]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/slob.c
mm, sl[ou]b: improve memory accounting
[thirdparty/linux.git] / mm / slob.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
10cef602
MM
2/*
3 * SLOB Allocator: Simple List Of Blocks
4 *
5 * Matt Mackall <mpm@selenic.com> 12/30/03
6 *
6193a2ff
PM
7 * NUMA support by Paul Mundt, 2007.
8 *
10cef602
MM
9 * How SLOB works:
10 *
11 * The core of SLOB is a traditional K&R style heap allocator, with
12 * support for returning aligned objects. The granularity of this
55394849
NP
13 * allocator is as little as 2 bytes, however typically most architectures
14 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
95b35127 15 *
20cecbae
MM
16 * The slob heap is a set of linked list of pages from alloc_pages(),
17 * and within each page, there is a singly-linked list of free blocks
18 * (slob_t). The heap is grown on demand. To reduce fragmentation,
19 * heap pages are segregated into three lists, with objects less than
20 * 256 bytes, objects less than 1024 bytes, and all other objects.
21 *
22 * Allocation from heap involves first searching for a page with
23 * sufficient free blocks (using a next-fit-like approach) followed by
24 * a first-fit scan of the page. Deallocation inserts objects back
25 * into the free list in address order, so this is effectively an
26 * address-ordered first fit.
10cef602
MM
27 *
28 * Above this is an implementation of kmalloc/kfree. Blocks returned
55394849 29 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
10cef602 30 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
6193a2ff 31 * alloc_pages() directly, allocating compound pages so the page order
999d8795
EG
32 * does not have to be separately tracked.
33 * These objects are detected in kfree() because PageSlab()
d87a133f 34 * is false for them.
10cef602
MM
35 *
36 * SLAB is emulated on top of SLOB by simply calling constructors and
95b35127
NP
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
6193a2ff 41 * calling alloc_pages(). As SLAB objects know their size, no separate
95b35127 42 * size bookkeeping is necessary and there is essentially no allocation
d87a133f
NP
43 * space overhead, and compound pages aren't needed for multi-page
44 * allocations.
6193a2ff
PM
45 *
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
96db800f 49 * provided, __alloc_pages_node() with the specified node id is used
6193a2ff
PM
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
52 *
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
10cef602
MM
58 */
59
95b35127 60#include <linux/kernel.h>
10cef602 61#include <linux/slab.h>
97d06609 62
10cef602 63#include <linux/mm.h>
1f0532eb 64#include <linux/swap.h> /* struct reclaim_state */
10cef602
MM
65#include <linux/cache.h>
66#include <linux/init.h>
b95f1b31 67#include <linux/export.h>
afc0cedb 68#include <linux/rcupdate.h>
95b35127 69#include <linux/list.h>
4374e616 70#include <linux/kmemleak.h>
039ca4e7
LZ
71
72#include <trace/events/kmem.h>
73
60063497 74#include <linux/atomic.h>
95b35127 75
b9ce5ef4 76#include "slab.h"
95b35127
NP
77/*
78 * slob_block has a field 'units', which indicates size of block if +ve,
79 * or offset of next block if -ve (in SLOB_UNITs).
80 *
81 * Free blocks of size 1 unit simply contain the offset of the next block.
82 * Those with larger size contain their size in the first SLOB_UNIT of
83 * memory, and the offset of the next free block in the second SLOB_UNIT.
84 */
55394849 85#if PAGE_SIZE <= (32767 * 2)
95b35127
NP
86typedef s16 slobidx_t;
87#else
88typedef s32 slobidx_t;
89#endif
90
10cef602 91struct slob_block {
95b35127 92 slobidx_t units;
55394849 93};
10cef602
MM
94typedef struct slob_block slob_t;
95
95b35127 96/*
20cecbae 97 * All partially free slob pages go on these lists.
95b35127 98 */
20cecbae
MM
99#define SLOB_BREAK1 256
100#define SLOB_BREAK2 1024
101static LIST_HEAD(free_slob_small);
102static LIST_HEAD(free_slob_medium);
103static LIST_HEAD(free_slob_large);
95b35127 104
95b35127
NP
105/*
106 * slob_page_free: true for pages on free_slob_pages list.
107 */
b8c24c4a 108static inline int slob_page_free(struct page *sp)
95b35127 109{
b8c24c4a 110 return PageSlobFree(sp);
95b35127
NP
111}
112
b8c24c4a 113static void set_slob_page_free(struct page *sp, struct list_head *list)
95b35127 114{
adab7b68 115 list_add(&sp->slab_list, list);
b8c24c4a 116 __SetPageSlobFree(sp);
95b35127
NP
117}
118
b8c24c4a 119static inline void clear_slob_page_free(struct page *sp)
95b35127 120{
adab7b68 121 list_del(&sp->slab_list);
b8c24c4a 122 __ClearPageSlobFree(sp);
95b35127
NP
123}
124
10cef602 125#define SLOB_UNIT sizeof(slob_t)
a6d78159 126#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
10cef602 127
afc0cedb
NP
128/*
129 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
5f0d5a3a 130 * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
afc0cedb
NP
131 * the block using call_rcu.
132 */
133struct slob_rcu {
134 struct rcu_head head;
135 int size;
136};
137
95b35127
NP
138/*
139 * slob_lock protects all slob allocator structures.
140 */
10cef602 141static DEFINE_SPINLOCK(slob_lock);
10cef602 142
95b35127
NP
143/*
144 * Encode the given size and next info into a free slob block s.
145 */
146static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
147{
148 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
149 slobidx_t offset = next - base;
bcb4ddb4 150
95b35127
NP
151 if (size > 1) {
152 s[0].units = size;
153 s[1].units = offset;
154 } else
155 s[0].units = -offset;
156}
10cef602 157
95b35127
NP
158/*
159 * Return the size of a slob block.
160 */
161static slobidx_t slob_units(slob_t *s)
162{
163 if (s->units > 0)
164 return s->units;
165 return 1;
166}
167
168/*
169 * Return the next free slob block pointer after this one.
170 */
171static slob_t *slob_next(slob_t *s)
172{
173 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
174 slobidx_t next;
175
176 if (s[0].units < 0)
177 next = -s[0].units;
178 else
179 next = s[1].units;
180 return base+next;
181}
182
183/*
184 * Returns true if s is the last free block in its page.
185 */
186static int slob_last(slob_t *s)
187{
188 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
189}
190
6e9ed0cc 191static void *slob_new_pages(gfp_t gfp, int order, int node)
6193a2ff 192{
6a486c0a 193 struct page *page;
6193a2ff
PM
194
195#ifdef CONFIG_NUMA
90f2cbbc 196 if (node != NUMA_NO_NODE)
96db800f 197 page = __alloc_pages_node(node, gfp, order);
6193a2ff
PM
198 else
199#endif
200 page = alloc_pages(gfp, order);
201
202 if (!page)
203 return NULL;
204
6a486c0a
VB
205 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
206 1 << order);
6193a2ff
PM
207 return page_address(page);
208}
209
6e9ed0cc
AW
210static void slob_free_pages(void *b, int order)
211{
6a486c0a
VB
212 struct page *sp = virt_to_page(b);
213
1f0532eb
NP
214 if (current->reclaim_state)
215 current->reclaim_state->reclaimed_slab += 1 << order;
6a486c0a
VB
216
217 mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE,
218 -(1 << order));
219 __free_pages(sp, order);
6e9ed0cc
AW
220}
221
95b35127 222/*
130e8e09
TH
223 * slob_page_alloc() - Allocate a slob block within a given slob_page sp.
224 * @sp: Page to look in.
225 * @size: Size of the allocation.
226 * @align: Allocation alignment.
227 * @page_removed_from_list: Return parameter.
228 *
229 * Tries to find a chunk of memory at least @size bytes big within @page.
230 *
231 * Return: Pointer to memory if allocated, %NULL otherwise. If the
232 * allocation fills up @page then the page is removed from the
233 * freelist, in this case @page_removed_from_list will be set to
234 * true (set to false otherwise).
95b35127 235 */
130e8e09
TH
236static void *slob_page_alloc(struct page *sp, size_t size, int align,
237 bool *page_removed_from_list)
10cef602 238{
6e9ed0cc 239 slob_t *prev, *cur, *aligned = NULL;
10cef602 240 int delta = 0, units = SLOB_UNITS(size);
10cef602 241
130e8e09 242 *page_removed_from_list = false;
b8c24c4a 243 for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
95b35127
NP
244 slobidx_t avail = slob_units(cur);
245
10cef602
MM
246 if (align) {
247 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
248 delta = aligned - cur;
249 }
95b35127
NP
250 if (avail >= units + delta) { /* room enough? */
251 slob_t *next;
252
10cef602 253 if (delta) { /* need to fragment head to align? */
95b35127
NP
254 next = slob_next(cur);
255 set_slob(aligned, avail - delta, next);
256 set_slob(cur, delta, aligned);
10cef602
MM
257 prev = cur;
258 cur = aligned;
95b35127 259 avail = slob_units(cur);
10cef602
MM
260 }
261
95b35127
NP
262 next = slob_next(cur);
263 if (avail == units) { /* exact fit? unlink. */
264 if (prev)
265 set_slob(prev, slob_units(prev), next);
266 else
b8c24c4a 267 sp->freelist = next;
95b35127
NP
268 } else { /* fragment */
269 if (prev)
270 set_slob(prev, slob_units(prev), cur + units);
271 else
b8c24c4a 272 sp->freelist = cur + units;
95b35127 273 set_slob(cur + units, avail - units, next);
10cef602
MM
274 }
275
95b35127 276 sp->units -= units;
130e8e09 277 if (!sp->units) {
95b35127 278 clear_slob_page_free(sp);
130e8e09
TH
279 *page_removed_from_list = true;
280 }
10cef602
MM
281 return cur;
282 }
95b35127
NP
283 if (slob_last(cur))
284 return NULL;
285 }
286}
10cef602 287
95b35127
NP
288/*
289 * slob_alloc: entry point into the slob allocator.
290 */
6193a2ff 291static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
95b35127 292{
b8c24c4a 293 struct page *sp;
20cecbae 294 struct list_head *slob_list;
95b35127
NP
295 slob_t *b = NULL;
296 unsigned long flags;
130e8e09 297 bool _unused;
10cef602 298
20cecbae
MM
299 if (size < SLOB_BREAK1)
300 slob_list = &free_slob_small;
301 else if (size < SLOB_BREAK2)
302 slob_list = &free_slob_medium;
303 else
304 slob_list = &free_slob_large;
305
95b35127
NP
306 spin_lock_irqsave(&slob_lock, flags);
307 /* Iterate through each partially free page, try to find room */
adab7b68 308 list_for_each_entry(sp, slob_list, slab_list) {
130e8e09 309 bool page_removed_from_list = false;
6193a2ff
PM
310#ifdef CONFIG_NUMA
311 /*
312 * If there's a node specification, search for a partial
313 * page with a matching node id in the freelist.
314 */
90f2cbbc 315 if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
6193a2ff
PM
316 continue;
317#endif
d6269543
MM
318 /* Enough room on this page? */
319 if (sp->units < SLOB_UNITS(size))
320 continue;
6193a2ff 321
130e8e09 322 b = slob_page_alloc(sp, size, align, &page_removed_from_list);
d6269543
MM
323 if (!b)
324 continue;
325
130e8e09
TH
326 /*
327 * If slob_page_alloc() removed sp from the list then we
328 * cannot call list functions on sp. If so allocation
329 * did not fragment the page anyway so optimisation is
330 * unnecessary.
331 */
332 if (!page_removed_from_list) {
333 /*
334 * Improve fragment distribution and reduce our average
335 * search time by starting our next search here. (see
336 * Knuth vol 1, sec 2.5, pg 449)
337 */
adab7b68
TH
338 if (!list_is_first(&sp->slab_list, slob_list))
339 list_rotate_to_front(&sp->slab_list, slob_list);
130e8e09 340 }
d6269543 341 break;
10cef602 342 }
95b35127
NP
343 spin_unlock_irqrestore(&slob_lock, flags);
344
345 /* Not enough space: must allocate a new page */
346 if (!b) {
6e9ed0cc 347 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
95b35127 348 if (!b)
6e9ed0cc 349 return NULL;
b5568280
CL
350 sp = virt_to_page(b);
351 __SetPageSlab(sp);
95b35127
NP
352
353 spin_lock_irqsave(&slob_lock, flags);
354 sp->units = SLOB_UNITS(PAGE_SIZE);
b8c24c4a 355 sp->freelist = b;
adab7b68 356 INIT_LIST_HEAD(&sp->slab_list);
95b35127 357 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
20cecbae 358 set_slob_page_free(sp, slob_list);
130e8e09 359 b = slob_page_alloc(sp, size, align, &_unused);
95b35127
NP
360 BUG_ON(!b);
361 spin_unlock_irqrestore(&slob_lock, flags);
362 }
9f88faee 363 if (unlikely(gfp & __GFP_ZERO))
d07dbea4 364 memset(b, 0, size);
95b35127 365 return b;
10cef602
MM
366}
367
95b35127
NP
368/*
369 * slob_free: entry point into the slob allocator.
370 */
10cef602
MM
371static void slob_free(void *block, int size)
372{
b8c24c4a 373 struct page *sp;
95b35127
NP
374 slob_t *prev, *next, *b = (slob_t *)block;
375 slobidx_t units;
10cef602 376 unsigned long flags;
d602daba 377 struct list_head *slob_list;
10cef602 378
2408c550 379 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602 380 return;
95b35127 381 BUG_ON(!size);
10cef602 382
b5568280 383 sp = virt_to_page(block);
95b35127 384 units = SLOB_UNITS(size);
10cef602 385
10cef602 386 spin_lock_irqsave(&slob_lock, flags);
10cef602 387
95b35127
NP
388 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
389 /* Go directly to page allocator. Do not pass slob allocator */
390 if (slob_page_free(sp))
391 clear_slob_page_free(sp);
6fb8f424 392 spin_unlock_irqrestore(&slob_lock, flags);
b5568280 393 __ClearPageSlab(sp);
22b751c3 394 page_mapcount_reset(sp);
1f0532eb 395 slob_free_pages(b, 0);
6fb8f424 396 return;
95b35127 397 }
10cef602 398
95b35127
NP
399 if (!slob_page_free(sp)) {
400 /* This slob page is about to become partially free. Easy! */
401 sp->units = units;
b8c24c4a 402 sp->freelist = b;
95b35127
NP
403 set_slob(b, units,
404 (void *)((unsigned long)(b +
405 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
d602daba
BL
406 if (size < SLOB_BREAK1)
407 slob_list = &free_slob_small;
408 else if (size < SLOB_BREAK2)
409 slob_list = &free_slob_medium;
410 else
411 slob_list = &free_slob_large;
412 set_slob_page_free(sp, slob_list);
95b35127
NP
413 goto out;
414 }
415
416 /*
417 * Otherwise the page is already partially free, so find reinsertion
418 * point.
419 */
420 sp->units += units;
10cef602 421
b8c24c4a
CL
422 if (b < (slob_t *)sp->freelist) {
423 if (b + units == sp->freelist) {
424 units += slob_units(sp->freelist);
425 sp->freelist = slob_next(sp->freelist);
679299b3 426 }
b8c24c4a
CL
427 set_slob(b, units, sp->freelist);
428 sp->freelist = b;
95b35127 429 } else {
b8c24c4a 430 prev = sp->freelist;
95b35127
NP
431 next = slob_next(prev);
432 while (b > next) {
433 prev = next;
434 next = slob_next(prev);
435 }
10cef602 436
95b35127
NP
437 if (!slob_last(prev) && b + units == next) {
438 units += slob_units(next);
439 set_slob(b, units, slob_next(next));
440 } else
441 set_slob(b, units, next);
442
443 if (prev + slob_units(prev) == b) {
444 units = slob_units(b) + slob_units(prev);
445 set_slob(prev, units, slob_next(b));
446 } else
447 set_slob(prev, slob_units(prev), b);
448 }
449out:
10cef602
MM
450 spin_unlock_irqrestore(&slob_lock, flags);
451}
452
95b35127
NP
453/*
454 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
455 */
456
f3f74101
EG
457static __always_inline void *
458__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
10cef602 459{
6cb8f913 460 unsigned int *m;
789306e5 461 int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
3eae2cb2 462 void *ret;
55394849 463
bd50cfa8
SR
464 gfp &= gfp_allowed_mask;
465
d92a8cfc
PZ
466 fs_reclaim_acquire(gfp);
467 fs_reclaim_release(gfp);
cf40bd16 468
55394849 469 if (size < PAGE_SIZE - align) {
6cb8f913
CL
470 if (!size)
471 return ZERO_SIZE_PTR;
472
6193a2ff 473 m = slob_alloc(size + align, gfp, align, node);
3eae2cb2 474
239f49c0
MK
475 if (!m)
476 return NULL;
477 *m = size;
3eae2cb2
EGM
478 ret = (void *)m + align;
479
f3f74101 480 trace_kmalloc_node(caller, ret,
ca2b84cb 481 size, size + align, gfp, node);
d87a133f 482 } else {
3eae2cb2 483 unsigned int order = get_order(size);
d87a133f 484
8df275af
DR
485 if (likely(order))
486 gfp |= __GFP_COMP;
487 ret = slob_new_pages(gfp, order, node);
3eae2cb2 488
f3f74101 489 trace_kmalloc_node(caller, ret,
ca2b84cb 490 size, PAGE_SIZE << order, gfp, node);
10cef602 491 }
3eae2cb2 492
4374e616 493 kmemleak_alloc(ret, size, 1, gfp);
3eae2cb2 494 return ret;
10cef602 495}
f3f74101 496
f1b6eb6e 497void *__kmalloc(size_t size, gfp_t gfp)
f3f74101 498{
f1b6eb6e 499 return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
f3f74101 500}
f1b6eb6e 501EXPORT_SYMBOL(__kmalloc);
10cef602 502
f3f74101
EG
503void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
504{
505 return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
506}
507
508#ifdef CONFIG_NUMA
82bd5508 509void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
f3f74101
EG
510 int node, unsigned long caller)
511{
512 return __do_kmalloc_node(size, gfp, node, caller);
513}
514#endif
f3f74101 515
10cef602
MM
516void kfree(const void *block)
517{
b8c24c4a 518 struct page *sp;
10cef602 519
2121db74
PE
520 trace_kfree(_RET_IP_, block);
521
2408c550 522 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602 523 return;
4374e616 524 kmemleak_free(block);
10cef602 525
b5568280
CL
526 sp = virt_to_page(block);
527 if (PageSlab(sp)) {
789306e5 528 int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
55394849
NP
529 unsigned int *m = (unsigned int *)(block - align);
530 slob_free(m, *m + align);
6a486c0a
VB
531 } else {
532 unsigned int order = compound_order(sp);
533 mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE,
534 -(1 << order));
535 __free_pages(sp, order);
536
537 }
10cef602 538}
10cef602
MM
539EXPORT_SYMBOL(kfree);
540
d87a133f 541/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
10d1f8cb 542size_t __ksize(const void *block)
10cef602 543{
b8c24c4a 544 struct page *sp;
999d8795
EG
545 int align;
546 unsigned int *m;
10cef602 547
ef8b4520
CL
548 BUG_ON(!block);
549 if (unlikely(block == ZERO_SIZE_PTR))
10cef602
MM
550 return 0;
551
b5568280 552 sp = virt_to_page(block);
999d8795 553 if (unlikely(!PageSlab(sp)))
a50b854e 554 return page_size(sp);
999d8795 555
789306e5 556 align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
999d8795
EG
557 m = (unsigned int *)(block - align);
558 return SLOB_UNITS(*m) * SLOB_UNIT;
10cef602 559}
10d1f8cb 560EXPORT_SYMBOL(__ksize);
10cef602 561
d50112ed 562int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags)
10cef602 563{
5f0d5a3a 564 if (flags & SLAB_TYPESAFE_BY_RCU) {
278b1bb1
CL
565 /* leave room for rcu footer at the end of object */
566 c->size += sizeof(struct slob_rcu);
039363f3 567 }
278b1bb1 568 c->flags = flags;
278b1bb1 569 return 0;
10cef602 570}
10cef602 571
c21a6daf 572static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
10cef602
MM
573{
574 void *b;
575
bd50cfa8
SR
576 flags &= gfp_allowed_mask;
577
d92a8cfc
PZ
578 fs_reclaim_acquire(flags);
579 fs_reclaim_release(flags);
bd50cfa8 580
3eae2cb2 581 if (c->size < PAGE_SIZE) {
6193a2ff 582 b = slob_alloc(c->size, flags, c->align, node);
fe74fe2b 583 trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
ca2b84cb
EGM
584 SLOB_UNITS(c->size) * SLOB_UNIT,
585 flags, node);
3eae2cb2 586 } else {
6e9ed0cc 587 b = slob_new_pages(flags, get_order(c->size), node);
fe74fe2b 588 trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
ca2b84cb
EGM
589 PAGE_SIZE << get_order(c->size),
590 flags, node);
3eae2cb2 591 }
10cef602 592
128227e7
MW
593 if (b && c->ctor) {
594 WARN_ON_ONCE(flags & __GFP_ZERO);
51cc5068 595 c->ctor(b);
128227e7 596 }
10cef602 597
4374e616 598 kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
10cef602
MM
599 return b;
600}
f1b6eb6e
CL
601
602void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
603{
604 return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
605}
606EXPORT_SYMBOL(kmem_cache_alloc);
607
608#ifdef CONFIG_NUMA
609void *__kmalloc_node(size_t size, gfp_t gfp, int node)
610{
611 return __do_kmalloc_node(size, gfp, node, _RET_IP_);
612}
613EXPORT_SYMBOL(__kmalloc_node);
614
615void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
616{
617 return slob_alloc_node(cachep, gfp, node);
618}
6193a2ff 619EXPORT_SYMBOL(kmem_cache_alloc_node);
f1b6eb6e 620#endif
10cef602 621
afc0cedb 622static void __kmem_cache_free(void *b, int size)
10cef602 623{
afc0cedb
NP
624 if (size < PAGE_SIZE)
625 slob_free(b, size);
10cef602 626 else
6e9ed0cc 627 slob_free_pages(b, get_order(size));
afc0cedb
NP
628}
629
630static void kmem_rcu_free(struct rcu_head *head)
631{
632 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
633 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
634
635 __kmem_cache_free(b, slob_rcu->size);
636}
637
638void kmem_cache_free(struct kmem_cache *c, void *b)
639{
4374e616 640 kmemleak_free_recursive(b, c->flags);
5f0d5a3a 641 if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
afc0cedb
NP
642 struct slob_rcu *slob_rcu;
643 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
afc0cedb
NP
644 slob_rcu->size = c->size;
645 call_rcu(&slob_rcu->head, kmem_rcu_free);
646 } else {
afc0cedb
NP
647 __kmem_cache_free(b, c->size);
648 }
3eae2cb2 649
ca2b84cb 650 trace_kmem_cache_free(_RET_IP_, b);
10cef602
MM
651}
652EXPORT_SYMBOL(kmem_cache_free);
653
484748f0
CL
654void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
655{
656 __kmem_cache_free_bulk(s, size, p);
657}
658EXPORT_SYMBOL(kmem_cache_free_bulk);
659
865762a8 660int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
484748f0
CL
661 void **p)
662{
663 return __kmem_cache_alloc_bulk(s, flags, size, p);
664}
665EXPORT_SYMBOL(kmem_cache_alloc_bulk);
666
945cf2b6
CL
667int __kmem_cache_shutdown(struct kmem_cache *c)
668{
669 /* No way to check for remaining objects */
670 return 0;
671}
672
52b4b950
DS
673void __kmem_cache_release(struct kmem_cache *c)
674{
675}
676
89e364db 677int __kmem_cache_shrink(struct kmem_cache *d)
2e892f43
CL
678{
679 return 0;
680}
2e892f43 681
9b030cb8
CL
682struct kmem_cache kmem_cache_boot = {
683 .name = "kmem_cache",
684 .size = sizeof(struct kmem_cache),
685 .flags = SLAB_PANIC,
686 .align = ARCH_KMALLOC_MINALIGN,
687};
688
bcb4ddb4
DG
689void __init kmem_cache_init(void)
690{
9b030cb8 691 kmem_cache = &kmem_cache_boot;
97d06609 692 slab_state = UP;
10cef602 693}
bbff2e43
WF
694
695void __init kmem_cache_init_late(void)
696{
97d06609 697 slab_state = FULL;
bbff2e43 698}