]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/slub.c
slab: fix cpuset check in fallback_alloc
[people/arne_f/kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
210b5c06
CG
172#define OO_SHIFT 16
173#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 174#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 175
81819f0f 176/* Internal SLUB flags */
f90ec390 177#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 178#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 179
81819f0f
CL
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
02cbc874
CL
184/*
185 * Tracking user of a slab.
186 */
d6543e39 187#define TRACK_ADDRS_COUNT 16
02cbc874 188struct track {
ce71e27c 189 unsigned long addr; /* Called from address */
d6543e39
BG
190#ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192#endif
02cbc874
CL
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196};
197
198enum track_item { TRACK_ALLOC, TRACK_FREE };
199
ab4d5ed5 200#ifdef CONFIG_SYSFS
81819f0f
CL
201static int sysfs_slab_add(struct kmem_cache *);
202static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 203static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 204#else
0c710013
CL
205static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
206static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
207 { return 0; }
107dab5c 208static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
209#endif
210
4fdccdfb 211static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
212{
213#ifdef CONFIG_SLUB_STATS
88da03a6
CL
214 /*
215 * The rmw is racy on a preemptible kernel but this is acceptable, so
216 * avoid this_cpu_add()'s irq-disable overhead.
217 */
218 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
219#endif
220}
221
81819f0f
CL
222/********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
225
6446faa2 226/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
227static inline int check_valid_pointer(struct kmem_cache *s,
228 struct page *page, const void *object)
229{
230 void *base;
231
a973e9dd 232 if (!object)
02cbc874
CL
233 return 1;
234
a973e9dd 235 base = page_address(page);
39b26464 236 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
237 (object - base) % s->size) {
238 return 0;
239 }
240
241 return 1;
242}
243
7656c72b
CL
244static inline void *get_freepointer(struct kmem_cache *s, void *object)
245{
246 return *(void **)(object + s->offset);
247}
248
0ad9500e
ED
249static void prefetch_freepointer(const struct kmem_cache *s, void *object)
250{
251 prefetch(object + s->offset);
252}
253
1393d9a1
CL
254static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
255{
256 void *p;
257
258#ifdef CONFIG_DEBUG_PAGEALLOC
259 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
260#else
261 p = get_freepointer(s, object);
262#endif
263 return p;
264}
265
7656c72b
CL
266static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267{
268 *(void **)(object + s->offset) = fp;
269}
270
271/* Loop over all objects in a slab */
224a88be
CL
272#define for_each_object(__p, __s, __addr, __objects) \
273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
274 __p += (__s)->size)
275
54266640
WY
276#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
277 for (__p = (__addr), __idx = 1; __idx <= __objects;\
278 __p += (__s)->size, __idx++)
279
7656c72b
CL
280/* Determine object index from a given position */
281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282{
283 return (p - addr) / s->size;
284}
285
d71f606f
MK
286static inline size_t slab_ksize(const struct kmem_cache *s)
287{
288#ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 294 return s->object_size;
d71f606f
MK
295
296#endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308}
309
ab9a0f19
LJ
310static inline int order_objects(int order, unsigned long size, int reserved)
311{
312 return ((PAGE_SIZE << order) - reserved) / size;
313}
314
834f3d11 315static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 316 unsigned long size, int reserved)
834f3d11
CL
317{
318 struct kmem_cache_order_objects x = {
ab9a0f19 319 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
320 };
321
322 return x;
323}
324
325static inline int oo_order(struct kmem_cache_order_objects x)
326{
210b5c06 327 return x.x >> OO_SHIFT;
834f3d11
CL
328}
329
330static inline int oo_objects(struct kmem_cache_order_objects x)
331{
210b5c06 332 return x.x & OO_MASK;
834f3d11
CL
333}
334
881db7fb
CL
335/*
336 * Per slab locking using the pagelock
337 */
338static __always_inline void slab_lock(struct page *page)
339{
340 bit_spin_lock(PG_locked, &page->flags);
341}
342
343static __always_inline void slab_unlock(struct page *page)
344{
345 __bit_spin_unlock(PG_locked, &page->flags);
346}
347
a0320865
DH
348static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
349{
350 struct page tmp;
351 tmp.counters = counters_new;
352 /*
353 * page->counters can cover frozen/inuse/objects as well
354 * as page->_count. If we assign to ->counters directly
355 * we run the risk of losing updates to page->_count, so
356 * be careful and only assign to the fields we need.
357 */
358 page->frozen = tmp.frozen;
359 page->inuse = tmp.inuse;
360 page->objects = tmp.objects;
361}
362
1d07171c
CL
363/* Interrupts must be disabled (for the fallback code to work right) */
364static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368{
369 VM_BUG_ON(!irqs_disabled());
2565409f
HC
370#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 372 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 373 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
374 freelist_old, counters_old,
375 freelist_new, counters_new))
376 return 1;
1d07171c
CL
377 } else
378#endif
379 {
380 slab_lock(page);
d0e0ac97
CG
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
1d07171c 383 page->freelist = freelist_new;
a0320865 384 set_page_slub_counters(page, counters_new);
1d07171c
CL
385 slab_unlock(page);
386 return 1;
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
396#endif
397
398 return 0;
399}
400
b789ef51
CL
401static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405{
2565409f
HC
406#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 408 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 409 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
410 freelist_old, counters_old,
411 freelist_new, counters_new))
412 return 1;
b789ef51
CL
413 } else
414#endif
415 {
1d07171c
CL
416 unsigned long flags;
417
418 local_irq_save(flags);
881db7fb 419 slab_lock(page);
d0e0ac97
CG
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
b789ef51 422 page->freelist = freelist_new;
a0320865 423 set_page_slub_counters(page, counters_new);
881db7fb 424 slab_unlock(page);
1d07171c 425 local_irq_restore(flags);
b789ef51
CL
426 return 1;
427 }
881db7fb 428 slab_unlock(page);
1d07171c 429 local_irq_restore(flags);
b789ef51
CL
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
437#endif
438
439 return 0;
440}
441
41ecc55b 442#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
443/*
444 * Determine a map of object in use on a page.
445 *
881db7fb 446 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
447 * not vanish from under us.
448 */
449static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450{
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456}
457
41ecc55b
CL
458/*
459 * Debug settings:
460 */
f0630fff
CL
461#ifdef CONFIG_SLUB_DEBUG_ON
462static int slub_debug = DEBUG_DEFAULT_FLAGS;
463#else
41ecc55b 464static int slub_debug;
f0630fff 465#endif
41ecc55b
CL
466
467static char *slub_debug_slabs;
fa5ec8a1 468static int disable_higher_order_debug;
41ecc55b 469
81819f0f
CL
470/*
471 * Object debugging
472 */
473static void print_section(char *text, u8 *addr, unsigned int length)
474{
ffc79d28
SAS
475 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
476 length, 1);
81819f0f
CL
477}
478
81819f0f
CL
479static struct track *get_track(struct kmem_cache *s, void *object,
480 enum track_item alloc)
481{
482 struct track *p;
483
484 if (s->offset)
485 p = object + s->offset + sizeof(void *);
486 else
487 p = object + s->inuse;
488
489 return p + alloc;
490}
491
492static void set_track(struct kmem_cache *s, void *object,
ce71e27c 493 enum track_item alloc, unsigned long addr)
81819f0f 494{
1a00df4a 495 struct track *p = get_track(s, object, alloc);
81819f0f 496
81819f0f 497 if (addr) {
d6543e39
BG
498#ifdef CONFIG_STACKTRACE
499 struct stack_trace trace;
500 int i;
501
502 trace.nr_entries = 0;
503 trace.max_entries = TRACK_ADDRS_COUNT;
504 trace.entries = p->addrs;
505 trace.skip = 3;
506 save_stack_trace(&trace);
507
508 /* See rant in lockdep.c */
509 if (trace.nr_entries != 0 &&
510 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
511 trace.nr_entries--;
512
513 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
514 p->addrs[i] = 0;
515#endif
81819f0f
CL
516 p->addr = addr;
517 p->cpu = smp_processor_id();
88e4ccf2 518 p->pid = current->pid;
81819f0f
CL
519 p->when = jiffies;
520 } else
521 memset(p, 0, sizeof(struct track));
522}
523
81819f0f
CL
524static void init_tracking(struct kmem_cache *s, void *object)
525{
24922684
CL
526 if (!(s->flags & SLAB_STORE_USER))
527 return;
528
ce71e27c
EGM
529 set_track(s, object, TRACK_FREE, 0UL);
530 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
531}
532
533static void print_track(const char *s, struct track *t)
534{
535 if (!t->addr)
536 return;
537
f9f58285
FF
538 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
539 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
540#ifdef CONFIG_STACKTRACE
541 {
542 int i;
543 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
544 if (t->addrs[i])
f9f58285 545 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
546 else
547 break;
548 }
549#endif
24922684
CL
550}
551
552static void print_tracking(struct kmem_cache *s, void *object)
553{
554 if (!(s->flags & SLAB_STORE_USER))
555 return;
556
557 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
558 print_track("Freed", get_track(s, object, TRACK_FREE));
559}
560
561static void print_page_info(struct page *page)
562{
f9f58285 563 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 564 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
565
566}
567
568static void slab_bug(struct kmem_cache *s, char *fmt, ...)
569{
ecc42fbe 570 struct va_format vaf;
24922684 571 va_list args;
24922684
CL
572
573 va_start(args, fmt);
ecc42fbe
FF
574 vaf.fmt = fmt;
575 vaf.va = &args;
f9f58285 576 pr_err("=============================================================================\n");
ecc42fbe 577 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 578 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 579
373d4d09 580 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 581 va_end(args);
81819f0f
CL
582}
583
24922684
CL
584static void slab_fix(struct kmem_cache *s, char *fmt, ...)
585{
ecc42fbe 586 struct va_format vaf;
24922684 587 va_list args;
24922684
CL
588
589 va_start(args, fmt);
ecc42fbe
FF
590 vaf.fmt = fmt;
591 vaf.va = &args;
592 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 593 va_end(args);
24922684
CL
594}
595
596static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
597{
598 unsigned int off; /* Offset of last byte */
a973e9dd 599 u8 *addr = page_address(page);
24922684
CL
600
601 print_tracking(s, p);
602
603 print_page_info(page);
604
f9f58285
FF
605 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
606 p, p - addr, get_freepointer(s, p));
24922684
CL
607
608 if (p > addr + 16)
ffc79d28 609 print_section("Bytes b4 ", p - 16, 16);
81819f0f 610
3b0efdfa 611 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 612 PAGE_SIZE));
81819f0f 613 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
614 print_section("Redzone ", p + s->object_size,
615 s->inuse - s->object_size);
81819f0f 616
81819f0f
CL
617 if (s->offset)
618 off = s->offset + sizeof(void *);
619 else
620 off = s->inuse;
621
24922684 622 if (s->flags & SLAB_STORE_USER)
81819f0f 623 off += 2 * sizeof(struct track);
81819f0f
CL
624
625 if (off != s->size)
626 /* Beginning of the filler is the free pointer */
ffc79d28 627 print_section("Padding ", p + off, s->size - off);
24922684
CL
628
629 dump_stack();
81819f0f
CL
630}
631
632static void object_err(struct kmem_cache *s, struct page *page,
633 u8 *object, char *reason)
634{
3dc50637 635 slab_bug(s, "%s", reason);
24922684 636 print_trailer(s, page, object);
81819f0f
CL
637}
638
d0e0ac97
CG
639static void slab_err(struct kmem_cache *s, struct page *page,
640 const char *fmt, ...)
81819f0f
CL
641{
642 va_list args;
643 char buf[100];
644
24922684
CL
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 647 va_end(args);
3dc50637 648 slab_bug(s, "%s", buf);
24922684 649 print_page_info(page);
81819f0f
CL
650 dump_stack();
651}
652
f7cb1933 653static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
654{
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
658 memset(p, POISON_FREE, s->object_size - 1);
659 p[s->object_size - 1] = POISON_END;
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 663 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
664}
665
24922684
CL
666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668{
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671}
672
673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
06428780 675 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
676{
677 u8 *fault;
678 u8 *end;
679
79824820 680 fault = memchr_inv(start, value, bytes);
24922684
CL
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
f9f58285 689 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
81819f0f
CL
695}
696
81819f0f
CL
697/*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
672bba3a 704 *
81819f0f
CL
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
3b0efdfa 708 * object + s->object_size
81819f0f 709 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 710 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 711 * object_size == inuse.
672bba3a 712 *
81819f0f
CL
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
672bba3a
CL
717 * Meta data starts here.
718 *
81819f0f
CL
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
672bba3a 721 * C. Padding to reach required alignment boundary or at mininum
6446faa2 722 * one word if debugging is on to be able to detect writes
672bba3a
CL
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
726 *
727 * object + s->size
672bba3a 728 * Nothing is used beyond s->size.
81819f0f 729 *
3b0efdfa 730 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 731 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
732 * may be used with merged slabcaches.
733 */
734
81819f0f
CL
735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736{
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
24922684
CL
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
752}
753
39b26464 754/* Check the pad bytes at the end of a slab page */
81819f0f
CL
755static int slab_pad_check(struct kmem_cache *s, struct page *page)
756{
24922684
CL
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
81819f0f
CL
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
a973e9dd 766 start = page_address(page);
ab9a0f19 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
768 end = start + length;
769 remainder = length % s->size;
81819f0f
CL
770 if (!remainder)
771 return 1;
772
79824820 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 780 print_section("Padding ", end - remainder, remainder);
24922684 781
8a3d271d 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 783 return 0;
81819f0f
CL
784}
785
786static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 787 void *object, u8 val)
81819f0f
CL
788{
789 u8 *p = object;
3b0efdfa 790 u8 *endobject = object + s->object_size;
81819f0f
CL
791
792 if (s->flags & SLAB_RED_ZONE) {
24922684 793 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 794 endobject, val, s->inuse - s->object_size))
81819f0f 795 return 0;
81819f0f 796 } else {
3b0efdfa 797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 798 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
799 endobject, POISON_INUSE,
800 s->inuse - s->object_size);
3adbefee 801 }
81819f0f
CL
802 }
803
804 if (s->flags & SLAB_POISON) {
f7cb1933 805 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 806 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 807 POISON_FREE, s->object_size - 1) ||
24922684 808 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 809 p + s->object_size - 1, POISON_END, 1)))
81819f0f 810 return 0;
81819f0f
CL
811 /*
812 * check_pad_bytes cleans up on its own.
813 */
814 check_pad_bytes(s, page, p);
815 }
816
f7cb1933 817 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
818 /*
819 * Object and freepointer overlap. Cannot check
820 * freepointer while object is allocated.
821 */
822 return 1;
823
824 /* Check free pointer validity */
825 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
826 object_err(s, page, p, "Freepointer corrupt");
827 /*
9f6c708e 828 * No choice but to zap it and thus lose the remainder
81819f0f 829 * of the free objects in this slab. May cause
672bba3a 830 * another error because the object count is now wrong.
81819f0f 831 */
a973e9dd 832 set_freepointer(s, p, NULL);
81819f0f
CL
833 return 0;
834 }
835 return 1;
836}
837
838static int check_slab(struct kmem_cache *s, struct page *page)
839{
39b26464
CL
840 int maxobj;
841
81819f0f
CL
842 VM_BUG_ON(!irqs_disabled());
843
844 if (!PageSlab(page)) {
24922684 845 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
846 return 0;
847 }
39b26464 848
ab9a0f19 849 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
850 if (page->objects > maxobj) {
851 slab_err(s, page, "objects %u > max %u",
f6edde9c 852 page->objects, maxobj);
39b26464
CL
853 return 0;
854 }
855 if (page->inuse > page->objects) {
24922684 856 slab_err(s, page, "inuse %u > max %u",
f6edde9c 857 page->inuse, page->objects);
81819f0f
CL
858 return 0;
859 }
860 /* Slab_pad_check fixes things up after itself */
861 slab_pad_check(s, page);
862 return 1;
863}
864
865/*
672bba3a
CL
866 * Determine if a certain object on a page is on the freelist. Must hold the
867 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
868 */
869static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
870{
871 int nr = 0;
881db7fb 872 void *fp;
81819f0f 873 void *object = NULL;
f6edde9c 874 int max_objects;
81819f0f 875
881db7fb 876 fp = page->freelist;
39b26464 877 while (fp && nr <= page->objects) {
81819f0f
CL
878 if (fp == search)
879 return 1;
880 if (!check_valid_pointer(s, page, fp)) {
881 if (object) {
882 object_err(s, page, object,
883 "Freechain corrupt");
a973e9dd 884 set_freepointer(s, object, NULL);
81819f0f 885 } else {
24922684 886 slab_err(s, page, "Freepointer corrupt");
a973e9dd 887 page->freelist = NULL;
39b26464 888 page->inuse = page->objects;
24922684 889 slab_fix(s, "Freelist cleared");
81819f0f
CL
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
ab9a0f19 899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
39b26464 909 if (page->inuse != page->objects - nr) {
70d71228 910 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
24922684 913 slab_fix(s, "Object count adjusted.");
81819f0f
CL
914 }
915 return search == NULL;
916}
917
0121c619
CL
918static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
3ec09742
CL
920{
921 if (s->flags & SLAB_TRACE) {
f9f58285 922 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
d0e0ac97
CG
929 print_section("Object ", (void *)object,
930 s->object_size);
3ec09742
CL
931
932 dump_stack();
933 }
934}
935
643b1138 936/*
672bba3a 937 * Tracking of fully allocated slabs for debugging purposes.
643b1138 938 */
5cc6eee8
CL
939static void add_full(struct kmem_cache *s,
940 struct kmem_cache_node *n, struct page *page)
643b1138 941{
5cc6eee8
CL
942 if (!(s->flags & SLAB_STORE_USER))
943 return;
944
255d0884 945 lockdep_assert_held(&n->list_lock);
643b1138 946 list_add(&page->lru, &n->full);
643b1138
CL
947}
948
c65c1877 949static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 950{
643b1138
CL
951 if (!(s->flags & SLAB_STORE_USER))
952 return;
953
255d0884 954 lockdep_assert_held(&n->list_lock);
643b1138 955 list_del(&page->lru);
643b1138
CL
956}
957
0f389ec6
CL
958/* Tracking of the number of slabs for debugging purposes */
959static inline unsigned long slabs_node(struct kmem_cache *s, int node)
960{
961 struct kmem_cache_node *n = get_node(s, node);
962
963 return atomic_long_read(&n->nr_slabs);
964}
965
26c02cf0
AB
966static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
967{
968 return atomic_long_read(&n->nr_slabs);
969}
970
205ab99d 971static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
972{
973 struct kmem_cache_node *n = get_node(s, node);
974
975 /*
976 * May be called early in order to allocate a slab for the
977 * kmem_cache_node structure. Solve the chicken-egg
978 * dilemma by deferring the increment of the count during
979 * bootstrap (see early_kmem_cache_node_alloc).
980 */
338b2642 981 if (likely(n)) {
0f389ec6 982 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
983 atomic_long_add(objects, &n->total_objects);
984 }
0f389ec6 985}
205ab99d 986static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
987{
988 struct kmem_cache_node *n = get_node(s, node);
989
990 atomic_long_dec(&n->nr_slabs);
205ab99d 991 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
992}
993
994/* Object debug checks for alloc/free paths */
3ec09742
CL
995static void setup_object_debug(struct kmem_cache *s, struct page *page,
996 void *object)
997{
998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
999 return;
1000
f7cb1933 1001 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1002 init_tracking(s, object);
1003}
1004
d0e0ac97
CG
1005static noinline int alloc_debug_processing(struct kmem_cache *s,
1006 struct page *page,
ce71e27c 1007 void *object, unsigned long addr)
81819f0f
CL
1008{
1009 if (!check_slab(s, page))
1010 goto bad;
1011
81819f0f
CL
1012 if (!check_valid_pointer(s, page, object)) {
1013 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1014 goto bad;
81819f0f
CL
1015 }
1016
f7cb1933 1017 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1018 goto bad;
81819f0f 1019
3ec09742
CL
1020 /* Success perform special debug activities for allocs */
1021 if (s->flags & SLAB_STORE_USER)
1022 set_track(s, object, TRACK_ALLOC, addr);
1023 trace(s, page, object, 1);
f7cb1933 1024 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1025 return 1;
3ec09742 1026
81819f0f
CL
1027bad:
1028 if (PageSlab(page)) {
1029 /*
1030 * If this is a slab page then lets do the best we can
1031 * to avoid issues in the future. Marking all objects
672bba3a 1032 * as used avoids touching the remaining objects.
81819f0f 1033 */
24922684 1034 slab_fix(s, "Marking all objects used");
39b26464 1035 page->inuse = page->objects;
a973e9dd 1036 page->freelist = NULL;
81819f0f
CL
1037 }
1038 return 0;
1039}
1040
19c7ff9e
CL
1041static noinline struct kmem_cache_node *free_debug_processing(
1042 struct kmem_cache *s, struct page *page, void *object,
1043 unsigned long addr, unsigned long *flags)
81819f0f 1044{
19c7ff9e 1045 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1046
19c7ff9e 1047 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1048 slab_lock(page);
1049
81819f0f
CL
1050 if (!check_slab(s, page))
1051 goto fail;
1052
1053 if (!check_valid_pointer(s, page, object)) {
70d71228 1054 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1055 goto fail;
1056 }
1057
1058 if (on_freelist(s, page, object)) {
24922684 1059 object_err(s, page, object, "Object already free");
81819f0f
CL
1060 goto fail;
1061 }
1062
f7cb1933 1063 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1064 goto out;
81819f0f 1065
1b4f59e3 1066 if (unlikely(s != page->slab_cache)) {
3adbefee 1067 if (!PageSlab(page)) {
70d71228
CL
1068 slab_err(s, page, "Attempt to free object(0x%p) "
1069 "outside of slab", object);
1b4f59e3 1070 } else if (!page->slab_cache) {
f9f58285
FF
1071 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1072 object);
70d71228 1073 dump_stack();
06428780 1074 } else
24922684
CL
1075 object_err(s, page, object,
1076 "page slab pointer corrupt.");
81819f0f
CL
1077 goto fail;
1078 }
3ec09742 1079
3ec09742
CL
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_FREE, addr);
1082 trace(s, page, object, 0);
f7cb1933 1083 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1084out:
881db7fb 1085 slab_unlock(page);
19c7ff9e
CL
1086 /*
1087 * Keep node_lock to preserve integrity
1088 * until the object is actually freed
1089 */
1090 return n;
3ec09742 1091
81819f0f 1092fail:
19c7ff9e
CL
1093 slab_unlock(page);
1094 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1095 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1096 return NULL;
81819f0f
CL
1097}
1098
41ecc55b
CL
1099static int __init setup_slub_debug(char *str)
1100{
f0630fff
CL
1101 slub_debug = DEBUG_DEFAULT_FLAGS;
1102 if (*str++ != '=' || !*str)
1103 /*
1104 * No options specified. Switch on full debugging.
1105 */
1106 goto out;
1107
1108 if (*str == ',')
1109 /*
1110 * No options but restriction on slabs. This means full
1111 * debugging for slabs matching a pattern.
1112 */
1113 goto check_slabs;
1114
fa5ec8a1
DR
1115 if (tolower(*str) == 'o') {
1116 /*
1117 * Avoid enabling debugging on caches if its minimum order
1118 * would increase as a result.
1119 */
1120 disable_higher_order_debug = 1;
1121 goto out;
1122 }
1123
f0630fff
CL
1124 slub_debug = 0;
1125 if (*str == '-')
1126 /*
1127 * Switch off all debugging measures.
1128 */
1129 goto out;
1130
1131 /*
1132 * Determine which debug features should be switched on
1133 */
06428780 1134 for (; *str && *str != ','; str++) {
f0630fff
CL
1135 switch (tolower(*str)) {
1136 case 'f':
1137 slub_debug |= SLAB_DEBUG_FREE;
1138 break;
1139 case 'z':
1140 slub_debug |= SLAB_RED_ZONE;
1141 break;
1142 case 'p':
1143 slub_debug |= SLAB_POISON;
1144 break;
1145 case 'u':
1146 slub_debug |= SLAB_STORE_USER;
1147 break;
1148 case 't':
1149 slub_debug |= SLAB_TRACE;
1150 break;
4c13dd3b
DM
1151 case 'a':
1152 slub_debug |= SLAB_FAILSLAB;
1153 break;
f0630fff 1154 default:
f9f58285
FF
1155 pr_err("slub_debug option '%c' unknown. skipped\n",
1156 *str);
f0630fff 1157 }
41ecc55b
CL
1158 }
1159
f0630fff 1160check_slabs:
41ecc55b
CL
1161 if (*str == ',')
1162 slub_debug_slabs = str + 1;
f0630fff 1163out:
41ecc55b
CL
1164 return 1;
1165}
1166
1167__setup("slub_debug", setup_slub_debug);
1168
423c929c 1169unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1170 unsigned long flags, const char *name,
51cc5068 1171 void (*ctor)(void *))
41ecc55b
CL
1172{
1173 /*
e153362a 1174 * Enable debugging if selected on the kernel commandline.
41ecc55b 1175 */
c6f58d9b
CL
1176 if (slub_debug && (!slub_debug_slabs || (name &&
1177 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1178 flags |= slub_debug;
ba0268a8
CL
1179
1180 return flags;
41ecc55b
CL
1181}
1182#else
3ec09742
CL
1183static inline void setup_object_debug(struct kmem_cache *s,
1184 struct page *page, void *object) {}
41ecc55b 1185
3ec09742 1186static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1187 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1188
19c7ff9e
CL
1189static inline struct kmem_cache_node *free_debug_processing(
1190 struct kmem_cache *s, struct page *page, void *object,
1191 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1192
41ecc55b
CL
1193static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1194 { return 1; }
1195static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1196 void *object, u8 val) { return 1; }
5cc6eee8
CL
1197static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1198 struct page *page) {}
c65c1877
PZ
1199static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1200 struct page *page) {}
423c929c 1201unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1202 unsigned long flags, const char *name,
51cc5068 1203 void (*ctor)(void *))
ba0268a8
CL
1204{
1205 return flags;
1206}
41ecc55b 1207#define slub_debug 0
0f389ec6 1208
fdaa45e9
IM
1209#define disable_higher_order_debug 0
1210
0f389ec6
CL
1211static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1212 { return 0; }
26c02cf0
AB
1213static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1214 { return 0; }
205ab99d
CL
1215static inline void inc_slabs_node(struct kmem_cache *s, int node,
1216 int objects) {}
1217static inline void dec_slabs_node(struct kmem_cache *s, int node,
1218 int objects) {}
7d550c56 1219
02e72cc6
AR
1220#endif /* CONFIG_SLUB_DEBUG */
1221
1222/*
1223 * Hooks for other subsystems that check memory allocations. In a typical
1224 * production configuration these hooks all should produce no code at all.
1225 */
d56791b3
RB
1226static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1227{
1228 kmemleak_alloc(ptr, size, 1, flags);
1229}
1230
1231static inline void kfree_hook(const void *x)
1232{
1233 kmemleak_free(x);
1234}
1235
8135be5a
VD
1236static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1237 gfp_t flags)
02e72cc6
AR
1238{
1239 flags &= gfp_allowed_mask;
1240 lockdep_trace_alloc(flags);
1241 might_sleep_if(flags & __GFP_WAIT);
7d550c56 1242
8135be5a
VD
1243 if (should_failslab(s->object_size, flags, s->flags))
1244 return NULL;
1245
1246 return memcg_kmem_get_cache(s, flags);
02e72cc6
AR
1247}
1248
1249static inline void slab_post_alloc_hook(struct kmem_cache *s,
1250 gfp_t flags, void *object)
d56791b3 1251{
02e72cc6
AR
1252 flags &= gfp_allowed_mask;
1253 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1254 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
8135be5a 1255 memcg_kmem_put_cache(s);
d56791b3 1256}
7d550c56 1257
d56791b3
RB
1258static inline void slab_free_hook(struct kmem_cache *s, void *x)
1259{
1260 kmemleak_free_recursive(x, s->flags);
7d550c56 1261
02e72cc6
AR
1262 /*
1263 * Trouble is that we may no longer disable interrupts in the fast path
1264 * So in order to make the debug calls that expect irqs to be
1265 * disabled we need to disable interrupts temporarily.
1266 */
1267#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1268 {
1269 unsigned long flags;
1270
1271 local_irq_save(flags);
1272 kmemcheck_slab_free(s, x, s->object_size);
1273 debug_check_no_locks_freed(x, s->object_size);
1274 local_irq_restore(flags);
1275 }
1276#endif
1277 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1278 debug_check_no_obj_freed(x, s->object_size);
1279}
205ab99d 1280
81819f0f
CL
1281/*
1282 * Slab allocation and freeing
1283 */
5dfb4175
VD
1284static inline struct page *alloc_slab_page(struct kmem_cache *s,
1285 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1286{
5dfb4175 1287 struct page *page;
65c3376a
CL
1288 int order = oo_order(oo);
1289
b1eeab67
VN
1290 flags |= __GFP_NOTRACK;
1291
5dfb4175
VD
1292 if (memcg_charge_slab(s, flags, order))
1293 return NULL;
1294
2154a336 1295 if (node == NUMA_NO_NODE)
5dfb4175 1296 page = alloc_pages(flags, order);
65c3376a 1297 else
5dfb4175
VD
1298 page = alloc_pages_exact_node(node, flags, order);
1299
1300 if (!page)
1301 memcg_uncharge_slab(s, order);
1302
1303 return page;
65c3376a
CL
1304}
1305
81819f0f
CL
1306static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1307{
06428780 1308 struct page *page;
834f3d11 1309 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1310 gfp_t alloc_gfp;
81819f0f 1311
7e0528da
CL
1312 flags &= gfp_allowed_mask;
1313
1314 if (flags & __GFP_WAIT)
1315 local_irq_enable();
1316
b7a49f0d 1317 flags |= s->allocflags;
e12ba74d 1318
ba52270d
PE
1319 /*
1320 * Let the initial higher-order allocation fail under memory pressure
1321 * so we fall-back to the minimum order allocation.
1322 */
1323 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1324
5dfb4175 1325 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1326 if (unlikely(!page)) {
1327 oo = s->min;
80c3a998 1328 alloc_gfp = flags;
65c3376a
CL
1329 /*
1330 * Allocation may have failed due to fragmentation.
1331 * Try a lower order alloc if possible
1332 */
5dfb4175 1333 page = alloc_slab_page(s, alloc_gfp, node, oo);
81819f0f 1334
7e0528da
CL
1335 if (page)
1336 stat(s, ORDER_FALLBACK);
65c3376a 1337 }
5a896d9e 1338
737b719e 1339 if (kmemcheck_enabled && page
5086c389 1340 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1341 int pages = 1 << oo_order(oo);
1342
80c3a998 1343 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1344
1345 /*
1346 * Objects from caches that have a constructor don't get
1347 * cleared when they're allocated, so we need to do it here.
1348 */
1349 if (s->ctor)
1350 kmemcheck_mark_uninitialized_pages(page, pages);
1351 else
1352 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1353 }
1354
737b719e
DR
1355 if (flags & __GFP_WAIT)
1356 local_irq_disable();
1357 if (!page)
1358 return NULL;
1359
834f3d11 1360 page->objects = oo_objects(oo);
81819f0f
CL
1361 mod_zone_page_state(page_zone(page),
1362 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1363 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1364 1 << oo_order(oo));
81819f0f
CL
1365
1366 return page;
1367}
1368
1369static void setup_object(struct kmem_cache *s, struct page *page,
1370 void *object)
1371{
3ec09742 1372 setup_object_debug(s, page, object);
4f104934 1373 if (unlikely(s->ctor))
51cc5068 1374 s->ctor(object);
81819f0f
CL
1375}
1376
1377static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1378{
1379 struct page *page;
81819f0f 1380 void *start;
81819f0f 1381 void *p;
1f458cbf 1382 int order;
54266640 1383 int idx;
81819f0f 1384
c871ac4e
AM
1385 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1386 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1387 BUG();
1388 }
81819f0f 1389
6cb06229
CL
1390 page = allocate_slab(s,
1391 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1392 if (!page)
1393 goto out;
1394
1f458cbf 1395 order = compound_order(page);
205ab99d 1396 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1397 page->slab_cache = s;
c03f94cc 1398 __SetPageSlab(page);
072bb0aa
MG
1399 if (page->pfmemalloc)
1400 SetPageSlabPfmemalloc(page);
81819f0f
CL
1401
1402 start = page_address(page);
81819f0f
CL
1403
1404 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1405 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1406
54266640
WY
1407 for_each_object_idx(p, idx, s, start, page->objects) {
1408 setup_object(s, page, p);
1409 if (likely(idx < page->objects))
1410 set_freepointer(s, p, p + s->size);
1411 else
1412 set_freepointer(s, p, NULL);
81819f0f 1413 }
81819f0f
CL
1414
1415 page->freelist = start;
e6e82ea1 1416 page->inuse = page->objects;
8cb0a506 1417 page->frozen = 1;
81819f0f 1418out:
81819f0f
CL
1419 return page;
1420}
1421
1422static void __free_slab(struct kmem_cache *s, struct page *page)
1423{
834f3d11
CL
1424 int order = compound_order(page);
1425 int pages = 1 << order;
81819f0f 1426
af537b0a 1427 if (kmem_cache_debug(s)) {
81819f0f
CL
1428 void *p;
1429
1430 slab_pad_check(s, page);
224a88be
CL
1431 for_each_object(p, s, page_address(page),
1432 page->objects)
f7cb1933 1433 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1434 }
1435
b1eeab67 1436 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1437
81819f0f
CL
1438 mod_zone_page_state(page_zone(page),
1439 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1440 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1441 -pages);
81819f0f 1442
072bb0aa 1443 __ClearPageSlabPfmemalloc(page);
49bd5221 1444 __ClearPageSlab(page);
1f458cbf 1445
22b751c3 1446 page_mapcount_reset(page);
1eb5ac64
NP
1447 if (current->reclaim_state)
1448 current->reclaim_state->reclaimed_slab += pages;
5dfb4175
VD
1449 __free_pages(page, order);
1450 memcg_uncharge_slab(s, order);
81819f0f
CL
1451}
1452
da9a638c
LJ
1453#define need_reserve_slab_rcu \
1454 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1455
81819f0f
CL
1456static void rcu_free_slab(struct rcu_head *h)
1457{
1458 struct page *page;
1459
da9a638c
LJ
1460 if (need_reserve_slab_rcu)
1461 page = virt_to_head_page(h);
1462 else
1463 page = container_of((struct list_head *)h, struct page, lru);
1464
1b4f59e3 1465 __free_slab(page->slab_cache, page);
81819f0f
CL
1466}
1467
1468static void free_slab(struct kmem_cache *s, struct page *page)
1469{
1470 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1471 struct rcu_head *head;
1472
1473 if (need_reserve_slab_rcu) {
1474 int order = compound_order(page);
1475 int offset = (PAGE_SIZE << order) - s->reserved;
1476
1477 VM_BUG_ON(s->reserved != sizeof(*head));
1478 head = page_address(page) + offset;
1479 } else {
1480 /*
1481 * RCU free overloads the RCU head over the LRU
1482 */
1483 head = (void *)&page->lru;
1484 }
81819f0f
CL
1485
1486 call_rcu(head, rcu_free_slab);
1487 } else
1488 __free_slab(s, page);
1489}
1490
1491static void discard_slab(struct kmem_cache *s, struct page *page)
1492{
205ab99d 1493 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1494 free_slab(s, page);
1495}
1496
1497/*
5cc6eee8 1498 * Management of partially allocated slabs.
81819f0f 1499 */
1e4dd946
SR
1500static inline void
1501__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1502{
e95eed57 1503 n->nr_partial++;
136333d1 1504 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1505 list_add_tail(&page->lru, &n->partial);
1506 else
1507 list_add(&page->lru, &n->partial);
81819f0f
CL
1508}
1509
1e4dd946
SR
1510static inline void add_partial(struct kmem_cache_node *n,
1511 struct page *page, int tail)
62e346a8 1512{
c65c1877 1513 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1514 __add_partial(n, page, tail);
1515}
c65c1877 1516
1e4dd946
SR
1517static inline void
1518__remove_partial(struct kmem_cache_node *n, struct page *page)
1519{
62e346a8
CL
1520 list_del(&page->lru);
1521 n->nr_partial--;
1522}
1523
1e4dd946
SR
1524static inline void remove_partial(struct kmem_cache_node *n,
1525 struct page *page)
1526{
1527 lockdep_assert_held(&n->list_lock);
1528 __remove_partial(n, page);
1529}
1530
81819f0f 1531/*
7ced3719
CL
1532 * Remove slab from the partial list, freeze it and
1533 * return the pointer to the freelist.
81819f0f 1534 *
497b66f2 1535 * Returns a list of objects or NULL if it fails.
81819f0f 1536 */
497b66f2 1537static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1538 struct kmem_cache_node *n, struct page *page,
633b0764 1539 int mode, int *objects)
81819f0f 1540{
2cfb7455
CL
1541 void *freelist;
1542 unsigned long counters;
1543 struct page new;
1544
c65c1877
PZ
1545 lockdep_assert_held(&n->list_lock);
1546
2cfb7455
CL
1547 /*
1548 * Zap the freelist and set the frozen bit.
1549 * The old freelist is the list of objects for the
1550 * per cpu allocation list.
1551 */
7ced3719
CL
1552 freelist = page->freelist;
1553 counters = page->counters;
1554 new.counters = counters;
633b0764 1555 *objects = new.objects - new.inuse;
23910c50 1556 if (mode) {
7ced3719 1557 new.inuse = page->objects;
23910c50
PE
1558 new.freelist = NULL;
1559 } else {
1560 new.freelist = freelist;
1561 }
2cfb7455 1562
a0132ac0 1563 VM_BUG_ON(new.frozen);
7ced3719 1564 new.frozen = 1;
2cfb7455 1565
7ced3719 1566 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1567 freelist, counters,
02d7633f 1568 new.freelist, new.counters,
7ced3719 1569 "acquire_slab"))
7ced3719 1570 return NULL;
2cfb7455
CL
1571
1572 remove_partial(n, page);
7ced3719 1573 WARN_ON(!freelist);
49e22585 1574 return freelist;
81819f0f
CL
1575}
1576
633b0764 1577static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1578static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1579
81819f0f 1580/*
672bba3a 1581 * Try to allocate a partial slab from a specific node.
81819f0f 1582 */
8ba00bb6
JK
1583static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1584 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1585{
49e22585
CL
1586 struct page *page, *page2;
1587 void *object = NULL;
633b0764
JK
1588 int available = 0;
1589 int objects;
81819f0f
CL
1590
1591 /*
1592 * Racy check. If we mistakenly see no partial slabs then we
1593 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1594 * partial slab and there is none available then get_partials()
1595 * will return NULL.
81819f0f
CL
1596 */
1597 if (!n || !n->nr_partial)
1598 return NULL;
1599
1600 spin_lock(&n->list_lock);
49e22585 1601 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1602 void *t;
49e22585 1603
8ba00bb6
JK
1604 if (!pfmemalloc_match(page, flags))
1605 continue;
1606
633b0764 1607 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1608 if (!t)
1609 break;
1610
633b0764 1611 available += objects;
12d79634 1612 if (!object) {
49e22585 1613 c->page = page;
49e22585 1614 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1615 object = t;
49e22585 1616 } else {
633b0764 1617 put_cpu_partial(s, page, 0);
8028dcea 1618 stat(s, CPU_PARTIAL_NODE);
49e22585 1619 }
345c905d
JK
1620 if (!kmem_cache_has_cpu_partial(s)
1621 || available > s->cpu_partial / 2)
49e22585
CL
1622 break;
1623
497b66f2 1624 }
81819f0f 1625 spin_unlock(&n->list_lock);
497b66f2 1626 return object;
81819f0f
CL
1627}
1628
1629/*
672bba3a 1630 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1631 */
de3ec035 1632static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1633 struct kmem_cache_cpu *c)
81819f0f
CL
1634{
1635#ifdef CONFIG_NUMA
1636 struct zonelist *zonelist;
dd1a239f 1637 struct zoneref *z;
54a6eb5c
MG
1638 struct zone *zone;
1639 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1640 void *object;
cc9a6c87 1641 unsigned int cpuset_mems_cookie;
81819f0f
CL
1642
1643 /*
672bba3a
CL
1644 * The defrag ratio allows a configuration of the tradeoffs between
1645 * inter node defragmentation and node local allocations. A lower
1646 * defrag_ratio increases the tendency to do local allocations
1647 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1648 *
672bba3a
CL
1649 * If the defrag_ratio is set to 0 then kmalloc() always
1650 * returns node local objects. If the ratio is higher then kmalloc()
1651 * may return off node objects because partial slabs are obtained
1652 * from other nodes and filled up.
81819f0f 1653 *
6446faa2 1654 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1655 * defrag_ratio = 1000) then every (well almost) allocation will
1656 * first attempt to defrag slab caches on other nodes. This means
1657 * scanning over all nodes to look for partial slabs which may be
1658 * expensive if we do it every time we are trying to find a slab
1659 * with available objects.
81819f0f 1660 */
9824601e
CL
1661 if (!s->remote_node_defrag_ratio ||
1662 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1663 return NULL;
1664
cc9a6c87 1665 do {
d26914d1 1666 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1667 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1668 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1669 struct kmem_cache_node *n;
1670
1671 n = get_node(s, zone_to_nid(zone));
1672
344736f2
VD
1673 if (n && cpuset_zone_allowed(zone,
1674 flags | __GFP_HARDWALL) &&
cc9a6c87 1675 n->nr_partial > s->min_partial) {
8ba00bb6 1676 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1677 if (object) {
1678 /*
d26914d1
MG
1679 * Don't check read_mems_allowed_retry()
1680 * here - if mems_allowed was updated in
1681 * parallel, that was a harmless race
1682 * between allocation and the cpuset
1683 * update
cc9a6c87 1684 */
cc9a6c87
MG
1685 return object;
1686 }
c0ff7453 1687 }
81819f0f 1688 }
d26914d1 1689 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1690#endif
1691 return NULL;
1692}
1693
1694/*
1695 * Get a partial page, lock it and return it.
1696 */
497b66f2 1697static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1698 struct kmem_cache_cpu *c)
81819f0f 1699{
497b66f2 1700 void *object;
a561ce00
JK
1701 int searchnode = node;
1702
1703 if (node == NUMA_NO_NODE)
1704 searchnode = numa_mem_id();
1705 else if (!node_present_pages(node))
1706 searchnode = node_to_mem_node(node);
81819f0f 1707
8ba00bb6 1708 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1709 if (object || node != NUMA_NO_NODE)
1710 return object;
81819f0f 1711
acd19fd1 1712 return get_any_partial(s, flags, c);
81819f0f
CL
1713}
1714
8a5ec0ba
CL
1715#ifdef CONFIG_PREEMPT
1716/*
1717 * Calculate the next globally unique transaction for disambiguiation
1718 * during cmpxchg. The transactions start with the cpu number and are then
1719 * incremented by CONFIG_NR_CPUS.
1720 */
1721#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1722#else
1723/*
1724 * No preemption supported therefore also no need to check for
1725 * different cpus.
1726 */
1727#define TID_STEP 1
1728#endif
1729
1730static inline unsigned long next_tid(unsigned long tid)
1731{
1732 return tid + TID_STEP;
1733}
1734
1735static inline unsigned int tid_to_cpu(unsigned long tid)
1736{
1737 return tid % TID_STEP;
1738}
1739
1740static inline unsigned long tid_to_event(unsigned long tid)
1741{
1742 return tid / TID_STEP;
1743}
1744
1745static inline unsigned int init_tid(int cpu)
1746{
1747 return cpu;
1748}
1749
1750static inline void note_cmpxchg_failure(const char *n,
1751 const struct kmem_cache *s, unsigned long tid)
1752{
1753#ifdef SLUB_DEBUG_CMPXCHG
1754 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1755
f9f58285 1756 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1757
1758#ifdef CONFIG_PREEMPT
1759 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1760 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1761 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1762 else
1763#endif
1764 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1765 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1766 tid_to_event(tid), tid_to_event(actual_tid));
1767 else
f9f58285 1768 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1769 actual_tid, tid, next_tid(tid));
1770#endif
4fdccdfb 1771 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1772}
1773
788e1aad 1774static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1775{
8a5ec0ba
CL
1776 int cpu;
1777
1778 for_each_possible_cpu(cpu)
1779 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1780}
2cfb7455 1781
81819f0f
CL
1782/*
1783 * Remove the cpu slab
1784 */
d0e0ac97
CG
1785static void deactivate_slab(struct kmem_cache *s, struct page *page,
1786 void *freelist)
81819f0f 1787{
2cfb7455 1788 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1789 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1790 int lock = 0;
1791 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1792 void *nextfree;
136333d1 1793 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1794 struct page new;
1795 struct page old;
1796
1797 if (page->freelist) {
84e554e6 1798 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1799 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1800 }
1801
894b8788 1802 /*
2cfb7455
CL
1803 * Stage one: Free all available per cpu objects back
1804 * to the page freelist while it is still frozen. Leave the
1805 * last one.
1806 *
1807 * There is no need to take the list->lock because the page
1808 * is still frozen.
1809 */
1810 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1811 void *prior;
1812 unsigned long counters;
1813
1814 do {
1815 prior = page->freelist;
1816 counters = page->counters;
1817 set_freepointer(s, freelist, prior);
1818 new.counters = counters;
1819 new.inuse--;
a0132ac0 1820 VM_BUG_ON(!new.frozen);
2cfb7455 1821
1d07171c 1822 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1823 prior, counters,
1824 freelist, new.counters,
1825 "drain percpu freelist"));
1826
1827 freelist = nextfree;
1828 }
1829
894b8788 1830 /*
2cfb7455
CL
1831 * Stage two: Ensure that the page is unfrozen while the
1832 * list presence reflects the actual number of objects
1833 * during unfreeze.
1834 *
1835 * We setup the list membership and then perform a cmpxchg
1836 * with the count. If there is a mismatch then the page
1837 * is not unfrozen but the page is on the wrong list.
1838 *
1839 * Then we restart the process which may have to remove
1840 * the page from the list that we just put it on again
1841 * because the number of objects in the slab may have
1842 * changed.
894b8788 1843 */
2cfb7455 1844redo:
894b8788 1845
2cfb7455
CL
1846 old.freelist = page->freelist;
1847 old.counters = page->counters;
a0132ac0 1848 VM_BUG_ON(!old.frozen);
7c2e132c 1849
2cfb7455
CL
1850 /* Determine target state of the slab */
1851 new.counters = old.counters;
1852 if (freelist) {
1853 new.inuse--;
1854 set_freepointer(s, freelist, old.freelist);
1855 new.freelist = freelist;
1856 } else
1857 new.freelist = old.freelist;
1858
1859 new.frozen = 0;
1860
8a5b20ae 1861 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1862 m = M_FREE;
1863 else if (new.freelist) {
1864 m = M_PARTIAL;
1865 if (!lock) {
1866 lock = 1;
1867 /*
1868 * Taking the spinlock removes the possiblity
1869 * that acquire_slab() will see a slab page that
1870 * is frozen
1871 */
1872 spin_lock(&n->list_lock);
1873 }
1874 } else {
1875 m = M_FULL;
1876 if (kmem_cache_debug(s) && !lock) {
1877 lock = 1;
1878 /*
1879 * This also ensures that the scanning of full
1880 * slabs from diagnostic functions will not see
1881 * any frozen slabs.
1882 */
1883 spin_lock(&n->list_lock);
1884 }
1885 }
1886
1887 if (l != m) {
1888
1889 if (l == M_PARTIAL)
1890
1891 remove_partial(n, page);
1892
1893 else if (l == M_FULL)
894b8788 1894
c65c1877 1895 remove_full(s, n, page);
2cfb7455
CL
1896
1897 if (m == M_PARTIAL) {
1898
1899 add_partial(n, page, tail);
136333d1 1900 stat(s, tail);
2cfb7455
CL
1901
1902 } else if (m == M_FULL) {
894b8788 1903
2cfb7455
CL
1904 stat(s, DEACTIVATE_FULL);
1905 add_full(s, n, page);
1906
1907 }
1908 }
1909
1910 l = m;
1d07171c 1911 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1912 old.freelist, old.counters,
1913 new.freelist, new.counters,
1914 "unfreezing slab"))
1915 goto redo;
1916
2cfb7455
CL
1917 if (lock)
1918 spin_unlock(&n->list_lock);
1919
1920 if (m == M_FREE) {
1921 stat(s, DEACTIVATE_EMPTY);
1922 discard_slab(s, page);
1923 stat(s, FREE_SLAB);
894b8788 1924 }
81819f0f
CL
1925}
1926
d24ac77f
JK
1927/*
1928 * Unfreeze all the cpu partial slabs.
1929 *
59a09917
CL
1930 * This function must be called with interrupts disabled
1931 * for the cpu using c (or some other guarantee must be there
1932 * to guarantee no concurrent accesses).
d24ac77f 1933 */
59a09917
CL
1934static void unfreeze_partials(struct kmem_cache *s,
1935 struct kmem_cache_cpu *c)
49e22585 1936{
345c905d 1937#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1938 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1939 struct page *page, *discard_page = NULL;
49e22585
CL
1940
1941 while ((page = c->partial)) {
49e22585
CL
1942 struct page new;
1943 struct page old;
1944
1945 c->partial = page->next;
43d77867
JK
1946
1947 n2 = get_node(s, page_to_nid(page));
1948 if (n != n2) {
1949 if (n)
1950 spin_unlock(&n->list_lock);
1951
1952 n = n2;
1953 spin_lock(&n->list_lock);
1954 }
49e22585
CL
1955
1956 do {
1957
1958 old.freelist = page->freelist;
1959 old.counters = page->counters;
a0132ac0 1960 VM_BUG_ON(!old.frozen);
49e22585
CL
1961
1962 new.counters = old.counters;
1963 new.freelist = old.freelist;
1964
1965 new.frozen = 0;
1966
d24ac77f 1967 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1968 old.freelist, old.counters,
1969 new.freelist, new.counters,
1970 "unfreezing slab"));
1971
8a5b20ae 1972 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
1973 page->next = discard_page;
1974 discard_page = page;
43d77867
JK
1975 } else {
1976 add_partial(n, page, DEACTIVATE_TO_TAIL);
1977 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1978 }
1979 }
1980
1981 if (n)
1982 spin_unlock(&n->list_lock);
9ada1934
SL
1983
1984 while (discard_page) {
1985 page = discard_page;
1986 discard_page = discard_page->next;
1987
1988 stat(s, DEACTIVATE_EMPTY);
1989 discard_slab(s, page);
1990 stat(s, FREE_SLAB);
1991 }
345c905d 1992#endif
49e22585
CL
1993}
1994
1995/*
1996 * Put a page that was just frozen (in __slab_free) into a partial page
1997 * slot if available. This is done without interrupts disabled and without
1998 * preemption disabled. The cmpxchg is racy and may put the partial page
1999 * onto a random cpus partial slot.
2000 *
2001 * If we did not find a slot then simply move all the partials to the
2002 * per node partial list.
2003 */
633b0764 2004static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2005{
345c905d 2006#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2007 struct page *oldpage;
2008 int pages;
2009 int pobjects;
2010
2011 do {
2012 pages = 0;
2013 pobjects = 0;
2014 oldpage = this_cpu_read(s->cpu_slab->partial);
2015
2016 if (oldpage) {
2017 pobjects = oldpage->pobjects;
2018 pages = oldpage->pages;
2019 if (drain && pobjects > s->cpu_partial) {
2020 unsigned long flags;
2021 /*
2022 * partial array is full. Move the existing
2023 * set to the per node partial list.
2024 */
2025 local_irq_save(flags);
59a09917 2026 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2027 local_irq_restore(flags);
e24fc410 2028 oldpage = NULL;
49e22585
CL
2029 pobjects = 0;
2030 pages = 0;
8028dcea 2031 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2032 }
2033 }
2034
2035 pages++;
2036 pobjects += page->objects - page->inuse;
2037
2038 page->pages = pages;
2039 page->pobjects = pobjects;
2040 page->next = oldpage;
2041
d0e0ac97
CG
2042 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2043 != oldpage);
345c905d 2044#endif
49e22585
CL
2045}
2046
dfb4f096 2047static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2048{
84e554e6 2049 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2050 deactivate_slab(s, c->page, c->freelist);
2051
2052 c->tid = next_tid(c->tid);
2053 c->page = NULL;
2054 c->freelist = NULL;
81819f0f
CL
2055}
2056
2057/*
2058 * Flush cpu slab.
6446faa2 2059 *
81819f0f
CL
2060 * Called from IPI handler with interrupts disabled.
2061 */
0c710013 2062static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2063{
9dfc6e68 2064 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2065
49e22585
CL
2066 if (likely(c)) {
2067 if (c->page)
2068 flush_slab(s, c);
2069
59a09917 2070 unfreeze_partials(s, c);
49e22585 2071 }
81819f0f
CL
2072}
2073
2074static void flush_cpu_slab(void *d)
2075{
2076 struct kmem_cache *s = d;
81819f0f 2077
dfb4f096 2078 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2079}
2080
a8364d55
GBY
2081static bool has_cpu_slab(int cpu, void *info)
2082{
2083 struct kmem_cache *s = info;
2084 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2085
02e1a9cd 2086 return c->page || c->partial;
a8364d55
GBY
2087}
2088
81819f0f
CL
2089static void flush_all(struct kmem_cache *s)
2090{
a8364d55 2091 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2092}
2093
dfb4f096
CL
2094/*
2095 * Check if the objects in a per cpu structure fit numa
2096 * locality expectations.
2097 */
57d437d2 2098static inline int node_match(struct page *page, int node)
dfb4f096
CL
2099{
2100#ifdef CONFIG_NUMA
4d7868e6 2101 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2102 return 0;
2103#endif
2104 return 1;
2105}
2106
9a02d699 2107#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2108static int count_free(struct page *page)
2109{
2110 return page->objects - page->inuse;
2111}
2112
9a02d699
DR
2113static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2114{
2115 return atomic_long_read(&n->total_objects);
2116}
2117#endif /* CONFIG_SLUB_DEBUG */
2118
2119#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2120static unsigned long count_partial(struct kmem_cache_node *n,
2121 int (*get_count)(struct page *))
2122{
2123 unsigned long flags;
2124 unsigned long x = 0;
2125 struct page *page;
2126
2127 spin_lock_irqsave(&n->list_lock, flags);
2128 list_for_each_entry(page, &n->partial, lru)
2129 x += get_count(page);
2130 spin_unlock_irqrestore(&n->list_lock, flags);
2131 return x;
2132}
9a02d699 2133#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2134
781b2ba6
PE
2135static noinline void
2136slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2137{
9a02d699
DR
2138#ifdef CONFIG_SLUB_DEBUG
2139 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2140 DEFAULT_RATELIMIT_BURST);
781b2ba6 2141 int node;
fa45dc25 2142 struct kmem_cache_node *n;
781b2ba6 2143
9a02d699
DR
2144 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2145 return;
2146
f9f58285 2147 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2148 nid, gfpflags);
f9f58285
FF
2149 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2150 s->name, s->object_size, s->size, oo_order(s->oo),
2151 oo_order(s->min));
781b2ba6 2152
3b0efdfa 2153 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2154 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2155 s->name);
fa5ec8a1 2156
fa45dc25 2157 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2158 unsigned long nr_slabs;
2159 unsigned long nr_objs;
2160 unsigned long nr_free;
2161
26c02cf0
AB
2162 nr_free = count_partial(n, count_free);
2163 nr_slabs = node_nr_slabs(n);
2164 nr_objs = node_nr_objs(n);
781b2ba6 2165
f9f58285 2166 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2167 node, nr_slabs, nr_objs, nr_free);
2168 }
9a02d699 2169#endif
781b2ba6
PE
2170}
2171
497b66f2
CL
2172static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2173 int node, struct kmem_cache_cpu **pc)
2174{
6faa6833 2175 void *freelist;
188fd063
CL
2176 struct kmem_cache_cpu *c = *pc;
2177 struct page *page;
497b66f2 2178
188fd063 2179 freelist = get_partial(s, flags, node, c);
497b66f2 2180
188fd063
CL
2181 if (freelist)
2182 return freelist;
2183
2184 page = new_slab(s, flags, node);
497b66f2 2185 if (page) {
7c8e0181 2186 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2187 if (c->page)
2188 flush_slab(s, c);
2189
2190 /*
2191 * No other reference to the page yet so we can
2192 * muck around with it freely without cmpxchg
2193 */
6faa6833 2194 freelist = page->freelist;
497b66f2
CL
2195 page->freelist = NULL;
2196
2197 stat(s, ALLOC_SLAB);
497b66f2
CL
2198 c->page = page;
2199 *pc = c;
2200 } else
6faa6833 2201 freelist = NULL;
497b66f2 2202
6faa6833 2203 return freelist;
497b66f2
CL
2204}
2205
072bb0aa
MG
2206static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2207{
2208 if (unlikely(PageSlabPfmemalloc(page)))
2209 return gfp_pfmemalloc_allowed(gfpflags);
2210
2211 return true;
2212}
2213
213eeb9f 2214/*
d0e0ac97
CG
2215 * Check the page->freelist of a page and either transfer the freelist to the
2216 * per cpu freelist or deactivate the page.
213eeb9f
CL
2217 *
2218 * The page is still frozen if the return value is not NULL.
2219 *
2220 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2221 *
2222 * This function must be called with interrupt disabled.
213eeb9f
CL
2223 */
2224static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2225{
2226 struct page new;
2227 unsigned long counters;
2228 void *freelist;
2229
2230 do {
2231 freelist = page->freelist;
2232 counters = page->counters;
6faa6833 2233
213eeb9f 2234 new.counters = counters;
a0132ac0 2235 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2236
2237 new.inuse = page->objects;
2238 new.frozen = freelist != NULL;
2239
d24ac77f 2240 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2241 freelist, counters,
2242 NULL, new.counters,
2243 "get_freelist"));
2244
2245 return freelist;
2246}
2247
81819f0f 2248/*
894b8788
CL
2249 * Slow path. The lockless freelist is empty or we need to perform
2250 * debugging duties.
2251 *
894b8788
CL
2252 * Processing is still very fast if new objects have been freed to the
2253 * regular freelist. In that case we simply take over the regular freelist
2254 * as the lockless freelist and zap the regular freelist.
81819f0f 2255 *
894b8788
CL
2256 * If that is not working then we fall back to the partial lists. We take the
2257 * first element of the freelist as the object to allocate now and move the
2258 * rest of the freelist to the lockless freelist.
81819f0f 2259 *
894b8788 2260 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2261 * we need to allocate a new slab. This is the slowest path since it involves
2262 * a call to the page allocator and the setup of a new slab.
81819f0f 2263 */
ce71e27c
EGM
2264static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2265 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2266{
6faa6833 2267 void *freelist;
f6e7def7 2268 struct page *page;
8a5ec0ba
CL
2269 unsigned long flags;
2270
2271 local_irq_save(flags);
2272#ifdef CONFIG_PREEMPT
2273 /*
2274 * We may have been preempted and rescheduled on a different
2275 * cpu before disabling interrupts. Need to reload cpu area
2276 * pointer.
2277 */
2278 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2279#endif
81819f0f 2280
f6e7def7
CL
2281 page = c->page;
2282 if (!page)
81819f0f 2283 goto new_slab;
49e22585 2284redo:
6faa6833 2285
57d437d2 2286 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2287 int searchnode = node;
2288
2289 if (node != NUMA_NO_NODE && !node_present_pages(node))
2290 searchnode = node_to_mem_node(node);
2291
2292 if (unlikely(!node_match(page, searchnode))) {
2293 stat(s, ALLOC_NODE_MISMATCH);
2294 deactivate_slab(s, page, c->freelist);
2295 c->page = NULL;
2296 c->freelist = NULL;
2297 goto new_slab;
2298 }
fc59c053 2299 }
6446faa2 2300
072bb0aa
MG
2301 /*
2302 * By rights, we should be searching for a slab page that was
2303 * PFMEMALLOC but right now, we are losing the pfmemalloc
2304 * information when the page leaves the per-cpu allocator
2305 */
2306 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2307 deactivate_slab(s, page, c->freelist);
2308 c->page = NULL;
2309 c->freelist = NULL;
2310 goto new_slab;
2311 }
2312
73736e03 2313 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2314 freelist = c->freelist;
2315 if (freelist)
73736e03 2316 goto load_freelist;
03e404af 2317
f6e7def7 2318 freelist = get_freelist(s, page);
6446faa2 2319
6faa6833 2320 if (!freelist) {
03e404af
CL
2321 c->page = NULL;
2322 stat(s, DEACTIVATE_BYPASS);
fc59c053 2323 goto new_slab;
03e404af 2324 }
6446faa2 2325
84e554e6 2326 stat(s, ALLOC_REFILL);
6446faa2 2327
894b8788 2328load_freelist:
507effea
CL
2329 /*
2330 * freelist is pointing to the list of objects to be used.
2331 * page is pointing to the page from which the objects are obtained.
2332 * That page must be frozen for per cpu allocations to work.
2333 */
a0132ac0 2334 VM_BUG_ON(!c->page->frozen);
6faa6833 2335 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2336 c->tid = next_tid(c->tid);
2337 local_irq_restore(flags);
6faa6833 2338 return freelist;
81819f0f 2339
81819f0f 2340new_slab:
2cfb7455 2341
49e22585 2342 if (c->partial) {
f6e7def7
CL
2343 page = c->page = c->partial;
2344 c->partial = page->next;
49e22585
CL
2345 stat(s, CPU_PARTIAL_ALLOC);
2346 c->freelist = NULL;
2347 goto redo;
81819f0f
CL
2348 }
2349
188fd063 2350 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2351
f4697436 2352 if (unlikely(!freelist)) {
9a02d699 2353 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2354 local_irq_restore(flags);
2355 return NULL;
81819f0f 2356 }
2cfb7455 2357
f6e7def7 2358 page = c->page;
5091b74a 2359 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2360 goto load_freelist;
2cfb7455 2361
497b66f2 2362 /* Only entered in the debug case */
d0e0ac97
CG
2363 if (kmem_cache_debug(s) &&
2364 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2365 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2366
f6e7def7 2367 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2368 c->page = NULL;
2369 c->freelist = NULL;
a71ae47a 2370 local_irq_restore(flags);
6faa6833 2371 return freelist;
894b8788
CL
2372}
2373
2374/*
2375 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2376 * have the fastpath folded into their functions. So no function call
2377 * overhead for requests that can be satisfied on the fastpath.
2378 *
2379 * The fastpath works by first checking if the lockless freelist can be used.
2380 * If not then __slab_alloc is called for slow processing.
2381 *
2382 * Otherwise we can simply pick the next object from the lockless free list.
2383 */
2b847c3c 2384static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2385 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2386{
894b8788 2387 void **object;
dfb4f096 2388 struct kmem_cache_cpu *c;
57d437d2 2389 struct page *page;
8a5ec0ba 2390 unsigned long tid;
1f84260c 2391
8135be5a
VD
2392 s = slab_pre_alloc_hook(s, gfpflags);
2393 if (!s)
773ff60e 2394 return NULL;
8a5ec0ba 2395redo:
8a5ec0ba
CL
2396 /*
2397 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2398 * enabled. We may switch back and forth between cpus while
2399 * reading from one cpu area. That does not matter as long
2400 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2401 *
2402 * Preemption is disabled for the retrieval of the tid because that
2403 * must occur from the current processor. We cannot allow rescheduling
2404 * on a different processor between the determination of the pointer
2405 * and the retrieval of the tid.
8a5ec0ba 2406 */
7cccd80b 2407 preempt_disable();
7c8e0181 2408 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2409
8a5ec0ba
CL
2410 /*
2411 * The transaction ids are globally unique per cpu and per operation on
2412 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2413 * occurs on the right processor and that there was no operation on the
2414 * linked list in between.
2415 */
2416 tid = c->tid;
7cccd80b 2417 preempt_enable();
8a5ec0ba 2418
9dfc6e68 2419 object = c->freelist;
57d437d2 2420 page = c->page;
8eae1492 2421 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2422 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2423 stat(s, ALLOC_SLOWPATH);
2424 } else {
0ad9500e
ED
2425 void *next_object = get_freepointer_safe(s, object);
2426
8a5ec0ba 2427 /*
25985edc 2428 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2429 * operation and if we are on the right processor.
2430 *
d0e0ac97
CG
2431 * The cmpxchg does the following atomically (without lock
2432 * semantics!)
8a5ec0ba
CL
2433 * 1. Relocate first pointer to the current per cpu area.
2434 * 2. Verify that tid and freelist have not been changed
2435 * 3. If they were not changed replace tid and freelist
2436 *
d0e0ac97
CG
2437 * Since this is without lock semantics the protection is only
2438 * against code executing on this cpu *not* from access by
2439 * other cpus.
8a5ec0ba 2440 */
933393f5 2441 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2442 s->cpu_slab->freelist, s->cpu_slab->tid,
2443 object, tid,
0ad9500e 2444 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2445
2446 note_cmpxchg_failure("slab_alloc", s, tid);
2447 goto redo;
2448 }
0ad9500e 2449 prefetch_freepointer(s, next_object);
84e554e6 2450 stat(s, ALLOC_FASTPATH);
894b8788 2451 }
8a5ec0ba 2452
74e2134f 2453 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2454 memset(object, 0, s->object_size);
d07dbea4 2455
c016b0bd 2456 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2457
894b8788 2458 return object;
81819f0f
CL
2459}
2460
2b847c3c
EG
2461static __always_inline void *slab_alloc(struct kmem_cache *s,
2462 gfp_t gfpflags, unsigned long addr)
2463{
2464 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2465}
2466
81819f0f
CL
2467void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2468{
2b847c3c 2469 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2470
d0e0ac97
CG
2471 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2472 s->size, gfpflags);
5b882be4
EGM
2473
2474 return ret;
81819f0f
CL
2475}
2476EXPORT_SYMBOL(kmem_cache_alloc);
2477
0f24f128 2478#ifdef CONFIG_TRACING
4a92379b
RK
2479void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2480{
2b847c3c 2481 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2482 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2483 return ret;
2484}
2485EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2486#endif
2487
81819f0f
CL
2488#ifdef CONFIG_NUMA
2489void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2490{
2b847c3c 2491 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2492
ca2b84cb 2493 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2494 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2495
2496 return ret;
81819f0f
CL
2497}
2498EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2499
0f24f128 2500#ifdef CONFIG_TRACING
4a92379b 2501void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2502 gfp_t gfpflags,
4a92379b 2503 int node, size_t size)
5b882be4 2504{
2b847c3c 2505 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2506
2507 trace_kmalloc_node(_RET_IP_, ret,
2508 size, s->size, gfpflags, node);
2509 return ret;
5b882be4 2510}
4a92379b 2511EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2512#endif
5d1f57e4 2513#endif
5b882be4 2514
81819f0f 2515/*
894b8788
CL
2516 * Slow patch handling. This may still be called frequently since objects
2517 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2518 *
894b8788
CL
2519 * So we still attempt to reduce cache line usage. Just take the slab
2520 * lock and free the item. If there is no additional partial page
2521 * handling required then we can return immediately.
81819f0f 2522 */
894b8788 2523static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2524 void *x, unsigned long addr)
81819f0f
CL
2525{
2526 void *prior;
2527 void **object = (void *)x;
2cfb7455 2528 int was_frozen;
2cfb7455
CL
2529 struct page new;
2530 unsigned long counters;
2531 struct kmem_cache_node *n = NULL;
61728d1e 2532 unsigned long uninitialized_var(flags);
81819f0f 2533
8a5ec0ba 2534 stat(s, FREE_SLOWPATH);
81819f0f 2535
19c7ff9e
CL
2536 if (kmem_cache_debug(s) &&
2537 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2538 return;
6446faa2 2539
2cfb7455 2540 do {
837d678d
JK
2541 if (unlikely(n)) {
2542 spin_unlock_irqrestore(&n->list_lock, flags);
2543 n = NULL;
2544 }
2cfb7455
CL
2545 prior = page->freelist;
2546 counters = page->counters;
2547 set_freepointer(s, object, prior);
2548 new.counters = counters;
2549 was_frozen = new.frozen;
2550 new.inuse--;
837d678d 2551 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2552
c65c1877 2553 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2554
2555 /*
d0e0ac97
CG
2556 * Slab was on no list before and will be
2557 * partially empty
2558 * We can defer the list move and instead
2559 * freeze it.
49e22585
CL
2560 */
2561 new.frozen = 1;
2562
c65c1877 2563 } else { /* Needs to be taken off a list */
49e22585 2564
b455def2 2565 n = get_node(s, page_to_nid(page));
49e22585
CL
2566 /*
2567 * Speculatively acquire the list_lock.
2568 * If the cmpxchg does not succeed then we may
2569 * drop the list_lock without any processing.
2570 *
2571 * Otherwise the list_lock will synchronize with
2572 * other processors updating the list of slabs.
2573 */
2574 spin_lock_irqsave(&n->list_lock, flags);
2575
2576 }
2cfb7455 2577 }
81819f0f 2578
2cfb7455
CL
2579 } while (!cmpxchg_double_slab(s, page,
2580 prior, counters,
2581 object, new.counters,
2582 "__slab_free"));
81819f0f 2583
2cfb7455 2584 if (likely(!n)) {
49e22585
CL
2585
2586 /*
2587 * If we just froze the page then put it onto the
2588 * per cpu partial list.
2589 */
8028dcea 2590 if (new.frozen && !was_frozen) {
49e22585 2591 put_cpu_partial(s, page, 1);
8028dcea
AS
2592 stat(s, CPU_PARTIAL_FREE);
2593 }
49e22585 2594 /*
2cfb7455
CL
2595 * The list lock was not taken therefore no list
2596 * activity can be necessary.
2597 */
b455def2
L
2598 if (was_frozen)
2599 stat(s, FREE_FROZEN);
2600 return;
2601 }
81819f0f 2602
8a5b20ae 2603 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2604 goto slab_empty;
2605
81819f0f 2606 /*
837d678d
JK
2607 * Objects left in the slab. If it was not on the partial list before
2608 * then add it.
81819f0f 2609 */
345c905d
JK
2610 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2611 if (kmem_cache_debug(s))
c65c1877 2612 remove_full(s, n, page);
837d678d
JK
2613 add_partial(n, page, DEACTIVATE_TO_TAIL);
2614 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2615 }
80f08c19 2616 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2617 return;
2618
2619slab_empty:
a973e9dd 2620 if (prior) {
81819f0f 2621 /*
6fbabb20 2622 * Slab on the partial list.
81819f0f 2623 */
5cc6eee8 2624 remove_partial(n, page);
84e554e6 2625 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2626 } else {
6fbabb20 2627 /* Slab must be on the full list */
c65c1877
PZ
2628 remove_full(s, n, page);
2629 }
2cfb7455 2630
80f08c19 2631 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2632 stat(s, FREE_SLAB);
81819f0f 2633 discard_slab(s, page);
81819f0f
CL
2634}
2635
894b8788
CL
2636/*
2637 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2638 * can perform fastpath freeing without additional function calls.
2639 *
2640 * The fastpath is only possible if we are freeing to the current cpu slab
2641 * of this processor. This typically the case if we have just allocated
2642 * the item before.
2643 *
2644 * If fastpath is not possible then fall back to __slab_free where we deal
2645 * with all sorts of special processing.
2646 */
06428780 2647static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2648 struct page *page, void *x, unsigned long addr)
894b8788
CL
2649{
2650 void **object = (void *)x;
dfb4f096 2651 struct kmem_cache_cpu *c;
8a5ec0ba 2652 unsigned long tid;
1f84260c 2653
c016b0bd
CL
2654 slab_free_hook(s, x);
2655
8a5ec0ba
CL
2656redo:
2657 /*
2658 * Determine the currently cpus per cpu slab.
2659 * The cpu may change afterward. However that does not matter since
2660 * data is retrieved via this pointer. If we are on the same cpu
2661 * during the cmpxchg then the free will succedd.
2662 */
7cccd80b 2663 preempt_disable();
7c8e0181 2664 c = this_cpu_ptr(s->cpu_slab);
c016b0bd 2665
8a5ec0ba 2666 tid = c->tid;
7cccd80b 2667 preempt_enable();
c016b0bd 2668
442b06bc 2669 if (likely(page == c->page)) {
ff12059e 2670 set_freepointer(s, object, c->freelist);
8a5ec0ba 2671
933393f5 2672 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2673 s->cpu_slab->freelist, s->cpu_slab->tid,
2674 c->freelist, tid,
2675 object, next_tid(tid)))) {
2676
2677 note_cmpxchg_failure("slab_free", s, tid);
2678 goto redo;
2679 }
84e554e6 2680 stat(s, FREE_FASTPATH);
894b8788 2681 } else
ff12059e 2682 __slab_free(s, page, x, addr);
894b8788 2683
894b8788
CL
2684}
2685
81819f0f
CL
2686void kmem_cache_free(struct kmem_cache *s, void *x)
2687{
b9ce5ef4
GC
2688 s = cache_from_obj(s, x);
2689 if (!s)
79576102 2690 return;
b9ce5ef4 2691 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2692 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2693}
2694EXPORT_SYMBOL(kmem_cache_free);
2695
81819f0f 2696/*
672bba3a
CL
2697 * Object placement in a slab is made very easy because we always start at
2698 * offset 0. If we tune the size of the object to the alignment then we can
2699 * get the required alignment by putting one properly sized object after
2700 * another.
81819f0f
CL
2701 *
2702 * Notice that the allocation order determines the sizes of the per cpu
2703 * caches. Each processor has always one slab available for allocations.
2704 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2705 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2706 * locking overhead.
81819f0f
CL
2707 */
2708
2709/*
2710 * Mininum / Maximum order of slab pages. This influences locking overhead
2711 * and slab fragmentation. A higher order reduces the number of partial slabs
2712 * and increases the number of allocations possible without having to
2713 * take the list_lock.
2714 */
2715static int slub_min_order;
114e9e89 2716static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2717static int slub_min_objects;
81819f0f 2718
81819f0f
CL
2719/*
2720 * Calculate the order of allocation given an slab object size.
2721 *
672bba3a
CL
2722 * The order of allocation has significant impact on performance and other
2723 * system components. Generally order 0 allocations should be preferred since
2724 * order 0 does not cause fragmentation in the page allocator. Larger objects
2725 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2726 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2727 * would be wasted.
2728 *
2729 * In order to reach satisfactory performance we must ensure that a minimum
2730 * number of objects is in one slab. Otherwise we may generate too much
2731 * activity on the partial lists which requires taking the list_lock. This is
2732 * less a concern for large slabs though which are rarely used.
81819f0f 2733 *
672bba3a
CL
2734 * slub_max_order specifies the order where we begin to stop considering the
2735 * number of objects in a slab as critical. If we reach slub_max_order then
2736 * we try to keep the page order as low as possible. So we accept more waste
2737 * of space in favor of a small page order.
81819f0f 2738 *
672bba3a
CL
2739 * Higher order allocations also allow the placement of more objects in a
2740 * slab and thereby reduce object handling overhead. If the user has
2741 * requested a higher mininum order then we start with that one instead of
2742 * the smallest order which will fit the object.
81819f0f 2743 */
5e6d444e 2744static inline int slab_order(int size, int min_objects,
ab9a0f19 2745 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2746{
2747 int order;
2748 int rem;
6300ea75 2749 int min_order = slub_min_order;
81819f0f 2750
ab9a0f19 2751 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2752 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2753
6300ea75 2754 for (order = max(min_order,
5e6d444e
CL
2755 fls(min_objects * size - 1) - PAGE_SHIFT);
2756 order <= max_order; order++) {
81819f0f 2757
5e6d444e 2758 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2759
ab9a0f19 2760 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2761 continue;
2762
ab9a0f19 2763 rem = (slab_size - reserved) % size;
81819f0f 2764
5e6d444e 2765 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2766 break;
2767
2768 }
672bba3a 2769
81819f0f
CL
2770 return order;
2771}
2772
ab9a0f19 2773static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2774{
2775 int order;
2776 int min_objects;
2777 int fraction;
e8120ff1 2778 int max_objects;
5e6d444e
CL
2779
2780 /*
2781 * Attempt to find best configuration for a slab. This
2782 * works by first attempting to generate a layout with
2783 * the best configuration and backing off gradually.
2784 *
2785 * First we reduce the acceptable waste in a slab. Then
2786 * we reduce the minimum objects required in a slab.
2787 */
2788 min_objects = slub_min_objects;
9b2cd506
CL
2789 if (!min_objects)
2790 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2791 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2792 min_objects = min(min_objects, max_objects);
2793
5e6d444e 2794 while (min_objects > 1) {
c124f5b5 2795 fraction = 16;
5e6d444e
CL
2796 while (fraction >= 4) {
2797 order = slab_order(size, min_objects,
ab9a0f19 2798 slub_max_order, fraction, reserved);
5e6d444e
CL
2799 if (order <= slub_max_order)
2800 return order;
2801 fraction /= 2;
2802 }
5086c389 2803 min_objects--;
5e6d444e
CL
2804 }
2805
2806 /*
2807 * We were unable to place multiple objects in a slab. Now
2808 * lets see if we can place a single object there.
2809 */
ab9a0f19 2810 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2811 if (order <= slub_max_order)
2812 return order;
2813
2814 /*
2815 * Doh this slab cannot be placed using slub_max_order.
2816 */
ab9a0f19 2817 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2818 if (order < MAX_ORDER)
5e6d444e
CL
2819 return order;
2820 return -ENOSYS;
2821}
2822
5595cffc 2823static void
4053497d 2824init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2825{
2826 n->nr_partial = 0;
81819f0f
CL
2827 spin_lock_init(&n->list_lock);
2828 INIT_LIST_HEAD(&n->partial);
8ab1372f 2829#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2830 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2831 atomic_long_set(&n->total_objects, 0);
643b1138 2832 INIT_LIST_HEAD(&n->full);
8ab1372f 2833#endif
81819f0f
CL
2834}
2835
55136592 2836static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2837{
6c182dc0 2838 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2839 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2840
8a5ec0ba 2841 /*
d4d84fef
CM
2842 * Must align to double word boundary for the double cmpxchg
2843 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2844 */
d4d84fef
CM
2845 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2846 2 * sizeof(void *));
8a5ec0ba
CL
2847
2848 if (!s->cpu_slab)
2849 return 0;
2850
2851 init_kmem_cache_cpus(s);
4c93c355 2852
8a5ec0ba 2853 return 1;
4c93c355 2854}
4c93c355 2855
51df1142
CL
2856static struct kmem_cache *kmem_cache_node;
2857
81819f0f
CL
2858/*
2859 * No kmalloc_node yet so do it by hand. We know that this is the first
2860 * slab on the node for this slabcache. There are no concurrent accesses
2861 * possible.
2862 *
721ae22a
ZYW
2863 * Note that this function only works on the kmem_cache_node
2864 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2865 * memory on a fresh node that has no slab structures yet.
81819f0f 2866 */
55136592 2867static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2868{
2869 struct page *page;
2870 struct kmem_cache_node *n;
2871
51df1142 2872 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2873
51df1142 2874 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2875
2876 BUG_ON(!page);
a2f92ee7 2877 if (page_to_nid(page) != node) {
f9f58285
FF
2878 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2879 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2880 }
2881
81819f0f
CL
2882 n = page->freelist;
2883 BUG_ON(!n);
51df1142 2884 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2885 page->inuse = 1;
8cb0a506 2886 page->frozen = 0;
51df1142 2887 kmem_cache_node->node[node] = n;
8ab1372f 2888#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2889 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2890 init_tracking(kmem_cache_node, n);
8ab1372f 2891#endif
4053497d 2892 init_kmem_cache_node(n);
51df1142 2893 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2894
67b6c900 2895 /*
1e4dd946
SR
2896 * No locks need to be taken here as it has just been
2897 * initialized and there is no concurrent access.
67b6c900 2898 */
1e4dd946 2899 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2900}
2901
2902static void free_kmem_cache_nodes(struct kmem_cache *s)
2903{
2904 int node;
fa45dc25 2905 struct kmem_cache_node *n;
81819f0f 2906
fa45dc25
CL
2907 for_each_kmem_cache_node(s, node, n) {
2908 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
2909 s->node[node] = NULL;
2910 }
2911}
2912
55136592 2913static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2914{
2915 int node;
81819f0f 2916
f64dc58c 2917 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2918 struct kmem_cache_node *n;
2919
73367bd8 2920 if (slab_state == DOWN) {
55136592 2921 early_kmem_cache_node_alloc(node);
73367bd8
AD
2922 continue;
2923 }
51df1142 2924 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2925 GFP_KERNEL, node);
81819f0f 2926
73367bd8
AD
2927 if (!n) {
2928 free_kmem_cache_nodes(s);
2929 return 0;
81819f0f 2930 }
73367bd8 2931
81819f0f 2932 s->node[node] = n;
4053497d 2933 init_kmem_cache_node(n);
81819f0f
CL
2934 }
2935 return 1;
2936}
81819f0f 2937
c0bdb232 2938static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2939{
2940 if (min < MIN_PARTIAL)
2941 min = MIN_PARTIAL;
2942 else if (min > MAX_PARTIAL)
2943 min = MAX_PARTIAL;
2944 s->min_partial = min;
2945}
2946
81819f0f
CL
2947/*
2948 * calculate_sizes() determines the order and the distribution of data within
2949 * a slab object.
2950 */
06b285dc 2951static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2952{
2953 unsigned long flags = s->flags;
3b0efdfa 2954 unsigned long size = s->object_size;
834f3d11 2955 int order;
81819f0f 2956
d8b42bf5
CL
2957 /*
2958 * Round up object size to the next word boundary. We can only
2959 * place the free pointer at word boundaries and this determines
2960 * the possible location of the free pointer.
2961 */
2962 size = ALIGN(size, sizeof(void *));
2963
2964#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2965 /*
2966 * Determine if we can poison the object itself. If the user of
2967 * the slab may touch the object after free or before allocation
2968 * then we should never poison the object itself.
2969 */
2970 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2971 !s->ctor)
81819f0f
CL
2972 s->flags |= __OBJECT_POISON;
2973 else
2974 s->flags &= ~__OBJECT_POISON;
2975
81819f0f
CL
2976
2977 /*
672bba3a 2978 * If we are Redzoning then check if there is some space between the
81819f0f 2979 * end of the object and the free pointer. If not then add an
672bba3a 2980 * additional word to have some bytes to store Redzone information.
81819f0f 2981 */
3b0efdfa 2982 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2983 size += sizeof(void *);
41ecc55b 2984#endif
81819f0f
CL
2985
2986 /*
672bba3a
CL
2987 * With that we have determined the number of bytes in actual use
2988 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2989 */
2990 s->inuse = size;
2991
2992 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2993 s->ctor)) {
81819f0f
CL
2994 /*
2995 * Relocate free pointer after the object if it is not
2996 * permitted to overwrite the first word of the object on
2997 * kmem_cache_free.
2998 *
2999 * This is the case if we do RCU, have a constructor or
3000 * destructor or are poisoning the objects.
3001 */
3002 s->offset = size;
3003 size += sizeof(void *);
3004 }
3005
c12b3c62 3006#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3007 if (flags & SLAB_STORE_USER)
3008 /*
3009 * Need to store information about allocs and frees after
3010 * the object.
3011 */
3012 size += 2 * sizeof(struct track);
3013
be7b3fbc 3014 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3015 /*
3016 * Add some empty padding so that we can catch
3017 * overwrites from earlier objects rather than let
3018 * tracking information or the free pointer be
0211a9c8 3019 * corrupted if a user writes before the start
81819f0f
CL
3020 * of the object.
3021 */
3022 size += sizeof(void *);
41ecc55b 3023#endif
672bba3a 3024
81819f0f
CL
3025 /*
3026 * SLUB stores one object immediately after another beginning from
3027 * offset 0. In order to align the objects we have to simply size
3028 * each object to conform to the alignment.
3029 */
45906855 3030 size = ALIGN(size, s->align);
81819f0f 3031 s->size = size;
06b285dc
CL
3032 if (forced_order >= 0)
3033 order = forced_order;
3034 else
ab9a0f19 3035 order = calculate_order(size, s->reserved);
81819f0f 3036
834f3d11 3037 if (order < 0)
81819f0f
CL
3038 return 0;
3039
b7a49f0d 3040 s->allocflags = 0;
834f3d11 3041 if (order)
b7a49f0d
CL
3042 s->allocflags |= __GFP_COMP;
3043
3044 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3045 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3046
3047 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3048 s->allocflags |= __GFP_RECLAIMABLE;
3049
81819f0f
CL
3050 /*
3051 * Determine the number of objects per slab
3052 */
ab9a0f19
LJ
3053 s->oo = oo_make(order, size, s->reserved);
3054 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3055 if (oo_objects(s->oo) > oo_objects(s->max))
3056 s->max = s->oo;
81819f0f 3057
834f3d11 3058 return !!oo_objects(s->oo);
81819f0f
CL
3059}
3060
8a13a4cc 3061static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3062{
8a13a4cc 3063 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3064 s->reserved = 0;
81819f0f 3065
da9a638c
LJ
3066 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3067 s->reserved = sizeof(struct rcu_head);
81819f0f 3068
06b285dc 3069 if (!calculate_sizes(s, -1))
81819f0f 3070 goto error;
3de47213
DR
3071 if (disable_higher_order_debug) {
3072 /*
3073 * Disable debugging flags that store metadata if the min slab
3074 * order increased.
3075 */
3b0efdfa 3076 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3077 s->flags &= ~DEBUG_METADATA_FLAGS;
3078 s->offset = 0;
3079 if (!calculate_sizes(s, -1))
3080 goto error;
3081 }
3082 }
81819f0f 3083
2565409f
HC
3084#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3085 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3086 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3087 /* Enable fast mode */
3088 s->flags |= __CMPXCHG_DOUBLE;
3089#endif
3090
3b89d7d8
DR
3091 /*
3092 * The larger the object size is, the more pages we want on the partial
3093 * list to avoid pounding the page allocator excessively.
3094 */
49e22585
CL
3095 set_min_partial(s, ilog2(s->size) / 2);
3096
3097 /*
3098 * cpu_partial determined the maximum number of objects kept in the
3099 * per cpu partial lists of a processor.
3100 *
3101 * Per cpu partial lists mainly contain slabs that just have one
3102 * object freed. If they are used for allocation then they can be
3103 * filled up again with minimal effort. The slab will never hit the
3104 * per node partial lists and therefore no locking will be required.
3105 *
3106 * This setting also determines
3107 *
3108 * A) The number of objects from per cpu partial slabs dumped to the
3109 * per node list when we reach the limit.
9f264904 3110 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3111 * per node list when we run out of per cpu objects. We only fetch
3112 * 50% to keep some capacity around for frees.
49e22585 3113 */
345c905d 3114 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3115 s->cpu_partial = 0;
3116 else if (s->size >= PAGE_SIZE)
49e22585
CL
3117 s->cpu_partial = 2;
3118 else if (s->size >= 1024)
3119 s->cpu_partial = 6;
3120 else if (s->size >= 256)
3121 s->cpu_partial = 13;
3122 else
3123 s->cpu_partial = 30;
3124
81819f0f 3125#ifdef CONFIG_NUMA
e2cb96b7 3126 s->remote_node_defrag_ratio = 1000;
81819f0f 3127#endif
55136592 3128 if (!init_kmem_cache_nodes(s))
dfb4f096 3129 goto error;
81819f0f 3130
55136592 3131 if (alloc_kmem_cache_cpus(s))
278b1bb1 3132 return 0;
ff12059e 3133
4c93c355 3134 free_kmem_cache_nodes(s);
81819f0f
CL
3135error:
3136 if (flags & SLAB_PANIC)
3137 panic("Cannot create slab %s size=%lu realsize=%u "
3138 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3139 s->name, (unsigned long)s->size, s->size,
3140 oo_order(s->oo), s->offset, flags);
278b1bb1 3141 return -EINVAL;
81819f0f 3142}
81819f0f 3143
33b12c38
CL
3144static void list_slab_objects(struct kmem_cache *s, struct page *page,
3145 const char *text)
3146{
3147#ifdef CONFIG_SLUB_DEBUG
3148 void *addr = page_address(page);
3149 void *p;
a5dd5c11
NK
3150 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3151 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3152 if (!map)
3153 return;
945cf2b6 3154 slab_err(s, page, text, s->name);
33b12c38 3155 slab_lock(page);
33b12c38 3156
5f80b13a 3157 get_map(s, page, map);
33b12c38
CL
3158 for_each_object(p, s, addr, page->objects) {
3159
3160 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3161 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3162 print_tracking(s, p);
3163 }
3164 }
3165 slab_unlock(page);
bbd7d57b 3166 kfree(map);
33b12c38
CL
3167#endif
3168}
3169
81819f0f 3170/*
599870b1 3171 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3172 * This is called from kmem_cache_close(). We must be the last thread
3173 * using the cache and therefore we do not need to lock anymore.
81819f0f 3174 */
599870b1 3175static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3176{
81819f0f
CL
3177 struct page *page, *h;
3178
33b12c38 3179 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3180 if (!page->inuse) {
1e4dd946 3181 __remove_partial(n, page);
81819f0f 3182 discard_slab(s, page);
33b12c38
CL
3183 } else {
3184 list_slab_objects(s, page,
945cf2b6 3185 "Objects remaining in %s on kmem_cache_close()");
599870b1 3186 }
33b12c38 3187 }
81819f0f
CL
3188}
3189
3190/*
672bba3a 3191 * Release all resources used by a slab cache.
81819f0f 3192 */
0c710013 3193static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3194{
3195 int node;
fa45dc25 3196 struct kmem_cache_node *n;
81819f0f
CL
3197
3198 flush_all(s);
81819f0f 3199 /* Attempt to free all objects */
fa45dc25 3200 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3201 free_partial(s, n);
3202 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3203 return 1;
3204 }
945cf2b6 3205 free_percpu(s->cpu_slab);
81819f0f
CL
3206 free_kmem_cache_nodes(s);
3207 return 0;
3208}
3209
945cf2b6 3210int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3211{
41a21285 3212 return kmem_cache_close(s);
81819f0f 3213}
81819f0f
CL
3214
3215/********************************************************************
3216 * Kmalloc subsystem
3217 *******************************************************************/
3218
81819f0f
CL
3219static int __init setup_slub_min_order(char *str)
3220{
06428780 3221 get_option(&str, &slub_min_order);
81819f0f
CL
3222
3223 return 1;
3224}
3225
3226__setup("slub_min_order=", setup_slub_min_order);
3227
3228static int __init setup_slub_max_order(char *str)
3229{
06428780 3230 get_option(&str, &slub_max_order);
818cf590 3231 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3232
3233 return 1;
3234}
3235
3236__setup("slub_max_order=", setup_slub_max_order);
3237
3238static int __init setup_slub_min_objects(char *str)
3239{
06428780 3240 get_option(&str, &slub_min_objects);
81819f0f
CL
3241
3242 return 1;
3243}
3244
3245__setup("slub_min_objects=", setup_slub_min_objects);
3246
81819f0f
CL
3247void *__kmalloc(size_t size, gfp_t flags)
3248{
aadb4bc4 3249 struct kmem_cache *s;
5b882be4 3250 void *ret;
81819f0f 3251
95a05b42 3252 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3253 return kmalloc_large(size, flags);
aadb4bc4 3254
2c59dd65 3255 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3256
3257 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3258 return s;
3259
2b847c3c 3260 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3261
ca2b84cb 3262 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3263
3264 return ret;
81819f0f
CL
3265}
3266EXPORT_SYMBOL(__kmalloc);
3267
5d1f57e4 3268#ifdef CONFIG_NUMA
f619cfe1
CL
3269static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3270{
b1eeab67 3271 struct page *page;
e4f7c0b4 3272 void *ptr = NULL;
f619cfe1 3273
52383431
VD
3274 flags |= __GFP_COMP | __GFP_NOTRACK;
3275 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3276 if (page)
e4f7c0b4
CM
3277 ptr = page_address(page);
3278
d56791b3 3279 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3280 return ptr;
f619cfe1
CL
3281}
3282
81819f0f
CL
3283void *__kmalloc_node(size_t size, gfp_t flags, int node)
3284{
aadb4bc4 3285 struct kmem_cache *s;
5b882be4 3286 void *ret;
81819f0f 3287
95a05b42 3288 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3289 ret = kmalloc_large_node(size, flags, node);
3290
ca2b84cb
EGM
3291 trace_kmalloc_node(_RET_IP_, ret,
3292 size, PAGE_SIZE << get_order(size),
3293 flags, node);
5b882be4
EGM
3294
3295 return ret;
3296 }
aadb4bc4 3297
2c59dd65 3298 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3299
3300 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3301 return s;
3302
2b847c3c 3303 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3304
ca2b84cb 3305 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3306
3307 return ret;
81819f0f
CL
3308}
3309EXPORT_SYMBOL(__kmalloc_node);
3310#endif
3311
3312size_t ksize(const void *object)
3313{
272c1d21 3314 struct page *page;
81819f0f 3315
ef8b4520 3316 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3317 return 0;
3318
294a80a8 3319 page = virt_to_head_page(object);
294a80a8 3320
76994412
PE
3321 if (unlikely(!PageSlab(page))) {
3322 WARN_ON(!PageCompound(page));
294a80a8 3323 return PAGE_SIZE << compound_order(page);
76994412 3324 }
81819f0f 3325
1b4f59e3 3326 return slab_ksize(page->slab_cache);
81819f0f 3327}
b1aabecd 3328EXPORT_SYMBOL(ksize);
81819f0f
CL
3329
3330void kfree(const void *x)
3331{
81819f0f 3332 struct page *page;
5bb983b0 3333 void *object = (void *)x;
81819f0f 3334
2121db74
PE
3335 trace_kfree(_RET_IP_, x);
3336
2408c550 3337 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3338 return;
3339
b49af68f 3340 page = virt_to_head_page(x);
aadb4bc4 3341 if (unlikely(!PageSlab(page))) {
0937502a 3342 BUG_ON(!PageCompound(page));
d56791b3 3343 kfree_hook(x);
52383431 3344 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3345 return;
3346 }
1b4f59e3 3347 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3348}
3349EXPORT_SYMBOL(kfree);
3350
2086d26a 3351/*
672bba3a
CL
3352 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3353 * the remaining slabs by the number of items in use. The slabs with the
3354 * most items in use come first. New allocations will then fill those up
3355 * and thus they can be removed from the partial lists.
3356 *
3357 * The slabs with the least items are placed last. This results in them
3358 * being allocated from last increasing the chance that the last objects
3359 * are freed in them.
2086d26a 3360 */
03afc0e2 3361int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3362{
3363 int node;
3364 int i;
3365 struct kmem_cache_node *n;
3366 struct page *page;
3367 struct page *t;
205ab99d 3368 int objects = oo_objects(s->max);
2086d26a 3369 struct list_head *slabs_by_inuse =
834f3d11 3370 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3371 unsigned long flags;
3372
3373 if (!slabs_by_inuse)
3374 return -ENOMEM;
3375
3376 flush_all(s);
fa45dc25 3377 for_each_kmem_cache_node(s, node, n) {
2086d26a
CL
3378 if (!n->nr_partial)
3379 continue;
3380
834f3d11 3381 for (i = 0; i < objects; i++)
2086d26a
CL
3382 INIT_LIST_HEAD(slabs_by_inuse + i);
3383
3384 spin_lock_irqsave(&n->list_lock, flags);
3385
3386 /*
672bba3a 3387 * Build lists indexed by the items in use in each slab.
2086d26a 3388 *
672bba3a
CL
3389 * Note that concurrent frees may occur while we hold the
3390 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3391 */
3392 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3393 list_move(&page->lru, slabs_by_inuse + page->inuse);
3394 if (!page->inuse)
3395 n->nr_partial--;
2086d26a
CL
3396 }
3397
2086d26a 3398 /*
672bba3a
CL
3399 * Rebuild the partial list with the slabs filled up most
3400 * first and the least used slabs at the end.
2086d26a 3401 */
69cb8e6b 3402 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3403 list_splice(slabs_by_inuse + i, n->partial.prev);
3404
2086d26a 3405 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3406
3407 /* Release empty slabs */
3408 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3409 discard_slab(s, page);
2086d26a
CL
3410 }
3411
3412 kfree(slabs_by_inuse);
3413 return 0;
3414}
2086d26a 3415
b9049e23
YG
3416static int slab_mem_going_offline_callback(void *arg)
3417{
3418 struct kmem_cache *s;
3419
18004c5d 3420 mutex_lock(&slab_mutex);
b9049e23 3421 list_for_each_entry(s, &slab_caches, list)
03afc0e2 3422 __kmem_cache_shrink(s);
18004c5d 3423 mutex_unlock(&slab_mutex);
b9049e23
YG
3424
3425 return 0;
3426}
3427
3428static void slab_mem_offline_callback(void *arg)
3429{
3430 struct kmem_cache_node *n;
3431 struct kmem_cache *s;
3432 struct memory_notify *marg = arg;
3433 int offline_node;
3434
b9d5ab25 3435 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3436
3437 /*
3438 * If the node still has available memory. we need kmem_cache_node
3439 * for it yet.
3440 */
3441 if (offline_node < 0)
3442 return;
3443
18004c5d 3444 mutex_lock(&slab_mutex);
b9049e23
YG
3445 list_for_each_entry(s, &slab_caches, list) {
3446 n = get_node(s, offline_node);
3447 if (n) {
3448 /*
3449 * if n->nr_slabs > 0, slabs still exist on the node
3450 * that is going down. We were unable to free them,
c9404c9c 3451 * and offline_pages() function shouldn't call this
b9049e23
YG
3452 * callback. So, we must fail.
3453 */
0f389ec6 3454 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3455
3456 s->node[offline_node] = NULL;
8de66a0c 3457 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3458 }
3459 }
18004c5d 3460 mutex_unlock(&slab_mutex);
b9049e23
YG
3461}
3462
3463static int slab_mem_going_online_callback(void *arg)
3464{
3465 struct kmem_cache_node *n;
3466 struct kmem_cache *s;
3467 struct memory_notify *marg = arg;
b9d5ab25 3468 int nid = marg->status_change_nid_normal;
b9049e23
YG
3469 int ret = 0;
3470
3471 /*
3472 * If the node's memory is already available, then kmem_cache_node is
3473 * already created. Nothing to do.
3474 */
3475 if (nid < 0)
3476 return 0;
3477
3478 /*
0121c619 3479 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3480 * allocate a kmem_cache_node structure in order to bring the node
3481 * online.
3482 */
18004c5d 3483 mutex_lock(&slab_mutex);
b9049e23
YG
3484 list_for_each_entry(s, &slab_caches, list) {
3485 /*
3486 * XXX: kmem_cache_alloc_node will fallback to other nodes
3487 * since memory is not yet available from the node that
3488 * is brought up.
3489 */
8de66a0c 3490 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3491 if (!n) {
3492 ret = -ENOMEM;
3493 goto out;
3494 }
4053497d 3495 init_kmem_cache_node(n);
b9049e23
YG
3496 s->node[nid] = n;
3497 }
3498out:
18004c5d 3499 mutex_unlock(&slab_mutex);
b9049e23
YG
3500 return ret;
3501}
3502
3503static int slab_memory_callback(struct notifier_block *self,
3504 unsigned long action, void *arg)
3505{
3506 int ret = 0;
3507
3508 switch (action) {
3509 case MEM_GOING_ONLINE:
3510 ret = slab_mem_going_online_callback(arg);
3511 break;
3512 case MEM_GOING_OFFLINE:
3513 ret = slab_mem_going_offline_callback(arg);
3514 break;
3515 case MEM_OFFLINE:
3516 case MEM_CANCEL_ONLINE:
3517 slab_mem_offline_callback(arg);
3518 break;
3519 case MEM_ONLINE:
3520 case MEM_CANCEL_OFFLINE:
3521 break;
3522 }
dc19f9db
KH
3523 if (ret)
3524 ret = notifier_from_errno(ret);
3525 else
3526 ret = NOTIFY_OK;
b9049e23
YG
3527 return ret;
3528}
3529
3ac38faa
AM
3530static struct notifier_block slab_memory_callback_nb = {
3531 .notifier_call = slab_memory_callback,
3532 .priority = SLAB_CALLBACK_PRI,
3533};
b9049e23 3534
81819f0f
CL
3535/********************************************************************
3536 * Basic setup of slabs
3537 *******************************************************************/
3538
51df1142
CL
3539/*
3540 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3541 * the page allocator. Allocate them properly then fix up the pointers
3542 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3543 */
3544
dffb4d60 3545static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3546{
3547 int node;
dffb4d60 3548 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3549 struct kmem_cache_node *n;
51df1142 3550
dffb4d60 3551 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3552
7d557b3c
GC
3553 /*
3554 * This runs very early, and only the boot processor is supposed to be
3555 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3556 * IPIs around.
3557 */
3558 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3559 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3560 struct page *p;
3561
fa45dc25
CL
3562 list_for_each_entry(p, &n->partial, lru)
3563 p->slab_cache = s;
51df1142 3564
607bf324 3565#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3566 list_for_each_entry(p, &n->full, lru)
3567 p->slab_cache = s;
51df1142 3568#endif
51df1142 3569 }
dffb4d60
CL
3570 list_add(&s->list, &slab_caches);
3571 return s;
51df1142
CL
3572}
3573
81819f0f
CL
3574void __init kmem_cache_init(void)
3575{
dffb4d60
CL
3576 static __initdata struct kmem_cache boot_kmem_cache,
3577 boot_kmem_cache_node;
51df1142 3578
fc8d8620
SG
3579 if (debug_guardpage_minorder())
3580 slub_max_order = 0;
3581
dffb4d60
CL
3582 kmem_cache_node = &boot_kmem_cache_node;
3583 kmem_cache = &boot_kmem_cache;
51df1142 3584
dffb4d60
CL
3585 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3586 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3587
3ac38faa 3588 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3589
3590 /* Able to allocate the per node structures */
3591 slab_state = PARTIAL;
3592
dffb4d60
CL
3593 create_boot_cache(kmem_cache, "kmem_cache",
3594 offsetof(struct kmem_cache, node) +
3595 nr_node_ids * sizeof(struct kmem_cache_node *),
3596 SLAB_HWCACHE_ALIGN);
8a13a4cc 3597
dffb4d60 3598 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3599
51df1142
CL
3600 /*
3601 * Allocate kmem_cache_node properly from the kmem_cache slab.
3602 * kmem_cache_node is separately allocated so no need to
3603 * update any list pointers.
3604 */
dffb4d60 3605 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3606
3607 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3608 create_kmalloc_caches(0);
81819f0f
CL
3609
3610#ifdef CONFIG_SMP
3611 register_cpu_notifier(&slab_notifier);
9dfc6e68 3612#endif
81819f0f 3613
f9f58285 3614 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3615 cache_line_size(),
81819f0f
CL
3616 slub_min_order, slub_max_order, slub_min_objects,
3617 nr_cpu_ids, nr_node_ids);
3618}
3619
7e85ee0c
PE
3620void __init kmem_cache_init_late(void)
3621{
7e85ee0c
PE
3622}
3623
2633d7a0 3624struct kmem_cache *
a44cb944
VD
3625__kmem_cache_alias(const char *name, size_t size, size_t align,
3626 unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3627{
3628 struct kmem_cache *s;
3629
a44cb944 3630 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3631 if (s) {
84d0ddd6
VD
3632 int i;
3633 struct kmem_cache *c;
3634
81819f0f 3635 s->refcount++;
84d0ddd6 3636
81819f0f
CL
3637 /*
3638 * Adjust the object sizes so that we clear
3639 * the complete object on kzalloc.
3640 */
3b0efdfa 3641 s->object_size = max(s->object_size, (int)size);
81819f0f 3642 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3643
84d0ddd6
VD
3644 for_each_memcg_cache_index(i) {
3645 c = cache_from_memcg_idx(s, i);
3646 if (!c)
3647 continue;
3648 c->object_size = s->object_size;
3649 c->inuse = max_t(int, c->inuse,
3650 ALIGN(size, sizeof(void *)));
3651 }
3652
7b8f3b66 3653 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3654 s->refcount--;
cbb79694 3655 s = NULL;
7b8f3b66 3656 }
a0e1d1be 3657 }
6446faa2 3658
cbb79694
CL
3659 return s;
3660}
84c1cf62 3661
8a13a4cc 3662int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3663{
aac3a166
PE
3664 int err;
3665
3666 err = kmem_cache_open(s, flags);
3667 if (err)
3668 return err;
20cea968 3669
45530c44
CL
3670 /* Mutex is not taken during early boot */
3671 if (slab_state <= UP)
3672 return 0;
3673
107dab5c 3674 memcg_propagate_slab_attrs(s);
aac3a166 3675 err = sysfs_slab_add(s);
aac3a166
PE
3676 if (err)
3677 kmem_cache_close(s);
20cea968 3678
aac3a166 3679 return err;
81819f0f 3680}
81819f0f 3681
81819f0f 3682#ifdef CONFIG_SMP
81819f0f 3683/*
672bba3a
CL
3684 * Use the cpu notifier to insure that the cpu slabs are flushed when
3685 * necessary.
81819f0f 3686 */
0db0628d 3687static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3688 unsigned long action, void *hcpu)
3689{
3690 long cpu = (long)hcpu;
5b95a4ac
CL
3691 struct kmem_cache *s;
3692 unsigned long flags;
81819f0f
CL
3693
3694 switch (action) {
3695 case CPU_UP_CANCELED:
8bb78442 3696 case CPU_UP_CANCELED_FROZEN:
81819f0f 3697 case CPU_DEAD:
8bb78442 3698 case CPU_DEAD_FROZEN:
18004c5d 3699 mutex_lock(&slab_mutex);
5b95a4ac
CL
3700 list_for_each_entry(s, &slab_caches, list) {
3701 local_irq_save(flags);
3702 __flush_cpu_slab(s, cpu);
3703 local_irq_restore(flags);
3704 }
18004c5d 3705 mutex_unlock(&slab_mutex);
81819f0f
CL
3706 break;
3707 default:
3708 break;
3709 }
3710 return NOTIFY_OK;
3711}
3712
0db0628d 3713static struct notifier_block slab_notifier = {
3adbefee 3714 .notifier_call = slab_cpuup_callback
06428780 3715};
81819f0f
CL
3716
3717#endif
3718
ce71e27c 3719void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3720{
aadb4bc4 3721 struct kmem_cache *s;
94b528d0 3722 void *ret;
aadb4bc4 3723
95a05b42 3724 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3725 return kmalloc_large(size, gfpflags);
3726
2c59dd65 3727 s = kmalloc_slab(size, gfpflags);
81819f0f 3728
2408c550 3729 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3730 return s;
81819f0f 3731
2b847c3c 3732 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3733
25985edc 3734 /* Honor the call site pointer we received. */
ca2b84cb 3735 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3736
3737 return ret;
81819f0f
CL
3738}
3739
5d1f57e4 3740#ifdef CONFIG_NUMA
81819f0f 3741void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3742 int node, unsigned long caller)
81819f0f 3743{
aadb4bc4 3744 struct kmem_cache *s;
94b528d0 3745 void *ret;
aadb4bc4 3746
95a05b42 3747 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3748 ret = kmalloc_large_node(size, gfpflags, node);
3749
3750 trace_kmalloc_node(caller, ret,
3751 size, PAGE_SIZE << get_order(size),
3752 gfpflags, node);
3753
3754 return ret;
3755 }
eada35ef 3756
2c59dd65 3757 s = kmalloc_slab(size, gfpflags);
81819f0f 3758
2408c550 3759 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3760 return s;
81819f0f 3761
2b847c3c 3762 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3763
25985edc 3764 /* Honor the call site pointer we received. */
ca2b84cb 3765 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3766
3767 return ret;
81819f0f 3768}
5d1f57e4 3769#endif
81819f0f 3770
ab4d5ed5 3771#ifdef CONFIG_SYSFS
205ab99d
CL
3772static int count_inuse(struct page *page)
3773{
3774 return page->inuse;
3775}
3776
3777static int count_total(struct page *page)
3778{
3779 return page->objects;
3780}
ab4d5ed5 3781#endif
205ab99d 3782
ab4d5ed5 3783#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3784static int validate_slab(struct kmem_cache *s, struct page *page,
3785 unsigned long *map)
53e15af0
CL
3786{
3787 void *p;
a973e9dd 3788 void *addr = page_address(page);
53e15af0
CL
3789
3790 if (!check_slab(s, page) ||
3791 !on_freelist(s, page, NULL))
3792 return 0;
3793
3794 /* Now we know that a valid freelist exists */
39b26464 3795 bitmap_zero(map, page->objects);
53e15af0 3796
5f80b13a
CL
3797 get_map(s, page, map);
3798 for_each_object(p, s, addr, page->objects) {
3799 if (test_bit(slab_index(p, s, addr), map))
3800 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3801 return 0;
53e15af0
CL
3802 }
3803
224a88be 3804 for_each_object(p, s, addr, page->objects)
7656c72b 3805 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3806 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3807 return 0;
3808 return 1;
3809}
3810
434e245d
CL
3811static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3812 unsigned long *map)
53e15af0 3813{
881db7fb
CL
3814 slab_lock(page);
3815 validate_slab(s, page, map);
3816 slab_unlock(page);
53e15af0
CL
3817}
3818
434e245d
CL
3819static int validate_slab_node(struct kmem_cache *s,
3820 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3821{
3822 unsigned long count = 0;
3823 struct page *page;
3824 unsigned long flags;
3825
3826 spin_lock_irqsave(&n->list_lock, flags);
3827
3828 list_for_each_entry(page, &n->partial, lru) {
434e245d 3829 validate_slab_slab(s, page, map);
53e15af0
CL
3830 count++;
3831 }
3832 if (count != n->nr_partial)
f9f58285
FF
3833 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3834 s->name, count, n->nr_partial);
53e15af0
CL
3835
3836 if (!(s->flags & SLAB_STORE_USER))
3837 goto out;
3838
3839 list_for_each_entry(page, &n->full, lru) {
434e245d 3840 validate_slab_slab(s, page, map);
53e15af0
CL
3841 count++;
3842 }
3843 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3844 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3845 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3846
3847out:
3848 spin_unlock_irqrestore(&n->list_lock, flags);
3849 return count;
3850}
3851
434e245d 3852static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3853{
3854 int node;
3855 unsigned long count = 0;
205ab99d 3856 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 3857 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 3858 struct kmem_cache_node *n;
434e245d
CL
3859
3860 if (!map)
3861 return -ENOMEM;
53e15af0
CL
3862
3863 flush_all(s);
fa45dc25 3864 for_each_kmem_cache_node(s, node, n)
434e245d 3865 count += validate_slab_node(s, n, map);
434e245d 3866 kfree(map);
53e15af0
CL
3867 return count;
3868}
88a420e4 3869/*
672bba3a 3870 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3871 * and freed.
3872 */
3873
3874struct location {
3875 unsigned long count;
ce71e27c 3876 unsigned long addr;
45edfa58
CL
3877 long long sum_time;
3878 long min_time;
3879 long max_time;
3880 long min_pid;
3881 long max_pid;
174596a0 3882 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3883 nodemask_t nodes;
88a420e4
CL
3884};
3885
3886struct loc_track {
3887 unsigned long max;
3888 unsigned long count;
3889 struct location *loc;
3890};
3891
3892static void free_loc_track(struct loc_track *t)
3893{
3894 if (t->max)
3895 free_pages((unsigned long)t->loc,
3896 get_order(sizeof(struct location) * t->max));
3897}
3898
68dff6a9 3899static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3900{
3901 struct location *l;
3902 int order;
3903
88a420e4
CL
3904 order = get_order(sizeof(struct location) * max);
3905
68dff6a9 3906 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3907 if (!l)
3908 return 0;
3909
3910 if (t->count) {
3911 memcpy(l, t->loc, sizeof(struct location) * t->count);
3912 free_loc_track(t);
3913 }
3914 t->max = max;
3915 t->loc = l;
3916 return 1;
3917}
3918
3919static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3920 const struct track *track)
88a420e4
CL
3921{
3922 long start, end, pos;
3923 struct location *l;
ce71e27c 3924 unsigned long caddr;
45edfa58 3925 unsigned long age = jiffies - track->when;
88a420e4
CL
3926
3927 start = -1;
3928 end = t->count;
3929
3930 for ( ; ; ) {
3931 pos = start + (end - start + 1) / 2;
3932
3933 /*
3934 * There is nothing at "end". If we end up there
3935 * we need to add something to before end.
3936 */
3937 if (pos == end)
3938 break;
3939
3940 caddr = t->loc[pos].addr;
45edfa58
CL
3941 if (track->addr == caddr) {
3942
3943 l = &t->loc[pos];
3944 l->count++;
3945 if (track->when) {
3946 l->sum_time += age;
3947 if (age < l->min_time)
3948 l->min_time = age;
3949 if (age > l->max_time)
3950 l->max_time = age;
3951
3952 if (track->pid < l->min_pid)
3953 l->min_pid = track->pid;
3954 if (track->pid > l->max_pid)
3955 l->max_pid = track->pid;
3956
174596a0
RR
3957 cpumask_set_cpu(track->cpu,
3958 to_cpumask(l->cpus));
45edfa58
CL
3959 }
3960 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3961 return 1;
3962 }
3963
45edfa58 3964 if (track->addr < caddr)
88a420e4
CL
3965 end = pos;
3966 else
3967 start = pos;
3968 }
3969
3970 /*
672bba3a 3971 * Not found. Insert new tracking element.
88a420e4 3972 */
68dff6a9 3973 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3974 return 0;
3975
3976 l = t->loc + pos;
3977 if (pos < t->count)
3978 memmove(l + 1, l,
3979 (t->count - pos) * sizeof(struct location));
3980 t->count++;
3981 l->count = 1;
45edfa58
CL
3982 l->addr = track->addr;
3983 l->sum_time = age;
3984 l->min_time = age;
3985 l->max_time = age;
3986 l->min_pid = track->pid;
3987 l->max_pid = track->pid;
174596a0
RR
3988 cpumask_clear(to_cpumask(l->cpus));
3989 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3990 nodes_clear(l->nodes);
3991 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3992 return 1;
3993}
3994
3995static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3996 struct page *page, enum track_item alloc,
a5dd5c11 3997 unsigned long *map)
88a420e4 3998{
a973e9dd 3999 void *addr = page_address(page);
88a420e4
CL
4000 void *p;
4001
39b26464 4002 bitmap_zero(map, page->objects);
5f80b13a 4003 get_map(s, page, map);
88a420e4 4004
224a88be 4005 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4006 if (!test_bit(slab_index(p, s, addr), map))
4007 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4008}
4009
4010static int list_locations(struct kmem_cache *s, char *buf,
4011 enum track_item alloc)
4012{
e374d483 4013 int len = 0;
88a420e4 4014 unsigned long i;
68dff6a9 4015 struct loc_track t = { 0, 0, NULL };
88a420e4 4016 int node;
bbd7d57b
ED
4017 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4018 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4019 struct kmem_cache_node *n;
88a420e4 4020
bbd7d57b
ED
4021 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4022 GFP_TEMPORARY)) {
4023 kfree(map);
68dff6a9 4024 return sprintf(buf, "Out of memory\n");
bbd7d57b 4025 }
88a420e4
CL
4026 /* Push back cpu slabs */
4027 flush_all(s);
4028
fa45dc25 4029 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4030 unsigned long flags;
4031 struct page *page;
4032
9e86943b 4033 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4034 continue;
4035
4036 spin_lock_irqsave(&n->list_lock, flags);
4037 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4038 process_slab(&t, s, page, alloc, map);
88a420e4 4039 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4040 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4041 spin_unlock_irqrestore(&n->list_lock, flags);
4042 }
4043
4044 for (i = 0; i < t.count; i++) {
45edfa58 4045 struct location *l = &t.loc[i];
88a420e4 4046
9c246247 4047 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4048 break;
e374d483 4049 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4050
4051 if (l->addr)
62c70bce 4052 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4053 else
e374d483 4054 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4055
4056 if (l->sum_time != l->min_time) {
e374d483 4057 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4058 l->min_time,
4059 (long)div_u64(l->sum_time, l->count),
4060 l->max_time);
45edfa58 4061 } else
e374d483 4062 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4063 l->min_time);
4064
4065 if (l->min_pid != l->max_pid)
e374d483 4066 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4067 l->min_pid, l->max_pid);
4068 else
e374d483 4069 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4070 l->min_pid);
4071
174596a0
RR
4072 if (num_online_cpus() > 1 &&
4073 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4074 len < PAGE_SIZE - 60) {
4075 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4076 len += cpulist_scnprintf(buf + len,
4077 PAGE_SIZE - len - 50,
174596a0 4078 to_cpumask(l->cpus));
45edfa58
CL
4079 }
4080
62bc62a8 4081 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4082 len < PAGE_SIZE - 60) {
4083 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4084 len += nodelist_scnprintf(buf + len,
4085 PAGE_SIZE - len - 50,
4086 l->nodes);
45edfa58
CL
4087 }
4088
e374d483 4089 len += sprintf(buf + len, "\n");
88a420e4
CL
4090 }
4091
4092 free_loc_track(&t);
bbd7d57b 4093 kfree(map);
88a420e4 4094 if (!t.count)
e374d483
HH
4095 len += sprintf(buf, "No data\n");
4096 return len;
88a420e4 4097}
ab4d5ed5 4098#endif
88a420e4 4099
a5a84755 4100#ifdef SLUB_RESILIENCY_TEST
c07b8183 4101static void __init resiliency_test(void)
a5a84755
CL
4102{
4103 u8 *p;
4104
95a05b42 4105 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4106
f9f58285
FF
4107 pr_err("SLUB resiliency testing\n");
4108 pr_err("-----------------------\n");
4109 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4110
4111 p = kzalloc(16, GFP_KERNEL);
4112 p[16] = 0x12;
f9f58285
FF
4113 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4114 p + 16);
a5a84755
CL
4115
4116 validate_slab_cache(kmalloc_caches[4]);
4117
4118 /* Hmmm... The next two are dangerous */
4119 p = kzalloc(32, GFP_KERNEL);
4120 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4121 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4122 p);
4123 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4124
4125 validate_slab_cache(kmalloc_caches[5]);
4126 p = kzalloc(64, GFP_KERNEL);
4127 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4128 *p = 0x56;
f9f58285
FF
4129 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4130 p);
4131 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4132 validate_slab_cache(kmalloc_caches[6]);
4133
f9f58285 4134 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4135 p = kzalloc(128, GFP_KERNEL);
4136 kfree(p);
4137 *p = 0x78;
f9f58285 4138 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4139 validate_slab_cache(kmalloc_caches[7]);
4140
4141 p = kzalloc(256, GFP_KERNEL);
4142 kfree(p);
4143 p[50] = 0x9a;
f9f58285 4144 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4145 validate_slab_cache(kmalloc_caches[8]);
4146
4147 p = kzalloc(512, GFP_KERNEL);
4148 kfree(p);
4149 p[512] = 0xab;
f9f58285 4150 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4151 validate_slab_cache(kmalloc_caches[9]);
4152}
4153#else
4154#ifdef CONFIG_SYSFS
4155static void resiliency_test(void) {};
4156#endif
4157#endif
4158
ab4d5ed5 4159#ifdef CONFIG_SYSFS
81819f0f 4160enum slab_stat_type {
205ab99d
CL
4161 SL_ALL, /* All slabs */
4162 SL_PARTIAL, /* Only partially allocated slabs */
4163 SL_CPU, /* Only slabs used for cpu caches */
4164 SL_OBJECTS, /* Determine allocated objects not slabs */
4165 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4166};
4167
205ab99d 4168#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4169#define SO_PARTIAL (1 << SL_PARTIAL)
4170#define SO_CPU (1 << SL_CPU)
4171#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4172#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4173
62e5c4b4
CG
4174static ssize_t show_slab_objects(struct kmem_cache *s,
4175 char *buf, unsigned long flags)
81819f0f
CL
4176{
4177 unsigned long total = 0;
81819f0f
CL
4178 int node;
4179 int x;
4180 unsigned long *nodes;
81819f0f 4181
e35e1a97 4182 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4183 if (!nodes)
4184 return -ENOMEM;
81819f0f 4185
205ab99d
CL
4186 if (flags & SO_CPU) {
4187 int cpu;
81819f0f 4188
205ab99d 4189 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4190 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4191 cpu);
ec3ab083 4192 int node;
49e22585 4193 struct page *page;
dfb4f096 4194
bc6697d8 4195 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4196 if (!page)
4197 continue;
205ab99d 4198
ec3ab083
CL
4199 node = page_to_nid(page);
4200 if (flags & SO_TOTAL)
4201 x = page->objects;
4202 else if (flags & SO_OBJECTS)
4203 x = page->inuse;
4204 else
4205 x = 1;
49e22585 4206
ec3ab083
CL
4207 total += x;
4208 nodes[node] += x;
4209
4210 page = ACCESS_ONCE(c->partial);
49e22585 4211 if (page) {
8afb1474
LZ
4212 node = page_to_nid(page);
4213 if (flags & SO_TOTAL)
4214 WARN_ON_ONCE(1);
4215 else if (flags & SO_OBJECTS)
4216 WARN_ON_ONCE(1);
4217 else
4218 x = page->pages;
bc6697d8
ED
4219 total += x;
4220 nodes[node] += x;
49e22585 4221 }
81819f0f
CL
4222 }
4223 }
4224
bfc8c901 4225 get_online_mems();
ab4d5ed5 4226#ifdef CONFIG_SLUB_DEBUG
205ab99d 4227 if (flags & SO_ALL) {
fa45dc25
CL
4228 struct kmem_cache_node *n;
4229
4230 for_each_kmem_cache_node(s, node, n) {
205ab99d 4231
d0e0ac97
CG
4232 if (flags & SO_TOTAL)
4233 x = atomic_long_read(&n->total_objects);
4234 else if (flags & SO_OBJECTS)
4235 x = atomic_long_read(&n->total_objects) -
4236 count_partial(n, count_free);
81819f0f 4237 else
205ab99d 4238 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4239 total += x;
4240 nodes[node] += x;
4241 }
4242
ab4d5ed5
CL
4243 } else
4244#endif
4245 if (flags & SO_PARTIAL) {
fa45dc25 4246 struct kmem_cache_node *n;
81819f0f 4247
fa45dc25 4248 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4249 if (flags & SO_TOTAL)
4250 x = count_partial(n, count_total);
4251 else if (flags & SO_OBJECTS)
4252 x = count_partial(n, count_inuse);
81819f0f 4253 else
205ab99d 4254 x = n->nr_partial;
81819f0f
CL
4255 total += x;
4256 nodes[node] += x;
4257 }
4258 }
81819f0f
CL
4259 x = sprintf(buf, "%lu", total);
4260#ifdef CONFIG_NUMA
fa45dc25 4261 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4262 if (nodes[node])
4263 x += sprintf(buf + x, " N%d=%lu",
4264 node, nodes[node]);
4265#endif
bfc8c901 4266 put_online_mems();
81819f0f
CL
4267 kfree(nodes);
4268 return x + sprintf(buf + x, "\n");
4269}
4270
ab4d5ed5 4271#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4272static int any_slab_objects(struct kmem_cache *s)
4273{
4274 int node;
fa45dc25 4275 struct kmem_cache_node *n;
81819f0f 4276
fa45dc25 4277 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4278 if (atomic_long_read(&n->total_objects))
81819f0f 4279 return 1;
fa45dc25 4280
81819f0f
CL
4281 return 0;
4282}
ab4d5ed5 4283#endif
81819f0f
CL
4284
4285#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4286#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4287
4288struct slab_attribute {
4289 struct attribute attr;
4290 ssize_t (*show)(struct kmem_cache *s, char *buf);
4291 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4292};
4293
4294#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4295 static struct slab_attribute _name##_attr = \
4296 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4297
4298#define SLAB_ATTR(_name) \
4299 static struct slab_attribute _name##_attr = \
ab067e99 4300 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4301
81819f0f
CL
4302static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4303{
4304 return sprintf(buf, "%d\n", s->size);
4305}
4306SLAB_ATTR_RO(slab_size);
4307
4308static ssize_t align_show(struct kmem_cache *s, char *buf)
4309{
4310 return sprintf(buf, "%d\n", s->align);
4311}
4312SLAB_ATTR_RO(align);
4313
4314static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4315{
3b0efdfa 4316 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4317}
4318SLAB_ATTR_RO(object_size);
4319
4320static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4321{
834f3d11 4322 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4323}
4324SLAB_ATTR_RO(objs_per_slab);
4325
06b285dc
CL
4326static ssize_t order_store(struct kmem_cache *s,
4327 const char *buf, size_t length)
4328{
0121c619
CL
4329 unsigned long order;
4330 int err;
4331
3dbb95f7 4332 err = kstrtoul(buf, 10, &order);
0121c619
CL
4333 if (err)
4334 return err;
06b285dc
CL
4335
4336 if (order > slub_max_order || order < slub_min_order)
4337 return -EINVAL;
4338
4339 calculate_sizes(s, order);
4340 return length;
4341}
4342
81819f0f
CL
4343static ssize_t order_show(struct kmem_cache *s, char *buf)
4344{
834f3d11 4345 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4346}
06b285dc 4347SLAB_ATTR(order);
81819f0f 4348
73d342b1
DR
4349static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4350{
4351 return sprintf(buf, "%lu\n", s->min_partial);
4352}
4353
4354static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4355 size_t length)
4356{
4357 unsigned long min;
4358 int err;
4359
3dbb95f7 4360 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4361 if (err)
4362 return err;
4363
c0bdb232 4364 set_min_partial(s, min);
73d342b1
DR
4365 return length;
4366}
4367SLAB_ATTR(min_partial);
4368
49e22585
CL
4369static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4370{
4371 return sprintf(buf, "%u\n", s->cpu_partial);
4372}
4373
4374static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4375 size_t length)
4376{
4377 unsigned long objects;
4378 int err;
4379
3dbb95f7 4380 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4381 if (err)
4382 return err;
345c905d 4383 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4384 return -EINVAL;
49e22585
CL
4385
4386 s->cpu_partial = objects;
4387 flush_all(s);
4388 return length;
4389}
4390SLAB_ATTR(cpu_partial);
4391
81819f0f
CL
4392static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4393{
62c70bce
JP
4394 if (!s->ctor)
4395 return 0;
4396 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4397}
4398SLAB_ATTR_RO(ctor);
4399
81819f0f
CL
4400static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4401{
4307c14f 4402 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4403}
4404SLAB_ATTR_RO(aliases);
4405
81819f0f
CL
4406static ssize_t partial_show(struct kmem_cache *s, char *buf)
4407{
d9acf4b7 4408 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4409}
4410SLAB_ATTR_RO(partial);
4411
4412static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4413{
d9acf4b7 4414 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4415}
4416SLAB_ATTR_RO(cpu_slabs);
4417
4418static ssize_t objects_show(struct kmem_cache *s, char *buf)
4419{
205ab99d 4420 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4421}
4422SLAB_ATTR_RO(objects);
4423
205ab99d
CL
4424static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4425{
4426 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4427}
4428SLAB_ATTR_RO(objects_partial);
4429
49e22585
CL
4430static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4431{
4432 int objects = 0;
4433 int pages = 0;
4434 int cpu;
4435 int len;
4436
4437 for_each_online_cpu(cpu) {
4438 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4439
4440 if (page) {
4441 pages += page->pages;
4442 objects += page->pobjects;
4443 }
4444 }
4445
4446 len = sprintf(buf, "%d(%d)", objects, pages);
4447
4448#ifdef CONFIG_SMP
4449 for_each_online_cpu(cpu) {
4450 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4451
4452 if (page && len < PAGE_SIZE - 20)
4453 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4454 page->pobjects, page->pages);
4455 }
4456#endif
4457 return len + sprintf(buf + len, "\n");
4458}
4459SLAB_ATTR_RO(slabs_cpu_partial);
4460
a5a84755
CL
4461static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4462{
4463 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4464}
4465
4466static ssize_t reclaim_account_store(struct kmem_cache *s,
4467 const char *buf, size_t length)
4468{
4469 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4470 if (buf[0] == '1')
4471 s->flags |= SLAB_RECLAIM_ACCOUNT;
4472 return length;
4473}
4474SLAB_ATTR(reclaim_account);
4475
4476static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4477{
4478 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4479}
4480SLAB_ATTR_RO(hwcache_align);
4481
4482#ifdef CONFIG_ZONE_DMA
4483static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4484{
4485 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4486}
4487SLAB_ATTR_RO(cache_dma);
4488#endif
4489
4490static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4491{
4492 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4493}
4494SLAB_ATTR_RO(destroy_by_rcu);
4495
ab9a0f19
LJ
4496static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4497{
4498 return sprintf(buf, "%d\n", s->reserved);
4499}
4500SLAB_ATTR_RO(reserved);
4501
ab4d5ed5 4502#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4503static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4504{
4505 return show_slab_objects(s, buf, SO_ALL);
4506}
4507SLAB_ATTR_RO(slabs);
4508
205ab99d
CL
4509static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4510{
4511 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4512}
4513SLAB_ATTR_RO(total_objects);
4514
81819f0f
CL
4515static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4516{
4517 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4518}
4519
4520static ssize_t sanity_checks_store(struct kmem_cache *s,
4521 const char *buf, size_t length)
4522{
4523 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4524 if (buf[0] == '1') {
4525 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4526 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4527 }
81819f0f
CL
4528 return length;
4529}
4530SLAB_ATTR(sanity_checks);
4531
4532static ssize_t trace_show(struct kmem_cache *s, char *buf)
4533{
4534 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4535}
4536
4537static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4538 size_t length)
4539{
c9e16131
CL
4540 /*
4541 * Tracing a merged cache is going to give confusing results
4542 * as well as cause other issues like converting a mergeable
4543 * cache into an umergeable one.
4544 */
4545 if (s->refcount > 1)
4546 return -EINVAL;
4547
81819f0f 4548 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4549 if (buf[0] == '1') {
4550 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4551 s->flags |= SLAB_TRACE;
b789ef51 4552 }
81819f0f
CL
4553 return length;
4554}
4555SLAB_ATTR(trace);
4556
81819f0f
CL
4557static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4558{
4559 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4560}
4561
4562static ssize_t red_zone_store(struct kmem_cache *s,
4563 const char *buf, size_t length)
4564{
4565 if (any_slab_objects(s))
4566 return -EBUSY;
4567
4568 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4569 if (buf[0] == '1') {
4570 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4571 s->flags |= SLAB_RED_ZONE;
b789ef51 4572 }
06b285dc 4573 calculate_sizes(s, -1);
81819f0f
CL
4574 return length;
4575}
4576SLAB_ATTR(red_zone);
4577
4578static ssize_t poison_show(struct kmem_cache *s, char *buf)
4579{
4580 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4581}
4582
4583static ssize_t poison_store(struct kmem_cache *s,
4584 const char *buf, size_t length)
4585{
4586 if (any_slab_objects(s))
4587 return -EBUSY;
4588
4589 s->flags &= ~SLAB_POISON;
b789ef51
CL
4590 if (buf[0] == '1') {
4591 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4592 s->flags |= SLAB_POISON;
b789ef51 4593 }
06b285dc 4594 calculate_sizes(s, -1);
81819f0f
CL
4595 return length;
4596}
4597SLAB_ATTR(poison);
4598
4599static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4600{
4601 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4602}
4603
4604static ssize_t store_user_store(struct kmem_cache *s,
4605 const char *buf, size_t length)
4606{
4607 if (any_slab_objects(s))
4608 return -EBUSY;
4609
4610 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4611 if (buf[0] == '1') {
4612 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4613 s->flags |= SLAB_STORE_USER;
b789ef51 4614 }
06b285dc 4615 calculate_sizes(s, -1);
81819f0f
CL
4616 return length;
4617}
4618SLAB_ATTR(store_user);
4619
53e15af0
CL
4620static ssize_t validate_show(struct kmem_cache *s, char *buf)
4621{
4622 return 0;
4623}
4624
4625static ssize_t validate_store(struct kmem_cache *s,
4626 const char *buf, size_t length)
4627{
434e245d
CL
4628 int ret = -EINVAL;
4629
4630 if (buf[0] == '1') {
4631 ret = validate_slab_cache(s);
4632 if (ret >= 0)
4633 ret = length;
4634 }
4635 return ret;
53e15af0
CL
4636}
4637SLAB_ATTR(validate);
a5a84755
CL
4638
4639static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4640{
4641 if (!(s->flags & SLAB_STORE_USER))
4642 return -ENOSYS;
4643 return list_locations(s, buf, TRACK_ALLOC);
4644}
4645SLAB_ATTR_RO(alloc_calls);
4646
4647static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4648{
4649 if (!(s->flags & SLAB_STORE_USER))
4650 return -ENOSYS;
4651 return list_locations(s, buf, TRACK_FREE);
4652}
4653SLAB_ATTR_RO(free_calls);
4654#endif /* CONFIG_SLUB_DEBUG */
4655
4656#ifdef CONFIG_FAILSLAB
4657static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4658{
4659 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4660}
4661
4662static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4663 size_t length)
4664{
c9e16131
CL
4665 if (s->refcount > 1)
4666 return -EINVAL;
4667
a5a84755
CL
4668 s->flags &= ~SLAB_FAILSLAB;
4669 if (buf[0] == '1')
4670 s->flags |= SLAB_FAILSLAB;
4671 return length;
4672}
4673SLAB_ATTR(failslab);
ab4d5ed5 4674#endif
53e15af0 4675
2086d26a
CL
4676static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4677{
4678 return 0;
4679}
4680
4681static ssize_t shrink_store(struct kmem_cache *s,
4682 const char *buf, size_t length)
4683{
4684 if (buf[0] == '1') {
4685 int rc = kmem_cache_shrink(s);
4686
4687 if (rc)
4688 return rc;
4689 } else
4690 return -EINVAL;
4691 return length;
4692}
4693SLAB_ATTR(shrink);
4694
81819f0f 4695#ifdef CONFIG_NUMA
9824601e 4696static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4697{
9824601e 4698 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4699}
4700
9824601e 4701static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4702 const char *buf, size_t length)
4703{
0121c619
CL
4704 unsigned long ratio;
4705 int err;
4706
3dbb95f7 4707 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4708 if (err)
4709 return err;
4710
e2cb96b7 4711 if (ratio <= 100)
0121c619 4712 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4713
81819f0f
CL
4714 return length;
4715}
9824601e 4716SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4717#endif
4718
8ff12cfc 4719#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4720static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4721{
4722 unsigned long sum = 0;
4723 int cpu;
4724 int len;
4725 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4726
4727 if (!data)
4728 return -ENOMEM;
4729
4730 for_each_online_cpu(cpu) {
9dfc6e68 4731 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4732
4733 data[cpu] = x;
4734 sum += x;
4735 }
4736
4737 len = sprintf(buf, "%lu", sum);
4738
50ef37b9 4739#ifdef CONFIG_SMP
8ff12cfc
CL
4740 for_each_online_cpu(cpu) {
4741 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4742 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4743 }
50ef37b9 4744#endif
8ff12cfc
CL
4745 kfree(data);
4746 return len + sprintf(buf + len, "\n");
4747}
4748
78eb00cc
DR
4749static void clear_stat(struct kmem_cache *s, enum stat_item si)
4750{
4751 int cpu;
4752
4753 for_each_online_cpu(cpu)
9dfc6e68 4754 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4755}
4756
8ff12cfc
CL
4757#define STAT_ATTR(si, text) \
4758static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4759{ \
4760 return show_stat(s, buf, si); \
4761} \
78eb00cc
DR
4762static ssize_t text##_store(struct kmem_cache *s, \
4763 const char *buf, size_t length) \
4764{ \
4765 if (buf[0] != '0') \
4766 return -EINVAL; \
4767 clear_stat(s, si); \
4768 return length; \
4769} \
4770SLAB_ATTR(text); \
8ff12cfc
CL
4771
4772STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4773STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4774STAT_ATTR(FREE_FASTPATH, free_fastpath);
4775STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4776STAT_ATTR(FREE_FROZEN, free_frozen);
4777STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4778STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4779STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4780STAT_ATTR(ALLOC_SLAB, alloc_slab);
4781STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4782STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4783STAT_ATTR(FREE_SLAB, free_slab);
4784STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4785STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4786STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4787STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4788STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4789STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4790STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4791STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4792STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4793STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4794STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4795STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4796STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4797STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4798#endif
4799
06428780 4800static struct attribute *slab_attrs[] = {
81819f0f
CL
4801 &slab_size_attr.attr,
4802 &object_size_attr.attr,
4803 &objs_per_slab_attr.attr,
4804 &order_attr.attr,
73d342b1 4805 &min_partial_attr.attr,
49e22585 4806 &cpu_partial_attr.attr,
81819f0f 4807 &objects_attr.attr,
205ab99d 4808 &objects_partial_attr.attr,
81819f0f
CL
4809 &partial_attr.attr,
4810 &cpu_slabs_attr.attr,
4811 &ctor_attr.attr,
81819f0f
CL
4812 &aliases_attr.attr,
4813 &align_attr.attr,
81819f0f
CL
4814 &hwcache_align_attr.attr,
4815 &reclaim_account_attr.attr,
4816 &destroy_by_rcu_attr.attr,
a5a84755 4817 &shrink_attr.attr,
ab9a0f19 4818 &reserved_attr.attr,
49e22585 4819 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4820#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4821 &total_objects_attr.attr,
4822 &slabs_attr.attr,
4823 &sanity_checks_attr.attr,
4824 &trace_attr.attr,
81819f0f
CL
4825 &red_zone_attr.attr,
4826 &poison_attr.attr,
4827 &store_user_attr.attr,
53e15af0 4828 &validate_attr.attr,
88a420e4
CL
4829 &alloc_calls_attr.attr,
4830 &free_calls_attr.attr,
ab4d5ed5 4831#endif
81819f0f
CL
4832#ifdef CONFIG_ZONE_DMA
4833 &cache_dma_attr.attr,
4834#endif
4835#ifdef CONFIG_NUMA
9824601e 4836 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4837#endif
4838#ifdef CONFIG_SLUB_STATS
4839 &alloc_fastpath_attr.attr,
4840 &alloc_slowpath_attr.attr,
4841 &free_fastpath_attr.attr,
4842 &free_slowpath_attr.attr,
4843 &free_frozen_attr.attr,
4844 &free_add_partial_attr.attr,
4845 &free_remove_partial_attr.attr,
4846 &alloc_from_partial_attr.attr,
4847 &alloc_slab_attr.attr,
4848 &alloc_refill_attr.attr,
e36a2652 4849 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4850 &free_slab_attr.attr,
4851 &cpuslab_flush_attr.attr,
4852 &deactivate_full_attr.attr,
4853 &deactivate_empty_attr.attr,
4854 &deactivate_to_head_attr.attr,
4855 &deactivate_to_tail_attr.attr,
4856 &deactivate_remote_frees_attr.attr,
03e404af 4857 &deactivate_bypass_attr.attr,
65c3376a 4858 &order_fallback_attr.attr,
b789ef51
CL
4859 &cmpxchg_double_fail_attr.attr,
4860 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4861 &cpu_partial_alloc_attr.attr,
4862 &cpu_partial_free_attr.attr,
8028dcea
AS
4863 &cpu_partial_node_attr.attr,
4864 &cpu_partial_drain_attr.attr,
81819f0f 4865#endif
4c13dd3b
DM
4866#ifdef CONFIG_FAILSLAB
4867 &failslab_attr.attr,
4868#endif
4869
81819f0f
CL
4870 NULL
4871};
4872
4873static struct attribute_group slab_attr_group = {
4874 .attrs = slab_attrs,
4875};
4876
4877static ssize_t slab_attr_show(struct kobject *kobj,
4878 struct attribute *attr,
4879 char *buf)
4880{
4881 struct slab_attribute *attribute;
4882 struct kmem_cache *s;
4883 int err;
4884
4885 attribute = to_slab_attr(attr);
4886 s = to_slab(kobj);
4887
4888 if (!attribute->show)
4889 return -EIO;
4890
4891 err = attribute->show(s, buf);
4892
4893 return err;
4894}
4895
4896static ssize_t slab_attr_store(struct kobject *kobj,
4897 struct attribute *attr,
4898 const char *buf, size_t len)
4899{
4900 struct slab_attribute *attribute;
4901 struct kmem_cache *s;
4902 int err;
4903
4904 attribute = to_slab_attr(attr);
4905 s = to_slab(kobj);
4906
4907 if (!attribute->store)
4908 return -EIO;
4909
4910 err = attribute->store(s, buf, len);
107dab5c
GC
4911#ifdef CONFIG_MEMCG_KMEM
4912 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4913 int i;
81819f0f 4914
107dab5c
GC
4915 mutex_lock(&slab_mutex);
4916 if (s->max_attr_size < len)
4917 s->max_attr_size = len;
4918
ebe945c2
GC
4919 /*
4920 * This is a best effort propagation, so this function's return
4921 * value will be determined by the parent cache only. This is
4922 * basically because not all attributes will have a well
4923 * defined semantics for rollbacks - most of the actions will
4924 * have permanent effects.
4925 *
4926 * Returning the error value of any of the children that fail
4927 * is not 100 % defined, in the sense that users seeing the
4928 * error code won't be able to know anything about the state of
4929 * the cache.
4930 *
4931 * Only returning the error code for the parent cache at least
4932 * has well defined semantics. The cache being written to
4933 * directly either failed or succeeded, in which case we loop
4934 * through the descendants with best-effort propagation.
4935 */
107dab5c 4936 for_each_memcg_cache_index(i) {
2ade4de8 4937 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
4938 if (c)
4939 attribute->store(c, buf, len);
4940 }
4941 mutex_unlock(&slab_mutex);
4942 }
4943#endif
81819f0f
CL
4944 return err;
4945}
4946
107dab5c
GC
4947static void memcg_propagate_slab_attrs(struct kmem_cache *s)
4948{
4949#ifdef CONFIG_MEMCG_KMEM
4950 int i;
4951 char *buffer = NULL;
93030d83 4952 struct kmem_cache *root_cache;
107dab5c 4953
93030d83 4954 if (is_root_cache(s))
107dab5c
GC
4955 return;
4956
93030d83
VD
4957 root_cache = s->memcg_params->root_cache;
4958
107dab5c
GC
4959 /*
4960 * This mean this cache had no attribute written. Therefore, no point
4961 * in copying default values around
4962 */
93030d83 4963 if (!root_cache->max_attr_size)
107dab5c
GC
4964 return;
4965
4966 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
4967 char mbuf[64];
4968 char *buf;
4969 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
4970
4971 if (!attr || !attr->store || !attr->show)
4972 continue;
4973
4974 /*
4975 * It is really bad that we have to allocate here, so we will
4976 * do it only as a fallback. If we actually allocate, though,
4977 * we can just use the allocated buffer until the end.
4978 *
4979 * Most of the slub attributes will tend to be very small in
4980 * size, but sysfs allows buffers up to a page, so they can
4981 * theoretically happen.
4982 */
4983 if (buffer)
4984 buf = buffer;
93030d83 4985 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
4986 buf = mbuf;
4987 else {
4988 buffer = (char *) get_zeroed_page(GFP_KERNEL);
4989 if (WARN_ON(!buffer))
4990 continue;
4991 buf = buffer;
4992 }
4993
93030d83 4994 attr->show(root_cache, buf);
107dab5c
GC
4995 attr->store(s, buf, strlen(buf));
4996 }
4997
4998 if (buffer)
4999 free_page((unsigned long)buffer);
5000#endif
5001}
5002
41a21285
CL
5003static void kmem_cache_release(struct kobject *k)
5004{
5005 slab_kmem_cache_release(to_slab(k));
5006}
5007
52cf25d0 5008static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5009 .show = slab_attr_show,
5010 .store = slab_attr_store,
5011};
5012
5013static struct kobj_type slab_ktype = {
5014 .sysfs_ops = &slab_sysfs_ops,
41a21285 5015 .release = kmem_cache_release,
81819f0f
CL
5016};
5017
5018static int uevent_filter(struct kset *kset, struct kobject *kobj)
5019{
5020 struct kobj_type *ktype = get_ktype(kobj);
5021
5022 if (ktype == &slab_ktype)
5023 return 1;
5024 return 0;
5025}
5026
9cd43611 5027static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5028 .filter = uevent_filter,
5029};
5030
27c3a314 5031static struct kset *slab_kset;
81819f0f 5032
9a41707b
VD
5033static inline struct kset *cache_kset(struct kmem_cache *s)
5034{
5035#ifdef CONFIG_MEMCG_KMEM
5036 if (!is_root_cache(s))
5037 return s->memcg_params->root_cache->memcg_kset;
5038#endif
5039 return slab_kset;
5040}
5041
81819f0f
CL
5042#define ID_STR_LENGTH 64
5043
5044/* Create a unique string id for a slab cache:
6446faa2
CL
5045 *
5046 * Format :[flags-]size
81819f0f
CL
5047 */
5048static char *create_unique_id(struct kmem_cache *s)
5049{
5050 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5051 char *p = name;
5052
5053 BUG_ON(!name);
5054
5055 *p++ = ':';
5056 /*
5057 * First flags affecting slabcache operations. We will only
5058 * get here for aliasable slabs so we do not need to support
5059 * too many flags. The flags here must cover all flags that
5060 * are matched during merging to guarantee that the id is
5061 * unique.
5062 */
5063 if (s->flags & SLAB_CACHE_DMA)
5064 *p++ = 'd';
5065 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5066 *p++ = 'a';
5067 if (s->flags & SLAB_DEBUG_FREE)
5068 *p++ = 'F';
5a896d9e
VN
5069 if (!(s->flags & SLAB_NOTRACK))
5070 *p++ = 't';
81819f0f
CL
5071 if (p != name + 1)
5072 *p++ = '-';
5073 p += sprintf(p, "%07d", s->size);
2633d7a0 5074
81819f0f
CL
5075 BUG_ON(p > name + ID_STR_LENGTH - 1);
5076 return name;
5077}
5078
5079static int sysfs_slab_add(struct kmem_cache *s)
5080{
5081 int err;
5082 const char *name;
45530c44 5083 int unmergeable = slab_unmergeable(s);
81819f0f 5084
81819f0f
CL
5085 if (unmergeable) {
5086 /*
5087 * Slabcache can never be merged so we can use the name proper.
5088 * This is typically the case for debug situations. In that
5089 * case we can catch duplicate names easily.
5090 */
27c3a314 5091 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5092 name = s->name;
5093 } else {
5094 /*
5095 * Create a unique name for the slab as a target
5096 * for the symlinks.
5097 */
5098 name = create_unique_id(s);
5099 }
5100
9a41707b 5101 s->kobj.kset = cache_kset(s);
26e4f205 5102 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5103 if (err)
5104 goto out_put_kobj;
81819f0f
CL
5105
5106 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5107 if (err)
5108 goto out_del_kobj;
9a41707b
VD
5109
5110#ifdef CONFIG_MEMCG_KMEM
5111 if (is_root_cache(s)) {
5112 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5113 if (!s->memcg_kset) {
54b6a731
DJ
5114 err = -ENOMEM;
5115 goto out_del_kobj;
9a41707b
VD
5116 }
5117 }
5118#endif
5119
81819f0f
CL
5120 kobject_uevent(&s->kobj, KOBJ_ADD);
5121 if (!unmergeable) {
5122 /* Setup first alias */
5123 sysfs_slab_alias(s, s->name);
81819f0f 5124 }
54b6a731
DJ
5125out:
5126 if (!unmergeable)
5127 kfree(name);
5128 return err;
5129out_del_kobj:
5130 kobject_del(&s->kobj);
5131out_put_kobj:
5132 kobject_put(&s->kobj);
5133 goto out;
81819f0f
CL
5134}
5135
41a21285 5136void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5137{
97d06609 5138 if (slab_state < FULL)
2bce6485
CL
5139 /*
5140 * Sysfs has not been setup yet so no need to remove the
5141 * cache from sysfs.
5142 */
5143 return;
5144
9a41707b
VD
5145#ifdef CONFIG_MEMCG_KMEM
5146 kset_unregister(s->memcg_kset);
5147#endif
81819f0f
CL
5148 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5149 kobject_del(&s->kobj);
151c602f 5150 kobject_put(&s->kobj);
81819f0f
CL
5151}
5152
5153/*
5154 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5155 * available lest we lose that information.
81819f0f
CL
5156 */
5157struct saved_alias {
5158 struct kmem_cache *s;
5159 const char *name;
5160 struct saved_alias *next;
5161};
5162
5af328a5 5163static struct saved_alias *alias_list;
81819f0f
CL
5164
5165static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5166{
5167 struct saved_alias *al;
5168
97d06609 5169 if (slab_state == FULL) {
81819f0f
CL
5170 /*
5171 * If we have a leftover link then remove it.
5172 */
27c3a314
GKH
5173 sysfs_remove_link(&slab_kset->kobj, name);
5174 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5175 }
5176
5177 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5178 if (!al)
5179 return -ENOMEM;
5180
5181 al->s = s;
5182 al->name = name;
5183 al->next = alias_list;
5184 alias_list = al;
5185 return 0;
5186}
5187
5188static int __init slab_sysfs_init(void)
5189{
5b95a4ac 5190 struct kmem_cache *s;
81819f0f
CL
5191 int err;
5192
18004c5d 5193 mutex_lock(&slab_mutex);
2bce6485 5194
0ff21e46 5195 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5196 if (!slab_kset) {
18004c5d 5197 mutex_unlock(&slab_mutex);
f9f58285 5198 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5199 return -ENOSYS;
5200 }
5201
97d06609 5202 slab_state = FULL;
26a7bd03 5203
5b95a4ac 5204 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5205 err = sysfs_slab_add(s);
5d540fb7 5206 if (err)
f9f58285
FF
5207 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5208 s->name);
26a7bd03 5209 }
81819f0f
CL
5210
5211 while (alias_list) {
5212 struct saved_alias *al = alias_list;
5213
5214 alias_list = alias_list->next;
5215 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5216 if (err)
f9f58285
FF
5217 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5218 al->name);
81819f0f
CL
5219 kfree(al);
5220 }
5221
18004c5d 5222 mutex_unlock(&slab_mutex);
81819f0f
CL
5223 resiliency_test();
5224 return 0;
5225}
5226
5227__initcall(slab_sysfs_init);
ab4d5ed5 5228#endif /* CONFIG_SYSFS */
57ed3eda
PE
5229
5230/*
5231 * The /proc/slabinfo ABI
5232 */
158a9624 5233#ifdef CONFIG_SLABINFO
0d7561c6 5234void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5235{
57ed3eda 5236 unsigned long nr_slabs = 0;
205ab99d
CL
5237 unsigned long nr_objs = 0;
5238 unsigned long nr_free = 0;
57ed3eda 5239 int node;
fa45dc25 5240 struct kmem_cache_node *n;
57ed3eda 5241
fa45dc25 5242 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5243 nr_slabs += node_nr_slabs(n);
5244 nr_objs += node_nr_objs(n);
205ab99d 5245 nr_free += count_partial(n, count_free);
57ed3eda
PE
5246 }
5247
0d7561c6
GC
5248 sinfo->active_objs = nr_objs - nr_free;
5249 sinfo->num_objs = nr_objs;
5250 sinfo->active_slabs = nr_slabs;
5251 sinfo->num_slabs = nr_slabs;
5252 sinfo->objects_per_slab = oo_objects(s->oo);
5253 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5254}
5255
0d7561c6 5256void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5257{
7b3c3a50
AD
5258}
5259
b7454ad3
GC
5260ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5261 size_t count, loff_t *ppos)
7b3c3a50 5262{
b7454ad3 5263 return -EIO;
7b3c3a50 5264}
158a9624 5265#endif /* CONFIG_SLABINFO */