]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/slab_common.c
mm/slub: add a dump_stack() to the unexpected GFP check
[thirdparty/linux.git] / mm / slab_common.c
CommitLineData
039363f3
CL
1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
20cea968
CL
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
b7454ad3
GC
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
039363f3
CL
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
2633d7a0 21#include <linux/memcontrol.h>
928cec9c
AR
22
23#define CREATE_TRACE_POINTS
f1b6eb6e 24#include <trace/events/kmem.h>
039363f3 25
97d06609
CL
26#include "slab.h"
27
28enum slab_state slab_state;
18004c5d
CL
29LIST_HEAD(slab_caches);
30DEFINE_MUTEX(slab_mutex);
9b030cb8 31struct kmem_cache *kmem_cache;
97d06609 32
423c929c
JK
33/*
34 * Set of flags that will prevent slab merging
35 */
36#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 38 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 39
230e9fc2
VD
40#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
41 SLAB_NOTRACK | SLAB_ACCOUNT)
423c929c
JK
42
43/*
44 * Merge control. If this is set then no merging of slab caches will occur.
45 * (Could be removed. This was introduced to pacify the merge skeptics.)
46 */
47static int slab_nomerge;
48
49static int __init setup_slab_nomerge(char *str)
50{
51 slab_nomerge = 1;
52 return 1;
53}
54
55#ifdef CONFIG_SLUB
56__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
57#endif
58
59__setup("slab_nomerge", setup_slab_nomerge);
60
07f361b2
JK
61/*
62 * Determine the size of a slab object
63 */
64unsigned int kmem_cache_size(struct kmem_cache *s)
65{
66 return s->object_size;
67}
68EXPORT_SYMBOL(kmem_cache_size);
69
77be4b13 70#ifdef CONFIG_DEBUG_VM
794b1248 71static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
72{
73 struct kmem_cache *s = NULL;
74
039363f3
CL
75 if (!name || in_interrupt() || size < sizeof(void *) ||
76 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
77 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
78 return -EINVAL;
039363f3 79 }
b920536a 80
20cea968
CL
81 list_for_each_entry(s, &slab_caches, list) {
82 char tmp;
83 int res;
84
85 /*
86 * This happens when the module gets unloaded and doesn't
87 * destroy its slab cache and no-one else reuses the vmalloc
88 * area of the module. Print a warning.
89 */
90 res = probe_kernel_address(s->name, tmp);
91 if (res) {
77be4b13 92 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
93 s->object_size);
94 continue;
95 }
20cea968
CL
96 }
97
98 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
99 return 0;
100}
101#else
794b1248 102static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
103{
104 return 0;
105}
20cea968
CL
106#endif
107
484748f0
CL
108void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
109{
110 size_t i;
111
ca257195
JDB
112 for (i = 0; i < nr; i++) {
113 if (s)
114 kmem_cache_free(s, p[i]);
115 else
116 kfree(p[i]);
117 }
484748f0
CL
118}
119
865762a8 120int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
121 void **p)
122{
123 size_t i;
124
125 for (i = 0; i < nr; i++) {
126 void *x = p[i] = kmem_cache_alloc(s, flags);
127 if (!x) {
128 __kmem_cache_free_bulk(s, i, p);
865762a8 129 return 0;
484748f0
CL
130 }
131 }
865762a8 132 return i;
484748f0
CL
133}
134
127424c8 135#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
f7ce3190 136void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 137{
f7ce3190 138 s->memcg_params.is_root_cache = true;
426589f5 139 INIT_LIST_HEAD(&s->memcg_params.list);
f7ce3190
VD
140 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
141}
142
143static int init_memcg_params(struct kmem_cache *s,
144 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
145{
146 struct memcg_cache_array *arr;
33a690c4 147
f7ce3190
VD
148 if (memcg) {
149 s->memcg_params.is_root_cache = false;
150 s->memcg_params.memcg = memcg;
151 s->memcg_params.root_cache = root_cache;
33a690c4 152 return 0;
f7ce3190 153 }
33a690c4 154
f7ce3190 155 slab_init_memcg_params(s);
33a690c4 156
f7ce3190
VD
157 if (!memcg_nr_cache_ids)
158 return 0;
33a690c4 159
f7ce3190
VD
160 arr = kzalloc(sizeof(struct memcg_cache_array) +
161 memcg_nr_cache_ids * sizeof(void *),
162 GFP_KERNEL);
163 if (!arr)
164 return -ENOMEM;
33a690c4 165
f7ce3190 166 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
167 return 0;
168}
169
f7ce3190 170static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 171{
f7ce3190
VD
172 if (is_root_cache(s))
173 kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
33a690c4
VD
174}
175
f7ce3190 176static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 177{
f7ce3190 178 struct memcg_cache_array *old, *new;
6f817f4c 179
f7ce3190
VD
180 if (!is_root_cache(s))
181 return 0;
6f817f4c 182
f7ce3190
VD
183 new = kzalloc(sizeof(struct memcg_cache_array) +
184 new_array_size * sizeof(void *), GFP_KERNEL);
185 if (!new)
6f817f4c
VD
186 return -ENOMEM;
187
f7ce3190
VD
188 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
189 lockdep_is_held(&slab_mutex));
190 if (old)
191 memcpy(new->entries, old->entries,
192 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 193
f7ce3190
VD
194 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
195 if (old)
196 kfree_rcu(old, rcu);
6f817f4c
VD
197 return 0;
198}
199
55007d84
GC
200int memcg_update_all_caches(int num_memcgs)
201{
202 struct kmem_cache *s;
203 int ret = 0;
55007d84 204
05257a1a 205 mutex_lock(&slab_mutex);
55007d84 206 list_for_each_entry(s, &slab_caches, list) {
f7ce3190 207 ret = update_memcg_params(s, num_memcgs);
55007d84 208 /*
55007d84
GC
209 * Instead of freeing the memory, we'll just leave the caches
210 * up to this point in an updated state.
211 */
212 if (ret)
05257a1a 213 break;
55007d84 214 }
55007d84
GC
215 mutex_unlock(&slab_mutex);
216 return ret;
217}
33a690c4 218#else
f7ce3190
VD
219static inline int init_memcg_params(struct kmem_cache *s,
220 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
221{
222 return 0;
223}
224
f7ce3190 225static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
226{
227}
127424c8 228#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 229
423c929c
JK
230/*
231 * Find a mergeable slab cache
232 */
233int slab_unmergeable(struct kmem_cache *s)
234{
235 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
236 return 1;
237
238 if (!is_root_cache(s))
239 return 1;
240
241 if (s->ctor)
242 return 1;
243
244 /*
245 * We may have set a slab to be unmergeable during bootstrap.
246 */
247 if (s->refcount < 0)
248 return 1;
249
250 return 0;
251}
252
253struct kmem_cache *find_mergeable(size_t size, size_t align,
254 unsigned long flags, const char *name, void (*ctor)(void *))
255{
256 struct kmem_cache *s;
257
c6e28895 258 if (slab_nomerge)
423c929c
JK
259 return NULL;
260
261 if (ctor)
262 return NULL;
263
264 size = ALIGN(size, sizeof(void *));
265 align = calculate_alignment(flags, align, size);
266 size = ALIGN(size, align);
267 flags = kmem_cache_flags(size, flags, name, NULL);
268
c6e28895
GM
269 if (flags & SLAB_NEVER_MERGE)
270 return NULL;
271
54362057 272 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
273 if (slab_unmergeable(s))
274 continue;
275
276 if (size > s->size)
277 continue;
278
279 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
280 continue;
281 /*
282 * Check if alignment is compatible.
283 * Courtesy of Adrian Drzewiecki
284 */
285 if ((s->size & ~(align - 1)) != s->size)
286 continue;
287
288 if (s->size - size >= sizeof(void *))
289 continue;
290
95069ac8
JK
291 if (IS_ENABLED(CONFIG_SLAB) && align &&
292 (align > s->align || s->align % align))
293 continue;
294
423c929c
JK
295 return s;
296 }
297 return NULL;
298}
299
45906855
CL
300/*
301 * Figure out what the alignment of the objects will be given a set of
302 * flags, a user specified alignment and the size of the objects.
303 */
304unsigned long calculate_alignment(unsigned long flags,
305 unsigned long align, unsigned long size)
306{
307 /*
308 * If the user wants hardware cache aligned objects then follow that
309 * suggestion if the object is sufficiently large.
310 *
311 * The hardware cache alignment cannot override the specified
312 * alignment though. If that is greater then use it.
313 */
314 if (flags & SLAB_HWCACHE_ALIGN) {
315 unsigned long ralign = cache_line_size();
316 while (size <= ralign / 2)
317 ralign /= 2;
318 align = max(align, ralign);
319 }
320
321 if (align < ARCH_SLAB_MINALIGN)
322 align = ARCH_SLAB_MINALIGN;
323
324 return ALIGN(align, sizeof(void *));
325}
326
c9a77a79
VD
327static struct kmem_cache *create_cache(const char *name,
328 size_t object_size, size_t size, size_t align,
329 unsigned long flags, void (*ctor)(void *),
330 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
331{
332 struct kmem_cache *s;
333 int err;
334
335 err = -ENOMEM;
336 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
337 if (!s)
338 goto out;
339
340 s->name = name;
341 s->object_size = object_size;
342 s->size = size;
343 s->align = align;
344 s->ctor = ctor;
345
f7ce3190 346 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
347 if (err)
348 goto out_free_cache;
349
350 err = __kmem_cache_create(s, flags);
351 if (err)
352 goto out_free_cache;
353
354 s->refcount = 1;
355 list_add(&s->list, &slab_caches);
794b1248
VD
356out:
357 if (err)
358 return ERR_PTR(err);
359 return s;
360
361out_free_cache:
f7ce3190 362 destroy_memcg_params(s);
7c4da061 363 kmem_cache_free(kmem_cache, s);
794b1248
VD
364 goto out;
365}
45906855 366
77be4b13
SK
367/*
368 * kmem_cache_create - Create a cache.
369 * @name: A string which is used in /proc/slabinfo to identify this cache.
370 * @size: The size of objects to be created in this cache.
371 * @align: The required alignment for the objects.
372 * @flags: SLAB flags
373 * @ctor: A constructor for the objects.
374 *
375 * Returns a ptr to the cache on success, NULL on failure.
376 * Cannot be called within a interrupt, but can be interrupted.
377 * The @ctor is run when new pages are allocated by the cache.
378 *
379 * The flags are
380 *
381 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
382 * to catch references to uninitialised memory.
383 *
384 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
385 * for buffer overruns.
386 *
387 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
388 * cacheline. This can be beneficial if you're counting cycles as closely
389 * as davem.
390 */
2633d7a0 391struct kmem_cache *
794b1248
VD
392kmem_cache_create(const char *name, size_t size, size_t align,
393 unsigned long flags, void (*ctor)(void *))
77be4b13 394{
40911a79 395 struct kmem_cache *s = NULL;
3dec16ea 396 const char *cache_name;
3965fc36 397 int err;
039363f3 398
77be4b13 399 get_online_cpus();
03afc0e2 400 get_online_mems();
05257a1a 401 memcg_get_cache_ids();
03afc0e2 402
77be4b13 403 mutex_lock(&slab_mutex);
686d550d 404
794b1248 405 err = kmem_cache_sanity_check(name, size);
3aa24f51 406 if (err) {
3965fc36 407 goto out_unlock;
3aa24f51 408 }
686d550d 409
e70954fd
TG
410 /* Refuse requests with allocator specific flags */
411 if (flags & ~SLAB_FLAGS_PERMITTED) {
412 err = -EINVAL;
413 goto out_unlock;
414 }
415
d8843922
GC
416 /*
417 * Some allocators will constraint the set of valid flags to a subset
418 * of all flags. We expect them to define CACHE_CREATE_MASK in this
419 * case, and we'll just provide them with a sanitized version of the
420 * passed flags.
421 */
422 flags &= CACHE_CREATE_MASK;
686d550d 423
794b1248
VD
424 s = __kmem_cache_alias(name, size, align, flags, ctor);
425 if (s)
3965fc36 426 goto out_unlock;
2633d7a0 427
3dec16ea 428 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
429 if (!cache_name) {
430 err = -ENOMEM;
431 goto out_unlock;
432 }
7c9adf5a 433
c9a77a79
VD
434 s = create_cache(cache_name, size, size,
435 calculate_alignment(flags, align, size),
436 flags, ctor, NULL, NULL);
794b1248
VD
437 if (IS_ERR(s)) {
438 err = PTR_ERR(s);
3dec16ea 439 kfree_const(cache_name);
794b1248 440 }
3965fc36
VD
441
442out_unlock:
20cea968 443 mutex_unlock(&slab_mutex);
03afc0e2 444
05257a1a 445 memcg_put_cache_ids();
03afc0e2 446 put_online_mems();
20cea968
CL
447 put_online_cpus();
448
ba3253c7 449 if (err) {
686d550d
CL
450 if (flags & SLAB_PANIC)
451 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
452 name, err);
453 else {
1170532b 454 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
455 name, err);
456 dump_stack();
457 }
686d550d
CL
458 return NULL;
459 }
039363f3
CL
460 return s;
461}
794b1248 462EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 463
c9a77a79 464static int shutdown_cache(struct kmem_cache *s,
d5b3cf71
VD
465 struct list_head *release, bool *need_rcu_barrier)
466{
cd918c55 467 if (__kmem_cache_shutdown(s) != 0)
d5b3cf71 468 return -EBUSY;
d5b3cf71
VD
469
470 if (s->flags & SLAB_DESTROY_BY_RCU)
471 *need_rcu_barrier = true;
472
d5b3cf71
VD
473 list_move(&s->list, release);
474 return 0;
475}
476
c9a77a79 477static void release_caches(struct list_head *release, bool need_rcu_barrier)
d5b3cf71
VD
478{
479 struct kmem_cache *s, *s2;
480
481 if (need_rcu_barrier)
482 rcu_barrier();
483
484 list_for_each_entry_safe(s, s2, release, list) {
485#ifdef SLAB_SUPPORTS_SYSFS
486 sysfs_slab_remove(s);
487#else
488 slab_kmem_cache_release(s);
489#endif
490 }
491}
492
127424c8 493#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 494/*
776ed0f0 495 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
496 * @memcg: The memory cgroup the new cache is for.
497 * @root_cache: The parent of the new cache.
498 *
499 * This function attempts to create a kmem cache that will serve allocation
500 * requests going from @memcg to @root_cache. The new cache inherits properties
501 * from its parent.
502 */
d5b3cf71
VD
503void memcg_create_kmem_cache(struct mem_cgroup *memcg,
504 struct kmem_cache *root_cache)
2633d7a0 505{
3e0350a3 506 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 507 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 508 struct memcg_cache_array *arr;
bd673145 509 struct kmem_cache *s = NULL;
794b1248 510 char *cache_name;
f7ce3190 511 int idx;
794b1248
VD
512
513 get_online_cpus();
03afc0e2
VD
514 get_online_mems();
515
794b1248
VD
516 mutex_lock(&slab_mutex);
517
2a4db7eb 518 /*
567e9ab2 519 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
520 * creation work was pending.
521 */
b6ecd2de 522 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
523 goto out_unlock;
524
f7ce3190
VD
525 idx = memcg_cache_id(memcg);
526 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
527 lockdep_is_held(&slab_mutex));
528
d5b3cf71
VD
529 /*
530 * Since per-memcg caches are created asynchronously on first
531 * allocation (see memcg_kmem_get_cache()), several threads can try to
532 * create the same cache, but only one of them may succeed.
533 */
f7ce3190 534 if (arr->entries[idx])
d5b3cf71
VD
535 goto out_unlock;
536
f1008365 537 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
538 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
539 css->serial_nr, memcg_name_buf);
794b1248
VD
540 if (!cache_name)
541 goto out_unlock;
542
c9a77a79
VD
543 s = create_cache(cache_name, root_cache->object_size,
544 root_cache->size, root_cache->align,
f773e36d
GT
545 root_cache->flags & CACHE_CREATE_MASK,
546 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
547 /*
548 * If we could not create a memcg cache, do not complain, because
549 * that's not critical at all as we can always proceed with the root
550 * cache.
551 */
bd673145 552 if (IS_ERR(s)) {
794b1248 553 kfree(cache_name);
d5b3cf71 554 goto out_unlock;
bd673145 555 }
794b1248 556
426589f5
VD
557 list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
558
d5b3cf71
VD
559 /*
560 * Since readers won't lock (see cache_from_memcg_idx()), we need a
561 * barrier here to ensure nobody will see the kmem_cache partially
562 * initialized.
563 */
564 smp_wmb();
f7ce3190 565 arr->entries[idx] = s;
d5b3cf71 566
794b1248
VD
567out_unlock:
568 mutex_unlock(&slab_mutex);
03afc0e2
VD
569
570 put_online_mems();
794b1248 571 put_online_cpus();
2633d7a0 572}
b8529907 573
2a4db7eb
VD
574void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
575{
576 int idx;
577 struct memcg_cache_array *arr;
d6e0b7fa 578 struct kmem_cache *s, *c;
2a4db7eb
VD
579
580 idx = memcg_cache_id(memcg);
581
d6e0b7fa
VD
582 get_online_cpus();
583 get_online_mems();
584
89e364db
VD
585#ifdef CONFIG_SLUB
586 /*
587 * In case of SLUB, we need to disable empty slab caching to
588 * avoid pinning the offline memory cgroup by freeable kmem
589 * pages charged to it. SLAB doesn't need this, as it
590 * periodically purges unused slabs.
591 */
592 mutex_lock(&slab_mutex);
593 list_for_each_entry(s, &slab_caches, list) {
594 c = is_root_cache(s) ? cache_from_memcg_idx(s, idx) : NULL;
595 if (c) {
596 c->cpu_partial = 0;
597 c->min_partial = 0;
598 }
599 }
600 mutex_unlock(&slab_mutex);
601 /*
602 * kmem_cache->cpu_partial is checked locklessly (see
603 * put_cpu_partial()). Make sure the change is visible.
604 */
605 synchronize_sched();
606#endif
607
2a4db7eb
VD
608 mutex_lock(&slab_mutex);
609 list_for_each_entry(s, &slab_caches, list) {
610 if (!is_root_cache(s))
611 continue;
612
613 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
614 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
615 c = arr->entries[idx];
616 if (!c)
617 continue;
618
89e364db 619 __kmem_cache_shrink(c);
2a4db7eb
VD
620 arr->entries[idx] = NULL;
621 }
622 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
623
624 put_online_mems();
625 put_online_cpus();
2a4db7eb
VD
626}
627
d60fdcc9
VD
628static int __shutdown_memcg_cache(struct kmem_cache *s,
629 struct list_head *release, bool *need_rcu_barrier)
630{
631 BUG_ON(is_root_cache(s));
632
633 if (shutdown_cache(s, release, need_rcu_barrier))
634 return -EBUSY;
635
636 list_del(&s->memcg_params.list);
637 return 0;
638}
639
d5b3cf71 640void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 641{
d5b3cf71
VD
642 LIST_HEAD(release);
643 bool need_rcu_barrier = false;
644 struct kmem_cache *s, *s2;
b8529907 645
d5b3cf71
VD
646 get_online_cpus();
647 get_online_mems();
b8529907 648
b8529907 649 mutex_lock(&slab_mutex);
d5b3cf71 650 list_for_each_entry_safe(s, s2, &slab_caches, list) {
f7ce3190 651 if (is_root_cache(s) || s->memcg_params.memcg != memcg)
d5b3cf71
VD
652 continue;
653 /*
654 * The cgroup is about to be freed and therefore has no charges
655 * left. Hence, all its caches must be empty by now.
656 */
d60fdcc9 657 BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
d5b3cf71
VD
658 }
659 mutex_unlock(&slab_mutex);
b8529907 660
d5b3cf71
VD
661 put_online_mems();
662 put_online_cpus();
663
c9a77a79 664 release_caches(&release, need_rcu_barrier);
b8529907 665}
d60fdcc9
VD
666
667static int shutdown_memcg_caches(struct kmem_cache *s,
668 struct list_head *release, bool *need_rcu_barrier)
669{
670 struct memcg_cache_array *arr;
671 struct kmem_cache *c, *c2;
672 LIST_HEAD(busy);
673 int i;
674
675 BUG_ON(!is_root_cache(s));
676
677 /*
678 * First, shutdown active caches, i.e. caches that belong to online
679 * memory cgroups.
680 */
681 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
682 lockdep_is_held(&slab_mutex));
683 for_each_memcg_cache_index(i) {
684 c = arr->entries[i];
685 if (!c)
686 continue;
687 if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
688 /*
689 * The cache still has objects. Move it to a temporary
690 * list so as not to try to destroy it for a second
691 * time while iterating over inactive caches below.
692 */
693 list_move(&c->memcg_params.list, &busy);
694 else
695 /*
696 * The cache is empty and will be destroyed soon. Clear
697 * the pointer to it in the memcg_caches array so that
698 * it will never be accessed even if the root cache
699 * stays alive.
700 */
701 arr->entries[i] = NULL;
702 }
703
704 /*
705 * Second, shutdown all caches left from memory cgroups that are now
706 * offline.
707 */
708 list_for_each_entry_safe(c, c2, &s->memcg_params.list,
709 memcg_params.list)
710 __shutdown_memcg_cache(c, release, need_rcu_barrier);
711
712 list_splice(&busy, &s->memcg_params.list);
713
714 /*
715 * A cache being destroyed must be empty. In particular, this means
716 * that all per memcg caches attached to it must be empty too.
717 */
718 if (!list_empty(&s->memcg_params.list))
719 return -EBUSY;
720 return 0;
721}
722#else
723static inline int shutdown_memcg_caches(struct kmem_cache *s,
724 struct list_head *release, bool *need_rcu_barrier)
725{
726 return 0;
727}
127424c8 728#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 729
41a21285
CL
730void slab_kmem_cache_release(struct kmem_cache *s)
731{
52b4b950 732 __kmem_cache_release(s);
f7ce3190 733 destroy_memcg_params(s);
3dec16ea 734 kfree_const(s->name);
41a21285
CL
735 kmem_cache_free(kmem_cache, s);
736}
737
945cf2b6
CL
738void kmem_cache_destroy(struct kmem_cache *s)
739{
d5b3cf71
VD
740 LIST_HEAD(release);
741 bool need_rcu_barrier = false;
d60fdcc9 742 int err;
d5b3cf71 743
3942d299
SS
744 if (unlikely(!s))
745 return;
746
945cf2b6 747 get_online_cpus();
03afc0e2
VD
748 get_online_mems();
749
55834c59 750 kasan_cache_destroy(s);
945cf2b6 751 mutex_lock(&slab_mutex);
b8529907 752
945cf2b6 753 s->refcount--;
b8529907
VD
754 if (s->refcount)
755 goto out_unlock;
756
d60fdcc9
VD
757 err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
758 if (!err)
cd918c55 759 err = shutdown_cache(s, &release, &need_rcu_barrier);
b8529907 760
cd918c55 761 if (err) {
756a025f
JP
762 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
763 s->name);
cd918c55
VD
764 dump_stack();
765 }
b8529907
VD
766out_unlock:
767 mutex_unlock(&slab_mutex);
d5b3cf71 768
03afc0e2 769 put_online_mems();
945cf2b6 770 put_online_cpus();
d5b3cf71 771
c9a77a79 772 release_caches(&release, need_rcu_barrier);
945cf2b6
CL
773}
774EXPORT_SYMBOL(kmem_cache_destroy);
775
03afc0e2
VD
776/**
777 * kmem_cache_shrink - Shrink a cache.
778 * @cachep: The cache to shrink.
779 *
780 * Releases as many slabs as possible for a cache.
781 * To help debugging, a zero exit status indicates all slabs were released.
782 */
783int kmem_cache_shrink(struct kmem_cache *cachep)
784{
785 int ret;
786
787 get_online_cpus();
788 get_online_mems();
55834c59 789 kasan_cache_shrink(cachep);
89e364db 790 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
791 put_online_mems();
792 put_online_cpus();
793 return ret;
794}
795EXPORT_SYMBOL(kmem_cache_shrink);
796
fda90124 797bool slab_is_available(void)
97d06609
CL
798{
799 return slab_state >= UP;
800}
b7454ad3 801
45530c44
CL
802#ifndef CONFIG_SLOB
803/* Create a cache during boot when no slab services are available yet */
804void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
805 unsigned long flags)
806{
807 int err;
808
809 s->name = name;
810 s->size = s->object_size = size;
45906855 811 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
f7ce3190
VD
812
813 slab_init_memcg_params(s);
814
45530c44
CL
815 err = __kmem_cache_create(s, flags);
816
817 if (err)
31ba7346 818 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
819 name, size, err);
820
821 s->refcount = -1; /* Exempt from merging for now */
822}
823
824struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
825 unsigned long flags)
826{
827 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
828
829 if (!s)
830 panic("Out of memory when creating slab %s\n", name);
831
832 create_boot_cache(s, name, size, flags);
833 list_add(&s->list, &slab_caches);
834 s->refcount = 1;
835 return s;
836}
837
9425c58e
CL
838struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
839EXPORT_SYMBOL(kmalloc_caches);
840
841#ifdef CONFIG_ZONE_DMA
842struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
843EXPORT_SYMBOL(kmalloc_dma_caches);
844#endif
845
2c59dd65
CL
846/*
847 * Conversion table for small slabs sizes / 8 to the index in the
848 * kmalloc array. This is necessary for slabs < 192 since we have non power
849 * of two cache sizes there. The size of larger slabs can be determined using
850 * fls.
851 */
852static s8 size_index[24] = {
853 3, /* 8 */
854 4, /* 16 */
855 5, /* 24 */
856 5, /* 32 */
857 6, /* 40 */
858 6, /* 48 */
859 6, /* 56 */
860 6, /* 64 */
861 1, /* 72 */
862 1, /* 80 */
863 1, /* 88 */
864 1, /* 96 */
865 7, /* 104 */
866 7, /* 112 */
867 7, /* 120 */
868 7, /* 128 */
869 2, /* 136 */
870 2, /* 144 */
871 2, /* 152 */
872 2, /* 160 */
873 2, /* 168 */
874 2, /* 176 */
875 2, /* 184 */
876 2 /* 192 */
877};
878
879static inline int size_index_elem(size_t bytes)
880{
881 return (bytes - 1) / 8;
882}
883
884/*
885 * Find the kmem_cache structure that serves a given size of
886 * allocation
887 */
888struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
889{
890 int index;
891
9de1bc87 892 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 893 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 894 return NULL;
907985f4 895 }
6286ae97 896
2c59dd65
CL
897 if (size <= 192) {
898 if (!size)
899 return ZERO_SIZE_PTR;
900
901 index = size_index[size_index_elem(size)];
902 } else
903 index = fls(size - 1);
904
905#ifdef CONFIG_ZONE_DMA
b1e05416 906 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
907 return kmalloc_dma_caches[index];
908
909#endif
910 return kmalloc_caches[index];
911}
912
4066c33d
GG
913/*
914 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
915 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
916 * kmalloc-67108864.
917 */
918static struct {
919 const char *name;
920 unsigned long size;
921} const kmalloc_info[] __initconst = {
922 {NULL, 0}, {"kmalloc-96", 96},
923 {"kmalloc-192", 192}, {"kmalloc-8", 8},
924 {"kmalloc-16", 16}, {"kmalloc-32", 32},
925 {"kmalloc-64", 64}, {"kmalloc-128", 128},
926 {"kmalloc-256", 256}, {"kmalloc-512", 512},
927 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
928 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
929 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
930 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
931 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
932 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
933 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
934 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
935 {"kmalloc-67108864", 67108864}
936};
937
f97d5f63 938/*
34cc6990
DS
939 * Patch up the size_index table if we have strange large alignment
940 * requirements for the kmalloc array. This is only the case for
941 * MIPS it seems. The standard arches will not generate any code here.
942 *
943 * Largest permitted alignment is 256 bytes due to the way we
944 * handle the index determination for the smaller caches.
945 *
946 * Make sure that nothing crazy happens if someone starts tinkering
947 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 948 */
34cc6990 949void __init setup_kmalloc_cache_index_table(void)
f97d5f63
CL
950{
951 int i;
952
2c59dd65
CL
953 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
954 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
955
956 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
957 int elem = size_index_elem(i);
958
959 if (elem >= ARRAY_SIZE(size_index))
960 break;
961 size_index[elem] = KMALLOC_SHIFT_LOW;
962 }
963
964 if (KMALLOC_MIN_SIZE >= 64) {
965 /*
966 * The 96 byte size cache is not used if the alignment
967 * is 64 byte.
968 */
969 for (i = 64 + 8; i <= 96; i += 8)
970 size_index[size_index_elem(i)] = 7;
971
972 }
973
974 if (KMALLOC_MIN_SIZE >= 128) {
975 /*
976 * The 192 byte sized cache is not used if the alignment
977 * is 128 byte. Redirect kmalloc to use the 256 byte cache
978 * instead.
979 */
980 for (i = 128 + 8; i <= 192; i += 8)
981 size_index[size_index_elem(i)] = 8;
982 }
34cc6990
DS
983}
984
ae6f2462 985static void __init new_kmalloc_cache(int idx, unsigned long flags)
a9730fca
CL
986{
987 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
988 kmalloc_info[idx].size, flags);
989}
990
34cc6990
DS
991/*
992 * Create the kmalloc array. Some of the regular kmalloc arrays
993 * may already have been created because they were needed to
994 * enable allocations for slab creation.
995 */
996void __init create_kmalloc_caches(unsigned long flags)
997{
998 int i;
999
a9730fca
CL
1000 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1001 if (!kmalloc_caches[i])
1002 new_kmalloc_cache(i, flags);
f97d5f63 1003
956e46ef 1004 /*
a9730fca
CL
1005 * Caches that are not of the two-to-the-power-of size.
1006 * These have to be created immediately after the
1007 * earlier power of two caches
956e46ef 1008 */
a9730fca
CL
1009 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1010 new_kmalloc_cache(1, flags);
1011 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1012 new_kmalloc_cache(2, flags);
8a965b3b
CL
1013 }
1014
f97d5f63
CL
1015 /* Kmalloc array is now usable */
1016 slab_state = UP;
1017
f97d5f63
CL
1018#ifdef CONFIG_ZONE_DMA
1019 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1020 struct kmem_cache *s = kmalloc_caches[i];
1021
1022 if (s) {
1023 int size = kmalloc_size(i);
1024 char *n = kasprintf(GFP_NOWAIT,
1025 "dma-kmalloc-%d", size);
1026
1027 BUG_ON(!n);
1028 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1029 size, SLAB_CACHE_DMA | flags);
1030 }
1031 }
1032#endif
1033}
45530c44
CL
1034#endif /* !CONFIG_SLOB */
1035
cea371f4
VD
1036/*
1037 * To avoid unnecessary overhead, we pass through large allocation requests
1038 * directly to the page allocator. We use __GFP_COMP, because we will need to
1039 * know the allocation order to free the pages properly in kfree.
1040 */
52383431
VD
1041void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1042{
1043 void *ret;
1044 struct page *page;
1045
1046 flags |= __GFP_COMP;
4949148a 1047 page = alloc_pages(flags, order);
52383431
VD
1048 ret = page ? page_address(page) : NULL;
1049 kmemleak_alloc(ret, size, 1, flags);
505f5dcb 1050 kasan_kmalloc_large(ret, size, flags);
52383431
VD
1051 return ret;
1052}
1053EXPORT_SYMBOL(kmalloc_order);
1054
f1b6eb6e
CL
1055#ifdef CONFIG_TRACING
1056void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1057{
1058 void *ret = kmalloc_order(size, flags, order);
1059 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1060 return ret;
1061}
1062EXPORT_SYMBOL(kmalloc_order_trace);
1063#endif
45530c44 1064
7c00fce9
TG
1065#ifdef CONFIG_SLAB_FREELIST_RANDOM
1066/* Randomize a generic freelist */
1067static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1068 size_t count)
1069{
1070 size_t i;
1071 unsigned int rand;
1072
1073 for (i = 0; i < count; i++)
1074 list[i] = i;
1075
1076 /* Fisher-Yates shuffle */
1077 for (i = count - 1; i > 0; i--) {
1078 rand = prandom_u32_state(state);
1079 rand %= (i + 1);
1080 swap(list[i], list[rand]);
1081 }
1082}
1083
1084/* Create a random sequence per cache */
1085int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1086 gfp_t gfp)
1087{
1088 struct rnd_state state;
1089
1090 if (count < 2 || cachep->random_seq)
1091 return 0;
1092
1093 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1094 if (!cachep->random_seq)
1095 return -ENOMEM;
1096
1097 /* Get best entropy at this stage of boot */
1098 prandom_seed_state(&state, get_random_long());
1099
1100 freelist_randomize(&state, cachep->random_seq, count);
1101 return 0;
1102}
1103
1104/* Destroy the per-cache random freelist sequence */
1105void cache_random_seq_destroy(struct kmem_cache *cachep)
1106{
1107 kfree(cachep->random_seq);
1108 cachep->random_seq = NULL;
1109}
1110#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1111
b7454ad3 1112#ifdef CONFIG_SLABINFO
e9b4db2b
WL
1113
1114#ifdef CONFIG_SLAB
1115#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1116#else
1117#define SLABINFO_RIGHTS S_IRUSR
1118#endif
1119
b047501c 1120static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1121{
1122 /*
1123 * Output format version, so at least we can change it
1124 * without _too_ many complaints.
1125 */
1126#ifdef CONFIG_DEBUG_SLAB
1127 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1128#else
1129 seq_puts(m, "slabinfo - version: 2.1\n");
1130#endif
756a025f 1131 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1132 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1133 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1134#ifdef CONFIG_DEBUG_SLAB
756a025f 1135 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1136 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1137#endif
1138 seq_putc(m, '\n');
1139}
1140
1df3b26f 1141void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1142{
b7454ad3 1143 mutex_lock(&slab_mutex);
b7454ad3
GC
1144 return seq_list_start(&slab_caches, *pos);
1145}
1146
276a2439 1147void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3
GC
1148{
1149 return seq_list_next(p, &slab_caches, pos);
1150}
1151
276a2439 1152void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1153{
1154 mutex_unlock(&slab_mutex);
1155}
1156
749c5415
GC
1157static void
1158memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1159{
1160 struct kmem_cache *c;
1161 struct slabinfo sinfo;
749c5415
GC
1162
1163 if (!is_root_cache(s))
1164 return;
1165
426589f5 1166 for_each_memcg_cache(c, s) {
749c5415
GC
1167 memset(&sinfo, 0, sizeof(sinfo));
1168 get_slabinfo(c, &sinfo);
1169
1170 info->active_slabs += sinfo.active_slabs;
1171 info->num_slabs += sinfo.num_slabs;
1172 info->shared_avail += sinfo.shared_avail;
1173 info->active_objs += sinfo.active_objs;
1174 info->num_objs += sinfo.num_objs;
1175 }
1176}
1177
b047501c 1178static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1179{
0d7561c6
GC
1180 struct slabinfo sinfo;
1181
1182 memset(&sinfo, 0, sizeof(sinfo));
1183 get_slabinfo(s, &sinfo);
1184
749c5415
GC
1185 memcg_accumulate_slabinfo(s, &sinfo);
1186
0d7561c6 1187 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1188 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1189 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1190
1191 seq_printf(m, " : tunables %4u %4u %4u",
1192 sinfo.limit, sinfo.batchcount, sinfo.shared);
1193 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1194 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1195 slabinfo_show_stats(m, s);
1196 seq_putc(m, '\n');
b7454ad3
GC
1197}
1198
1df3b26f 1199static int slab_show(struct seq_file *m, void *p)
749c5415
GC
1200{
1201 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1202
1df3b26f
VD
1203 if (p == slab_caches.next)
1204 print_slabinfo_header(m);
b047501c
VD
1205 if (is_root_cache(s))
1206 cache_show(s, m);
1207 return 0;
1208}
1209
127424c8 1210#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
b047501c
VD
1211int memcg_slab_show(struct seq_file *m, void *p)
1212{
1213 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1214 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1215
1216 if (p == slab_caches.next)
1217 print_slabinfo_header(m);
f7ce3190 1218 if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
b047501c
VD
1219 cache_show(s, m);
1220 return 0;
749c5415 1221}
b047501c 1222#endif
749c5415 1223
b7454ad3
GC
1224/*
1225 * slabinfo_op - iterator that generates /proc/slabinfo
1226 *
1227 * Output layout:
1228 * cache-name
1229 * num-active-objs
1230 * total-objs
1231 * object size
1232 * num-active-slabs
1233 * total-slabs
1234 * num-pages-per-slab
1235 * + further values on SMP and with statistics enabled
1236 */
1237static const struct seq_operations slabinfo_op = {
1df3b26f 1238 .start = slab_start,
276a2439
WL
1239 .next = slab_next,
1240 .stop = slab_stop,
1df3b26f 1241 .show = slab_show,
b7454ad3
GC
1242};
1243
1244static int slabinfo_open(struct inode *inode, struct file *file)
1245{
1246 return seq_open(file, &slabinfo_op);
1247}
1248
1249static const struct file_operations proc_slabinfo_operations = {
1250 .open = slabinfo_open,
1251 .read = seq_read,
1252 .write = slabinfo_write,
1253 .llseek = seq_lseek,
1254 .release = seq_release,
1255};
1256
1257static int __init slab_proc_init(void)
1258{
e9b4db2b
WL
1259 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1260 &proc_slabinfo_operations);
b7454ad3
GC
1261 return 0;
1262}
1263module_init(slab_proc_init);
1264#endif /* CONFIG_SLABINFO */
928cec9c
AR
1265
1266static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1267 gfp_t flags)
1268{
1269 void *ret;
1270 size_t ks = 0;
1271
1272 if (p)
1273 ks = ksize(p);
1274
0316bec2 1275 if (ks >= new_size) {
505f5dcb 1276 kasan_krealloc((void *)p, new_size, flags);
928cec9c 1277 return (void *)p;
0316bec2 1278 }
928cec9c
AR
1279
1280 ret = kmalloc_track_caller(new_size, flags);
1281 if (ret && p)
1282 memcpy(ret, p, ks);
1283
1284 return ret;
1285}
1286
1287/**
1288 * __krealloc - like krealloc() but don't free @p.
1289 * @p: object to reallocate memory for.
1290 * @new_size: how many bytes of memory are required.
1291 * @flags: the type of memory to allocate.
1292 *
1293 * This function is like krealloc() except it never frees the originally
1294 * allocated buffer. Use this if you don't want to free the buffer immediately
1295 * like, for example, with RCU.
1296 */
1297void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1298{
1299 if (unlikely(!new_size))
1300 return ZERO_SIZE_PTR;
1301
1302 return __do_krealloc(p, new_size, flags);
1303
1304}
1305EXPORT_SYMBOL(__krealloc);
1306
1307/**
1308 * krealloc - reallocate memory. The contents will remain unchanged.
1309 * @p: object to reallocate memory for.
1310 * @new_size: how many bytes of memory are required.
1311 * @flags: the type of memory to allocate.
1312 *
1313 * The contents of the object pointed to are preserved up to the
1314 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1315 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1316 * %NULL pointer, the object pointed to is freed.
1317 */
1318void *krealloc(const void *p, size_t new_size, gfp_t flags)
1319{
1320 void *ret;
1321
1322 if (unlikely(!new_size)) {
1323 kfree(p);
1324 return ZERO_SIZE_PTR;
1325 }
1326
1327 ret = __do_krealloc(p, new_size, flags);
1328 if (ret && p != ret)
1329 kfree(p);
1330
1331 return ret;
1332}
1333EXPORT_SYMBOL(krealloc);
1334
1335/**
1336 * kzfree - like kfree but zero memory
1337 * @p: object to free memory of
1338 *
1339 * The memory of the object @p points to is zeroed before freed.
1340 * If @p is %NULL, kzfree() does nothing.
1341 *
1342 * Note: this function zeroes the whole allocated buffer which can be a good
1343 * deal bigger than the requested buffer size passed to kmalloc(). So be
1344 * careful when using this function in performance sensitive code.
1345 */
1346void kzfree(const void *p)
1347{
1348 size_t ks;
1349 void *mem = (void *)p;
1350
1351 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1352 return;
1353 ks = ksize(mem);
1354 memset(mem, 0, ks);
1355 kfree(mem);
1356}
1357EXPORT_SYMBOL(kzfree);
1358
1359/* Tracepoints definitions. */
1360EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1361EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1362EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1363EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1364EXPORT_TRACEPOINT_SYMBOL(kfree);
1365EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);