]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/slub.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[thirdparty/kernel/stable.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
117d54df 127void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
128{
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133}
134
345c905d
JK
135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136{
137#ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139#else
140 return false;
141#endif
142}
143
81819f0f
CL
144/*
145 * Issues still to be resolved:
146 *
81819f0f
CL
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
81819f0f
CL
149 * - Variable sizing of the per node arrays
150 */
151
152/* Enable to test recovery from slab corruption on boot */
153#undef SLUB_RESILIENCY_TEST
154
b789ef51
CL
155/* Enable to log cmpxchg failures */
156#undef SLUB_DEBUG_CMPXCHG
157
2086d26a
CL
158/*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
76be8950 162#define MIN_PARTIAL 5
e95eed57 163
2086d26a
CL
164/*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 167 * sort the partial list by the number of objects in use.
2086d26a
CL
168 */
169#define MAX_PARTIAL 10
170
becfda68 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 172 SLAB_POISON | SLAB_STORE_USER)
672bba3a 173
149daaf3
LA
174/*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
fa5ec8a1 182/*
3de47213
DR
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
fa5ec8a1 186 */
3de47213 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 188
210b5c06
CG
189#define OO_SHIFT 16
190#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 191#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 192
81819f0f 193/* Internal SLUB flags */
d50112ed 194/* Poison object */
4fd0b46e 195#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 196/* Use cmpxchg_double */
4fd0b46e 197#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 198
02cbc874
CL
199/*
200 * Tracking user of a slab.
201 */
d6543e39 202#define TRACK_ADDRS_COUNT 16
02cbc874 203struct track {
ce71e27c 204 unsigned long addr; /* Called from address */
d6543e39
BG
205#ifdef CONFIG_STACKTRACE
206 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
207#endif
02cbc874
CL
208 int cpu; /* Was running on cpu */
209 int pid; /* Pid context */
210 unsigned long when; /* When did the operation occur */
211};
212
213enum track_item { TRACK_ALLOC, TRACK_FREE };
214
ab4d5ed5 215#ifdef CONFIG_SYSFS
81819f0f
CL
216static int sysfs_slab_add(struct kmem_cache *);
217static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 218static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 219static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 220#else
0c710013
CL
221static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
222static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
223 { return 0; }
107dab5c 224static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 225static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
88da03a6
CL
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
236#endif
237}
238
81819f0f
CL
239/********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
242
2482ddec
KC
243/*
244 * Returns freelist pointer (ptr). With hardening, this is obfuscated
245 * with an XOR of the address where the pointer is held and a per-cache
246 * random number.
247 */
248static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
249 unsigned long ptr_addr)
250{
251#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
252 /*
253 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
254 * Normally, this doesn't cause any issues, as both set_freepointer()
255 * and get_freepointer() are called with a pointer with the same tag.
256 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
257 * example, when __free_slub() iterates over objects in a cache, it
258 * passes untagged pointers to check_object(). check_object() in turns
259 * calls get_freepointer() with an untagged pointer, which causes the
260 * freepointer to be restored incorrectly.
261 */
262 return (void *)((unsigned long)ptr ^ s->random ^
263 (unsigned long)kasan_reset_tag((void *)ptr_addr));
2482ddec
KC
264#else
265 return ptr;
266#endif
267}
268
269/* Returns the freelist pointer recorded at location ptr_addr. */
270static inline void *freelist_dereference(const struct kmem_cache *s,
271 void *ptr_addr)
272{
273 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
274 (unsigned long)ptr_addr);
275}
276
7656c72b
CL
277static inline void *get_freepointer(struct kmem_cache *s, void *object)
278{
2482ddec 279 return freelist_dereference(s, object + s->offset);
7656c72b
CL
280}
281
0ad9500e
ED
282static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283{
0882ff91 284 prefetch(object + s->offset);
0ad9500e
ED
285}
286
1393d9a1
CL
287static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288{
2482ddec 289 unsigned long freepointer_addr;
1393d9a1
CL
290 void *p;
291
922d566c
JK
292 if (!debug_pagealloc_enabled())
293 return get_freepointer(s, object);
294
2482ddec
KC
295 freepointer_addr = (unsigned long)object + s->offset;
296 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
297 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
298}
299
7656c72b
CL
300static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301{
2482ddec
KC
302 unsigned long freeptr_addr = (unsigned long)object + s->offset;
303
ce6fa91b
AP
304#ifdef CONFIG_SLAB_FREELIST_HARDENED
305 BUG_ON(object == fp); /* naive detection of double free or corruption */
306#endif
307
2482ddec 308 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
309}
310
311/* Loop over all objects in a slab */
224a88be 312#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
313 for (__p = fixup_red_left(__s, __addr); \
314 __p < (__addr) + (__objects) * (__s)->size; \
315 __p += (__s)->size)
7656c72b 316
7656c72b 317/* Determine object index from a given position */
284b50dd 318static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b 319{
6373dca1 320 return (kasan_reset_tag(p) - addr) / s->size;
7656c72b
CL
321}
322
9736d2a9 323static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 324{
9736d2a9 325 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
326}
327
19af27af 328static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 329 unsigned int size)
834f3d11
CL
330{
331 struct kmem_cache_order_objects x = {
9736d2a9 332 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
333 };
334
335 return x;
336}
337
19af27af 338static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 339{
210b5c06 340 return x.x >> OO_SHIFT;
834f3d11
CL
341}
342
19af27af 343static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 344{
210b5c06 345 return x.x & OO_MASK;
834f3d11
CL
346}
347
881db7fb
CL
348/*
349 * Per slab locking using the pagelock
350 */
351static __always_inline void slab_lock(struct page *page)
352{
48c935ad 353 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
354 bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
48c935ad 359 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
360 __bit_spin_unlock(PG_locked, &page->flags);
361}
362
1d07171c
CL
363/* Interrupts must be disabled (for the fallback code to work right) */
364static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368{
369 VM_BUG_ON(!irqs_disabled());
2565409f
HC
370#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 372 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 373 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
374 freelist_old, counters_old,
375 freelist_new, counters_new))
6f6528a1 376 return true;
1d07171c
CL
377 } else
378#endif
379 {
380 slab_lock(page);
d0e0ac97
CG
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
1d07171c 383 page->freelist = freelist_new;
7d27a04b 384 page->counters = counters_new;
1d07171c 385 slab_unlock(page);
6f6528a1 386 return true;
1d07171c
CL
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
396#endif
397
6f6528a1 398 return false;
1d07171c
CL
399}
400
b789ef51
CL
401static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405{
2565409f
HC
406#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 408 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 409 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
410 freelist_old, counters_old,
411 freelist_new, counters_new))
6f6528a1 412 return true;
b789ef51
CL
413 } else
414#endif
415 {
1d07171c
CL
416 unsigned long flags;
417
418 local_irq_save(flags);
881db7fb 419 slab_lock(page);
d0e0ac97
CG
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
b789ef51 422 page->freelist = freelist_new;
7d27a04b 423 page->counters = counters_new;
881db7fb 424 slab_unlock(page);
1d07171c 425 local_irq_restore(flags);
6f6528a1 426 return true;
b789ef51 427 }
881db7fb 428 slab_unlock(page);
1d07171c 429 local_irq_restore(flags);
b789ef51
CL
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
437#endif
438
6f6528a1 439 return false;
b789ef51
CL
440}
441
41ecc55b 442#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
443/*
444 * Determine a map of object in use on a page.
445 *
881db7fb 446 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
447 * not vanish from under us.
448 */
449static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450{
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456}
457
870b1fbb 458static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
459{
460 if (s->flags & SLAB_RED_ZONE)
461 return s->size - s->red_left_pad;
462
463 return s->size;
464}
465
466static inline void *restore_red_left(struct kmem_cache *s, void *p)
467{
468 if (s->flags & SLAB_RED_ZONE)
469 p -= s->red_left_pad;
470
471 return p;
472}
473
41ecc55b
CL
474/*
475 * Debug settings:
476 */
89d3c87e 477#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 478static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 479#else
d50112ed 480static slab_flags_t slub_debug;
f0630fff 481#endif
41ecc55b
CL
482
483static char *slub_debug_slabs;
fa5ec8a1 484static int disable_higher_order_debug;
41ecc55b 485
a79316c6
AR
486/*
487 * slub is about to manipulate internal object metadata. This memory lies
488 * outside the range of the allocated object, so accessing it would normally
489 * be reported by kasan as a bounds error. metadata_access_enable() is used
490 * to tell kasan that these accesses are OK.
491 */
492static inline void metadata_access_enable(void)
493{
494 kasan_disable_current();
495}
496
497static inline void metadata_access_disable(void)
498{
499 kasan_enable_current();
500}
501
81819f0f
CL
502/*
503 * Object debugging
504 */
d86bd1be
JK
505
506/* Verify that a pointer has an address that is valid within a slab page */
507static inline int check_valid_pointer(struct kmem_cache *s,
508 struct page *page, void *object)
509{
510 void *base;
511
512 if (!object)
513 return 1;
514
515 base = page_address(page);
338cfaad 516 object = kasan_reset_tag(object);
d86bd1be
JK
517 object = restore_red_left(s, object);
518 if (object < base || object >= base + page->objects * s->size ||
519 (object - base) % s->size) {
520 return 0;
521 }
522
523 return 1;
524}
525
aa2efd5e
DT
526static void print_section(char *level, char *text, u8 *addr,
527 unsigned int length)
81819f0f 528{
a79316c6 529 metadata_access_enable();
aa2efd5e 530 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 531 length, 1);
a79316c6 532 metadata_access_disable();
81819f0f
CL
533}
534
81819f0f
CL
535static struct track *get_track(struct kmem_cache *s, void *object,
536 enum track_item alloc)
537{
538 struct track *p;
539
540 if (s->offset)
541 p = object + s->offset + sizeof(void *);
542 else
543 p = object + s->inuse;
544
545 return p + alloc;
546}
547
548static void set_track(struct kmem_cache *s, void *object,
ce71e27c 549 enum track_item alloc, unsigned long addr)
81819f0f 550{
1a00df4a 551 struct track *p = get_track(s, object, alloc);
81819f0f 552
81819f0f 553 if (addr) {
d6543e39
BG
554#ifdef CONFIG_STACKTRACE
555 struct stack_trace trace;
556 int i;
557
558 trace.nr_entries = 0;
559 trace.max_entries = TRACK_ADDRS_COUNT;
560 trace.entries = p->addrs;
561 trace.skip = 3;
a79316c6 562 metadata_access_enable();
d6543e39 563 save_stack_trace(&trace);
a79316c6 564 metadata_access_disable();
d6543e39
BG
565
566 /* See rant in lockdep.c */
567 if (trace.nr_entries != 0 &&
568 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
569 trace.nr_entries--;
570
571 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
572 p->addrs[i] = 0;
573#endif
81819f0f
CL
574 p->addr = addr;
575 p->cpu = smp_processor_id();
88e4ccf2 576 p->pid = current->pid;
81819f0f
CL
577 p->when = jiffies;
578 } else
579 memset(p, 0, sizeof(struct track));
580}
581
81819f0f
CL
582static void init_tracking(struct kmem_cache *s, void *object)
583{
24922684
CL
584 if (!(s->flags & SLAB_STORE_USER))
585 return;
586
ce71e27c
EGM
587 set_track(s, object, TRACK_FREE, 0UL);
588 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
589}
590
86609d33 591static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
592{
593 if (!t->addr)
594 return;
595
f9f58285 596 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 597 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
598#ifdef CONFIG_STACKTRACE
599 {
600 int i;
601 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
602 if (t->addrs[i])
f9f58285 603 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
604 else
605 break;
606 }
607#endif
24922684
CL
608}
609
610static void print_tracking(struct kmem_cache *s, void *object)
611{
86609d33 612 unsigned long pr_time = jiffies;
24922684
CL
613 if (!(s->flags & SLAB_STORE_USER))
614 return;
615
86609d33
CP
616 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
617 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
618}
619
620static void print_page_info(struct page *page)
621{
f9f58285 622 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 623 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
624
625}
626
627static void slab_bug(struct kmem_cache *s, char *fmt, ...)
628{
ecc42fbe 629 struct va_format vaf;
24922684 630 va_list args;
24922684
CL
631
632 va_start(args, fmt);
ecc42fbe
FF
633 vaf.fmt = fmt;
634 vaf.va = &args;
f9f58285 635 pr_err("=============================================================================\n");
ecc42fbe 636 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 637 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 638
373d4d09 639 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 640 va_end(args);
81819f0f
CL
641}
642
24922684
CL
643static void slab_fix(struct kmem_cache *s, char *fmt, ...)
644{
ecc42fbe 645 struct va_format vaf;
24922684 646 va_list args;
24922684
CL
647
648 va_start(args, fmt);
ecc42fbe
FF
649 vaf.fmt = fmt;
650 vaf.va = &args;
651 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 652 va_end(args);
24922684
CL
653}
654
655static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
656{
657 unsigned int off; /* Offset of last byte */
a973e9dd 658 u8 *addr = page_address(page);
24922684
CL
659
660 print_tracking(s, p);
661
662 print_page_info(page);
663
f9f58285
FF
664 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
665 p, p - addr, get_freepointer(s, p));
24922684 666
d86bd1be 667 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
668 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
669 s->red_left_pad);
d86bd1be 670 else if (p > addr + 16)
aa2efd5e 671 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 672
aa2efd5e 673 print_section(KERN_ERR, "Object ", p,
1b473f29 674 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 675 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 676 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 677 s->inuse - s->object_size);
81819f0f 678
81819f0f
CL
679 if (s->offset)
680 off = s->offset + sizeof(void *);
681 else
682 off = s->inuse;
683
24922684 684 if (s->flags & SLAB_STORE_USER)
81819f0f 685 off += 2 * sizeof(struct track);
81819f0f 686
80a9201a
AP
687 off += kasan_metadata_size(s);
688
d86bd1be 689 if (off != size_from_object(s))
81819f0f 690 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
691 print_section(KERN_ERR, "Padding ", p + off,
692 size_from_object(s) - off);
24922684
CL
693
694 dump_stack();
81819f0f
CL
695}
696
75c66def 697void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
698 u8 *object, char *reason)
699{
3dc50637 700 slab_bug(s, "%s", reason);
24922684 701 print_trailer(s, page, object);
81819f0f
CL
702}
703
a38965bf 704static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 705 const char *fmt, ...)
81819f0f
CL
706{
707 va_list args;
708 char buf[100];
709
24922684
CL
710 va_start(args, fmt);
711 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 712 va_end(args);
3dc50637 713 slab_bug(s, "%s", buf);
24922684 714 print_page_info(page);
81819f0f
CL
715 dump_stack();
716}
717
f7cb1933 718static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
719{
720 u8 *p = object;
721
d86bd1be
JK
722 if (s->flags & SLAB_RED_ZONE)
723 memset(p - s->red_left_pad, val, s->red_left_pad);
724
81819f0f 725 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
726 memset(p, POISON_FREE, s->object_size - 1);
727 p[s->object_size - 1] = POISON_END;
81819f0f
CL
728 }
729
730 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 731 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
732}
733
24922684
CL
734static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
735 void *from, void *to)
736{
737 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
738 memset(from, data, to - from);
739}
740
741static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
742 u8 *object, char *what,
06428780 743 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
744{
745 u8 *fault;
746 u8 *end;
747
a79316c6 748 metadata_access_enable();
79824820 749 fault = memchr_inv(start, value, bytes);
a79316c6 750 metadata_access_disable();
24922684
CL
751 if (!fault)
752 return 1;
753
754 end = start + bytes;
755 while (end > fault && end[-1] == value)
756 end--;
757
758 slab_bug(s, "%s overwritten", what);
f9f58285 759 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
760 fault, end - 1, fault[0], value);
761 print_trailer(s, page, object);
762
763 restore_bytes(s, what, value, fault, end);
764 return 0;
81819f0f
CL
765}
766
81819f0f
CL
767/*
768 * Object layout:
769 *
770 * object address
771 * Bytes of the object to be managed.
772 * If the freepointer may overlay the object then the free
773 * pointer is the first word of the object.
672bba3a 774 *
81819f0f
CL
775 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
776 * 0xa5 (POISON_END)
777 *
3b0efdfa 778 * object + s->object_size
81819f0f 779 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 780 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 781 * object_size == inuse.
672bba3a 782 *
81819f0f
CL
783 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
784 * 0xcc (RED_ACTIVE) for objects in use.
785 *
786 * object + s->inuse
672bba3a
CL
787 * Meta data starts here.
788 *
81819f0f
CL
789 * A. Free pointer (if we cannot overwrite object on free)
790 * B. Tracking data for SLAB_STORE_USER
672bba3a 791 * C. Padding to reach required alignment boundary or at mininum
6446faa2 792 * one word if debugging is on to be able to detect writes
672bba3a
CL
793 * before the word boundary.
794 *
795 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
796 *
797 * object + s->size
672bba3a 798 * Nothing is used beyond s->size.
81819f0f 799 *
3b0efdfa 800 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 801 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
802 * may be used with merged slabcaches.
803 */
804
81819f0f
CL
805static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
806{
807 unsigned long off = s->inuse; /* The end of info */
808
809 if (s->offset)
810 /* Freepointer is placed after the object. */
811 off += sizeof(void *);
812
813 if (s->flags & SLAB_STORE_USER)
814 /* We also have user information there */
815 off += 2 * sizeof(struct track);
816
80a9201a
AP
817 off += kasan_metadata_size(s);
818
d86bd1be 819 if (size_from_object(s) == off)
81819f0f
CL
820 return 1;
821
24922684 822 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 823 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
824}
825
39b26464 826/* Check the pad bytes at the end of a slab page */
81819f0f
CL
827static int slab_pad_check(struct kmem_cache *s, struct page *page)
828{
24922684
CL
829 u8 *start;
830 u8 *fault;
831 u8 *end;
5d682681 832 u8 *pad;
24922684
CL
833 int length;
834 int remainder;
81819f0f
CL
835
836 if (!(s->flags & SLAB_POISON))
837 return 1;
838
a973e9dd 839 start = page_address(page);
9736d2a9 840 length = PAGE_SIZE << compound_order(page);
39b26464
CL
841 end = start + length;
842 remainder = length % s->size;
81819f0f
CL
843 if (!remainder)
844 return 1;
845
5d682681 846 pad = end - remainder;
a79316c6 847 metadata_access_enable();
5d682681 848 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 849 metadata_access_disable();
24922684
CL
850 if (!fault)
851 return 1;
852 while (end > fault && end[-1] == POISON_INUSE)
853 end--;
854
855 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
5d682681 856 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 857
5d682681 858 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 859 return 0;
81819f0f
CL
860}
861
862static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 863 void *object, u8 val)
81819f0f
CL
864{
865 u8 *p = object;
3b0efdfa 866 u8 *endobject = object + s->object_size;
81819f0f
CL
867
868 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
869 if (!check_bytes_and_report(s, page, object, "Redzone",
870 object - s->red_left_pad, val, s->red_left_pad))
871 return 0;
872
24922684 873 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 874 endobject, val, s->inuse - s->object_size))
81819f0f 875 return 0;
81819f0f 876 } else {
3b0efdfa 877 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 878 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
879 endobject, POISON_INUSE,
880 s->inuse - s->object_size);
3adbefee 881 }
81819f0f
CL
882 }
883
884 if (s->flags & SLAB_POISON) {
f7cb1933 885 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 886 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 887 POISON_FREE, s->object_size - 1) ||
24922684 888 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 889 p + s->object_size - 1, POISON_END, 1)))
81819f0f 890 return 0;
81819f0f
CL
891 /*
892 * check_pad_bytes cleans up on its own.
893 */
894 check_pad_bytes(s, page, p);
895 }
896
f7cb1933 897 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
898 /*
899 * Object and freepointer overlap. Cannot check
900 * freepointer while object is allocated.
901 */
902 return 1;
903
904 /* Check free pointer validity */
905 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
906 object_err(s, page, p, "Freepointer corrupt");
907 /*
9f6c708e 908 * No choice but to zap it and thus lose the remainder
81819f0f 909 * of the free objects in this slab. May cause
672bba3a 910 * another error because the object count is now wrong.
81819f0f 911 */
a973e9dd 912 set_freepointer(s, p, NULL);
81819f0f
CL
913 return 0;
914 }
915 return 1;
916}
917
918static int check_slab(struct kmem_cache *s, struct page *page)
919{
39b26464
CL
920 int maxobj;
921
81819f0f
CL
922 VM_BUG_ON(!irqs_disabled());
923
924 if (!PageSlab(page)) {
24922684 925 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
926 return 0;
927 }
39b26464 928
9736d2a9 929 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
930 if (page->objects > maxobj) {
931 slab_err(s, page, "objects %u > max %u",
f6edde9c 932 page->objects, maxobj);
39b26464
CL
933 return 0;
934 }
935 if (page->inuse > page->objects) {
24922684 936 slab_err(s, page, "inuse %u > max %u",
f6edde9c 937 page->inuse, page->objects);
81819f0f
CL
938 return 0;
939 }
940 /* Slab_pad_check fixes things up after itself */
941 slab_pad_check(s, page);
942 return 1;
943}
944
945/*
672bba3a
CL
946 * Determine if a certain object on a page is on the freelist. Must hold the
947 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
948 */
949static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
950{
951 int nr = 0;
881db7fb 952 void *fp;
81819f0f 953 void *object = NULL;
f6edde9c 954 int max_objects;
81819f0f 955
881db7fb 956 fp = page->freelist;
39b26464 957 while (fp && nr <= page->objects) {
81819f0f
CL
958 if (fp == search)
959 return 1;
960 if (!check_valid_pointer(s, page, fp)) {
961 if (object) {
962 object_err(s, page, object,
963 "Freechain corrupt");
a973e9dd 964 set_freepointer(s, object, NULL);
81819f0f 965 } else {
24922684 966 slab_err(s, page, "Freepointer corrupt");
a973e9dd 967 page->freelist = NULL;
39b26464 968 page->inuse = page->objects;
24922684 969 slab_fix(s, "Freelist cleared");
81819f0f
CL
970 return 0;
971 }
972 break;
973 }
974 object = fp;
975 fp = get_freepointer(s, object);
976 nr++;
977 }
978
9736d2a9 979 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
980 if (max_objects > MAX_OBJS_PER_PAGE)
981 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
982
983 if (page->objects != max_objects) {
756a025f
JP
984 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
985 page->objects, max_objects);
224a88be
CL
986 page->objects = max_objects;
987 slab_fix(s, "Number of objects adjusted.");
988 }
39b26464 989 if (page->inuse != page->objects - nr) {
756a025f
JP
990 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
991 page->inuse, page->objects - nr);
39b26464 992 page->inuse = page->objects - nr;
24922684 993 slab_fix(s, "Object count adjusted.");
81819f0f
CL
994 }
995 return search == NULL;
996}
997
0121c619
CL
998static void trace(struct kmem_cache *s, struct page *page, void *object,
999 int alloc)
3ec09742
CL
1000{
1001 if (s->flags & SLAB_TRACE) {
f9f58285 1002 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1003 s->name,
1004 alloc ? "alloc" : "free",
1005 object, page->inuse,
1006 page->freelist);
1007
1008 if (!alloc)
aa2efd5e 1009 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1010 s->object_size);
3ec09742
CL
1011
1012 dump_stack();
1013 }
1014}
1015
643b1138 1016/*
672bba3a 1017 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1018 */
5cc6eee8
CL
1019static void add_full(struct kmem_cache *s,
1020 struct kmem_cache_node *n, struct page *page)
643b1138 1021{
5cc6eee8
CL
1022 if (!(s->flags & SLAB_STORE_USER))
1023 return;
1024
255d0884 1025 lockdep_assert_held(&n->list_lock);
643b1138 1026 list_add(&page->lru, &n->full);
643b1138
CL
1027}
1028
c65c1877 1029static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1030{
643b1138
CL
1031 if (!(s->flags & SLAB_STORE_USER))
1032 return;
1033
255d0884 1034 lockdep_assert_held(&n->list_lock);
643b1138 1035 list_del(&page->lru);
643b1138
CL
1036}
1037
0f389ec6
CL
1038/* Tracking of the number of slabs for debugging purposes */
1039static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1040{
1041 struct kmem_cache_node *n = get_node(s, node);
1042
1043 return atomic_long_read(&n->nr_slabs);
1044}
1045
26c02cf0
AB
1046static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1047{
1048 return atomic_long_read(&n->nr_slabs);
1049}
1050
205ab99d 1051static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1052{
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 /*
1056 * May be called early in order to allocate a slab for the
1057 * kmem_cache_node structure. Solve the chicken-egg
1058 * dilemma by deferring the increment of the count during
1059 * bootstrap (see early_kmem_cache_node_alloc).
1060 */
338b2642 1061 if (likely(n)) {
0f389ec6 1062 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1063 atomic_long_add(objects, &n->total_objects);
1064 }
0f389ec6 1065}
205ab99d 1066static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1067{
1068 struct kmem_cache_node *n = get_node(s, node);
1069
1070 atomic_long_dec(&n->nr_slabs);
205ab99d 1071 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1072}
1073
1074/* Object debug checks for alloc/free paths */
3ec09742
CL
1075static void setup_object_debug(struct kmem_cache *s, struct page *page,
1076 void *object)
1077{
1078 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1079 return;
1080
f7cb1933 1081 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1082 init_tracking(s, object);
1083}
1084
a7101224
AK
1085static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
1086{
1087 if (!(s->flags & SLAB_POISON))
1088 return;
1089
1090 metadata_access_enable();
1091 memset(addr, POISON_INUSE, PAGE_SIZE << order);
1092 metadata_access_disable();
1093}
1094
becfda68 1095static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1096 struct page *page, void *object)
81819f0f
CL
1097{
1098 if (!check_slab(s, page))
becfda68 1099 return 0;
81819f0f 1100
81819f0f
CL
1101 if (!check_valid_pointer(s, page, object)) {
1102 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1103 return 0;
81819f0f
CL
1104 }
1105
f7cb1933 1106 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1107 return 0;
1108
1109 return 1;
1110}
1111
1112static noinline int alloc_debug_processing(struct kmem_cache *s,
1113 struct page *page,
1114 void *object, unsigned long addr)
1115{
1116 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1117 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1118 goto bad;
1119 }
81819f0f 1120
3ec09742
CL
1121 /* Success perform special debug activities for allocs */
1122 if (s->flags & SLAB_STORE_USER)
1123 set_track(s, object, TRACK_ALLOC, addr);
1124 trace(s, page, object, 1);
f7cb1933 1125 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1126 return 1;
3ec09742 1127
81819f0f
CL
1128bad:
1129 if (PageSlab(page)) {
1130 /*
1131 * If this is a slab page then lets do the best we can
1132 * to avoid issues in the future. Marking all objects
672bba3a 1133 * as used avoids touching the remaining objects.
81819f0f 1134 */
24922684 1135 slab_fix(s, "Marking all objects used");
39b26464 1136 page->inuse = page->objects;
a973e9dd 1137 page->freelist = NULL;
81819f0f
CL
1138 }
1139 return 0;
1140}
1141
becfda68
LA
1142static inline int free_consistency_checks(struct kmem_cache *s,
1143 struct page *page, void *object, unsigned long addr)
81819f0f 1144{
81819f0f 1145 if (!check_valid_pointer(s, page, object)) {
70d71228 1146 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1147 return 0;
81819f0f
CL
1148 }
1149
1150 if (on_freelist(s, page, object)) {
24922684 1151 object_err(s, page, object, "Object already free");
becfda68 1152 return 0;
81819f0f
CL
1153 }
1154
f7cb1933 1155 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1156 return 0;
81819f0f 1157
1b4f59e3 1158 if (unlikely(s != page->slab_cache)) {
3adbefee 1159 if (!PageSlab(page)) {
756a025f
JP
1160 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1161 object);
1b4f59e3 1162 } else if (!page->slab_cache) {
f9f58285
FF
1163 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1164 object);
70d71228 1165 dump_stack();
06428780 1166 } else
24922684
CL
1167 object_err(s, page, object,
1168 "page slab pointer corrupt.");
becfda68
LA
1169 return 0;
1170 }
1171 return 1;
1172}
1173
1174/* Supports checking bulk free of a constructed freelist */
1175static noinline int free_debug_processing(
1176 struct kmem_cache *s, struct page *page,
1177 void *head, void *tail, int bulk_cnt,
1178 unsigned long addr)
1179{
1180 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1181 void *object = head;
1182 int cnt = 0;
1183 unsigned long uninitialized_var(flags);
1184 int ret = 0;
1185
1186 spin_lock_irqsave(&n->list_lock, flags);
1187 slab_lock(page);
1188
1189 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1190 if (!check_slab(s, page))
1191 goto out;
1192 }
1193
1194next_object:
1195 cnt++;
1196
1197 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1198 if (!free_consistency_checks(s, page, object, addr))
1199 goto out;
81819f0f 1200 }
3ec09742 1201
3ec09742
CL
1202 if (s->flags & SLAB_STORE_USER)
1203 set_track(s, object, TRACK_FREE, addr);
1204 trace(s, page, object, 0);
81084651 1205 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1206 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1207
1208 /* Reached end of constructed freelist yet? */
1209 if (object != tail) {
1210 object = get_freepointer(s, object);
1211 goto next_object;
1212 }
804aa132
LA
1213 ret = 1;
1214
5c2e4bbb 1215out:
81084651
JDB
1216 if (cnt != bulk_cnt)
1217 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1218 bulk_cnt, cnt);
1219
881db7fb 1220 slab_unlock(page);
282acb43 1221 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1222 if (!ret)
1223 slab_fix(s, "Object at 0x%p not freed", object);
1224 return ret;
81819f0f
CL
1225}
1226
41ecc55b
CL
1227static int __init setup_slub_debug(char *str)
1228{
f0630fff
CL
1229 slub_debug = DEBUG_DEFAULT_FLAGS;
1230 if (*str++ != '=' || !*str)
1231 /*
1232 * No options specified. Switch on full debugging.
1233 */
1234 goto out;
1235
1236 if (*str == ',')
1237 /*
1238 * No options but restriction on slabs. This means full
1239 * debugging for slabs matching a pattern.
1240 */
1241 goto check_slabs;
1242
1243 slub_debug = 0;
1244 if (*str == '-')
1245 /*
1246 * Switch off all debugging measures.
1247 */
1248 goto out;
1249
1250 /*
1251 * Determine which debug features should be switched on
1252 */
06428780 1253 for (; *str && *str != ','; str++) {
f0630fff
CL
1254 switch (tolower(*str)) {
1255 case 'f':
becfda68 1256 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1257 break;
1258 case 'z':
1259 slub_debug |= SLAB_RED_ZONE;
1260 break;
1261 case 'p':
1262 slub_debug |= SLAB_POISON;
1263 break;
1264 case 'u':
1265 slub_debug |= SLAB_STORE_USER;
1266 break;
1267 case 't':
1268 slub_debug |= SLAB_TRACE;
1269 break;
4c13dd3b
DM
1270 case 'a':
1271 slub_debug |= SLAB_FAILSLAB;
1272 break;
08303a73
CA
1273 case 'o':
1274 /*
1275 * Avoid enabling debugging on caches if its minimum
1276 * order would increase as a result.
1277 */
1278 disable_higher_order_debug = 1;
1279 break;
f0630fff 1280 default:
f9f58285
FF
1281 pr_err("slub_debug option '%c' unknown. skipped\n",
1282 *str);
f0630fff 1283 }
41ecc55b
CL
1284 }
1285
f0630fff 1286check_slabs:
41ecc55b
CL
1287 if (*str == ',')
1288 slub_debug_slabs = str + 1;
f0630fff 1289out:
41ecc55b
CL
1290 return 1;
1291}
1292
1293__setup("slub_debug", setup_slub_debug);
1294
c5fd3ca0
AT
1295/*
1296 * kmem_cache_flags - apply debugging options to the cache
1297 * @object_size: the size of an object without meta data
1298 * @flags: flags to set
1299 * @name: name of the cache
1300 * @ctor: constructor function
1301 *
1302 * Debug option(s) are applied to @flags. In addition to the debug
1303 * option(s), if a slab name (or multiple) is specified i.e.
1304 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1305 * then only the select slabs will receive the debug option(s).
1306 */
0293d1fd 1307slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1308 slab_flags_t flags, const char *name,
51cc5068 1309 void (*ctor)(void *))
41ecc55b 1310{
c5fd3ca0
AT
1311 char *iter;
1312 size_t len;
1313
1314 /* If slub_debug = 0, it folds into the if conditional. */
1315 if (!slub_debug_slabs)
1316 return flags | slub_debug;
1317
1318 len = strlen(name);
1319 iter = slub_debug_slabs;
1320 while (*iter) {
1321 char *end, *glob;
1322 size_t cmplen;
1323
1324 end = strchr(iter, ',');
1325 if (!end)
1326 end = iter + strlen(iter);
1327
1328 glob = strnchr(iter, end - iter, '*');
1329 if (glob)
1330 cmplen = glob - iter;
1331 else
1332 cmplen = max_t(size_t, len, (end - iter));
1333
1334 if (!strncmp(name, iter, cmplen)) {
1335 flags |= slub_debug;
1336 break;
1337 }
1338
1339 if (!*end)
1340 break;
1341 iter = end + 1;
1342 }
ba0268a8
CL
1343
1344 return flags;
41ecc55b 1345}
b4a64718 1346#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1347static inline void setup_object_debug(struct kmem_cache *s,
1348 struct page *page, void *object) {}
a7101224
AK
1349static inline void setup_page_debug(struct kmem_cache *s,
1350 void *addr, int order) {}
41ecc55b 1351
3ec09742 1352static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1353 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1354
282acb43 1355static inline int free_debug_processing(
81084651
JDB
1356 struct kmem_cache *s, struct page *page,
1357 void *head, void *tail, int bulk_cnt,
282acb43 1358 unsigned long addr) { return 0; }
41ecc55b 1359
41ecc55b
CL
1360static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1361 { return 1; }
1362static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1363 void *object, u8 val) { return 1; }
5cc6eee8
CL
1364static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1365 struct page *page) {}
c65c1877
PZ
1366static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1367 struct page *page) {}
0293d1fd 1368slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1369 slab_flags_t flags, const char *name,
51cc5068 1370 void (*ctor)(void *))
ba0268a8
CL
1371{
1372 return flags;
1373}
41ecc55b 1374#define slub_debug 0
0f389ec6 1375
fdaa45e9
IM
1376#define disable_higher_order_debug 0
1377
0f389ec6
CL
1378static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1379 { return 0; }
26c02cf0
AB
1380static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1381 { return 0; }
205ab99d
CL
1382static inline void inc_slabs_node(struct kmem_cache *s, int node,
1383 int objects) {}
1384static inline void dec_slabs_node(struct kmem_cache *s, int node,
1385 int objects) {}
7d550c56 1386
02e72cc6
AR
1387#endif /* CONFIG_SLUB_DEBUG */
1388
1389/*
1390 * Hooks for other subsystems that check memory allocations. In a typical
1391 * production configuration these hooks all should produce no code at all.
1392 */
0116523c 1393static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1394{
53128245 1395 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1396 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1397 kmemleak_alloc(ptr, size, 1, flags);
53128245 1398 return ptr;
d56791b3
RB
1399}
1400
ee3ce779 1401static __always_inline void kfree_hook(void *x)
d56791b3
RB
1402{
1403 kmemleak_free(x);
ee3ce779 1404 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1405}
1406
c3895391 1407static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1408{
1409 kmemleak_free_recursive(x, s->flags);
7d550c56 1410
02e72cc6
AR
1411 /*
1412 * Trouble is that we may no longer disable interrupts in the fast path
1413 * So in order to make the debug calls that expect irqs to be
1414 * disabled we need to disable interrupts temporarily.
1415 */
4675ff05 1416#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1417 {
1418 unsigned long flags;
1419
1420 local_irq_save(flags);
02e72cc6
AR
1421 debug_check_no_locks_freed(x, s->object_size);
1422 local_irq_restore(flags);
1423 }
1424#endif
1425 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1426 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1427
c3895391
AK
1428 /* KASAN might put x into memory quarantine, delaying its reuse */
1429 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1430}
205ab99d 1431
c3895391
AK
1432static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1433 void **head, void **tail)
81084651
JDB
1434{
1435/*
1436 * Compiler cannot detect this function can be removed if slab_free_hook()
1437 * evaluates to nothing. Thus, catch all relevant config debug options here.
1438 */
4675ff05 1439#if defined(CONFIG_LOCKDEP) || \
81084651
JDB
1440 defined(CONFIG_DEBUG_KMEMLEAK) || \
1441 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1442 defined(CONFIG_KASAN)
1443
c3895391
AK
1444 void *object;
1445 void *next = *head;
1446 void *old_tail = *tail ? *tail : *head;
1447
1448 /* Head and tail of the reconstructed freelist */
1449 *head = NULL;
1450 *tail = NULL;
81084651
JDB
1451
1452 do {
c3895391
AK
1453 object = next;
1454 next = get_freepointer(s, object);
1455 /* If object's reuse doesn't have to be delayed */
1456 if (!slab_free_hook(s, object)) {
1457 /* Move object to the new freelist */
1458 set_freepointer(s, object, *head);
1459 *head = object;
1460 if (!*tail)
1461 *tail = object;
1462 }
1463 } while (object != old_tail);
1464
1465 if (*head == *tail)
1466 *tail = NULL;
1467
1468 return *head != NULL;
1469#else
1470 return true;
81084651
JDB
1471#endif
1472}
1473
4d176711 1474static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1475 void *object)
1476{
1477 setup_object_debug(s, page, object);
4d176711 1478 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1479 if (unlikely(s->ctor)) {
1480 kasan_unpoison_object_data(s, object);
1481 s->ctor(object);
1482 kasan_poison_object_data(s, object);
1483 }
4d176711 1484 return object;
588f8ba9
TG
1485}
1486
81819f0f
CL
1487/*
1488 * Slab allocation and freeing
1489 */
5dfb4175
VD
1490static inline struct page *alloc_slab_page(struct kmem_cache *s,
1491 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1492{
5dfb4175 1493 struct page *page;
19af27af 1494 unsigned int order = oo_order(oo);
65c3376a 1495
2154a336 1496 if (node == NUMA_NO_NODE)
5dfb4175 1497 page = alloc_pages(flags, order);
65c3376a 1498 else
96db800f 1499 page = __alloc_pages_node(node, flags, order);
5dfb4175 1500
f3ccb2c4
VD
1501 if (page && memcg_charge_slab(page, flags, order, s)) {
1502 __free_pages(page, order);
1503 page = NULL;
1504 }
5dfb4175
VD
1505
1506 return page;
65c3376a
CL
1507}
1508
210e7a43
TG
1509#ifdef CONFIG_SLAB_FREELIST_RANDOM
1510/* Pre-initialize the random sequence cache */
1511static int init_cache_random_seq(struct kmem_cache *s)
1512{
19af27af 1513 unsigned int count = oo_objects(s->oo);
210e7a43 1514 int err;
210e7a43 1515
a810007a
SR
1516 /* Bailout if already initialised */
1517 if (s->random_seq)
1518 return 0;
1519
210e7a43
TG
1520 err = cache_random_seq_create(s, count, GFP_KERNEL);
1521 if (err) {
1522 pr_err("SLUB: Unable to initialize free list for %s\n",
1523 s->name);
1524 return err;
1525 }
1526
1527 /* Transform to an offset on the set of pages */
1528 if (s->random_seq) {
19af27af
AD
1529 unsigned int i;
1530
210e7a43
TG
1531 for (i = 0; i < count; i++)
1532 s->random_seq[i] *= s->size;
1533 }
1534 return 0;
1535}
1536
1537/* Initialize each random sequence freelist per cache */
1538static void __init init_freelist_randomization(void)
1539{
1540 struct kmem_cache *s;
1541
1542 mutex_lock(&slab_mutex);
1543
1544 list_for_each_entry(s, &slab_caches, list)
1545 init_cache_random_seq(s);
1546
1547 mutex_unlock(&slab_mutex);
1548}
1549
1550/* Get the next entry on the pre-computed freelist randomized */
1551static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1552 unsigned long *pos, void *start,
1553 unsigned long page_limit,
1554 unsigned long freelist_count)
1555{
1556 unsigned int idx;
1557
1558 /*
1559 * If the target page allocation failed, the number of objects on the
1560 * page might be smaller than the usual size defined by the cache.
1561 */
1562 do {
1563 idx = s->random_seq[*pos];
1564 *pos += 1;
1565 if (*pos >= freelist_count)
1566 *pos = 0;
1567 } while (unlikely(idx >= page_limit));
1568
1569 return (char *)start + idx;
1570}
1571
1572/* Shuffle the single linked freelist based on a random pre-computed sequence */
1573static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1574{
1575 void *start;
1576 void *cur;
1577 void *next;
1578 unsigned long idx, pos, page_limit, freelist_count;
1579
1580 if (page->objects < 2 || !s->random_seq)
1581 return false;
1582
1583 freelist_count = oo_objects(s->oo);
1584 pos = get_random_int() % freelist_count;
1585
1586 page_limit = page->objects * s->size;
1587 start = fixup_red_left(s, page_address(page));
1588
1589 /* First entry is used as the base of the freelist */
1590 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1591 freelist_count);
4d176711 1592 cur = setup_object(s, page, cur);
210e7a43
TG
1593 page->freelist = cur;
1594
1595 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1596 next = next_freelist_entry(s, page, &pos, start, page_limit,
1597 freelist_count);
4d176711 1598 next = setup_object(s, page, next);
210e7a43
TG
1599 set_freepointer(s, cur, next);
1600 cur = next;
1601 }
210e7a43
TG
1602 set_freepointer(s, cur, NULL);
1603
1604 return true;
1605}
1606#else
1607static inline int init_cache_random_seq(struct kmem_cache *s)
1608{
1609 return 0;
1610}
1611static inline void init_freelist_randomization(void) { }
1612static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1613{
1614 return false;
1615}
1616#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1617
81819f0f
CL
1618static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1619{
06428780 1620 struct page *page;
834f3d11 1621 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1622 gfp_t alloc_gfp;
4d176711 1623 void *start, *p, *next;
588f8ba9 1624 int idx, order;
210e7a43 1625 bool shuffle;
81819f0f 1626
7e0528da
CL
1627 flags &= gfp_allowed_mask;
1628
d0164adc 1629 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1630 local_irq_enable();
1631
b7a49f0d 1632 flags |= s->allocflags;
e12ba74d 1633
ba52270d
PE
1634 /*
1635 * Let the initial higher-order allocation fail under memory pressure
1636 * so we fall-back to the minimum order allocation.
1637 */
1638 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1639 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1640 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1641
5dfb4175 1642 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1643 if (unlikely(!page)) {
1644 oo = s->min;
80c3a998 1645 alloc_gfp = flags;
65c3376a
CL
1646 /*
1647 * Allocation may have failed due to fragmentation.
1648 * Try a lower order alloc if possible
1649 */
5dfb4175 1650 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1651 if (unlikely(!page))
1652 goto out;
1653 stat(s, ORDER_FALLBACK);
65c3376a 1654 }
5a896d9e 1655
834f3d11 1656 page->objects = oo_objects(oo);
81819f0f 1657
1f458cbf 1658 order = compound_order(page);
1b4f59e3 1659 page->slab_cache = s;
c03f94cc 1660 __SetPageSlab(page);
2f064f34 1661 if (page_is_pfmemalloc(page))
072bb0aa 1662 SetPageSlabPfmemalloc(page);
81819f0f 1663
a7101224 1664 kasan_poison_slab(page);
81819f0f 1665
a7101224 1666 start = page_address(page);
81819f0f 1667
a7101224 1668 setup_page_debug(s, start, order);
0316bec2 1669
210e7a43
TG
1670 shuffle = shuffle_freelist(s, page);
1671
1672 if (!shuffle) {
4d176711
AK
1673 start = fixup_red_left(s, start);
1674 start = setup_object(s, page, start);
1675 page->freelist = start;
18e50661
AK
1676 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1677 next = p + s->size;
1678 next = setup_object(s, page, next);
1679 set_freepointer(s, p, next);
1680 p = next;
1681 }
1682 set_freepointer(s, p, NULL);
81819f0f 1683 }
81819f0f 1684
e6e82ea1 1685 page->inuse = page->objects;
8cb0a506 1686 page->frozen = 1;
588f8ba9 1687
81819f0f 1688out:
d0164adc 1689 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1690 local_irq_disable();
1691 if (!page)
1692 return NULL;
1693
7779f212 1694 mod_lruvec_page_state(page,
588f8ba9
TG
1695 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1696 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1697 1 << oo_order(oo));
1698
1699 inc_slabs_node(s, page_to_nid(page), page->objects);
1700
81819f0f
CL
1701 return page;
1702}
1703
588f8ba9
TG
1704static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1705{
1706 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1707 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1708 flags &= ~GFP_SLAB_BUG_MASK;
1709 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1710 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1711 dump_stack();
588f8ba9
TG
1712 }
1713
1714 return allocate_slab(s,
1715 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1716}
1717
81819f0f
CL
1718static void __free_slab(struct kmem_cache *s, struct page *page)
1719{
834f3d11
CL
1720 int order = compound_order(page);
1721 int pages = 1 << order;
81819f0f 1722
becfda68 1723 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1724 void *p;
1725
1726 slab_pad_check(s, page);
224a88be
CL
1727 for_each_object(p, s, page_address(page),
1728 page->objects)
f7cb1933 1729 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1730 }
1731
7779f212 1732 mod_lruvec_page_state(page,
81819f0f
CL
1733 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1734 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1735 -pages);
81819f0f 1736
072bb0aa 1737 __ClearPageSlabPfmemalloc(page);
49bd5221 1738 __ClearPageSlab(page);
1f458cbf 1739
d4fc5069 1740 page->mapping = NULL;
1eb5ac64
NP
1741 if (current->reclaim_state)
1742 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1743 memcg_uncharge_slab(page, order, s);
1744 __free_pages(page, order);
81819f0f
CL
1745}
1746
1747static void rcu_free_slab(struct rcu_head *h)
1748{
bf68c214 1749 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1750
1b4f59e3 1751 __free_slab(page->slab_cache, page);
81819f0f
CL
1752}
1753
1754static void free_slab(struct kmem_cache *s, struct page *page)
1755{
5f0d5a3a 1756 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1757 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1758 } else
1759 __free_slab(s, page);
1760}
1761
1762static void discard_slab(struct kmem_cache *s, struct page *page)
1763{
205ab99d 1764 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1765 free_slab(s, page);
1766}
1767
1768/*
5cc6eee8 1769 * Management of partially allocated slabs.
81819f0f 1770 */
1e4dd946
SR
1771static inline void
1772__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1773{
e95eed57 1774 n->nr_partial++;
136333d1 1775 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1776 list_add_tail(&page->lru, &n->partial);
1777 else
1778 list_add(&page->lru, &n->partial);
81819f0f
CL
1779}
1780
1e4dd946
SR
1781static inline void add_partial(struct kmem_cache_node *n,
1782 struct page *page, int tail)
62e346a8 1783{
c65c1877 1784 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1785 __add_partial(n, page, tail);
1786}
c65c1877 1787
1e4dd946
SR
1788static inline void remove_partial(struct kmem_cache_node *n,
1789 struct page *page)
1790{
1791 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1792 list_del(&page->lru);
1793 n->nr_partial--;
1e4dd946
SR
1794}
1795
81819f0f 1796/*
7ced3719
CL
1797 * Remove slab from the partial list, freeze it and
1798 * return the pointer to the freelist.
81819f0f 1799 *
497b66f2 1800 * Returns a list of objects or NULL if it fails.
81819f0f 1801 */
497b66f2 1802static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1803 struct kmem_cache_node *n, struct page *page,
633b0764 1804 int mode, int *objects)
81819f0f 1805{
2cfb7455
CL
1806 void *freelist;
1807 unsigned long counters;
1808 struct page new;
1809
c65c1877
PZ
1810 lockdep_assert_held(&n->list_lock);
1811
2cfb7455
CL
1812 /*
1813 * Zap the freelist and set the frozen bit.
1814 * The old freelist is the list of objects for the
1815 * per cpu allocation list.
1816 */
7ced3719
CL
1817 freelist = page->freelist;
1818 counters = page->counters;
1819 new.counters = counters;
633b0764 1820 *objects = new.objects - new.inuse;
23910c50 1821 if (mode) {
7ced3719 1822 new.inuse = page->objects;
23910c50
PE
1823 new.freelist = NULL;
1824 } else {
1825 new.freelist = freelist;
1826 }
2cfb7455 1827
a0132ac0 1828 VM_BUG_ON(new.frozen);
7ced3719 1829 new.frozen = 1;
2cfb7455 1830
7ced3719 1831 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1832 freelist, counters,
02d7633f 1833 new.freelist, new.counters,
7ced3719 1834 "acquire_slab"))
7ced3719 1835 return NULL;
2cfb7455
CL
1836
1837 remove_partial(n, page);
7ced3719 1838 WARN_ON(!freelist);
49e22585 1839 return freelist;
81819f0f
CL
1840}
1841
633b0764 1842static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1843static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1844
81819f0f 1845/*
672bba3a 1846 * Try to allocate a partial slab from a specific node.
81819f0f 1847 */
8ba00bb6
JK
1848static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1849 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1850{
49e22585
CL
1851 struct page *page, *page2;
1852 void *object = NULL;
e5d9998f 1853 unsigned int available = 0;
633b0764 1854 int objects;
81819f0f
CL
1855
1856 /*
1857 * Racy check. If we mistakenly see no partial slabs then we
1858 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1859 * partial slab and there is none available then get_partials()
1860 * will return NULL.
81819f0f
CL
1861 */
1862 if (!n || !n->nr_partial)
1863 return NULL;
1864
1865 spin_lock(&n->list_lock);
49e22585 1866 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1867 void *t;
49e22585 1868
8ba00bb6
JK
1869 if (!pfmemalloc_match(page, flags))
1870 continue;
1871
633b0764 1872 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1873 if (!t)
1874 break;
1875
633b0764 1876 available += objects;
12d79634 1877 if (!object) {
49e22585 1878 c->page = page;
49e22585 1879 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1880 object = t;
49e22585 1881 } else {
633b0764 1882 put_cpu_partial(s, page, 0);
8028dcea 1883 stat(s, CPU_PARTIAL_NODE);
49e22585 1884 }
345c905d 1885 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1886 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1887 break;
1888
497b66f2 1889 }
81819f0f 1890 spin_unlock(&n->list_lock);
497b66f2 1891 return object;
81819f0f
CL
1892}
1893
1894/*
672bba3a 1895 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1896 */
de3ec035 1897static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1898 struct kmem_cache_cpu *c)
81819f0f
CL
1899{
1900#ifdef CONFIG_NUMA
1901 struct zonelist *zonelist;
dd1a239f 1902 struct zoneref *z;
54a6eb5c
MG
1903 struct zone *zone;
1904 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1905 void *object;
cc9a6c87 1906 unsigned int cpuset_mems_cookie;
81819f0f
CL
1907
1908 /*
672bba3a
CL
1909 * The defrag ratio allows a configuration of the tradeoffs between
1910 * inter node defragmentation and node local allocations. A lower
1911 * defrag_ratio increases the tendency to do local allocations
1912 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1913 *
672bba3a
CL
1914 * If the defrag_ratio is set to 0 then kmalloc() always
1915 * returns node local objects. If the ratio is higher then kmalloc()
1916 * may return off node objects because partial slabs are obtained
1917 * from other nodes and filled up.
81819f0f 1918 *
43efd3ea
LP
1919 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1920 * (which makes defrag_ratio = 1000) then every (well almost)
1921 * allocation will first attempt to defrag slab caches on other nodes.
1922 * This means scanning over all nodes to look for partial slabs which
1923 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1924 * with available objects.
81819f0f 1925 */
9824601e
CL
1926 if (!s->remote_node_defrag_ratio ||
1927 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1928 return NULL;
1929
cc9a6c87 1930 do {
d26914d1 1931 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1932 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1933 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1934 struct kmem_cache_node *n;
1935
1936 n = get_node(s, zone_to_nid(zone));
1937
dee2f8aa 1938 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1939 n->nr_partial > s->min_partial) {
8ba00bb6 1940 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1941 if (object) {
1942 /*
d26914d1
MG
1943 * Don't check read_mems_allowed_retry()
1944 * here - if mems_allowed was updated in
1945 * parallel, that was a harmless race
1946 * between allocation and the cpuset
1947 * update
cc9a6c87 1948 */
cc9a6c87
MG
1949 return object;
1950 }
c0ff7453 1951 }
81819f0f 1952 }
d26914d1 1953 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1954#endif
1955 return NULL;
1956}
1957
1958/*
1959 * Get a partial page, lock it and return it.
1960 */
497b66f2 1961static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1962 struct kmem_cache_cpu *c)
81819f0f 1963{
497b66f2 1964 void *object;
a561ce00
JK
1965 int searchnode = node;
1966
1967 if (node == NUMA_NO_NODE)
1968 searchnode = numa_mem_id();
1969 else if (!node_present_pages(node))
1970 searchnode = node_to_mem_node(node);
81819f0f 1971
8ba00bb6 1972 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1973 if (object || node != NUMA_NO_NODE)
1974 return object;
81819f0f 1975
acd19fd1 1976 return get_any_partial(s, flags, c);
81819f0f
CL
1977}
1978
8a5ec0ba
CL
1979#ifdef CONFIG_PREEMPT
1980/*
1981 * Calculate the next globally unique transaction for disambiguiation
1982 * during cmpxchg. The transactions start with the cpu number and are then
1983 * incremented by CONFIG_NR_CPUS.
1984 */
1985#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1986#else
1987/*
1988 * No preemption supported therefore also no need to check for
1989 * different cpus.
1990 */
1991#define TID_STEP 1
1992#endif
1993
1994static inline unsigned long next_tid(unsigned long tid)
1995{
1996 return tid + TID_STEP;
1997}
1998
1999static inline unsigned int tid_to_cpu(unsigned long tid)
2000{
2001 return tid % TID_STEP;
2002}
2003
2004static inline unsigned long tid_to_event(unsigned long tid)
2005{
2006 return tid / TID_STEP;
2007}
2008
2009static inline unsigned int init_tid(int cpu)
2010{
2011 return cpu;
2012}
2013
2014static inline void note_cmpxchg_failure(const char *n,
2015 const struct kmem_cache *s, unsigned long tid)
2016{
2017#ifdef SLUB_DEBUG_CMPXCHG
2018 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2019
f9f58285 2020 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
2021
2022#ifdef CONFIG_PREEMPT
2023 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2024 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2025 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2026 else
2027#endif
2028 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2029 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2030 tid_to_event(tid), tid_to_event(actual_tid));
2031 else
f9f58285 2032 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2033 actual_tid, tid, next_tid(tid));
2034#endif
4fdccdfb 2035 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2036}
2037
788e1aad 2038static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2039{
8a5ec0ba
CL
2040 int cpu;
2041
2042 for_each_possible_cpu(cpu)
2043 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2044}
2cfb7455 2045
81819f0f
CL
2046/*
2047 * Remove the cpu slab
2048 */
d0e0ac97 2049static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2050 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2051{
2cfb7455 2052 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2053 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2054 int lock = 0;
2055 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2056 void *nextfree;
136333d1 2057 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2058 struct page new;
2059 struct page old;
2060
2061 if (page->freelist) {
84e554e6 2062 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2063 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2064 }
2065
894b8788 2066 /*
2cfb7455
CL
2067 * Stage one: Free all available per cpu objects back
2068 * to the page freelist while it is still frozen. Leave the
2069 * last one.
2070 *
2071 * There is no need to take the list->lock because the page
2072 * is still frozen.
2073 */
2074 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2075 void *prior;
2076 unsigned long counters;
2077
2078 do {
2079 prior = page->freelist;
2080 counters = page->counters;
2081 set_freepointer(s, freelist, prior);
2082 new.counters = counters;
2083 new.inuse--;
a0132ac0 2084 VM_BUG_ON(!new.frozen);
2cfb7455 2085
1d07171c 2086 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2087 prior, counters,
2088 freelist, new.counters,
2089 "drain percpu freelist"));
2090
2091 freelist = nextfree;
2092 }
2093
894b8788 2094 /*
2cfb7455
CL
2095 * Stage two: Ensure that the page is unfrozen while the
2096 * list presence reflects the actual number of objects
2097 * during unfreeze.
2098 *
2099 * We setup the list membership and then perform a cmpxchg
2100 * with the count. If there is a mismatch then the page
2101 * is not unfrozen but the page is on the wrong list.
2102 *
2103 * Then we restart the process which may have to remove
2104 * the page from the list that we just put it on again
2105 * because the number of objects in the slab may have
2106 * changed.
894b8788 2107 */
2cfb7455 2108redo:
894b8788 2109
2cfb7455
CL
2110 old.freelist = page->freelist;
2111 old.counters = page->counters;
a0132ac0 2112 VM_BUG_ON(!old.frozen);
7c2e132c 2113
2cfb7455
CL
2114 /* Determine target state of the slab */
2115 new.counters = old.counters;
2116 if (freelist) {
2117 new.inuse--;
2118 set_freepointer(s, freelist, old.freelist);
2119 new.freelist = freelist;
2120 } else
2121 new.freelist = old.freelist;
2122
2123 new.frozen = 0;
2124
8a5b20ae 2125 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2126 m = M_FREE;
2127 else if (new.freelist) {
2128 m = M_PARTIAL;
2129 if (!lock) {
2130 lock = 1;
2131 /*
8bb4e7a2 2132 * Taking the spinlock removes the possibility
2cfb7455
CL
2133 * that acquire_slab() will see a slab page that
2134 * is frozen
2135 */
2136 spin_lock(&n->list_lock);
2137 }
2138 } else {
2139 m = M_FULL;
2140 if (kmem_cache_debug(s) && !lock) {
2141 lock = 1;
2142 /*
2143 * This also ensures that the scanning of full
2144 * slabs from diagnostic functions will not see
2145 * any frozen slabs.
2146 */
2147 spin_lock(&n->list_lock);
2148 }
2149 }
2150
2151 if (l != m) {
2cfb7455 2152 if (l == M_PARTIAL)
2cfb7455 2153 remove_partial(n, page);
2cfb7455 2154 else if (l == M_FULL)
c65c1877 2155 remove_full(s, n, page);
2cfb7455 2156
88349a28 2157 if (m == M_PARTIAL)
2cfb7455 2158 add_partial(n, page, tail);
88349a28 2159 else if (m == M_FULL)
2cfb7455 2160 add_full(s, n, page);
2cfb7455
CL
2161 }
2162
2163 l = m;
1d07171c 2164 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2165 old.freelist, old.counters,
2166 new.freelist, new.counters,
2167 "unfreezing slab"))
2168 goto redo;
2169
2cfb7455
CL
2170 if (lock)
2171 spin_unlock(&n->list_lock);
2172
88349a28
WY
2173 if (m == M_PARTIAL)
2174 stat(s, tail);
2175 else if (m == M_FULL)
2176 stat(s, DEACTIVATE_FULL);
2177 else if (m == M_FREE) {
2cfb7455
CL
2178 stat(s, DEACTIVATE_EMPTY);
2179 discard_slab(s, page);
2180 stat(s, FREE_SLAB);
894b8788 2181 }
d4ff6d35
WY
2182
2183 c->page = NULL;
2184 c->freelist = NULL;
81819f0f
CL
2185}
2186
d24ac77f
JK
2187/*
2188 * Unfreeze all the cpu partial slabs.
2189 *
59a09917
CL
2190 * This function must be called with interrupts disabled
2191 * for the cpu using c (or some other guarantee must be there
2192 * to guarantee no concurrent accesses).
d24ac77f 2193 */
59a09917
CL
2194static void unfreeze_partials(struct kmem_cache *s,
2195 struct kmem_cache_cpu *c)
49e22585 2196{
345c905d 2197#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2198 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2199 struct page *page, *discard_page = NULL;
49e22585
CL
2200
2201 while ((page = c->partial)) {
49e22585
CL
2202 struct page new;
2203 struct page old;
2204
2205 c->partial = page->next;
43d77867
JK
2206
2207 n2 = get_node(s, page_to_nid(page));
2208 if (n != n2) {
2209 if (n)
2210 spin_unlock(&n->list_lock);
2211
2212 n = n2;
2213 spin_lock(&n->list_lock);
2214 }
49e22585
CL
2215
2216 do {
2217
2218 old.freelist = page->freelist;
2219 old.counters = page->counters;
a0132ac0 2220 VM_BUG_ON(!old.frozen);
49e22585
CL
2221
2222 new.counters = old.counters;
2223 new.freelist = old.freelist;
2224
2225 new.frozen = 0;
2226
d24ac77f 2227 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2228 old.freelist, old.counters,
2229 new.freelist, new.counters,
2230 "unfreezing slab"));
2231
8a5b20ae 2232 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2233 page->next = discard_page;
2234 discard_page = page;
43d77867
JK
2235 } else {
2236 add_partial(n, page, DEACTIVATE_TO_TAIL);
2237 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2238 }
2239 }
2240
2241 if (n)
2242 spin_unlock(&n->list_lock);
9ada1934
SL
2243
2244 while (discard_page) {
2245 page = discard_page;
2246 discard_page = discard_page->next;
2247
2248 stat(s, DEACTIVATE_EMPTY);
2249 discard_slab(s, page);
2250 stat(s, FREE_SLAB);
2251 }
345c905d 2252#endif
49e22585
CL
2253}
2254
2255/*
9234bae9
WY
2256 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2257 * partial page slot if available.
49e22585
CL
2258 *
2259 * If we did not find a slot then simply move all the partials to the
2260 * per node partial list.
2261 */
633b0764 2262static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2263{
345c905d 2264#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2265 struct page *oldpage;
2266 int pages;
2267 int pobjects;
2268
d6e0b7fa 2269 preempt_disable();
49e22585
CL
2270 do {
2271 pages = 0;
2272 pobjects = 0;
2273 oldpage = this_cpu_read(s->cpu_slab->partial);
2274
2275 if (oldpage) {
2276 pobjects = oldpage->pobjects;
2277 pages = oldpage->pages;
2278 if (drain && pobjects > s->cpu_partial) {
2279 unsigned long flags;
2280 /*
2281 * partial array is full. Move the existing
2282 * set to the per node partial list.
2283 */
2284 local_irq_save(flags);
59a09917 2285 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2286 local_irq_restore(flags);
e24fc410 2287 oldpage = NULL;
49e22585
CL
2288 pobjects = 0;
2289 pages = 0;
8028dcea 2290 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2291 }
2292 }
2293
2294 pages++;
2295 pobjects += page->objects - page->inuse;
2296
2297 page->pages = pages;
2298 page->pobjects = pobjects;
2299 page->next = oldpage;
2300
d0e0ac97
CG
2301 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2302 != oldpage);
d6e0b7fa
VD
2303 if (unlikely(!s->cpu_partial)) {
2304 unsigned long flags;
2305
2306 local_irq_save(flags);
2307 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2308 local_irq_restore(flags);
2309 }
2310 preempt_enable();
345c905d 2311#endif
49e22585
CL
2312}
2313
dfb4f096 2314static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2315{
84e554e6 2316 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2317 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2318
2319 c->tid = next_tid(c->tid);
81819f0f
CL
2320}
2321
2322/*
2323 * Flush cpu slab.
6446faa2 2324 *
81819f0f
CL
2325 * Called from IPI handler with interrupts disabled.
2326 */
0c710013 2327static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2328{
9dfc6e68 2329 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2330
1265ef2d
WY
2331 if (c->page)
2332 flush_slab(s, c);
49e22585 2333
1265ef2d 2334 unfreeze_partials(s, c);
81819f0f
CL
2335}
2336
2337static void flush_cpu_slab(void *d)
2338{
2339 struct kmem_cache *s = d;
81819f0f 2340
dfb4f096 2341 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2342}
2343
a8364d55
GBY
2344static bool has_cpu_slab(int cpu, void *info)
2345{
2346 struct kmem_cache *s = info;
2347 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2348
a93cf07b 2349 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2350}
2351
81819f0f
CL
2352static void flush_all(struct kmem_cache *s)
2353{
a8364d55 2354 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2355}
2356
a96a87bf
SAS
2357/*
2358 * Use the cpu notifier to insure that the cpu slabs are flushed when
2359 * necessary.
2360 */
2361static int slub_cpu_dead(unsigned int cpu)
2362{
2363 struct kmem_cache *s;
2364 unsigned long flags;
2365
2366 mutex_lock(&slab_mutex);
2367 list_for_each_entry(s, &slab_caches, list) {
2368 local_irq_save(flags);
2369 __flush_cpu_slab(s, cpu);
2370 local_irq_restore(flags);
2371 }
2372 mutex_unlock(&slab_mutex);
2373 return 0;
2374}
2375
dfb4f096
CL
2376/*
2377 * Check if the objects in a per cpu structure fit numa
2378 * locality expectations.
2379 */
57d437d2 2380static inline int node_match(struct page *page, int node)
dfb4f096
CL
2381{
2382#ifdef CONFIG_NUMA
6159d0f5 2383 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2384 return 0;
2385#endif
2386 return 1;
2387}
2388
9a02d699 2389#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2390static int count_free(struct page *page)
2391{
2392 return page->objects - page->inuse;
2393}
2394
9a02d699
DR
2395static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2396{
2397 return atomic_long_read(&n->total_objects);
2398}
2399#endif /* CONFIG_SLUB_DEBUG */
2400
2401#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2402static unsigned long count_partial(struct kmem_cache_node *n,
2403 int (*get_count)(struct page *))
2404{
2405 unsigned long flags;
2406 unsigned long x = 0;
2407 struct page *page;
2408
2409 spin_lock_irqsave(&n->list_lock, flags);
2410 list_for_each_entry(page, &n->partial, lru)
2411 x += get_count(page);
2412 spin_unlock_irqrestore(&n->list_lock, flags);
2413 return x;
2414}
9a02d699 2415#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2416
781b2ba6
PE
2417static noinline void
2418slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2419{
9a02d699
DR
2420#ifdef CONFIG_SLUB_DEBUG
2421 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2422 DEFAULT_RATELIMIT_BURST);
781b2ba6 2423 int node;
fa45dc25 2424 struct kmem_cache_node *n;
781b2ba6 2425
9a02d699
DR
2426 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2427 return;
2428
5b3810e5
VB
2429 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2430 nid, gfpflags, &gfpflags);
19af27af 2431 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2432 s->name, s->object_size, s->size, oo_order(s->oo),
2433 oo_order(s->min));
781b2ba6 2434
3b0efdfa 2435 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2436 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2437 s->name);
fa5ec8a1 2438
fa45dc25 2439 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2440 unsigned long nr_slabs;
2441 unsigned long nr_objs;
2442 unsigned long nr_free;
2443
26c02cf0
AB
2444 nr_free = count_partial(n, count_free);
2445 nr_slabs = node_nr_slabs(n);
2446 nr_objs = node_nr_objs(n);
781b2ba6 2447
f9f58285 2448 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2449 node, nr_slabs, nr_objs, nr_free);
2450 }
9a02d699 2451#endif
781b2ba6
PE
2452}
2453
497b66f2
CL
2454static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2455 int node, struct kmem_cache_cpu **pc)
2456{
6faa6833 2457 void *freelist;
188fd063
CL
2458 struct kmem_cache_cpu *c = *pc;
2459 struct page *page;
497b66f2 2460
128227e7
MW
2461 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2462
188fd063 2463 freelist = get_partial(s, flags, node, c);
497b66f2 2464
188fd063
CL
2465 if (freelist)
2466 return freelist;
2467
2468 page = new_slab(s, flags, node);
497b66f2 2469 if (page) {
7c8e0181 2470 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2471 if (c->page)
2472 flush_slab(s, c);
2473
2474 /*
2475 * No other reference to the page yet so we can
2476 * muck around with it freely without cmpxchg
2477 */
6faa6833 2478 freelist = page->freelist;
497b66f2
CL
2479 page->freelist = NULL;
2480
2481 stat(s, ALLOC_SLAB);
497b66f2
CL
2482 c->page = page;
2483 *pc = c;
edde82b6 2484 }
497b66f2 2485
6faa6833 2486 return freelist;
497b66f2
CL
2487}
2488
072bb0aa
MG
2489static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2490{
2491 if (unlikely(PageSlabPfmemalloc(page)))
2492 return gfp_pfmemalloc_allowed(gfpflags);
2493
2494 return true;
2495}
2496
213eeb9f 2497/*
d0e0ac97
CG
2498 * Check the page->freelist of a page and either transfer the freelist to the
2499 * per cpu freelist or deactivate the page.
213eeb9f
CL
2500 *
2501 * The page is still frozen if the return value is not NULL.
2502 *
2503 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2504 *
2505 * This function must be called with interrupt disabled.
213eeb9f
CL
2506 */
2507static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2508{
2509 struct page new;
2510 unsigned long counters;
2511 void *freelist;
2512
2513 do {
2514 freelist = page->freelist;
2515 counters = page->counters;
6faa6833 2516
213eeb9f 2517 new.counters = counters;
a0132ac0 2518 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2519
2520 new.inuse = page->objects;
2521 new.frozen = freelist != NULL;
2522
d24ac77f 2523 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2524 freelist, counters,
2525 NULL, new.counters,
2526 "get_freelist"));
2527
2528 return freelist;
2529}
2530
81819f0f 2531/*
894b8788
CL
2532 * Slow path. The lockless freelist is empty or we need to perform
2533 * debugging duties.
2534 *
894b8788
CL
2535 * Processing is still very fast if new objects have been freed to the
2536 * regular freelist. In that case we simply take over the regular freelist
2537 * as the lockless freelist and zap the regular freelist.
81819f0f 2538 *
894b8788
CL
2539 * If that is not working then we fall back to the partial lists. We take the
2540 * first element of the freelist as the object to allocate now and move the
2541 * rest of the freelist to the lockless freelist.
81819f0f 2542 *
894b8788 2543 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2544 * we need to allocate a new slab. This is the slowest path since it involves
2545 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2546 *
2547 * Version of __slab_alloc to use when we know that interrupts are
2548 * already disabled (which is the case for bulk allocation).
81819f0f 2549 */
a380a3c7 2550static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2551 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2552{
6faa6833 2553 void *freelist;
f6e7def7 2554 struct page *page;
81819f0f 2555
f6e7def7
CL
2556 page = c->page;
2557 if (!page)
81819f0f 2558 goto new_slab;
49e22585 2559redo:
6faa6833 2560
57d437d2 2561 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2562 int searchnode = node;
2563
2564 if (node != NUMA_NO_NODE && !node_present_pages(node))
2565 searchnode = node_to_mem_node(node);
2566
2567 if (unlikely(!node_match(page, searchnode))) {
2568 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2569 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2570 goto new_slab;
2571 }
fc59c053 2572 }
6446faa2 2573
072bb0aa
MG
2574 /*
2575 * By rights, we should be searching for a slab page that was
2576 * PFMEMALLOC but right now, we are losing the pfmemalloc
2577 * information when the page leaves the per-cpu allocator
2578 */
2579 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2580 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2581 goto new_slab;
2582 }
2583
73736e03 2584 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2585 freelist = c->freelist;
2586 if (freelist)
73736e03 2587 goto load_freelist;
03e404af 2588
f6e7def7 2589 freelist = get_freelist(s, page);
6446faa2 2590
6faa6833 2591 if (!freelist) {
03e404af
CL
2592 c->page = NULL;
2593 stat(s, DEACTIVATE_BYPASS);
fc59c053 2594 goto new_slab;
03e404af 2595 }
6446faa2 2596
84e554e6 2597 stat(s, ALLOC_REFILL);
6446faa2 2598
894b8788 2599load_freelist:
507effea
CL
2600 /*
2601 * freelist is pointing to the list of objects to be used.
2602 * page is pointing to the page from which the objects are obtained.
2603 * That page must be frozen for per cpu allocations to work.
2604 */
a0132ac0 2605 VM_BUG_ON(!c->page->frozen);
6faa6833 2606 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2607 c->tid = next_tid(c->tid);
6faa6833 2608 return freelist;
81819f0f 2609
81819f0f 2610new_slab:
2cfb7455 2611
a93cf07b
WY
2612 if (slub_percpu_partial(c)) {
2613 page = c->page = slub_percpu_partial(c);
2614 slub_set_percpu_partial(c, page);
49e22585 2615 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2616 goto redo;
81819f0f
CL
2617 }
2618
188fd063 2619 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2620
f4697436 2621 if (unlikely(!freelist)) {
9a02d699 2622 slab_out_of_memory(s, gfpflags, node);
f4697436 2623 return NULL;
81819f0f 2624 }
2cfb7455 2625
f6e7def7 2626 page = c->page;
5091b74a 2627 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2628 goto load_freelist;
2cfb7455 2629
497b66f2 2630 /* Only entered in the debug case */
d0e0ac97
CG
2631 if (kmem_cache_debug(s) &&
2632 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2633 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2634
d4ff6d35 2635 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2636 return freelist;
894b8788
CL
2637}
2638
a380a3c7
CL
2639/*
2640 * Another one that disabled interrupt and compensates for possible
2641 * cpu changes by refetching the per cpu area pointer.
2642 */
2643static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2644 unsigned long addr, struct kmem_cache_cpu *c)
2645{
2646 void *p;
2647 unsigned long flags;
2648
2649 local_irq_save(flags);
2650#ifdef CONFIG_PREEMPT
2651 /*
2652 * We may have been preempted and rescheduled on a different
2653 * cpu before disabling interrupts. Need to reload cpu area
2654 * pointer.
2655 */
2656 c = this_cpu_ptr(s->cpu_slab);
2657#endif
2658
2659 p = ___slab_alloc(s, gfpflags, node, addr, c);
2660 local_irq_restore(flags);
2661 return p;
2662}
2663
894b8788
CL
2664/*
2665 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2666 * have the fastpath folded into their functions. So no function call
2667 * overhead for requests that can be satisfied on the fastpath.
2668 *
2669 * The fastpath works by first checking if the lockless freelist can be used.
2670 * If not then __slab_alloc is called for slow processing.
2671 *
2672 * Otherwise we can simply pick the next object from the lockless free list.
2673 */
2b847c3c 2674static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2675 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2676{
03ec0ed5 2677 void *object;
dfb4f096 2678 struct kmem_cache_cpu *c;
57d437d2 2679 struct page *page;
8a5ec0ba 2680 unsigned long tid;
1f84260c 2681
8135be5a
VD
2682 s = slab_pre_alloc_hook(s, gfpflags);
2683 if (!s)
773ff60e 2684 return NULL;
8a5ec0ba 2685redo:
8a5ec0ba
CL
2686 /*
2687 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2688 * enabled. We may switch back and forth between cpus while
2689 * reading from one cpu area. That does not matter as long
2690 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2691 *
9aabf810
JK
2692 * We should guarantee that tid and kmem_cache are retrieved on
2693 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2694 * to check if it is matched or not.
8a5ec0ba 2695 */
9aabf810
JK
2696 do {
2697 tid = this_cpu_read(s->cpu_slab->tid);
2698 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2699 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2700 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2701
2702 /*
2703 * Irqless object alloc/free algorithm used here depends on sequence
2704 * of fetching cpu_slab's data. tid should be fetched before anything
2705 * on c to guarantee that object and page associated with previous tid
2706 * won't be used with current tid. If we fetch tid first, object and
2707 * page could be one associated with next tid and our alloc/free
2708 * request will be failed. In this case, we will retry. So, no problem.
2709 */
2710 barrier();
8a5ec0ba 2711
8a5ec0ba
CL
2712 /*
2713 * The transaction ids are globally unique per cpu and per operation on
2714 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2715 * occurs on the right processor and that there was no operation on the
2716 * linked list in between.
2717 */
8a5ec0ba 2718
9dfc6e68 2719 object = c->freelist;
57d437d2 2720 page = c->page;
8eae1492 2721 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2722 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2723 stat(s, ALLOC_SLOWPATH);
2724 } else {
0ad9500e
ED
2725 void *next_object = get_freepointer_safe(s, object);
2726
8a5ec0ba 2727 /*
25985edc 2728 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2729 * operation and if we are on the right processor.
2730 *
d0e0ac97
CG
2731 * The cmpxchg does the following atomically (without lock
2732 * semantics!)
8a5ec0ba
CL
2733 * 1. Relocate first pointer to the current per cpu area.
2734 * 2. Verify that tid and freelist have not been changed
2735 * 3. If they were not changed replace tid and freelist
2736 *
d0e0ac97
CG
2737 * Since this is without lock semantics the protection is only
2738 * against code executing on this cpu *not* from access by
2739 * other cpus.
8a5ec0ba 2740 */
933393f5 2741 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2742 s->cpu_slab->freelist, s->cpu_slab->tid,
2743 object, tid,
0ad9500e 2744 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2745
2746 note_cmpxchg_failure("slab_alloc", s, tid);
2747 goto redo;
2748 }
0ad9500e 2749 prefetch_freepointer(s, next_object);
84e554e6 2750 stat(s, ALLOC_FASTPATH);
894b8788 2751 }
8a5ec0ba 2752
74e2134f 2753 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2754 memset(object, 0, s->object_size);
d07dbea4 2755
03ec0ed5 2756 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2757
894b8788 2758 return object;
81819f0f
CL
2759}
2760
2b847c3c
EG
2761static __always_inline void *slab_alloc(struct kmem_cache *s,
2762 gfp_t gfpflags, unsigned long addr)
2763{
2764 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2765}
2766
81819f0f
CL
2767void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2768{
2b847c3c 2769 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2770
d0e0ac97
CG
2771 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2772 s->size, gfpflags);
5b882be4
EGM
2773
2774 return ret;
81819f0f
CL
2775}
2776EXPORT_SYMBOL(kmem_cache_alloc);
2777
0f24f128 2778#ifdef CONFIG_TRACING
4a92379b
RK
2779void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2780{
2b847c3c 2781 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2782 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2783 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2784 return ret;
2785}
2786EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2787#endif
2788
81819f0f
CL
2789#ifdef CONFIG_NUMA
2790void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2791{
2b847c3c 2792 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2793
ca2b84cb 2794 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2795 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2796
2797 return ret;
81819f0f
CL
2798}
2799EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2800
0f24f128 2801#ifdef CONFIG_TRACING
4a92379b 2802void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2803 gfp_t gfpflags,
4a92379b 2804 int node, size_t size)
5b882be4 2805{
2b847c3c 2806 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2807
2808 trace_kmalloc_node(_RET_IP_, ret,
2809 size, s->size, gfpflags, node);
0316bec2 2810
0116523c 2811 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2812 return ret;
5b882be4 2813}
4a92379b 2814EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2815#endif
5d1f57e4 2816#endif
5b882be4 2817
81819f0f 2818/*
94e4d712 2819 * Slow path handling. This may still be called frequently since objects
894b8788 2820 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2821 *
894b8788
CL
2822 * So we still attempt to reduce cache line usage. Just take the slab
2823 * lock and free the item. If there is no additional partial page
2824 * handling required then we can return immediately.
81819f0f 2825 */
894b8788 2826static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2827 void *head, void *tail, int cnt,
2828 unsigned long addr)
2829
81819f0f
CL
2830{
2831 void *prior;
2cfb7455 2832 int was_frozen;
2cfb7455
CL
2833 struct page new;
2834 unsigned long counters;
2835 struct kmem_cache_node *n = NULL;
61728d1e 2836 unsigned long uninitialized_var(flags);
81819f0f 2837
8a5ec0ba 2838 stat(s, FREE_SLOWPATH);
81819f0f 2839
19c7ff9e 2840 if (kmem_cache_debug(s) &&
282acb43 2841 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2842 return;
6446faa2 2843
2cfb7455 2844 do {
837d678d
JK
2845 if (unlikely(n)) {
2846 spin_unlock_irqrestore(&n->list_lock, flags);
2847 n = NULL;
2848 }
2cfb7455
CL
2849 prior = page->freelist;
2850 counters = page->counters;
81084651 2851 set_freepointer(s, tail, prior);
2cfb7455
CL
2852 new.counters = counters;
2853 was_frozen = new.frozen;
81084651 2854 new.inuse -= cnt;
837d678d 2855 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2856
c65c1877 2857 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2858
2859 /*
d0e0ac97
CG
2860 * Slab was on no list before and will be
2861 * partially empty
2862 * We can defer the list move and instead
2863 * freeze it.
49e22585
CL
2864 */
2865 new.frozen = 1;
2866
c65c1877 2867 } else { /* Needs to be taken off a list */
49e22585 2868
b455def2 2869 n = get_node(s, page_to_nid(page));
49e22585
CL
2870 /*
2871 * Speculatively acquire the list_lock.
2872 * If the cmpxchg does not succeed then we may
2873 * drop the list_lock without any processing.
2874 *
2875 * Otherwise the list_lock will synchronize with
2876 * other processors updating the list of slabs.
2877 */
2878 spin_lock_irqsave(&n->list_lock, flags);
2879
2880 }
2cfb7455 2881 }
81819f0f 2882
2cfb7455
CL
2883 } while (!cmpxchg_double_slab(s, page,
2884 prior, counters,
81084651 2885 head, new.counters,
2cfb7455 2886 "__slab_free"));
81819f0f 2887
2cfb7455 2888 if (likely(!n)) {
49e22585
CL
2889
2890 /*
2891 * If we just froze the page then put it onto the
2892 * per cpu partial list.
2893 */
8028dcea 2894 if (new.frozen && !was_frozen) {
49e22585 2895 put_cpu_partial(s, page, 1);
8028dcea
AS
2896 stat(s, CPU_PARTIAL_FREE);
2897 }
49e22585 2898 /*
2cfb7455
CL
2899 * The list lock was not taken therefore no list
2900 * activity can be necessary.
2901 */
b455def2
L
2902 if (was_frozen)
2903 stat(s, FREE_FROZEN);
2904 return;
2905 }
81819f0f 2906
8a5b20ae 2907 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2908 goto slab_empty;
2909
81819f0f 2910 /*
837d678d
JK
2911 * Objects left in the slab. If it was not on the partial list before
2912 * then add it.
81819f0f 2913 */
345c905d
JK
2914 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2915 if (kmem_cache_debug(s))
c65c1877 2916 remove_full(s, n, page);
837d678d
JK
2917 add_partial(n, page, DEACTIVATE_TO_TAIL);
2918 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2919 }
80f08c19 2920 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2921 return;
2922
2923slab_empty:
a973e9dd 2924 if (prior) {
81819f0f 2925 /*
6fbabb20 2926 * Slab on the partial list.
81819f0f 2927 */
5cc6eee8 2928 remove_partial(n, page);
84e554e6 2929 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2930 } else {
6fbabb20 2931 /* Slab must be on the full list */
c65c1877
PZ
2932 remove_full(s, n, page);
2933 }
2cfb7455 2934
80f08c19 2935 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2936 stat(s, FREE_SLAB);
81819f0f 2937 discard_slab(s, page);
81819f0f
CL
2938}
2939
894b8788
CL
2940/*
2941 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2942 * can perform fastpath freeing without additional function calls.
2943 *
2944 * The fastpath is only possible if we are freeing to the current cpu slab
2945 * of this processor. This typically the case if we have just allocated
2946 * the item before.
2947 *
2948 * If fastpath is not possible then fall back to __slab_free where we deal
2949 * with all sorts of special processing.
81084651
JDB
2950 *
2951 * Bulk free of a freelist with several objects (all pointing to the
2952 * same page) possible by specifying head and tail ptr, plus objects
2953 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2954 */
80a9201a
AP
2955static __always_inline void do_slab_free(struct kmem_cache *s,
2956 struct page *page, void *head, void *tail,
2957 int cnt, unsigned long addr)
894b8788 2958{
81084651 2959 void *tail_obj = tail ? : head;
dfb4f096 2960 struct kmem_cache_cpu *c;
8a5ec0ba 2961 unsigned long tid;
8a5ec0ba
CL
2962redo:
2963 /*
2964 * Determine the currently cpus per cpu slab.
2965 * The cpu may change afterward. However that does not matter since
2966 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2967 * during the cmpxchg then the free will succeed.
8a5ec0ba 2968 */
9aabf810
JK
2969 do {
2970 tid = this_cpu_read(s->cpu_slab->tid);
2971 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2972 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2973 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2974
9aabf810
JK
2975 /* Same with comment on barrier() in slab_alloc_node() */
2976 barrier();
c016b0bd 2977
442b06bc 2978 if (likely(page == c->page)) {
81084651 2979 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2980
933393f5 2981 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2982 s->cpu_slab->freelist, s->cpu_slab->tid,
2983 c->freelist, tid,
81084651 2984 head, next_tid(tid)))) {
8a5ec0ba
CL
2985
2986 note_cmpxchg_failure("slab_free", s, tid);
2987 goto redo;
2988 }
84e554e6 2989 stat(s, FREE_FASTPATH);
894b8788 2990 } else
81084651 2991 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2992
894b8788
CL
2993}
2994
80a9201a
AP
2995static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2996 void *head, void *tail, int cnt,
2997 unsigned long addr)
2998{
80a9201a 2999 /*
c3895391
AK
3000 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3001 * to remove objects, whose reuse must be delayed.
80a9201a 3002 */
c3895391
AK
3003 if (slab_free_freelist_hook(s, &head, &tail))
3004 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3005}
3006
2bd926b4 3007#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3008void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3009{
3010 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3011}
3012#endif
3013
81819f0f
CL
3014void kmem_cache_free(struct kmem_cache *s, void *x)
3015{
b9ce5ef4
GC
3016 s = cache_from_obj(s, x);
3017 if (!s)
79576102 3018 return;
81084651 3019 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3020 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3021}
3022EXPORT_SYMBOL(kmem_cache_free);
3023
d0ecd894 3024struct detached_freelist {
fbd02630 3025 struct page *page;
d0ecd894
JDB
3026 void *tail;
3027 void *freelist;
3028 int cnt;
376bf125 3029 struct kmem_cache *s;
d0ecd894 3030};
fbd02630 3031
d0ecd894
JDB
3032/*
3033 * This function progressively scans the array with free objects (with
3034 * a limited look ahead) and extract objects belonging to the same
3035 * page. It builds a detached freelist directly within the given
3036 * page/objects. This can happen without any need for
3037 * synchronization, because the objects are owned by running process.
3038 * The freelist is build up as a single linked list in the objects.
3039 * The idea is, that this detached freelist can then be bulk
3040 * transferred to the real freelist(s), but only requiring a single
3041 * synchronization primitive. Look ahead in the array is limited due
3042 * to performance reasons.
3043 */
376bf125
JDB
3044static inline
3045int build_detached_freelist(struct kmem_cache *s, size_t size,
3046 void **p, struct detached_freelist *df)
d0ecd894
JDB
3047{
3048 size_t first_skipped_index = 0;
3049 int lookahead = 3;
3050 void *object;
ca257195 3051 struct page *page;
fbd02630 3052
d0ecd894
JDB
3053 /* Always re-init detached_freelist */
3054 df->page = NULL;
fbd02630 3055
d0ecd894
JDB
3056 do {
3057 object = p[--size];
ca257195 3058 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3059 } while (!object && size);
3eed034d 3060
d0ecd894
JDB
3061 if (!object)
3062 return 0;
fbd02630 3063
ca257195
JDB
3064 page = virt_to_head_page(object);
3065 if (!s) {
3066 /* Handle kalloc'ed objects */
3067 if (unlikely(!PageSlab(page))) {
3068 BUG_ON(!PageCompound(page));
3069 kfree_hook(object);
4949148a 3070 __free_pages(page, compound_order(page));
ca257195
JDB
3071 p[size] = NULL; /* mark object processed */
3072 return size;
3073 }
3074 /* Derive kmem_cache from object */
3075 df->s = page->slab_cache;
3076 } else {
3077 df->s = cache_from_obj(s, object); /* Support for memcg */
3078 }
376bf125 3079
d0ecd894 3080 /* Start new detached freelist */
ca257195 3081 df->page = page;
376bf125 3082 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3083 df->tail = object;
3084 df->freelist = object;
3085 p[size] = NULL; /* mark object processed */
3086 df->cnt = 1;
3087
3088 while (size) {
3089 object = p[--size];
3090 if (!object)
3091 continue; /* Skip processed objects */
3092
3093 /* df->page is always set at this point */
3094 if (df->page == virt_to_head_page(object)) {
3095 /* Opportunity build freelist */
376bf125 3096 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3097 df->freelist = object;
3098 df->cnt++;
3099 p[size] = NULL; /* mark object processed */
3100
3101 continue;
fbd02630 3102 }
d0ecd894
JDB
3103
3104 /* Limit look ahead search */
3105 if (!--lookahead)
3106 break;
3107
3108 if (!first_skipped_index)
3109 first_skipped_index = size + 1;
fbd02630 3110 }
d0ecd894
JDB
3111
3112 return first_skipped_index;
3113}
3114
d0ecd894 3115/* Note that interrupts must be enabled when calling this function. */
376bf125 3116void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3117{
3118 if (WARN_ON(!size))
3119 return;
3120
3121 do {
3122 struct detached_freelist df;
3123
3124 size = build_detached_freelist(s, size, p, &df);
84582c8a 3125 if (!df.page)
d0ecd894
JDB
3126 continue;
3127
376bf125 3128 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3129 } while (likely(size));
484748f0
CL
3130}
3131EXPORT_SYMBOL(kmem_cache_free_bulk);
3132
994eb764 3133/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3134int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3135 void **p)
484748f0 3136{
994eb764
JDB
3137 struct kmem_cache_cpu *c;
3138 int i;
3139
03ec0ed5
JDB
3140 /* memcg and kmem_cache debug support */
3141 s = slab_pre_alloc_hook(s, flags);
3142 if (unlikely(!s))
3143 return false;
994eb764
JDB
3144 /*
3145 * Drain objects in the per cpu slab, while disabling local
3146 * IRQs, which protects against PREEMPT and interrupts
3147 * handlers invoking normal fastpath.
3148 */
3149 local_irq_disable();
3150 c = this_cpu_ptr(s->cpu_slab);
3151
3152 for (i = 0; i < size; i++) {
3153 void *object = c->freelist;
3154
ebe909e0 3155 if (unlikely(!object)) {
ebe909e0
JDB
3156 /*
3157 * Invoking slow path likely have side-effect
3158 * of re-populating per CPU c->freelist
3159 */
87098373 3160 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3161 _RET_IP_, c);
87098373
CL
3162 if (unlikely(!p[i]))
3163 goto error;
3164
ebe909e0
JDB
3165 c = this_cpu_ptr(s->cpu_slab);
3166 continue; /* goto for-loop */
3167 }
994eb764
JDB
3168 c->freelist = get_freepointer(s, object);
3169 p[i] = object;
3170 }
3171 c->tid = next_tid(c->tid);
3172 local_irq_enable();
3173
3174 /* Clear memory outside IRQ disabled fastpath loop */
3175 if (unlikely(flags & __GFP_ZERO)) {
3176 int j;
3177
3178 for (j = 0; j < i; j++)
3179 memset(p[j], 0, s->object_size);
3180 }
3181
03ec0ed5
JDB
3182 /* memcg and kmem_cache debug support */
3183 slab_post_alloc_hook(s, flags, size, p);
865762a8 3184 return i;
87098373 3185error:
87098373 3186 local_irq_enable();
03ec0ed5
JDB
3187 slab_post_alloc_hook(s, flags, i, p);
3188 __kmem_cache_free_bulk(s, i, p);
865762a8 3189 return 0;
484748f0
CL
3190}
3191EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3192
3193
81819f0f 3194/*
672bba3a
CL
3195 * Object placement in a slab is made very easy because we always start at
3196 * offset 0. If we tune the size of the object to the alignment then we can
3197 * get the required alignment by putting one properly sized object after
3198 * another.
81819f0f
CL
3199 *
3200 * Notice that the allocation order determines the sizes of the per cpu
3201 * caches. Each processor has always one slab available for allocations.
3202 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3203 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3204 * locking overhead.
81819f0f
CL
3205 */
3206
3207/*
3208 * Mininum / Maximum order of slab pages. This influences locking overhead
3209 * and slab fragmentation. A higher order reduces the number of partial slabs
3210 * and increases the number of allocations possible without having to
3211 * take the list_lock.
3212 */
19af27af
AD
3213static unsigned int slub_min_order;
3214static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3215static unsigned int slub_min_objects;
81819f0f 3216
81819f0f
CL
3217/*
3218 * Calculate the order of allocation given an slab object size.
3219 *
672bba3a
CL
3220 * The order of allocation has significant impact on performance and other
3221 * system components. Generally order 0 allocations should be preferred since
3222 * order 0 does not cause fragmentation in the page allocator. Larger objects
3223 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3224 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3225 * would be wasted.
3226 *
3227 * In order to reach satisfactory performance we must ensure that a minimum
3228 * number of objects is in one slab. Otherwise we may generate too much
3229 * activity on the partial lists which requires taking the list_lock. This is
3230 * less a concern for large slabs though which are rarely used.
81819f0f 3231 *
672bba3a
CL
3232 * slub_max_order specifies the order where we begin to stop considering the
3233 * number of objects in a slab as critical. If we reach slub_max_order then
3234 * we try to keep the page order as low as possible. So we accept more waste
3235 * of space in favor of a small page order.
81819f0f 3236 *
672bba3a
CL
3237 * Higher order allocations also allow the placement of more objects in a
3238 * slab and thereby reduce object handling overhead. If the user has
3239 * requested a higher mininum order then we start with that one instead of
3240 * the smallest order which will fit the object.
81819f0f 3241 */
19af27af
AD
3242static inline unsigned int slab_order(unsigned int size,
3243 unsigned int min_objects, unsigned int max_order,
9736d2a9 3244 unsigned int fract_leftover)
81819f0f 3245{
19af27af
AD
3246 unsigned int min_order = slub_min_order;
3247 unsigned int order;
81819f0f 3248
9736d2a9 3249 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3250 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3251
9736d2a9 3252 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3253 order <= max_order; order++) {
81819f0f 3254
19af27af
AD
3255 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3256 unsigned int rem;
81819f0f 3257
9736d2a9 3258 rem = slab_size % size;
81819f0f 3259
5e6d444e 3260 if (rem <= slab_size / fract_leftover)
81819f0f 3261 break;
81819f0f 3262 }
672bba3a 3263
81819f0f
CL
3264 return order;
3265}
3266
9736d2a9 3267static inline int calculate_order(unsigned int size)
5e6d444e 3268{
19af27af
AD
3269 unsigned int order;
3270 unsigned int min_objects;
3271 unsigned int max_objects;
5e6d444e
CL
3272
3273 /*
3274 * Attempt to find best configuration for a slab. This
3275 * works by first attempting to generate a layout with
3276 * the best configuration and backing off gradually.
3277 *
422ff4d7 3278 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3279 * we reduce the minimum objects required in a slab.
3280 */
3281 min_objects = slub_min_objects;
9b2cd506
CL
3282 if (!min_objects)
3283 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3284 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3285 min_objects = min(min_objects, max_objects);
3286
5e6d444e 3287 while (min_objects > 1) {
19af27af
AD
3288 unsigned int fraction;
3289
c124f5b5 3290 fraction = 16;
5e6d444e
CL
3291 while (fraction >= 4) {
3292 order = slab_order(size, min_objects,
9736d2a9 3293 slub_max_order, fraction);
5e6d444e
CL
3294 if (order <= slub_max_order)
3295 return order;
3296 fraction /= 2;
3297 }
5086c389 3298 min_objects--;
5e6d444e
CL
3299 }
3300
3301 /*
3302 * We were unable to place multiple objects in a slab. Now
3303 * lets see if we can place a single object there.
3304 */
9736d2a9 3305 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3306 if (order <= slub_max_order)
3307 return order;
3308
3309 /*
3310 * Doh this slab cannot be placed using slub_max_order.
3311 */
9736d2a9 3312 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3313 if (order < MAX_ORDER)
5e6d444e
CL
3314 return order;
3315 return -ENOSYS;
3316}
3317
5595cffc 3318static void
4053497d 3319init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3320{
3321 n->nr_partial = 0;
81819f0f
CL
3322 spin_lock_init(&n->list_lock);
3323 INIT_LIST_HEAD(&n->partial);
8ab1372f 3324#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3325 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3326 atomic_long_set(&n->total_objects, 0);
643b1138 3327 INIT_LIST_HEAD(&n->full);
8ab1372f 3328#endif
81819f0f
CL
3329}
3330
55136592 3331static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3332{
6c182dc0 3333 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3334 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3335
8a5ec0ba 3336 /*
d4d84fef
CM
3337 * Must align to double word boundary for the double cmpxchg
3338 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3339 */
d4d84fef
CM
3340 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3341 2 * sizeof(void *));
8a5ec0ba
CL
3342
3343 if (!s->cpu_slab)
3344 return 0;
3345
3346 init_kmem_cache_cpus(s);
4c93c355 3347
8a5ec0ba 3348 return 1;
4c93c355 3349}
4c93c355 3350
51df1142
CL
3351static struct kmem_cache *kmem_cache_node;
3352
81819f0f
CL
3353/*
3354 * No kmalloc_node yet so do it by hand. We know that this is the first
3355 * slab on the node for this slabcache. There are no concurrent accesses
3356 * possible.
3357 *
721ae22a
ZYW
3358 * Note that this function only works on the kmem_cache_node
3359 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3360 * memory on a fresh node that has no slab structures yet.
81819f0f 3361 */
55136592 3362static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3363{
3364 struct page *page;
3365 struct kmem_cache_node *n;
3366
51df1142 3367 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3368
51df1142 3369 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3370
3371 BUG_ON(!page);
a2f92ee7 3372 if (page_to_nid(page) != node) {
f9f58285
FF
3373 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3374 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3375 }
3376
81819f0f
CL
3377 n = page->freelist;
3378 BUG_ON(!n);
8ab1372f 3379#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3380 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3381 init_tracking(kmem_cache_node, n);
8ab1372f 3382#endif
12b22386 3383 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3384 GFP_KERNEL);
12b22386
AK
3385 page->freelist = get_freepointer(kmem_cache_node, n);
3386 page->inuse = 1;
3387 page->frozen = 0;
3388 kmem_cache_node->node[node] = n;
4053497d 3389 init_kmem_cache_node(n);
51df1142 3390 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3391
67b6c900 3392 /*
1e4dd946
SR
3393 * No locks need to be taken here as it has just been
3394 * initialized and there is no concurrent access.
67b6c900 3395 */
1e4dd946 3396 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3397}
3398
3399static void free_kmem_cache_nodes(struct kmem_cache *s)
3400{
3401 int node;
fa45dc25 3402 struct kmem_cache_node *n;
81819f0f 3403
fa45dc25 3404 for_each_kmem_cache_node(s, node, n) {
81819f0f 3405 s->node[node] = NULL;
ea37df54 3406 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3407 }
3408}
3409
52b4b950
DS
3410void __kmem_cache_release(struct kmem_cache *s)
3411{
210e7a43 3412 cache_random_seq_destroy(s);
52b4b950
DS
3413 free_percpu(s->cpu_slab);
3414 free_kmem_cache_nodes(s);
3415}
3416
55136592 3417static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3418{
3419 int node;
81819f0f 3420
f64dc58c 3421 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3422 struct kmem_cache_node *n;
3423
73367bd8 3424 if (slab_state == DOWN) {
55136592 3425 early_kmem_cache_node_alloc(node);
73367bd8
AD
3426 continue;
3427 }
51df1142 3428 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3429 GFP_KERNEL, node);
81819f0f 3430
73367bd8
AD
3431 if (!n) {
3432 free_kmem_cache_nodes(s);
3433 return 0;
81819f0f 3434 }
73367bd8 3435
4053497d 3436 init_kmem_cache_node(n);
ea37df54 3437 s->node[node] = n;
81819f0f
CL
3438 }
3439 return 1;
3440}
81819f0f 3441
c0bdb232 3442static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3443{
3444 if (min < MIN_PARTIAL)
3445 min = MIN_PARTIAL;
3446 else if (min > MAX_PARTIAL)
3447 min = MAX_PARTIAL;
3448 s->min_partial = min;
3449}
3450
e6d0e1dc
WY
3451static void set_cpu_partial(struct kmem_cache *s)
3452{
3453#ifdef CONFIG_SLUB_CPU_PARTIAL
3454 /*
3455 * cpu_partial determined the maximum number of objects kept in the
3456 * per cpu partial lists of a processor.
3457 *
3458 * Per cpu partial lists mainly contain slabs that just have one
3459 * object freed. If they are used for allocation then they can be
3460 * filled up again with minimal effort. The slab will never hit the
3461 * per node partial lists and therefore no locking will be required.
3462 *
3463 * This setting also determines
3464 *
3465 * A) The number of objects from per cpu partial slabs dumped to the
3466 * per node list when we reach the limit.
3467 * B) The number of objects in cpu partial slabs to extract from the
3468 * per node list when we run out of per cpu objects. We only fetch
3469 * 50% to keep some capacity around for frees.
3470 */
3471 if (!kmem_cache_has_cpu_partial(s))
3472 s->cpu_partial = 0;
3473 else if (s->size >= PAGE_SIZE)
3474 s->cpu_partial = 2;
3475 else if (s->size >= 1024)
3476 s->cpu_partial = 6;
3477 else if (s->size >= 256)
3478 s->cpu_partial = 13;
3479 else
3480 s->cpu_partial = 30;
3481#endif
3482}
3483
81819f0f
CL
3484/*
3485 * calculate_sizes() determines the order and the distribution of data within
3486 * a slab object.
3487 */
06b285dc 3488static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3489{
d50112ed 3490 slab_flags_t flags = s->flags;
be4a7988 3491 unsigned int size = s->object_size;
19af27af 3492 unsigned int order;
81819f0f 3493
d8b42bf5
CL
3494 /*
3495 * Round up object size to the next word boundary. We can only
3496 * place the free pointer at word boundaries and this determines
3497 * the possible location of the free pointer.
3498 */
3499 size = ALIGN(size, sizeof(void *));
3500
3501#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3502 /*
3503 * Determine if we can poison the object itself. If the user of
3504 * the slab may touch the object after free or before allocation
3505 * then we should never poison the object itself.
3506 */
5f0d5a3a 3507 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3508 !s->ctor)
81819f0f
CL
3509 s->flags |= __OBJECT_POISON;
3510 else
3511 s->flags &= ~__OBJECT_POISON;
3512
81819f0f
CL
3513
3514 /*
672bba3a 3515 * If we are Redzoning then check if there is some space between the
81819f0f 3516 * end of the object and the free pointer. If not then add an
672bba3a 3517 * additional word to have some bytes to store Redzone information.
81819f0f 3518 */
3b0efdfa 3519 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3520 size += sizeof(void *);
41ecc55b 3521#endif
81819f0f
CL
3522
3523 /*
672bba3a
CL
3524 * With that we have determined the number of bytes in actual use
3525 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3526 */
3527 s->inuse = size;
3528
5f0d5a3a 3529 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3530 s->ctor)) {
81819f0f
CL
3531 /*
3532 * Relocate free pointer after the object if it is not
3533 * permitted to overwrite the first word of the object on
3534 * kmem_cache_free.
3535 *
3536 * This is the case if we do RCU, have a constructor or
3537 * destructor or are poisoning the objects.
3538 */
3539 s->offset = size;
3540 size += sizeof(void *);
3541 }
3542
c12b3c62 3543#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3544 if (flags & SLAB_STORE_USER)
3545 /*
3546 * Need to store information about allocs and frees after
3547 * the object.
3548 */
3549 size += 2 * sizeof(struct track);
80a9201a 3550#endif
81819f0f 3551
80a9201a
AP
3552 kasan_cache_create(s, &size, &s->flags);
3553#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3554 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3555 /*
3556 * Add some empty padding so that we can catch
3557 * overwrites from earlier objects rather than let
3558 * tracking information or the free pointer be
0211a9c8 3559 * corrupted if a user writes before the start
81819f0f
CL
3560 * of the object.
3561 */
3562 size += sizeof(void *);
d86bd1be
JK
3563
3564 s->red_left_pad = sizeof(void *);
3565 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3566 size += s->red_left_pad;
3567 }
41ecc55b 3568#endif
672bba3a 3569
81819f0f
CL
3570 /*
3571 * SLUB stores one object immediately after another beginning from
3572 * offset 0. In order to align the objects we have to simply size
3573 * each object to conform to the alignment.
3574 */
45906855 3575 size = ALIGN(size, s->align);
81819f0f 3576 s->size = size;
06b285dc
CL
3577 if (forced_order >= 0)
3578 order = forced_order;
3579 else
9736d2a9 3580 order = calculate_order(size);
81819f0f 3581
19af27af 3582 if ((int)order < 0)
81819f0f
CL
3583 return 0;
3584
b7a49f0d 3585 s->allocflags = 0;
834f3d11 3586 if (order)
b7a49f0d
CL
3587 s->allocflags |= __GFP_COMP;
3588
3589 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3590 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3591
3592 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3593 s->allocflags |= __GFP_RECLAIMABLE;
3594
81819f0f
CL
3595 /*
3596 * Determine the number of objects per slab
3597 */
9736d2a9
MW
3598 s->oo = oo_make(order, size);
3599 s->min = oo_make(get_order(size), size);
205ab99d
CL
3600 if (oo_objects(s->oo) > oo_objects(s->max))
3601 s->max = s->oo;
81819f0f 3602
834f3d11 3603 return !!oo_objects(s->oo);
81819f0f
CL
3604}
3605
d50112ed 3606static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3607{
8a13a4cc 3608 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3609#ifdef CONFIG_SLAB_FREELIST_HARDENED
3610 s->random = get_random_long();
3611#endif
81819f0f 3612
06b285dc 3613 if (!calculate_sizes(s, -1))
81819f0f 3614 goto error;
3de47213
DR
3615 if (disable_higher_order_debug) {
3616 /*
3617 * Disable debugging flags that store metadata if the min slab
3618 * order increased.
3619 */
3b0efdfa 3620 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3621 s->flags &= ~DEBUG_METADATA_FLAGS;
3622 s->offset = 0;
3623 if (!calculate_sizes(s, -1))
3624 goto error;
3625 }
3626 }
81819f0f 3627
2565409f
HC
3628#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3629 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3630 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3631 /* Enable fast mode */
3632 s->flags |= __CMPXCHG_DOUBLE;
3633#endif
3634
3b89d7d8
DR
3635 /*
3636 * The larger the object size is, the more pages we want on the partial
3637 * list to avoid pounding the page allocator excessively.
3638 */
49e22585
CL
3639 set_min_partial(s, ilog2(s->size) / 2);
3640
e6d0e1dc 3641 set_cpu_partial(s);
49e22585 3642
81819f0f 3643#ifdef CONFIG_NUMA
e2cb96b7 3644 s->remote_node_defrag_ratio = 1000;
81819f0f 3645#endif
210e7a43
TG
3646
3647 /* Initialize the pre-computed randomized freelist if slab is up */
3648 if (slab_state >= UP) {
3649 if (init_cache_random_seq(s))
3650 goto error;
3651 }
3652
55136592 3653 if (!init_kmem_cache_nodes(s))
dfb4f096 3654 goto error;
81819f0f 3655
55136592 3656 if (alloc_kmem_cache_cpus(s))
278b1bb1 3657 return 0;
ff12059e 3658
4c93c355 3659 free_kmem_cache_nodes(s);
81819f0f
CL
3660error:
3661 if (flags & SLAB_PANIC)
44065b2e
AD
3662 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3663 s->name, s->size, s->size,
4fd0b46e 3664 oo_order(s->oo), s->offset, (unsigned long)flags);
278b1bb1 3665 return -EINVAL;
81819f0f 3666}
81819f0f 3667
33b12c38
CL
3668static void list_slab_objects(struct kmem_cache *s, struct page *page,
3669 const char *text)
3670{
3671#ifdef CONFIG_SLUB_DEBUG
3672 void *addr = page_address(page);
3673 void *p;
0684e652 3674 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
bbd7d57b
ED
3675 if (!map)
3676 return;
945cf2b6 3677 slab_err(s, page, text, s->name);
33b12c38 3678 slab_lock(page);
33b12c38 3679
5f80b13a 3680 get_map(s, page, map);
33b12c38
CL
3681 for_each_object(p, s, addr, page->objects) {
3682
3683 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3684 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3685 print_tracking(s, p);
3686 }
3687 }
3688 slab_unlock(page);
0684e652 3689 bitmap_free(map);
33b12c38
CL
3690#endif
3691}
3692
81819f0f 3693/*
599870b1 3694 * Attempt to free all partial slabs on a node.
52b4b950
DS
3695 * This is called from __kmem_cache_shutdown(). We must take list_lock
3696 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3697 */
599870b1 3698static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3699{
60398923 3700 LIST_HEAD(discard);
81819f0f
CL
3701 struct page *page, *h;
3702
52b4b950
DS
3703 BUG_ON(irqs_disabled());
3704 spin_lock_irq(&n->list_lock);
33b12c38 3705 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3706 if (!page->inuse) {
52b4b950 3707 remove_partial(n, page);
60398923 3708 list_add(&page->lru, &discard);
33b12c38
CL
3709 } else {
3710 list_slab_objects(s, page,
52b4b950 3711 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3712 }
33b12c38 3713 }
52b4b950 3714 spin_unlock_irq(&n->list_lock);
60398923
CW
3715
3716 list_for_each_entry_safe(page, h, &discard, lru)
3717 discard_slab(s, page);
81819f0f
CL
3718}
3719
f9e13c0a
SB
3720bool __kmem_cache_empty(struct kmem_cache *s)
3721{
3722 int node;
3723 struct kmem_cache_node *n;
3724
3725 for_each_kmem_cache_node(s, node, n)
3726 if (n->nr_partial || slabs_node(s, node))
3727 return false;
3728 return true;
3729}
3730
81819f0f 3731/*
672bba3a 3732 * Release all resources used by a slab cache.
81819f0f 3733 */
52b4b950 3734int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3735{
3736 int node;
fa45dc25 3737 struct kmem_cache_node *n;
81819f0f
CL
3738
3739 flush_all(s);
81819f0f 3740 /* Attempt to free all objects */
fa45dc25 3741 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3742 free_partial(s, n);
3743 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3744 return 1;
3745 }
bf5eb3de 3746 sysfs_slab_remove(s);
81819f0f
CL
3747 return 0;
3748}
3749
81819f0f
CL
3750/********************************************************************
3751 * Kmalloc subsystem
3752 *******************************************************************/
3753
81819f0f
CL
3754static int __init setup_slub_min_order(char *str)
3755{
19af27af 3756 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3757
3758 return 1;
3759}
3760
3761__setup("slub_min_order=", setup_slub_min_order);
3762
3763static int __init setup_slub_max_order(char *str)
3764{
19af27af
AD
3765 get_option(&str, (int *)&slub_max_order);
3766 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3767
3768 return 1;
3769}
3770
3771__setup("slub_max_order=", setup_slub_max_order);
3772
3773static int __init setup_slub_min_objects(char *str)
3774{
19af27af 3775 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3776
3777 return 1;
3778}
3779
3780__setup("slub_min_objects=", setup_slub_min_objects);
3781
81819f0f
CL
3782void *__kmalloc(size_t size, gfp_t flags)
3783{
aadb4bc4 3784 struct kmem_cache *s;
5b882be4 3785 void *ret;
81819f0f 3786
95a05b42 3787 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3788 return kmalloc_large(size, flags);
aadb4bc4 3789
2c59dd65 3790 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3791
3792 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3793 return s;
3794
2b847c3c 3795 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3796
ca2b84cb 3797 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3798
0116523c 3799 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3800
5b882be4 3801 return ret;
81819f0f
CL
3802}
3803EXPORT_SYMBOL(__kmalloc);
3804
5d1f57e4 3805#ifdef CONFIG_NUMA
f619cfe1
CL
3806static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3807{
b1eeab67 3808 struct page *page;
e4f7c0b4 3809 void *ptr = NULL;
f619cfe1 3810
75f296d9 3811 flags |= __GFP_COMP;
4949148a 3812 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3813 if (page)
e4f7c0b4
CM
3814 ptr = page_address(page);
3815
0116523c 3816 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3817}
3818
81819f0f
CL
3819void *__kmalloc_node(size_t size, gfp_t flags, int node)
3820{
aadb4bc4 3821 struct kmem_cache *s;
5b882be4 3822 void *ret;
81819f0f 3823
95a05b42 3824 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3825 ret = kmalloc_large_node(size, flags, node);
3826
ca2b84cb
EGM
3827 trace_kmalloc_node(_RET_IP_, ret,
3828 size, PAGE_SIZE << get_order(size),
3829 flags, node);
5b882be4
EGM
3830
3831 return ret;
3832 }
aadb4bc4 3833
2c59dd65 3834 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3835
3836 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3837 return s;
3838
2b847c3c 3839 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3840
ca2b84cb 3841 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3842
0116523c 3843 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3844
5b882be4 3845 return ret;
81819f0f
CL
3846}
3847EXPORT_SYMBOL(__kmalloc_node);
3848#endif
3849
ed18adc1
KC
3850#ifdef CONFIG_HARDENED_USERCOPY
3851/*
afcc90f8
KC
3852 * Rejects incorrectly sized objects and objects that are to be copied
3853 * to/from userspace but do not fall entirely within the containing slab
3854 * cache's usercopy region.
ed18adc1
KC
3855 *
3856 * Returns NULL if check passes, otherwise const char * to name of cache
3857 * to indicate an error.
3858 */
f4e6e289
KC
3859void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3860 bool to_user)
ed18adc1
KC
3861{
3862 struct kmem_cache *s;
44065b2e 3863 unsigned int offset;
ed18adc1
KC
3864 size_t object_size;
3865
96fedce2
AK
3866 ptr = kasan_reset_tag(ptr);
3867
ed18adc1
KC
3868 /* Find object and usable object size. */
3869 s = page->slab_cache;
ed18adc1
KC
3870
3871 /* Reject impossible pointers. */
3872 if (ptr < page_address(page))
f4e6e289
KC
3873 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3874 to_user, 0, n);
ed18adc1
KC
3875
3876 /* Find offset within object. */
3877 offset = (ptr - page_address(page)) % s->size;
3878
3879 /* Adjust for redzone and reject if within the redzone. */
3880 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3881 if (offset < s->red_left_pad)
f4e6e289
KC
3882 usercopy_abort("SLUB object in left red zone",
3883 s->name, to_user, offset, n);
ed18adc1
KC
3884 offset -= s->red_left_pad;
3885 }
3886
afcc90f8
KC
3887 /* Allow address range falling entirely within usercopy region. */
3888 if (offset >= s->useroffset &&
3889 offset - s->useroffset <= s->usersize &&
3890 n <= s->useroffset - offset + s->usersize)
f4e6e289 3891 return;
ed18adc1 3892
afcc90f8
KC
3893 /*
3894 * If the copy is still within the allocated object, produce
3895 * a warning instead of rejecting the copy. This is intended
3896 * to be a temporary method to find any missing usercopy
3897 * whitelists.
3898 */
3899 object_size = slab_ksize(s);
2d891fbc
KC
3900 if (usercopy_fallback &&
3901 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3902 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3903 return;
3904 }
ed18adc1 3905
f4e6e289 3906 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3907}
3908#endif /* CONFIG_HARDENED_USERCOPY */
3909
0316bec2 3910static size_t __ksize(const void *object)
81819f0f 3911{
272c1d21 3912 struct page *page;
81819f0f 3913
ef8b4520 3914 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3915 return 0;
3916
294a80a8 3917 page = virt_to_head_page(object);
294a80a8 3918
76994412
PE
3919 if (unlikely(!PageSlab(page))) {
3920 WARN_ON(!PageCompound(page));
294a80a8 3921 return PAGE_SIZE << compound_order(page);
76994412 3922 }
81819f0f 3923
1b4f59e3 3924 return slab_ksize(page->slab_cache);
81819f0f 3925}
0316bec2
AR
3926
3927size_t ksize(const void *object)
3928{
3929 size_t size = __ksize(object);
3930 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3931 * so we need to unpoison this area.
3932 */
3933 kasan_unpoison_shadow(object, size);
0316bec2
AR
3934 return size;
3935}
b1aabecd 3936EXPORT_SYMBOL(ksize);
81819f0f
CL
3937
3938void kfree(const void *x)
3939{
81819f0f 3940 struct page *page;
5bb983b0 3941 void *object = (void *)x;
81819f0f 3942
2121db74
PE
3943 trace_kfree(_RET_IP_, x);
3944
2408c550 3945 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3946 return;
3947
b49af68f 3948 page = virt_to_head_page(x);
aadb4bc4 3949 if (unlikely(!PageSlab(page))) {
0937502a 3950 BUG_ON(!PageCompound(page));
47adccce 3951 kfree_hook(object);
4949148a 3952 __free_pages(page, compound_order(page));
aadb4bc4
CL
3953 return;
3954 }
81084651 3955 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3956}
3957EXPORT_SYMBOL(kfree);
3958
832f37f5
VD
3959#define SHRINK_PROMOTE_MAX 32
3960
2086d26a 3961/*
832f37f5
VD
3962 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3963 * up most to the head of the partial lists. New allocations will then
3964 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3965 *
3966 * The slabs with the least items are placed last. This results in them
3967 * being allocated from last increasing the chance that the last objects
3968 * are freed in them.
2086d26a 3969 */
c9fc5864 3970int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3971{
3972 int node;
3973 int i;
3974 struct kmem_cache_node *n;
3975 struct page *page;
3976 struct page *t;
832f37f5
VD
3977 struct list_head discard;
3978 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3979 unsigned long flags;
ce3712d7 3980 int ret = 0;
2086d26a 3981
2086d26a 3982 flush_all(s);
fa45dc25 3983 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3984 INIT_LIST_HEAD(&discard);
3985 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3986 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3987
3988 spin_lock_irqsave(&n->list_lock, flags);
3989
3990 /*
832f37f5 3991 * Build lists of slabs to discard or promote.
2086d26a 3992 *
672bba3a
CL
3993 * Note that concurrent frees may occur while we hold the
3994 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3995 */
3996 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3997 int free = page->objects - page->inuse;
3998
3999 /* Do not reread page->inuse */
4000 barrier();
4001
4002 /* We do not keep full slabs on the list */
4003 BUG_ON(free <= 0);
4004
4005 if (free == page->objects) {
4006 list_move(&page->lru, &discard);
69cb8e6b 4007 n->nr_partial--;
832f37f5
VD
4008 } else if (free <= SHRINK_PROMOTE_MAX)
4009 list_move(&page->lru, promote + free - 1);
2086d26a
CL
4010 }
4011
2086d26a 4012 /*
832f37f5
VD
4013 * Promote the slabs filled up most to the head of the
4014 * partial list.
2086d26a 4015 */
832f37f5
VD
4016 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4017 list_splice(promote + i, &n->partial);
2086d26a 4018
2086d26a 4019 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4020
4021 /* Release empty slabs */
832f37f5 4022 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 4023 discard_slab(s, page);
ce3712d7
VD
4024
4025 if (slabs_node(s, node))
4026 ret = 1;
2086d26a
CL
4027 }
4028
ce3712d7 4029 return ret;
2086d26a 4030}
2086d26a 4031
c9fc5864 4032#ifdef CONFIG_MEMCG
01fb58bc
TH
4033static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4034{
50862ce7
TH
4035 /*
4036 * Called with all the locks held after a sched RCU grace period.
4037 * Even if @s becomes empty after shrinking, we can't know that @s
4038 * doesn't have allocations already in-flight and thus can't
4039 * destroy @s until the associated memcg is released.
4040 *
4041 * However, let's remove the sysfs files for empty caches here.
4042 * Each cache has a lot of interface files which aren't
4043 * particularly useful for empty draining caches; otherwise, we can
4044 * easily end up with millions of unnecessary sysfs files on
4045 * systems which have a lot of memory and transient cgroups.
4046 */
4047 if (!__kmem_cache_shrink(s))
4048 sysfs_slab_remove(s);
01fb58bc
TH
4049}
4050
c9fc5864
TH
4051void __kmemcg_cache_deactivate(struct kmem_cache *s)
4052{
4053 /*
4054 * Disable empty slabs caching. Used to avoid pinning offline
4055 * memory cgroups by kmem pages that can be freed.
4056 */
e6d0e1dc 4057 slub_set_cpu_partial(s, 0);
c9fc5864
TH
4058 s->min_partial = 0;
4059
4060 /*
4061 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 4062 * we have to make sure the change is visible before shrinking.
c9fc5864 4063 */
01fb58bc 4064 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864
TH
4065}
4066#endif
4067
b9049e23
YG
4068static int slab_mem_going_offline_callback(void *arg)
4069{
4070 struct kmem_cache *s;
4071
18004c5d 4072 mutex_lock(&slab_mutex);
b9049e23 4073 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4074 __kmem_cache_shrink(s);
18004c5d 4075 mutex_unlock(&slab_mutex);
b9049e23
YG
4076
4077 return 0;
4078}
4079
4080static void slab_mem_offline_callback(void *arg)
4081{
4082 struct kmem_cache_node *n;
4083 struct kmem_cache *s;
4084 struct memory_notify *marg = arg;
4085 int offline_node;
4086
b9d5ab25 4087 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4088
4089 /*
4090 * If the node still has available memory. we need kmem_cache_node
4091 * for it yet.
4092 */
4093 if (offline_node < 0)
4094 return;
4095
18004c5d 4096 mutex_lock(&slab_mutex);
b9049e23
YG
4097 list_for_each_entry(s, &slab_caches, list) {
4098 n = get_node(s, offline_node);
4099 if (n) {
4100 /*
4101 * if n->nr_slabs > 0, slabs still exist on the node
4102 * that is going down. We were unable to free them,
c9404c9c 4103 * and offline_pages() function shouldn't call this
b9049e23
YG
4104 * callback. So, we must fail.
4105 */
0f389ec6 4106 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4107
4108 s->node[offline_node] = NULL;
8de66a0c 4109 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4110 }
4111 }
18004c5d 4112 mutex_unlock(&slab_mutex);
b9049e23
YG
4113}
4114
4115static int slab_mem_going_online_callback(void *arg)
4116{
4117 struct kmem_cache_node *n;
4118 struct kmem_cache *s;
4119 struct memory_notify *marg = arg;
b9d5ab25 4120 int nid = marg->status_change_nid_normal;
b9049e23
YG
4121 int ret = 0;
4122
4123 /*
4124 * If the node's memory is already available, then kmem_cache_node is
4125 * already created. Nothing to do.
4126 */
4127 if (nid < 0)
4128 return 0;
4129
4130 /*
0121c619 4131 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4132 * allocate a kmem_cache_node structure in order to bring the node
4133 * online.
4134 */
18004c5d 4135 mutex_lock(&slab_mutex);
b9049e23
YG
4136 list_for_each_entry(s, &slab_caches, list) {
4137 /*
4138 * XXX: kmem_cache_alloc_node will fallback to other nodes
4139 * since memory is not yet available from the node that
4140 * is brought up.
4141 */
8de66a0c 4142 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4143 if (!n) {
4144 ret = -ENOMEM;
4145 goto out;
4146 }
4053497d 4147 init_kmem_cache_node(n);
b9049e23
YG
4148 s->node[nid] = n;
4149 }
4150out:
18004c5d 4151 mutex_unlock(&slab_mutex);
b9049e23
YG
4152 return ret;
4153}
4154
4155static int slab_memory_callback(struct notifier_block *self,
4156 unsigned long action, void *arg)
4157{
4158 int ret = 0;
4159
4160 switch (action) {
4161 case MEM_GOING_ONLINE:
4162 ret = slab_mem_going_online_callback(arg);
4163 break;
4164 case MEM_GOING_OFFLINE:
4165 ret = slab_mem_going_offline_callback(arg);
4166 break;
4167 case MEM_OFFLINE:
4168 case MEM_CANCEL_ONLINE:
4169 slab_mem_offline_callback(arg);
4170 break;
4171 case MEM_ONLINE:
4172 case MEM_CANCEL_OFFLINE:
4173 break;
4174 }
dc19f9db
KH
4175 if (ret)
4176 ret = notifier_from_errno(ret);
4177 else
4178 ret = NOTIFY_OK;
b9049e23
YG
4179 return ret;
4180}
4181
3ac38faa
AM
4182static struct notifier_block slab_memory_callback_nb = {
4183 .notifier_call = slab_memory_callback,
4184 .priority = SLAB_CALLBACK_PRI,
4185};
b9049e23 4186
81819f0f
CL
4187/********************************************************************
4188 * Basic setup of slabs
4189 *******************************************************************/
4190
51df1142
CL
4191/*
4192 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4193 * the page allocator. Allocate them properly then fix up the pointers
4194 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4195 */
4196
dffb4d60 4197static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4198{
4199 int node;
dffb4d60 4200 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4201 struct kmem_cache_node *n;
51df1142 4202
dffb4d60 4203 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4204
7d557b3c
GC
4205 /*
4206 * This runs very early, and only the boot processor is supposed to be
4207 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4208 * IPIs around.
4209 */
4210 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4211 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4212 struct page *p;
4213
fa45dc25
CL
4214 list_for_each_entry(p, &n->partial, lru)
4215 p->slab_cache = s;
51df1142 4216
607bf324 4217#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4218 list_for_each_entry(p, &n->full, lru)
4219 p->slab_cache = s;
51df1142 4220#endif
51df1142 4221 }
f7ce3190 4222 slab_init_memcg_params(s);
dffb4d60 4223 list_add(&s->list, &slab_caches);
510ded33 4224 memcg_link_cache(s);
dffb4d60 4225 return s;
51df1142
CL
4226}
4227
81819f0f
CL
4228void __init kmem_cache_init(void)
4229{
dffb4d60
CL
4230 static __initdata struct kmem_cache boot_kmem_cache,
4231 boot_kmem_cache_node;
51df1142 4232
fc8d8620
SG
4233 if (debug_guardpage_minorder())
4234 slub_max_order = 0;
4235
dffb4d60
CL
4236 kmem_cache_node = &boot_kmem_cache_node;
4237 kmem_cache = &boot_kmem_cache;
51df1142 4238
dffb4d60 4239 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4240 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4241
3ac38faa 4242 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4243
4244 /* Able to allocate the per node structures */
4245 slab_state = PARTIAL;
4246
dffb4d60
CL
4247 create_boot_cache(kmem_cache, "kmem_cache",
4248 offsetof(struct kmem_cache, node) +
4249 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4250 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4251
dffb4d60 4252 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4253 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4254
4255 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4256 setup_kmalloc_cache_index_table();
f97d5f63 4257 create_kmalloc_caches(0);
81819f0f 4258
210e7a43
TG
4259 /* Setup random freelists for each cache */
4260 init_freelist_randomization();
4261
a96a87bf
SAS
4262 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4263 slub_cpu_dead);
81819f0f 4264
b9726c26 4265 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4266 cache_line_size(),
81819f0f
CL
4267 slub_min_order, slub_max_order, slub_min_objects,
4268 nr_cpu_ids, nr_node_ids);
4269}
4270
7e85ee0c
PE
4271void __init kmem_cache_init_late(void)
4272{
7e85ee0c
PE
4273}
4274
2633d7a0 4275struct kmem_cache *
f4957d5b 4276__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4277 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4278{
426589f5 4279 struct kmem_cache *s, *c;
81819f0f 4280
a44cb944 4281 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4282 if (s) {
4283 s->refcount++;
84d0ddd6 4284
81819f0f
CL
4285 /*
4286 * Adjust the object sizes so that we clear
4287 * the complete object on kzalloc.
4288 */
1b473f29 4289 s->object_size = max(s->object_size, size);
52ee6d74 4290 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4291
426589f5 4292 for_each_memcg_cache(c, s) {
84d0ddd6 4293 c->object_size = s->object_size;
52ee6d74 4294 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4295 }
4296
7b8f3b66 4297 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4298 s->refcount--;
cbb79694 4299 s = NULL;
7b8f3b66 4300 }
a0e1d1be 4301 }
6446faa2 4302
cbb79694
CL
4303 return s;
4304}
84c1cf62 4305
d50112ed 4306int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4307{
aac3a166
PE
4308 int err;
4309
4310 err = kmem_cache_open(s, flags);
4311 if (err)
4312 return err;
20cea968 4313
45530c44
CL
4314 /* Mutex is not taken during early boot */
4315 if (slab_state <= UP)
4316 return 0;
4317
107dab5c 4318 memcg_propagate_slab_attrs(s);
aac3a166 4319 err = sysfs_slab_add(s);
aac3a166 4320 if (err)
52b4b950 4321 __kmem_cache_release(s);
20cea968 4322
aac3a166 4323 return err;
81819f0f 4324}
81819f0f 4325
ce71e27c 4326void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4327{
aadb4bc4 4328 struct kmem_cache *s;
94b528d0 4329 void *ret;
aadb4bc4 4330
95a05b42 4331 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4332 return kmalloc_large(size, gfpflags);
4333
2c59dd65 4334 s = kmalloc_slab(size, gfpflags);
81819f0f 4335
2408c550 4336 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4337 return s;
81819f0f 4338
2b847c3c 4339 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4340
25985edc 4341 /* Honor the call site pointer we received. */
ca2b84cb 4342 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4343
4344 return ret;
81819f0f
CL
4345}
4346
5d1f57e4 4347#ifdef CONFIG_NUMA
81819f0f 4348void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4349 int node, unsigned long caller)
81819f0f 4350{
aadb4bc4 4351 struct kmem_cache *s;
94b528d0 4352 void *ret;
aadb4bc4 4353
95a05b42 4354 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4355 ret = kmalloc_large_node(size, gfpflags, node);
4356
4357 trace_kmalloc_node(caller, ret,
4358 size, PAGE_SIZE << get_order(size),
4359 gfpflags, node);
4360
4361 return ret;
4362 }
eada35ef 4363
2c59dd65 4364 s = kmalloc_slab(size, gfpflags);
81819f0f 4365
2408c550 4366 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4367 return s;
81819f0f 4368
2b847c3c 4369 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4370
25985edc 4371 /* Honor the call site pointer we received. */
ca2b84cb 4372 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4373
4374 return ret;
81819f0f 4375}
5d1f57e4 4376#endif
81819f0f 4377
ab4d5ed5 4378#ifdef CONFIG_SYSFS
205ab99d
CL
4379static int count_inuse(struct page *page)
4380{
4381 return page->inuse;
4382}
4383
4384static int count_total(struct page *page)
4385{
4386 return page->objects;
4387}
ab4d5ed5 4388#endif
205ab99d 4389
ab4d5ed5 4390#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4391static int validate_slab(struct kmem_cache *s, struct page *page,
4392 unsigned long *map)
53e15af0
CL
4393{
4394 void *p;
a973e9dd 4395 void *addr = page_address(page);
53e15af0
CL
4396
4397 if (!check_slab(s, page) ||
4398 !on_freelist(s, page, NULL))
4399 return 0;
4400
4401 /* Now we know that a valid freelist exists */
39b26464 4402 bitmap_zero(map, page->objects);
53e15af0 4403
5f80b13a
CL
4404 get_map(s, page, map);
4405 for_each_object(p, s, addr, page->objects) {
4406 if (test_bit(slab_index(p, s, addr), map))
4407 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4408 return 0;
53e15af0
CL
4409 }
4410
224a88be 4411 for_each_object(p, s, addr, page->objects)
7656c72b 4412 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4413 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4414 return 0;
4415 return 1;
4416}
4417
434e245d
CL
4418static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4419 unsigned long *map)
53e15af0 4420{
881db7fb
CL
4421 slab_lock(page);
4422 validate_slab(s, page, map);
4423 slab_unlock(page);
53e15af0
CL
4424}
4425
434e245d
CL
4426static int validate_slab_node(struct kmem_cache *s,
4427 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4428{
4429 unsigned long count = 0;
4430 struct page *page;
4431 unsigned long flags;
4432
4433 spin_lock_irqsave(&n->list_lock, flags);
4434
4435 list_for_each_entry(page, &n->partial, lru) {
434e245d 4436 validate_slab_slab(s, page, map);
53e15af0
CL
4437 count++;
4438 }
4439 if (count != n->nr_partial)
f9f58285
FF
4440 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4441 s->name, count, n->nr_partial);
53e15af0
CL
4442
4443 if (!(s->flags & SLAB_STORE_USER))
4444 goto out;
4445
4446 list_for_each_entry(page, &n->full, lru) {
434e245d 4447 validate_slab_slab(s, page, map);
53e15af0
CL
4448 count++;
4449 }
4450 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4451 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4452 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4453
4454out:
4455 spin_unlock_irqrestore(&n->list_lock, flags);
4456 return count;
4457}
4458
434e245d 4459static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4460{
4461 int node;
4462 unsigned long count = 0;
fa45dc25 4463 struct kmem_cache_node *n;
0684e652 4464 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
434e245d
CL
4465
4466 if (!map)
4467 return -ENOMEM;
53e15af0
CL
4468
4469 flush_all(s);
fa45dc25 4470 for_each_kmem_cache_node(s, node, n)
434e245d 4471 count += validate_slab_node(s, n, map);
0684e652 4472 bitmap_free(map);
53e15af0
CL
4473 return count;
4474}
88a420e4 4475/*
672bba3a 4476 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4477 * and freed.
4478 */
4479
4480struct location {
4481 unsigned long count;
ce71e27c 4482 unsigned long addr;
45edfa58
CL
4483 long long sum_time;
4484 long min_time;
4485 long max_time;
4486 long min_pid;
4487 long max_pid;
174596a0 4488 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4489 nodemask_t nodes;
88a420e4
CL
4490};
4491
4492struct loc_track {
4493 unsigned long max;
4494 unsigned long count;
4495 struct location *loc;
4496};
4497
4498static void free_loc_track(struct loc_track *t)
4499{
4500 if (t->max)
4501 free_pages((unsigned long)t->loc,
4502 get_order(sizeof(struct location) * t->max));
4503}
4504
68dff6a9 4505static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4506{
4507 struct location *l;
4508 int order;
4509
88a420e4
CL
4510 order = get_order(sizeof(struct location) * max);
4511
68dff6a9 4512 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4513 if (!l)
4514 return 0;
4515
4516 if (t->count) {
4517 memcpy(l, t->loc, sizeof(struct location) * t->count);
4518 free_loc_track(t);
4519 }
4520 t->max = max;
4521 t->loc = l;
4522 return 1;
4523}
4524
4525static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4526 const struct track *track)
88a420e4
CL
4527{
4528 long start, end, pos;
4529 struct location *l;
ce71e27c 4530 unsigned long caddr;
45edfa58 4531 unsigned long age = jiffies - track->when;
88a420e4
CL
4532
4533 start = -1;
4534 end = t->count;
4535
4536 for ( ; ; ) {
4537 pos = start + (end - start + 1) / 2;
4538
4539 /*
4540 * There is nothing at "end". If we end up there
4541 * we need to add something to before end.
4542 */
4543 if (pos == end)
4544 break;
4545
4546 caddr = t->loc[pos].addr;
45edfa58
CL
4547 if (track->addr == caddr) {
4548
4549 l = &t->loc[pos];
4550 l->count++;
4551 if (track->when) {
4552 l->sum_time += age;
4553 if (age < l->min_time)
4554 l->min_time = age;
4555 if (age > l->max_time)
4556 l->max_time = age;
4557
4558 if (track->pid < l->min_pid)
4559 l->min_pid = track->pid;
4560 if (track->pid > l->max_pid)
4561 l->max_pid = track->pid;
4562
174596a0
RR
4563 cpumask_set_cpu(track->cpu,
4564 to_cpumask(l->cpus));
45edfa58
CL
4565 }
4566 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4567 return 1;
4568 }
4569
45edfa58 4570 if (track->addr < caddr)
88a420e4
CL
4571 end = pos;
4572 else
4573 start = pos;
4574 }
4575
4576 /*
672bba3a 4577 * Not found. Insert new tracking element.
88a420e4 4578 */
68dff6a9 4579 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4580 return 0;
4581
4582 l = t->loc + pos;
4583 if (pos < t->count)
4584 memmove(l + 1, l,
4585 (t->count - pos) * sizeof(struct location));
4586 t->count++;
4587 l->count = 1;
45edfa58
CL
4588 l->addr = track->addr;
4589 l->sum_time = age;
4590 l->min_time = age;
4591 l->max_time = age;
4592 l->min_pid = track->pid;
4593 l->max_pid = track->pid;
174596a0
RR
4594 cpumask_clear(to_cpumask(l->cpus));
4595 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4596 nodes_clear(l->nodes);
4597 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4598 return 1;
4599}
4600
4601static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4602 struct page *page, enum track_item alloc,
a5dd5c11 4603 unsigned long *map)
88a420e4 4604{
a973e9dd 4605 void *addr = page_address(page);
88a420e4
CL
4606 void *p;
4607
39b26464 4608 bitmap_zero(map, page->objects);
5f80b13a 4609 get_map(s, page, map);
88a420e4 4610
224a88be 4611 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4612 if (!test_bit(slab_index(p, s, addr), map))
4613 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4614}
4615
4616static int list_locations(struct kmem_cache *s, char *buf,
4617 enum track_item alloc)
4618{
e374d483 4619 int len = 0;
88a420e4 4620 unsigned long i;
68dff6a9 4621 struct loc_track t = { 0, 0, NULL };
88a420e4 4622 int node;
fa45dc25 4623 struct kmem_cache_node *n;
0684e652 4624 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
88a420e4 4625
bbd7d57b 4626 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4627 GFP_KERNEL)) {
0684e652 4628 bitmap_free(map);
68dff6a9 4629 return sprintf(buf, "Out of memory\n");
bbd7d57b 4630 }
88a420e4
CL
4631 /* Push back cpu slabs */
4632 flush_all(s);
4633
fa45dc25 4634 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4635 unsigned long flags;
4636 struct page *page;
4637
9e86943b 4638 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4639 continue;
4640
4641 spin_lock_irqsave(&n->list_lock, flags);
4642 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4643 process_slab(&t, s, page, alloc, map);
88a420e4 4644 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4645 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4646 spin_unlock_irqrestore(&n->list_lock, flags);
4647 }
4648
4649 for (i = 0; i < t.count; i++) {
45edfa58 4650 struct location *l = &t.loc[i];
88a420e4 4651
9c246247 4652 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4653 break;
e374d483 4654 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4655
4656 if (l->addr)
62c70bce 4657 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4658 else
e374d483 4659 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4660
4661 if (l->sum_time != l->min_time) {
e374d483 4662 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4663 l->min_time,
4664 (long)div_u64(l->sum_time, l->count),
4665 l->max_time);
45edfa58 4666 } else
e374d483 4667 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4668 l->min_time);
4669
4670 if (l->min_pid != l->max_pid)
e374d483 4671 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4672 l->min_pid, l->max_pid);
4673 else
e374d483 4674 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4675 l->min_pid);
4676
174596a0
RR
4677 if (num_online_cpus() > 1 &&
4678 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4679 len < PAGE_SIZE - 60)
4680 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4681 " cpus=%*pbl",
4682 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4683
62bc62a8 4684 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4685 len < PAGE_SIZE - 60)
4686 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4687 " nodes=%*pbl",
4688 nodemask_pr_args(&l->nodes));
45edfa58 4689
e374d483 4690 len += sprintf(buf + len, "\n");
88a420e4
CL
4691 }
4692
4693 free_loc_track(&t);
0684e652 4694 bitmap_free(map);
88a420e4 4695 if (!t.count)
e374d483
HH
4696 len += sprintf(buf, "No data\n");
4697 return len;
88a420e4 4698}
ab4d5ed5 4699#endif
88a420e4 4700
a5a84755 4701#ifdef SLUB_RESILIENCY_TEST
c07b8183 4702static void __init resiliency_test(void)
a5a84755
CL
4703{
4704 u8 *p;
cc252eae 4705 int type = KMALLOC_NORMAL;
a5a84755 4706
95a05b42 4707 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4708
f9f58285
FF
4709 pr_err("SLUB resiliency testing\n");
4710 pr_err("-----------------------\n");
4711 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4712
4713 p = kzalloc(16, GFP_KERNEL);
4714 p[16] = 0x12;
f9f58285
FF
4715 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4716 p + 16);
a5a84755 4717
cc252eae 4718 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4719
4720 /* Hmmm... The next two are dangerous */
4721 p = kzalloc(32, GFP_KERNEL);
4722 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4723 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4724 p);
4725 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4726
cc252eae 4727 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4728 p = kzalloc(64, GFP_KERNEL);
4729 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4730 *p = 0x56;
f9f58285
FF
4731 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4732 p);
4733 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4734 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4735
f9f58285 4736 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4737 p = kzalloc(128, GFP_KERNEL);
4738 kfree(p);
4739 *p = 0x78;
f9f58285 4740 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4741 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4742
4743 p = kzalloc(256, GFP_KERNEL);
4744 kfree(p);
4745 p[50] = 0x9a;
f9f58285 4746 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4747 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4748
4749 p = kzalloc(512, GFP_KERNEL);
4750 kfree(p);
4751 p[512] = 0xab;
f9f58285 4752 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4753 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4754}
4755#else
4756#ifdef CONFIG_SYSFS
4757static void resiliency_test(void) {};
4758#endif
4759#endif
4760
ab4d5ed5 4761#ifdef CONFIG_SYSFS
81819f0f 4762enum slab_stat_type {
205ab99d
CL
4763 SL_ALL, /* All slabs */
4764 SL_PARTIAL, /* Only partially allocated slabs */
4765 SL_CPU, /* Only slabs used for cpu caches */
4766 SL_OBJECTS, /* Determine allocated objects not slabs */
4767 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4768};
4769
205ab99d 4770#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4771#define SO_PARTIAL (1 << SL_PARTIAL)
4772#define SO_CPU (1 << SL_CPU)
4773#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4774#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4775
1663f26d
TH
4776#ifdef CONFIG_MEMCG
4777static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4778
4779static int __init setup_slub_memcg_sysfs(char *str)
4780{
4781 int v;
4782
4783 if (get_option(&str, &v) > 0)
4784 memcg_sysfs_enabled = v;
4785
4786 return 1;
4787}
4788
4789__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4790#endif
4791
62e5c4b4
CG
4792static ssize_t show_slab_objects(struct kmem_cache *s,
4793 char *buf, unsigned long flags)
81819f0f
CL
4794{
4795 unsigned long total = 0;
81819f0f
CL
4796 int node;
4797 int x;
4798 unsigned long *nodes;
81819f0f 4799
6396bb22 4800 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4801 if (!nodes)
4802 return -ENOMEM;
81819f0f 4803
205ab99d
CL
4804 if (flags & SO_CPU) {
4805 int cpu;
81819f0f 4806
205ab99d 4807 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4808 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4809 cpu);
ec3ab083 4810 int node;
49e22585 4811 struct page *page;
dfb4f096 4812
4db0c3c2 4813 page = READ_ONCE(c->page);
ec3ab083
CL
4814 if (!page)
4815 continue;
205ab99d 4816
ec3ab083
CL
4817 node = page_to_nid(page);
4818 if (flags & SO_TOTAL)
4819 x = page->objects;
4820 else if (flags & SO_OBJECTS)
4821 x = page->inuse;
4822 else
4823 x = 1;
49e22585 4824
ec3ab083
CL
4825 total += x;
4826 nodes[node] += x;
4827
a93cf07b 4828 page = slub_percpu_partial_read_once(c);
49e22585 4829 if (page) {
8afb1474
LZ
4830 node = page_to_nid(page);
4831 if (flags & SO_TOTAL)
4832 WARN_ON_ONCE(1);
4833 else if (flags & SO_OBJECTS)
4834 WARN_ON_ONCE(1);
4835 else
4836 x = page->pages;
bc6697d8
ED
4837 total += x;
4838 nodes[node] += x;
49e22585 4839 }
81819f0f
CL
4840 }
4841 }
4842
bfc8c901 4843 get_online_mems();
ab4d5ed5 4844#ifdef CONFIG_SLUB_DEBUG
205ab99d 4845 if (flags & SO_ALL) {
fa45dc25
CL
4846 struct kmem_cache_node *n;
4847
4848 for_each_kmem_cache_node(s, node, n) {
205ab99d 4849
d0e0ac97
CG
4850 if (flags & SO_TOTAL)
4851 x = atomic_long_read(&n->total_objects);
4852 else if (flags & SO_OBJECTS)
4853 x = atomic_long_read(&n->total_objects) -
4854 count_partial(n, count_free);
81819f0f 4855 else
205ab99d 4856 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4857 total += x;
4858 nodes[node] += x;
4859 }
4860
ab4d5ed5
CL
4861 } else
4862#endif
4863 if (flags & SO_PARTIAL) {
fa45dc25 4864 struct kmem_cache_node *n;
81819f0f 4865
fa45dc25 4866 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4867 if (flags & SO_TOTAL)
4868 x = count_partial(n, count_total);
4869 else if (flags & SO_OBJECTS)
4870 x = count_partial(n, count_inuse);
81819f0f 4871 else
205ab99d 4872 x = n->nr_partial;
81819f0f
CL
4873 total += x;
4874 nodes[node] += x;
4875 }
4876 }
81819f0f
CL
4877 x = sprintf(buf, "%lu", total);
4878#ifdef CONFIG_NUMA
fa45dc25 4879 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4880 if (nodes[node])
4881 x += sprintf(buf + x, " N%d=%lu",
4882 node, nodes[node]);
4883#endif
bfc8c901 4884 put_online_mems();
81819f0f
CL
4885 kfree(nodes);
4886 return x + sprintf(buf + x, "\n");
4887}
4888
ab4d5ed5 4889#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4890static int any_slab_objects(struct kmem_cache *s)
4891{
4892 int node;
fa45dc25 4893 struct kmem_cache_node *n;
81819f0f 4894
fa45dc25 4895 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4896 if (atomic_long_read(&n->total_objects))
81819f0f 4897 return 1;
fa45dc25 4898
81819f0f
CL
4899 return 0;
4900}
ab4d5ed5 4901#endif
81819f0f
CL
4902
4903#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4904#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4905
4906struct slab_attribute {
4907 struct attribute attr;
4908 ssize_t (*show)(struct kmem_cache *s, char *buf);
4909 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4910};
4911
4912#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4913 static struct slab_attribute _name##_attr = \
4914 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4915
4916#define SLAB_ATTR(_name) \
4917 static struct slab_attribute _name##_attr = \
ab067e99 4918 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4919
81819f0f
CL
4920static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4921{
44065b2e 4922 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4923}
4924SLAB_ATTR_RO(slab_size);
4925
4926static ssize_t align_show(struct kmem_cache *s, char *buf)
4927{
3a3791ec 4928 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
4929}
4930SLAB_ATTR_RO(align);
4931
4932static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4933{
1b473f29 4934 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
4935}
4936SLAB_ATTR_RO(object_size);
4937
4938static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4939{
19af27af 4940 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
4941}
4942SLAB_ATTR_RO(objs_per_slab);
4943
06b285dc
CL
4944static ssize_t order_store(struct kmem_cache *s,
4945 const char *buf, size_t length)
4946{
19af27af 4947 unsigned int order;
0121c619
CL
4948 int err;
4949
19af27af 4950 err = kstrtouint(buf, 10, &order);
0121c619
CL
4951 if (err)
4952 return err;
06b285dc
CL
4953
4954 if (order > slub_max_order || order < slub_min_order)
4955 return -EINVAL;
4956
4957 calculate_sizes(s, order);
4958 return length;
4959}
4960
81819f0f
CL
4961static ssize_t order_show(struct kmem_cache *s, char *buf)
4962{
19af27af 4963 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 4964}
06b285dc 4965SLAB_ATTR(order);
81819f0f 4966
73d342b1
DR
4967static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4968{
4969 return sprintf(buf, "%lu\n", s->min_partial);
4970}
4971
4972static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4973 size_t length)
4974{
4975 unsigned long min;
4976 int err;
4977
3dbb95f7 4978 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4979 if (err)
4980 return err;
4981
c0bdb232 4982 set_min_partial(s, min);
73d342b1
DR
4983 return length;
4984}
4985SLAB_ATTR(min_partial);
4986
49e22585
CL
4987static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4988{
e6d0e1dc 4989 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4990}
4991
4992static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4993 size_t length)
4994{
e5d9998f 4995 unsigned int objects;
49e22585
CL
4996 int err;
4997
e5d9998f 4998 err = kstrtouint(buf, 10, &objects);
49e22585
CL
4999 if (err)
5000 return err;
345c905d 5001 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5002 return -EINVAL;
49e22585 5003
e6d0e1dc 5004 slub_set_cpu_partial(s, objects);
49e22585
CL
5005 flush_all(s);
5006 return length;
5007}
5008SLAB_ATTR(cpu_partial);
5009
81819f0f
CL
5010static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5011{
62c70bce
JP
5012 if (!s->ctor)
5013 return 0;
5014 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5015}
5016SLAB_ATTR_RO(ctor);
5017
81819f0f
CL
5018static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5019{
4307c14f 5020 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5021}
5022SLAB_ATTR_RO(aliases);
5023
81819f0f
CL
5024static ssize_t partial_show(struct kmem_cache *s, char *buf)
5025{
d9acf4b7 5026 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5027}
5028SLAB_ATTR_RO(partial);
5029
5030static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5031{
d9acf4b7 5032 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5033}
5034SLAB_ATTR_RO(cpu_slabs);
5035
5036static ssize_t objects_show(struct kmem_cache *s, char *buf)
5037{
205ab99d 5038 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5039}
5040SLAB_ATTR_RO(objects);
5041
205ab99d
CL
5042static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5043{
5044 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5045}
5046SLAB_ATTR_RO(objects_partial);
5047
49e22585
CL
5048static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5049{
5050 int objects = 0;
5051 int pages = 0;
5052 int cpu;
5053 int len;
5054
5055 for_each_online_cpu(cpu) {
a93cf07b
WY
5056 struct page *page;
5057
5058 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5059
5060 if (page) {
5061 pages += page->pages;
5062 objects += page->pobjects;
5063 }
5064 }
5065
5066 len = sprintf(buf, "%d(%d)", objects, pages);
5067
5068#ifdef CONFIG_SMP
5069 for_each_online_cpu(cpu) {
a93cf07b
WY
5070 struct page *page;
5071
5072 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5073
5074 if (page && len < PAGE_SIZE - 20)
5075 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5076 page->pobjects, page->pages);
5077 }
5078#endif
5079 return len + sprintf(buf + len, "\n");
5080}
5081SLAB_ATTR_RO(slabs_cpu_partial);
5082
a5a84755
CL
5083static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5084{
5085 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5086}
5087
5088static ssize_t reclaim_account_store(struct kmem_cache *s,
5089 const char *buf, size_t length)
5090{
5091 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5092 if (buf[0] == '1')
5093 s->flags |= SLAB_RECLAIM_ACCOUNT;
5094 return length;
5095}
5096SLAB_ATTR(reclaim_account);
5097
5098static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5099{
5100 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5101}
5102SLAB_ATTR_RO(hwcache_align);
5103
5104#ifdef CONFIG_ZONE_DMA
5105static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5106{
5107 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5108}
5109SLAB_ATTR_RO(cache_dma);
5110#endif
5111
8eb8284b
DW
5112static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5113{
7bbdb81e 5114 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5115}
5116SLAB_ATTR_RO(usersize);
5117
a5a84755
CL
5118static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5119{
5f0d5a3a 5120 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5121}
5122SLAB_ATTR_RO(destroy_by_rcu);
5123
ab4d5ed5 5124#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5125static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5126{
5127 return show_slab_objects(s, buf, SO_ALL);
5128}
5129SLAB_ATTR_RO(slabs);
5130
205ab99d
CL
5131static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5132{
5133 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5134}
5135SLAB_ATTR_RO(total_objects);
5136
81819f0f
CL
5137static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5138{
becfda68 5139 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5140}
5141
5142static ssize_t sanity_checks_store(struct kmem_cache *s,
5143 const char *buf, size_t length)
5144{
becfda68 5145 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5146 if (buf[0] == '1') {
5147 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5148 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5149 }
81819f0f
CL
5150 return length;
5151}
5152SLAB_ATTR(sanity_checks);
5153
5154static ssize_t trace_show(struct kmem_cache *s, char *buf)
5155{
5156 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5157}
5158
5159static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5160 size_t length)
5161{
c9e16131
CL
5162 /*
5163 * Tracing a merged cache is going to give confusing results
5164 * as well as cause other issues like converting a mergeable
5165 * cache into an umergeable one.
5166 */
5167 if (s->refcount > 1)
5168 return -EINVAL;
5169
81819f0f 5170 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5171 if (buf[0] == '1') {
5172 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5173 s->flags |= SLAB_TRACE;
b789ef51 5174 }
81819f0f
CL
5175 return length;
5176}
5177SLAB_ATTR(trace);
5178
81819f0f
CL
5179static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5180{
5181 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5182}
5183
5184static ssize_t red_zone_store(struct kmem_cache *s,
5185 const char *buf, size_t length)
5186{
5187 if (any_slab_objects(s))
5188 return -EBUSY;
5189
5190 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5191 if (buf[0] == '1') {
81819f0f 5192 s->flags |= SLAB_RED_ZONE;
b789ef51 5193 }
06b285dc 5194 calculate_sizes(s, -1);
81819f0f
CL
5195 return length;
5196}
5197SLAB_ATTR(red_zone);
5198
5199static ssize_t poison_show(struct kmem_cache *s, char *buf)
5200{
5201 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5202}
5203
5204static ssize_t poison_store(struct kmem_cache *s,
5205 const char *buf, size_t length)
5206{
5207 if (any_slab_objects(s))
5208 return -EBUSY;
5209
5210 s->flags &= ~SLAB_POISON;
b789ef51 5211 if (buf[0] == '1') {
81819f0f 5212 s->flags |= SLAB_POISON;
b789ef51 5213 }
06b285dc 5214 calculate_sizes(s, -1);
81819f0f
CL
5215 return length;
5216}
5217SLAB_ATTR(poison);
5218
5219static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5220{
5221 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5222}
5223
5224static ssize_t store_user_store(struct kmem_cache *s,
5225 const char *buf, size_t length)
5226{
5227 if (any_slab_objects(s))
5228 return -EBUSY;
5229
5230 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5231 if (buf[0] == '1') {
5232 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5233 s->flags |= SLAB_STORE_USER;
b789ef51 5234 }
06b285dc 5235 calculate_sizes(s, -1);
81819f0f
CL
5236 return length;
5237}
5238SLAB_ATTR(store_user);
5239
53e15af0
CL
5240static ssize_t validate_show(struct kmem_cache *s, char *buf)
5241{
5242 return 0;
5243}
5244
5245static ssize_t validate_store(struct kmem_cache *s,
5246 const char *buf, size_t length)
5247{
434e245d
CL
5248 int ret = -EINVAL;
5249
5250 if (buf[0] == '1') {
5251 ret = validate_slab_cache(s);
5252 if (ret >= 0)
5253 ret = length;
5254 }
5255 return ret;
53e15af0
CL
5256}
5257SLAB_ATTR(validate);
a5a84755
CL
5258
5259static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5260{
5261 if (!(s->flags & SLAB_STORE_USER))
5262 return -ENOSYS;
5263 return list_locations(s, buf, TRACK_ALLOC);
5264}
5265SLAB_ATTR_RO(alloc_calls);
5266
5267static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5268{
5269 if (!(s->flags & SLAB_STORE_USER))
5270 return -ENOSYS;
5271 return list_locations(s, buf, TRACK_FREE);
5272}
5273SLAB_ATTR_RO(free_calls);
5274#endif /* CONFIG_SLUB_DEBUG */
5275
5276#ifdef CONFIG_FAILSLAB
5277static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5278{
5279 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5280}
5281
5282static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5283 size_t length)
5284{
c9e16131
CL
5285 if (s->refcount > 1)
5286 return -EINVAL;
5287
a5a84755
CL
5288 s->flags &= ~SLAB_FAILSLAB;
5289 if (buf[0] == '1')
5290 s->flags |= SLAB_FAILSLAB;
5291 return length;
5292}
5293SLAB_ATTR(failslab);
ab4d5ed5 5294#endif
53e15af0 5295
2086d26a
CL
5296static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5297{
5298 return 0;
5299}
5300
5301static ssize_t shrink_store(struct kmem_cache *s,
5302 const char *buf, size_t length)
5303{
832f37f5
VD
5304 if (buf[0] == '1')
5305 kmem_cache_shrink(s);
5306 else
2086d26a
CL
5307 return -EINVAL;
5308 return length;
5309}
5310SLAB_ATTR(shrink);
5311
81819f0f 5312#ifdef CONFIG_NUMA
9824601e 5313static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5314{
eb7235eb 5315 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5316}
5317
9824601e 5318static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5319 const char *buf, size_t length)
5320{
eb7235eb 5321 unsigned int ratio;
0121c619
CL
5322 int err;
5323
eb7235eb 5324 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5325 if (err)
5326 return err;
eb7235eb
AD
5327 if (ratio > 100)
5328 return -ERANGE;
0121c619 5329
eb7235eb 5330 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5331
81819f0f
CL
5332 return length;
5333}
9824601e 5334SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5335#endif
5336
8ff12cfc 5337#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5338static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5339{
5340 unsigned long sum = 0;
5341 int cpu;
5342 int len;
6da2ec56 5343 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5344
5345 if (!data)
5346 return -ENOMEM;
5347
5348 for_each_online_cpu(cpu) {
9dfc6e68 5349 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5350
5351 data[cpu] = x;
5352 sum += x;
5353 }
5354
5355 len = sprintf(buf, "%lu", sum);
5356
50ef37b9 5357#ifdef CONFIG_SMP
8ff12cfc
CL
5358 for_each_online_cpu(cpu) {
5359 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5360 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5361 }
50ef37b9 5362#endif
8ff12cfc
CL
5363 kfree(data);
5364 return len + sprintf(buf + len, "\n");
5365}
5366
78eb00cc
DR
5367static void clear_stat(struct kmem_cache *s, enum stat_item si)
5368{
5369 int cpu;
5370
5371 for_each_online_cpu(cpu)
9dfc6e68 5372 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5373}
5374
8ff12cfc
CL
5375#define STAT_ATTR(si, text) \
5376static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5377{ \
5378 return show_stat(s, buf, si); \
5379} \
78eb00cc
DR
5380static ssize_t text##_store(struct kmem_cache *s, \
5381 const char *buf, size_t length) \
5382{ \
5383 if (buf[0] != '0') \
5384 return -EINVAL; \
5385 clear_stat(s, si); \
5386 return length; \
5387} \
5388SLAB_ATTR(text); \
8ff12cfc
CL
5389
5390STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5391STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5392STAT_ATTR(FREE_FASTPATH, free_fastpath);
5393STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5394STAT_ATTR(FREE_FROZEN, free_frozen);
5395STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5396STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5397STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5398STAT_ATTR(ALLOC_SLAB, alloc_slab);
5399STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5400STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5401STAT_ATTR(FREE_SLAB, free_slab);
5402STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5403STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5404STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5405STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5406STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5407STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5408STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5409STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5410STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5411STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5412STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5413STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5414STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5415STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5416#endif
5417
06428780 5418static struct attribute *slab_attrs[] = {
81819f0f
CL
5419 &slab_size_attr.attr,
5420 &object_size_attr.attr,
5421 &objs_per_slab_attr.attr,
5422 &order_attr.attr,
73d342b1 5423 &min_partial_attr.attr,
49e22585 5424 &cpu_partial_attr.attr,
81819f0f 5425 &objects_attr.attr,
205ab99d 5426 &objects_partial_attr.attr,
81819f0f
CL
5427 &partial_attr.attr,
5428 &cpu_slabs_attr.attr,
5429 &ctor_attr.attr,
81819f0f
CL
5430 &aliases_attr.attr,
5431 &align_attr.attr,
81819f0f
CL
5432 &hwcache_align_attr.attr,
5433 &reclaim_account_attr.attr,
5434 &destroy_by_rcu_attr.attr,
a5a84755 5435 &shrink_attr.attr,
49e22585 5436 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5437#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5438 &total_objects_attr.attr,
5439 &slabs_attr.attr,
5440 &sanity_checks_attr.attr,
5441 &trace_attr.attr,
81819f0f
CL
5442 &red_zone_attr.attr,
5443 &poison_attr.attr,
5444 &store_user_attr.attr,
53e15af0 5445 &validate_attr.attr,
88a420e4
CL
5446 &alloc_calls_attr.attr,
5447 &free_calls_attr.attr,
ab4d5ed5 5448#endif
81819f0f
CL
5449#ifdef CONFIG_ZONE_DMA
5450 &cache_dma_attr.attr,
5451#endif
5452#ifdef CONFIG_NUMA
9824601e 5453 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5454#endif
5455#ifdef CONFIG_SLUB_STATS
5456 &alloc_fastpath_attr.attr,
5457 &alloc_slowpath_attr.attr,
5458 &free_fastpath_attr.attr,
5459 &free_slowpath_attr.attr,
5460 &free_frozen_attr.attr,
5461 &free_add_partial_attr.attr,
5462 &free_remove_partial_attr.attr,
5463 &alloc_from_partial_attr.attr,
5464 &alloc_slab_attr.attr,
5465 &alloc_refill_attr.attr,
e36a2652 5466 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5467 &free_slab_attr.attr,
5468 &cpuslab_flush_attr.attr,
5469 &deactivate_full_attr.attr,
5470 &deactivate_empty_attr.attr,
5471 &deactivate_to_head_attr.attr,
5472 &deactivate_to_tail_attr.attr,
5473 &deactivate_remote_frees_attr.attr,
03e404af 5474 &deactivate_bypass_attr.attr,
65c3376a 5475 &order_fallback_attr.attr,
b789ef51
CL
5476 &cmpxchg_double_fail_attr.attr,
5477 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5478 &cpu_partial_alloc_attr.attr,
5479 &cpu_partial_free_attr.attr,
8028dcea
AS
5480 &cpu_partial_node_attr.attr,
5481 &cpu_partial_drain_attr.attr,
81819f0f 5482#endif
4c13dd3b
DM
5483#ifdef CONFIG_FAILSLAB
5484 &failslab_attr.attr,
5485#endif
8eb8284b 5486 &usersize_attr.attr,
4c13dd3b 5487
81819f0f
CL
5488 NULL
5489};
5490
1fdaaa23 5491static const struct attribute_group slab_attr_group = {
81819f0f
CL
5492 .attrs = slab_attrs,
5493};
5494
5495static ssize_t slab_attr_show(struct kobject *kobj,
5496 struct attribute *attr,
5497 char *buf)
5498{
5499 struct slab_attribute *attribute;
5500 struct kmem_cache *s;
5501 int err;
5502
5503 attribute = to_slab_attr(attr);
5504 s = to_slab(kobj);
5505
5506 if (!attribute->show)
5507 return -EIO;
5508
5509 err = attribute->show(s, buf);
5510
5511 return err;
5512}
5513
5514static ssize_t slab_attr_store(struct kobject *kobj,
5515 struct attribute *attr,
5516 const char *buf, size_t len)
5517{
5518 struct slab_attribute *attribute;
5519 struct kmem_cache *s;
5520 int err;
5521
5522 attribute = to_slab_attr(attr);
5523 s = to_slab(kobj);
5524
5525 if (!attribute->store)
5526 return -EIO;
5527
5528 err = attribute->store(s, buf, len);
127424c8 5529#ifdef CONFIG_MEMCG
107dab5c 5530 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5531 struct kmem_cache *c;
81819f0f 5532
107dab5c
GC
5533 mutex_lock(&slab_mutex);
5534 if (s->max_attr_size < len)
5535 s->max_attr_size = len;
5536
ebe945c2
GC
5537 /*
5538 * This is a best effort propagation, so this function's return
5539 * value will be determined by the parent cache only. This is
5540 * basically because not all attributes will have a well
5541 * defined semantics for rollbacks - most of the actions will
5542 * have permanent effects.
5543 *
5544 * Returning the error value of any of the children that fail
5545 * is not 100 % defined, in the sense that users seeing the
5546 * error code won't be able to know anything about the state of
5547 * the cache.
5548 *
5549 * Only returning the error code for the parent cache at least
5550 * has well defined semantics. The cache being written to
5551 * directly either failed or succeeded, in which case we loop
5552 * through the descendants with best-effort propagation.
5553 */
426589f5
VD
5554 for_each_memcg_cache(c, s)
5555 attribute->store(c, buf, len);
107dab5c
GC
5556 mutex_unlock(&slab_mutex);
5557 }
5558#endif
81819f0f
CL
5559 return err;
5560}
5561
107dab5c
GC
5562static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5563{
127424c8 5564#ifdef CONFIG_MEMCG
107dab5c
GC
5565 int i;
5566 char *buffer = NULL;
93030d83 5567 struct kmem_cache *root_cache;
107dab5c 5568
93030d83 5569 if (is_root_cache(s))
107dab5c
GC
5570 return;
5571
f7ce3190 5572 root_cache = s->memcg_params.root_cache;
93030d83 5573
107dab5c
GC
5574 /*
5575 * This mean this cache had no attribute written. Therefore, no point
5576 * in copying default values around
5577 */
93030d83 5578 if (!root_cache->max_attr_size)
107dab5c
GC
5579 return;
5580
5581 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5582 char mbuf[64];
5583 char *buf;
5584 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5585 ssize_t len;
107dab5c
GC
5586
5587 if (!attr || !attr->store || !attr->show)
5588 continue;
5589
5590 /*
5591 * It is really bad that we have to allocate here, so we will
5592 * do it only as a fallback. If we actually allocate, though,
5593 * we can just use the allocated buffer until the end.
5594 *
5595 * Most of the slub attributes will tend to be very small in
5596 * size, but sysfs allows buffers up to a page, so they can
5597 * theoretically happen.
5598 */
5599 if (buffer)
5600 buf = buffer;
93030d83 5601 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5602 buf = mbuf;
5603 else {
5604 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5605 if (WARN_ON(!buffer))
5606 continue;
5607 buf = buffer;
5608 }
5609
478fe303
TG
5610 len = attr->show(root_cache, buf);
5611 if (len > 0)
5612 attr->store(s, buf, len);
107dab5c
GC
5613 }
5614
5615 if (buffer)
5616 free_page((unsigned long)buffer);
5617#endif
5618}
5619
41a21285
CL
5620static void kmem_cache_release(struct kobject *k)
5621{
5622 slab_kmem_cache_release(to_slab(k));
5623}
5624
52cf25d0 5625static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5626 .show = slab_attr_show,
5627 .store = slab_attr_store,
5628};
5629
5630static struct kobj_type slab_ktype = {
5631 .sysfs_ops = &slab_sysfs_ops,
41a21285 5632 .release = kmem_cache_release,
81819f0f
CL
5633};
5634
5635static int uevent_filter(struct kset *kset, struct kobject *kobj)
5636{
5637 struct kobj_type *ktype = get_ktype(kobj);
5638
5639 if (ktype == &slab_ktype)
5640 return 1;
5641 return 0;
5642}
5643
9cd43611 5644static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5645 .filter = uevent_filter,
5646};
5647
27c3a314 5648static struct kset *slab_kset;
81819f0f 5649
9a41707b
VD
5650static inline struct kset *cache_kset(struct kmem_cache *s)
5651{
127424c8 5652#ifdef CONFIG_MEMCG
9a41707b 5653 if (!is_root_cache(s))
f7ce3190 5654 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5655#endif
5656 return slab_kset;
5657}
5658
81819f0f
CL
5659#define ID_STR_LENGTH 64
5660
5661/* Create a unique string id for a slab cache:
6446faa2
CL
5662 *
5663 * Format :[flags-]size
81819f0f
CL
5664 */
5665static char *create_unique_id(struct kmem_cache *s)
5666{
5667 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5668 char *p = name;
5669
5670 BUG_ON(!name);
5671
5672 *p++ = ':';
5673 /*
5674 * First flags affecting slabcache operations. We will only
5675 * get here for aliasable slabs so we do not need to support
5676 * too many flags. The flags here must cover all flags that
5677 * are matched during merging to guarantee that the id is
5678 * unique.
5679 */
5680 if (s->flags & SLAB_CACHE_DMA)
5681 *p++ = 'd';
5682 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5683 *p++ = 'a';
becfda68 5684 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5685 *p++ = 'F';
230e9fc2
VD
5686 if (s->flags & SLAB_ACCOUNT)
5687 *p++ = 'A';
81819f0f
CL
5688 if (p != name + 1)
5689 *p++ = '-';
44065b2e 5690 p += sprintf(p, "%07u", s->size);
2633d7a0 5691
81819f0f
CL
5692 BUG_ON(p > name + ID_STR_LENGTH - 1);
5693 return name;
5694}
5695
3b7b3140
TH
5696static void sysfs_slab_remove_workfn(struct work_struct *work)
5697{
5698 struct kmem_cache *s =
5699 container_of(work, struct kmem_cache, kobj_remove_work);
5700
5701 if (!s->kobj.state_in_sysfs)
5702 /*
5703 * For a memcg cache, this may be called during
5704 * deactivation and again on shutdown. Remove only once.
5705 * A cache is never shut down before deactivation is
5706 * complete, so no need to worry about synchronization.
5707 */
f6ba4880 5708 goto out;
3b7b3140
TH
5709
5710#ifdef CONFIG_MEMCG
5711 kset_unregister(s->memcg_kset);
5712#endif
5713 kobject_uevent(&s->kobj, KOBJ_REMOVE);
f6ba4880 5714out:
3b7b3140
TH
5715 kobject_put(&s->kobj);
5716}
5717
81819f0f
CL
5718static int sysfs_slab_add(struct kmem_cache *s)
5719{
5720 int err;
5721 const char *name;
1663f26d 5722 struct kset *kset = cache_kset(s);
45530c44 5723 int unmergeable = slab_unmergeable(s);
81819f0f 5724
3b7b3140
TH
5725 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5726
1663f26d
TH
5727 if (!kset) {
5728 kobject_init(&s->kobj, &slab_ktype);
5729 return 0;
5730 }
5731
11066386
MC
5732 if (!unmergeable && disable_higher_order_debug &&
5733 (slub_debug & DEBUG_METADATA_FLAGS))
5734 unmergeable = 1;
5735
81819f0f
CL
5736 if (unmergeable) {
5737 /*
5738 * Slabcache can never be merged so we can use the name proper.
5739 * This is typically the case for debug situations. In that
5740 * case we can catch duplicate names easily.
5741 */
27c3a314 5742 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5743 name = s->name;
5744 } else {
5745 /*
5746 * Create a unique name for the slab as a target
5747 * for the symlinks.
5748 */
5749 name = create_unique_id(s);
5750 }
5751
1663f26d 5752 s->kobj.kset = kset;
26e4f205 5753 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5754 if (err)
80da026a 5755 goto out;
81819f0f
CL
5756
5757 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5758 if (err)
5759 goto out_del_kobj;
9a41707b 5760
127424c8 5761#ifdef CONFIG_MEMCG
1663f26d 5762 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5763 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5764 if (!s->memcg_kset) {
54b6a731
DJ
5765 err = -ENOMEM;
5766 goto out_del_kobj;
9a41707b
VD
5767 }
5768 }
5769#endif
5770
81819f0f
CL
5771 kobject_uevent(&s->kobj, KOBJ_ADD);
5772 if (!unmergeable) {
5773 /* Setup first alias */
5774 sysfs_slab_alias(s, s->name);
81819f0f 5775 }
54b6a731
DJ
5776out:
5777 if (!unmergeable)
5778 kfree(name);
5779 return err;
5780out_del_kobj:
5781 kobject_del(&s->kobj);
54b6a731 5782 goto out;
81819f0f
CL
5783}
5784
bf5eb3de 5785static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5786{
97d06609 5787 if (slab_state < FULL)
2bce6485
CL
5788 /*
5789 * Sysfs has not been setup yet so no need to remove the
5790 * cache from sysfs.
5791 */
5792 return;
5793
3b7b3140
TH
5794 kobject_get(&s->kobj);
5795 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5796}
5797
d50d82fa
MP
5798void sysfs_slab_unlink(struct kmem_cache *s)
5799{
5800 if (slab_state >= FULL)
5801 kobject_del(&s->kobj);
5802}
5803
bf5eb3de
TH
5804void sysfs_slab_release(struct kmem_cache *s)
5805{
5806 if (slab_state >= FULL)
5807 kobject_put(&s->kobj);
81819f0f
CL
5808}
5809
5810/*
5811 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5812 * available lest we lose that information.
81819f0f
CL
5813 */
5814struct saved_alias {
5815 struct kmem_cache *s;
5816 const char *name;
5817 struct saved_alias *next;
5818};
5819
5af328a5 5820static struct saved_alias *alias_list;
81819f0f
CL
5821
5822static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5823{
5824 struct saved_alias *al;
5825
97d06609 5826 if (slab_state == FULL) {
81819f0f
CL
5827 /*
5828 * If we have a leftover link then remove it.
5829 */
27c3a314
GKH
5830 sysfs_remove_link(&slab_kset->kobj, name);
5831 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5832 }
5833
5834 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5835 if (!al)
5836 return -ENOMEM;
5837
5838 al->s = s;
5839 al->name = name;
5840 al->next = alias_list;
5841 alias_list = al;
5842 return 0;
5843}
5844
5845static int __init slab_sysfs_init(void)
5846{
5b95a4ac 5847 struct kmem_cache *s;
81819f0f
CL
5848 int err;
5849
18004c5d 5850 mutex_lock(&slab_mutex);
2bce6485 5851
0ff21e46 5852 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5853 if (!slab_kset) {
18004c5d 5854 mutex_unlock(&slab_mutex);
f9f58285 5855 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5856 return -ENOSYS;
5857 }
5858
97d06609 5859 slab_state = FULL;
26a7bd03 5860
5b95a4ac 5861 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5862 err = sysfs_slab_add(s);
5d540fb7 5863 if (err)
f9f58285
FF
5864 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5865 s->name);
26a7bd03 5866 }
81819f0f
CL
5867
5868 while (alias_list) {
5869 struct saved_alias *al = alias_list;
5870
5871 alias_list = alias_list->next;
5872 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5873 if (err)
f9f58285
FF
5874 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5875 al->name);
81819f0f
CL
5876 kfree(al);
5877 }
5878
18004c5d 5879 mutex_unlock(&slab_mutex);
81819f0f
CL
5880 resiliency_test();
5881 return 0;
5882}
5883
5884__initcall(slab_sysfs_init);
ab4d5ed5 5885#endif /* CONFIG_SYSFS */
57ed3eda
PE
5886
5887/*
5888 * The /proc/slabinfo ABI
5889 */
5b365771 5890#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5891void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5892{
57ed3eda 5893 unsigned long nr_slabs = 0;
205ab99d
CL
5894 unsigned long nr_objs = 0;
5895 unsigned long nr_free = 0;
57ed3eda 5896 int node;
fa45dc25 5897 struct kmem_cache_node *n;
57ed3eda 5898
fa45dc25 5899 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5900 nr_slabs += node_nr_slabs(n);
5901 nr_objs += node_nr_objs(n);
205ab99d 5902 nr_free += count_partial(n, count_free);
57ed3eda
PE
5903 }
5904
0d7561c6
GC
5905 sinfo->active_objs = nr_objs - nr_free;
5906 sinfo->num_objs = nr_objs;
5907 sinfo->active_slabs = nr_slabs;
5908 sinfo->num_slabs = nr_slabs;
5909 sinfo->objects_per_slab = oo_objects(s->oo);
5910 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5911}
5912
0d7561c6 5913void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5914{
7b3c3a50
AD
5915}
5916
b7454ad3
GC
5917ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5918 size_t count, loff_t *ppos)
7b3c3a50 5919{
b7454ad3 5920 return -EIO;
7b3c3a50 5921}
5b365771 5922#endif /* CONFIG_SLUB_DEBUG */