]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/slab_common.c
kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl
[thirdparty/kernel/stable.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
13#include <linux/compiler.h>
14#include <linux/module.h>
20cea968
CL
15#include <linux/cpu.h>
16#include <linux/uaccess.h>
b7454ad3
GC
17#include <linux/seq_file.h>
18#include <linux/proc_fs.h>
039363f3
CL
19#include <asm/cacheflush.h>
20#include <asm/tlbflush.h>
21#include <asm/page.h>
2633d7a0 22#include <linux/memcontrol.h>
928cec9c
AR
23
24#define CREATE_TRACE_POINTS
f1b6eb6e 25#include <trace/events/kmem.h>
039363f3 26
97d06609
CL
27#include "slab.h"
28
29enum slab_state slab_state;
18004c5d
CL
30LIST_HEAD(slab_caches);
31DEFINE_MUTEX(slab_mutex);
9b030cb8 32struct kmem_cache *kmem_cache;
97d06609 33
2d891fbc
KC
34#ifdef CONFIG_HARDENED_USERCOPY
35bool usercopy_fallback __ro_after_init =
36 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
37module_param(usercopy_fallback, bool, 0400);
38MODULE_PARM_DESC(usercopy_fallback,
39 "WARN instead of reject usercopy whitelist violations");
40#endif
41
657dc2f9
TH
42static LIST_HEAD(slab_caches_to_rcu_destroy);
43static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
44static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
45 slab_caches_to_rcu_destroy_workfn);
46
423c929c
JK
47/*
48 * Set of flags that will prevent slab merging
49 */
50#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 51 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 52 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 53
230e9fc2 54#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
75f296d9 55 SLAB_ACCOUNT)
423c929c
JK
56
57/*
58 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 59 */
7660a6fd 60static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
61
62static int __init setup_slab_nomerge(char *str)
63{
7660a6fd 64 slab_nomerge = true;
423c929c
JK
65 return 1;
66}
67
68#ifdef CONFIG_SLUB
69__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
70#endif
71
72__setup("slab_nomerge", setup_slab_nomerge);
73
07f361b2
JK
74/*
75 * Determine the size of a slab object
76 */
77unsigned int kmem_cache_size(struct kmem_cache *s)
78{
79 return s->object_size;
80}
81EXPORT_SYMBOL(kmem_cache_size);
82
77be4b13 83#ifdef CONFIG_DEBUG_VM
794b1248 84static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
85{
86 struct kmem_cache *s = NULL;
87
039363f3
CL
88 if (!name || in_interrupt() || size < sizeof(void *) ||
89 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
90 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
91 return -EINVAL;
039363f3 92 }
b920536a 93
20cea968
CL
94 list_for_each_entry(s, &slab_caches, list) {
95 char tmp;
96 int res;
97
98 /*
99 * This happens when the module gets unloaded and doesn't
100 * destroy its slab cache and no-one else reuses the vmalloc
101 * area of the module. Print a warning.
102 */
103 res = probe_kernel_address(s->name, tmp);
104 if (res) {
77be4b13 105 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
106 s->object_size);
107 continue;
108 }
20cea968
CL
109 }
110
111 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
112 return 0;
113}
114#else
794b1248 115static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
116{
117 return 0;
118}
20cea968
CL
119#endif
120
484748f0
CL
121void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
122{
123 size_t i;
124
ca257195
JDB
125 for (i = 0; i < nr; i++) {
126 if (s)
127 kmem_cache_free(s, p[i]);
128 else
129 kfree(p[i]);
130 }
484748f0
CL
131}
132
865762a8 133int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
134 void **p)
135{
136 size_t i;
137
138 for (i = 0; i < nr; i++) {
139 void *x = p[i] = kmem_cache_alloc(s, flags);
140 if (!x) {
141 __kmem_cache_free_bulk(s, i, p);
865762a8 142 return 0;
484748f0
CL
143 }
144 }
865762a8 145 return i;
484748f0
CL
146}
147
127424c8 148#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
510ded33
TH
149
150LIST_HEAD(slab_root_caches);
151
f7ce3190 152void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 153{
9eeadc8b 154 s->memcg_params.root_cache = NULL;
f7ce3190 155 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 156 INIT_LIST_HEAD(&s->memcg_params.children);
f7ce3190
VD
157}
158
159static int init_memcg_params(struct kmem_cache *s,
160 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
161{
162 struct memcg_cache_array *arr;
33a690c4 163
9eeadc8b 164 if (root_cache) {
f7ce3190 165 s->memcg_params.root_cache = root_cache;
9eeadc8b
TH
166 s->memcg_params.memcg = memcg;
167 INIT_LIST_HEAD(&s->memcg_params.children_node);
bc2791f8 168 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
33a690c4 169 return 0;
f7ce3190 170 }
33a690c4 171
f7ce3190 172 slab_init_memcg_params(s);
33a690c4 173
f7ce3190
VD
174 if (!memcg_nr_cache_ids)
175 return 0;
33a690c4 176
f80c7dab
JW
177 arr = kvzalloc(sizeof(struct memcg_cache_array) +
178 memcg_nr_cache_ids * sizeof(void *),
179 GFP_KERNEL);
f7ce3190
VD
180 if (!arr)
181 return -ENOMEM;
33a690c4 182
f7ce3190 183 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
184 return 0;
185}
186
f7ce3190 187static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 188{
f7ce3190 189 if (is_root_cache(s))
f80c7dab
JW
190 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
191}
192
193static void free_memcg_params(struct rcu_head *rcu)
194{
195 struct memcg_cache_array *old;
196
197 old = container_of(rcu, struct memcg_cache_array, rcu);
198 kvfree(old);
33a690c4
VD
199}
200
f7ce3190 201static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 202{
f7ce3190 203 struct memcg_cache_array *old, *new;
6f817f4c 204
f80c7dab
JW
205 new = kvzalloc(sizeof(struct memcg_cache_array) +
206 new_array_size * sizeof(void *), GFP_KERNEL);
f7ce3190 207 if (!new)
6f817f4c
VD
208 return -ENOMEM;
209
f7ce3190
VD
210 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
211 lockdep_is_held(&slab_mutex));
212 if (old)
213 memcpy(new->entries, old->entries,
214 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 215
f7ce3190
VD
216 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
217 if (old)
f80c7dab 218 call_rcu(&old->rcu, free_memcg_params);
6f817f4c
VD
219 return 0;
220}
221
55007d84
GC
222int memcg_update_all_caches(int num_memcgs)
223{
224 struct kmem_cache *s;
225 int ret = 0;
55007d84 226
05257a1a 227 mutex_lock(&slab_mutex);
510ded33 228 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
f7ce3190 229 ret = update_memcg_params(s, num_memcgs);
55007d84 230 /*
55007d84
GC
231 * Instead of freeing the memory, we'll just leave the caches
232 * up to this point in an updated state.
233 */
234 if (ret)
05257a1a 235 break;
55007d84 236 }
55007d84
GC
237 mutex_unlock(&slab_mutex);
238 return ret;
239}
657dc2f9 240
510ded33 241void memcg_link_cache(struct kmem_cache *s)
657dc2f9 242{
510ded33
TH
243 if (is_root_cache(s)) {
244 list_add(&s->root_caches_node, &slab_root_caches);
245 } else {
246 list_add(&s->memcg_params.children_node,
247 &s->memcg_params.root_cache->memcg_params.children);
248 list_add(&s->memcg_params.kmem_caches_node,
249 &s->memcg_params.memcg->kmem_caches);
250 }
251}
252
253static void memcg_unlink_cache(struct kmem_cache *s)
254{
255 if (is_root_cache(s)) {
256 list_del(&s->root_caches_node);
257 } else {
258 list_del(&s->memcg_params.children_node);
259 list_del(&s->memcg_params.kmem_caches_node);
260 }
657dc2f9 261}
33a690c4 262#else
f7ce3190
VD
263static inline int init_memcg_params(struct kmem_cache *s,
264 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
265{
266 return 0;
267}
268
f7ce3190 269static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
270{
271}
657dc2f9 272
510ded33 273static inline void memcg_unlink_cache(struct kmem_cache *s)
657dc2f9
TH
274{
275}
127424c8 276#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 277
423c929c
JK
278/*
279 * Find a mergeable slab cache
280 */
281int slab_unmergeable(struct kmem_cache *s)
282{
283 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
284 return 1;
285
286 if (!is_root_cache(s))
287 return 1;
288
289 if (s->ctor)
290 return 1;
291
8eb8284b
DW
292 if (s->usersize)
293 return 1;
294
423c929c
JK
295 /*
296 * We may have set a slab to be unmergeable during bootstrap.
297 */
298 if (s->refcount < 0)
299 return 1;
300
301 return 0;
302}
303
304struct kmem_cache *find_mergeable(size_t size, size_t align,
d50112ed 305 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
306{
307 struct kmem_cache *s;
308
c6e28895 309 if (slab_nomerge)
423c929c
JK
310 return NULL;
311
312 if (ctor)
313 return NULL;
314
315 size = ALIGN(size, sizeof(void *));
316 align = calculate_alignment(flags, align, size);
317 size = ALIGN(size, align);
318 flags = kmem_cache_flags(size, flags, name, NULL);
319
c6e28895
GM
320 if (flags & SLAB_NEVER_MERGE)
321 return NULL;
322
510ded33 323 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
423c929c
JK
324 if (slab_unmergeable(s))
325 continue;
326
327 if (size > s->size)
328 continue;
329
330 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
331 continue;
332 /*
333 * Check if alignment is compatible.
334 * Courtesy of Adrian Drzewiecki
335 */
336 if ((s->size & ~(align - 1)) != s->size)
337 continue;
338
339 if (s->size - size >= sizeof(void *))
340 continue;
341
95069ac8
JK
342 if (IS_ENABLED(CONFIG_SLAB) && align &&
343 (align > s->align || s->align % align))
344 continue;
345
423c929c
JK
346 return s;
347 }
348 return NULL;
349}
350
45906855
CL
351/*
352 * Figure out what the alignment of the objects will be given a set of
353 * flags, a user specified alignment and the size of the objects.
354 */
d50112ed 355unsigned long calculate_alignment(slab_flags_t flags,
45906855
CL
356 unsigned long align, unsigned long size)
357{
358 /*
359 * If the user wants hardware cache aligned objects then follow that
360 * suggestion if the object is sufficiently large.
361 *
362 * The hardware cache alignment cannot override the specified
363 * alignment though. If that is greater then use it.
364 */
365 if (flags & SLAB_HWCACHE_ALIGN) {
366 unsigned long ralign = cache_line_size();
367 while (size <= ralign / 2)
368 ralign /= 2;
369 align = max(align, ralign);
370 }
371
372 if (align < ARCH_SLAB_MINALIGN)
373 align = ARCH_SLAB_MINALIGN;
374
375 return ALIGN(align, sizeof(void *));
376}
377
c9a77a79
VD
378static struct kmem_cache *create_cache(const char *name,
379 size_t object_size, size_t size, size_t align,
8eb8284b
DW
380 slab_flags_t flags, size_t useroffset,
381 size_t usersize, void (*ctor)(void *),
c9a77a79 382 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
383{
384 struct kmem_cache *s;
385 int err;
386
8eb8284b
DW
387 if (WARN_ON(useroffset + usersize > object_size))
388 useroffset = usersize = 0;
389
794b1248
VD
390 err = -ENOMEM;
391 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
392 if (!s)
393 goto out;
394
395 s->name = name;
396 s->object_size = object_size;
397 s->size = size;
398 s->align = align;
399 s->ctor = ctor;
8eb8284b
DW
400 s->useroffset = useroffset;
401 s->usersize = usersize;
794b1248 402
f7ce3190 403 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
404 if (err)
405 goto out_free_cache;
406
407 err = __kmem_cache_create(s, flags);
408 if (err)
409 goto out_free_cache;
410
411 s->refcount = 1;
412 list_add(&s->list, &slab_caches);
510ded33 413 memcg_link_cache(s);
794b1248
VD
414out:
415 if (err)
416 return ERR_PTR(err);
417 return s;
418
419out_free_cache:
f7ce3190 420 destroy_memcg_params(s);
7c4da061 421 kmem_cache_free(kmem_cache, s);
794b1248
VD
422 goto out;
423}
45906855 424
77be4b13 425/*
8eb8284b 426 * kmem_cache_create_usercopy - Create a cache.
77be4b13
SK
427 * @name: A string which is used in /proc/slabinfo to identify this cache.
428 * @size: The size of objects to be created in this cache.
429 * @align: The required alignment for the objects.
430 * @flags: SLAB flags
8eb8284b
DW
431 * @useroffset: Usercopy region offset
432 * @usersize: Usercopy region size
77be4b13
SK
433 * @ctor: A constructor for the objects.
434 *
435 * Returns a ptr to the cache on success, NULL on failure.
436 * Cannot be called within a interrupt, but can be interrupted.
437 * The @ctor is run when new pages are allocated by the cache.
438 *
439 * The flags are
440 *
441 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
442 * to catch references to uninitialised memory.
443 *
444 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
445 * for buffer overruns.
446 *
447 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
448 * cacheline. This can be beneficial if you're counting cycles as closely
449 * as davem.
450 */
2633d7a0 451struct kmem_cache *
8eb8284b
DW
452kmem_cache_create_usercopy(const char *name, size_t size, size_t align,
453 slab_flags_t flags, size_t useroffset, size_t usersize,
454 void (*ctor)(void *))
77be4b13 455{
40911a79 456 struct kmem_cache *s = NULL;
3dec16ea 457 const char *cache_name;
3965fc36 458 int err;
039363f3 459
77be4b13 460 get_online_cpus();
03afc0e2 461 get_online_mems();
05257a1a 462 memcg_get_cache_ids();
03afc0e2 463
77be4b13 464 mutex_lock(&slab_mutex);
686d550d 465
794b1248 466 err = kmem_cache_sanity_check(name, size);
3aa24f51 467 if (err) {
3965fc36 468 goto out_unlock;
3aa24f51 469 }
686d550d 470
e70954fd
TG
471 /* Refuse requests with allocator specific flags */
472 if (flags & ~SLAB_FLAGS_PERMITTED) {
473 err = -EINVAL;
474 goto out_unlock;
475 }
476
d8843922
GC
477 /*
478 * Some allocators will constraint the set of valid flags to a subset
479 * of all flags. We expect them to define CACHE_CREATE_MASK in this
480 * case, and we'll just provide them with a sanitized version of the
481 * passed flags.
482 */
483 flags &= CACHE_CREATE_MASK;
686d550d 484
8eb8284b
DW
485 /* Fail closed on bad usersize of useroffset values. */
486 if (WARN_ON(!usersize && useroffset) ||
487 WARN_ON(size < usersize || size - usersize < useroffset))
488 usersize = useroffset = 0;
489
490 if (!usersize)
491 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 492 if (s)
3965fc36 493 goto out_unlock;
2633d7a0 494
3dec16ea 495 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
496 if (!cache_name) {
497 err = -ENOMEM;
498 goto out_unlock;
499 }
7c9adf5a 500
c9a77a79
VD
501 s = create_cache(cache_name, size, size,
502 calculate_alignment(flags, align, size),
8eb8284b 503 flags, useroffset, usersize, ctor, NULL, NULL);
794b1248
VD
504 if (IS_ERR(s)) {
505 err = PTR_ERR(s);
3dec16ea 506 kfree_const(cache_name);
794b1248 507 }
3965fc36
VD
508
509out_unlock:
20cea968 510 mutex_unlock(&slab_mutex);
03afc0e2 511
05257a1a 512 memcg_put_cache_ids();
03afc0e2 513 put_online_mems();
20cea968
CL
514 put_online_cpus();
515
ba3253c7 516 if (err) {
686d550d
CL
517 if (flags & SLAB_PANIC)
518 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
519 name, err);
520 else {
1170532b 521 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
522 name, err);
523 dump_stack();
524 }
686d550d
CL
525 return NULL;
526 }
039363f3
CL
527 return s;
528}
8eb8284b
DW
529EXPORT_SYMBOL(kmem_cache_create_usercopy);
530
531struct kmem_cache *
532kmem_cache_create(const char *name, size_t size, size_t align,
533 slab_flags_t flags, void (*ctor)(void *))
534{
535 return kmem_cache_create_usercopy(name, size, align, flags, 0, size,
536 ctor);
537}
794b1248 538EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 539
657dc2f9 540static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 541{
657dc2f9
TH
542 LIST_HEAD(to_destroy);
543 struct kmem_cache *s, *s2;
d5b3cf71 544
657dc2f9 545 /*
5f0d5a3a 546 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9
TH
547 * @slab_caches_to_rcu_destroy list. The slab pages are freed
548 * through RCU and and the associated kmem_cache are dereferenced
549 * while freeing the pages, so the kmem_caches should be freed only
550 * after the pending RCU operations are finished. As rcu_barrier()
551 * is a pretty slow operation, we batch all pending destructions
552 * asynchronously.
553 */
554 mutex_lock(&slab_mutex);
555 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
556 mutex_unlock(&slab_mutex);
d5b3cf71 557
657dc2f9
TH
558 if (list_empty(&to_destroy))
559 return;
560
561 rcu_barrier();
562
563 list_for_each_entry_safe(s, s2, &to_destroy, list) {
564#ifdef SLAB_SUPPORTS_SYSFS
565 sysfs_slab_release(s);
566#else
567 slab_kmem_cache_release(s);
568#endif
569 }
d5b3cf71
VD
570}
571
657dc2f9 572static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 573{
f9fa1d91
GT
574 /* free asan quarantined objects */
575 kasan_cache_shutdown(s);
576
657dc2f9
TH
577 if (__kmem_cache_shutdown(s) != 0)
578 return -EBUSY;
d5b3cf71 579
510ded33 580 memcg_unlink_cache(s);
657dc2f9 581 list_del(&s->list);
d5b3cf71 582
5f0d5a3a 583 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
657dc2f9
TH
584 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
585 schedule_work(&slab_caches_to_rcu_destroy_work);
586 } else {
d5b3cf71 587#ifdef SLAB_SUPPORTS_SYSFS
bf5eb3de 588 sysfs_slab_release(s);
d5b3cf71
VD
589#else
590 slab_kmem_cache_release(s);
591#endif
592 }
657dc2f9
TH
593
594 return 0;
d5b3cf71
VD
595}
596
127424c8 597#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 598/*
776ed0f0 599 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
600 * @memcg: The memory cgroup the new cache is for.
601 * @root_cache: The parent of the new cache.
602 *
603 * This function attempts to create a kmem cache that will serve allocation
604 * requests going from @memcg to @root_cache. The new cache inherits properties
605 * from its parent.
606 */
d5b3cf71
VD
607void memcg_create_kmem_cache(struct mem_cgroup *memcg,
608 struct kmem_cache *root_cache)
2633d7a0 609{
3e0350a3 610 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 611 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 612 struct memcg_cache_array *arr;
bd673145 613 struct kmem_cache *s = NULL;
794b1248 614 char *cache_name;
f7ce3190 615 int idx;
794b1248
VD
616
617 get_online_cpus();
03afc0e2
VD
618 get_online_mems();
619
794b1248
VD
620 mutex_lock(&slab_mutex);
621
2a4db7eb 622 /*
567e9ab2 623 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
624 * creation work was pending.
625 */
b6ecd2de 626 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
627 goto out_unlock;
628
f7ce3190
VD
629 idx = memcg_cache_id(memcg);
630 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
631 lockdep_is_held(&slab_mutex));
632
d5b3cf71
VD
633 /*
634 * Since per-memcg caches are created asynchronously on first
635 * allocation (see memcg_kmem_get_cache()), several threads can try to
636 * create the same cache, but only one of them may succeed.
637 */
f7ce3190 638 if (arr->entries[idx])
d5b3cf71
VD
639 goto out_unlock;
640
f1008365 641 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
642 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
643 css->serial_nr, memcg_name_buf);
794b1248
VD
644 if (!cache_name)
645 goto out_unlock;
646
c9a77a79
VD
647 s = create_cache(cache_name, root_cache->object_size,
648 root_cache->size, root_cache->align,
f773e36d 649 root_cache->flags & CACHE_CREATE_MASK,
8eb8284b 650 root_cache->useroffset, root_cache->usersize,
f773e36d 651 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
652 /*
653 * If we could not create a memcg cache, do not complain, because
654 * that's not critical at all as we can always proceed with the root
655 * cache.
656 */
bd673145 657 if (IS_ERR(s)) {
794b1248 658 kfree(cache_name);
d5b3cf71 659 goto out_unlock;
bd673145 660 }
794b1248 661
d5b3cf71
VD
662 /*
663 * Since readers won't lock (see cache_from_memcg_idx()), we need a
664 * barrier here to ensure nobody will see the kmem_cache partially
665 * initialized.
666 */
667 smp_wmb();
f7ce3190 668 arr->entries[idx] = s;
d5b3cf71 669
794b1248
VD
670out_unlock:
671 mutex_unlock(&slab_mutex);
03afc0e2
VD
672
673 put_online_mems();
794b1248 674 put_online_cpus();
2633d7a0 675}
b8529907 676
01fb58bc
TH
677static void kmemcg_deactivate_workfn(struct work_struct *work)
678{
679 struct kmem_cache *s = container_of(work, struct kmem_cache,
680 memcg_params.deact_work);
681
682 get_online_cpus();
683 get_online_mems();
684
685 mutex_lock(&slab_mutex);
686
687 s->memcg_params.deact_fn(s);
688
689 mutex_unlock(&slab_mutex);
690
691 put_online_mems();
692 put_online_cpus();
693
694 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
695 css_put(&s->memcg_params.memcg->css);
696}
697
698static void kmemcg_deactivate_rcufn(struct rcu_head *head)
699{
700 struct kmem_cache *s = container_of(head, struct kmem_cache,
701 memcg_params.deact_rcu_head);
702
703 /*
704 * We need to grab blocking locks. Bounce to ->deact_work. The
705 * work item shares the space with the RCU head and can't be
706 * initialized eariler.
707 */
708 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
17cc4dfe 709 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
01fb58bc
TH
710}
711
712/**
713 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
714 * sched RCU grace period
715 * @s: target kmem_cache
716 * @deact_fn: deactivation function to call
717 *
718 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
719 * held after a sched RCU grace period. The slab is guaranteed to stay
720 * alive until @deact_fn is finished. This is to be used from
721 * __kmemcg_cache_deactivate().
722 */
723void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
724 void (*deact_fn)(struct kmem_cache *))
725{
726 if (WARN_ON_ONCE(is_root_cache(s)) ||
727 WARN_ON_ONCE(s->memcg_params.deact_fn))
728 return;
729
730 /* pin memcg so that @s doesn't get destroyed in the middle */
731 css_get(&s->memcg_params.memcg->css);
732
733 s->memcg_params.deact_fn = deact_fn;
734 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
735}
736
2a4db7eb
VD
737void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
738{
739 int idx;
740 struct memcg_cache_array *arr;
d6e0b7fa 741 struct kmem_cache *s, *c;
2a4db7eb
VD
742
743 idx = memcg_cache_id(memcg);
744
d6e0b7fa
VD
745 get_online_cpus();
746 get_online_mems();
747
2a4db7eb 748 mutex_lock(&slab_mutex);
510ded33 749 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
2a4db7eb
VD
750 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
751 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
752 c = arr->entries[idx];
753 if (!c)
754 continue;
755
c9fc5864 756 __kmemcg_cache_deactivate(c);
2a4db7eb
VD
757 arr->entries[idx] = NULL;
758 }
759 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
760
761 put_online_mems();
762 put_online_cpus();
2a4db7eb
VD
763}
764
d5b3cf71 765void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 766{
d5b3cf71 767 struct kmem_cache *s, *s2;
b8529907 768
d5b3cf71
VD
769 get_online_cpus();
770 get_online_mems();
b8529907 771
b8529907 772 mutex_lock(&slab_mutex);
bc2791f8
TH
773 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
774 memcg_params.kmem_caches_node) {
d5b3cf71
VD
775 /*
776 * The cgroup is about to be freed and therefore has no charges
777 * left. Hence, all its caches must be empty by now.
778 */
657dc2f9 779 BUG_ON(shutdown_cache(s));
d5b3cf71
VD
780 }
781 mutex_unlock(&slab_mutex);
b8529907 782
d5b3cf71
VD
783 put_online_mems();
784 put_online_cpus();
b8529907 785}
d60fdcc9 786
657dc2f9 787static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
788{
789 struct memcg_cache_array *arr;
790 struct kmem_cache *c, *c2;
791 LIST_HEAD(busy);
792 int i;
793
794 BUG_ON(!is_root_cache(s));
795
796 /*
797 * First, shutdown active caches, i.e. caches that belong to online
798 * memory cgroups.
799 */
800 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
801 lockdep_is_held(&slab_mutex));
802 for_each_memcg_cache_index(i) {
803 c = arr->entries[i];
804 if (!c)
805 continue;
657dc2f9 806 if (shutdown_cache(c))
d60fdcc9
VD
807 /*
808 * The cache still has objects. Move it to a temporary
809 * list so as not to try to destroy it for a second
810 * time while iterating over inactive caches below.
811 */
9eeadc8b 812 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
813 else
814 /*
815 * The cache is empty and will be destroyed soon. Clear
816 * the pointer to it in the memcg_caches array so that
817 * it will never be accessed even if the root cache
818 * stays alive.
819 */
820 arr->entries[i] = NULL;
821 }
822
823 /*
824 * Second, shutdown all caches left from memory cgroups that are now
825 * offline.
826 */
9eeadc8b
TH
827 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
828 memcg_params.children_node)
657dc2f9 829 shutdown_cache(c);
d60fdcc9 830
9eeadc8b 831 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
832
833 /*
834 * A cache being destroyed must be empty. In particular, this means
835 * that all per memcg caches attached to it must be empty too.
836 */
9eeadc8b 837 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
838 return -EBUSY;
839 return 0;
840}
841#else
657dc2f9 842static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
843{
844 return 0;
845}
127424c8 846#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 847
41a21285
CL
848void slab_kmem_cache_release(struct kmem_cache *s)
849{
52b4b950 850 __kmem_cache_release(s);
f7ce3190 851 destroy_memcg_params(s);
3dec16ea 852 kfree_const(s->name);
41a21285
CL
853 kmem_cache_free(kmem_cache, s);
854}
855
945cf2b6
CL
856void kmem_cache_destroy(struct kmem_cache *s)
857{
d60fdcc9 858 int err;
d5b3cf71 859
3942d299
SS
860 if (unlikely(!s))
861 return;
862
945cf2b6 863 get_online_cpus();
03afc0e2
VD
864 get_online_mems();
865
945cf2b6 866 mutex_lock(&slab_mutex);
b8529907 867
945cf2b6 868 s->refcount--;
b8529907
VD
869 if (s->refcount)
870 goto out_unlock;
871
657dc2f9 872 err = shutdown_memcg_caches(s);
d60fdcc9 873 if (!err)
657dc2f9 874 err = shutdown_cache(s);
b8529907 875
cd918c55 876 if (err) {
756a025f
JP
877 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
878 s->name);
cd918c55
VD
879 dump_stack();
880 }
b8529907
VD
881out_unlock:
882 mutex_unlock(&slab_mutex);
d5b3cf71 883
03afc0e2 884 put_online_mems();
945cf2b6
CL
885 put_online_cpus();
886}
887EXPORT_SYMBOL(kmem_cache_destroy);
888
03afc0e2
VD
889/**
890 * kmem_cache_shrink - Shrink a cache.
891 * @cachep: The cache to shrink.
892 *
893 * Releases as many slabs as possible for a cache.
894 * To help debugging, a zero exit status indicates all slabs were released.
895 */
896int kmem_cache_shrink(struct kmem_cache *cachep)
897{
898 int ret;
899
900 get_online_cpus();
901 get_online_mems();
55834c59 902 kasan_cache_shrink(cachep);
c9fc5864 903 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
904 put_online_mems();
905 put_online_cpus();
906 return ret;
907}
908EXPORT_SYMBOL(kmem_cache_shrink);
909
fda90124 910bool slab_is_available(void)
97d06609
CL
911{
912 return slab_state >= UP;
913}
b7454ad3 914
45530c44
CL
915#ifndef CONFIG_SLOB
916/* Create a cache during boot when no slab services are available yet */
917void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
8eb8284b 918 slab_flags_t flags, size_t useroffset, size_t usersize)
45530c44
CL
919{
920 int err;
921
922 s->name = name;
923 s->size = s->object_size = size;
45906855 924 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
8eb8284b
DW
925 s->useroffset = useroffset;
926 s->usersize = usersize;
f7ce3190
VD
927
928 slab_init_memcg_params(s);
929
45530c44
CL
930 err = __kmem_cache_create(s, flags);
931
932 if (err)
31ba7346 933 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
934 name, size, err);
935
936 s->refcount = -1; /* Exempt from merging for now */
937}
938
939struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
6c0c21ad
DW
940 slab_flags_t flags, size_t useroffset,
941 size_t usersize)
45530c44
CL
942{
943 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
944
945 if (!s)
946 panic("Out of memory when creating slab %s\n", name);
947
6c0c21ad 948 create_boot_cache(s, name, size, flags, useroffset, usersize);
45530c44 949 list_add(&s->list, &slab_caches);
510ded33 950 memcg_link_cache(s);
45530c44
CL
951 s->refcount = 1;
952 return s;
953}
954
9425c58e
CL
955struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
956EXPORT_SYMBOL(kmalloc_caches);
957
958#ifdef CONFIG_ZONE_DMA
959struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
960EXPORT_SYMBOL(kmalloc_dma_caches);
961#endif
962
2c59dd65
CL
963/*
964 * Conversion table for small slabs sizes / 8 to the index in the
965 * kmalloc array. This is necessary for slabs < 192 since we have non power
966 * of two cache sizes there. The size of larger slabs can be determined using
967 * fls.
968 */
969static s8 size_index[24] = {
970 3, /* 8 */
971 4, /* 16 */
972 5, /* 24 */
973 5, /* 32 */
974 6, /* 40 */
975 6, /* 48 */
976 6, /* 56 */
977 6, /* 64 */
978 1, /* 72 */
979 1, /* 80 */
980 1, /* 88 */
981 1, /* 96 */
982 7, /* 104 */
983 7, /* 112 */
984 7, /* 120 */
985 7, /* 128 */
986 2, /* 136 */
987 2, /* 144 */
988 2, /* 152 */
989 2, /* 160 */
990 2, /* 168 */
991 2, /* 176 */
992 2, /* 184 */
993 2 /* 192 */
994};
995
996static inline int size_index_elem(size_t bytes)
997{
998 return (bytes - 1) / 8;
999}
1000
1001/*
1002 * Find the kmem_cache structure that serves a given size of
1003 * allocation
1004 */
1005struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1006{
1007 int index;
1008
9de1bc87 1009 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 1010 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 1011 return NULL;
907985f4 1012 }
6286ae97 1013
2c59dd65
CL
1014 if (size <= 192) {
1015 if (!size)
1016 return ZERO_SIZE_PTR;
1017
1018 index = size_index[size_index_elem(size)];
1019 } else
1020 index = fls(size - 1);
1021
1022#ifdef CONFIG_ZONE_DMA
b1e05416 1023 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
1024 return kmalloc_dma_caches[index];
1025
1026#endif
1027 return kmalloc_caches[index];
1028}
1029
4066c33d
GG
1030/*
1031 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1032 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1033 * kmalloc-67108864.
1034 */
af3b5f87 1035const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
1036 {NULL, 0}, {"kmalloc-96", 96},
1037 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1038 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1039 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1040 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1041 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1042 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1043 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1044 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1045 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1046 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1047 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1048 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1049 {"kmalloc-67108864", 67108864}
1050};
1051
f97d5f63 1052/*
34cc6990
DS
1053 * Patch up the size_index table if we have strange large alignment
1054 * requirements for the kmalloc array. This is only the case for
1055 * MIPS it seems. The standard arches will not generate any code here.
1056 *
1057 * Largest permitted alignment is 256 bytes due to the way we
1058 * handle the index determination for the smaller caches.
1059 *
1060 * Make sure that nothing crazy happens if someone starts tinkering
1061 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 1062 */
34cc6990 1063void __init setup_kmalloc_cache_index_table(void)
f97d5f63
CL
1064{
1065 int i;
1066
2c59dd65
CL
1067 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1068 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1069
1070 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1071 int elem = size_index_elem(i);
1072
1073 if (elem >= ARRAY_SIZE(size_index))
1074 break;
1075 size_index[elem] = KMALLOC_SHIFT_LOW;
1076 }
1077
1078 if (KMALLOC_MIN_SIZE >= 64) {
1079 /*
1080 * The 96 byte size cache is not used if the alignment
1081 * is 64 byte.
1082 */
1083 for (i = 64 + 8; i <= 96; i += 8)
1084 size_index[size_index_elem(i)] = 7;
1085
1086 }
1087
1088 if (KMALLOC_MIN_SIZE >= 128) {
1089 /*
1090 * The 192 byte sized cache is not used if the alignment
1091 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1092 * instead.
1093 */
1094 for (i = 128 + 8; i <= 192; i += 8)
1095 size_index[size_index_elem(i)] = 8;
1096 }
34cc6990
DS
1097}
1098
d50112ed 1099static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
a9730fca
CL
1100{
1101 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
6c0c21ad
DW
1102 kmalloc_info[idx].size, flags, 0,
1103 kmalloc_info[idx].size);
a9730fca
CL
1104}
1105
34cc6990
DS
1106/*
1107 * Create the kmalloc array. Some of the regular kmalloc arrays
1108 * may already have been created because they were needed to
1109 * enable allocations for slab creation.
1110 */
d50112ed 1111void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990
DS
1112{
1113 int i;
1114
a9730fca
CL
1115 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1116 if (!kmalloc_caches[i])
1117 new_kmalloc_cache(i, flags);
f97d5f63 1118
956e46ef 1119 /*
a9730fca
CL
1120 * Caches that are not of the two-to-the-power-of size.
1121 * These have to be created immediately after the
1122 * earlier power of two caches
956e46ef 1123 */
a9730fca
CL
1124 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1125 new_kmalloc_cache(1, flags);
1126 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1127 new_kmalloc_cache(2, flags);
8a965b3b
CL
1128 }
1129
f97d5f63
CL
1130 /* Kmalloc array is now usable */
1131 slab_state = UP;
1132
f97d5f63
CL
1133#ifdef CONFIG_ZONE_DMA
1134 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1135 struct kmem_cache *s = kmalloc_caches[i];
1136
1137 if (s) {
1138 int size = kmalloc_size(i);
1139 char *n = kasprintf(GFP_NOWAIT,
1140 "dma-kmalloc-%d", size);
1141
1142 BUG_ON(!n);
1143 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
6c0c21ad 1144 size, SLAB_CACHE_DMA | flags, 0, 0);
f97d5f63
CL
1145 }
1146 }
1147#endif
1148}
45530c44
CL
1149#endif /* !CONFIG_SLOB */
1150
cea371f4
VD
1151/*
1152 * To avoid unnecessary overhead, we pass through large allocation requests
1153 * directly to the page allocator. We use __GFP_COMP, because we will need to
1154 * know the allocation order to free the pages properly in kfree.
1155 */
52383431
VD
1156void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1157{
1158 void *ret;
1159 struct page *page;
1160
1161 flags |= __GFP_COMP;
4949148a 1162 page = alloc_pages(flags, order);
52383431
VD
1163 ret = page ? page_address(page) : NULL;
1164 kmemleak_alloc(ret, size, 1, flags);
505f5dcb 1165 kasan_kmalloc_large(ret, size, flags);
52383431
VD
1166 return ret;
1167}
1168EXPORT_SYMBOL(kmalloc_order);
1169
f1b6eb6e
CL
1170#ifdef CONFIG_TRACING
1171void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1172{
1173 void *ret = kmalloc_order(size, flags, order);
1174 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1175 return ret;
1176}
1177EXPORT_SYMBOL(kmalloc_order_trace);
1178#endif
45530c44 1179
7c00fce9
TG
1180#ifdef CONFIG_SLAB_FREELIST_RANDOM
1181/* Randomize a generic freelist */
1182static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1183 size_t count)
1184{
1185 size_t i;
1186 unsigned int rand;
1187
1188 for (i = 0; i < count; i++)
1189 list[i] = i;
1190
1191 /* Fisher-Yates shuffle */
1192 for (i = count - 1; i > 0; i--) {
1193 rand = prandom_u32_state(state);
1194 rand %= (i + 1);
1195 swap(list[i], list[rand]);
1196 }
1197}
1198
1199/* Create a random sequence per cache */
1200int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1201 gfp_t gfp)
1202{
1203 struct rnd_state state;
1204
1205 if (count < 2 || cachep->random_seq)
1206 return 0;
1207
1208 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1209 if (!cachep->random_seq)
1210 return -ENOMEM;
1211
1212 /* Get best entropy at this stage of boot */
1213 prandom_seed_state(&state, get_random_long());
1214
1215 freelist_randomize(&state, cachep->random_seq, count);
1216 return 0;
1217}
1218
1219/* Destroy the per-cache random freelist sequence */
1220void cache_random_seq_destroy(struct kmem_cache *cachep)
1221{
1222 kfree(cachep->random_seq);
1223 cachep->random_seq = NULL;
1224}
1225#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1226
5b365771 1227#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b
WL
1228#ifdef CONFIG_SLAB
1229#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1230#else
1231#define SLABINFO_RIGHTS S_IRUSR
1232#endif
1233
b047501c 1234static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1235{
1236 /*
1237 * Output format version, so at least we can change it
1238 * without _too_ many complaints.
1239 */
1240#ifdef CONFIG_DEBUG_SLAB
1241 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1242#else
1243 seq_puts(m, "slabinfo - version: 2.1\n");
1244#endif
756a025f 1245 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1246 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1247 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1248#ifdef CONFIG_DEBUG_SLAB
756a025f 1249 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1250 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1251#endif
1252 seq_putc(m, '\n');
1253}
1254
1df3b26f 1255void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1256{
b7454ad3 1257 mutex_lock(&slab_mutex);
510ded33 1258 return seq_list_start(&slab_root_caches, *pos);
b7454ad3
GC
1259}
1260
276a2439 1261void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1262{
510ded33 1263 return seq_list_next(p, &slab_root_caches, pos);
b7454ad3
GC
1264}
1265
276a2439 1266void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1267{
1268 mutex_unlock(&slab_mutex);
1269}
1270
749c5415
GC
1271static void
1272memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1273{
1274 struct kmem_cache *c;
1275 struct slabinfo sinfo;
749c5415
GC
1276
1277 if (!is_root_cache(s))
1278 return;
1279
426589f5 1280 for_each_memcg_cache(c, s) {
749c5415
GC
1281 memset(&sinfo, 0, sizeof(sinfo));
1282 get_slabinfo(c, &sinfo);
1283
1284 info->active_slabs += sinfo.active_slabs;
1285 info->num_slabs += sinfo.num_slabs;
1286 info->shared_avail += sinfo.shared_avail;
1287 info->active_objs += sinfo.active_objs;
1288 info->num_objs += sinfo.num_objs;
1289 }
1290}
1291
b047501c 1292static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1293{
0d7561c6
GC
1294 struct slabinfo sinfo;
1295
1296 memset(&sinfo, 0, sizeof(sinfo));
1297 get_slabinfo(s, &sinfo);
1298
749c5415
GC
1299 memcg_accumulate_slabinfo(s, &sinfo);
1300
0d7561c6 1301 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1302 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1303 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1304
1305 seq_printf(m, " : tunables %4u %4u %4u",
1306 sinfo.limit, sinfo.batchcount, sinfo.shared);
1307 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1308 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1309 slabinfo_show_stats(m, s);
1310 seq_putc(m, '\n');
b7454ad3
GC
1311}
1312
1df3b26f 1313static int slab_show(struct seq_file *m, void *p)
749c5415 1314{
510ded33 1315 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
749c5415 1316
510ded33 1317 if (p == slab_root_caches.next)
1df3b26f 1318 print_slabinfo_header(m);
510ded33 1319 cache_show(s, m);
b047501c
VD
1320 return 0;
1321}
1322
852d8be0
YS
1323void dump_unreclaimable_slab(void)
1324{
1325 struct kmem_cache *s, *s2;
1326 struct slabinfo sinfo;
1327
1328 /*
1329 * Here acquiring slab_mutex is risky since we don't prefer to get
1330 * sleep in oom path. But, without mutex hold, it may introduce a
1331 * risk of crash.
1332 * Use mutex_trylock to protect the list traverse, dump nothing
1333 * without acquiring the mutex.
1334 */
1335 if (!mutex_trylock(&slab_mutex)) {
1336 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1337 return;
1338 }
1339
1340 pr_info("Unreclaimable slab info:\n");
1341 pr_info("Name Used Total\n");
1342
1343 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1344 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1345 continue;
1346
1347 get_slabinfo(s, &sinfo);
1348
1349 if (sinfo.num_objs > 0)
1350 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1351 (sinfo.active_objs * s->size) / 1024,
1352 (sinfo.num_objs * s->size) / 1024);
1353 }
1354 mutex_unlock(&slab_mutex);
1355}
1356
5b365771 1357#if defined(CONFIG_MEMCG)
bc2791f8
TH
1358void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1359{
1360 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1361
1362 mutex_lock(&slab_mutex);
1363 return seq_list_start(&memcg->kmem_caches, *pos);
1364}
1365
1366void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1367{
1368 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1369
1370 return seq_list_next(p, &memcg->kmem_caches, pos);
1371}
1372
1373void memcg_slab_stop(struct seq_file *m, void *p)
1374{
1375 mutex_unlock(&slab_mutex);
1376}
1377
b047501c
VD
1378int memcg_slab_show(struct seq_file *m, void *p)
1379{
bc2791f8
TH
1380 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1381 memcg_params.kmem_caches_node);
b047501c
VD
1382 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1383
bc2791f8 1384 if (p == memcg->kmem_caches.next)
b047501c 1385 print_slabinfo_header(m);
bc2791f8 1386 cache_show(s, m);
b047501c 1387 return 0;
749c5415 1388}
b047501c 1389#endif
749c5415 1390
b7454ad3
GC
1391/*
1392 * slabinfo_op - iterator that generates /proc/slabinfo
1393 *
1394 * Output layout:
1395 * cache-name
1396 * num-active-objs
1397 * total-objs
1398 * object size
1399 * num-active-slabs
1400 * total-slabs
1401 * num-pages-per-slab
1402 * + further values on SMP and with statistics enabled
1403 */
1404static const struct seq_operations slabinfo_op = {
1df3b26f 1405 .start = slab_start,
276a2439
WL
1406 .next = slab_next,
1407 .stop = slab_stop,
1df3b26f 1408 .show = slab_show,
b7454ad3
GC
1409};
1410
1411static int slabinfo_open(struct inode *inode, struct file *file)
1412{
1413 return seq_open(file, &slabinfo_op);
1414}
1415
1416static const struct file_operations proc_slabinfo_operations = {
1417 .open = slabinfo_open,
1418 .read = seq_read,
1419 .write = slabinfo_write,
1420 .llseek = seq_lseek,
1421 .release = seq_release,
1422};
1423
1424static int __init slab_proc_init(void)
1425{
e9b4db2b
WL
1426 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1427 &proc_slabinfo_operations);
b7454ad3
GC
1428 return 0;
1429}
1430module_init(slab_proc_init);
5b365771 1431#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1432
1433static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1434 gfp_t flags)
1435{
1436 void *ret;
1437 size_t ks = 0;
1438
1439 if (p)
1440 ks = ksize(p);
1441
0316bec2 1442 if (ks >= new_size) {
505f5dcb 1443 kasan_krealloc((void *)p, new_size, flags);
928cec9c 1444 return (void *)p;
0316bec2 1445 }
928cec9c
AR
1446
1447 ret = kmalloc_track_caller(new_size, flags);
1448 if (ret && p)
1449 memcpy(ret, p, ks);
1450
1451 return ret;
1452}
1453
1454/**
1455 * __krealloc - like krealloc() but don't free @p.
1456 * @p: object to reallocate memory for.
1457 * @new_size: how many bytes of memory are required.
1458 * @flags: the type of memory to allocate.
1459 *
1460 * This function is like krealloc() except it never frees the originally
1461 * allocated buffer. Use this if you don't want to free the buffer immediately
1462 * like, for example, with RCU.
1463 */
1464void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1465{
1466 if (unlikely(!new_size))
1467 return ZERO_SIZE_PTR;
1468
1469 return __do_krealloc(p, new_size, flags);
1470
1471}
1472EXPORT_SYMBOL(__krealloc);
1473
1474/**
1475 * krealloc - reallocate memory. The contents will remain unchanged.
1476 * @p: object to reallocate memory for.
1477 * @new_size: how many bytes of memory are required.
1478 * @flags: the type of memory to allocate.
1479 *
1480 * The contents of the object pointed to are preserved up to the
1481 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1482 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1483 * %NULL pointer, the object pointed to is freed.
1484 */
1485void *krealloc(const void *p, size_t new_size, gfp_t flags)
1486{
1487 void *ret;
1488
1489 if (unlikely(!new_size)) {
1490 kfree(p);
1491 return ZERO_SIZE_PTR;
1492 }
1493
1494 ret = __do_krealloc(p, new_size, flags);
1495 if (ret && p != ret)
1496 kfree(p);
1497
1498 return ret;
1499}
1500EXPORT_SYMBOL(krealloc);
1501
1502/**
1503 * kzfree - like kfree but zero memory
1504 * @p: object to free memory of
1505 *
1506 * The memory of the object @p points to is zeroed before freed.
1507 * If @p is %NULL, kzfree() does nothing.
1508 *
1509 * Note: this function zeroes the whole allocated buffer which can be a good
1510 * deal bigger than the requested buffer size passed to kmalloc(). So be
1511 * careful when using this function in performance sensitive code.
1512 */
1513void kzfree(const void *p)
1514{
1515 size_t ks;
1516 void *mem = (void *)p;
1517
1518 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1519 return;
1520 ks = ksize(mem);
1521 memset(mem, 0, ks);
1522 kfree(mem);
1523}
1524EXPORT_SYMBOL(kzfree);
1525
1526/* Tracepoints definitions. */
1527EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1528EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1529EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1530EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1531EXPORT_TRACEPOINT_SYMBOL(kfree);
1532EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);