trace_alloc(flags);
414 might_sleep_if(gfpflags_allow_blocking(flags));
415
fab9963a 416 if (should_failslab(s, flags))
11c7aec2
JDB
417 return NULL;
418
45264778
VD
419 if (memcg_kmem_enabled() &&
420 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
421 return memcg_kmem_get_cache(s);
422
423 return s;
11c7aec2
JDB
424}
425
426static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
427 size_t size, void **p)
428{
429 size_t i;
430
431 flags &= gfp_allowed_mask;
432 for (i = 0; i < size; i++) {
433 void *object = p[i];
434
435 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
436 kmemleak_alloc_recursive(object, s->object_size, 1,
437 s->flags, flags);
505f5dcb 438 kasan_slab_alloc(s, object, flags);
11c7aec2 439 }
45264778
VD
440
441 if (memcg_kmem_enabled())
442 memcg_kmem_put_cache(s);
11c7aec2
JDB
443}
444
44c5356f 445#ifndef CONFIG_SLOB
ca34956b
CL
446/*
447 * The slab lists for all objects.
448 */
449struct kmem_cache_node {
450 spinlock_t list_lock;
451
452#ifdef CONFIG_SLAB
453 struct list_head slabs_partial; /* partial list first, better asm code */
454 struct list_head slabs_full;
455 struct list_head slabs_free;
bf00bd34
DR
456 unsigned long total_slabs; /* length of all slab lists */
457 unsigned long free_slabs; /* length of free slab list only */
ca34956b
CL
458 unsigned long free_objects;
459 unsigned int free_limit;
460 unsigned int colour_next; /* Per-node cache coloring */
461 struct array_cache *shared; /* shared per node */
c8522a3a 462 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
463 unsigned long next_reap; /* updated without locking */
464 int free_touched; /* updated without locking */
465#endif
466
467#ifdef CONFIG_SLUB
468 unsigned long nr_partial;
469 struct list_head partial;
470#ifdef CONFIG_SLUB_DEBUG
471 atomic_long_t nr_slabs;
472 atomic_long_t total_objects;
473 struct list_head full;
474#endif
475#endif
476
477};
e25839f6 478
44c5356f
CL
479static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
480{
481 return s->node[node];
482}
483
484/*
485 * Iterator over all nodes. The body will be executed for each node that has
486 * a kmem_cache_node structure allocated (which is true for all online nodes)
487 */
488#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
489 for (__node = 0; __node < nr_node_ids; __node++) \
490 if ((__n = get_node(__s, __node)))
44c5356f
CL
491
492#endif
493
1df3b26f 494void *slab_start(struct seq_file *m, loff_t *pos);
276a2439
WL
495void *slab_next(struct seq_file *m, void *p, loff_t *pos);
496void slab_stop(struct seq_file *m, void *p);
b047501c 497int memcg_slab_show(struct seq_file *m, void *p);
5240ab40 498
55834c59
AP
499void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
500
7c00fce9
TG
501#ifdef CONFIG_SLAB_FREELIST_RANDOM
502int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
503 gfp_t gfp);
504void cache_random_seq_destroy(struct kmem_cache *cachep);
505#else
506static inline int cache_random_seq_create(struct kmem_cache *cachep,
507 unsigned int count, gfp_t gfp)
508{
509 return 0;
510}
511static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
512#endif /* CONFIG_SLAB_FREELIST_RANDOM */
513
5240ab40 514#endif /* MM_SLAB_H */