]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/slub.c
mm/slub: Fix backtrace of objects to handle redzone adjustment
[thirdparty/linux.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b89fb5ef 30#include <linux/kfence.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
2482ddec 37#include <linux/random.h>
81819f0f 38
4a92379b
RK
39#include <trace/events/kmem.h>
40
072bb0aa
MG
41#include "internal.h"
42
81819f0f
CL
43/*
44 * Lock order:
18004c5d 45 * 1. slab_mutex (Global Mutex)
881db7fb
CL
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 48 *
18004c5d 49 * slab_mutex
881db7fb 50 *
18004c5d 51 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 55 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 56 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
57 * B. page->inuse -> Number of objects in use
58 * C. page->objects -> Number of objects in page
59 * D. page->frozen -> frozen state
881db7fb
CL
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
62 * on any list except per cpu partial list. The processor that froze the
63 * slab is the one who can perform list operations on the page. Other
64 * processors may put objects onto the freelist but the processor that
65 * froze the slab is the only one that can retrieve the objects from the
66 * page's freelist.
81819f0f
CL
67 *
68 * The list_lock protects the partial and full list on each node and
69 * the partial slab counter. If taken then no new slabs may be added or
70 * removed from the lists nor make the number of partial slabs be modified.
71 * (Note that the total number of slabs is an atomic value that may be
72 * modified without taking the list lock).
73 *
74 * The list_lock is a centralized lock and thus we avoid taking it as
75 * much as possible. As long as SLUB does not have to handle partial
76 * slabs, operations can continue without any centralized lock. F.e.
77 * allocating a long series of objects that fill up slabs does not require
78 * the list lock.
81819f0f
CL
79 * Interrupts are disabled during allocation and deallocation in order to
80 * make the slab allocator safe to use in the context of an irq. In addition
81 * interrupts are disabled to ensure that the processor does not change
82 * while handling per_cpu slabs, due to kernel preemption.
83 *
84 * SLUB assigns one slab for allocation to each processor.
85 * Allocations only occur from these slabs called cpu slabs.
86 *
672bba3a
CL
87 * Slabs with free elements are kept on a partial list and during regular
88 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 89 * freed then the slab will show up again on the partial lists.
672bba3a
CL
90 * We track full slabs for debugging purposes though because otherwise we
91 * cannot scan all objects.
81819f0f
CL
92 *
93 * Slabs are freed when they become empty. Teardown and setup is
94 * minimal so we rely on the page allocators per cpu caches for
95 * fast frees and allocs.
96 *
aed68148 97 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f 112 *
aed68148 113 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
ca0cab65
VB
118#ifdef CONFIG_SLUB_DEBUG
119#ifdef CONFIG_SLUB_DEBUG_ON
120DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
121#else
122DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
123#endif
124#endif
125
59052e89
VB
126static inline bool kmem_cache_debug(struct kmem_cache *s)
127{
128 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 129}
5577bd8a 130
117d54df 131void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 132{
59052e89 133 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
134 p += s->red_left_pad;
135
136 return p;
137}
138
345c905d
JK
139static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
140{
141#ifdef CONFIG_SLUB_CPU_PARTIAL
142 return !kmem_cache_debug(s);
143#else
144 return false;
145#endif
146}
147
81819f0f
CL
148/*
149 * Issues still to be resolved:
150 *
81819f0f
CL
151 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
152 *
81819f0f
CL
153 * - Variable sizing of the per node arrays
154 */
155
156/* Enable to test recovery from slab corruption on boot */
157#undef SLUB_RESILIENCY_TEST
158
b789ef51
CL
159/* Enable to log cmpxchg failures */
160#undef SLUB_DEBUG_CMPXCHG
161
2086d26a 162/*
dc84207d 163 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
76be8950 166#define MIN_PARTIAL 5
e95eed57 167
2086d26a
CL
168/*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 171 * sort the partial list by the number of objects in use.
2086d26a
CL
172 */
173#define MAX_PARTIAL 10
174
becfda68 175#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 176 SLAB_POISON | SLAB_STORE_USER)
672bba3a 177
149daaf3
LA
178/*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
fa5ec8a1 186/*
3de47213
DR
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
fa5ec8a1 190 */
3de47213 191#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 192
210b5c06
CG
193#define OO_SHIFT 16
194#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 195#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 196
81819f0f 197/* Internal SLUB flags */
d50112ed 198/* Poison object */
4fd0b46e 199#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 200/* Use cmpxchg_double */
4fd0b46e 201#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 202
02cbc874
CL
203/*
204 * Tracking user of a slab.
205 */
d6543e39 206#define TRACK_ADDRS_COUNT 16
02cbc874 207struct track {
ce71e27c 208 unsigned long addr; /* Called from address */
d6543e39
BG
209#ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
211#endif
02cbc874
CL
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215};
216
217enum track_item { TRACK_ALLOC, TRACK_FREE };
218
ab4d5ed5 219#ifdef CONFIG_SYSFS
81819f0f
CL
220static int sysfs_slab_add(struct kmem_cache *);
221static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 222#else
0c710013
CL
223static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
88da03a6
CL
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
236#endif
237}
238
7e1fa93d
VB
239/*
240 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
241 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
242 * differ during memory hotplug/hotremove operations.
243 * Protected by slab_mutex.
244 */
245static nodemask_t slab_nodes;
246
81819f0f
CL
247/********************************************************************
248 * Core slab cache functions
249 *******************************************************************/
250
2482ddec
KC
251/*
252 * Returns freelist pointer (ptr). With hardening, this is obfuscated
253 * with an XOR of the address where the pointer is held and a per-cache
254 * random number.
255 */
256static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
257 unsigned long ptr_addr)
258{
259#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 260 /*
aa1ef4d7 261 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
262 * Normally, this doesn't cause any issues, as both set_freepointer()
263 * and get_freepointer() are called with a pointer with the same tag.
264 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
265 * example, when __free_slub() iterates over objects in a cache, it
266 * passes untagged pointers to check_object(). check_object() in turns
267 * calls get_freepointer() with an untagged pointer, which causes the
268 * freepointer to be restored incorrectly.
269 */
270 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 271 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
272#else
273 return ptr;
274#endif
275}
276
277/* Returns the freelist pointer recorded at location ptr_addr. */
278static inline void *freelist_dereference(const struct kmem_cache *s,
279 void *ptr_addr)
280{
281 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
282 (unsigned long)ptr_addr);
283}
284
7656c72b
CL
285static inline void *get_freepointer(struct kmem_cache *s, void *object)
286{
aa1ef4d7 287 object = kasan_reset_tag(object);
2482ddec 288 return freelist_dereference(s, object + s->offset);
7656c72b
CL
289}
290
0ad9500e
ED
291static void prefetch_freepointer(const struct kmem_cache *s, void *object)
292{
0882ff91 293 prefetch(object + s->offset);
0ad9500e
ED
294}
295
1393d9a1
CL
296static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
297{
2482ddec 298 unsigned long freepointer_addr;
1393d9a1
CL
299 void *p;
300
8e57f8ac 301 if (!debug_pagealloc_enabled_static())
922d566c
JK
302 return get_freepointer(s, object);
303
2482ddec 304 freepointer_addr = (unsigned long)object + s->offset;
fe557319 305 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 306 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
307}
308
7656c72b
CL
309static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310{
2482ddec
KC
311 unsigned long freeptr_addr = (unsigned long)object + s->offset;
312
ce6fa91b
AP
313#ifdef CONFIG_SLAB_FREELIST_HARDENED
314 BUG_ON(object == fp); /* naive detection of double free or corruption */
315#endif
316
aa1ef4d7 317 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 318 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
319}
320
321/* Loop over all objects in a slab */
224a88be 322#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
323 for (__p = fixup_red_left(__s, __addr); \
324 __p < (__addr) + (__objects) * (__s)->size; \
325 __p += (__s)->size)
7656c72b 326
9736d2a9 327static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 328{
9736d2a9 329 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
330}
331
19af27af 332static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 333 unsigned int size)
834f3d11
CL
334{
335 struct kmem_cache_order_objects x = {
9736d2a9 336 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
337 };
338
339 return x;
340}
341
19af27af 342static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 343{
210b5c06 344 return x.x >> OO_SHIFT;
834f3d11
CL
345}
346
19af27af 347static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 348{
210b5c06 349 return x.x & OO_MASK;
834f3d11
CL
350}
351
881db7fb
CL
352/*
353 * Per slab locking using the pagelock
354 */
355static __always_inline void slab_lock(struct page *page)
356{
48c935ad 357 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
358 bit_spin_lock(PG_locked, &page->flags);
359}
360
361static __always_inline void slab_unlock(struct page *page)
362{
48c935ad 363 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
364 __bit_spin_unlock(PG_locked, &page->flags);
365}
366
1d07171c
CL
367/* Interrupts must be disabled (for the fallback code to work right) */
368static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
369 void *freelist_old, unsigned long counters_old,
370 void *freelist_new, unsigned long counters_new,
371 const char *n)
372{
373 VM_BUG_ON(!irqs_disabled());
2565409f
HC
374#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
375 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 376 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 377 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
378 freelist_old, counters_old,
379 freelist_new, counters_new))
6f6528a1 380 return true;
1d07171c
CL
381 } else
382#endif
383 {
384 slab_lock(page);
d0e0ac97
CG
385 if (page->freelist == freelist_old &&
386 page->counters == counters_old) {
1d07171c 387 page->freelist = freelist_new;
7d27a04b 388 page->counters = counters_new;
1d07171c 389 slab_unlock(page);
6f6528a1 390 return true;
1d07171c
CL
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 399 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
400#endif
401
6f6528a1 402 return false;
1d07171c
CL
403}
404
b789ef51
CL
405static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409{
2565409f
HC
410#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 412 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 413 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
414 freelist_old, counters_old,
415 freelist_new, counters_new))
6f6528a1 416 return true;
b789ef51
CL
417 } else
418#endif
419 {
1d07171c
CL
420 unsigned long flags;
421
422 local_irq_save(flags);
881db7fb 423 slab_lock(page);
d0e0ac97
CG
424 if (page->freelist == freelist_old &&
425 page->counters == counters_old) {
b789ef51 426 page->freelist = freelist_new;
7d27a04b 427 page->counters = counters_new;
881db7fb 428 slab_unlock(page);
1d07171c 429 local_irq_restore(flags);
6f6528a1 430 return true;
b789ef51 431 }
881db7fb 432 slab_unlock(page);
1d07171c 433 local_irq_restore(flags);
b789ef51
CL
434 }
435
436 cpu_relax();
437 stat(s, CMPXCHG_DOUBLE_FAIL);
438
439#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 440 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
441#endif
442
6f6528a1 443 return false;
b789ef51
CL
444}
445
41ecc55b 446#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
447static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
448static DEFINE_SPINLOCK(object_map_lock);
449
5f80b13a
CL
450/*
451 * Determine a map of object in use on a page.
452 *
881db7fb 453 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
454 * not vanish from under us.
455 */
90e9f6a6 456static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 457 __acquires(&object_map_lock)
5f80b13a
CL
458{
459 void *p;
460 void *addr = page_address(page);
461
90e9f6a6
YZ
462 VM_BUG_ON(!irqs_disabled());
463
464 spin_lock(&object_map_lock);
465
466 bitmap_zero(object_map, page->objects);
467
5f80b13a 468 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 469 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
470
471 return object_map;
472}
473
81aba9e0 474static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
475{
476 VM_BUG_ON(map != object_map);
90e9f6a6 477 spin_unlock(&object_map_lock);
5f80b13a
CL
478}
479
870b1fbb 480static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
481{
482 if (s->flags & SLAB_RED_ZONE)
483 return s->size - s->red_left_pad;
484
485 return s->size;
486}
487
488static inline void *restore_red_left(struct kmem_cache *s, void *p)
489{
490 if (s->flags & SLAB_RED_ZONE)
491 p -= s->red_left_pad;
492
493 return p;
494}
495
41ecc55b
CL
496/*
497 * Debug settings:
498 */
89d3c87e 499#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 500static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 501#else
d50112ed 502static slab_flags_t slub_debug;
f0630fff 503#endif
41ecc55b 504
e17f1dfb 505static char *slub_debug_string;
fa5ec8a1 506static int disable_higher_order_debug;
41ecc55b 507
a79316c6
AR
508/*
509 * slub is about to manipulate internal object metadata. This memory lies
510 * outside the range of the allocated object, so accessing it would normally
511 * be reported by kasan as a bounds error. metadata_access_enable() is used
512 * to tell kasan that these accesses are OK.
513 */
514static inline void metadata_access_enable(void)
515{
516 kasan_disable_current();
517}
518
519static inline void metadata_access_disable(void)
520{
521 kasan_enable_current();
522}
523
81819f0f
CL
524/*
525 * Object debugging
526 */
d86bd1be
JK
527
528/* Verify that a pointer has an address that is valid within a slab page */
529static inline int check_valid_pointer(struct kmem_cache *s,
530 struct page *page, void *object)
531{
532 void *base;
533
534 if (!object)
535 return 1;
536
537 base = page_address(page);
338cfaad 538 object = kasan_reset_tag(object);
d86bd1be
JK
539 object = restore_red_left(s, object);
540 if (object < base || object >= base + page->objects * s->size ||
541 (object - base) % s->size) {
542 return 0;
543 }
544
545 return 1;
546}
547
aa2efd5e
DT
548static void print_section(char *level, char *text, u8 *addr,
549 unsigned int length)
81819f0f 550{
a79316c6 551 metadata_access_enable();
aa1ef4d7
AK
552 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
553 16, 1, addr, length, 1);
a79316c6 554 metadata_access_disable();
81819f0f
CL
555}
556
cbfc35a4
WL
557/*
558 * See comment in calculate_sizes().
559 */
560static inline bool freeptr_outside_object(struct kmem_cache *s)
561{
562 return s->offset >= s->inuse;
563}
564
565/*
566 * Return offset of the end of info block which is inuse + free pointer if
567 * not overlapping with object.
568 */
569static inline unsigned int get_info_end(struct kmem_cache *s)
570{
571 if (freeptr_outside_object(s))
572 return s->inuse + sizeof(void *);
573 else
574 return s->inuse;
575}
576
81819f0f
CL
577static struct track *get_track(struct kmem_cache *s, void *object,
578 enum track_item alloc)
579{
580 struct track *p;
581
cbfc35a4 582 p = object + get_info_end(s);
81819f0f 583
aa1ef4d7 584 return kasan_reset_tag(p + alloc);
81819f0f
CL
585}
586
587static void set_track(struct kmem_cache *s, void *object,
ce71e27c 588 enum track_item alloc, unsigned long addr)
81819f0f 589{
1a00df4a 590 struct track *p = get_track(s, object, alloc);
81819f0f 591
81819f0f 592 if (addr) {
d6543e39 593#ifdef CONFIG_STACKTRACE
79716799 594 unsigned int nr_entries;
d6543e39 595
a79316c6 596 metadata_access_enable();
aa1ef4d7
AK
597 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
598 TRACK_ADDRS_COUNT, 3);
a79316c6 599 metadata_access_disable();
d6543e39 600
79716799
TG
601 if (nr_entries < TRACK_ADDRS_COUNT)
602 p->addrs[nr_entries] = 0;
d6543e39 603#endif
81819f0f
CL
604 p->addr = addr;
605 p->cpu = smp_processor_id();
88e4ccf2 606 p->pid = current->pid;
81819f0f 607 p->when = jiffies;
b8ca7ff7 608 } else {
81819f0f 609 memset(p, 0, sizeof(struct track));
b8ca7ff7 610 }
81819f0f
CL
611}
612
81819f0f
CL
613static void init_tracking(struct kmem_cache *s, void *object)
614{
24922684
CL
615 if (!(s->flags & SLAB_STORE_USER))
616 return;
617
ce71e27c
EGM
618 set_track(s, object, TRACK_FREE, 0UL);
619 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
620}
621
86609d33 622static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
623{
624 if (!t->addr)
625 return;
626
96b94abc 627 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 628 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
629#ifdef CONFIG_STACKTRACE
630 {
631 int i;
632 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
633 if (t->addrs[i])
f9f58285 634 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
635 else
636 break;
637 }
638#endif
24922684
CL
639}
640
e42f174e 641void print_tracking(struct kmem_cache *s, void *object)
24922684 642{
86609d33 643 unsigned long pr_time = jiffies;
24922684
CL
644 if (!(s->flags & SLAB_STORE_USER))
645 return;
646
86609d33
CP
647 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
648 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
649}
650
651static void print_page_info(struct page *page)
652{
96b94abc 653 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
4a8ef190
YS
654 page, page->objects, page->inuse, page->freelist,
655 page->flags, &page->flags);
24922684
CL
656
657}
658
659static void slab_bug(struct kmem_cache *s, char *fmt, ...)
660{
ecc42fbe 661 struct va_format vaf;
24922684 662 va_list args;
24922684
CL
663
664 va_start(args, fmt);
ecc42fbe
FF
665 vaf.fmt = fmt;
666 vaf.va = &args;
f9f58285 667 pr_err("=============================================================================\n");
ecc42fbe 668 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 669 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 670
373d4d09 671 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 672 va_end(args);
81819f0f
CL
673}
674
24922684
CL
675static void slab_fix(struct kmem_cache *s, char *fmt, ...)
676{
ecc42fbe 677 struct va_format vaf;
24922684 678 va_list args;
24922684
CL
679
680 va_start(args, fmt);
ecc42fbe
FF
681 vaf.fmt = fmt;
682 vaf.va = &args;
683 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 684 va_end(args);
24922684
CL
685}
686
52f23478 687static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 688 void **freelist, void *nextfree)
52f23478
DZ
689{
690 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
691 !check_valid_pointer(s, page, nextfree) && freelist) {
692 object_err(s, page, *freelist, "Freechain corrupt");
693 *freelist = NULL;
52f23478
DZ
694 slab_fix(s, "Isolate corrupted freechain");
695 return true;
696 }
697
698 return false;
699}
700
24922684 701static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
702{
703 unsigned int off; /* Offset of last byte */
a973e9dd 704 u8 *addr = page_address(page);
24922684
CL
705
706 print_tracking(s, p);
707
708 print_page_info(page);
709
96b94abc 710 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 711 p, p - addr, get_freepointer(s, p));
24922684 712
d86bd1be 713 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
714 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
715 s->red_left_pad);
d86bd1be 716 else if (p > addr + 16)
aa2efd5e 717 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 718
aa2efd5e 719 print_section(KERN_ERR, "Object ", p,
1b473f29 720 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 721 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 722 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 723 s->inuse - s->object_size);
81819f0f 724
cbfc35a4 725 off = get_info_end(s);
81819f0f 726
24922684 727 if (s->flags & SLAB_STORE_USER)
81819f0f 728 off += 2 * sizeof(struct track);
81819f0f 729
80a9201a
AP
730 off += kasan_metadata_size(s);
731
d86bd1be 732 if (off != size_from_object(s))
81819f0f 733 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
734 print_section(KERN_ERR, "Padding ", p + off,
735 size_from_object(s) - off);
24922684
CL
736
737 dump_stack();
81819f0f
CL
738}
739
75c66def 740void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
741 u8 *object, char *reason)
742{
3dc50637 743 slab_bug(s, "%s", reason);
24922684 744 print_trailer(s, page, object);
81819f0f
CL
745}
746
a38965bf 747static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 748 const char *fmt, ...)
81819f0f
CL
749{
750 va_list args;
751 char buf[100];
752
24922684
CL
753 va_start(args, fmt);
754 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 755 va_end(args);
3dc50637 756 slab_bug(s, "%s", buf);
24922684 757 print_page_info(page);
81819f0f
CL
758 dump_stack();
759}
760
f7cb1933 761static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 762{
aa1ef4d7 763 u8 *p = kasan_reset_tag(object);
81819f0f 764
d86bd1be
JK
765 if (s->flags & SLAB_RED_ZONE)
766 memset(p - s->red_left_pad, val, s->red_left_pad);
767
81819f0f 768 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
769 memset(p, POISON_FREE, s->object_size - 1);
770 p[s->object_size - 1] = POISON_END;
81819f0f
CL
771 }
772
773 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 774 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
775}
776
24922684
CL
777static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
778 void *from, void *to)
779{
780 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
781 memset(from, data, to - from);
782}
783
784static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
785 u8 *object, char *what,
06428780 786 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
787{
788 u8 *fault;
789 u8 *end;
e1b70dd1 790 u8 *addr = page_address(page);
24922684 791
a79316c6 792 metadata_access_enable();
aa1ef4d7 793 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 794 metadata_access_disable();
24922684
CL
795 if (!fault)
796 return 1;
797
798 end = start + bytes;
799 while (end > fault && end[-1] == value)
800 end--;
801
802 slab_bug(s, "%s overwritten", what);
96b94abc 803 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
804 fault, end - 1, fault - addr,
805 fault[0], value);
24922684
CL
806 print_trailer(s, page, object);
807
808 restore_bytes(s, what, value, fault, end);
809 return 0;
81819f0f
CL
810}
811
81819f0f
CL
812/*
813 * Object layout:
814 *
815 * object address
816 * Bytes of the object to be managed.
817 * If the freepointer may overlay the object then the free
cbfc35a4 818 * pointer is at the middle of the object.
672bba3a 819 *
81819f0f
CL
820 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
821 * 0xa5 (POISON_END)
822 *
3b0efdfa 823 * object + s->object_size
81819f0f 824 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 825 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 826 * object_size == inuse.
672bba3a 827 *
81819f0f
CL
828 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
829 * 0xcc (RED_ACTIVE) for objects in use.
830 *
831 * object + s->inuse
672bba3a
CL
832 * Meta data starts here.
833 *
81819f0f
CL
834 * A. Free pointer (if we cannot overwrite object on free)
835 * B. Tracking data for SLAB_STORE_USER
dc84207d 836 * C. Padding to reach required alignment boundary or at minimum
6446faa2 837 * one word if debugging is on to be able to detect writes
672bba3a
CL
838 * before the word boundary.
839 *
840 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
841 *
842 * object + s->size
672bba3a 843 * Nothing is used beyond s->size.
81819f0f 844 *
3b0efdfa 845 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 846 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
847 * may be used with merged slabcaches.
848 */
849
81819f0f
CL
850static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
851{
cbfc35a4 852 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
853
854 if (s->flags & SLAB_STORE_USER)
855 /* We also have user information there */
856 off += 2 * sizeof(struct track);
857
80a9201a
AP
858 off += kasan_metadata_size(s);
859
d86bd1be 860 if (size_from_object(s) == off)
81819f0f
CL
861 return 1;
862
24922684 863 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 864 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
865}
866
39b26464 867/* Check the pad bytes at the end of a slab page */
81819f0f
CL
868static int slab_pad_check(struct kmem_cache *s, struct page *page)
869{
24922684
CL
870 u8 *start;
871 u8 *fault;
872 u8 *end;
5d682681 873 u8 *pad;
24922684
CL
874 int length;
875 int remainder;
81819f0f
CL
876
877 if (!(s->flags & SLAB_POISON))
878 return 1;
879
a973e9dd 880 start = page_address(page);
a50b854e 881 length = page_size(page);
39b26464
CL
882 end = start + length;
883 remainder = length % s->size;
81819f0f
CL
884 if (!remainder)
885 return 1;
886
5d682681 887 pad = end - remainder;
a79316c6 888 metadata_access_enable();
aa1ef4d7 889 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 890 metadata_access_disable();
24922684
CL
891 if (!fault)
892 return 1;
893 while (end > fault && end[-1] == POISON_INUSE)
894 end--;
895
e1b70dd1
MC
896 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
897 fault, end - 1, fault - start);
5d682681 898 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 899
5d682681 900 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 901 return 0;
81819f0f
CL
902}
903
904static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 905 void *object, u8 val)
81819f0f
CL
906{
907 u8 *p = object;
3b0efdfa 908 u8 *endobject = object + s->object_size;
81819f0f
CL
909
910 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
911 if (!check_bytes_and_report(s, page, object, "Redzone",
912 object - s->red_left_pad, val, s->red_left_pad))
913 return 0;
914
24922684 915 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 916 endobject, val, s->inuse - s->object_size))
81819f0f 917 return 0;
81819f0f 918 } else {
3b0efdfa 919 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 920 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
921 endobject, POISON_INUSE,
922 s->inuse - s->object_size);
3adbefee 923 }
81819f0f
CL
924 }
925
926 if (s->flags & SLAB_POISON) {
f7cb1933 927 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 928 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 929 POISON_FREE, s->object_size - 1) ||
24922684 930 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 931 p + s->object_size - 1, POISON_END, 1)))
81819f0f 932 return 0;
81819f0f
CL
933 /*
934 * check_pad_bytes cleans up on its own.
935 */
936 check_pad_bytes(s, page, p);
937 }
938
cbfc35a4 939 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
940 /*
941 * Object and freepointer overlap. Cannot check
942 * freepointer while object is allocated.
943 */
944 return 1;
945
946 /* Check free pointer validity */
947 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
948 object_err(s, page, p, "Freepointer corrupt");
949 /*
9f6c708e 950 * No choice but to zap it and thus lose the remainder
81819f0f 951 * of the free objects in this slab. May cause
672bba3a 952 * another error because the object count is now wrong.
81819f0f 953 */
a973e9dd 954 set_freepointer(s, p, NULL);
81819f0f
CL
955 return 0;
956 }
957 return 1;
958}
959
960static int check_slab(struct kmem_cache *s, struct page *page)
961{
39b26464
CL
962 int maxobj;
963
81819f0f
CL
964 VM_BUG_ON(!irqs_disabled());
965
966 if (!PageSlab(page)) {
24922684 967 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
968 return 0;
969 }
39b26464 970
9736d2a9 971 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
972 if (page->objects > maxobj) {
973 slab_err(s, page, "objects %u > max %u",
f6edde9c 974 page->objects, maxobj);
39b26464
CL
975 return 0;
976 }
977 if (page->inuse > page->objects) {
24922684 978 slab_err(s, page, "inuse %u > max %u",
f6edde9c 979 page->inuse, page->objects);
81819f0f
CL
980 return 0;
981 }
982 /* Slab_pad_check fixes things up after itself */
983 slab_pad_check(s, page);
984 return 1;
985}
986
987/*
672bba3a
CL
988 * Determine if a certain object on a page is on the freelist. Must hold the
989 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
990 */
991static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
992{
993 int nr = 0;
881db7fb 994 void *fp;
81819f0f 995 void *object = NULL;
f6edde9c 996 int max_objects;
81819f0f 997
881db7fb 998 fp = page->freelist;
39b26464 999 while (fp && nr <= page->objects) {
81819f0f
CL
1000 if (fp == search)
1001 return 1;
1002 if (!check_valid_pointer(s, page, fp)) {
1003 if (object) {
1004 object_err(s, page, object,
1005 "Freechain corrupt");
a973e9dd 1006 set_freepointer(s, object, NULL);
81819f0f 1007 } else {
24922684 1008 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1009 page->freelist = NULL;
39b26464 1010 page->inuse = page->objects;
24922684 1011 slab_fix(s, "Freelist cleared");
81819f0f
CL
1012 return 0;
1013 }
1014 break;
1015 }
1016 object = fp;
1017 fp = get_freepointer(s, object);
1018 nr++;
1019 }
1020
9736d2a9 1021 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1022 if (max_objects > MAX_OBJS_PER_PAGE)
1023 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1024
1025 if (page->objects != max_objects) {
756a025f
JP
1026 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1027 page->objects, max_objects);
224a88be
CL
1028 page->objects = max_objects;
1029 slab_fix(s, "Number of objects adjusted.");
1030 }
39b26464 1031 if (page->inuse != page->objects - nr) {
756a025f
JP
1032 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1033 page->inuse, page->objects - nr);
39b26464 1034 page->inuse = page->objects - nr;
24922684 1035 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1036 }
1037 return search == NULL;
1038}
1039
0121c619
CL
1040static void trace(struct kmem_cache *s, struct page *page, void *object,
1041 int alloc)
3ec09742
CL
1042{
1043 if (s->flags & SLAB_TRACE) {
f9f58285 1044 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1045 s->name,
1046 alloc ? "alloc" : "free",
1047 object, page->inuse,
1048 page->freelist);
1049
1050 if (!alloc)
aa2efd5e 1051 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1052 s->object_size);
3ec09742
CL
1053
1054 dump_stack();
1055 }
1056}
1057
643b1138 1058/*
672bba3a 1059 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1060 */
5cc6eee8
CL
1061static void add_full(struct kmem_cache *s,
1062 struct kmem_cache_node *n, struct page *page)
643b1138 1063{
5cc6eee8
CL
1064 if (!(s->flags & SLAB_STORE_USER))
1065 return;
1066
255d0884 1067 lockdep_assert_held(&n->list_lock);
916ac052 1068 list_add(&page->slab_list, &n->full);
643b1138
CL
1069}
1070
c65c1877 1071static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1072{
643b1138
CL
1073 if (!(s->flags & SLAB_STORE_USER))
1074 return;
1075
255d0884 1076 lockdep_assert_held(&n->list_lock);
916ac052 1077 list_del(&page->slab_list);
643b1138
CL
1078}
1079
0f389ec6
CL
1080/* Tracking of the number of slabs for debugging purposes */
1081static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1082{
1083 struct kmem_cache_node *n = get_node(s, node);
1084
1085 return atomic_long_read(&n->nr_slabs);
1086}
1087
26c02cf0
AB
1088static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1089{
1090 return atomic_long_read(&n->nr_slabs);
1091}
1092
205ab99d 1093static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1094{
1095 struct kmem_cache_node *n = get_node(s, node);
1096
1097 /*
1098 * May be called early in order to allocate a slab for the
1099 * kmem_cache_node structure. Solve the chicken-egg
1100 * dilemma by deferring the increment of the count during
1101 * bootstrap (see early_kmem_cache_node_alloc).
1102 */
338b2642 1103 if (likely(n)) {
0f389ec6 1104 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1105 atomic_long_add(objects, &n->total_objects);
1106 }
0f389ec6 1107}
205ab99d 1108static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1109{
1110 struct kmem_cache_node *n = get_node(s, node);
1111
1112 atomic_long_dec(&n->nr_slabs);
205ab99d 1113 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1114}
1115
1116/* Object debug checks for alloc/free paths */
3ec09742
CL
1117static void setup_object_debug(struct kmem_cache *s, struct page *page,
1118 void *object)
1119{
8fc8d666 1120 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1121 return;
1122
f7cb1933 1123 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1124 init_tracking(s, object);
1125}
1126
a50b854e
MWO
1127static
1128void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1129{
8fc8d666 1130 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1131 return;
1132
1133 metadata_access_enable();
aa1ef4d7 1134 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1135 metadata_access_disable();
1136}
1137
becfda68 1138static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1139 struct page *page, void *object)
81819f0f
CL
1140{
1141 if (!check_slab(s, page))
becfda68 1142 return 0;
81819f0f 1143
81819f0f
CL
1144 if (!check_valid_pointer(s, page, object)) {
1145 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1146 return 0;
81819f0f
CL
1147 }
1148
f7cb1933 1149 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1150 return 0;
1151
1152 return 1;
1153}
1154
1155static noinline int alloc_debug_processing(struct kmem_cache *s,
1156 struct page *page,
1157 void *object, unsigned long addr)
1158{
1159 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1160 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1161 goto bad;
1162 }
81819f0f 1163
3ec09742
CL
1164 /* Success perform special debug activities for allocs */
1165 if (s->flags & SLAB_STORE_USER)
1166 set_track(s, object, TRACK_ALLOC, addr);
1167 trace(s, page, object, 1);
f7cb1933 1168 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1169 return 1;
3ec09742 1170
81819f0f
CL
1171bad:
1172 if (PageSlab(page)) {
1173 /*
1174 * If this is a slab page then lets do the best we can
1175 * to avoid issues in the future. Marking all objects
672bba3a 1176 * as used avoids touching the remaining objects.
81819f0f 1177 */
24922684 1178 slab_fix(s, "Marking all objects used");
39b26464 1179 page->inuse = page->objects;
a973e9dd 1180 page->freelist = NULL;
81819f0f
CL
1181 }
1182 return 0;
1183}
1184
becfda68
LA
1185static inline int free_consistency_checks(struct kmem_cache *s,
1186 struct page *page, void *object, unsigned long addr)
81819f0f 1187{
81819f0f 1188 if (!check_valid_pointer(s, page, object)) {
70d71228 1189 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1190 return 0;
81819f0f
CL
1191 }
1192
1193 if (on_freelist(s, page, object)) {
24922684 1194 object_err(s, page, object, "Object already free");
becfda68 1195 return 0;
81819f0f
CL
1196 }
1197
f7cb1933 1198 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1199 return 0;
81819f0f 1200
1b4f59e3 1201 if (unlikely(s != page->slab_cache)) {
3adbefee 1202 if (!PageSlab(page)) {
756a025f
JP
1203 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1204 object);
1b4f59e3 1205 } else if (!page->slab_cache) {
f9f58285
FF
1206 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1207 object);
70d71228 1208 dump_stack();
06428780 1209 } else
24922684
CL
1210 object_err(s, page, object,
1211 "page slab pointer corrupt.");
becfda68
LA
1212 return 0;
1213 }
1214 return 1;
1215}
1216
1217/* Supports checking bulk free of a constructed freelist */
1218static noinline int free_debug_processing(
1219 struct kmem_cache *s, struct page *page,
1220 void *head, void *tail, int bulk_cnt,
1221 unsigned long addr)
1222{
1223 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1224 void *object = head;
1225 int cnt = 0;
3f649ab7 1226 unsigned long flags;
becfda68
LA
1227 int ret = 0;
1228
1229 spin_lock_irqsave(&n->list_lock, flags);
1230 slab_lock(page);
1231
1232 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1233 if (!check_slab(s, page))
1234 goto out;
1235 }
1236
1237next_object:
1238 cnt++;
1239
1240 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1241 if (!free_consistency_checks(s, page, object, addr))
1242 goto out;
81819f0f 1243 }
3ec09742 1244
3ec09742
CL
1245 if (s->flags & SLAB_STORE_USER)
1246 set_track(s, object, TRACK_FREE, addr);
1247 trace(s, page, object, 0);
81084651 1248 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1249 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1250
1251 /* Reached end of constructed freelist yet? */
1252 if (object != tail) {
1253 object = get_freepointer(s, object);
1254 goto next_object;
1255 }
804aa132
LA
1256 ret = 1;
1257
5c2e4bbb 1258out:
81084651
JDB
1259 if (cnt != bulk_cnt)
1260 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1261 bulk_cnt, cnt);
1262
881db7fb 1263 slab_unlock(page);
282acb43 1264 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1265 if (!ret)
1266 slab_fix(s, "Object at 0x%p not freed", object);
1267 return ret;
81819f0f
CL
1268}
1269
e17f1dfb
VB
1270/*
1271 * Parse a block of slub_debug options. Blocks are delimited by ';'
1272 *
1273 * @str: start of block
1274 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1275 * @slabs: return start of list of slabs, or NULL when there's no list
1276 * @init: assume this is initial parsing and not per-kmem-create parsing
1277 *
1278 * returns the start of next block if there's any, or NULL
1279 */
1280static char *
1281parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1282{
e17f1dfb 1283 bool higher_order_disable = false;
f0630fff 1284
e17f1dfb
VB
1285 /* Skip any completely empty blocks */
1286 while (*str && *str == ';')
1287 str++;
1288
1289 if (*str == ',') {
f0630fff
CL
1290 /*
1291 * No options but restriction on slabs. This means full
1292 * debugging for slabs matching a pattern.
1293 */
e17f1dfb 1294 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1295 goto check_slabs;
e17f1dfb
VB
1296 }
1297 *flags = 0;
f0630fff 1298
e17f1dfb
VB
1299 /* Determine which debug features should be switched on */
1300 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1301 switch (tolower(*str)) {
e17f1dfb
VB
1302 case '-':
1303 *flags = 0;
1304 break;
f0630fff 1305 case 'f':
e17f1dfb 1306 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1307 break;
1308 case 'z':
e17f1dfb 1309 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1310 break;
1311 case 'p':
e17f1dfb 1312 *flags |= SLAB_POISON;
f0630fff
CL
1313 break;
1314 case 'u':
e17f1dfb 1315 *flags |= SLAB_STORE_USER;
f0630fff
CL
1316 break;
1317 case 't':
e17f1dfb 1318 *flags |= SLAB_TRACE;
f0630fff 1319 break;
4c13dd3b 1320 case 'a':
e17f1dfb 1321 *flags |= SLAB_FAILSLAB;
4c13dd3b 1322 break;
08303a73
CA
1323 case 'o':
1324 /*
1325 * Avoid enabling debugging on caches if its minimum
1326 * order would increase as a result.
1327 */
e17f1dfb 1328 higher_order_disable = true;
08303a73 1329 break;
f0630fff 1330 default:
e17f1dfb
VB
1331 if (init)
1332 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1333 }
41ecc55b 1334 }
f0630fff 1335check_slabs:
41ecc55b 1336 if (*str == ',')
e17f1dfb
VB
1337 *slabs = ++str;
1338 else
1339 *slabs = NULL;
1340
1341 /* Skip over the slab list */
1342 while (*str && *str != ';')
1343 str++;
1344
1345 /* Skip any completely empty blocks */
1346 while (*str && *str == ';')
1347 str++;
1348
1349 if (init && higher_order_disable)
1350 disable_higher_order_debug = 1;
1351
1352 if (*str)
1353 return str;
1354 else
1355 return NULL;
1356}
1357
1358static int __init setup_slub_debug(char *str)
1359{
1360 slab_flags_t flags;
1361 char *saved_str;
1362 char *slab_list;
1363 bool global_slub_debug_changed = false;
1364 bool slab_list_specified = false;
1365
1366 slub_debug = DEBUG_DEFAULT_FLAGS;
1367 if (*str++ != '=' || !*str)
1368 /*
1369 * No options specified. Switch on full debugging.
1370 */
1371 goto out;
1372
1373 saved_str = str;
1374 while (str) {
1375 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1376
1377 if (!slab_list) {
1378 slub_debug = flags;
1379 global_slub_debug_changed = true;
1380 } else {
1381 slab_list_specified = true;
1382 }
1383 }
1384
1385 /*
1386 * For backwards compatibility, a single list of flags with list of
1387 * slabs means debugging is only enabled for those slabs, so the global
1388 * slub_debug should be 0. We can extended that to multiple lists as
1389 * long as there is no option specifying flags without a slab list.
1390 */
1391 if (slab_list_specified) {
1392 if (!global_slub_debug_changed)
1393 slub_debug = 0;
1394 slub_debug_string = saved_str;
1395 }
f0630fff 1396out:
ca0cab65
VB
1397 if (slub_debug != 0 || slub_debug_string)
1398 static_branch_enable(&slub_debug_enabled);
6471384a
AP
1399 if ((static_branch_unlikely(&init_on_alloc) ||
1400 static_branch_unlikely(&init_on_free)) &&
1401 (slub_debug & SLAB_POISON))
1402 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1403 return 1;
1404}
1405
1406__setup("slub_debug", setup_slub_debug);
1407
c5fd3ca0
AT
1408/*
1409 * kmem_cache_flags - apply debugging options to the cache
1410 * @object_size: the size of an object without meta data
1411 * @flags: flags to set
1412 * @name: name of the cache
c5fd3ca0
AT
1413 *
1414 * Debug option(s) are applied to @flags. In addition to the debug
1415 * option(s), if a slab name (or multiple) is specified i.e.
1416 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1417 * then only the select slabs will receive the debug option(s).
1418 */
0293d1fd 1419slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1420 slab_flags_t flags, const char *name)
41ecc55b 1421{
c5fd3ca0
AT
1422 char *iter;
1423 size_t len;
e17f1dfb
VB
1424 char *next_block;
1425 slab_flags_t block_flags;
ca220593
JB
1426 slab_flags_t slub_debug_local = slub_debug;
1427
1428 /*
1429 * If the slab cache is for debugging (e.g. kmemleak) then
1430 * don't store user (stack trace) information by default,
1431 * but let the user enable it via the command line below.
1432 */
1433 if (flags & SLAB_NOLEAKTRACE)
1434 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1435
c5fd3ca0 1436 len = strlen(name);
e17f1dfb
VB
1437 next_block = slub_debug_string;
1438 /* Go through all blocks of debug options, see if any matches our slab's name */
1439 while (next_block) {
1440 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1441 if (!iter)
1442 continue;
1443 /* Found a block that has a slab list, search it */
1444 while (*iter) {
1445 char *end, *glob;
1446 size_t cmplen;
1447
1448 end = strchrnul(iter, ',');
1449 if (next_block && next_block < end)
1450 end = next_block - 1;
1451
1452 glob = strnchr(iter, end - iter, '*');
1453 if (glob)
1454 cmplen = glob - iter;
1455 else
1456 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1457
e17f1dfb
VB
1458 if (!strncmp(name, iter, cmplen)) {
1459 flags |= block_flags;
1460 return flags;
1461 }
c5fd3ca0 1462
e17f1dfb
VB
1463 if (!*end || *end == ';')
1464 break;
1465 iter = end + 1;
c5fd3ca0 1466 }
c5fd3ca0 1467 }
ba0268a8 1468
ca220593 1469 return flags | slub_debug_local;
41ecc55b 1470}
b4a64718 1471#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1472static inline void setup_object_debug(struct kmem_cache *s,
1473 struct page *page, void *object) {}
a50b854e
MWO
1474static inline
1475void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1476
3ec09742 1477static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1478 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1479
282acb43 1480static inline int free_debug_processing(
81084651
JDB
1481 struct kmem_cache *s, struct page *page,
1482 void *head, void *tail, int bulk_cnt,
282acb43 1483 unsigned long addr) { return 0; }
41ecc55b 1484
41ecc55b
CL
1485static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1486 { return 1; }
1487static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1488 void *object, u8 val) { return 1; }
5cc6eee8
CL
1489static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1490 struct page *page) {}
c65c1877
PZ
1491static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1492 struct page *page) {}
0293d1fd 1493slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1494 slab_flags_t flags, const char *name)
ba0268a8
CL
1495{
1496 return flags;
1497}
41ecc55b 1498#define slub_debug 0
0f389ec6 1499
fdaa45e9
IM
1500#define disable_higher_order_debug 0
1501
0f389ec6
CL
1502static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1503 { return 0; }
26c02cf0
AB
1504static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1505 { return 0; }
205ab99d
CL
1506static inline void inc_slabs_node(struct kmem_cache *s, int node,
1507 int objects) {}
1508static inline void dec_slabs_node(struct kmem_cache *s, int node,
1509 int objects) {}
7d550c56 1510
52f23478 1511static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1512 void **freelist, void *nextfree)
52f23478
DZ
1513{
1514 return false;
1515}
02e72cc6
AR
1516#endif /* CONFIG_SLUB_DEBUG */
1517
1518/*
1519 * Hooks for other subsystems that check memory allocations. In a typical
1520 * production configuration these hooks all should produce no code at all.
1521 */
0116523c 1522static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1523{
53128245 1524 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1525 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1526 kmemleak_alloc(ptr, size, 1, flags);
53128245 1527 return ptr;
d56791b3
RB
1528}
1529
ee3ce779 1530static __always_inline void kfree_hook(void *x)
d56791b3
RB
1531{
1532 kmemleak_free(x);
027b37b5 1533 kasan_kfree_large(x);
d56791b3
RB
1534}
1535
d57a964e
AK
1536static __always_inline bool slab_free_hook(struct kmem_cache *s,
1537 void *x, bool init)
d56791b3
RB
1538{
1539 kmemleak_free_recursive(x, s->flags);
7d550c56 1540
02e72cc6
AR
1541 /*
1542 * Trouble is that we may no longer disable interrupts in the fast path
1543 * So in order to make the debug calls that expect irqs to be
1544 * disabled we need to disable interrupts temporarily.
1545 */
4675ff05 1546#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1547 {
1548 unsigned long flags;
1549
1550 local_irq_save(flags);
02e72cc6
AR
1551 debug_check_no_locks_freed(x, s->object_size);
1552 local_irq_restore(flags);
1553 }
1554#endif
1555 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1556 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1557
cfbe1636
ME
1558 /* Use KCSAN to help debug racy use-after-free. */
1559 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1560 __kcsan_check_access(x, s->object_size,
1561 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1562
d57a964e
AK
1563 /*
1564 * As memory initialization might be integrated into KASAN,
1565 * kasan_slab_free and initialization memset's must be
1566 * kept together to avoid discrepancies in behavior.
1567 *
1568 * The initialization memset's clear the object and the metadata,
1569 * but don't touch the SLAB redzone.
1570 */
1571 if (init) {
1572 int rsize;
1573
1574 if (!kasan_has_integrated_init())
1575 memset(kasan_reset_tag(x), 0, s->object_size);
1576 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1577 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1578 s->size - s->inuse - rsize);
1579 }
1580 /* KASAN might put x into memory quarantine, delaying its reuse. */
1581 return kasan_slab_free(s, x, init);
02e72cc6 1582}
205ab99d 1583
c3895391
AK
1584static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1585 void **head, void **tail)
81084651 1586{
6471384a
AP
1587
1588 void *object;
1589 void *next = *head;
1590 void *old_tail = *tail ? *tail : *head;
6471384a 1591
b89fb5ef 1592 if (is_kfence_address(next)) {
d57a964e 1593 slab_free_hook(s, next, false);
b89fb5ef
AP
1594 return true;
1595 }
1596
aea4df4c
LA
1597 /* Head and tail of the reconstructed freelist */
1598 *head = NULL;
1599 *tail = NULL;
1b7e816f 1600
aea4df4c
LA
1601 do {
1602 object = next;
1603 next = get_freepointer(s, object);
1604
c3895391 1605 /* If object's reuse doesn't have to be delayed */
d57a964e 1606 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1607 /* Move object to the new freelist */
1608 set_freepointer(s, object, *head);
1609 *head = object;
1610 if (!*tail)
1611 *tail = object;
1612 }
1613 } while (object != old_tail);
1614
1615 if (*head == *tail)
1616 *tail = NULL;
1617
1618 return *head != NULL;
81084651
JDB
1619}
1620
4d176711 1621static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1622 void *object)
1623{
1624 setup_object_debug(s, page, object);
4d176711 1625 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1626 if (unlikely(s->ctor)) {
1627 kasan_unpoison_object_data(s, object);
1628 s->ctor(object);
1629 kasan_poison_object_data(s, object);
1630 }
4d176711 1631 return object;
588f8ba9
TG
1632}
1633
81819f0f
CL
1634/*
1635 * Slab allocation and freeing
1636 */
5dfb4175
VD
1637static inline struct page *alloc_slab_page(struct kmem_cache *s,
1638 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1639{
5dfb4175 1640 struct page *page;
19af27af 1641 unsigned int order = oo_order(oo);
65c3376a 1642
2154a336 1643 if (node == NUMA_NO_NODE)
5dfb4175 1644 page = alloc_pages(flags, order);
65c3376a 1645 else
96db800f 1646 page = __alloc_pages_node(node, flags, order);
5dfb4175 1647
5dfb4175 1648 return page;
65c3376a
CL
1649}
1650
210e7a43
TG
1651#ifdef CONFIG_SLAB_FREELIST_RANDOM
1652/* Pre-initialize the random sequence cache */
1653static int init_cache_random_seq(struct kmem_cache *s)
1654{
19af27af 1655 unsigned int count = oo_objects(s->oo);
210e7a43 1656 int err;
210e7a43 1657
a810007a
SR
1658 /* Bailout if already initialised */
1659 if (s->random_seq)
1660 return 0;
1661
210e7a43
TG
1662 err = cache_random_seq_create(s, count, GFP_KERNEL);
1663 if (err) {
1664 pr_err("SLUB: Unable to initialize free list for %s\n",
1665 s->name);
1666 return err;
1667 }
1668
1669 /* Transform to an offset on the set of pages */
1670 if (s->random_seq) {
19af27af
AD
1671 unsigned int i;
1672
210e7a43
TG
1673 for (i = 0; i < count; i++)
1674 s->random_seq[i] *= s->size;
1675 }
1676 return 0;
1677}
1678
1679/* Initialize each random sequence freelist per cache */
1680static void __init init_freelist_randomization(void)
1681{
1682 struct kmem_cache *s;
1683
1684 mutex_lock(&slab_mutex);
1685
1686 list_for_each_entry(s, &slab_caches, list)
1687 init_cache_random_seq(s);
1688
1689 mutex_unlock(&slab_mutex);
1690}
1691
1692/* Get the next entry on the pre-computed freelist randomized */
1693static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1694 unsigned long *pos, void *start,
1695 unsigned long page_limit,
1696 unsigned long freelist_count)
1697{
1698 unsigned int idx;
1699
1700 /*
1701 * If the target page allocation failed, the number of objects on the
1702 * page might be smaller than the usual size defined by the cache.
1703 */
1704 do {
1705 idx = s->random_seq[*pos];
1706 *pos += 1;
1707 if (*pos >= freelist_count)
1708 *pos = 0;
1709 } while (unlikely(idx >= page_limit));
1710
1711 return (char *)start + idx;
1712}
1713
1714/* Shuffle the single linked freelist based on a random pre-computed sequence */
1715static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1716{
1717 void *start;
1718 void *cur;
1719 void *next;
1720 unsigned long idx, pos, page_limit, freelist_count;
1721
1722 if (page->objects < 2 || !s->random_seq)
1723 return false;
1724
1725 freelist_count = oo_objects(s->oo);
1726 pos = get_random_int() % freelist_count;
1727
1728 page_limit = page->objects * s->size;
1729 start = fixup_red_left(s, page_address(page));
1730
1731 /* First entry is used as the base of the freelist */
1732 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1733 freelist_count);
4d176711 1734 cur = setup_object(s, page, cur);
210e7a43
TG
1735 page->freelist = cur;
1736
1737 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1738 next = next_freelist_entry(s, page, &pos, start, page_limit,
1739 freelist_count);
4d176711 1740 next = setup_object(s, page, next);
210e7a43
TG
1741 set_freepointer(s, cur, next);
1742 cur = next;
1743 }
210e7a43
TG
1744 set_freepointer(s, cur, NULL);
1745
1746 return true;
1747}
1748#else
1749static inline int init_cache_random_seq(struct kmem_cache *s)
1750{
1751 return 0;
1752}
1753static inline void init_freelist_randomization(void) { }
1754static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1755{
1756 return false;
1757}
1758#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1759
81819f0f
CL
1760static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1761{
06428780 1762 struct page *page;
834f3d11 1763 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1764 gfp_t alloc_gfp;
4d176711 1765 void *start, *p, *next;
a50b854e 1766 int idx;
210e7a43 1767 bool shuffle;
81819f0f 1768
7e0528da
CL
1769 flags &= gfp_allowed_mask;
1770
d0164adc 1771 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1772 local_irq_enable();
1773
b7a49f0d 1774 flags |= s->allocflags;
e12ba74d 1775
ba52270d
PE
1776 /*
1777 * Let the initial higher-order allocation fail under memory pressure
1778 * so we fall-back to the minimum order allocation.
1779 */
1780 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1781 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1782 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1783
5dfb4175 1784 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1785 if (unlikely(!page)) {
1786 oo = s->min;
80c3a998 1787 alloc_gfp = flags;
65c3376a
CL
1788 /*
1789 * Allocation may have failed due to fragmentation.
1790 * Try a lower order alloc if possible
1791 */
5dfb4175 1792 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1793 if (unlikely(!page))
1794 goto out;
1795 stat(s, ORDER_FALLBACK);
65c3376a 1796 }
5a896d9e 1797
834f3d11 1798 page->objects = oo_objects(oo);
81819f0f 1799
2e9bd483 1800 account_slab_page(page, oo_order(oo), s, flags);
1f3147b4 1801
1b4f59e3 1802 page->slab_cache = s;
c03f94cc 1803 __SetPageSlab(page);
2f064f34 1804 if (page_is_pfmemalloc(page))
072bb0aa 1805 SetPageSlabPfmemalloc(page);
81819f0f 1806
a7101224 1807 kasan_poison_slab(page);
81819f0f 1808
a7101224 1809 start = page_address(page);
81819f0f 1810
a50b854e 1811 setup_page_debug(s, page, start);
0316bec2 1812
210e7a43
TG
1813 shuffle = shuffle_freelist(s, page);
1814
1815 if (!shuffle) {
4d176711
AK
1816 start = fixup_red_left(s, start);
1817 start = setup_object(s, page, start);
1818 page->freelist = start;
18e50661
AK
1819 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1820 next = p + s->size;
1821 next = setup_object(s, page, next);
1822 set_freepointer(s, p, next);
1823 p = next;
1824 }
1825 set_freepointer(s, p, NULL);
81819f0f 1826 }
81819f0f 1827
e6e82ea1 1828 page->inuse = page->objects;
8cb0a506 1829 page->frozen = 1;
588f8ba9 1830
81819f0f 1831out:
d0164adc 1832 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1833 local_irq_disable();
1834 if (!page)
1835 return NULL;
1836
588f8ba9
TG
1837 inc_slabs_node(s, page_to_nid(page), page->objects);
1838
81819f0f
CL
1839 return page;
1840}
1841
588f8ba9
TG
1842static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1843{
44405099
LL
1844 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1845 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1846
1847 return allocate_slab(s,
1848 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1849}
1850
81819f0f
CL
1851static void __free_slab(struct kmem_cache *s, struct page *page)
1852{
834f3d11
CL
1853 int order = compound_order(page);
1854 int pages = 1 << order;
81819f0f 1855
8fc8d666 1856 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1857 void *p;
1858
1859 slab_pad_check(s, page);
224a88be
CL
1860 for_each_object(p, s, page_address(page),
1861 page->objects)
f7cb1933 1862 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1863 }
1864
072bb0aa 1865 __ClearPageSlabPfmemalloc(page);
49bd5221 1866 __ClearPageSlab(page);
0c06dd75
VB
1867 /* In union with page->mapping where page allocator expects NULL */
1868 page->slab_cache = NULL;
1eb5ac64
NP
1869 if (current->reclaim_state)
1870 current->reclaim_state->reclaimed_slab += pages;
74d555be 1871 unaccount_slab_page(page, order, s);
27ee57c9 1872 __free_pages(page, order);
81819f0f
CL
1873}
1874
1875static void rcu_free_slab(struct rcu_head *h)
1876{
bf68c214 1877 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1878
1b4f59e3 1879 __free_slab(page->slab_cache, page);
81819f0f
CL
1880}
1881
1882static void free_slab(struct kmem_cache *s, struct page *page)
1883{
5f0d5a3a 1884 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1885 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1886 } else
1887 __free_slab(s, page);
1888}
1889
1890static void discard_slab(struct kmem_cache *s, struct page *page)
1891{
205ab99d 1892 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1893 free_slab(s, page);
1894}
1895
1896/*
5cc6eee8 1897 * Management of partially allocated slabs.
81819f0f 1898 */
1e4dd946
SR
1899static inline void
1900__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1901{
e95eed57 1902 n->nr_partial++;
136333d1 1903 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1904 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1905 else
916ac052 1906 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1907}
1908
1e4dd946
SR
1909static inline void add_partial(struct kmem_cache_node *n,
1910 struct page *page, int tail)
62e346a8 1911{
c65c1877 1912 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1913 __add_partial(n, page, tail);
1914}
c65c1877 1915
1e4dd946
SR
1916static inline void remove_partial(struct kmem_cache_node *n,
1917 struct page *page)
1918{
1919 lockdep_assert_held(&n->list_lock);
916ac052 1920 list_del(&page->slab_list);
52b4b950 1921 n->nr_partial--;
1e4dd946
SR
1922}
1923
81819f0f 1924/*
7ced3719
CL
1925 * Remove slab from the partial list, freeze it and
1926 * return the pointer to the freelist.
81819f0f 1927 *
497b66f2 1928 * Returns a list of objects or NULL if it fails.
81819f0f 1929 */
497b66f2 1930static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1931 struct kmem_cache_node *n, struct page *page,
633b0764 1932 int mode, int *objects)
81819f0f 1933{
2cfb7455
CL
1934 void *freelist;
1935 unsigned long counters;
1936 struct page new;
1937
c65c1877
PZ
1938 lockdep_assert_held(&n->list_lock);
1939
2cfb7455
CL
1940 /*
1941 * Zap the freelist and set the frozen bit.
1942 * The old freelist is the list of objects for the
1943 * per cpu allocation list.
1944 */
7ced3719
CL
1945 freelist = page->freelist;
1946 counters = page->counters;
1947 new.counters = counters;
633b0764 1948 *objects = new.objects - new.inuse;
23910c50 1949 if (mode) {
7ced3719 1950 new.inuse = page->objects;
23910c50
PE
1951 new.freelist = NULL;
1952 } else {
1953 new.freelist = freelist;
1954 }
2cfb7455 1955
a0132ac0 1956 VM_BUG_ON(new.frozen);
7ced3719 1957 new.frozen = 1;
2cfb7455 1958
7ced3719 1959 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1960 freelist, counters,
02d7633f 1961 new.freelist, new.counters,
7ced3719 1962 "acquire_slab"))
7ced3719 1963 return NULL;
2cfb7455
CL
1964
1965 remove_partial(n, page);
7ced3719 1966 WARN_ON(!freelist);
49e22585 1967 return freelist;
81819f0f
CL
1968}
1969
633b0764 1970static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1971static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1972
81819f0f 1973/*
672bba3a 1974 * Try to allocate a partial slab from a specific node.
81819f0f 1975 */
8ba00bb6
JK
1976static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1977 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1978{
49e22585
CL
1979 struct page *page, *page2;
1980 void *object = NULL;
e5d9998f 1981 unsigned int available = 0;
633b0764 1982 int objects;
81819f0f
CL
1983
1984 /*
1985 * Racy check. If we mistakenly see no partial slabs then we
1986 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 1987 * partial slab and there is none available then get_partial()
672bba3a 1988 * will return NULL.
81819f0f
CL
1989 */
1990 if (!n || !n->nr_partial)
1991 return NULL;
1992
1993 spin_lock(&n->list_lock);
916ac052 1994 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1995 void *t;
49e22585 1996
8ba00bb6
JK
1997 if (!pfmemalloc_match(page, flags))
1998 continue;
1999
633b0764 2000 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 2001 if (!t)
9b1ea29b 2002 break;
49e22585 2003
633b0764 2004 available += objects;
12d79634 2005 if (!object) {
49e22585 2006 c->page = page;
49e22585 2007 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2008 object = t;
49e22585 2009 } else {
633b0764 2010 put_cpu_partial(s, page, 0);
8028dcea 2011 stat(s, CPU_PARTIAL_NODE);
49e22585 2012 }
345c905d 2013 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 2014 || available > slub_cpu_partial(s) / 2)
49e22585
CL
2015 break;
2016
497b66f2 2017 }
81819f0f 2018 spin_unlock(&n->list_lock);
497b66f2 2019 return object;
81819f0f
CL
2020}
2021
2022/*
672bba3a 2023 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2024 */
de3ec035 2025static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2026 struct kmem_cache_cpu *c)
81819f0f
CL
2027{
2028#ifdef CONFIG_NUMA
2029 struct zonelist *zonelist;
dd1a239f 2030 struct zoneref *z;
54a6eb5c 2031 struct zone *zone;
97a225e6 2032 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2033 void *object;
cc9a6c87 2034 unsigned int cpuset_mems_cookie;
81819f0f
CL
2035
2036 /*
672bba3a
CL
2037 * The defrag ratio allows a configuration of the tradeoffs between
2038 * inter node defragmentation and node local allocations. A lower
2039 * defrag_ratio increases the tendency to do local allocations
2040 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2041 *
672bba3a
CL
2042 * If the defrag_ratio is set to 0 then kmalloc() always
2043 * returns node local objects. If the ratio is higher then kmalloc()
2044 * may return off node objects because partial slabs are obtained
2045 * from other nodes and filled up.
81819f0f 2046 *
43efd3ea
LP
2047 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2048 * (which makes defrag_ratio = 1000) then every (well almost)
2049 * allocation will first attempt to defrag slab caches on other nodes.
2050 * This means scanning over all nodes to look for partial slabs which
2051 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2052 * with available objects.
81819f0f 2053 */
9824601e
CL
2054 if (!s->remote_node_defrag_ratio ||
2055 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2056 return NULL;
2057
cc9a6c87 2058 do {
d26914d1 2059 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2060 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2061 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2062 struct kmem_cache_node *n;
2063
2064 n = get_node(s, zone_to_nid(zone));
2065
dee2f8aa 2066 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2067 n->nr_partial > s->min_partial) {
8ba00bb6 2068 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2069 if (object) {
2070 /*
d26914d1
MG
2071 * Don't check read_mems_allowed_retry()
2072 * here - if mems_allowed was updated in
2073 * parallel, that was a harmless race
2074 * between allocation and the cpuset
2075 * update
cc9a6c87 2076 */
cc9a6c87
MG
2077 return object;
2078 }
c0ff7453 2079 }
81819f0f 2080 }
d26914d1 2081 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2082#endif /* CONFIG_NUMA */
81819f0f
CL
2083 return NULL;
2084}
2085
2086/*
2087 * Get a partial page, lock it and return it.
2088 */
497b66f2 2089static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2090 struct kmem_cache_cpu *c)
81819f0f 2091{
497b66f2 2092 void *object;
a561ce00
JK
2093 int searchnode = node;
2094
2095 if (node == NUMA_NO_NODE)
2096 searchnode = numa_mem_id();
81819f0f 2097
8ba00bb6 2098 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2099 if (object || node != NUMA_NO_NODE)
2100 return object;
81819f0f 2101
acd19fd1 2102 return get_any_partial(s, flags, c);
81819f0f
CL
2103}
2104
923717cb 2105#ifdef CONFIG_PREEMPTION
8a5ec0ba 2106/*
0d645ed1 2107 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2108 * during cmpxchg. The transactions start with the cpu number and are then
2109 * incremented by CONFIG_NR_CPUS.
2110 */
2111#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2112#else
2113/*
2114 * No preemption supported therefore also no need to check for
2115 * different cpus.
2116 */
2117#define TID_STEP 1
2118#endif
2119
2120static inline unsigned long next_tid(unsigned long tid)
2121{
2122 return tid + TID_STEP;
2123}
2124
9d5f0be0 2125#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2126static inline unsigned int tid_to_cpu(unsigned long tid)
2127{
2128 return tid % TID_STEP;
2129}
2130
2131static inline unsigned long tid_to_event(unsigned long tid)
2132{
2133 return tid / TID_STEP;
2134}
9d5f0be0 2135#endif
8a5ec0ba
CL
2136
2137static inline unsigned int init_tid(int cpu)
2138{
2139 return cpu;
2140}
2141
2142static inline void note_cmpxchg_failure(const char *n,
2143 const struct kmem_cache *s, unsigned long tid)
2144{
2145#ifdef SLUB_DEBUG_CMPXCHG
2146 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2147
f9f58285 2148 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2149
923717cb 2150#ifdef CONFIG_PREEMPTION
8a5ec0ba 2151 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2152 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2153 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2154 else
2155#endif
2156 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2157 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2158 tid_to_event(tid), tid_to_event(actual_tid));
2159 else
f9f58285 2160 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2161 actual_tid, tid, next_tid(tid));
2162#endif
4fdccdfb 2163 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2164}
2165
788e1aad 2166static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2167{
8a5ec0ba
CL
2168 int cpu;
2169
2170 for_each_possible_cpu(cpu)
2171 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2172}
2cfb7455 2173
81819f0f
CL
2174/*
2175 * Remove the cpu slab
2176 */
d0e0ac97 2177static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2178 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2179{
2cfb7455 2180 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455 2181 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
d930ff03 2182 int lock = 0, free_delta = 0;
2cfb7455 2183 enum slab_modes l = M_NONE, m = M_NONE;
d930ff03 2184 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2185 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2186 struct page new;
2187 struct page old;
2188
2189 if (page->freelist) {
84e554e6 2190 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2191 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2192 }
2193
894b8788 2194 /*
d930ff03
VB
2195 * Stage one: Count the objects on cpu's freelist as free_delta and
2196 * remember the last object in freelist_tail for later splicing.
2cfb7455 2197 */
d930ff03
VB
2198 freelist_tail = NULL;
2199 freelist_iter = freelist;
2200 while (freelist_iter) {
2201 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2202
52f23478
DZ
2203 /*
2204 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2205 * 'freelist_iter' is already corrupted. So isolate all objects
2206 * starting at 'freelist_iter' by skipping them.
52f23478 2207 */
d930ff03 2208 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
52f23478
DZ
2209 break;
2210
d930ff03
VB
2211 freelist_tail = freelist_iter;
2212 free_delta++;
2cfb7455 2213
d930ff03 2214 freelist_iter = nextfree;
2cfb7455
CL
2215 }
2216
894b8788 2217 /*
d930ff03
VB
2218 * Stage two: Unfreeze the page while splicing the per-cpu
2219 * freelist to the head of page's freelist.
2220 *
2221 * Ensure that the page is unfrozen while the list presence
2222 * reflects the actual number of objects during unfreeze.
2cfb7455
CL
2223 *
2224 * We setup the list membership and then perform a cmpxchg
2225 * with the count. If there is a mismatch then the page
2226 * is not unfrozen but the page is on the wrong list.
2227 *
2228 * Then we restart the process which may have to remove
2229 * the page from the list that we just put it on again
2230 * because the number of objects in the slab may have
2231 * changed.
894b8788 2232 */
2cfb7455 2233redo:
894b8788 2234
d930ff03
VB
2235 old.freelist = READ_ONCE(page->freelist);
2236 old.counters = READ_ONCE(page->counters);
a0132ac0 2237 VM_BUG_ON(!old.frozen);
7c2e132c 2238
2cfb7455
CL
2239 /* Determine target state of the slab */
2240 new.counters = old.counters;
d930ff03
VB
2241 if (freelist_tail) {
2242 new.inuse -= free_delta;
2243 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2244 new.freelist = freelist;
2245 } else
2246 new.freelist = old.freelist;
2247
2248 new.frozen = 0;
2249
8a5b20ae 2250 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2251 m = M_FREE;
2252 else if (new.freelist) {
2253 m = M_PARTIAL;
2254 if (!lock) {
2255 lock = 1;
2256 /*
8bb4e7a2 2257 * Taking the spinlock removes the possibility
2cfb7455
CL
2258 * that acquire_slab() will see a slab page that
2259 * is frozen
2260 */
2261 spin_lock(&n->list_lock);
2262 }
2263 } else {
2264 m = M_FULL;
965c4848 2265 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2266 lock = 1;
2267 /*
2268 * This also ensures that the scanning of full
2269 * slabs from diagnostic functions will not see
2270 * any frozen slabs.
2271 */
2272 spin_lock(&n->list_lock);
2273 }
2274 }
2275
2276 if (l != m) {
2cfb7455 2277 if (l == M_PARTIAL)
2cfb7455 2278 remove_partial(n, page);
2cfb7455 2279 else if (l == M_FULL)
c65c1877 2280 remove_full(s, n, page);
2cfb7455 2281
88349a28 2282 if (m == M_PARTIAL)
2cfb7455 2283 add_partial(n, page, tail);
88349a28 2284 else if (m == M_FULL)
2cfb7455 2285 add_full(s, n, page);
2cfb7455
CL
2286 }
2287
2288 l = m;
1d07171c 2289 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2290 old.freelist, old.counters,
2291 new.freelist, new.counters,
2292 "unfreezing slab"))
2293 goto redo;
2294
2cfb7455
CL
2295 if (lock)
2296 spin_unlock(&n->list_lock);
2297
88349a28
WY
2298 if (m == M_PARTIAL)
2299 stat(s, tail);
2300 else if (m == M_FULL)
2301 stat(s, DEACTIVATE_FULL);
2302 else if (m == M_FREE) {
2cfb7455
CL
2303 stat(s, DEACTIVATE_EMPTY);
2304 discard_slab(s, page);
2305 stat(s, FREE_SLAB);
894b8788 2306 }
d4ff6d35
WY
2307
2308 c->page = NULL;
2309 c->freelist = NULL;
81819f0f
CL
2310}
2311
d24ac77f
JK
2312/*
2313 * Unfreeze all the cpu partial slabs.
2314 *
59a09917
CL
2315 * This function must be called with interrupts disabled
2316 * for the cpu using c (or some other guarantee must be there
2317 * to guarantee no concurrent accesses).
d24ac77f 2318 */
59a09917
CL
2319static void unfreeze_partials(struct kmem_cache *s,
2320 struct kmem_cache_cpu *c)
49e22585 2321{
345c905d 2322#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2323 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2324 struct page *page, *discard_page = NULL;
49e22585 2325
4c7ba22e 2326 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2327 struct page new;
2328 struct page old;
2329
4c7ba22e 2330 slub_set_percpu_partial(c, page);
43d77867
JK
2331
2332 n2 = get_node(s, page_to_nid(page));
2333 if (n != n2) {
2334 if (n)
2335 spin_unlock(&n->list_lock);
2336
2337 n = n2;
2338 spin_lock(&n->list_lock);
2339 }
49e22585
CL
2340
2341 do {
2342
2343 old.freelist = page->freelist;
2344 old.counters = page->counters;
a0132ac0 2345 VM_BUG_ON(!old.frozen);
49e22585
CL
2346
2347 new.counters = old.counters;
2348 new.freelist = old.freelist;
2349
2350 new.frozen = 0;
2351
d24ac77f 2352 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2353 old.freelist, old.counters,
2354 new.freelist, new.counters,
2355 "unfreezing slab"));
2356
8a5b20ae 2357 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2358 page->next = discard_page;
2359 discard_page = page;
43d77867
JK
2360 } else {
2361 add_partial(n, page, DEACTIVATE_TO_TAIL);
2362 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2363 }
2364 }
2365
2366 if (n)
2367 spin_unlock(&n->list_lock);
9ada1934
SL
2368
2369 while (discard_page) {
2370 page = discard_page;
2371 discard_page = discard_page->next;
2372
2373 stat(s, DEACTIVATE_EMPTY);
2374 discard_slab(s, page);
2375 stat(s, FREE_SLAB);
2376 }
6dfd1b65 2377#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2378}
2379
2380/*
9234bae9
WY
2381 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2382 * partial page slot if available.
49e22585
CL
2383 *
2384 * If we did not find a slot then simply move all the partials to the
2385 * per node partial list.
2386 */
633b0764 2387static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2388{
345c905d 2389#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2390 struct page *oldpage;
2391 int pages;
2392 int pobjects;
2393
d6e0b7fa 2394 preempt_disable();
49e22585
CL
2395 do {
2396 pages = 0;
2397 pobjects = 0;
2398 oldpage = this_cpu_read(s->cpu_slab->partial);
2399
2400 if (oldpage) {
2401 pobjects = oldpage->pobjects;
2402 pages = oldpage->pages;
bbd4e305 2403 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2404 unsigned long flags;
2405 /*
2406 * partial array is full. Move the existing
2407 * set to the per node partial list.
2408 */
2409 local_irq_save(flags);
59a09917 2410 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2411 local_irq_restore(flags);
e24fc410 2412 oldpage = NULL;
49e22585
CL
2413 pobjects = 0;
2414 pages = 0;
8028dcea 2415 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2416 }
2417 }
2418
2419 pages++;
2420 pobjects += page->objects - page->inuse;
2421
2422 page->pages = pages;
2423 page->pobjects = pobjects;
2424 page->next = oldpage;
2425
d0e0ac97
CG
2426 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2427 != oldpage);
bbd4e305 2428 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2429 unsigned long flags;
2430
2431 local_irq_save(flags);
2432 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2433 local_irq_restore(flags);
2434 }
2435 preempt_enable();
6dfd1b65 2436#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2437}
2438
dfb4f096 2439static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2440{
84e554e6 2441 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2442 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2443
2444 c->tid = next_tid(c->tid);
81819f0f
CL
2445}
2446
2447/*
2448 * Flush cpu slab.
6446faa2 2449 *
81819f0f
CL
2450 * Called from IPI handler with interrupts disabled.
2451 */
0c710013 2452static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2453{
9dfc6e68 2454 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2455
1265ef2d
WY
2456 if (c->page)
2457 flush_slab(s, c);
49e22585 2458
1265ef2d 2459 unfreeze_partials(s, c);
81819f0f
CL
2460}
2461
2462static void flush_cpu_slab(void *d)
2463{
2464 struct kmem_cache *s = d;
81819f0f 2465
dfb4f096 2466 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2467}
2468
a8364d55
GBY
2469static bool has_cpu_slab(int cpu, void *info)
2470{
2471 struct kmem_cache *s = info;
2472 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2473
a93cf07b 2474 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2475}
2476
81819f0f
CL
2477static void flush_all(struct kmem_cache *s)
2478{
cb923159 2479 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2480}
2481
a96a87bf
SAS
2482/*
2483 * Use the cpu notifier to insure that the cpu slabs are flushed when
2484 * necessary.
2485 */
2486static int slub_cpu_dead(unsigned int cpu)
2487{
2488 struct kmem_cache *s;
2489 unsigned long flags;
2490
2491 mutex_lock(&slab_mutex);
2492 list_for_each_entry(s, &slab_caches, list) {
2493 local_irq_save(flags);
2494 __flush_cpu_slab(s, cpu);
2495 local_irq_restore(flags);
2496 }
2497 mutex_unlock(&slab_mutex);
2498 return 0;
2499}
2500
dfb4f096
CL
2501/*
2502 * Check if the objects in a per cpu structure fit numa
2503 * locality expectations.
2504 */
57d437d2 2505static inline int node_match(struct page *page, int node)
dfb4f096
CL
2506{
2507#ifdef CONFIG_NUMA
6159d0f5 2508 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2509 return 0;
2510#endif
2511 return 1;
2512}
2513
9a02d699 2514#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2515static int count_free(struct page *page)
2516{
2517 return page->objects - page->inuse;
2518}
2519
9a02d699
DR
2520static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2521{
2522 return atomic_long_read(&n->total_objects);
2523}
2524#endif /* CONFIG_SLUB_DEBUG */
2525
2526#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2527static unsigned long count_partial(struct kmem_cache_node *n,
2528 int (*get_count)(struct page *))
2529{
2530 unsigned long flags;
2531 unsigned long x = 0;
2532 struct page *page;
2533
2534 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2535 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2536 x += get_count(page);
2537 spin_unlock_irqrestore(&n->list_lock, flags);
2538 return x;
2539}
9a02d699 2540#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2541
781b2ba6
PE
2542static noinline void
2543slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2544{
9a02d699
DR
2545#ifdef CONFIG_SLUB_DEBUG
2546 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2547 DEFAULT_RATELIMIT_BURST);
781b2ba6 2548 int node;
fa45dc25 2549 struct kmem_cache_node *n;
781b2ba6 2550
9a02d699
DR
2551 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2552 return;
2553
5b3810e5
VB
2554 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2555 nid, gfpflags, &gfpflags);
19af27af 2556 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2557 s->name, s->object_size, s->size, oo_order(s->oo),
2558 oo_order(s->min));
781b2ba6 2559
3b0efdfa 2560 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2561 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2562 s->name);
fa5ec8a1 2563
fa45dc25 2564 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2565 unsigned long nr_slabs;
2566 unsigned long nr_objs;
2567 unsigned long nr_free;
2568
26c02cf0
AB
2569 nr_free = count_partial(n, count_free);
2570 nr_slabs = node_nr_slabs(n);
2571 nr_objs = node_nr_objs(n);
781b2ba6 2572
f9f58285 2573 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2574 node, nr_slabs, nr_objs, nr_free);
2575 }
9a02d699 2576#endif
781b2ba6
PE
2577}
2578
497b66f2
CL
2579static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2580 int node, struct kmem_cache_cpu **pc)
2581{
6faa6833 2582 void *freelist;
188fd063
CL
2583 struct kmem_cache_cpu *c = *pc;
2584 struct page *page;
497b66f2 2585
128227e7
MW
2586 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2587
188fd063 2588 freelist = get_partial(s, flags, node, c);
497b66f2 2589
188fd063
CL
2590 if (freelist)
2591 return freelist;
2592
2593 page = new_slab(s, flags, node);
497b66f2 2594 if (page) {
7c8e0181 2595 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2596 if (c->page)
2597 flush_slab(s, c);
2598
2599 /*
2600 * No other reference to the page yet so we can
2601 * muck around with it freely without cmpxchg
2602 */
6faa6833 2603 freelist = page->freelist;
497b66f2
CL
2604 page->freelist = NULL;
2605
2606 stat(s, ALLOC_SLAB);
497b66f2
CL
2607 c->page = page;
2608 *pc = c;
edde82b6 2609 }
497b66f2 2610
6faa6833 2611 return freelist;
497b66f2
CL
2612}
2613
072bb0aa
MG
2614static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2615{
2616 if (unlikely(PageSlabPfmemalloc(page)))
2617 return gfp_pfmemalloc_allowed(gfpflags);
2618
2619 return true;
2620}
2621
213eeb9f 2622/*
d0e0ac97
CG
2623 * Check the page->freelist of a page and either transfer the freelist to the
2624 * per cpu freelist or deactivate the page.
213eeb9f
CL
2625 *
2626 * The page is still frozen if the return value is not NULL.
2627 *
2628 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2629 *
2630 * This function must be called with interrupt disabled.
213eeb9f
CL
2631 */
2632static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2633{
2634 struct page new;
2635 unsigned long counters;
2636 void *freelist;
2637
2638 do {
2639 freelist = page->freelist;
2640 counters = page->counters;
6faa6833 2641
213eeb9f 2642 new.counters = counters;
a0132ac0 2643 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2644
2645 new.inuse = page->objects;
2646 new.frozen = freelist != NULL;
2647
d24ac77f 2648 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2649 freelist, counters,
2650 NULL, new.counters,
2651 "get_freelist"));
2652
2653 return freelist;
2654}
2655
81819f0f 2656/*
894b8788
CL
2657 * Slow path. The lockless freelist is empty or we need to perform
2658 * debugging duties.
2659 *
894b8788
CL
2660 * Processing is still very fast if new objects have been freed to the
2661 * regular freelist. In that case we simply take over the regular freelist
2662 * as the lockless freelist and zap the regular freelist.
81819f0f 2663 *
894b8788
CL
2664 * If that is not working then we fall back to the partial lists. We take the
2665 * first element of the freelist as the object to allocate now and move the
2666 * rest of the freelist to the lockless freelist.
81819f0f 2667 *
894b8788 2668 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2669 * we need to allocate a new slab. This is the slowest path since it involves
2670 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2671 *
2672 * Version of __slab_alloc to use when we know that interrupts are
2673 * already disabled (which is the case for bulk allocation).
81819f0f 2674 */
a380a3c7 2675static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2676 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2677{
6faa6833 2678 void *freelist;
f6e7def7 2679 struct page *page;
81819f0f 2680
9f986d99
AW
2681 stat(s, ALLOC_SLOWPATH);
2682
f6e7def7 2683 page = c->page;
0715e6c5
VB
2684 if (!page) {
2685 /*
2686 * if the node is not online or has no normal memory, just
2687 * ignore the node constraint
2688 */
2689 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2690 !node_isset(node, slab_nodes)))
0715e6c5 2691 node = NUMA_NO_NODE;
81819f0f 2692 goto new_slab;
0715e6c5 2693 }
49e22585 2694redo:
6faa6833 2695
57d437d2 2696 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2697 /*
2698 * same as above but node_match() being false already
2699 * implies node != NUMA_NO_NODE
2700 */
7e1fa93d 2701 if (!node_isset(node, slab_nodes)) {
0715e6c5
VB
2702 node = NUMA_NO_NODE;
2703 goto redo;
2704 } else {
a561ce00 2705 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2706 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2707 goto new_slab;
2708 }
fc59c053 2709 }
6446faa2 2710
072bb0aa
MG
2711 /*
2712 * By rights, we should be searching for a slab page that was
2713 * PFMEMALLOC but right now, we are losing the pfmemalloc
2714 * information when the page leaves the per-cpu allocator
2715 */
2716 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2717 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2718 goto new_slab;
2719 }
2720
73736e03 2721 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2722 freelist = c->freelist;
2723 if (freelist)
73736e03 2724 goto load_freelist;
03e404af 2725
f6e7def7 2726 freelist = get_freelist(s, page);
6446faa2 2727
6faa6833 2728 if (!freelist) {
03e404af
CL
2729 c->page = NULL;
2730 stat(s, DEACTIVATE_BYPASS);
fc59c053 2731 goto new_slab;
03e404af 2732 }
6446faa2 2733
84e554e6 2734 stat(s, ALLOC_REFILL);
6446faa2 2735
894b8788 2736load_freelist:
507effea
CL
2737 /*
2738 * freelist is pointing to the list of objects to be used.
2739 * page is pointing to the page from which the objects are obtained.
2740 * That page must be frozen for per cpu allocations to work.
2741 */
a0132ac0 2742 VM_BUG_ON(!c->page->frozen);
6faa6833 2743 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2744 c->tid = next_tid(c->tid);
6faa6833 2745 return freelist;
81819f0f 2746
81819f0f 2747new_slab:
2cfb7455 2748
a93cf07b
WY
2749 if (slub_percpu_partial(c)) {
2750 page = c->page = slub_percpu_partial(c);
2751 slub_set_percpu_partial(c, page);
49e22585 2752 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2753 goto redo;
81819f0f
CL
2754 }
2755
188fd063 2756 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2757
f4697436 2758 if (unlikely(!freelist)) {
9a02d699 2759 slab_out_of_memory(s, gfpflags, node);
f4697436 2760 return NULL;
81819f0f 2761 }
2cfb7455 2762
f6e7def7 2763 page = c->page;
5091b74a 2764 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2765 goto load_freelist;
2cfb7455 2766
497b66f2 2767 /* Only entered in the debug case */
d0e0ac97
CG
2768 if (kmem_cache_debug(s) &&
2769 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2770 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2771
d4ff6d35 2772 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2773 return freelist;
894b8788
CL
2774}
2775
a380a3c7
CL
2776/*
2777 * Another one that disabled interrupt and compensates for possible
2778 * cpu changes by refetching the per cpu area pointer.
2779 */
2780static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2781 unsigned long addr, struct kmem_cache_cpu *c)
2782{
2783 void *p;
2784 unsigned long flags;
2785
2786 local_irq_save(flags);
923717cb 2787#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2788 /*
2789 * We may have been preempted and rescheduled on a different
2790 * cpu before disabling interrupts. Need to reload cpu area
2791 * pointer.
2792 */
2793 c = this_cpu_ptr(s->cpu_slab);
2794#endif
2795
2796 p = ___slab_alloc(s, gfpflags, node, addr, c);
2797 local_irq_restore(flags);
2798 return p;
2799}
2800
0f181f9f
AP
2801/*
2802 * If the object has been wiped upon free, make sure it's fully initialized by
2803 * zeroing out freelist pointer.
2804 */
2805static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2806 void *obj)
2807{
2808 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
2809 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2810 0, sizeof(void *));
0f181f9f
AP
2811}
2812
894b8788
CL
2813/*
2814 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2815 * have the fastpath folded into their functions. So no function call
2816 * overhead for requests that can be satisfied on the fastpath.
2817 *
2818 * The fastpath works by first checking if the lockless freelist can be used.
2819 * If not then __slab_alloc is called for slow processing.
2820 *
2821 * Otherwise we can simply pick the next object from the lockless free list.
2822 */
2b847c3c 2823static __always_inline void *slab_alloc_node(struct kmem_cache *s,
b89fb5ef 2824 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 2825{
03ec0ed5 2826 void *object;
dfb4f096 2827 struct kmem_cache_cpu *c;
57d437d2 2828 struct page *page;
8a5ec0ba 2829 unsigned long tid;
964d4bd3 2830 struct obj_cgroup *objcg = NULL;
da844b78 2831 bool init = false;
1f84260c 2832
964d4bd3 2833 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2834 if (!s)
773ff60e 2835 return NULL;
b89fb5ef
AP
2836
2837 object = kfence_alloc(s, orig_size, gfpflags);
2838 if (unlikely(object))
2839 goto out;
2840
8a5ec0ba 2841redo:
8a5ec0ba
CL
2842 /*
2843 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2844 * enabled. We may switch back and forth between cpus while
2845 * reading from one cpu area. That does not matter as long
2846 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2847 *
9aabf810 2848 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2849 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2850 * to check if it is matched or not.
8a5ec0ba 2851 */
9aabf810
JK
2852 do {
2853 tid = this_cpu_read(s->cpu_slab->tid);
2854 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2855 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2856 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2857
2858 /*
2859 * Irqless object alloc/free algorithm used here depends on sequence
2860 * of fetching cpu_slab's data. tid should be fetched before anything
2861 * on c to guarantee that object and page associated with previous tid
2862 * won't be used with current tid. If we fetch tid first, object and
2863 * page could be one associated with next tid and our alloc/free
2864 * request will be failed. In this case, we will retry. So, no problem.
2865 */
2866 barrier();
8a5ec0ba 2867
8a5ec0ba
CL
2868 /*
2869 * The transaction ids are globally unique per cpu and per operation on
2870 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2871 * occurs on the right processor and that there was no operation on the
2872 * linked list in between.
2873 */
8a5ec0ba 2874
9dfc6e68 2875 object = c->freelist;
57d437d2 2876 page = c->page;
22e4663e 2877 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2878 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2879 } else {
0ad9500e
ED
2880 void *next_object = get_freepointer_safe(s, object);
2881
8a5ec0ba 2882 /*
25985edc 2883 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2884 * operation and if we are on the right processor.
2885 *
d0e0ac97
CG
2886 * The cmpxchg does the following atomically (without lock
2887 * semantics!)
8a5ec0ba
CL
2888 * 1. Relocate first pointer to the current per cpu area.
2889 * 2. Verify that tid and freelist have not been changed
2890 * 3. If they were not changed replace tid and freelist
2891 *
d0e0ac97
CG
2892 * Since this is without lock semantics the protection is only
2893 * against code executing on this cpu *not* from access by
2894 * other cpus.
8a5ec0ba 2895 */
933393f5 2896 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2897 s->cpu_slab->freelist, s->cpu_slab->tid,
2898 object, tid,
0ad9500e 2899 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2900
2901 note_cmpxchg_failure("slab_alloc", s, tid);
2902 goto redo;
2903 }
0ad9500e 2904 prefetch_freepointer(s, next_object);
84e554e6 2905 stat(s, ALLOC_FASTPATH);
894b8788 2906 }
0f181f9f 2907
ce5716c6 2908 maybe_wipe_obj_freeptr(s, object);
da844b78 2909 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 2910
b89fb5ef 2911out:
da844b78 2912 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
5a896d9e 2913
894b8788 2914 return object;
81819f0f
CL
2915}
2916
2b847c3c 2917static __always_inline void *slab_alloc(struct kmem_cache *s,
b89fb5ef 2918 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 2919{
b89fb5ef 2920 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
2921}
2922
81819f0f
CL
2923void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2924{
b89fb5ef 2925 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
5b882be4 2926
d0e0ac97
CG
2927 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2928 s->size, gfpflags);
5b882be4
EGM
2929
2930 return ret;
81819f0f
CL
2931}
2932EXPORT_SYMBOL(kmem_cache_alloc);
2933
0f24f128 2934#ifdef CONFIG_TRACING
4a92379b
RK
2935void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2936{
b89fb5ef 2937 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
4a92379b 2938 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2939 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2940 return ret;
2941}
2942EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2943#endif
2944
81819f0f
CL
2945#ifdef CONFIG_NUMA
2946void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2947{
b89fb5ef 2948 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 2949
ca2b84cb 2950 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2951 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2952
2953 return ret;
81819f0f
CL
2954}
2955EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2956
0f24f128 2957#ifdef CONFIG_TRACING
4a92379b 2958void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2959 gfp_t gfpflags,
4a92379b 2960 int node, size_t size)
5b882be4 2961{
b89fb5ef 2962 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
4a92379b
RK
2963
2964 trace_kmalloc_node(_RET_IP_, ret,
2965 size, s->size, gfpflags, node);
0316bec2 2966
0116523c 2967 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2968 return ret;
5b882be4 2969}
4a92379b 2970EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2971#endif
6dfd1b65 2972#endif /* CONFIG_NUMA */
5b882be4 2973
81819f0f 2974/*
94e4d712 2975 * Slow path handling. This may still be called frequently since objects
894b8788 2976 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2977 *
894b8788
CL
2978 * So we still attempt to reduce cache line usage. Just take the slab
2979 * lock and free the item. If there is no additional partial page
2980 * handling required then we can return immediately.
81819f0f 2981 */
894b8788 2982static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2983 void *head, void *tail, int cnt,
2984 unsigned long addr)
2985
81819f0f
CL
2986{
2987 void *prior;
2cfb7455 2988 int was_frozen;
2cfb7455
CL
2989 struct page new;
2990 unsigned long counters;
2991 struct kmem_cache_node *n = NULL;
3f649ab7 2992 unsigned long flags;
81819f0f 2993
8a5ec0ba 2994 stat(s, FREE_SLOWPATH);
81819f0f 2995
b89fb5ef
AP
2996 if (kfence_free(head))
2997 return;
2998
19c7ff9e 2999 if (kmem_cache_debug(s) &&
282acb43 3000 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 3001 return;
6446faa2 3002
2cfb7455 3003 do {
837d678d
JK
3004 if (unlikely(n)) {
3005 spin_unlock_irqrestore(&n->list_lock, flags);
3006 n = NULL;
3007 }
2cfb7455
CL
3008 prior = page->freelist;
3009 counters = page->counters;
81084651 3010 set_freepointer(s, tail, prior);
2cfb7455
CL
3011 new.counters = counters;
3012 was_frozen = new.frozen;
81084651 3013 new.inuse -= cnt;
837d678d 3014 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3015
c65c1877 3016 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3017
3018 /*
d0e0ac97
CG
3019 * Slab was on no list before and will be
3020 * partially empty
3021 * We can defer the list move and instead
3022 * freeze it.
49e22585
CL
3023 */
3024 new.frozen = 1;
3025
c65c1877 3026 } else { /* Needs to be taken off a list */
49e22585 3027
b455def2 3028 n = get_node(s, page_to_nid(page));
49e22585
CL
3029 /*
3030 * Speculatively acquire the list_lock.
3031 * If the cmpxchg does not succeed then we may
3032 * drop the list_lock without any processing.
3033 *
3034 * Otherwise the list_lock will synchronize with
3035 * other processors updating the list of slabs.
3036 */
3037 spin_lock_irqsave(&n->list_lock, flags);
3038
3039 }
2cfb7455 3040 }
81819f0f 3041
2cfb7455
CL
3042 } while (!cmpxchg_double_slab(s, page,
3043 prior, counters,
81084651 3044 head, new.counters,
2cfb7455 3045 "__slab_free"));
81819f0f 3046
2cfb7455 3047 if (likely(!n)) {
49e22585 3048
c270cf30
AW
3049 if (likely(was_frozen)) {
3050 /*
3051 * The list lock was not taken therefore no list
3052 * activity can be necessary.
3053 */
3054 stat(s, FREE_FROZEN);
3055 } else if (new.frozen) {
3056 /*
3057 * If we just froze the page then put it onto the
3058 * per cpu partial list.
3059 */
49e22585 3060 put_cpu_partial(s, page, 1);
8028dcea
AS
3061 stat(s, CPU_PARTIAL_FREE);
3062 }
c270cf30 3063
b455def2
L
3064 return;
3065 }
81819f0f 3066
8a5b20ae 3067 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3068 goto slab_empty;
3069
81819f0f 3070 /*
837d678d
JK
3071 * Objects left in the slab. If it was not on the partial list before
3072 * then add it.
81819f0f 3073 */
345c905d 3074 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3075 remove_full(s, n, page);
837d678d
JK
3076 add_partial(n, page, DEACTIVATE_TO_TAIL);
3077 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3078 }
80f08c19 3079 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3080 return;
3081
3082slab_empty:
a973e9dd 3083 if (prior) {
81819f0f 3084 /*
6fbabb20 3085 * Slab on the partial list.
81819f0f 3086 */
5cc6eee8 3087 remove_partial(n, page);
84e554e6 3088 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3089 } else {
6fbabb20 3090 /* Slab must be on the full list */
c65c1877
PZ
3091 remove_full(s, n, page);
3092 }
2cfb7455 3093
80f08c19 3094 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3095 stat(s, FREE_SLAB);
81819f0f 3096 discard_slab(s, page);
81819f0f
CL
3097}
3098
894b8788
CL
3099/*
3100 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3101 * can perform fastpath freeing without additional function calls.
3102 *
3103 * The fastpath is only possible if we are freeing to the current cpu slab
3104 * of this processor. This typically the case if we have just allocated
3105 * the item before.
3106 *
3107 * If fastpath is not possible then fall back to __slab_free where we deal
3108 * with all sorts of special processing.
81084651
JDB
3109 *
3110 * Bulk free of a freelist with several objects (all pointing to the
3111 * same page) possible by specifying head and tail ptr, plus objects
3112 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3113 */
80a9201a
AP
3114static __always_inline void do_slab_free(struct kmem_cache *s,
3115 struct page *page, void *head, void *tail,
3116 int cnt, unsigned long addr)
894b8788 3117{
81084651 3118 void *tail_obj = tail ? : head;
dfb4f096 3119 struct kmem_cache_cpu *c;
8a5ec0ba 3120 unsigned long tid;
964d4bd3 3121
d1b2cf6c 3122 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3123redo:
3124 /*
3125 * Determine the currently cpus per cpu slab.
3126 * The cpu may change afterward. However that does not matter since
3127 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3128 * during the cmpxchg then the free will succeed.
8a5ec0ba 3129 */
9aabf810
JK
3130 do {
3131 tid = this_cpu_read(s->cpu_slab->tid);
3132 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3133 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3134 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3135
9aabf810
JK
3136 /* Same with comment on barrier() in slab_alloc_node() */
3137 barrier();
c016b0bd 3138
442b06bc 3139 if (likely(page == c->page)) {
5076190d
LT
3140 void **freelist = READ_ONCE(c->freelist);
3141
3142 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3143
933393f5 3144 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3145 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3146 freelist, tid,
81084651 3147 head, next_tid(tid)))) {
8a5ec0ba
CL
3148
3149 note_cmpxchg_failure("slab_free", s, tid);
3150 goto redo;
3151 }
84e554e6 3152 stat(s, FREE_FASTPATH);
894b8788 3153 } else
81084651 3154 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3155
894b8788
CL
3156}
3157
80a9201a
AP
3158static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3159 void *head, void *tail, int cnt,
3160 unsigned long addr)
3161{
80a9201a 3162 /*
c3895391
AK
3163 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3164 * to remove objects, whose reuse must be delayed.
80a9201a 3165 */
c3895391
AK
3166 if (slab_free_freelist_hook(s, &head, &tail))
3167 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3168}
3169
2bd926b4 3170#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3171void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3172{
3173 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3174}
3175#endif
3176
81819f0f
CL
3177void kmem_cache_free(struct kmem_cache *s, void *x)
3178{
b9ce5ef4
GC
3179 s = cache_from_obj(s, x);
3180 if (!s)
79576102 3181 return;
81084651 3182 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3544de8e 3183 trace_kmem_cache_free(_RET_IP_, x, s->name);
81819f0f
CL
3184}
3185EXPORT_SYMBOL(kmem_cache_free);
3186
d0ecd894 3187struct detached_freelist {
fbd02630 3188 struct page *page;
d0ecd894
JDB
3189 void *tail;
3190 void *freelist;
3191 int cnt;
376bf125 3192 struct kmem_cache *s;
d0ecd894 3193};
fbd02630 3194
d0ecd894
JDB
3195/*
3196 * This function progressively scans the array with free objects (with
3197 * a limited look ahead) and extract objects belonging to the same
3198 * page. It builds a detached freelist directly within the given
3199 * page/objects. This can happen without any need for
3200 * synchronization, because the objects are owned by running process.
3201 * The freelist is build up as a single linked list in the objects.
3202 * The idea is, that this detached freelist can then be bulk
3203 * transferred to the real freelist(s), but only requiring a single
3204 * synchronization primitive. Look ahead in the array is limited due
3205 * to performance reasons.
3206 */
376bf125
JDB
3207static inline
3208int build_detached_freelist(struct kmem_cache *s, size_t size,
3209 void **p, struct detached_freelist *df)
d0ecd894
JDB
3210{
3211 size_t first_skipped_index = 0;
3212 int lookahead = 3;
3213 void *object;
ca257195 3214 struct page *page;
fbd02630 3215
d0ecd894
JDB
3216 /* Always re-init detached_freelist */
3217 df->page = NULL;
fbd02630 3218
d0ecd894
JDB
3219 do {
3220 object = p[--size];
ca257195 3221 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3222 } while (!object && size);
3eed034d 3223
d0ecd894
JDB
3224 if (!object)
3225 return 0;
fbd02630 3226
ca257195
JDB
3227 page = virt_to_head_page(object);
3228 if (!s) {
3229 /* Handle kalloc'ed objects */
3230 if (unlikely(!PageSlab(page))) {
3231 BUG_ON(!PageCompound(page));
3232 kfree_hook(object);
4949148a 3233 __free_pages(page, compound_order(page));
ca257195
JDB
3234 p[size] = NULL; /* mark object processed */
3235 return size;
3236 }
3237 /* Derive kmem_cache from object */
3238 df->s = page->slab_cache;
3239 } else {
3240 df->s = cache_from_obj(s, object); /* Support for memcg */
3241 }
376bf125 3242
b89fb5ef 3243 if (is_kfence_address(object)) {
d57a964e 3244 slab_free_hook(df->s, object, false);
b89fb5ef
AP
3245 __kfence_free(object);
3246 p[size] = NULL; /* mark object processed */
3247 return size;
3248 }
3249
d0ecd894 3250 /* Start new detached freelist */
ca257195 3251 df->page = page;
376bf125 3252 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3253 df->tail = object;
3254 df->freelist = object;
3255 p[size] = NULL; /* mark object processed */
3256 df->cnt = 1;
3257
3258 while (size) {
3259 object = p[--size];
3260 if (!object)
3261 continue; /* Skip processed objects */
3262
3263 /* df->page is always set at this point */
3264 if (df->page == virt_to_head_page(object)) {
3265 /* Opportunity build freelist */
376bf125 3266 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3267 df->freelist = object;
3268 df->cnt++;
3269 p[size] = NULL; /* mark object processed */
3270
3271 continue;
fbd02630 3272 }
d0ecd894
JDB
3273
3274 /* Limit look ahead search */
3275 if (!--lookahead)
3276 break;
3277
3278 if (!first_skipped_index)
3279 first_skipped_index = size + 1;
fbd02630 3280 }
d0ecd894
JDB
3281
3282 return first_skipped_index;
3283}
3284
d0ecd894 3285/* Note that interrupts must be enabled when calling this function. */
376bf125 3286void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3287{
3288 if (WARN_ON(!size))
3289 return;
3290
d1b2cf6c 3291 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3292 do {
3293 struct detached_freelist df;
3294
3295 size = build_detached_freelist(s, size, p, &df);
84582c8a 3296 if (!df.page)
d0ecd894
JDB
3297 continue;
3298
457c82c3 3299 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
d0ecd894 3300 } while (likely(size));
484748f0
CL
3301}
3302EXPORT_SYMBOL(kmem_cache_free_bulk);
3303
994eb764 3304/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3305int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3306 void **p)
484748f0 3307{
994eb764
JDB
3308 struct kmem_cache_cpu *c;
3309 int i;
964d4bd3 3310 struct obj_cgroup *objcg = NULL;
994eb764 3311
03ec0ed5 3312 /* memcg and kmem_cache debug support */
964d4bd3 3313 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3314 if (unlikely(!s))
3315 return false;
994eb764
JDB
3316 /*
3317 * Drain objects in the per cpu slab, while disabling local
3318 * IRQs, which protects against PREEMPT and interrupts
3319 * handlers invoking normal fastpath.
3320 */
3321 local_irq_disable();
3322 c = this_cpu_ptr(s->cpu_slab);
3323
3324 for (i = 0; i < size; i++) {
b89fb5ef 3325 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3326
b89fb5ef
AP
3327 if (unlikely(object)) {
3328 p[i] = object;
3329 continue;
3330 }
3331
3332 object = c->freelist;
ebe909e0 3333 if (unlikely(!object)) {
fd4d9c7d
JH
3334 /*
3335 * We may have removed an object from c->freelist using
3336 * the fastpath in the previous iteration; in that case,
3337 * c->tid has not been bumped yet.
3338 * Since ___slab_alloc() may reenable interrupts while
3339 * allocating memory, we should bump c->tid now.
3340 */
3341 c->tid = next_tid(c->tid);
3342
ebe909e0
JDB
3343 /*
3344 * Invoking slow path likely have side-effect
3345 * of re-populating per CPU c->freelist
3346 */
87098373 3347 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3348 _RET_IP_, c);
87098373
CL
3349 if (unlikely(!p[i]))
3350 goto error;
3351
ebe909e0 3352 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3353 maybe_wipe_obj_freeptr(s, p[i]);
3354
ebe909e0
JDB
3355 continue; /* goto for-loop */
3356 }
994eb764
JDB
3357 c->freelist = get_freepointer(s, object);
3358 p[i] = object;
0f181f9f 3359 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3360 }
3361 c->tid = next_tid(c->tid);
3362 local_irq_enable();
3363
da844b78
AK
3364 /*
3365 * memcg and kmem_cache debug support and memory initialization.
3366 * Done outside of the IRQ disabled fastpath loop.
3367 */
3368 slab_post_alloc_hook(s, objcg, flags, size, p,
3369 slab_want_init_on_alloc(flags, s));
865762a8 3370 return i;
87098373 3371error:
87098373 3372 local_irq_enable();
da844b78 3373 slab_post_alloc_hook(s, objcg, flags, i, p, false);
03ec0ed5 3374 __kmem_cache_free_bulk(s, i, p);
865762a8 3375 return 0;
484748f0
CL
3376}
3377EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3378
3379
81819f0f 3380/*
672bba3a
CL
3381 * Object placement in a slab is made very easy because we always start at
3382 * offset 0. If we tune the size of the object to the alignment then we can
3383 * get the required alignment by putting one properly sized object after
3384 * another.
81819f0f
CL
3385 *
3386 * Notice that the allocation order determines the sizes of the per cpu
3387 * caches. Each processor has always one slab available for allocations.
3388 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3389 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3390 * locking overhead.
81819f0f
CL
3391 */
3392
3393/*
f0953a1b 3394 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
3395 * and slab fragmentation. A higher order reduces the number of partial slabs
3396 * and increases the number of allocations possible without having to
3397 * take the list_lock.
3398 */
19af27af
AD
3399static unsigned int slub_min_order;
3400static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3401static unsigned int slub_min_objects;
81819f0f 3402
81819f0f
CL
3403/*
3404 * Calculate the order of allocation given an slab object size.
3405 *
672bba3a
CL
3406 * The order of allocation has significant impact on performance and other
3407 * system components. Generally order 0 allocations should be preferred since
3408 * order 0 does not cause fragmentation in the page allocator. Larger objects
3409 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3410 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3411 * would be wasted.
3412 *
3413 * In order to reach satisfactory performance we must ensure that a minimum
3414 * number of objects is in one slab. Otherwise we may generate too much
3415 * activity on the partial lists which requires taking the list_lock. This is
3416 * less a concern for large slabs though which are rarely used.
81819f0f 3417 *
672bba3a
CL
3418 * slub_max_order specifies the order where we begin to stop considering the
3419 * number of objects in a slab as critical. If we reach slub_max_order then
3420 * we try to keep the page order as low as possible. So we accept more waste
3421 * of space in favor of a small page order.
81819f0f 3422 *
672bba3a
CL
3423 * Higher order allocations also allow the placement of more objects in a
3424 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3425 * requested a higher minimum order then we start with that one instead of
672bba3a 3426 * the smallest order which will fit the object.
81819f0f 3427 */
19af27af
AD
3428static inline unsigned int slab_order(unsigned int size,
3429 unsigned int min_objects, unsigned int max_order,
9736d2a9 3430 unsigned int fract_leftover)
81819f0f 3431{
19af27af
AD
3432 unsigned int min_order = slub_min_order;
3433 unsigned int order;
81819f0f 3434
9736d2a9 3435 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3436 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3437
9736d2a9 3438 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3439 order <= max_order; order++) {
81819f0f 3440
19af27af
AD
3441 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3442 unsigned int rem;
81819f0f 3443
9736d2a9 3444 rem = slab_size % size;
81819f0f 3445
5e6d444e 3446 if (rem <= slab_size / fract_leftover)
81819f0f 3447 break;
81819f0f 3448 }
672bba3a 3449
81819f0f
CL
3450 return order;
3451}
3452
9736d2a9 3453static inline int calculate_order(unsigned int size)
5e6d444e 3454{
19af27af
AD
3455 unsigned int order;
3456 unsigned int min_objects;
3457 unsigned int max_objects;
3286222f 3458 unsigned int nr_cpus;
5e6d444e
CL
3459
3460 /*
3461 * Attempt to find best configuration for a slab. This
3462 * works by first attempting to generate a layout with
3463 * the best configuration and backing off gradually.
3464 *
422ff4d7 3465 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3466 * we reduce the minimum objects required in a slab.
3467 */
3468 min_objects = slub_min_objects;
3286222f
VB
3469 if (!min_objects) {
3470 /*
3471 * Some architectures will only update present cpus when
3472 * onlining them, so don't trust the number if it's just 1. But
3473 * we also don't want to use nr_cpu_ids always, as on some other
3474 * architectures, there can be many possible cpus, but never
3475 * onlined. Here we compromise between trying to avoid too high
3476 * order on systems that appear larger than they are, and too
3477 * low order on systems that appear smaller than they are.
3478 */
3479 nr_cpus = num_present_cpus();
3480 if (nr_cpus <= 1)
3481 nr_cpus = nr_cpu_ids;
3482 min_objects = 4 * (fls(nr_cpus) + 1);
3483 }
9736d2a9 3484 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3485 min_objects = min(min_objects, max_objects);
3486
5e6d444e 3487 while (min_objects > 1) {
19af27af
AD
3488 unsigned int fraction;
3489
c124f5b5 3490 fraction = 16;
5e6d444e
CL
3491 while (fraction >= 4) {
3492 order = slab_order(size, min_objects,
9736d2a9 3493 slub_max_order, fraction);
5e6d444e
CL
3494 if (order <= slub_max_order)
3495 return order;
3496 fraction /= 2;
3497 }
5086c389 3498 min_objects--;
5e6d444e
CL
3499 }
3500
3501 /*
3502 * We were unable to place multiple objects in a slab. Now
3503 * lets see if we can place a single object there.
3504 */
9736d2a9 3505 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3506 if (order <= slub_max_order)
3507 return order;
3508
3509 /*
3510 * Doh this slab cannot be placed using slub_max_order.
3511 */
9736d2a9 3512 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3513 if (order < MAX_ORDER)
5e6d444e
CL
3514 return order;
3515 return -ENOSYS;
3516}
3517
5595cffc 3518static void
4053497d 3519init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3520{
3521 n->nr_partial = 0;
81819f0f
CL
3522 spin_lock_init(&n->list_lock);
3523 INIT_LIST_HEAD(&n->partial);
8ab1372f 3524#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3525 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3526 atomic_long_set(&n->total_objects, 0);
643b1138 3527 INIT_LIST_HEAD(&n->full);
8ab1372f 3528#endif
81819f0f
CL
3529}
3530
55136592 3531static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3532{
6c182dc0 3533 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3534 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3535
8a5ec0ba 3536 /*
d4d84fef
CM
3537 * Must align to double word boundary for the double cmpxchg
3538 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3539 */
d4d84fef
CM
3540 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3541 2 * sizeof(void *));
8a5ec0ba
CL
3542
3543 if (!s->cpu_slab)
3544 return 0;
3545
3546 init_kmem_cache_cpus(s);
4c93c355 3547
8a5ec0ba 3548 return 1;
4c93c355 3549}
4c93c355 3550
51df1142
CL
3551static struct kmem_cache *kmem_cache_node;
3552
81819f0f
CL
3553/*
3554 * No kmalloc_node yet so do it by hand. We know that this is the first
3555 * slab on the node for this slabcache. There are no concurrent accesses
3556 * possible.
3557 *
721ae22a
ZYW
3558 * Note that this function only works on the kmem_cache_node
3559 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3560 * memory on a fresh node that has no slab structures yet.
81819f0f 3561 */
55136592 3562static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3563{
3564 struct page *page;
3565 struct kmem_cache_node *n;
3566
51df1142 3567 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3568
51df1142 3569 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3570
3571 BUG_ON(!page);
a2f92ee7 3572 if (page_to_nid(page) != node) {
f9f58285
FF
3573 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3574 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3575 }
3576
81819f0f
CL
3577 n = page->freelist;
3578 BUG_ON(!n);
8ab1372f 3579#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3580 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3581 init_tracking(kmem_cache_node, n);
8ab1372f 3582#endif
da844b78 3583 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
12b22386
AK
3584 page->freelist = get_freepointer(kmem_cache_node, n);
3585 page->inuse = 1;
3586 page->frozen = 0;
3587 kmem_cache_node->node[node] = n;
4053497d 3588 init_kmem_cache_node(n);
51df1142 3589 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3590
67b6c900 3591 /*
1e4dd946
SR
3592 * No locks need to be taken here as it has just been
3593 * initialized and there is no concurrent access.
67b6c900 3594 */
1e4dd946 3595 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3596}
3597
3598static void free_kmem_cache_nodes(struct kmem_cache *s)
3599{
3600 int node;
fa45dc25 3601 struct kmem_cache_node *n;
81819f0f 3602
fa45dc25 3603 for_each_kmem_cache_node(s, node, n) {
81819f0f 3604 s->node[node] = NULL;
ea37df54 3605 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3606 }
3607}
3608
52b4b950
DS
3609void __kmem_cache_release(struct kmem_cache *s)
3610{
210e7a43 3611 cache_random_seq_destroy(s);
52b4b950
DS
3612 free_percpu(s->cpu_slab);
3613 free_kmem_cache_nodes(s);
3614}
3615
55136592 3616static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3617{
3618 int node;
81819f0f 3619
7e1fa93d 3620 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3621 struct kmem_cache_node *n;
3622
73367bd8 3623 if (slab_state == DOWN) {
55136592 3624 early_kmem_cache_node_alloc(node);
73367bd8
AD
3625 continue;
3626 }
51df1142 3627 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3628 GFP_KERNEL, node);
81819f0f 3629
73367bd8
AD
3630 if (!n) {
3631 free_kmem_cache_nodes(s);
3632 return 0;
81819f0f 3633 }
73367bd8 3634
4053497d 3635 init_kmem_cache_node(n);
ea37df54 3636 s->node[node] = n;
81819f0f
CL
3637 }
3638 return 1;
3639}
81819f0f 3640
c0bdb232 3641static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3642{
3643 if (min < MIN_PARTIAL)
3644 min = MIN_PARTIAL;
3645 else if (min > MAX_PARTIAL)
3646 min = MAX_PARTIAL;
3647 s->min_partial = min;
3648}
3649
e6d0e1dc
WY
3650static void set_cpu_partial(struct kmem_cache *s)
3651{
3652#ifdef CONFIG_SLUB_CPU_PARTIAL
3653 /*
3654 * cpu_partial determined the maximum number of objects kept in the
3655 * per cpu partial lists of a processor.
3656 *
3657 * Per cpu partial lists mainly contain slabs that just have one
3658 * object freed. If they are used for allocation then they can be
3659 * filled up again with minimal effort. The slab will never hit the
3660 * per node partial lists and therefore no locking will be required.
3661 *
3662 * This setting also determines
3663 *
3664 * A) The number of objects from per cpu partial slabs dumped to the
3665 * per node list when we reach the limit.
3666 * B) The number of objects in cpu partial slabs to extract from the
3667 * per node list when we run out of per cpu objects. We only fetch
3668 * 50% to keep some capacity around for frees.
3669 */
3670 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3671 slub_set_cpu_partial(s, 0);
e6d0e1dc 3672 else if (s->size >= PAGE_SIZE)
bbd4e305 3673 slub_set_cpu_partial(s, 2);
e6d0e1dc 3674 else if (s->size >= 1024)
bbd4e305 3675 slub_set_cpu_partial(s, 6);
e6d0e1dc 3676 else if (s->size >= 256)
bbd4e305 3677 slub_set_cpu_partial(s, 13);
e6d0e1dc 3678 else
bbd4e305 3679 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3680#endif
3681}
3682
81819f0f
CL
3683/*
3684 * calculate_sizes() determines the order and the distribution of data within
3685 * a slab object.
3686 */
06b285dc 3687static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3688{
d50112ed 3689 slab_flags_t flags = s->flags;
be4a7988 3690 unsigned int size = s->object_size;
89b83f28 3691 unsigned int freepointer_area;
19af27af 3692 unsigned int order;
81819f0f 3693
d8b42bf5
CL
3694 /*
3695 * Round up object size to the next word boundary. We can only
3696 * place the free pointer at word boundaries and this determines
3697 * the possible location of the free pointer.
3698 */
3699 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3700 /*
3701 * This is the area of the object where a freepointer can be
3702 * safely written. If redzoning adds more to the inuse size, we
3703 * can't use that portion for writing the freepointer, so
3704 * s->offset must be limited within this for the general case.
3705 */
3706 freepointer_area = size;
d8b42bf5
CL
3707
3708#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3709 /*
3710 * Determine if we can poison the object itself. If the user of
3711 * the slab may touch the object after free or before allocation
3712 * then we should never poison the object itself.
3713 */
5f0d5a3a 3714 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3715 !s->ctor)
81819f0f
CL
3716 s->flags |= __OBJECT_POISON;
3717 else
3718 s->flags &= ~__OBJECT_POISON;
3719
81819f0f
CL
3720
3721 /*
672bba3a 3722 * If we are Redzoning then check if there is some space between the
81819f0f 3723 * end of the object and the free pointer. If not then add an
672bba3a 3724 * additional word to have some bytes to store Redzone information.
81819f0f 3725 */
3b0efdfa 3726 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3727 size += sizeof(void *);
41ecc55b 3728#endif
81819f0f
CL
3729
3730 /*
672bba3a
CL
3731 * With that we have determined the number of bytes in actual use
3732 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3733 */
3734 s->inuse = size;
3735
5f0d5a3a 3736 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3737 s->ctor)) {
81819f0f
CL
3738 /*
3739 * Relocate free pointer after the object if it is not
3740 * permitted to overwrite the first word of the object on
3741 * kmem_cache_free.
3742 *
3743 * This is the case if we do RCU, have a constructor or
3744 * destructor or are poisoning the objects.
cbfc35a4
WL
3745 *
3746 * The assumption that s->offset >= s->inuse means free
3747 * pointer is outside of the object is used in the
3748 * freeptr_outside_object() function. If that is no
3749 * longer true, the function needs to be modified.
81819f0f
CL
3750 */
3751 s->offset = size;
3752 size += sizeof(void *);
89b83f28 3753 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3754 /*
3755 * Store freelist pointer near middle of object to keep
3756 * it away from the edges of the object to avoid small
3757 * sized over/underflows from neighboring allocations.
3758 */
89b83f28 3759 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3760 }
3761
c12b3c62 3762#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3763 if (flags & SLAB_STORE_USER)
3764 /*
3765 * Need to store information about allocs and frees after
3766 * the object.
3767 */
3768 size += 2 * sizeof(struct track);
80a9201a 3769#endif
81819f0f 3770
80a9201a
AP
3771 kasan_cache_create(s, &size, &s->flags);
3772#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3773 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3774 /*
3775 * Add some empty padding so that we can catch
3776 * overwrites from earlier objects rather than let
3777 * tracking information or the free pointer be
0211a9c8 3778 * corrupted if a user writes before the start
81819f0f
CL
3779 * of the object.
3780 */
3781 size += sizeof(void *);
d86bd1be
JK
3782
3783 s->red_left_pad = sizeof(void *);
3784 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3785 size += s->red_left_pad;
3786 }
41ecc55b 3787#endif
672bba3a 3788
81819f0f
CL
3789 /*
3790 * SLUB stores one object immediately after another beginning from
3791 * offset 0. In order to align the objects we have to simply size
3792 * each object to conform to the alignment.
3793 */
45906855 3794 size = ALIGN(size, s->align);
81819f0f 3795 s->size = size;
4138fdfc 3796 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3797 if (forced_order >= 0)
3798 order = forced_order;
3799 else
9736d2a9 3800 order = calculate_order(size);
81819f0f 3801
19af27af 3802 if ((int)order < 0)
81819f0f
CL
3803 return 0;
3804
b7a49f0d 3805 s->allocflags = 0;
834f3d11 3806 if (order)
b7a49f0d
CL
3807 s->allocflags |= __GFP_COMP;
3808
3809 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3810 s->allocflags |= GFP_DMA;
b7a49f0d 3811
6d6ea1e9
NB
3812 if (s->flags & SLAB_CACHE_DMA32)
3813 s->allocflags |= GFP_DMA32;
3814
b7a49f0d
CL
3815 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3816 s->allocflags |= __GFP_RECLAIMABLE;
3817
81819f0f
CL
3818 /*
3819 * Determine the number of objects per slab
3820 */
9736d2a9
MW
3821 s->oo = oo_make(order, size);
3822 s->min = oo_make(get_order(size), size);
205ab99d
CL
3823 if (oo_objects(s->oo) > oo_objects(s->max))
3824 s->max = s->oo;
81819f0f 3825
834f3d11 3826 return !!oo_objects(s->oo);
81819f0f
CL
3827}
3828
d50112ed 3829static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3830{
1f0723a4
VB
3831#ifdef CONFIG_SLUB_DEBUG
3832 /*
3833 * If no slub_debug was enabled globally, the static key is not yet
3834 * enabled by setup_slub_debug(). Enable it if the cache is being
3835 * created with any of the debugging flags passed explicitly.
3836 */
3837 if (flags & SLAB_DEBUG_FLAGS)
3838 static_branch_enable(&slub_debug_enabled);
3839#endif
37540008 3840 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
3841#ifdef CONFIG_SLAB_FREELIST_HARDENED
3842 s->random = get_random_long();
3843#endif
81819f0f 3844
06b285dc 3845 if (!calculate_sizes(s, -1))
81819f0f 3846 goto error;
3de47213
DR
3847 if (disable_higher_order_debug) {
3848 /*
3849 * Disable debugging flags that store metadata if the min slab
3850 * order increased.
3851 */
3b0efdfa 3852 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3853 s->flags &= ~DEBUG_METADATA_FLAGS;
3854 s->offset = 0;
3855 if (!calculate_sizes(s, -1))
3856 goto error;
3857 }
3858 }
81819f0f 3859
2565409f
HC
3860#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3861 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3862 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3863 /* Enable fast mode */
3864 s->flags |= __CMPXCHG_DOUBLE;
3865#endif
3866
3b89d7d8
DR
3867 /*
3868 * The larger the object size is, the more pages we want on the partial
3869 * list to avoid pounding the page allocator excessively.
3870 */
49e22585
CL
3871 set_min_partial(s, ilog2(s->size) / 2);
3872
e6d0e1dc 3873 set_cpu_partial(s);
49e22585 3874
81819f0f 3875#ifdef CONFIG_NUMA
e2cb96b7 3876 s->remote_node_defrag_ratio = 1000;
81819f0f 3877#endif
210e7a43
TG
3878
3879 /* Initialize the pre-computed randomized freelist if slab is up */
3880 if (slab_state >= UP) {
3881 if (init_cache_random_seq(s))
3882 goto error;
3883 }
3884
55136592 3885 if (!init_kmem_cache_nodes(s))
dfb4f096 3886 goto error;
81819f0f 3887
55136592 3888 if (alloc_kmem_cache_cpus(s))
278b1bb1 3889 return 0;
ff12059e 3890
4c93c355 3891 free_kmem_cache_nodes(s);
81819f0f 3892error:
278b1bb1 3893 return -EINVAL;
81819f0f 3894}
81819f0f 3895
33b12c38 3896static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3897 const char *text)
33b12c38
CL
3898{
3899#ifdef CONFIG_SLUB_DEBUG
3900 void *addr = page_address(page);
55860d96 3901 unsigned long *map;
33b12c38 3902 void *p;
aa456c7a 3903
945cf2b6 3904 slab_err(s, page, text, s->name);
33b12c38 3905 slab_lock(page);
33b12c38 3906
90e9f6a6 3907 map = get_map(s, page);
33b12c38
CL
3908 for_each_object(p, s, addr, page->objects) {
3909
4138fdfc 3910 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 3911 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3912 print_tracking(s, p);
3913 }
3914 }
55860d96 3915 put_map(map);
33b12c38
CL
3916 slab_unlock(page);
3917#endif
3918}
3919
81819f0f 3920/*
599870b1 3921 * Attempt to free all partial slabs on a node.
52b4b950
DS
3922 * This is called from __kmem_cache_shutdown(). We must take list_lock
3923 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3924 */
599870b1 3925static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3926{
60398923 3927 LIST_HEAD(discard);
81819f0f
CL
3928 struct page *page, *h;
3929
52b4b950
DS
3930 BUG_ON(irqs_disabled());
3931 spin_lock_irq(&n->list_lock);
916ac052 3932 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3933 if (!page->inuse) {
52b4b950 3934 remove_partial(n, page);
916ac052 3935 list_add(&page->slab_list, &discard);
33b12c38
CL
3936 } else {
3937 list_slab_objects(s, page,
55860d96 3938 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3939 }
33b12c38 3940 }
52b4b950 3941 spin_unlock_irq(&n->list_lock);
60398923 3942
916ac052 3943 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3944 discard_slab(s, page);
81819f0f
CL
3945}
3946
f9e13c0a
SB
3947bool __kmem_cache_empty(struct kmem_cache *s)
3948{
3949 int node;
3950 struct kmem_cache_node *n;
3951
3952 for_each_kmem_cache_node(s, node, n)
3953 if (n->nr_partial || slabs_node(s, node))
3954 return false;
3955 return true;
3956}
3957
81819f0f 3958/*
672bba3a 3959 * Release all resources used by a slab cache.
81819f0f 3960 */
52b4b950 3961int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3962{
3963 int node;
fa45dc25 3964 struct kmem_cache_node *n;
81819f0f
CL
3965
3966 flush_all(s);
81819f0f 3967 /* Attempt to free all objects */
fa45dc25 3968 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3969 free_partial(s, n);
3970 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3971 return 1;
3972 }
81819f0f
CL
3973 return 0;
3974}
3975
5bb1bb35 3976#ifdef CONFIG_PRINTK
8e7f37f2
PM
3977void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3978{
3979 void *base;
3980 int __maybe_unused i;
3981 unsigned int objnr;
3982 void *objp;
3983 void *objp0;
3984 struct kmem_cache *s = page->slab_cache;
3985 struct track __maybe_unused *trackp;
3986
3987 kpp->kp_ptr = object;
3988 kpp->kp_page = page;
3989 kpp->kp_slab_cache = s;
3990 base = page_address(page);
3991 objp0 = kasan_reset_tag(object);
3992#ifdef CONFIG_SLUB_DEBUG
3993 objp = restore_red_left(s, objp0);
3994#else
3995 objp = objp0;
3996#endif
3997 objnr = obj_to_index(s, page, objp);
3998 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
3999 objp = base + s->size * objnr;
4000 kpp->kp_objp = objp;
4001 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4002 !(s->flags & SLAB_STORE_USER))
4003 return;
4004#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4005 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4006 trackp = get_track(s, objp, TRACK_ALLOC);
4007 kpp->kp_ret = (void *)trackp->addr;
4008#ifdef CONFIG_STACKTRACE
4009 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4010 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4011 if (!kpp->kp_stack[i])
4012 break;
4013 }
4014#endif
4015#endif
4016}
5bb1bb35 4017#endif
8e7f37f2 4018
81819f0f
CL
4019/********************************************************************
4020 * Kmalloc subsystem
4021 *******************************************************************/
4022
81819f0f
CL
4023static int __init setup_slub_min_order(char *str)
4024{
19af27af 4025 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4026
4027 return 1;
4028}
4029
4030__setup("slub_min_order=", setup_slub_min_order);
4031
4032static int __init setup_slub_max_order(char *str)
4033{
19af27af
AD
4034 get_option(&str, (int *)&slub_max_order);
4035 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4036
4037 return 1;
4038}
4039
4040__setup("slub_max_order=", setup_slub_max_order);
4041
4042static int __init setup_slub_min_objects(char *str)
4043{
19af27af 4044 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4045
4046 return 1;
4047}
4048
4049__setup("slub_min_objects=", setup_slub_min_objects);
4050
81819f0f
CL
4051void *__kmalloc(size_t size, gfp_t flags)
4052{
aadb4bc4 4053 struct kmem_cache *s;
5b882be4 4054 void *ret;
81819f0f 4055
95a05b42 4056 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4057 return kmalloc_large(size, flags);
aadb4bc4 4058
2c59dd65 4059 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4060
4061 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4062 return s;
4063
b89fb5ef 4064 ret = slab_alloc(s, flags, _RET_IP_, size);
5b882be4 4065
ca2b84cb 4066 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4067
0116523c 4068 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4069
5b882be4 4070 return ret;
81819f0f
CL
4071}
4072EXPORT_SYMBOL(__kmalloc);
4073
5d1f57e4 4074#ifdef CONFIG_NUMA
f619cfe1
CL
4075static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4076{
b1eeab67 4077 struct page *page;
e4f7c0b4 4078 void *ptr = NULL;
6a486c0a 4079 unsigned int order = get_order(size);
f619cfe1 4080
75f296d9 4081 flags |= __GFP_COMP;
6a486c0a
VB
4082 page = alloc_pages_node(node, flags, order);
4083 if (page) {
e4f7c0b4 4084 ptr = page_address(page);
96403bfe
MS
4085 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4086 PAGE_SIZE << order);
6a486c0a 4087 }
e4f7c0b4 4088
0116523c 4089 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4090}
4091
81819f0f
CL
4092void *__kmalloc_node(size_t size, gfp_t flags, int node)
4093{
aadb4bc4 4094 struct kmem_cache *s;
5b882be4 4095 void *ret;
81819f0f 4096
95a05b42 4097 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4098 ret = kmalloc_large_node(size, flags, node);
4099
ca2b84cb
EGM
4100 trace_kmalloc_node(_RET_IP_, ret,
4101 size, PAGE_SIZE << get_order(size),
4102 flags, node);
5b882be4
EGM
4103
4104 return ret;
4105 }
aadb4bc4 4106
2c59dd65 4107 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4108
4109 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4110 return s;
4111
b89fb5ef 4112 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
5b882be4 4113
ca2b84cb 4114 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4115
0116523c 4116 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4117
5b882be4 4118 return ret;
81819f0f
CL
4119}
4120EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4121#endif /* CONFIG_NUMA */
81819f0f 4122
ed18adc1
KC
4123#ifdef CONFIG_HARDENED_USERCOPY
4124/*
afcc90f8
KC
4125 * Rejects incorrectly sized objects and objects that are to be copied
4126 * to/from userspace but do not fall entirely within the containing slab
4127 * cache's usercopy region.
ed18adc1
KC
4128 *
4129 * Returns NULL if check passes, otherwise const char * to name of cache
4130 * to indicate an error.
4131 */
f4e6e289
KC
4132void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4133 bool to_user)
ed18adc1
KC
4134{
4135 struct kmem_cache *s;
44065b2e 4136 unsigned int offset;
ed18adc1 4137 size_t object_size;
b89fb5ef 4138 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4139
96fedce2
AK
4140 ptr = kasan_reset_tag(ptr);
4141
ed18adc1
KC
4142 /* Find object and usable object size. */
4143 s = page->slab_cache;
ed18adc1
KC
4144
4145 /* Reject impossible pointers. */
4146 if (ptr < page_address(page))
f4e6e289
KC
4147 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4148 to_user, 0, n);
ed18adc1
KC
4149
4150 /* Find offset within object. */
b89fb5ef
AP
4151 if (is_kfence)
4152 offset = ptr - kfence_object_start(ptr);
4153 else
4154 offset = (ptr - page_address(page)) % s->size;
ed18adc1
KC
4155
4156 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4157 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4158 if (offset < s->red_left_pad)
f4e6e289
KC
4159 usercopy_abort("SLUB object in left red zone",
4160 s->name, to_user, offset, n);
ed18adc1
KC
4161 offset -= s->red_left_pad;
4162 }
4163
afcc90f8
KC
4164 /* Allow address range falling entirely within usercopy region. */
4165 if (offset >= s->useroffset &&
4166 offset - s->useroffset <= s->usersize &&
4167 n <= s->useroffset - offset + s->usersize)
f4e6e289 4168 return;
ed18adc1 4169
afcc90f8
KC
4170 /*
4171 * If the copy is still within the allocated object, produce
4172 * a warning instead of rejecting the copy. This is intended
4173 * to be a temporary method to find any missing usercopy
4174 * whitelists.
4175 */
4176 object_size = slab_ksize(s);
2d891fbc
KC
4177 if (usercopy_fallback &&
4178 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4179 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4180 return;
4181 }
ed18adc1 4182
f4e6e289 4183 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4184}
4185#endif /* CONFIG_HARDENED_USERCOPY */
4186
10d1f8cb 4187size_t __ksize(const void *object)
81819f0f 4188{
272c1d21 4189 struct page *page;
81819f0f 4190
ef8b4520 4191 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4192 return 0;
4193
294a80a8 4194 page = virt_to_head_page(object);
294a80a8 4195
76994412
PE
4196 if (unlikely(!PageSlab(page))) {
4197 WARN_ON(!PageCompound(page));
a50b854e 4198 return page_size(page);
76994412 4199 }
81819f0f 4200
1b4f59e3 4201 return slab_ksize(page->slab_cache);
81819f0f 4202}
10d1f8cb 4203EXPORT_SYMBOL(__ksize);
81819f0f
CL
4204
4205void kfree(const void *x)
4206{
81819f0f 4207 struct page *page;
5bb983b0 4208 void *object = (void *)x;
81819f0f 4209
2121db74
PE
4210 trace_kfree(_RET_IP_, x);
4211
2408c550 4212 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4213 return;
4214
b49af68f 4215 page = virt_to_head_page(x);
aadb4bc4 4216 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4217 unsigned int order = compound_order(page);
4218
0937502a 4219 BUG_ON(!PageCompound(page));
47adccce 4220 kfree_hook(object);
96403bfe
MS
4221 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4222 -(PAGE_SIZE << order));
6a486c0a 4223 __free_pages(page, order);
aadb4bc4
CL
4224 return;
4225 }
81084651 4226 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4227}
4228EXPORT_SYMBOL(kfree);
4229
832f37f5
VD
4230#define SHRINK_PROMOTE_MAX 32
4231
2086d26a 4232/*
832f37f5
VD
4233 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4234 * up most to the head of the partial lists. New allocations will then
4235 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4236 *
4237 * The slabs with the least items are placed last. This results in them
4238 * being allocated from last increasing the chance that the last objects
4239 * are freed in them.
2086d26a 4240 */
c9fc5864 4241int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4242{
4243 int node;
4244 int i;
4245 struct kmem_cache_node *n;
4246 struct page *page;
4247 struct page *t;
832f37f5
VD
4248 struct list_head discard;
4249 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4250 unsigned long flags;
ce3712d7 4251 int ret = 0;
2086d26a 4252
2086d26a 4253 flush_all(s);
fa45dc25 4254 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4255 INIT_LIST_HEAD(&discard);
4256 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4257 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4258
4259 spin_lock_irqsave(&n->list_lock, flags);
4260
4261 /*
832f37f5 4262 * Build lists of slabs to discard or promote.
2086d26a 4263 *
672bba3a
CL
4264 * Note that concurrent frees may occur while we hold the
4265 * list_lock. page->inuse here is the upper limit.
2086d26a 4266 */
916ac052 4267 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4268 int free = page->objects - page->inuse;
4269
4270 /* Do not reread page->inuse */
4271 barrier();
4272
4273 /* We do not keep full slabs on the list */
4274 BUG_ON(free <= 0);
4275
4276 if (free == page->objects) {
916ac052 4277 list_move(&page->slab_list, &discard);
69cb8e6b 4278 n->nr_partial--;
832f37f5 4279 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4280 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4281 }
4282
2086d26a 4283 /*
832f37f5
VD
4284 * Promote the slabs filled up most to the head of the
4285 * partial list.
2086d26a 4286 */
832f37f5
VD
4287 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4288 list_splice(promote + i, &n->partial);
2086d26a 4289
2086d26a 4290 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4291
4292 /* Release empty slabs */
916ac052 4293 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4294 discard_slab(s, page);
ce3712d7
VD
4295
4296 if (slabs_node(s, node))
4297 ret = 1;
2086d26a
CL
4298 }
4299
ce3712d7 4300 return ret;
2086d26a 4301}
2086d26a 4302
b9049e23
YG
4303static int slab_mem_going_offline_callback(void *arg)
4304{
4305 struct kmem_cache *s;
4306
18004c5d 4307 mutex_lock(&slab_mutex);
b9049e23 4308 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4309 __kmem_cache_shrink(s);
18004c5d 4310 mutex_unlock(&slab_mutex);
b9049e23
YG
4311
4312 return 0;
4313}
4314
4315static void slab_mem_offline_callback(void *arg)
4316{
b9049e23
YG
4317 struct memory_notify *marg = arg;
4318 int offline_node;
4319
b9d5ab25 4320 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4321
4322 /*
4323 * If the node still has available memory. we need kmem_cache_node
4324 * for it yet.
4325 */
4326 if (offline_node < 0)
4327 return;
4328
18004c5d 4329 mutex_lock(&slab_mutex);
7e1fa93d 4330 node_clear(offline_node, slab_nodes);
666716fd
VB
4331 /*
4332 * We no longer free kmem_cache_node structures here, as it would be
4333 * racy with all get_node() users, and infeasible to protect them with
4334 * slab_mutex.
4335 */
18004c5d 4336 mutex_unlock(&slab_mutex);
b9049e23
YG
4337}
4338
4339static int slab_mem_going_online_callback(void *arg)
4340{
4341 struct kmem_cache_node *n;
4342 struct kmem_cache *s;
4343 struct memory_notify *marg = arg;
b9d5ab25 4344 int nid = marg->status_change_nid_normal;
b9049e23
YG
4345 int ret = 0;
4346
4347 /*
4348 * If the node's memory is already available, then kmem_cache_node is
4349 * already created. Nothing to do.
4350 */
4351 if (nid < 0)
4352 return 0;
4353
4354 /*
0121c619 4355 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4356 * allocate a kmem_cache_node structure in order to bring the node
4357 * online.
4358 */
18004c5d 4359 mutex_lock(&slab_mutex);
b9049e23 4360 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4361 /*
4362 * The structure may already exist if the node was previously
4363 * onlined and offlined.
4364 */
4365 if (get_node(s, nid))
4366 continue;
b9049e23
YG
4367 /*
4368 * XXX: kmem_cache_alloc_node will fallback to other nodes
4369 * since memory is not yet available from the node that
4370 * is brought up.
4371 */
8de66a0c 4372 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4373 if (!n) {
4374 ret = -ENOMEM;
4375 goto out;
4376 }
4053497d 4377 init_kmem_cache_node(n);
b9049e23
YG
4378 s->node[nid] = n;
4379 }
7e1fa93d
VB
4380 /*
4381 * Any cache created after this point will also have kmem_cache_node
4382 * initialized for the new node.
4383 */
4384 node_set(nid, slab_nodes);
b9049e23 4385out:
18004c5d 4386 mutex_unlock(&slab_mutex);
b9049e23
YG
4387 return ret;
4388}
4389
4390static int slab_memory_callback(struct notifier_block *self,
4391 unsigned long action, void *arg)
4392{
4393 int ret = 0;
4394
4395 switch (action) {
4396 case MEM_GOING_ONLINE:
4397 ret = slab_mem_going_online_callback(arg);
4398 break;
4399 case MEM_GOING_OFFLINE:
4400 ret = slab_mem_going_offline_callback(arg);
4401 break;
4402 case MEM_OFFLINE:
4403 case MEM_CANCEL_ONLINE:
4404 slab_mem_offline_callback(arg);
4405 break;
4406 case MEM_ONLINE:
4407 case MEM_CANCEL_OFFLINE:
4408 break;
4409 }
dc19f9db
KH
4410 if (ret)
4411 ret = notifier_from_errno(ret);
4412 else
4413 ret = NOTIFY_OK;
b9049e23
YG
4414 return ret;
4415}
4416
3ac38faa
AM
4417static struct notifier_block slab_memory_callback_nb = {
4418 .notifier_call = slab_memory_callback,
4419 .priority = SLAB_CALLBACK_PRI,
4420};
b9049e23 4421
81819f0f
CL
4422/********************************************************************
4423 * Basic setup of slabs
4424 *******************************************************************/
4425
51df1142
CL
4426/*
4427 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4428 * the page allocator. Allocate them properly then fix up the pointers
4429 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4430 */
4431
dffb4d60 4432static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4433{
4434 int node;
dffb4d60 4435 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4436 struct kmem_cache_node *n;
51df1142 4437
dffb4d60 4438 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4439
7d557b3c
GC
4440 /*
4441 * This runs very early, and only the boot processor is supposed to be
4442 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4443 * IPIs around.
4444 */
4445 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4446 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4447 struct page *p;
4448
916ac052 4449 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4450 p->slab_cache = s;
51df1142 4451
607bf324 4452#ifdef CONFIG_SLUB_DEBUG
916ac052 4453 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4454 p->slab_cache = s;
51df1142 4455#endif
51df1142 4456 }
dffb4d60
CL
4457 list_add(&s->list, &slab_caches);
4458 return s;
51df1142
CL
4459}
4460
81819f0f
CL
4461void __init kmem_cache_init(void)
4462{
dffb4d60
CL
4463 static __initdata struct kmem_cache boot_kmem_cache,
4464 boot_kmem_cache_node;
7e1fa93d 4465 int node;
51df1142 4466
fc8d8620
SG
4467 if (debug_guardpage_minorder())
4468 slub_max_order = 0;
4469
dffb4d60
CL
4470 kmem_cache_node = &boot_kmem_cache_node;
4471 kmem_cache = &boot_kmem_cache;
51df1142 4472
7e1fa93d
VB
4473 /*
4474 * Initialize the nodemask for which we will allocate per node
4475 * structures. Here we don't need taking slab_mutex yet.
4476 */
4477 for_each_node_state(node, N_NORMAL_MEMORY)
4478 node_set(node, slab_nodes);
4479
dffb4d60 4480 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4481 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4482
3ac38faa 4483 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4484
4485 /* Able to allocate the per node structures */
4486 slab_state = PARTIAL;
4487
dffb4d60
CL
4488 create_boot_cache(kmem_cache, "kmem_cache",
4489 offsetof(struct kmem_cache, node) +
4490 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4491 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4492
dffb4d60 4493 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4494 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4495
4496 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4497 setup_kmalloc_cache_index_table();
f97d5f63 4498 create_kmalloc_caches(0);
81819f0f 4499
210e7a43
TG
4500 /* Setup random freelists for each cache */
4501 init_freelist_randomization();
4502
a96a87bf
SAS
4503 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4504 slub_cpu_dead);
81819f0f 4505
b9726c26 4506 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4507 cache_line_size(),
81819f0f
CL
4508 slub_min_order, slub_max_order, slub_min_objects,
4509 nr_cpu_ids, nr_node_ids);
4510}
4511
7e85ee0c
PE
4512void __init kmem_cache_init_late(void)
4513{
7e85ee0c
PE
4514}
4515
2633d7a0 4516struct kmem_cache *
f4957d5b 4517__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4518 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4519{
10befea9 4520 struct kmem_cache *s;
81819f0f 4521
a44cb944 4522 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4523 if (s) {
4524 s->refcount++;
84d0ddd6 4525
81819f0f
CL
4526 /*
4527 * Adjust the object sizes so that we clear
4528 * the complete object on kzalloc.
4529 */
1b473f29 4530 s->object_size = max(s->object_size, size);
52ee6d74 4531 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4532
7b8f3b66 4533 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4534 s->refcount--;
cbb79694 4535 s = NULL;
7b8f3b66 4536 }
a0e1d1be 4537 }
6446faa2 4538
cbb79694
CL
4539 return s;
4540}
84c1cf62 4541
d50112ed 4542int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4543{
aac3a166
PE
4544 int err;
4545
4546 err = kmem_cache_open(s, flags);
4547 if (err)
4548 return err;
20cea968 4549
45530c44
CL
4550 /* Mutex is not taken during early boot */
4551 if (slab_state <= UP)
4552 return 0;
4553
aac3a166 4554 err = sysfs_slab_add(s);
aac3a166 4555 if (err)
52b4b950 4556 __kmem_cache_release(s);
20cea968 4557
aac3a166 4558 return err;
81819f0f 4559}
81819f0f 4560
ce71e27c 4561void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4562{
aadb4bc4 4563 struct kmem_cache *s;
94b528d0 4564 void *ret;
aadb4bc4 4565
95a05b42 4566 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4567 return kmalloc_large(size, gfpflags);
4568
2c59dd65 4569 s = kmalloc_slab(size, gfpflags);
81819f0f 4570
2408c550 4571 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4572 return s;
81819f0f 4573
b89fb5ef 4574 ret = slab_alloc(s, gfpflags, caller, size);
94b528d0 4575
25985edc 4576 /* Honor the call site pointer we received. */
ca2b84cb 4577 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4578
4579 return ret;
81819f0f 4580}
fd7cb575 4581EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4582
5d1f57e4 4583#ifdef CONFIG_NUMA
81819f0f 4584void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4585 int node, unsigned long caller)
81819f0f 4586{
aadb4bc4 4587 struct kmem_cache *s;
94b528d0 4588 void *ret;
aadb4bc4 4589
95a05b42 4590 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4591 ret = kmalloc_large_node(size, gfpflags, node);
4592
4593 trace_kmalloc_node(caller, ret,
4594 size, PAGE_SIZE << get_order(size),
4595 gfpflags, node);
4596
4597 return ret;
4598 }
eada35ef 4599
2c59dd65 4600 s = kmalloc_slab(size, gfpflags);
81819f0f 4601
2408c550 4602 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4603 return s;
81819f0f 4604
b89fb5ef 4605 ret = slab_alloc_node(s, gfpflags, node, caller, size);
94b528d0 4606
25985edc 4607 /* Honor the call site pointer we received. */
ca2b84cb 4608 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4609
4610 return ret;
81819f0f 4611}
fd7cb575 4612EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4613#endif
81819f0f 4614
ab4d5ed5 4615#ifdef CONFIG_SYSFS
205ab99d
CL
4616static int count_inuse(struct page *page)
4617{
4618 return page->inuse;
4619}
4620
4621static int count_total(struct page *page)
4622{
4623 return page->objects;
4624}
ab4d5ed5 4625#endif
205ab99d 4626
ab4d5ed5 4627#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4628static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4629{
4630 void *p;
a973e9dd 4631 void *addr = page_address(page);
90e9f6a6
YZ
4632 unsigned long *map;
4633
4634 slab_lock(page);
53e15af0 4635
dd98afd4 4636 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4637 goto unlock;
53e15af0
CL
4638
4639 /* Now we know that a valid freelist exists */
90e9f6a6 4640 map = get_map(s, page);
5f80b13a 4641 for_each_object(p, s, addr, page->objects) {
4138fdfc 4642 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4643 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4644
dd98afd4
YZ
4645 if (!check_object(s, page, p, val))
4646 break;
4647 }
90e9f6a6
YZ
4648 put_map(map);
4649unlock:
881db7fb 4650 slab_unlock(page);
53e15af0
CL
4651}
4652
434e245d 4653static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4654 struct kmem_cache_node *n)
53e15af0
CL
4655{
4656 unsigned long count = 0;
4657 struct page *page;
4658 unsigned long flags;
4659
4660 spin_lock_irqsave(&n->list_lock, flags);
4661
916ac052 4662 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4663 validate_slab(s, page);
53e15af0
CL
4664 count++;
4665 }
4666 if (count != n->nr_partial)
f9f58285
FF
4667 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4668 s->name, count, n->nr_partial);
53e15af0
CL
4669
4670 if (!(s->flags & SLAB_STORE_USER))
4671 goto out;
4672
916ac052 4673 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4674 validate_slab(s, page);
53e15af0
CL
4675 count++;
4676 }
4677 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4678 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4679 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4680
4681out:
4682 spin_unlock_irqrestore(&n->list_lock, flags);
4683 return count;
4684}
4685
434e245d 4686static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4687{
4688 int node;
4689 unsigned long count = 0;
fa45dc25 4690 struct kmem_cache_node *n;
53e15af0
CL
4691
4692 flush_all(s);
fa45dc25 4693 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4694 count += validate_slab_node(s, n);
4695
53e15af0
CL
4696 return count;
4697}
88a420e4 4698/*
672bba3a 4699 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4700 * and freed.
4701 */
4702
4703struct location {
4704 unsigned long count;
ce71e27c 4705 unsigned long addr;
45edfa58
CL
4706 long long sum_time;
4707 long min_time;
4708 long max_time;
4709 long min_pid;
4710 long max_pid;
174596a0 4711 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4712 nodemask_t nodes;
88a420e4
CL
4713};
4714
4715struct loc_track {
4716 unsigned long max;
4717 unsigned long count;
4718 struct location *loc;
4719};
4720
4721static void free_loc_track(struct loc_track *t)
4722{
4723 if (t->max)
4724 free_pages((unsigned long)t->loc,
4725 get_order(sizeof(struct location) * t->max));
4726}
4727
68dff6a9 4728static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4729{
4730 struct location *l;
4731 int order;
4732
88a420e4
CL
4733 order = get_order(sizeof(struct location) * max);
4734
68dff6a9 4735 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4736 if (!l)
4737 return 0;
4738
4739 if (t->count) {
4740 memcpy(l, t->loc, sizeof(struct location) * t->count);
4741 free_loc_track(t);
4742 }
4743 t->max = max;
4744 t->loc = l;
4745 return 1;
4746}
4747
4748static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4749 const struct track *track)
88a420e4
CL
4750{
4751 long start, end, pos;
4752 struct location *l;
ce71e27c 4753 unsigned long caddr;
45edfa58 4754 unsigned long age = jiffies - track->when;
88a420e4
CL
4755
4756 start = -1;
4757 end = t->count;
4758
4759 for ( ; ; ) {
4760 pos = start + (end - start + 1) / 2;
4761
4762 /*
4763 * There is nothing at "end". If we end up there
4764 * we need to add something to before end.
4765 */
4766 if (pos == end)
4767 break;
4768
4769 caddr = t->loc[pos].addr;
45edfa58
CL
4770 if (track->addr == caddr) {
4771
4772 l = &t->loc[pos];
4773 l->count++;
4774 if (track->when) {
4775 l->sum_time += age;
4776 if (age < l->min_time)
4777 l->min_time = age;
4778 if (age > l->max_time)
4779 l->max_time = age;
4780
4781 if (track->pid < l->min_pid)
4782 l->min_pid = track->pid;
4783 if (track->pid > l->max_pid)
4784 l->max_pid = track->pid;
4785
174596a0
RR
4786 cpumask_set_cpu(track->cpu,
4787 to_cpumask(l->cpus));
45edfa58
CL
4788 }
4789 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4790 return 1;
4791 }
4792
45edfa58 4793 if (track->addr < caddr)
88a420e4
CL
4794 end = pos;
4795 else
4796 start = pos;
4797 }
4798
4799 /*
672bba3a 4800 * Not found. Insert new tracking element.
88a420e4 4801 */
68dff6a9 4802 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4803 return 0;
4804
4805 l = t->loc + pos;
4806 if (pos < t->count)
4807 memmove(l + 1, l,
4808 (t->count - pos) * sizeof(struct location));
4809 t->count++;
4810 l->count = 1;
45edfa58
CL
4811 l->addr = track->addr;
4812 l->sum_time = age;
4813 l->min_time = age;
4814 l->max_time = age;
4815 l->min_pid = track->pid;
4816 l->max_pid = track->pid;
174596a0
RR
4817 cpumask_clear(to_cpumask(l->cpus));
4818 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4819 nodes_clear(l->nodes);
4820 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4821 return 1;
4822}
4823
4824static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4825 struct page *page, enum track_item alloc)
88a420e4 4826{
a973e9dd 4827 void *addr = page_address(page);
88a420e4 4828 void *p;
90e9f6a6 4829 unsigned long *map;
88a420e4 4830
90e9f6a6 4831 map = get_map(s, page);
224a88be 4832 for_each_object(p, s, addr, page->objects)
4138fdfc 4833 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4834 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4835 put_map(map);
88a420e4
CL
4836}
4837
4838static int list_locations(struct kmem_cache *s, char *buf,
bf16d19a 4839 enum track_item alloc)
88a420e4 4840{
e374d483 4841 int len = 0;
88a420e4 4842 unsigned long i;
68dff6a9 4843 struct loc_track t = { 0, 0, NULL };
88a420e4 4844 int node;
fa45dc25 4845 struct kmem_cache_node *n;
88a420e4 4846
90e9f6a6
YZ
4847 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4848 GFP_KERNEL)) {
bf16d19a 4849 return sysfs_emit(buf, "Out of memory\n");
bbd7d57b 4850 }
88a420e4
CL
4851 /* Push back cpu slabs */
4852 flush_all(s);
4853
fa45dc25 4854 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4855 unsigned long flags;
4856 struct page *page;
4857
9e86943b 4858 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4859 continue;
4860
4861 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4862 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4863 process_slab(&t, s, page, alloc);
916ac052 4864 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4865 process_slab(&t, s, page, alloc);
88a420e4
CL
4866 spin_unlock_irqrestore(&n->list_lock, flags);
4867 }
4868
4869 for (i = 0; i < t.count; i++) {
45edfa58 4870 struct location *l = &t.loc[i];
88a420e4 4871
bf16d19a 4872 len += sysfs_emit_at(buf, len, "%7ld ", l->count);
45edfa58
CL
4873
4874 if (l->addr)
bf16d19a 4875 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
88a420e4 4876 else
bf16d19a
JP
4877 len += sysfs_emit_at(buf, len, "<not-available>");
4878
4879 if (l->sum_time != l->min_time)
4880 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4881 l->min_time,
4882 (long)div_u64(l->sum_time,
4883 l->count),
4884 l->max_time);
4885 else
4886 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
45edfa58
CL
4887
4888 if (l->min_pid != l->max_pid)
bf16d19a
JP
4889 len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4890 l->min_pid, l->max_pid);
45edfa58 4891 else
bf16d19a
JP
4892 len += sysfs_emit_at(buf, len, " pid=%ld",
4893 l->min_pid);
45edfa58 4894
174596a0 4895 if (num_online_cpus() > 1 &&
bf16d19a
JP
4896 !cpumask_empty(to_cpumask(l->cpus)))
4897 len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4898 cpumask_pr_args(to_cpumask(l->cpus)));
4899
4900 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4901 len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4902 nodemask_pr_args(&l->nodes));
4903
4904 len += sysfs_emit_at(buf, len, "\n");
88a420e4
CL
4905 }
4906
4907 free_loc_track(&t);
4908 if (!t.count)
bf16d19a
JP
4909 len += sysfs_emit_at(buf, len, "No data\n");
4910
e374d483 4911 return len;
88a420e4 4912}
6dfd1b65 4913#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4914
a5a84755 4915#ifdef SLUB_RESILIENCY_TEST
c07b8183 4916static void __init resiliency_test(void)
a5a84755
CL
4917{
4918 u8 *p;
cc252eae 4919 int type = KMALLOC_NORMAL;
a5a84755 4920
95a05b42 4921 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4922
f9f58285
FF
4923 pr_err("SLUB resiliency testing\n");
4924 pr_err("-----------------------\n");
4925 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4926
4927 p = kzalloc(16, GFP_KERNEL);
4928 p[16] = 0x12;
f9f58285
FF
4929 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4930 p + 16);
a5a84755 4931
cc252eae 4932 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4933
4934 /* Hmmm... The next two are dangerous */
4935 p = kzalloc(32, GFP_KERNEL);
4936 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4937 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4938 p);
4939 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4940
cc252eae 4941 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4942 p = kzalloc(64, GFP_KERNEL);
4943 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4944 *p = 0x56;
f9f58285
FF
4945 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4946 p);
4947 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4948 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4949
f9f58285 4950 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4951 p = kzalloc(128, GFP_KERNEL);
4952 kfree(p);
4953 *p = 0x78;
f9f58285 4954 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4955 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4956
4957 p = kzalloc(256, GFP_KERNEL);
4958 kfree(p);
4959 p[50] = 0x9a;
f9f58285 4960 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4961 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4962
4963 p = kzalloc(512, GFP_KERNEL);
4964 kfree(p);
4965 p[512] = 0xab;
f9f58285 4966 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4967 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4968}
4969#else
4970#ifdef CONFIG_SYSFS
4971static void resiliency_test(void) {};
4972#endif
6dfd1b65 4973#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4974
ab4d5ed5 4975#ifdef CONFIG_SYSFS
81819f0f 4976enum slab_stat_type {
205ab99d
CL
4977 SL_ALL, /* All slabs */
4978 SL_PARTIAL, /* Only partially allocated slabs */
4979 SL_CPU, /* Only slabs used for cpu caches */
4980 SL_OBJECTS, /* Determine allocated objects not slabs */
4981 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4982};
4983
205ab99d 4984#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4985#define SO_PARTIAL (1 << SL_PARTIAL)
4986#define SO_CPU (1 << SL_CPU)
4987#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4988#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4989
62e5c4b4 4990static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 4991 char *buf, unsigned long flags)
81819f0f
CL
4992{
4993 unsigned long total = 0;
81819f0f
CL
4994 int node;
4995 int x;
4996 unsigned long *nodes;
bf16d19a 4997 int len = 0;
81819f0f 4998
6396bb22 4999 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
5000 if (!nodes)
5001 return -ENOMEM;
81819f0f 5002
205ab99d
CL
5003 if (flags & SO_CPU) {
5004 int cpu;
81819f0f 5005
205ab99d 5006 for_each_possible_cpu(cpu) {
d0e0ac97
CG
5007 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5008 cpu);
ec3ab083 5009 int node;
49e22585 5010 struct page *page;
dfb4f096 5011
4db0c3c2 5012 page = READ_ONCE(c->page);
ec3ab083
CL
5013 if (!page)
5014 continue;
205ab99d 5015
ec3ab083
CL
5016 node = page_to_nid(page);
5017 if (flags & SO_TOTAL)
5018 x = page->objects;
5019 else if (flags & SO_OBJECTS)
5020 x = page->inuse;
5021 else
5022 x = 1;
49e22585 5023
ec3ab083
CL
5024 total += x;
5025 nodes[node] += x;
5026
a93cf07b 5027 page = slub_percpu_partial_read_once(c);
49e22585 5028 if (page) {
8afb1474
LZ
5029 node = page_to_nid(page);
5030 if (flags & SO_TOTAL)
5031 WARN_ON_ONCE(1);
5032 else if (flags & SO_OBJECTS)
5033 WARN_ON_ONCE(1);
5034 else
5035 x = page->pages;
bc6697d8
ED
5036 total += x;
5037 nodes[node] += x;
49e22585 5038 }
81819f0f
CL
5039 }
5040 }
5041
e4f8e513
QC
5042 /*
5043 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5044 * already held which will conflict with an existing lock order:
5045 *
5046 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5047 *
5048 * We don't really need mem_hotplug_lock (to hold off
5049 * slab_mem_going_offline_callback) here because slab's memory hot
5050 * unplug code doesn't destroy the kmem_cache->node[] data.
5051 */
5052
ab4d5ed5 5053#ifdef CONFIG_SLUB_DEBUG
205ab99d 5054 if (flags & SO_ALL) {
fa45dc25
CL
5055 struct kmem_cache_node *n;
5056
5057 for_each_kmem_cache_node(s, node, n) {
205ab99d 5058
d0e0ac97
CG
5059 if (flags & SO_TOTAL)
5060 x = atomic_long_read(&n->total_objects);
5061 else if (flags & SO_OBJECTS)
5062 x = atomic_long_read(&n->total_objects) -
5063 count_partial(n, count_free);
81819f0f 5064 else
205ab99d 5065 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5066 total += x;
5067 nodes[node] += x;
5068 }
5069
ab4d5ed5
CL
5070 } else
5071#endif
5072 if (flags & SO_PARTIAL) {
fa45dc25 5073 struct kmem_cache_node *n;
81819f0f 5074
fa45dc25 5075 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5076 if (flags & SO_TOTAL)
5077 x = count_partial(n, count_total);
5078 else if (flags & SO_OBJECTS)
5079 x = count_partial(n, count_inuse);
81819f0f 5080 else
205ab99d 5081 x = n->nr_partial;
81819f0f
CL
5082 total += x;
5083 nodes[node] += x;
5084 }
5085 }
bf16d19a
JP
5086
5087 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5088#ifdef CONFIG_NUMA
bf16d19a 5089 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5090 if (nodes[node])
bf16d19a
JP
5091 len += sysfs_emit_at(buf, len, " N%d=%lu",
5092 node, nodes[node]);
5093 }
81819f0f 5094#endif
bf16d19a 5095 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5096 kfree(nodes);
bf16d19a
JP
5097
5098 return len;
81819f0f
CL
5099}
5100
81819f0f 5101#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5102#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5103
5104struct slab_attribute {
5105 struct attribute attr;
5106 ssize_t (*show)(struct kmem_cache *s, char *buf);
5107 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5108};
5109
5110#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5111 static struct slab_attribute _name##_attr = \
5112 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5113
5114#define SLAB_ATTR(_name) \
5115 static struct slab_attribute _name##_attr = \
ab067e99 5116 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5117
81819f0f
CL
5118static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5119{
bf16d19a 5120 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5121}
5122SLAB_ATTR_RO(slab_size);
5123
5124static ssize_t align_show(struct kmem_cache *s, char *buf)
5125{
bf16d19a 5126 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5127}
5128SLAB_ATTR_RO(align);
5129
5130static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5131{
bf16d19a 5132 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5133}
5134SLAB_ATTR_RO(object_size);
5135
5136static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5137{
bf16d19a 5138 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5139}
5140SLAB_ATTR_RO(objs_per_slab);
5141
5142static ssize_t order_show(struct kmem_cache *s, char *buf)
5143{
bf16d19a 5144 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5145}
32a6f409 5146SLAB_ATTR_RO(order);
81819f0f 5147
73d342b1
DR
5148static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5149{
bf16d19a 5150 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5151}
5152
5153static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5154 size_t length)
5155{
5156 unsigned long min;
5157 int err;
5158
3dbb95f7 5159 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5160 if (err)
5161 return err;
5162
c0bdb232 5163 set_min_partial(s, min);
73d342b1
DR
5164 return length;
5165}
5166SLAB_ATTR(min_partial);
5167
49e22585
CL
5168static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5169{
bf16d19a 5170 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5171}
5172
5173static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5174 size_t length)
5175{
e5d9998f 5176 unsigned int objects;
49e22585
CL
5177 int err;
5178
e5d9998f 5179 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5180 if (err)
5181 return err;
345c905d 5182 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5183 return -EINVAL;
49e22585 5184
e6d0e1dc 5185 slub_set_cpu_partial(s, objects);
49e22585
CL
5186 flush_all(s);
5187 return length;
5188}
5189SLAB_ATTR(cpu_partial);
5190
81819f0f
CL
5191static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5192{
62c70bce
JP
5193 if (!s->ctor)
5194 return 0;
bf16d19a 5195 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5196}
5197SLAB_ATTR_RO(ctor);
5198
81819f0f
CL
5199static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5200{
bf16d19a 5201 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5202}
5203SLAB_ATTR_RO(aliases);
5204
81819f0f
CL
5205static ssize_t partial_show(struct kmem_cache *s, char *buf)
5206{
d9acf4b7 5207 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5208}
5209SLAB_ATTR_RO(partial);
5210
5211static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5212{
d9acf4b7 5213 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5214}
5215SLAB_ATTR_RO(cpu_slabs);
5216
5217static ssize_t objects_show(struct kmem_cache *s, char *buf)
5218{
205ab99d 5219 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5220}
5221SLAB_ATTR_RO(objects);
5222
205ab99d
CL
5223static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5224{
5225 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5226}
5227SLAB_ATTR_RO(objects_partial);
5228
49e22585
CL
5229static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5230{
5231 int objects = 0;
5232 int pages = 0;
5233 int cpu;
bf16d19a 5234 int len = 0;
49e22585
CL
5235
5236 for_each_online_cpu(cpu) {
a93cf07b
WY
5237 struct page *page;
5238
5239 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5240
5241 if (page) {
5242 pages += page->pages;
5243 objects += page->pobjects;
5244 }
5245 }
5246
bf16d19a 5247 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5248
5249#ifdef CONFIG_SMP
5250 for_each_online_cpu(cpu) {
a93cf07b
WY
5251 struct page *page;
5252
5253 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5254 if (page)
5255 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5256 cpu, page->pobjects, page->pages);
49e22585
CL
5257 }
5258#endif
bf16d19a
JP
5259 len += sysfs_emit_at(buf, len, "\n");
5260
5261 return len;
49e22585
CL
5262}
5263SLAB_ATTR_RO(slabs_cpu_partial);
5264
a5a84755
CL
5265static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5266{
bf16d19a 5267 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5268}
8f58119a 5269SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5270
5271static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5272{
bf16d19a 5273 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5274}
5275SLAB_ATTR_RO(hwcache_align);
5276
5277#ifdef CONFIG_ZONE_DMA
5278static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5279{
bf16d19a 5280 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5281}
5282SLAB_ATTR_RO(cache_dma);
5283#endif
5284
8eb8284b
DW
5285static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5286{
bf16d19a 5287 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5288}
5289SLAB_ATTR_RO(usersize);
5290
a5a84755
CL
5291static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5292{
bf16d19a 5293 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5294}
5295SLAB_ATTR_RO(destroy_by_rcu);
5296
ab4d5ed5 5297#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5298static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5299{
5300 return show_slab_objects(s, buf, SO_ALL);
5301}
5302SLAB_ATTR_RO(slabs);
5303
205ab99d
CL
5304static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5305{
5306 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5307}
5308SLAB_ATTR_RO(total_objects);
5309
81819f0f
CL
5310static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5311{
bf16d19a 5312 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5313}
060807f8 5314SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5315
5316static ssize_t trace_show(struct kmem_cache *s, char *buf)
5317{
bf16d19a 5318 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5319}
060807f8 5320SLAB_ATTR_RO(trace);
81819f0f 5321
81819f0f
CL
5322static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5323{
bf16d19a 5324 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5325}
5326
ad38b5b1 5327SLAB_ATTR_RO(red_zone);
81819f0f
CL
5328
5329static ssize_t poison_show(struct kmem_cache *s, char *buf)
5330{
bf16d19a 5331 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5332}
5333
ad38b5b1 5334SLAB_ATTR_RO(poison);
81819f0f
CL
5335
5336static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5337{
bf16d19a 5338 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5339}
5340
ad38b5b1 5341SLAB_ATTR_RO(store_user);
81819f0f 5342
53e15af0
CL
5343static ssize_t validate_show(struct kmem_cache *s, char *buf)
5344{
5345 return 0;
5346}
5347
5348static ssize_t validate_store(struct kmem_cache *s,
5349 const char *buf, size_t length)
5350{
434e245d
CL
5351 int ret = -EINVAL;
5352
5353 if (buf[0] == '1') {
5354 ret = validate_slab_cache(s);
5355 if (ret >= 0)
5356 ret = length;
5357 }
5358 return ret;
53e15af0
CL
5359}
5360SLAB_ATTR(validate);
a5a84755
CL
5361
5362static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5363{
5364 if (!(s->flags & SLAB_STORE_USER))
5365 return -ENOSYS;
5366 return list_locations(s, buf, TRACK_ALLOC);
5367}
5368SLAB_ATTR_RO(alloc_calls);
5369
5370static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5371{
5372 if (!(s->flags & SLAB_STORE_USER))
5373 return -ENOSYS;
5374 return list_locations(s, buf, TRACK_FREE);
5375}
5376SLAB_ATTR_RO(free_calls);
5377#endif /* CONFIG_SLUB_DEBUG */
5378
5379#ifdef CONFIG_FAILSLAB
5380static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5381{
bf16d19a 5382 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5383}
060807f8 5384SLAB_ATTR_RO(failslab);
ab4d5ed5 5385#endif
53e15af0 5386
2086d26a
CL
5387static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5388{
5389 return 0;
5390}
5391
5392static ssize_t shrink_store(struct kmem_cache *s,
5393 const char *buf, size_t length)
5394{
832f37f5 5395 if (buf[0] == '1')
10befea9 5396 kmem_cache_shrink(s);
832f37f5 5397 else
2086d26a
CL
5398 return -EINVAL;
5399 return length;
5400}
5401SLAB_ATTR(shrink);
5402
81819f0f 5403#ifdef CONFIG_NUMA
9824601e 5404static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5405{
bf16d19a 5406 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5407}
5408
9824601e 5409static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5410 const char *buf, size_t length)
5411{
eb7235eb 5412 unsigned int ratio;
0121c619
CL
5413 int err;
5414
eb7235eb 5415 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5416 if (err)
5417 return err;
eb7235eb
AD
5418 if (ratio > 100)
5419 return -ERANGE;
0121c619 5420
eb7235eb 5421 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5422
81819f0f
CL
5423 return length;
5424}
9824601e 5425SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5426#endif
5427
8ff12cfc 5428#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5429static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5430{
5431 unsigned long sum = 0;
5432 int cpu;
bf16d19a 5433 int len = 0;
6da2ec56 5434 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5435
5436 if (!data)
5437 return -ENOMEM;
5438
5439 for_each_online_cpu(cpu) {
9dfc6e68 5440 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5441
5442 data[cpu] = x;
5443 sum += x;
5444 }
5445
bf16d19a 5446 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5447
50ef37b9 5448#ifdef CONFIG_SMP
8ff12cfc 5449 for_each_online_cpu(cpu) {
bf16d19a
JP
5450 if (data[cpu])
5451 len += sysfs_emit_at(buf, len, " C%d=%u",
5452 cpu, data[cpu]);
8ff12cfc 5453 }
50ef37b9 5454#endif
8ff12cfc 5455 kfree(data);
bf16d19a
JP
5456 len += sysfs_emit_at(buf, len, "\n");
5457
5458 return len;
8ff12cfc
CL
5459}
5460
78eb00cc
DR
5461static void clear_stat(struct kmem_cache *s, enum stat_item si)
5462{
5463 int cpu;
5464
5465 for_each_online_cpu(cpu)
9dfc6e68 5466 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5467}
5468
8ff12cfc
CL
5469#define STAT_ATTR(si, text) \
5470static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5471{ \
5472 return show_stat(s, buf, si); \
5473} \
78eb00cc
DR
5474static ssize_t text##_store(struct kmem_cache *s, \
5475 const char *buf, size_t length) \
5476{ \
5477 if (buf[0] != '0') \
5478 return -EINVAL; \
5479 clear_stat(s, si); \
5480 return length; \
5481} \
5482SLAB_ATTR(text); \
8ff12cfc
CL
5483
5484STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5485STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5486STAT_ATTR(FREE_FASTPATH, free_fastpath);
5487STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5488STAT_ATTR(FREE_FROZEN, free_frozen);
5489STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5490STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5491STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5492STAT_ATTR(ALLOC_SLAB, alloc_slab);
5493STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5494STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5495STAT_ATTR(FREE_SLAB, free_slab);
5496STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5497STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5498STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5499STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5500STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5501STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5502STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5503STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5504STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5505STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5506STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5507STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5508STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5509STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5510#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5511
06428780 5512static struct attribute *slab_attrs[] = {
81819f0f
CL
5513 &slab_size_attr.attr,
5514 &object_size_attr.attr,
5515 &objs_per_slab_attr.attr,
5516 &order_attr.attr,
73d342b1 5517 &min_partial_attr.attr,
49e22585 5518 &cpu_partial_attr.attr,
81819f0f 5519 &objects_attr.attr,
205ab99d 5520 &objects_partial_attr.attr,
81819f0f
CL
5521 &partial_attr.attr,
5522 &cpu_slabs_attr.attr,
5523 &ctor_attr.attr,
81819f0f
CL
5524 &aliases_attr.attr,
5525 &align_attr.attr,
81819f0f
CL
5526 &hwcache_align_attr.attr,
5527 &reclaim_account_attr.attr,
5528 &destroy_by_rcu_attr.attr,
a5a84755 5529 &shrink_attr.attr,
49e22585 5530 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5531#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5532 &total_objects_attr.attr,
5533 &slabs_attr.attr,
5534 &sanity_checks_attr.attr,
5535 &trace_attr.attr,
81819f0f
CL
5536 &red_zone_attr.attr,
5537 &poison_attr.attr,
5538 &store_user_attr.attr,
53e15af0 5539 &validate_attr.attr,
88a420e4
CL
5540 &alloc_calls_attr.attr,
5541 &free_calls_attr.attr,
ab4d5ed5 5542#endif
81819f0f
CL
5543#ifdef CONFIG_ZONE_DMA
5544 &cache_dma_attr.attr,
5545#endif
5546#ifdef CONFIG_NUMA
9824601e 5547 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5548#endif
5549#ifdef CONFIG_SLUB_STATS
5550 &alloc_fastpath_attr.attr,
5551 &alloc_slowpath_attr.attr,
5552 &free_fastpath_attr.attr,
5553 &free_slowpath_attr.attr,
5554 &free_frozen_attr.attr,
5555 &free_add_partial_attr.attr,
5556 &free_remove_partial_attr.attr,
5557 &alloc_from_partial_attr.attr,
5558 &alloc_slab_attr.attr,
5559 &alloc_refill_attr.attr,
e36a2652 5560 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5561 &free_slab_attr.attr,
5562 &cpuslab_flush_attr.attr,
5563 &deactivate_full_attr.attr,
5564 &deactivate_empty_attr.attr,
5565 &deactivate_to_head_attr.attr,
5566 &deactivate_to_tail_attr.attr,
5567 &deactivate_remote_frees_attr.attr,
03e404af 5568 &deactivate_bypass_attr.attr,
65c3376a 5569 &order_fallback_attr.attr,
b789ef51
CL
5570 &cmpxchg_double_fail_attr.attr,
5571 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5572 &cpu_partial_alloc_attr.attr,
5573 &cpu_partial_free_attr.attr,
8028dcea
AS
5574 &cpu_partial_node_attr.attr,
5575 &cpu_partial_drain_attr.attr,
81819f0f 5576#endif
4c13dd3b
DM
5577#ifdef CONFIG_FAILSLAB
5578 &failslab_attr.attr,
5579#endif
8eb8284b 5580 &usersize_attr.attr,
4c13dd3b 5581
81819f0f
CL
5582 NULL
5583};
5584
1fdaaa23 5585static const struct attribute_group slab_attr_group = {
81819f0f
CL
5586 .attrs = slab_attrs,
5587};
5588
5589static ssize_t slab_attr_show(struct kobject *kobj,
5590 struct attribute *attr,
5591 char *buf)
5592{
5593 struct slab_attribute *attribute;
5594 struct kmem_cache *s;
5595 int err;
5596
5597 attribute = to_slab_attr(attr);
5598 s = to_slab(kobj);
5599
5600 if (!attribute->show)
5601 return -EIO;
5602
5603 err = attribute->show(s, buf);
5604
5605 return err;
5606}
5607
5608static ssize_t slab_attr_store(struct kobject *kobj,
5609 struct attribute *attr,
5610 const char *buf, size_t len)
5611{
5612 struct slab_attribute *attribute;
5613 struct kmem_cache *s;
5614 int err;
5615
5616 attribute = to_slab_attr(attr);
5617 s = to_slab(kobj);
5618
5619 if (!attribute->store)
5620 return -EIO;
5621
5622 err = attribute->store(s, buf, len);
81819f0f
CL
5623 return err;
5624}
5625
41a21285
CL
5626static void kmem_cache_release(struct kobject *k)
5627{
5628 slab_kmem_cache_release(to_slab(k));
5629}
5630
52cf25d0 5631static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5632 .show = slab_attr_show,
5633 .store = slab_attr_store,
5634};
5635
5636static struct kobj_type slab_ktype = {
5637 .sysfs_ops = &slab_sysfs_ops,
41a21285 5638 .release = kmem_cache_release,
81819f0f
CL
5639};
5640
27c3a314 5641static struct kset *slab_kset;
81819f0f 5642
9a41707b
VD
5643static inline struct kset *cache_kset(struct kmem_cache *s)
5644{
9a41707b
VD
5645 return slab_kset;
5646}
5647
81819f0f
CL
5648#define ID_STR_LENGTH 64
5649
5650/* Create a unique string id for a slab cache:
6446faa2
CL
5651 *
5652 * Format :[flags-]size
81819f0f
CL
5653 */
5654static char *create_unique_id(struct kmem_cache *s)
5655{
5656 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5657 char *p = name;
5658
5659 BUG_ON(!name);
5660
5661 *p++ = ':';
5662 /*
5663 * First flags affecting slabcache operations. We will only
5664 * get here for aliasable slabs so we do not need to support
5665 * too many flags. The flags here must cover all flags that
5666 * are matched during merging to guarantee that the id is
5667 * unique.
5668 */
5669 if (s->flags & SLAB_CACHE_DMA)
5670 *p++ = 'd';
6d6ea1e9
NB
5671 if (s->flags & SLAB_CACHE_DMA32)
5672 *p++ = 'D';
81819f0f
CL
5673 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5674 *p++ = 'a';
becfda68 5675 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5676 *p++ = 'F';
230e9fc2
VD
5677 if (s->flags & SLAB_ACCOUNT)
5678 *p++ = 'A';
81819f0f
CL
5679 if (p != name + 1)
5680 *p++ = '-';
44065b2e 5681 p += sprintf(p, "%07u", s->size);
2633d7a0 5682
81819f0f
CL
5683 BUG_ON(p > name + ID_STR_LENGTH - 1);
5684 return name;
5685}
5686
5687static int sysfs_slab_add(struct kmem_cache *s)
5688{
5689 int err;
5690 const char *name;
1663f26d 5691 struct kset *kset = cache_kset(s);
45530c44 5692 int unmergeable = slab_unmergeable(s);
81819f0f 5693
1663f26d
TH
5694 if (!kset) {
5695 kobject_init(&s->kobj, &slab_ktype);
5696 return 0;
5697 }
5698
11066386
MC
5699 if (!unmergeable && disable_higher_order_debug &&
5700 (slub_debug & DEBUG_METADATA_FLAGS))
5701 unmergeable = 1;
5702
81819f0f
CL
5703 if (unmergeable) {
5704 /*
5705 * Slabcache can never be merged so we can use the name proper.
5706 * This is typically the case for debug situations. In that
5707 * case we can catch duplicate names easily.
5708 */
27c3a314 5709 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5710 name = s->name;
5711 } else {
5712 /*
5713 * Create a unique name for the slab as a target
5714 * for the symlinks.
5715 */
5716 name = create_unique_id(s);
5717 }
5718
1663f26d 5719 s->kobj.kset = kset;
26e4f205 5720 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5721 if (err)
80da026a 5722 goto out;
81819f0f
CL
5723
5724 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5725 if (err)
5726 goto out_del_kobj;
9a41707b 5727
81819f0f
CL
5728 if (!unmergeable) {
5729 /* Setup first alias */
5730 sysfs_slab_alias(s, s->name);
81819f0f 5731 }
54b6a731
DJ
5732out:
5733 if (!unmergeable)
5734 kfree(name);
5735 return err;
5736out_del_kobj:
5737 kobject_del(&s->kobj);
54b6a731 5738 goto out;
81819f0f
CL
5739}
5740
d50d82fa
MP
5741void sysfs_slab_unlink(struct kmem_cache *s)
5742{
5743 if (slab_state >= FULL)
5744 kobject_del(&s->kobj);
5745}
5746
bf5eb3de
TH
5747void sysfs_slab_release(struct kmem_cache *s)
5748{
5749 if (slab_state >= FULL)
5750 kobject_put(&s->kobj);
81819f0f
CL
5751}
5752
5753/*
5754 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5755 * available lest we lose that information.
81819f0f
CL
5756 */
5757struct saved_alias {
5758 struct kmem_cache *s;
5759 const char *name;
5760 struct saved_alias *next;
5761};
5762
5af328a5 5763static struct saved_alias *alias_list;
81819f0f
CL
5764
5765static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5766{
5767 struct saved_alias *al;
5768
97d06609 5769 if (slab_state == FULL) {
81819f0f
CL
5770 /*
5771 * If we have a leftover link then remove it.
5772 */
27c3a314
GKH
5773 sysfs_remove_link(&slab_kset->kobj, name);
5774 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5775 }
5776
5777 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5778 if (!al)
5779 return -ENOMEM;
5780
5781 al->s = s;
5782 al->name = name;
5783 al->next = alias_list;
5784 alias_list = al;
5785 return 0;
5786}
5787
5788static int __init slab_sysfs_init(void)
5789{
5b95a4ac 5790 struct kmem_cache *s;
81819f0f
CL
5791 int err;
5792
18004c5d 5793 mutex_lock(&slab_mutex);
2bce6485 5794
d7660ce5 5795 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5796 if (!slab_kset) {
18004c5d 5797 mutex_unlock(&slab_mutex);
f9f58285 5798 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5799 return -ENOSYS;
5800 }
5801
97d06609 5802 slab_state = FULL;
26a7bd03 5803
5b95a4ac 5804 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5805 err = sysfs_slab_add(s);
5d540fb7 5806 if (err)
f9f58285
FF
5807 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5808 s->name);
26a7bd03 5809 }
81819f0f
CL
5810
5811 while (alias_list) {
5812 struct saved_alias *al = alias_list;
5813
5814 alias_list = alias_list->next;
5815 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5816 if (err)
f9f58285
FF
5817 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5818 al->name);
81819f0f
CL
5819 kfree(al);
5820 }
5821
18004c5d 5822 mutex_unlock(&slab_mutex);
81819f0f
CL
5823 resiliency_test();
5824 return 0;
5825}
5826
5827__initcall(slab_sysfs_init);
ab4d5ed5 5828#endif /* CONFIG_SYSFS */
57ed3eda
PE
5829
5830/*
5831 * The /proc/slabinfo ABI
5832 */
5b365771 5833#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5834void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5835{
57ed3eda 5836 unsigned long nr_slabs = 0;
205ab99d
CL
5837 unsigned long nr_objs = 0;
5838 unsigned long nr_free = 0;
57ed3eda 5839 int node;
fa45dc25 5840 struct kmem_cache_node *n;
57ed3eda 5841
fa45dc25 5842 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5843 nr_slabs += node_nr_slabs(n);
5844 nr_objs += node_nr_objs(n);
205ab99d 5845 nr_free += count_partial(n, count_free);
57ed3eda
PE
5846 }
5847
0d7561c6
GC
5848 sinfo->active_objs = nr_objs - nr_free;
5849 sinfo->num_objs = nr_objs;
5850 sinfo->active_slabs = nr_slabs;
5851 sinfo->num_slabs = nr_slabs;
5852 sinfo->objects_per_slab = oo_objects(s->oo);
5853 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5854}
5855
0d7561c6 5856void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5857{
7b3c3a50
AD
5858}
5859
b7454ad3
GC
5860ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5861 size_t count, loff_t *ppos)
7b3c3a50 5862{
b7454ad3 5863 return -EIO;
7b3c3a50 5864}
5b365771 5865#endif /* CONFIG_SLUB_DEBUG */