]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/slub.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
117d54df 126void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
127{
128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 p += s->red_left_pad;
130
131 return p;
132}
133
345c905d
JK
134static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135{
136#ifdef CONFIG_SLUB_CPU_PARTIAL
137 return !kmem_cache_debug(s);
138#else
139 return false;
140#endif
141}
142
81819f0f
CL
143/*
144 * Issues still to be resolved:
145 *
81819f0f
CL
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
81819f0f
CL
148 * - Variable sizing of the per node arrays
149 */
150
151/* Enable to test recovery from slab corruption on boot */
152#undef SLUB_RESILIENCY_TEST
153
b789ef51
CL
154/* Enable to log cmpxchg failures */
155#undef SLUB_DEBUG_CMPXCHG
156
2086d26a
CL
157/*
158 * Mininum number of partial slabs. These will be left on the partial
159 * lists even if they are empty. kmem_cache_shrink may reclaim them.
160 */
76be8950 161#define MIN_PARTIAL 5
e95eed57 162
2086d26a
CL
163/*
164 * Maximum number of desirable partial slabs.
165 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 166 * sort the partial list by the number of objects in use.
2086d26a
CL
167 */
168#define MAX_PARTIAL 10
169
becfda68 170#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 171 SLAB_POISON | SLAB_STORE_USER)
672bba3a 172
149daaf3
LA
173/*
174 * These debug flags cannot use CMPXCHG because there might be consistency
175 * issues when checking or reading debug information
176 */
177#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 SLAB_TRACE)
179
180
fa5ec8a1 181/*
3de47213
DR
182 * Debugging flags that require metadata to be stored in the slab. These get
183 * disabled when slub_debug=O is used and a cache's min order increases with
184 * metadata.
fa5ec8a1 185 */
3de47213 186#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 187
210b5c06
CG
188#define OO_SHIFT 16
189#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 190#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 191
81819f0f 192/* Internal SLUB flags */
d50112ed 193/* Poison object */
4fd0b46e 194#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 195/* Use cmpxchg_double */
4fd0b46e 196#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 197
02cbc874
CL
198/*
199 * Tracking user of a slab.
200 */
d6543e39 201#define TRACK_ADDRS_COUNT 16
02cbc874 202struct track {
ce71e27c 203 unsigned long addr; /* Called from address */
d6543e39
BG
204#ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206#endif
02cbc874
CL
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
210};
211
212enum track_item { TRACK_ALLOC, TRACK_FREE };
213
ab4d5ed5 214#ifdef CONFIG_SYSFS
81819f0f
CL
215static int sysfs_slab_add(struct kmem_cache *);
216static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 217static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 218static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 219#else
0c710013
CL
220static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
107dab5c 223static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 224static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
251 /*
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
263#else
264 return ptr;
265#endif
266}
267
268/* Returns the freelist pointer recorded at location ptr_addr. */
269static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271{
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274}
275
7656c72b
CL
276static inline void *get_freepointer(struct kmem_cache *s, void *object)
277{
2482ddec 278 return freelist_dereference(s, object + s->offset);
7656c72b
CL
279}
280
0ad9500e
ED
281static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282{
0882ff91 283 prefetch(object + s->offset);
0ad9500e
ED
284}
285
1393d9a1
CL
286static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287{
2482ddec 288 unsigned long freepointer_addr;
1393d9a1
CL
289 void *p;
290
8e57f8ac 291 if (!debug_pagealloc_enabled_static())
922d566c
JK
292 return get_freepointer(s, object);
293
2482ddec
KC
294 freepointer_addr = (unsigned long)object + s->offset;
295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
297}
298
7656c72b
CL
299static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300{
2482ddec
KC
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
302
ce6fa91b
AP
303#ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305#endif
306
2482ddec 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
308}
309
310/* Loop over all objects in a slab */
224a88be 311#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
7656c72b 315
7656c72b 316/* Determine object index from a given position */
284b50dd 317static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b 318{
6373dca1 319 return (kasan_reset_tag(p) - addr) / s->size;
7656c72b
CL
320}
321
9736d2a9 322static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 323{
9736d2a9 324 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
325}
326
19af27af 327static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 328 unsigned int size)
834f3d11
CL
329{
330 struct kmem_cache_order_objects x = {
9736d2a9 331 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
332 };
333
334 return x;
335}
336
19af27af 337static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 338{
210b5c06 339 return x.x >> OO_SHIFT;
834f3d11
CL
340}
341
19af27af 342static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 343{
210b5c06 344 return x.x & OO_MASK;
834f3d11
CL
345}
346
881db7fb
CL
347/*
348 * Per slab locking using the pagelock
349 */
350static __always_inline void slab_lock(struct page *page)
351{
48c935ad 352 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
353 bit_spin_lock(PG_locked, &page->flags);
354}
355
356static __always_inline void slab_unlock(struct page *page)
357{
48c935ad 358 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
2565409f
HC
369#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 371 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 372 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
373 freelist_old, counters_old,
374 freelist_new, counters_new))
6f6528a1 375 return true;
1d07171c
CL
376 } else
377#endif
378 {
379 slab_lock(page);
d0e0ac97
CG
380 if (page->freelist == freelist_old &&
381 page->counters == counters_old) {
1d07171c 382 page->freelist = freelist_new;
7d27a04b 383 page->counters = counters_new;
1d07171c 384 slab_unlock(page);
6f6528a1 385 return true;
1d07171c
CL
386 }
387 slab_unlock(page);
388 }
389
390 cpu_relax();
391 stat(s, CMPXCHG_DOUBLE_FAIL);
392
393#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 394 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
395#endif
396
6f6528a1 397 return false;
1d07171c
CL
398}
399
b789ef51
CL
400static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 void *freelist_old, unsigned long counters_old,
402 void *freelist_new, unsigned long counters_new,
403 const char *n)
404{
2565409f
HC
405#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 407 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 408 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
409 freelist_old, counters_old,
410 freelist_new, counters_new))
6f6528a1 411 return true;
b789ef51
CL
412 } else
413#endif
414 {
1d07171c
CL
415 unsigned long flags;
416
417 local_irq_save(flags);
881db7fb 418 slab_lock(page);
d0e0ac97
CG
419 if (page->freelist == freelist_old &&
420 page->counters == counters_old) {
b789ef51 421 page->freelist = freelist_new;
7d27a04b 422 page->counters = counters_new;
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
6f6528a1 425 return true;
b789ef51 426 }
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
b789ef51
CL
429 }
430
431 cpu_relax();
432 stat(s, CMPXCHG_DOUBLE_FAIL);
433
434#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 435 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
436#endif
437
6f6528a1 438 return false;
b789ef51
CL
439}
440
41ecc55b 441#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
442static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
443static DEFINE_SPINLOCK(object_map_lock);
444
5f80b13a
CL
445/*
446 * Determine a map of object in use on a page.
447 *
881db7fb 448 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
449 * not vanish from under us.
450 */
90e9f6a6 451static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 452 __acquires(&object_map_lock)
5f80b13a
CL
453{
454 void *p;
455 void *addr = page_address(page);
456
90e9f6a6
YZ
457 VM_BUG_ON(!irqs_disabled());
458
459 spin_lock(&object_map_lock);
460
461 bitmap_zero(object_map, page->objects);
462
5f80b13a 463 for (p = page->freelist; p; p = get_freepointer(s, p))
90e9f6a6
YZ
464 set_bit(slab_index(p, s, addr), object_map);
465
466 return object_map;
467}
468
81aba9e0 469static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
470{
471 VM_BUG_ON(map != object_map);
472 lockdep_assert_held(&object_map_lock);
473
474 spin_unlock(&object_map_lock);
5f80b13a
CL
475}
476
870b1fbb 477static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
478{
479 if (s->flags & SLAB_RED_ZONE)
480 return s->size - s->red_left_pad;
481
482 return s->size;
483}
484
485static inline void *restore_red_left(struct kmem_cache *s, void *p)
486{
487 if (s->flags & SLAB_RED_ZONE)
488 p -= s->red_left_pad;
489
490 return p;
491}
492
41ecc55b
CL
493/*
494 * Debug settings:
495 */
89d3c87e 496#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 497static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 498#else
d50112ed 499static slab_flags_t slub_debug;
f0630fff 500#endif
41ecc55b
CL
501
502static char *slub_debug_slabs;
fa5ec8a1 503static int disable_higher_order_debug;
41ecc55b 504
a79316c6
AR
505/*
506 * slub is about to manipulate internal object metadata. This memory lies
507 * outside the range of the allocated object, so accessing it would normally
508 * be reported by kasan as a bounds error. metadata_access_enable() is used
509 * to tell kasan that these accesses are OK.
510 */
511static inline void metadata_access_enable(void)
512{
513 kasan_disable_current();
514}
515
516static inline void metadata_access_disable(void)
517{
518 kasan_enable_current();
519}
520
81819f0f
CL
521/*
522 * Object debugging
523 */
d86bd1be
JK
524
525/* Verify that a pointer has an address that is valid within a slab page */
526static inline int check_valid_pointer(struct kmem_cache *s,
527 struct page *page, void *object)
528{
529 void *base;
530
531 if (!object)
532 return 1;
533
534 base = page_address(page);
338cfaad 535 object = kasan_reset_tag(object);
d86bd1be
JK
536 object = restore_red_left(s, object);
537 if (object < base || object >= base + page->objects * s->size ||
538 (object - base) % s->size) {
539 return 0;
540 }
541
542 return 1;
543}
544
aa2efd5e
DT
545static void print_section(char *level, char *text, u8 *addr,
546 unsigned int length)
81819f0f 547{
a79316c6 548 metadata_access_enable();
aa2efd5e 549 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 550 length, 1);
a79316c6 551 metadata_access_disable();
81819f0f
CL
552}
553
cbfc35a4
WL
554/*
555 * See comment in calculate_sizes().
556 */
557static inline bool freeptr_outside_object(struct kmem_cache *s)
558{
559 return s->offset >= s->inuse;
560}
561
562/*
563 * Return offset of the end of info block which is inuse + free pointer if
564 * not overlapping with object.
565 */
566static inline unsigned int get_info_end(struct kmem_cache *s)
567{
568 if (freeptr_outside_object(s))
569 return s->inuse + sizeof(void *);
570 else
571 return s->inuse;
572}
573
81819f0f
CL
574static struct track *get_track(struct kmem_cache *s, void *object,
575 enum track_item alloc)
576{
577 struct track *p;
578
cbfc35a4 579 p = object + get_info_end(s);
81819f0f
CL
580
581 return p + alloc;
582}
583
584static void set_track(struct kmem_cache *s, void *object,
ce71e27c 585 enum track_item alloc, unsigned long addr)
81819f0f 586{
1a00df4a 587 struct track *p = get_track(s, object, alloc);
81819f0f 588
81819f0f 589 if (addr) {
d6543e39 590#ifdef CONFIG_STACKTRACE
79716799 591 unsigned int nr_entries;
d6543e39 592
a79316c6 593 metadata_access_enable();
79716799 594 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 595 metadata_access_disable();
d6543e39 596
79716799
TG
597 if (nr_entries < TRACK_ADDRS_COUNT)
598 p->addrs[nr_entries] = 0;
d6543e39 599#endif
81819f0f
CL
600 p->addr = addr;
601 p->cpu = smp_processor_id();
88e4ccf2 602 p->pid = current->pid;
81819f0f 603 p->when = jiffies;
b8ca7ff7 604 } else {
81819f0f 605 memset(p, 0, sizeof(struct track));
b8ca7ff7 606 }
81819f0f
CL
607}
608
81819f0f
CL
609static void init_tracking(struct kmem_cache *s, void *object)
610{
24922684
CL
611 if (!(s->flags & SLAB_STORE_USER))
612 return;
613
ce71e27c
EGM
614 set_track(s, object, TRACK_FREE, 0UL);
615 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
616}
617
86609d33 618static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
619{
620 if (!t->addr)
621 return;
622
f9f58285 623 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 624 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
625#ifdef CONFIG_STACKTRACE
626 {
627 int i;
628 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
629 if (t->addrs[i])
f9f58285 630 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
631 else
632 break;
633 }
634#endif
24922684
CL
635}
636
637static void print_tracking(struct kmem_cache *s, void *object)
638{
86609d33 639 unsigned long pr_time = jiffies;
24922684
CL
640 if (!(s->flags & SLAB_STORE_USER))
641 return;
642
86609d33
CP
643 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
644 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
645}
646
647static void print_page_info(struct page *page)
648{
f9f58285 649 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 650 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
651
652}
653
654static void slab_bug(struct kmem_cache *s, char *fmt, ...)
655{
ecc42fbe 656 struct va_format vaf;
24922684 657 va_list args;
24922684
CL
658
659 va_start(args, fmt);
ecc42fbe
FF
660 vaf.fmt = fmt;
661 vaf.va = &args;
f9f58285 662 pr_err("=============================================================================\n");
ecc42fbe 663 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 664 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 665
373d4d09 666 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 667 va_end(args);
81819f0f
CL
668}
669
24922684
CL
670static void slab_fix(struct kmem_cache *s, char *fmt, ...)
671{
ecc42fbe 672 struct va_format vaf;
24922684 673 va_list args;
24922684
CL
674
675 va_start(args, fmt);
ecc42fbe
FF
676 vaf.fmt = fmt;
677 vaf.va = &args;
678 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 679 va_end(args);
24922684
CL
680}
681
682static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
683{
684 unsigned int off; /* Offset of last byte */
a973e9dd 685 u8 *addr = page_address(page);
24922684
CL
686
687 print_tracking(s, p);
688
689 print_page_info(page);
690
f9f58285
FF
691 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
692 p, p - addr, get_freepointer(s, p));
24922684 693
d86bd1be 694 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
695 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
696 s->red_left_pad);
d86bd1be 697 else if (p > addr + 16)
aa2efd5e 698 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 699
aa2efd5e 700 print_section(KERN_ERR, "Object ", p,
1b473f29 701 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 702 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 703 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 704 s->inuse - s->object_size);
81819f0f 705
cbfc35a4 706 off = get_info_end(s);
81819f0f 707
24922684 708 if (s->flags & SLAB_STORE_USER)
81819f0f 709 off += 2 * sizeof(struct track);
81819f0f 710
80a9201a
AP
711 off += kasan_metadata_size(s);
712
d86bd1be 713 if (off != size_from_object(s))
81819f0f 714 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
715 print_section(KERN_ERR, "Padding ", p + off,
716 size_from_object(s) - off);
24922684
CL
717
718 dump_stack();
81819f0f
CL
719}
720
75c66def 721void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
722 u8 *object, char *reason)
723{
3dc50637 724 slab_bug(s, "%s", reason);
24922684 725 print_trailer(s, page, object);
81819f0f
CL
726}
727
a38965bf 728static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 729 const char *fmt, ...)
81819f0f
CL
730{
731 va_list args;
732 char buf[100];
733
24922684
CL
734 va_start(args, fmt);
735 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 736 va_end(args);
3dc50637 737 slab_bug(s, "%s", buf);
24922684 738 print_page_info(page);
81819f0f
CL
739 dump_stack();
740}
741
f7cb1933 742static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
743{
744 u8 *p = object;
745
d86bd1be
JK
746 if (s->flags & SLAB_RED_ZONE)
747 memset(p - s->red_left_pad, val, s->red_left_pad);
748
81819f0f 749 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
750 memset(p, POISON_FREE, s->object_size - 1);
751 p[s->object_size - 1] = POISON_END;
81819f0f
CL
752 }
753
754 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 755 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
756}
757
24922684
CL
758static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
759 void *from, void *to)
760{
761 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
762 memset(from, data, to - from);
763}
764
765static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
766 u8 *object, char *what,
06428780 767 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
768{
769 u8 *fault;
770 u8 *end;
e1b70dd1 771 u8 *addr = page_address(page);
24922684 772
a79316c6 773 metadata_access_enable();
79824820 774 fault = memchr_inv(start, value, bytes);
a79316c6 775 metadata_access_disable();
24922684
CL
776 if (!fault)
777 return 1;
778
779 end = start + bytes;
780 while (end > fault && end[-1] == value)
781 end--;
782
783 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
784 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
785 fault, end - 1, fault - addr,
786 fault[0], value);
24922684
CL
787 print_trailer(s, page, object);
788
789 restore_bytes(s, what, value, fault, end);
790 return 0;
81819f0f
CL
791}
792
81819f0f
CL
793/*
794 * Object layout:
795 *
796 * object address
797 * Bytes of the object to be managed.
798 * If the freepointer may overlay the object then the free
cbfc35a4 799 * pointer is at the middle of the object.
672bba3a 800 *
81819f0f
CL
801 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
802 * 0xa5 (POISON_END)
803 *
3b0efdfa 804 * object + s->object_size
81819f0f 805 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 806 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 807 * object_size == inuse.
672bba3a 808 *
81819f0f
CL
809 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
810 * 0xcc (RED_ACTIVE) for objects in use.
811 *
812 * object + s->inuse
672bba3a
CL
813 * Meta data starts here.
814 *
81819f0f
CL
815 * A. Free pointer (if we cannot overwrite object on free)
816 * B. Tracking data for SLAB_STORE_USER
672bba3a 817 * C. Padding to reach required alignment boundary or at mininum
6446faa2 818 * one word if debugging is on to be able to detect writes
672bba3a
CL
819 * before the word boundary.
820 *
821 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
822 *
823 * object + s->size
672bba3a 824 * Nothing is used beyond s->size.
81819f0f 825 *
3b0efdfa 826 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 827 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
828 * may be used with merged slabcaches.
829 */
830
81819f0f
CL
831static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
832{
cbfc35a4 833 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
834
835 if (s->flags & SLAB_STORE_USER)
836 /* We also have user information there */
837 off += 2 * sizeof(struct track);
838
80a9201a
AP
839 off += kasan_metadata_size(s);
840
d86bd1be 841 if (size_from_object(s) == off)
81819f0f
CL
842 return 1;
843
24922684 844 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 845 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
846}
847
39b26464 848/* Check the pad bytes at the end of a slab page */
81819f0f
CL
849static int slab_pad_check(struct kmem_cache *s, struct page *page)
850{
24922684
CL
851 u8 *start;
852 u8 *fault;
853 u8 *end;
5d682681 854 u8 *pad;
24922684
CL
855 int length;
856 int remainder;
81819f0f
CL
857
858 if (!(s->flags & SLAB_POISON))
859 return 1;
860
a973e9dd 861 start = page_address(page);
a50b854e 862 length = page_size(page);
39b26464
CL
863 end = start + length;
864 remainder = length % s->size;
81819f0f
CL
865 if (!remainder)
866 return 1;
867
5d682681 868 pad = end - remainder;
a79316c6 869 metadata_access_enable();
5d682681 870 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 871 metadata_access_disable();
24922684
CL
872 if (!fault)
873 return 1;
874 while (end > fault && end[-1] == POISON_INUSE)
875 end--;
876
e1b70dd1
MC
877 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
878 fault, end - 1, fault - start);
5d682681 879 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 880
5d682681 881 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 882 return 0;
81819f0f
CL
883}
884
885static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 886 void *object, u8 val)
81819f0f
CL
887{
888 u8 *p = object;
3b0efdfa 889 u8 *endobject = object + s->object_size;
81819f0f
CL
890
891 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
892 if (!check_bytes_and_report(s, page, object, "Redzone",
893 object - s->red_left_pad, val, s->red_left_pad))
894 return 0;
895
24922684 896 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 897 endobject, val, s->inuse - s->object_size))
81819f0f 898 return 0;
81819f0f 899 } else {
3b0efdfa 900 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 901 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
902 endobject, POISON_INUSE,
903 s->inuse - s->object_size);
3adbefee 904 }
81819f0f
CL
905 }
906
907 if (s->flags & SLAB_POISON) {
f7cb1933 908 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 909 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 910 POISON_FREE, s->object_size - 1) ||
24922684 911 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 912 p + s->object_size - 1, POISON_END, 1)))
81819f0f 913 return 0;
81819f0f
CL
914 /*
915 * check_pad_bytes cleans up on its own.
916 */
917 check_pad_bytes(s, page, p);
918 }
919
cbfc35a4 920 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
921 /*
922 * Object and freepointer overlap. Cannot check
923 * freepointer while object is allocated.
924 */
925 return 1;
926
927 /* Check free pointer validity */
928 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
929 object_err(s, page, p, "Freepointer corrupt");
930 /*
9f6c708e 931 * No choice but to zap it and thus lose the remainder
81819f0f 932 * of the free objects in this slab. May cause
672bba3a 933 * another error because the object count is now wrong.
81819f0f 934 */
a973e9dd 935 set_freepointer(s, p, NULL);
81819f0f
CL
936 return 0;
937 }
938 return 1;
939}
940
941static int check_slab(struct kmem_cache *s, struct page *page)
942{
39b26464
CL
943 int maxobj;
944
81819f0f
CL
945 VM_BUG_ON(!irqs_disabled());
946
947 if (!PageSlab(page)) {
24922684 948 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
949 return 0;
950 }
39b26464 951
9736d2a9 952 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
953 if (page->objects > maxobj) {
954 slab_err(s, page, "objects %u > max %u",
f6edde9c 955 page->objects, maxobj);
39b26464
CL
956 return 0;
957 }
958 if (page->inuse > page->objects) {
24922684 959 slab_err(s, page, "inuse %u > max %u",
f6edde9c 960 page->inuse, page->objects);
81819f0f
CL
961 return 0;
962 }
963 /* Slab_pad_check fixes things up after itself */
964 slab_pad_check(s, page);
965 return 1;
966}
967
968/*
672bba3a
CL
969 * Determine if a certain object on a page is on the freelist. Must hold the
970 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
971 */
972static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
973{
974 int nr = 0;
881db7fb 975 void *fp;
81819f0f 976 void *object = NULL;
f6edde9c 977 int max_objects;
81819f0f 978
881db7fb 979 fp = page->freelist;
39b26464 980 while (fp && nr <= page->objects) {
81819f0f
CL
981 if (fp == search)
982 return 1;
983 if (!check_valid_pointer(s, page, fp)) {
984 if (object) {
985 object_err(s, page, object,
986 "Freechain corrupt");
a973e9dd 987 set_freepointer(s, object, NULL);
81819f0f 988 } else {
24922684 989 slab_err(s, page, "Freepointer corrupt");
a973e9dd 990 page->freelist = NULL;
39b26464 991 page->inuse = page->objects;
24922684 992 slab_fix(s, "Freelist cleared");
81819f0f
CL
993 return 0;
994 }
995 break;
996 }
997 object = fp;
998 fp = get_freepointer(s, object);
999 nr++;
1000 }
1001
9736d2a9 1002 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1003 if (max_objects > MAX_OBJS_PER_PAGE)
1004 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1005
1006 if (page->objects != max_objects) {
756a025f
JP
1007 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1008 page->objects, max_objects);
224a88be
CL
1009 page->objects = max_objects;
1010 slab_fix(s, "Number of objects adjusted.");
1011 }
39b26464 1012 if (page->inuse != page->objects - nr) {
756a025f
JP
1013 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1014 page->inuse, page->objects - nr);
39b26464 1015 page->inuse = page->objects - nr;
24922684 1016 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1017 }
1018 return search == NULL;
1019}
1020
0121c619
CL
1021static void trace(struct kmem_cache *s, struct page *page, void *object,
1022 int alloc)
3ec09742
CL
1023{
1024 if (s->flags & SLAB_TRACE) {
f9f58285 1025 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1026 s->name,
1027 alloc ? "alloc" : "free",
1028 object, page->inuse,
1029 page->freelist);
1030
1031 if (!alloc)
aa2efd5e 1032 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1033 s->object_size);
3ec09742
CL
1034
1035 dump_stack();
1036 }
1037}
1038
643b1138 1039/*
672bba3a 1040 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1041 */
5cc6eee8
CL
1042static void add_full(struct kmem_cache *s,
1043 struct kmem_cache_node *n, struct page *page)
643b1138 1044{
5cc6eee8
CL
1045 if (!(s->flags & SLAB_STORE_USER))
1046 return;
1047
255d0884 1048 lockdep_assert_held(&n->list_lock);
916ac052 1049 list_add(&page->slab_list, &n->full);
643b1138
CL
1050}
1051
c65c1877 1052static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1053{
643b1138
CL
1054 if (!(s->flags & SLAB_STORE_USER))
1055 return;
1056
255d0884 1057 lockdep_assert_held(&n->list_lock);
916ac052 1058 list_del(&page->slab_list);
643b1138
CL
1059}
1060
0f389ec6
CL
1061/* Tracking of the number of slabs for debugging purposes */
1062static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1063{
1064 struct kmem_cache_node *n = get_node(s, node);
1065
1066 return atomic_long_read(&n->nr_slabs);
1067}
1068
26c02cf0
AB
1069static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1070{
1071 return atomic_long_read(&n->nr_slabs);
1072}
1073
205ab99d 1074static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1075{
1076 struct kmem_cache_node *n = get_node(s, node);
1077
1078 /*
1079 * May be called early in order to allocate a slab for the
1080 * kmem_cache_node structure. Solve the chicken-egg
1081 * dilemma by deferring the increment of the count during
1082 * bootstrap (see early_kmem_cache_node_alloc).
1083 */
338b2642 1084 if (likely(n)) {
0f389ec6 1085 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1086 atomic_long_add(objects, &n->total_objects);
1087 }
0f389ec6 1088}
205ab99d 1089static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1090{
1091 struct kmem_cache_node *n = get_node(s, node);
1092
1093 atomic_long_dec(&n->nr_slabs);
205ab99d 1094 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1095}
1096
1097/* Object debug checks for alloc/free paths */
3ec09742
CL
1098static void setup_object_debug(struct kmem_cache *s, struct page *page,
1099 void *object)
1100{
1101 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1102 return;
1103
f7cb1933 1104 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1105 init_tracking(s, object);
1106}
1107
a50b854e
MWO
1108static
1109void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224
AK
1110{
1111 if (!(s->flags & SLAB_POISON))
1112 return;
1113
1114 metadata_access_enable();
a50b854e 1115 memset(addr, POISON_INUSE, page_size(page));
a7101224
AK
1116 metadata_access_disable();
1117}
1118
becfda68 1119static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1120 struct page *page, void *object)
81819f0f
CL
1121{
1122 if (!check_slab(s, page))
becfda68 1123 return 0;
81819f0f 1124
81819f0f
CL
1125 if (!check_valid_pointer(s, page, object)) {
1126 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1127 return 0;
81819f0f
CL
1128 }
1129
f7cb1933 1130 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1131 return 0;
1132
1133 return 1;
1134}
1135
1136static noinline int alloc_debug_processing(struct kmem_cache *s,
1137 struct page *page,
1138 void *object, unsigned long addr)
1139{
1140 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1141 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1142 goto bad;
1143 }
81819f0f 1144
3ec09742
CL
1145 /* Success perform special debug activities for allocs */
1146 if (s->flags & SLAB_STORE_USER)
1147 set_track(s, object, TRACK_ALLOC, addr);
1148 trace(s, page, object, 1);
f7cb1933 1149 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1150 return 1;
3ec09742 1151
81819f0f
CL
1152bad:
1153 if (PageSlab(page)) {
1154 /*
1155 * If this is a slab page then lets do the best we can
1156 * to avoid issues in the future. Marking all objects
672bba3a 1157 * as used avoids touching the remaining objects.
81819f0f 1158 */
24922684 1159 slab_fix(s, "Marking all objects used");
39b26464 1160 page->inuse = page->objects;
a973e9dd 1161 page->freelist = NULL;
81819f0f
CL
1162 }
1163 return 0;
1164}
1165
becfda68
LA
1166static inline int free_consistency_checks(struct kmem_cache *s,
1167 struct page *page, void *object, unsigned long addr)
81819f0f 1168{
81819f0f 1169 if (!check_valid_pointer(s, page, object)) {
70d71228 1170 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1171 return 0;
81819f0f
CL
1172 }
1173
1174 if (on_freelist(s, page, object)) {
24922684 1175 object_err(s, page, object, "Object already free");
becfda68 1176 return 0;
81819f0f
CL
1177 }
1178
f7cb1933 1179 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1180 return 0;
81819f0f 1181
1b4f59e3 1182 if (unlikely(s != page->slab_cache)) {
3adbefee 1183 if (!PageSlab(page)) {
756a025f
JP
1184 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1185 object);
1b4f59e3 1186 } else if (!page->slab_cache) {
f9f58285
FF
1187 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1188 object);
70d71228 1189 dump_stack();
06428780 1190 } else
24922684
CL
1191 object_err(s, page, object,
1192 "page slab pointer corrupt.");
becfda68
LA
1193 return 0;
1194 }
1195 return 1;
1196}
1197
1198/* Supports checking bulk free of a constructed freelist */
1199static noinline int free_debug_processing(
1200 struct kmem_cache *s, struct page *page,
1201 void *head, void *tail, int bulk_cnt,
1202 unsigned long addr)
1203{
1204 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1205 void *object = head;
1206 int cnt = 0;
1207 unsigned long uninitialized_var(flags);
1208 int ret = 0;
1209
1210 spin_lock_irqsave(&n->list_lock, flags);
1211 slab_lock(page);
1212
1213 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1214 if (!check_slab(s, page))
1215 goto out;
1216 }
1217
1218next_object:
1219 cnt++;
1220
1221 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1222 if (!free_consistency_checks(s, page, object, addr))
1223 goto out;
81819f0f 1224 }
3ec09742 1225
3ec09742
CL
1226 if (s->flags & SLAB_STORE_USER)
1227 set_track(s, object, TRACK_FREE, addr);
1228 trace(s, page, object, 0);
81084651 1229 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1230 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1231
1232 /* Reached end of constructed freelist yet? */
1233 if (object != tail) {
1234 object = get_freepointer(s, object);
1235 goto next_object;
1236 }
804aa132
LA
1237 ret = 1;
1238
5c2e4bbb 1239out:
81084651
JDB
1240 if (cnt != bulk_cnt)
1241 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1242 bulk_cnt, cnt);
1243
881db7fb 1244 slab_unlock(page);
282acb43 1245 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1246 if (!ret)
1247 slab_fix(s, "Object at 0x%p not freed", object);
1248 return ret;
81819f0f
CL
1249}
1250
41ecc55b
CL
1251static int __init setup_slub_debug(char *str)
1252{
f0630fff
CL
1253 slub_debug = DEBUG_DEFAULT_FLAGS;
1254 if (*str++ != '=' || !*str)
1255 /*
1256 * No options specified. Switch on full debugging.
1257 */
1258 goto out;
1259
1260 if (*str == ',')
1261 /*
1262 * No options but restriction on slabs. This means full
1263 * debugging for slabs matching a pattern.
1264 */
1265 goto check_slabs;
1266
1267 slub_debug = 0;
1268 if (*str == '-')
1269 /*
1270 * Switch off all debugging measures.
1271 */
1272 goto out;
1273
1274 /*
1275 * Determine which debug features should be switched on
1276 */
06428780 1277 for (; *str && *str != ','; str++) {
f0630fff
CL
1278 switch (tolower(*str)) {
1279 case 'f':
becfda68 1280 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1281 break;
1282 case 'z':
1283 slub_debug |= SLAB_RED_ZONE;
1284 break;
1285 case 'p':
1286 slub_debug |= SLAB_POISON;
1287 break;
1288 case 'u':
1289 slub_debug |= SLAB_STORE_USER;
1290 break;
1291 case 't':
1292 slub_debug |= SLAB_TRACE;
1293 break;
4c13dd3b
DM
1294 case 'a':
1295 slub_debug |= SLAB_FAILSLAB;
1296 break;
08303a73
CA
1297 case 'o':
1298 /*
1299 * Avoid enabling debugging on caches if its minimum
1300 * order would increase as a result.
1301 */
1302 disable_higher_order_debug = 1;
1303 break;
f0630fff 1304 default:
f9f58285
FF
1305 pr_err("slub_debug option '%c' unknown. skipped\n",
1306 *str);
f0630fff 1307 }
41ecc55b
CL
1308 }
1309
f0630fff 1310check_slabs:
41ecc55b
CL
1311 if (*str == ',')
1312 slub_debug_slabs = str + 1;
f0630fff 1313out:
6471384a
AP
1314 if ((static_branch_unlikely(&init_on_alloc) ||
1315 static_branch_unlikely(&init_on_free)) &&
1316 (slub_debug & SLAB_POISON))
1317 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1318 return 1;
1319}
1320
1321__setup("slub_debug", setup_slub_debug);
1322
c5fd3ca0
AT
1323/*
1324 * kmem_cache_flags - apply debugging options to the cache
1325 * @object_size: the size of an object without meta data
1326 * @flags: flags to set
1327 * @name: name of the cache
1328 * @ctor: constructor function
1329 *
1330 * Debug option(s) are applied to @flags. In addition to the debug
1331 * option(s), if a slab name (or multiple) is specified i.e.
1332 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1333 * then only the select slabs will receive the debug option(s).
1334 */
0293d1fd 1335slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1336 slab_flags_t flags, const char *name,
51cc5068 1337 void (*ctor)(void *))
41ecc55b 1338{
c5fd3ca0
AT
1339 char *iter;
1340 size_t len;
1341
1342 /* If slub_debug = 0, it folds into the if conditional. */
1343 if (!slub_debug_slabs)
1344 return flags | slub_debug;
1345
1346 len = strlen(name);
1347 iter = slub_debug_slabs;
1348 while (*iter) {
1349 char *end, *glob;
1350 size_t cmplen;
1351
9cf3a8d8 1352 end = strchrnul(iter, ',');
c5fd3ca0
AT
1353
1354 glob = strnchr(iter, end - iter, '*');
1355 if (glob)
1356 cmplen = glob - iter;
1357 else
1358 cmplen = max_t(size_t, len, (end - iter));
1359
1360 if (!strncmp(name, iter, cmplen)) {
1361 flags |= slub_debug;
1362 break;
1363 }
1364
1365 if (!*end)
1366 break;
1367 iter = end + 1;
1368 }
ba0268a8
CL
1369
1370 return flags;
41ecc55b 1371}
b4a64718 1372#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1373static inline void setup_object_debug(struct kmem_cache *s,
1374 struct page *page, void *object) {}
a50b854e
MWO
1375static inline
1376void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1377
3ec09742 1378static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1379 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1380
282acb43 1381static inline int free_debug_processing(
81084651
JDB
1382 struct kmem_cache *s, struct page *page,
1383 void *head, void *tail, int bulk_cnt,
282acb43 1384 unsigned long addr) { return 0; }
41ecc55b 1385
41ecc55b
CL
1386static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1387 { return 1; }
1388static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1389 void *object, u8 val) { return 1; }
5cc6eee8
CL
1390static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1391 struct page *page) {}
c65c1877
PZ
1392static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1393 struct page *page) {}
0293d1fd 1394slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1395 slab_flags_t flags, const char *name,
51cc5068 1396 void (*ctor)(void *))
ba0268a8
CL
1397{
1398 return flags;
1399}
41ecc55b 1400#define slub_debug 0
0f389ec6 1401
fdaa45e9
IM
1402#define disable_higher_order_debug 0
1403
0f389ec6
CL
1404static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1405 { return 0; }
26c02cf0
AB
1406static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1407 { return 0; }
205ab99d
CL
1408static inline void inc_slabs_node(struct kmem_cache *s, int node,
1409 int objects) {}
1410static inline void dec_slabs_node(struct kmem_cache *s, int node,
1411 int objects) {}
7d550c56 1412
02e72cc6
AR
1413#endif /* CONFIG_SLUB_DEBUG */
1414
1415/*
1416 * Hooks for other subsystems that check memory allocations. In a typical
1417 * production configuration these hooks all should produce no code at all.
1418 */
0116523c 1419static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1420{
53128245 1421 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1422 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1423 kmemleak_alloc(ptr, size, 1, flags);
53128245 1424 return ptr;
d56791b3
RB
1425}
1426
ee3ce779 1427static __always_inline void kfree_hook(void *x)
d56791b3
RB
1428{
1429 kmemleak_free(x);
ee3ce779 1430 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1431}
1432
c3895391 1433static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1434{
1435 kmemleak_free_recursive(x, s->flags);
7d550c56 1436
02e72cc6
AR
1437 /*
1438 * Trouble is that we may no longer disable interrupts in the fast path
1439 * So in order to make the debug calls that expect irqs to be
1440 * disabled we need to disable interrupts temporarily.
1441 */
4675ff05 1442#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1443 {
1444 unsigned long flags;
1445
1446 local_irq_save(flags);
02e72cc6
AR
1447 debug_check_no_locks_freed(x, s->object_size);
1448 local_irq_restore(flags);
1449 }
1450#endif
1451 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1452 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1453
c3895391
AK
1454 /* KASAN might put x into memory quarantine, delaying its reuse */
1455 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1456}
205ab99d 1457
c3895391
AK
1458static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1459 void **head, void **tail)
81084651 1460{
6471384a
AP
1461
1462 void *object;
1463 void *next = *head;
1464 void *old_tail = *tail ? *tail : *head;
1465 int rsize;
1466
aea4df4c
LA
1467 /* Head and tail of the reconstructed freelist */
1468 *head = NULL;
1469 *tail = NULL;
1b7e816f 1470
aea4df4c
LA
1471 do {
1472 object = next;
1473 next = get_freepointer(s, object);
1474
1475 if (slab_want_init_on_free(s)) {
6471384a
AP
1476 /*
1477 * Clear the object and the metadata, but don't touch
1478 * the redzone.
1479 */
1480 memset(object, 0, s->object_size);
1481 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1482 : 0;
1483 memset((char *)object + s->inuse, 0,
1484 s->size - s->inuse - rsize);
81084651 1485
aea4df4c 1486 }
c3895391
AK
1487 /* If object's reuse doesn't have to be delayed */
1488 if (!slab_free_hook(s, object)) {
1489 /* Move object to the new freelist */
1490 set_freepointer(s, object, *head);
1491 *head = object;
1492 if (!*tail)
1493 *tail = object;
1494 }
1495 } while (object != old_tail);
1496
1497 if (*head == *tail)
1498 *tail = NULL;
1499
1500 return *head != NULL;
81084651
JDB
1501}
1502
4d176711 1503static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1504 void *object)
1505{
1506 setup_object_debug(s, page, object);
4d176711 1507 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1508 if (unlikely(s->ctor)) {
1509 kasan_unpoison_object_data(s, object);
1510 s->ctor(object);
1511 kasan_poison_object_data(s, object);
1512 }
4d176711 1513 return object;
588f8ba9
TG
1514}
1515
81819f0f
CL
1516/*
1517 * Slab allocation and freeing
1518 */
5dfb4175
VD
1519static inline struct page *alloc_slab_page(struct kmem_cache *s,
1520 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1521{
5dfb4175 1522 struct page *page;
19af27af 1523 unsigned int order = oo_order(oo);
65c3376a 1524
2154a336 1525 if (node == NUMA_NO_NODE)
5dfb4175 1526 page = alloc_pages(flags, order);
65c3376a 1527 else
96db800f 1528 page = __alloc_pages_node(node, flags, order);
5dfb4175 1529
6cea1d56 1530 if (page && charge_slab_page(page, flags, order, s)) {
f3ccb2c4
VD
1531 __free_pages(page, order);
1532 page = NULL;
1533 }
5dfb4175
VD
1534
1535 return page;
65c3376a
CL
1536}
1537
210e7a43
TG
1538#ifdef CONFIG_SLAB_FREELIST_RANDOM
1539/* Pre-initialize the random sequence cache */
1540static int init_cache_random_seq(struct kmem_cache *s)
1541{
19af27af 1542 unsigned int count = oo_objects(s->oo);
210e7a43 1543 int err;
210e7a43 1544
a810007a
SR
1545 /* Bailout if already initialised */
1546 if (s->random_seq)
1547 return 0;
1548
210e7a43
TG
1549 err = cache_random_seq_create(s, count, GFP_KERNEL);
1550 if (err) {
1551 pr_err("SLUB: Unable to initialize free list for %s\n",
1552 s->name);
1553 return err;
1554 }
1555
1556 /* Transform to an offset on the set of pages */
1557 if (s->random_seq) {
19af27af
AD
1558 unsigned int i;
1559
210e7a43
TG
1560 for (i = 0; i < count; i++)
1561 s->random_seq[i] *= s->size;
1562 }
1563 return 0;
1564}
1565
1566/* Initialize each random sequence freelist per cache */
1567static void __init init_freelist_randomization(void)
1568{
1569 struct kmem_cache *s;
1570
1571 mutex_lock(&slab_mutex);
1572
1573 list_for_each_entry(s, &slab_caches, list)
1574 init_cache_random_seq(s);
1575
1576 mutex_unlock(&slab_mutex);
1577}
1578
1579/* Get the next entry on the pre-computed freelist randomized */
1580static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1581 unsigned long *pos, void *start,
1582 unsigned long page_limit,
1583 unsigned long freelist_count)
1584{
1585 unsigned int idx;
1586
1587 /*
1588 * If the target page allocation failed, the number of objects on the
1589 * page might be smaller than the usual size defined by the cache.
1590 */
1591 do {
1592 idx = s->random_seq[*pos];
1593 *pos += 1;
1594 if (*pos >= freelist_count)
1595 *pos = 0;
1596 } while (unlikely(idx >= page_limit));
1597
1598 return (char *)start + idx;
1599}
1600
1601/* Shuffle the single linked freelist based on a random pre-computed sequence */
1602static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1603{
1604 void *start;
1605 void *cur;
1606 void *next;
1607 unsigned long idx, pos, page_limit, freelist_count;
1608
1609 if (page->objects < 2 || !s->random_seq)
1610 return false;
1611
1612 freelist_count = oo_objects(s->oo);
1613 pos = get_random_int() % freelist_count;
1614
1615 page_limit = page->objects * s->size;
1616 start = fixup_red_left(s, page_address(page));
1617
1618 /* First entry is used as the base of the freelist */
1619 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1620 freelist_count);
4d176711 1621 cur = setup_object(s, page, cur);
210e7a43
TG
1622 page->freelist = cur;
1623
1624 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1625 next = next_freelist_entry(s, page, &pos, start, page_limit,
1626 freelist_count);
4d176711 1627 next = setup_object(s, page, next);
210e7a43
TG
1628 set_freepointer(s, cur, next);
1629 cur = next;
1630 }
210e7a43
TG
1631 set_freepointer(s, cur, NULL);
1632
1633 return true;
1634}
1635#else
1636static inline int init_cache_random_seq(struct kmem_cache *s)
1637{
1638 return 0;
1639}
1640static inline void init_freelist_randomization(void) { }
1641static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1642{
1643 return false;
1644}
1645#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1646
81819f0f
CL
1647static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1648{
06428780 1649 struct page *page;
834f3d11 1650 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1651 gfp_t alloc_gfp;
4d176711 1652 void *start, *p, *next;
a50b854e 1653 int idx;
210e7a43 1654 bool shuffle;
81819f0f 1655
7e0528da
CL
1656 flags &= gfp_allowed_mask;
1657
d0164adc 1658 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1659 local_irq_enable();
1660
b7a49f0d 1661 flags |= s->allocflags;
e12ba74d 1662
ba52270d
PE
1663 /*
1664 * Let the initial higher-order allocation fail under memory pressure
1665 * so we fall-back to the minimum order allocation.
1666 */
1667 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1668 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1669 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1670
5dfb4175 1671 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1672 if (unlikely(!page)) {
1673 oo = s->min;
80c3a998 1674 alloc_gfp = flags;
65c3376a
CL
1675 /*
1676 * Allocation may have failed due to fragmentation.
1677 * Try a lower order alloc if possible
1678 */
5dfb4175 1679 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1680 if (unlikely(!page))
1681 goto out;
1682 stat(s, ORDER_FALLBACK);
65c3376a 1683 }
5a896d9e 1684
834f3d11 1685 page->objects = oo_objects(oo);
81819f0f 1686
1b4f59e3 1687 page->slab_cache = s;
c03f94cc 1688 __SetPageSlab(page);
2f064f34 1689 if (page_is_pfmemalloc(page))
072bb0aa 1690 SetPageSlabPfmemalloc(page);
81819f0f 1691
a7101224 1692 kasan_poison_slab(page);
81819f0f 1693
a7101224 1694 start = page_address(page);
81819f0f 1695
a50b854e 1696 setup_page_debug(s, page, start);
0316bec2 1697
210e7a43
TG
1698 shuffle = shuffle_freelist(s, page);
1699
1700 if (!shuffle) {
4d176711
AK
1701 start = fixup_red_left(s, start);
1702 start = setup_object(s, page, start);
1703 page->freelist = start;
18e50661
AK
1704 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1705 next = p + s->size;
1706 next = setup_object(s, page, next);
1707 set_freepointer(s, p, next);
1708 p = next;
1709 }
1710 set_freepointer(s, p, NULL);
81819f0f 1711 }
81819f0f 1712
e6e82ea1 1713 page->inuse = page->objects;
8cb0a506 1714 page->frozen = 1;
588f8ba9 1715
81819f0f 1716out:
d0164adc 1717 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1718 local_irq_disable();
1719 if (!page)
1720 return NULL;
1721
588f8ba9
TG
1722 inc_slabs_node(s, page_to_nid(page), page->objects);
1723
81819f0f
CL
1724 return page;
1725}
1726
588f8ba9
TG
1727static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1728{
1729 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1730 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1731 flags &= ~GFP_SLAB_BUG_MASK;
1732 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1733 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1734 dump_stack();
588f8ba9
TG
1735 }
1736
1737 return allocate_slab(s,
1738 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1739}
1740
81819f0f
CL
1741static void __free_slab(struct kmem_cache *s, struct page *page)
1742{
834f3d11
CL
1743 int order = compound_order(page);
1744 int pages = 1 << order;
81819f0f 1745
becfda68 1746 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1747 void *p;
1748
1749 slab_pad_check(s, page);
224a88be
CL
1750 for_each_object(p, s, page_address(page),
1751 page->objects)
f7cb1933 1752 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1753 }
1754
072bb0aa 1755 __ClearPageSlabPfmemalloc(page);
49bd5221 1756 __ClearPageSlab(page);
1f458cbf 1757
d4fc5069 1758 page->mapping = NULL;
1eb5ac64
NP
1759 if (current->reclaim_state)
1760 current->reclaim_state->reclaimed_slab += pages;
6cea1d56 1761 uncharge_slab_page(page, order, s);
27ee57c9 1762 __free_pages(page, order);
81819f0f
CL
1763}
1764
1765static void rcu_free_slab(struct rcu_head *h)
1766{
bf68c214 1767 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1768
1b4f59e3 1769 __free_slab(page->slab_cache, page);
81819f0f
CL
1770}
1771
1772static void free_slab(struct kmem_cache *s, struct page *page)
1773{
5f0d5a3a 1774 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1775 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1776 } else
1777 __free_slab(s, page);
1778}
1779
1780static void discard_slab(struct kmem_cache *s, struct page *page)
1781{
205ab99d 1782 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1783 free_slab(s, page);
1784}
1785
1786/*
5cc6eee8 1787 * Management of partially allocated slabs.
81819f0f 1788 */
1e4dd946
SR
1789static inline void
1790__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1791{
e95eed57 1792 n->nr_partial++;
136333d1 1793 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1794 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1795 else
916ac052 1796 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1797}
1798
1e4dd946
SR
1799static inline void add_partial(struct kmem_cache_node *n,
1800 struct page *page, int tail)
62e346a8 1801{
c65c1877 1802 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1803 __add_partial(n, page, tail);
1804}
c65c1877 1805
1e4dd946
SR
1806static inline void remove_partial(struct kmem_cache_node *n,
1807 struct page *page)
1808{
1809 lockdep_assert_held(&n->list_lock);
916ac052 1810 list_del(&page->slab_list);
52b4b950 1811 n->nr_partial--;
1e4dd946
SR
1812}
1813
81819f0f 1814/*
7ced3719
CL
1815 * Remove slab from the partial list, freeze it and
1816 * return the pointer to the freelist.
81819f0f 1817 *
497b66f2 1818 * Returns a list of objects or NULL if it fails.
81819f0f 1819 */
497b66f2 1820static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1821 struct kmem_cache_node *n, struct page *page,
633b0764 1822 int mode, int *objects)
81819f0f 1823{
2cfb7455
CL
1824 void *freelist;
1825 unsigned long counters;
1826 struct page new;
1827
c65c1877
PZ
1828 lockdep_assert_held(&n->list_lock);
1829
2cfb7455
CL
1830 /*
1831 * Zap the freelist and set the frozen bit.
1832 * The old freelist is the list of objects for the
1833 * per cpu allocation list.
1834 */
7ced3719
CL
1835 freelist = page->freelist;
1836 counters = page->counters;
1837 new.counters = counters;
633b0764 1838 *objects = new.objects - new.inuse;
23910c50 1839 if (mode) {
7ced3719 1840 new.inuse = page->objects;
23910c50
PE
1841 new.freelist = NULL;
1842 } else {
1843 new.freelist = freelist;
1844 }
2cfb7455 1845
a0132ac0 1846 VM_BUG_ON(new.frozen);
7ced3719 1847 new.frozen = 1;
2cfb7455 1848
7ced3719 1849 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1850 freelist, counters,
02d7633f 1851 new.freelist, new.counters,
7ced3719 1852 "acquire_slab"))
7ced3719 1853 return NULL;
2cfb7455
CL
1854
1855 remove_partial(n, page);
7ced3719 1856 WARN_ON(!freelist);
49e22585 1857 return freelist;
81819f0f
CL
1858}
1859
633b0764 1860static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1861static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1862
81819f0f 1863/*
672bba3a 1864 * Try to allocate a partial slab from a specific node.
81819f0f 1865 */
8ba00bb6
JK
1866static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1867 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1868{
49e22585
CL
1869 struct page *page, *page2;
1870 void *object = NULL;
e5d9998f 1871 unsigned int available = 0;
633b0764 1872 int objects;
81819f0f
CL
1873
1874 /*
1875 * Racy check. If we mistakenly see no partial slabs then we
1876 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1877 * partial slab and there is none available then get_partials()
1878 * will return NULL.
81819f0f
CL
1879 */
1880 if (!n || !n->nr_partial)
1881 return NULL;
1882
1883 spin_lock(&n->list_lock);
916ac052 1884 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1885 void *t;
49e22585 1886
8ba00bb6
JK
1887 if (!pfmemalloc_match(page, flags))
1888 continue;
1889
633b0764 1890 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1891 if (!t)
1892 break;
1893
633b0764 1894 available += objects;
12d79634 1895 if (!object) {
49e22585 1896 c->page = page;
49e22585 1897 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1898 object = t;
49e22585 1899 } else {
633b0764 1900 put_cpu_partial(s, page, 0);
8028dcea 1901 stat(s, CPU_PARTIAL_NODE);
49e22585 1902 }
345c905d 1903 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1904 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1905 break;
1906
497b66f2 1907 }
81819f0f 1908 spin_unlock(&n->list_lock);
497b66f2 1909 return object;
81819f0f
CL
1910}
1911
1912/*
672bba3a 1913 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1914 */
de3ec035 1915static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1916 struct kmem_cache_cpu *c)
81819f0f
CL
1917{
1918#ifdef CONFIG_NUMA
1919 struct zonelist *zonelist;
dd1a239f 1920 struct zoneref *z;
54a6eb5c
MG
1921 struct zone *zone;
1922 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1923 void *object;
cc9a6c87 1924 unsigned int cpuset_mems_cookie;
81819f0f
CL
1925
1926 /*
672bba3a
CL
1927 * The defrag ratio allows a configuration of the tradeoffs between
1928 * inter node defragmentation and node local allocations. A lower
1929 * defrag_ratio increases the tendency to do local allocations
1930 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1931 *
672bba3a
CL
1932 * If the defrag_ratio is set to 0 then kmalloc() always
1933 * returns node local objects. If the ratio is higher then kmalloc()
1934 * may return off node objects because partial slabs are obtained
1935 * from other nodes and filled up.
81819f0f 1936 *
43efd3ea
LP
1937 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1938 * (which makes defrag_ratio = 1000) then every (well almost)
1939 * allocation will first attempt to defrag slab caches on other nodes.
1940 * This means scanning over all nodes to look for partial slabs which
1941 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1942 * with available objects.
81819f0f 1943 */
9824601e
CL
1944 if (!s->remote_node_defrag_ratio ||
1945 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1946 return NULL;
1947
cc9a6c87 1948 do {
d26914d1 1949 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1950 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1951 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1952 struct kmem_cache_node *n;
1953
1954 n = get_node(s, zone_to_nid(zone));
1955
dee2f8aa 1956 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1957 n->nr_partial > s->min_partial) {
8ba00bb6 1958 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1959 if (object) {
1960 /*
d26914d1
MG
1961 * Don't check read_mems_allowed_retry()
1962 * here - if mems_allowed was updated in
1963 * parallel, that was a harmless race
1964 * between allocation and the cpuset
1965 * update
cc9a6c87 1966 */
cc9a6c87
MG
1967 return object;
1968 }
c0ff7453 1969 }
81819f0f 1970 }
d26914d1 1971 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 1972#endif /* CONFIG_NUMA */
81819f0f
CL
1973 return NULL;
1974}
1975
1976/*
1977 * Get a partial page, lock it and return it.
1978 */
497b66f2 1979static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1980 struct kmem_cache_cpu *c)
81819f0f 1981{
497b66f2 1982 void *object;
a561ce00
JK
1983 int searchnode = node;
1984
1985 if (node == NUMA_NO_NODE)
1986 searchnode = numa_mem_id();
81819f0f 1987
8ba00bb6 1988 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1989 if (object || node != NUMA_NO_NODE)
1990 return object;
81819f0f 1991
acd19fd1 1992 return get_any_partial(s, flags, c);
81819f0f
CL
1993}
1994
923717cb 1995#ifdef CONFIG_PREEMPTION
8a5ec0ba
CL
1996/*
1997 * Calculate the next globally unique transaction for disambiguiation
1998 * during cmpxchg. The transactions start with the cpu number and are then
1999 * incremented by CONFIG_NR_CPUS.
2000 */
2001#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2002#else
2003/*
2004 * No preemption supported therefore also no need to check for
2005 * different cpus.
2006 */
2007#define TID_STEP 1
2008#endif
2009
2010static inline unsigned long next_tid(unsigned long tid)
2011{
2012 return tid + TID_STEP;
2013}
2014
9d5f0be0 2015#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2016static inline unsigned int tid_to_cpu(unsigned long tid)
2017{
2018 return tid % TID_STEP;
2019}
2020
2021static inline unsigned long tid_to_event(unsigned long tid)
2022{
2023 return tid / TID_STEP;
2024}
9d5f0be0 2025#endif
8a5ec0ba
CL
2026
2027static inline unsigned int init_tid(int cpu)
2028{
2029 return cpu;
2030}
2031
2032static inline void note_cmpxchg_failure(const char *n,
2033 const struct kmem_cache *s, unsigned long tid)
2034{
2035#ifdef SLUB_DEBUG_CMPXCHG
2036 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2037
f9f58285 2038 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2039
923717cb 2040#ifdef CONFIG_PREEMPTION
8a5ec0ba 2041 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2042 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2043 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2044 else
2045#endif
2046 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2047 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2048 tid_to_event(tid), tid_to_event(actual_tid));
2049 else
f9f58285 2050 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2051 actual_tid, tid, next_tid(tid));
2052#endif
4fdccdfb 2053 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2054}
2055
788e1aad 2056static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2057{
8a5ec0ba
CL
2058 int cpu;
2059
2060 for_each_possible_cpu(cpu)
2061 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2062}
2cfb7455 2063
81819f0f
CL
2064/*
2065 * Remove the cpu slab
2066 */
d0e0ac97 2067static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2068 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2069{
2cfb7455 2070 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2071 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2072 int lock = 0;
2073 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2074 void *nextfree;
136333d1 2075 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2076 struct page new;
2077 struct page old;
2078
2079 if (page->freelist) {
84e554e6 2080 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2081 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2082 }
2083
894b8788 2084 /*
2cfb7455
CL
2085 * Stage one: Free all available per cpu objects back
2086 * to the page freelist while it is still frozen. Leave the
2087 * last one.
2088 *
2089 * There is no need to take the list->lock because the page
2090 * is still frozen.
2091 */
2092 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2093 void *prior;
2094 unsigned long counters;
2095
2096 do {
2097 prior = page->freelist;
2098 counters = page->counters;
2099 set_freepointer(s, freelist, prior);
2100 new.counters = counters;
2101 new.inuse--;
a0132ac0 2102 VM_BUG_ON(!new.frozen);
2cfb7455 2103
1d07171c 2104 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2105 prior, counters,
2106 freelist, new.counters,
2107 "drain percpu freelist"));
2108
2109 freelist = nextfree;
2110 }
2111
894b8788 2112 /*
2cfb7455
CL
2113 * Stage two: Ensure that the page is unfrozen while the
2114 * list presence reflects the actual number of objects
2115 * during unfreeze.
2116 *
2117 * We setup the list membership and then perform a cmpxchg
2118 * with the count. If there is a mismatch then the page
2119 * is not unfrozen but the page is on the wrong list.
2120 *
2121 * Then we restart the process which may have to remove
2122 * the page from the list that we just put it on again
2123 * because the number of objects in the slab may have
2124 * changed.
894b8788 2125 */
2cfb7455 2126redo:
894b8788 2127
2cfb7455
CL
2128 old.freelist = page->freelist;
2129 old.counters = page->counters;
a0132ac0 2130 VM_BUG_ON(!old.frozen);
7c2e132c 2131
2cfb7455
CL
2132 /* Determine target state of the slab */
2133 new.counters = old.counters;
2134 if (freelist) {
2135 new.inuse--;
2136 set_freepointer(s, freelist, old.freelist);
2137 new.freelist = freelist;
2138 } else
2139 new.freelist = old.freelist;
2140
2141 new.frozen = 0;
2142
8a5b20ae 2143 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2144 m = M_FREE;
2145 else if (new.freelist) {
2146 m = M_PARTIAL;
2147 if (!lock) {
2148 lock = 1;
2149 /*
8bb4e7a2 2150 * Taking the spinlock removes the possibility
2cfb7455
CL
2151 * that acquire_slab() will see a slab page that
2152 * is frozen
2153 */
2154 spin_lock(&n->list_lock);
2155 }
2156 } else {
2157 m = M_FULL;
2158 if (kmem_cache_debug(s) && !lock) {
2159 lock = 1;
2160 /*
2161 * This also ensures that the scanning of full
2162 * slabs from diagnostic functions will not see
2163 * any frozen slabs.
2164 */
2165 spin_lock(&n->list_lock);
2166 }
2167 }
2168
2169 if (l != m) {
2cfb7455 2170 if (l == M_PARTIAL)
2cfb7455 2171 remove_partial(n, page);
2cfb7455 2172 else if (l == M_FULL)
c65c1877 2173 remove_full(s, n, page);
2cfb7455 2174
88349a28 2175 if (m == M_PARTIAL)
2cfb7455 2176 add_partial(n, page, tail);
88349a28 2177 else if (m == M_FULL)
2cfb7455 2178 add_full(s, n, page);
2cfb7455
CL
2179 }
2180
2181 l = m;
1d07171c 2182 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2183 old.freelist, old.counters,
2184 new.freelist, new.counters,
2185 "unfreezing slab"))
2186 goto redo;
2187
2cfb7455
CL
2188 if (lock)
2189 spin_unlock(&n->list_lock);
2190
88349a28
WY
2191 if (m == M_PARTIAL)
2192 stat(s, tail);
2193 else if (m == M_FULL)
2194 stat(s, DEACTIVATE_FULL);
2195 else if (m == M_FREE) {
2cfb7455
CL
2196 stat(s, DEACTIVATE_EMPTY);
2197 discard_slab(s, page);
2198 stat(s, FREE_SLAB);
894b8788 2199 }
d4ff6d35
WY
2200
2201 c->page = NULL;
2202 c->freelist = NULL;
81819f0f
CL
2203}
2204
d24ac77f
JK
2205/*
2206 * Unfreeze all the cpu partial slabs.
2207 *
59a09917
CL
2208 * This function must be called with interrupts disabled
2209 * for the cpu using c (or some other guarantee must be there
2210 * to guarantee no concurrent accesses).
d24ac77f 2211 */
59a09917
CL
2212static void unfreeze_partials(struct kmem_cache *s,
2213 struct kmem_cache_cpu *c)
49e22585 2214{
345c905d 2215#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2216 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2217 struct page *page, *discard_page = NULL;
49e22585 2218
4c7ba22e 2219 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2220 struct page new;
2221 struct page old;
2222
4c7ba22e 2223 slub_set_percpu_partial(c, page);
43d77867
JK
2224
2225 n2 = get_node(s, page_to_nid(page));
2226 if (n != n2) {
2227 if (n)
2228 spin_unlock(&n->list_lock);
2229
2230 n = n2;
2231 spin_lock(&n->list_lock);
2232 }
49e22585
CL
2233
2234 do {
2235
2236 old.freelist = page->freelist;
2237 old.counters = page->counters;
a0132ac0 2238 VM_BUG_ON(!old.frozen);
49e22585
CL
2239
2240 new.counters = old.counters;
2241 new.freelist = old.freelist;
2242
2243 new.frozen = 0;
2244
d24ac77f 2245 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2246 old.freelist, old.counters,
2247 new.freelist, new.counters,
2248 "unfreezing slab"));
2249
8a5b20ae 2250 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2251 page->next = discard_page;
2252 discard_page = page;
43d77867
JK
2253 } else {
2254 add_partial(n, page, DEACTIVATE_TO_TAIL);
2255 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2256 }
2257 }
2258
2259 if (n)
2260 spin_unlock(&n->list_lock);
9ada1934
SL
2261
2262 while (discard_page) {
2263 page = discard_page;
2264 discard_page = discard_page->next;
2265
2266 stat(s, DEACTIVATE_EMPTY);
2267 discard_slab(s, page);
2268 stat(s, FREE_SLAB);
2269 }
6dfd1b65 2270#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2271}
2272
2273/*
9234bae9
WY
2274 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2275 * partial page slot if available.
49e22585
CL
2276 *
2277 * If we did not find a slot then simply move all the partials to the
2278 * per node partial list.
2279 */
633b0764 2280static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2281{
345c905d 2282#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2283 struct page *oldpage;
2284 int pages;
2285 int pobjects;
2286
d6e0b7fa 2287 preempt_disable();
49e22585
CL
2288 do {
2289 pages = 0;
2290 pobjects = 0;
2291 oldpage = this_cpu_read(s->cpu_slab->partial);
2292
2293 if (oldpage) {
2294 pobjects = oldpage->pobjects;
2295 pages = oldpage->pages;
bbd4e305 2296 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2297 unsigned long flags;
2298 /*
2299 * partial array is full. Move the existing
2300 * set to the per node partial list.
2301 */
2302 local_irq_save(flags);
59a09917 2303 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2304 local_irq_restore(flags);
e24fc410 2305 oldpage = NULL;
49e22585
CL
2306 pobjects = 0;
2307 pages = 0;
8028dcea 2308 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2309 }
2310 }
2311
2312 pages++;
2313 pobjects += page->objects - page->inuse;
2314
2315 page->pages = pages;
2316 page->pobjects = pobjects;
2317 page->next = oldpage;
2318
d0e0ac97
CG
2319 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2320 != oldpage);
bbd4e305 2321 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2322 unsigned long flags;
2323
2324 local_irq_save(flags);
2325 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2326 local_irq_restore(flags);
2327 }
2328 preempt_enable();
6dfd1b65 2329#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2330}
2331
dfb4f096 2332static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2333{
84e554e6 2334 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2335 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2336
2337 c->tid = next_tid(c->tid);
81819f0f
CL
2338}
2339
2340/*
2341 * Flush cpu slab.
6446faa2 2342 *
81819f0f
CL
2343 * Called from IPI handler with interrupts disabled.
2344 */
0c710013 2345static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2346{
9dfc6e68 2347 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2348
1265ef2d
WY
2349 if (c->page)
2350 flush_slab(s, c);
49e22585 2351
1265ef2d 2352 unfreeze_partials(s, c);
81819f0f
CL
2353}
2354
2355static void flush_cpu_slab(void *d)
2356{
2357 struct kmem_cache *s = d;
81819f0f 2358
dfb4f096 2359 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2360}
2361
a8364d55
GBY
2362static bool has_cpu_slab(int cpu, void *info)
2363{
2364 struct kmem_cache *s = info;
2365 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2366
a93cf07b 2367 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2368}
2369
81819f0f
CL
2370static void flush_all(struct kmem_cache *s)
2371{
cb923159 2372 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2373}
2374
a96a87bf
SAS
2375/*
2376 * Use the cpu notifier to insure that the cpu slabs are flushed when
2377 * necessary.
2378 */
2379static int slub_cpu_dead(unsigned int cpu)
2380{
2381 struct kmem_cache *s;
2382 unsigned long flags;
2383
2384 mutex_lock(&slab_mutex);
2385 list_for_each_entry(s, &slab_caches, list) {
2386 local_irq_save(flags);
2387 __flush_cpu_slab(s, cpu);
2388 local_irq_restore(flags);
2389 }
2390 mutex_unlock(&slab_mutex);
2391 return 0;
2392}
2393
dfb4f096
CL
2394/*
2395 * Check if the objects in a per cpu structure fit numa
2396 * locality expectations.
2397 */
57d437d2 2398static inline int node_match(struct page *page, int node)
dfb4f096
CL
2399{
2400#ifdef CONFIG_NUMA
6159d0f5 2401 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2402 return 0;
2403#endif
2404 return 1;
2405}
2406
9a02d699 2407#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2408static int count_free(struct page *page)
2409{
2410 return page->objects - page->inuse;
2411}
2412
9a02d699
DR
2413static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2414{
2415 return atomic_long_read(&n->total_objects);
2416}
2417#endif /* CONFIG_SLUB_DEBUG */
2418
2419#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2420static unsigned long count_partial(struct kmem_cache_node *n,
2421 int (*get_count)(struct page *))
2422{
2423 unsigned long flags;
2424 unsigned long x = 0;
2425 struct page *page;
2426
2427 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2428 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2429 x += get_count(page);
2430 spin_unlock_irqrestore(&n->list_lock, flags);
2431 return x;
2432}
9a02d699 2433#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2434
781b2ba6
PE
2435static noinline void
2436slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2437{
9a02d699
DR
2438#ifdef CONFIG_SLUB_DEBUG
2439 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2440 DEFAULT_RATELIMIT_BURST);
781b2ba6 2441 int node;
fa45dc25 2442 struct kmem_cache_node *n;
781b2ba6 2443
9a02d699
DR
2444 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2445 return;
2446
5b3810e5
VB
2447 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2448 nid, gfpflags, &gfpflags);
19af27af 2449 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2450 s->name, s->object_size, s->size, oo_order(s->oo),
2451 oo_order(s->min));
781b2ba6 2452
3b0efdfa 2453 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2454 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2455 s->name);
fa5ec8a1 2456
fa45dc25 2457 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2458 unsigned long nr_slabs;
2459 unsigned long nr_objs;
2460 unsigned long nr_free;
2461
26c02cf0
AB
2462 nr_free = count_partial(n, count_free);
2463 nr_slabs = node_nr_slabs(n);
2464 nr_objs = node_nr_objs(n);
781b2ba6 2465
f9f58285 2466 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2467 node, nr_slabs, nr_objs, nr_free);
2468 }
9a02d699 2469#endif
781b2ba6
PE
2470}
2471
497b66f2
CL
2472static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2473 int node, struct kmem_cache_cpu **pc)
2474{
6faa6833 2475 void *freelist;
188fd063
CL
2476 struct kmem_cache_cpu *c = *pc;
2477 struct page *page;
497b66f2 2478
128227e7
MW
2479 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2480
188fd063 2481 freelist = get_partial(s, flags, node, c);
497b66f2 2482
188fd063
CL
2483 if (freelist)
2484 return freelist;
2485
2486 page = new_slab(s, flags, node);
497b66f2 2487 if (page) {
7c8e0181 2488 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2489 if (c->page)
2490 flush_slab(s, c);
2491
2492 /*
2493 * No other reference to the page yet so we can
2494 * muck around with it freely without cmpxchg
2495 */
6faa6833 2496 freelist = page->freelist;
497b66f2
CL
2497 page->freelist = NULL;
2498
2499 stat(s, ALLOC_SLAB);
497b66f2
CL
2500 c->page = page;
2501 *pc = c;
edde82b6 2502 }
497b66f2 2503
6faa6833 2504 return freelist;
497b66f2
CL
2505}
2506
072bb0aa
MG
2507static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2508{
2509 if (unlikely(PageSlabPfmemalloc(page)))
2510 return gfp_pfmemalloc_allowed(gfpflags);
2511
2512 return true;
2513}
2514
213eeb9f 2515/*
d0e0ac97
CG
2516 * Check the page->freelist of a page and either transfer the freelist to the
2517 * per cpu freelist or deactivate the page.
213eeb9f
CL
2518 *
2519 * The page is still frozen if the return value is not NULL.
2520 *
2521 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2522 *
2523 * This function must be called with interrupt disabled.
213eeb9f
CL
2524 */
2525static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2526{
2527 struct page new;
2528 unsigned long counters;
2529 void *freelist;
2530
2531 do {
2532 freelist = page->freelist;
2533 counters = page->counters;
6faa6833 2534
213eeb9f 2535 new.counters = counters;
a0132ac0 2536 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2537
2538 new.inuse = page->objects;
2539 new.frozen = freelist != NULL;
2540
d24ac77f 2541 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2542 freelist, counters,
2543 NULL, new.counters,
2544 "get_freelist"));
2545
2546 return freelist;
2547}
2548
81819f0f 2549/*
894b8788
CL
2550 * Slow path. The lockless freelist is empty or we need to perform
2551 * debugging duties.
2552 *
894b8788
CL
2553 * Processing is still very fast if new objects have been freed to the
2554 * regular freelist. In that case we simply take over the regular freelist
2555 * as the lockless freelist and zap the regular freelist.
81819f0f 2556 *
894b8788
CL
2557 * If that is not working then we fall back to the partial lists. We take the
2558 * first element of the freelist as the object to allocate now and move the
2559 * rest of the freelist to the lockless freelist.
81819f0f 2560 *
894b8788 2561 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2562 * we need to allocate a new slab. This is the slowest path since it involves
2563 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2564 *
2565 * Version of __slab_alloc to use when we know that interrupts are
2566 * already disabled (which is the case for bulk allocation).
81819f0f 2567 */
a380a3c7 2568static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2569 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2570{
6faa6833 2571 void *freelist;
f6e7def7 2572 struct page *page;
81819f0f 2573
f6e7def7 2574 page = c->page;
0715e6c5
VB
2575 if (!page) {
2576 /*
2577 * if the node is not online or has no normal memory, just
2578 * ignore the node constraint
2579 */
2580 if (unlikely(node != NUMA_NO_NODE &&
2581 !node_state(node, N_NORMAL_MEMORY)))
2582 node = NUMA_NO_NODE;
81819f0f 2583 goto new_slab;
0715e6c5 2584 }
49e22585 2585redo:
6faa6833 2586
57d437d2 2587 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2588 /*
2589 * same as above but node_match() being false already
2590 * implies node != NUMA_NO_NODE
2591 */
2592 if (!node_state(node, N_NORMAL_MEMORY)) {
2593 node = NUMA_NO_NODE;
2594 goto redo;
2595 } else {
a561ce00 2596 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2597 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2598 goto new_slab;
2599 }
fc59c053 2600 }
6446faa2 2601
072bb0aa
MG
2602 /*
2603 * By rights, we should be searching for a slab page that was
2604 * PFMEMALLOC but right now, we are losing the pfmemalloc
2605 * information when the page leaves the per-cpu allocator
2606 */
2607 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2608 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2609 goto new_slab;
2610 }
2611
73736e03 2612 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2613 freelist = c->freelist;
2614 if (freelist)
73736e03 2615 goto load_freelist;
03e404af 2616
f6e7def7 2617 freelist = get_freelist(s, page);
6446faa2 2618
6faa6833 2619 if (!freelist) {
03e404af
CL
2620 c->page = NULL;
2621 stat(s, DEACTIVATE_BYPASS);
fc59c053 2622 goto new_slab;
03e404af 2623 }
6446faa2 2624
84e554e6 2625 stat(s, ALLOC_REFILL);
6446faa2 2626
894b8788 2627load_freelist:
507effea
CL
2628 /*
2629 * freelist is pointing to the list of objects to be used.
2630 * page is pointing to the page from which the objects are obtained.
2631 * That page must be frozen for per cpu allocations to work.
2632 */
a0132ac0 2633 VM_BUG_ON(!c->page->frozen);
6faa6833 2634 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2635 c->tid = next_tid(c->tid);
6faa6833 2636 return freelist;
81819f0f 2637
81819f0f 2638new_slab:
2cfb7455 2639
a93cf07b
WY
2640 if (slub_percpu_partial(c)) {
2641 page = c->page = slub_percpu_partial(c);
2642 slub_set_percpu_partial(c, page);
49e22585 2643 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2644 goto redo;
81819f0f
CL
2645 }
2646
188fd063 2647 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2648
f4697436 2649 if (unlikely(!freelist)) {
9a02d699 2650 slab_out_of_memory(s, gfpflags, node);
f4697436 2651 return NULL;
81819f0f 2652 }
2cfb7455 2653
f6e7def7 2654 page = c->page;
5091b74a 2655 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2656 goto load_freelist;
2cfb7455 2657
497b66f2 2658 /* Only entered in the debug case */
d0e0ac97
CG
2659 if (kmem_cache_debug(s) &&
2660 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2661 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2662
d4ff6d35 2663 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2664 return freelist;
894b8788
CL
2665}
2666
a380a3c7
CL
2667/*
2668 * Another one that disabled interrupt and compensates for possible
2669 * cpu changes by refetching the per cpu area pointer.
2670 */
2671static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2672 unsigned long addr, struct kmem_cache_cpu *c)
2673{
2674 void *p;
2675 unsigned long flags;
2676
2677 local_irq_save(flags);
923717cb 2678#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2679 /*
2680 * We may have been preempted and rescheduled on a different
2681 * cpu before disabling interrupts. Need to reload cpu area
2682 * pointer.
2683 */
2684 c = this_cpu_ptr(s->cpu_slab);
2685#endif
2686
2687 p = ___slab_alloc(s, gfpflags, node, addr, c);
2688 local_irq_restore(flags);
2689 return p;
2690}
2691
0f181f9f
AP
2692/*
2693 * If the object has been wiped upon free, make sure it's fully initialized by
2694 * zeroing out freelist pointer.
2695 */
2696static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2697 void *obj)
2698{
2699 if (unlikely(slab_want_init_on_free(s)) && obj)
2700 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2701}
2702
894b8788
CL
2703/*
2704 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2705 * have the fastpath folded into their functions. So no function call
2706 * overhead for requests that can be satisfied on the fastpath.
2707 *
2708 * The fastpath works by first checking if the lockless freelist can be used.
2709 * If not then __slab_alloc is called for slow processing.
2710 *
2711 * Otherwise we can simply pick the next object from the lockless free list.
2712 */
2b847c3c 2713static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2714 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2715{
03ec0ed5 2716 void *object;
dfb4f096 2717 struct kmem_cache_cpu *c;
57d437d2 2718 struct page *page;
8a5ec0ba 2719 unsigned long tid;
1f84260c 2720
8135be5a
VD
2721 s = slab_pre_alloc_hook(s, gfpflags);
2722 if (!s)
773ff60e 2723 return NULL;
8a5ec0ba 2724redo:
8a5ec0ba
CL
2725 /*
2726 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2727 * enabled. We may switch back and forth between cpus while
2728 * reading from one cpu area. That does not matter as long
2729 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2730 *
9aabf810 2731 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2732 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2733 * to check if it is matched or not.
8a5ec0ba 2734 */
9aabf810
JK
2735 do {
2736 tid = this_cpu_read(s->cpu_slab->tid);
2737 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2738 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2739 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2740
2741 /*
2742 * Irqless object alloc/free algorithm used here depends on sequence
2743 * of fetching cpu_slab's data. tid should be fetched before anything
2744 * on c to guarantee that object and page associated with previous tid
2745 * won't be used with current tid. If we fetch tid first, object and
2746 * page could be one associated with next tid and our alloc/free
2747 * request will be failed. In this case, we will retry. So, no problem.
2748 */
2749 barrier();
8a5ec0ba 2750
8a5ec0ba
CL
2751 /*
2752 * The transaction ids are globally unique per cpu and per operation on
2753 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2754 * occurs on the right processor and that there was no operation on the
2755 * linked list in between.
2756 */
8a5ec0ba 2757
9dfc6e68 2758 object = c->freelist;
57d437d2 2759 page = c->page;
8eae1492 2760 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2761 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2762 stat(s, ALLOC_SLOWPATH);
2763 } else {
0ad9500e
ED
2764 void *next_object = get_freepointer_safe(s, object);
2765
8a5ec0ba 2766 /*
25985edc 2767 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2768 * operation and if we are on the right processor.
2769 *
d0e0ac97
CG
2770 * The cmpxchg does the following atomically (without lock
2771 * semantics!)
8a5ec0ba
CL
2772 * 1. Relocate first pointer to the current per cpu area.
2773 * 2. Verify that tid and freelist have not been changed
2774 * 3. If they were not changed replace tid and freelist
2775 *
d0e0ac97
CG
2776 * Since this is without lock semantics the protection is only
2777 * against code executing on this cpu *not* from access by
2778 * other cpus.
8a5ec0ba 2779 */
933393f5 2780 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2781 s->cpu_slab->freelist, s->cpu_slab->tid,
2782 object, tid,
0ad9500e 2783 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2784
2785 note_cmpxchg_failure("slab_alloc", s, tid);
2786 goto redo;
2787 }
0ad9500e 2788 prefetch_freepointer(s, next_object);
84e554e6 2789 stat(s, ALLOC_FASTPATH);
894b8788 2790 }
0f181f9f
AP
2791
2792 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2793
6471384a 2794 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2795 memset(object, 0, s->object_size);
d07dbea4 2796
03ec0ed5 2797 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2798
894b8788 2799 return object;
81819f0f
CL
2800}
2801
2b847c3c
EG
2802static __always_inline void *slab_alloc(struct kmem_cache *s,
2803 gfp_t gfpflags, unsigned long addr)
2804{
2805 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2806}
2807
81819f0f
CL
2808void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2809{
2b847c3c 2810 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2811
d0e0ac97
CG
2812 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2813 s->size, gfpflags);
5b882be4
EGM
2814
2815 return ret;
81819f0f
CL
2816}
2817EXPORT_SYMBOL(kmem_cache_alloc);
2818
0f24f128 2819#ifdef CONFIG_TRACING
4a92379b
RK
2820void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2821{
2b847c3c 2822 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2823 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2824 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2825 return ret;
2826}
2827EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2828#endif
2829
81819f0f
CL
2830#ifdef CONFIG_NUMA
2831void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2832{
2b847c3c 2833 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2834
ca2b84cb 2835 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2836 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2837
2838 return ret;
81819f0f
CL
2839}
2840EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2841
0f24f128 2842#ifdef CONFIG_TRACING
4a92379b 2843void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2844 gfp_t gfpflags,
4a92379b 2845 int node, size_t size)
5b882be4 2846{
2b847c3c 2847 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2848
2849 trace_kmalloc_node(_RET_IP_, ret,
2850 size, s->size, gfpflags, node);
0316bec2 2851
0116523c 2852 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2853 return ret;
5b882be4 2854}
4a92379b 2855EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2856#endif
6dfd1b65 2857#endif /* CONFIG_NUMA */
5b882be4 2858
81819f0f 2859/*
94e4d712 2860 * Slow path handling. This may still be called frequently since objects
894b8788 2861 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2862 *
894b8788
CL
2863 * So we still attempt to reduce cache line usage. Just take the slab
2864 * lock and free the item. If there is no additional partial page
2865 * handling required then we can return immediately.
81819f0f 2866 */
894b8788 2867static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2868 void *head, void *tail, int cnt,
2869 unsigned long addr)
2870
81819f0f
CL
2871{
2872 void *prior;
2cfb7455 2873 int was_frozen;
2cfb7455
CL
2874 struct page new;
2875 unsigned long counters;
2876 struct kmem_cache_node *n = NULL;
61728d1e 2877 unsigned long uninitialized_var(flags);
81819f0f 2878
8a5ec0ba 2879 stat(s, FREE_SLOWPATH);
81819f0f 2880
19c7ff9e 2881 if (kmem_cache_debug(s) &&
282acb43 2882 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2883 return;
6446faa2 2884
2cfb7455 2885 do {
837d678d
JK
2886 if (unlikely(n)) {
2887 spin_unlock_irqrestore(&n->list_lock, flags);
2888 n = NULL;
2889 }
2cfb7455
CL
2890 prior = page->freelist;
2891 counters = page->counters;
81084651 2892 set_freepointer(s, tail, prior);
2cfb7455
CL
2893 new.counters = counters;
2894 was_frozen = new.frozen;
81084651 2895 new.inuse -= cnt;
837d678d 2896 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2897
c65c1877 2898 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2899
2900 /*
d0e0ac97
CG
2901 * Slab was on no list before and will be
2902 * partially empty
2903 * We can defer the list move and instead
2904 * freeze it.
49e22585
CL
2905 */
2906 new.frozen = 1;
2907
c65c1877 2908 } else { /* Needs to be taken off a list */
49e22585 2909
b455def2 2910 n = get_node(s, page_to_nid(page));
49e22585
CL
2911 /*
2912 * Speculatively acquire the list_lock.
2913 * If the cmpxchg does not succeed then we may
2914 * drop the list_lock without any processing.
2915 *
2916 * Otherwise the list_lock will synchronize with
2917 * other processors updating the list of slabs.
2918 */
2919 spin_lock_irqsave(&n->list_lock, flags);
2920
2921 }
2cfb7455 2922 }
81819f0f 2923
2cfb7455
CL
2924 } while (!cmpxchg_double_slab(s, page,
2925 prior, counters,
81084651 2926 head, new.counters,
2cfb7455 2927 "__slab_free"));
81819f0f 2928
2cfb7455 2929 if (likely(!n)) {
49e22585
CL
2930
2931 /*
2932 * If we just froze the page then put it onto the
2933 * per cpu partial list.
2934 */
8028dcea 2935 if (new.frozen && !was_frozen) {
49e22585 2936 put_cpu_partial(s, page, 1);
8028dcea
AS
2937 stat(s, CPU_PARTIAL_FREE);
2938 }
49e22585 2939 /*
2cfb7455
CL
2940 * The list lock was not taken therefore no list
2941 * activity can be necessary.
2942 */
b455def2
L
2943 if (was_frozen)
2944 stat(s, FREE_FROZEN);
2945 return;
2946 }
81819f0f 2947
8a5b20ae 2948 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2949 goto slab_empty;
2950
81819f0f 2951 /*
837d678d
JK
2952 * Objects left in the slab. If it was not on the partial list before
2953 * then add it.
81819f0f 2954 */
345c905d 2955 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 2956 remove_full(s, n, page);
837d678d
JK
2957 add_partial(n, page, DEACTIVATE_TO_TAIL);
2958 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2959 }
80f08c19 2960 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2961 return;
2962
2963slab_empty:
a973e9dd 2964 if (prior) {
81819f0f 2965 /*
6fbabb20 2966 * Slab on the partial list.
81819f0f 2967 */
5cc6eee8 2968 remove_partial(n, page);
84e554e6 2969 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2970 } else {
6fbabb20 2971 /* Slab must be on the full list */
c65c1877
PZ
2972 remove_full(s, n, page);
2973 }
2cfb7455 2974
80f08c19 2975 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2976 stat(s, FREE_SLAB);
81819f0f 2977 discard_slab(s, page);
81819f0f
CL
2978}
2979
894b8788
CL
2980/*
2981 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2982 * can perform fastpath freeing without additional function calls.
2983 *
2984 * The fastpath is only possible if we are freeing to the current cpu slab
2985 * of this processor. This typically the case if we have just allocated
2986 * the item before.
2987 *
2988 * If fastpath is not possible then fall back to __slab_free where we deal
2989 * with all sorts of special processing.
81084651
JDB
2990 *
2991 * Bulk free of a freelist with several objects (all pointing to the
2992 * same page) possible by specifying head and tail ptr, plus objects
2993 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2994 */
80a9201a
AP
2995static __always_inline void do_slab_free(struct kmem_cache *s,
2996 struct page *page, void *head, void *tail,
2997 int cnt, unsigned long addr)
894b8788 2998{
81084651 2999 void *tail_obj = tail ? : head;
dfb4f096 3000 struct kmem_cache_cpu *c;
8a5ec0ba 3001 unsigned long tid;
8a5ec0ba
CL
3002redo:
3003 /*
3004 * Determine the currently cpus per cpu slab.
3005 * The cpu may change afterward. However that does not matter since
3006 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3007 * during the cmpxchg then the free will succeed.
8a5ec0ba 3008 */
9aabf810
JK
3009 do {
3010 tid = this_cpu_read(s->cpu_slab->tid);
3011 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3012 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3013 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3014
9aabf810
JK
3015 /* Same with comment on barrier() in slab_alloc_node() */
3016 barrier();
c016b0bd 3017
442b06bc 3018 if (likely(page == c->page)) {
5076190d
LT
3019 void **freelist = READ_ONCE(c->freelist);
3020
3021 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3022
933393f5 3023 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3024 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3025 freelist, tid,
81084651 3026 head, next_tid(tid)))) {
8a5ec0ba
CL
3027
3028 note_cmpxchg_failure("slab_free", s, tid);
3029 goto redo;
3030 }
84e554e6 3031 stat(s, FREE_FASTPATH);
894b8788 3032 } else
81084651 3033 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3034
894b8788
CL
3035}
3036
80a9201a
AP
3037static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3038 void *head, void *tail, int cnt,
3039 unsigned long addr)
3040{
80a9201a 3041 /*
c3895391
AK
3042 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3043 * to remove objects, whose reuse must be delayed.
80a9201a 3044 */
c3895391
AK
3045 if (slab_free_freelist_hook(s, &head, &tail))
3046 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3047}
3048
2bd926b4 3049#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3050void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3051{
3052 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3053}
3054#endif
3055
81819f0f
CL
3056void kmem_cache_free(struct kmem_cache *s, void *x)
3057{
b9ce5ef4
GC
3058 s = cache_from_obj(s, x);
3059 if (!s)
79576102 3060 return;
81084651 3061 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3062 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3063}
3064EXPORT_SYMBOL(kmem_cache_free);
3065
d0ecd894 3066struct detached_freelist {
fbd02630 3067 struct page *page;
d0ecd894
JDB
3068 void *tail;
3069 void *freelist;
3070 int cnt;
376bf125 3071 struct kmem_cache *s;
d0ecd894 3072};
fbd02630 3073
d0ecd894
JDB
3074/*
3075 * This function progressively scans the array with free objects (with
3076 * a limited look ahead) and extract objects belonging to the same
3077 * page. It builds a detached freelist directly within the given
3078 * page/objects. This can happen without any need for
3079 * synchronization, because the objects are owned by running process.
3080 * The freelist is build up as a single linked list in the objects.
3081 * The idea is, that this detached freelist can then be bulk
3082 * transferred to the real freelist(s), but only requiring a single
3083 * synchronization primitive. Look ahead in the array is limited due
3084 * to performance reasons.
3085 */
376bf125
JDB
3086static inline
3087int build_detached_freelist(struct kmem_cache *s, size_t size,
3088 void **p, struct detached_freelist *df)
d0ecd894
JDB
3089{
3090 size_t first_skipped_index = 0;
3091 int lookahead = 3;
3092 void *object;
ca257195 3093 struct page *page;
fbd02630 3094
d0ecd894
JDB
3095 /* Always re-init detached_freelist */
3096 df->page = NULL;
fbd02630 3097
d0ecd894
JDB
3098 do {
3099 object = p[--size];
ca257195 3100 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3101 } while (!object && size);
3eed034d 3102
d0ecd894
JDB
3103 if (!object)
3104 return 0;
fbd02630 3105
ca257195
JDB
3106 page = virt_to_head_page(object);
3107 if (!s) {
3108 /* Handle kalloc'ed objects */
3109 if (unlikely(!PageSlab(page))) {
3110 BUG_ON(!PageCompound(page));
3111 kfree_hook(object);
4949148a 3112 __free_pages(page, compound_order(page));
ca257195
JDB
3113 p[size] = NULL; /* mark object processed */
3114 return size;
3115 }
3116 /* Derive kmem_cache from object */
3117 df->s = page->slab_cache;
3118 } else {
3119 df->s = cache_from_obj(s, object); /* Support for memcg */
3120 }
376bf125 3121
d0ecd894 3122 /* Start new detached freelist */
ca257195 3123 df->page = page;
376bf125 3124 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3125 df->tail = object;
3126 df->freelist = object;
3127 p[size] = NULL; /* mark object processed */
3128 df->cnt = 1;
3129
3130 while (size) {
3131 object = p[--size];
3132 if (!object)
3133 continue; /* Skip processed objects */
3134
3135 /* df->page is always set at this point */
3136 if (df->page == virt_to_head_page(object)) {
3137 /* Opportunity build freelist */
376bf125 3138 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3139 df->freelist = object;
3140 df->cnt++;
3141 p[size] = NULL; /* mark object processed */
3142
3143 continue;
fbd02630 3144 }
d0ecd894
JDB
3145
3146 /* Limit look ahead search */
3147 if (!--lookahead)
3148 break;
3149
3150 if (!first_skipped_index)
3151 first_skipped_index = size + 1;
fbd02630 3152 }
d0ecd894
JDB
3153
3154 return first_skipped_index;
3155}
3156
d0ecd894 3157/* Note that interrupts must be enabled when calling this function. */
376bf125 3158void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3159{
3160 if (WARN_ON(!size))
3161 return;
3162
3163 do {
3164 struct detached_freelist df;
3165
3166 size = build_detached_freelist(s, size, p, &df);
84582c8a 3167 if (!df.page)
d0ecd894
JDB
3168 continue;
3169
376bf125 3170 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3171 } while (likely(size));
484748f0
CL
3172}
3173EXPORT_SYMBOL(kmem_cache_free_bulk);
3174
994eb764 3175/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3176int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3177 void **p)
484748f0 3178{
994eb764
JDB
3179 struct kmem_cache_cpu *c;
3180 int i;
3181
03ec0ed5
JDB
3182 /* memcg and kmem_cache debug support */
3183 s = slab_pre_alloc_hook(s, flags);
3184 if (unlikely(!s))
3185 return false;
994eb764
JDB
3186 /*
3187 * Drain objects in the per cpu slab, while disabling local
3188 * IRQs, which protects against PREEMPT and interrupts
3189 * handlers invoking normal fastpath.
3190 */
3191 local_irq_disable();
3192 c = this_cpu_ptr(s->cpu_slab);
3193
3194 for (i = 0; i < size; i++) {
3195 void *object = c->freelist;
3196
ebe909e0 3197 if (unlikely(!object)) {
fd4d9c7d
JH
3198 /*
3199 * We may have removed an object from c->freelist using
3200 * the fastpath in the previous iteration; in that case,
3201 * c->tid has not been bumped yet.
3202 * Since ___slab_alloc() may reenable interrupts while
3203 * allocating memory, we should bump c->tid now.
3204 */
3205 c->tid = next_tid(c->tid);
3206
ebe909e0
JDB
3207 /*
3208 * Invoking slow path likely have side-effect
3209 * of re-populating per CPU c->freelist
3210 */
87098373 3211 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3212 _RET_IP_, c);
87098373
CL
3213 if (unlikely(!p[i]))
3214 goto error;
3215
ebe909e0 3216 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3217 maybe_wipe_obj_freeptr(s, p[i]);
3218
ebe909e0
JDB
3219 continue; /* goto for-loop */
3220 }
994eb764
JDB
3221 c->freelist = get_freepointer(s, object);
3222 p[i] = object;
0f181f9f 3223 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3224 }
3225 c->tid = next_tid(c->tid);
3226 local_irq_enable();
3227
3228 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3229 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3230 int j;
3231
3232 for (j = 0; j < i; j++)
3233 memset(p[j], 0, s->object_size);
3234 }
3235
03ec0ed5
JDB
3236 /* memcg and kmem_cache debug support */
3237 slab_post_alloc_hook(s, flags, size, p);
865762a8 3238 return i;
87098373 3239error:
87098373 3240 local_irq_enable();
03ec0ed5
JDB
3241 slab_post_alloc_hook(s, flags, i, p);
3242 __kmem_cache_free_bulk(s, i, p);
865762a8 3243 return 0;
484748f0
CL
3244}
3245EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3246
3247
81819f0f 3248/*
672bba3a
CL
3249 * Object placement in a slab is made very easy because we always start at
3250 * offset 0. If we tune the size of the object to the alignment then we can
3251 * get the required alignment by putting one properly sized object after
3252 * another.
81819f0f
CL
3253 *
3254 * Notice that the allocation order determines the sizes of the per cpu
3255 * caches. Each processor has always one slab available for allocations.
3256 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3257 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3258 * locking overhead.
81819f0f
CL
3259 */
3260
3261/*
3262 * Mininum / Maximum order of slab pages. This influences locking overhead
3263 * and slab fragmentation. A higher order reduces the number of partial slabs
3264 * and increases the number of allocations possible without having to
3265 * take the list_lock.
3266 */
19af27af
AD
3267static unsigned int slub_min_order;
3268static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3269static unsigned int slub_min_objects;
81819f0f 3270
81819f0f
CL
3271/*
3272 * Calculate the order of allocation given an slab object size.
3273 *
672bba3a
CL
3274 * The order of allocation has significant impact on performance and other
3275 * system components. Generally order 0 allocations should be preferred since
3276 * order 0 does not cause fragmentation in the page allocator. Larger objects
3277 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3278 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3279 * would be wasted.
3280 *
3281 * In order to reach satisfactory performance we must ensure that a minimum
3282 * number of objects is in one slab. Otherwise we may generate too much
3283 * activity on the partial lists which requires taking the list_lock. This is
3284 * less a concern for large slabs though which are rarely used.
81819f0f 3285 *
672bba3a
CL
3286 * slub_max_order specifies the order where we begin to stop considering the
3287 * number of objects in a slab as critical. If we reach slub_max_order then
3288 * we try to keep the page order as low as possible. So we accept more waste
3289 * of space in favor of a small page order.
81819f0f 3290 *
672bba3a
CL
3291 * Higher order allocations also allow the placement of more objects in a
3292 * slab and thereby reduce object handling overhead. If the user has
3293 * requested a higher mininum order then we start with that one instead of
3294 * the smallest order which will fit the object.
81819f0f 3295 */
19af27af
AD
3296static inline unsigned int slab_order(unsigned int size,
3297 unsigned int min_objects, unsigned int max_order,
9736d2a9 3298 unsigned int fract_leftover)
81819f0f 3299{
19af27af
AD
3300 unsigned int min_order = slub_min_order;
3301 unsigned int order;
81819f0f 3302
9736d2a9 3303 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3304 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3305
9736d2a9 3306 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3307 order <= max_order; order++) {
81819f0f 3308
19af27af
AD
3309 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3310 unsigned int rem;
81819f0f 3311
9736d2a9 3312 rem = slab_size % size;
81819f0f 3313
5e6d444e 3314 if (rem <= slab_size / fract_leftover)
81819f0f 3315 break;
81819f0f 3316 }
672bba3a 3317
81819f0f
CL
3318 return order;
3319}
3320
9736d2a9 3321static inline int calculate_order(unsigned int size)
5e6d444e 3322{
19af27af
AD
3323 unsigned int order;
3324 unsigned int min_objects;
3325 unsigned int max_objects;
5e6d444e
CL
3326
3327 /*
3328 * Attempt to find best configuration for a slab. This
3329 * works by first attempting to generate a layout with
3330 * the best configuration and backing off gradually.
3331 *
422ff4d7 3332 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3333 * we reduce the minimum objects required in a slab.
3334 */
3335 min_objects = slub_min_objects;
9b2cd506
CL
3336 if (!min_objects)
3337 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3338 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3339 min_objects = min(min_objects, max_objects);
3340
5e6d444e 3341 while (min_objects > 1) {
19af27af
AD
3342 unsigned int fraction;
3343
c124f5b5 3344 fraction = 16;
5e6d444e
CL
3345 while (fraction >= 4) {
3346 order = slab_order(size, min_objects,
9736d2a9 3347 slub_max_order, fraction);
5e6d444e
CL
3348 if (order <= slub_max_order)
3349 return order;
3350 fraction /= 2;
3351 }
5086c389 3352 min_objects--;
5e6d444e
CL
3353 }
3354
3355 /*
3356 * We were unable to place multiple objects in a slab. Now
3357 * lets see if we can place a single object there.
3358 */
9736d2a9 3359 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3360 if (order <= slub_max_order)
3361 return order;
3362
3363 /*
3364 * Doh this slab cannot be placed using slub_max_order.
3365 */
9736d2a9 3366 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3367 if (order < MAX_ORDER)
5e6d444e
CL
3368 return order;
3369 return -ENOSYS;
3370}
3371
5595cffc 3372static void
4053497d 3373init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3374{
3375 n->nr_partial = 0;
81819f0f
CL
3376 spin_lock_init(&n->list_lock);
3377 INIT_LIST_HEAD(&n->partial);
8ab1372f 3378#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3379 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3380 atomic_long_set(&n->total_objects, 0);
643b1138 3381 INIT_LIST_HEAD(&n->full);
8ab1372f 3382#endif
81819f0f
CL
3383}
3384
55136592 3385static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3386{
6c182dc0 3387 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3388 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3389
8a5ec0ba 3390 /*
d4d84fef
CM
3391 * Must align to double word boundary for the double cmpxchg
3392 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3393 */
d4d84fef
CM
3394 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3395 2 * sizeof(void *));
8a5ec0ba
CL
3396
3397 if (!s->cpu_slab)
3398 return 0;
3399
3400 init_kmem_cache_cpus(s);
4c93c355 3401
8a5ec0ba 3402 return 1;
4c93c355 3403}
4c93c355 3404
51df1142
CL
3405static struct kmem_cache *kmem_cache_node;
3406
81819f0f
CL
3407/*
3408 * No kmalloc_node yet so do it by hand. We know that this is the first
3409 * slab on the node for this slabcache. There are no concurrent accesses
3410 * possible.
3411 *
721ae22a
ZYW
3412 * Note that this function only works on the kmem_cache_node
3413 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3414 * memory on a fresh node that has no slab structures yet.
81819f0f 3415 */
55136592 3416static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3417{
3418 struct page *page;
3419 struct kmem_cache_node *n;
3420
51df1142 3421 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3422
51df1142 3423 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3424
3425 BUG_ON(!page);
a2f92ee7 3426 if (page_to_nid(page) != node) {
f9f58285
FF
3427 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3428 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3429 }
3430
81819f0f
CL
3431 n = page->freelist;
3432 BUG_ON(!n);
8ab1372f 3433#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3434 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3435 init_tracking(kmem_cache_node, n);
8ab1372f 3436#endif
12b22386 3437 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3438 GFP_KERNEL);
12b22386
AK
3439 page->freelist = get_freepointer(kmem_cache_node, n);
3440 page->inuse = 1;
3441 page->frozen = 0;
3442 kmem_cache_node->node[node] = n;
4053497d 3443 init_kmem_cache_node(n);
51df1142 3444 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3445
67b6c900 3446 /*
1e4dd946
SR
3447 * No locks need to be taken here as it has just been
3448 * initialized and there is no concurrent access.
67b6c900 3449 */
1e4dd946 3450 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3451}
3452
3453static void free_kmem_cache_nodes(struct kmem_cache *s)
3454{
3455 int node;
fa45dc25 3456 struct kmem_cache_node *n;
81819f0f 3457
fa45dc25 3458 for_each_kmem_cache_node(s, node, n) {
81819f0f 3459 s->node[node] = NULL;
ea37df54 3460 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3461 }
3462}
3463
52b4b950
DS
3464void __kmem_cache_release(struct kmem_cache *s)
3465{
210e7a43 3466 cache_random_seq_destroy(s);
52b4b950
DS
3467 free_percpu(s->cpu_slab);
3468 free_kmem_cache_nodes(s);
3469}
3470
55136592 3471static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3472{
3473 int node;
81819f0f 3474
f64dc58c 3475 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3476 struct kmem_cache_node *n;
3477
73367bd8 3478 if (slab_state == DOWN) {
55136592 3479 early_kmem_cache_node_alloc(node);
73367bd8
AD
3480 continue;
3481 }
51df1142 3482 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3483 GFP_KERNEL, node);
81819f0f 3484
73367bd8
AD
3485 if (!n) {
3486 free_kmem_cache_nodes(s);
3487 return 0;
81819f0f 3488 }
73367bd8 3489
4053497d 3490 init_kmem_cache_node(n);
ea37df54 3491 s->node[node] = n;
81819f0f
CL
3492 }
3493 return 1;
3494}
81819f0f 3495
c0bdb232 3496static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3497{
3498 if (min < MIN_PARTIAL)
3499 min = MIN_PARTIAL;
3500 else if (min > MAX_PARTIAL)
3501 min = MAX_PARTIAL;
3502 s->min_partial = min;
3503}
3504
e6d0e1dc
WY
3505static void set_cpu_partial(struct kmem_cache *s)
3506{
3507#ifdef CONFIG_SLUB_CPU_PARTIAL
3508 /*
3509 * cpu_partial determined the maximum number of objects kept in the
3510 * per cpu partial lists of a processor.
3511 *
3512 * Per cpu partial lists mainly contain slabs that just have one
3513 * object freed. If they are used for allocation then they can be
3514 * filled up again with minimal effort. The slab will never hit the
3515 * per node partial lists and therefore no locking will be required.
3516 *
3517 * This setting also determines
3518 *
3519 * A) The number of objects from per cpu partial slabs dumped to the
3520 * per node list when we reach the limit.
3521 * B) The number of objects in cpu partial slabs to extract from the
3522 * per node list when we run out of per cpu objects. We only fetch
3523 * 50% to keep some capacity around for frees.
3524 */
3525 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3526 slub_set_cpu_partial(s, 0);
e6d0e1dc 3527 else if (s->size >= PAGE_SIZE)
bbd4e305 3528 slub_set_cpu_partial(s, 2);
e6d0e1dc 3529 else if (s->size >= 1024)
bbd4e305 3530 slub_set_cpu_partial(s, 6);
e6d0e1dc 3531 else if (s->size >= 256)
bbd4e305 3532 slub_set_cpu_partial(s, 13);
e6d0e1dc 3533 else
bbd4e305 3534 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3535#endif
3536}
3537
81819f0f
CL
3538/*
3539 * calculate_sizes() determines the order and the distribution of data within
3540 * a slab object.
3541 */
06b285dc 3542static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3543{
d50112ed 3544 slab_flags_t flags = s->flags;
be4a7988 3545 unsigned int size = s->object_size;
89b83f28 3546 unsigned int freepointer_area;
19af27af 3547 unsigned int order;
81819f0f 3548
d8b42bf5
CL
3549 /*
3550 * Round up object size to the next word boundary. We can only
3551 * place the free pointer at word boundaries and this determines
3552 * the possible location of the free pointer.
3553 */
3554 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3555 /*
3556 * This is the area of the object where a freepointer can be
3557 * safely written. If redzoning adds more to the inuse size, we
3558 * can't use that portion for writing the freepointer, so
3559 * s->offset must be limited within this for the general case.
3560 */
3561 freepointer_area = size;
d8b42bf5
CL
3562
3563#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3564 /*
3565 * Determine if we can poison the object itself. If the user of
3566 * the slab may touch the object after free or before allocation
3567 * then we should never poison the object itself.
3568 */
5f0d5a3a 3569 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3570 !s->ctor)
81819f0f
CL
3571 s->flags |= __OBJECT_POISON;
3572 else
3573 s->flags &= ~__OBJECT_POISON;
3574
81819f0f
CL
3575
3576 /*
672bba3a 3577 * If we are Redzoning then check if there is some space between the
81819f0f 3578 * end of the object and the free pointer. If not then add an
672bba3a 3579 * additional word to have some bytes to store Redzone information.
81819f0f 3580 */
3b0efdfa 3581 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3582 size += sizeof(void *);
41ecc55b 3583#endif
81819f0f
CL
3584
3585 /*
672bba3a
CL
3586 * With that we have determined the number of bytes in actual use
3587 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3588 */
3589 s->inuse = size;
3590
5f0d5a3a 3591 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3592 s->ctor)) {
81819f0f
CL
3593 /*
3594 * Relocate free pointer after the object if it is not
3595 * permitted to overwrite the first word of the object on
3596 * kmem_cache_free.
3597 *
3598 * This is the case if we do RCU, have a constructor or
3599 * destructor or are poisoning the objects.
cbfc35a4
WL
3600 *
3601 * The assumption that s->offset >= s->inuse means free
3602 * pointer is outside of the object is used in the
3603 * freeptr_outside_object() function. If that is no
3604 * longer true, the function needs to be modified.
81819f0f
CL
3605 */
3606 s->offset = size;
3607 size += sizeof(void *);
89b83f28 3608 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3609 /*
3610 * Store freelist pointer near middle of object to keep
3611 * it away from the edges of the object to avoid small
3612 * sized over/underflows from neighboring allocations.
3613 */
89b83f28 3614 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3615 }
3616
c12b3c62 3617#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3618 if (flags & SLAB_STORE_USER)
3619 /*
3620 * Need to store information about allocs and frees after
3621 * the object.
3622 */
3623 size += 2 * sizeof(struct track);
80a9201a 3624#endif
81819f0f 3625
80a9201a
AP
3626 kasan_cache_create(s, &size, &s->flags);
3627#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3628 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3629 /*
3630 * Add some empty padding so that we can catch
3631 * overwrites from earlier objects rather than let
3632 * tracking information or the free pointer be
0211a9c8 3633 * corrupted if a user writes before the start
81819f0f
CL
3634 * of the object.
3635 */
3636 size += sizeof(void *);
d86bd1be
JK
3637
3638 s->red_left_pad = sizeof(void *);
3639 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3640 size += s->red_left_pad;
3641 }
41ecc55b 3642#endif
672bba3a 3643
81819f0f
CL
3644 /*
3645 * SLUB stores one object immediately after another beginning from
3646 * offset 0. In order to align the objects we have to simply size
3647 * each object to conform to the alignment.
3648 */
45906855 3649 size = ALIGN(size, s->align);
81819f0f 3650 s->size = size;
06b285dc
CL
3651 if (forced_order >= 0)
3652 order = forced_order;
3653 else
9736d2a9 3654 order = calculate_order(size);
81819f0f 3655
19af27af 3656 if ((int)order < 0)
81819f0f
CL
3657 return 0;
3658
b7a49f0d 3659 s->allocflags = 0;
834f3d11 3660 if (order)
b7a49f0d
CL
3661 s->allocflags |= __GFP_COMP;
3662
3663 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3664 s->allocflags |= GFP_DMA;
b7a49f0d 3665
6d6ea1e9
NB
3666 if (s->flags & SLAB_CACHE_DMA32)
3667 s->allocflags |= GFP_DMA32;
3668
b7a49f0d
CL
3669 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3670 s->allocflags |= __GFP_RECLAIMABLE;
3671
81819f0f
CL
3672 /*
3673 * Determine the number of objects per slab
3674 */
9736d2a9
MW
3675 s->oo = oo_make(order, size);
3676 s->min = oo_make(get_order(size), size);
205ab99d
CL
3677 if (oo_objects(s->oo) > oo_objects(s->max))
3678 s->max = s->oo;
81819f0f 3679
834f3d11 3680 return !!oo_objects(s->oo);
81819f0f
CL
3681}
3682
d50112ed 3683static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3684{
8a13a4cc 3685 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3686#ifdef CONFIG_SLAB_FREELIST_HARDENED
3687 s->random = get_random_long();
3688#endif
81819f0f 3689
06b285dc 3690 if (!calculate_sizes(s, -1))
81819f0f 3691 goto error;
3de47213
DR
3692 if (disable_higher_order_debug) {
3693 /*
3694 * Disable debugging flags that store metadata if the min slab
3695 * order increased.
3696 */
3b0efdfa 3697 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3698 s->flags &= ~DEBUG_METADATA_FLAGS;
3699 s->offset = 0;
3700 if (!calculate_sizes(s, -1))
3701 goto error;
3702 }
3703 }
81819f0f 3704
2565409f
HC
3705#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3706 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3707 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3708 /* Enable fast mode */
3709 s->flags |= __CMPXCHG_DOUBLE;
3710#endif
3711
3b89d7d8
DR
3712 /*
3713 * The larger the object size is, the more pages we want on the partial
3714 * list to avoid pounding the page allocator excessively.
3715 */
49e22585
CL
3716 set_min_partial(s, ilog2(s->size) / 2);
3717
e6d0e1dc 3718 set_cpu_partial(s);
49e22585 3719
81819f0f 3720#ifdef CONFIG_NUMA
e2cb96b7 3721 s->remote_node_defrag_ratio = 1000;
81819f0f 3722#endif
210e7a43
TG
3723
3724 /* Initialize the pre-computed randomized freelist if slab is up */
3725 if (slab_state >= UP) {
3726 if (init_cache_random_seq(s))
3727 goto error;
3728 }
3729
55136592 3730 if (!init_kmem_cache_nodes(s))
dfb4f096 3731 goto error;
81819f0f 3732
55136592 3733 if (alloc_kmem_cache_cpus(s))
278b1bb1 3734 return 0;
ff12059e 3735
4c93c355 3736 free_kmem_cache_nodes(s);
81819f0f 3737error:
278b1bb1 3738 return -EINVAL;
81819f0f 3739}
81819f0f 3740
33b12c38
CL
3741static void list_slab_objects(struct kmem_cache *s, struct page *page,
3742 const char *text)
3743{
3744#ifdef CONFIG_SLUB_DEBUG
3745 void *addr = page_address(page);
3746 void *p;
90e9f6a6
YZ
3747 unsigned long *map;
3748
945cf2b6 3749 slab_err(s, page, text, s->name);
33b12c38 3750 slab_lock(page);
33b12c38 3751
90e9f6a6 3752 map = get_map(s, page);
33b12c38
CL
3753 for_each_object(p, s, addr, page->objects) {
3754
3755 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3756 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3757 print_tracking(s, p);
3758 }
3759 }
90e9f6a6
YZ
3760 put_map(map);
3761
33b12c38
CL
3762 slab_unlock(page);
3763#endif
3764}
3765
81819f0f 3766/*
599870b1 3767 * Attempt to free all partial slabs on a node.
52b4b950
DS
3768 * This is called from __kmem_cache_shutdown(). We must take list_lock
3769 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3770 */
599870b1 3771static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3772{
60398923 3773 LIST_HEAD(discard);
81819f0f
CL
3774 struct page *page, *h;
3775
52b4b950
DS
3776 BUG_ON(irqs_disabled());
3777 spin_lock_irq(&n->list_lock);
916ac052 3778 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3779 if (!page->inuse) {
52b4b950 3780 remove_partial(n, page);
916ac052 3781 list_add(&page->slab_list, &discard);
33b12c38
CL
3782 } else {
3783 list_slab_objects(s, page,
52b4b950 3784 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3785 }
33b12c38 3786 }
52b4b950 3787 spin_unlock_irq(&n->list_lock);
60398923 3788
916ac052 3789 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3790 discard_slab(s, page);
81819f0f
CL
3791}
3792
f9e13c0a
SB
3793bool __kmem_cache_empty(struct kmem_cache *s)
3794{
3795 int node;
3796 struct kmem_cache_node *n;
3797
3798 for_each_kmem_cache_node(s, node, n)
3799 if (n->nr_partial || slabs_node(s, node))
3800 return false;
3801 return true;
3802}
3803
81819f0f 3804/*
672bba3a 3805 * Release all resources used by a slab cache.
81819f0f 3806 */
52b4b950 3807int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3808{
3809 int node;
fa45dc25 3810 struct kmem_cache_node *n;
81819f0f
CL
3811
3812 flush_all(s);
81819f0f 3813 /* Attempt to free all objects */
fa45dc25 3814 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3815 free_partial(s, n);
3816 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3817 return 1;
3818 }
bf5eb3de 3819 sysfs_slab_remove(s);
81819f0f
CL
3820 return 0;
3821}
3822
81819f0f
CL
3823/********************************************************************
3824 * Kmalloc subsystem
3825 *******************************************************************/
3826
81819f0f
CL
3827static int __init setup_slub_min_order(char *str)
3828{
19af27af 3829 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3830
3831 return 1;
3832}
3833
3834__setup("slub_min_order=", setup_slub_min_order);
3835
3836static int __init setup_slub_max_order(char *str)
3837{
19af27af
AD
3838 get_option(&str, (int *)&slub_max_order);
3839 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3840
3841 return 1;
3842}
3843
3844__setup("slub_max_order=", setup_slub_max_order);
3845
3846static int __init setup_slub_min_objects(char *str)
3847{
19af27af 3848 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3849
3850 return 1;
3851}
3852
3853__setup("slub_min_objects=", setup_slub_min_objects);
3854
81819f0f
CL
3855void *__kmalloc(size_t size, gfp_t flags)
3856{
aadb4bc4 3857 struct kmem_cache *s;
5b882be4 3858 void *ret;
81819f0f 3859
95a05b42 3860 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3861 return kmalloc_large(size, flags);
aadb4bc4 3862
2c59dd65 3863 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3864
3865 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3866 return s;
3867
2b847c3c 3868 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3869
ca2b84cb 3870 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3871
0116523c 3872 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3873
5b882be4 3874 return ret;
81819f0f
CL
3875}
3876EXPORT_SYMBOL(__kmalloc);
3877
5d1f57e4 3878#ifdef CONFIG_NUMA
f619cfe1
CL
3879static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3880{
b1eeab67 3881 struct page *page;
e4f7c0b4 3882 void *ptr = NULL;
6a486c0a 3883 unsigned int order = get_order(size);
f619cfe1 3884
75f296d9 3885 flags |= __GFP_COMP;
6a486c0a
VB
3886 page = alloc_pages_node(node, flags, order);
3887 if (page) {
e4f7c0b4 3888 ptr = page_address(page);
6a486c0a
VB
3889 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3890 1 << order);
3891 }
e4f7c0b4 3892
0116523c 3893 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3894}
3895
81819f0f
CL
3896void *__kmalloc_node(size_t size, gfp_t flags, int node)
3897{
aadb4bc4 3898 struct kmem_cache *s;
5b882be4 3899 void *ret;
81819f0f 3900
95a05b42 3901 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3902 ret = kmalloc_large_node(size, flags, node);
3903
ca2b84cb
EGM
3904 trace_kmalloc_node(_RET_IP_, ret,
3905 size, PAGE_SIZE << get_order(size),
3906 flags, node);
5b882be4
EGM
3907
3908 return ret;
3909 }
aadb4bc4 3910
2c59dd65 3911 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3912
3913 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3914 return s;
3915
2b847c3c 3916 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3917
ca2b84cb 3918 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3919
0116523c 3920 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3921
5b882be4 3922 return ret;
81819f0f
CL
3923}
3924EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 3925#endif /* CONFIG_NUMA */
81819f0f 3926
ed18adc1
KC
3927#ifdef CONFIG_HARDENED_USERCOPY
3928/*
afcc90f8
KC
3929 * Rejects incorrectly sized objects and objects that are to be copied
3930 * to/from userspace but do not fall entirely within the containing slab
3931 * cache's usercopy region.
ed18adc1
KC
3932 *
3933 * Returns NULL if check passes, otherwise const char * to name of cache
3934 * to indicate an error.
3935 */
f4e6e289
KC
3936void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3937 bool to_user)
ed18adc1
KC
3938{
3939 struct kmem_cache *s;
44065b2e 3940 unsigned int offset;
ed18adc1
KC
3941 size_t object_size;
3942
96fedce2
AK
3943 ptr = kasan_reset_tag(ptr);
3944
ed18adc1
KC
3945 /* Find object and usable object size. */
3946 s = page->slab_cache;
ed18adc1
KC
3947
3948 /* Reject impossible pointers. */
3949 if (ptr < page_address(page))
f4e6e289
KC
3950 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3951 to_user, 0, n);
ed18adc1
KC
3952
3953 /* Find offset within object. */
3954 offset = (ptr - page_address(page)) % s->size;
3955
3956 /* Adjust for redzone and reject if within the redzone. */
3957 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3958 if (offset < s->red_left_pad)
f4e6e289
KC
3959 usercopy_abort("SLUB object in left red zone",
3960 s->name, to_user, offset, n);
ed18adc1
KC
3961 offset -= s->red_left_pad;
3962 }
3963
afcc90f8
KC
3964 /* Allow address range falling entirely within usercopy region. */
3965 if (offset >= s->useroffset &&
3966 offset - s->useroffset <= s->usersize &&
3967 n <= s->useroffset - offset + s->usersize)
f4e6e289 3968 return;
ed18adc1 3969
afcc90f8
KC
3970 /*
3971 * If the copy is still within the allocated object, produce
3972 * a warning instead of rejecting the copy. This is intended
3973 * to be a temporary method to find any missing usercopy
3974 * whitelists.
3975 */
3976 object_size = slab_ksize(s);
2d891fbc
KC
3977 if (usercopy_fallback &&
3978 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3979 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3980 return;
3981 }
ed18adc1 3982
f4e6e289 3983 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3984}
3985#endif /* CONFIG_HARDENED_USERCOPY */
3986
10d1f8cb 3987size_t __ksize(const void *object)
81819f0f 3988{
272c1d21 3989 struct page *page;
81819f0f 3990
ef8b4520 3991 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3992 return 0;
3993
294a80a8 3994 page = virt_to_head_page(object);
294a80a8 3995
76994412
PE
3996 if (unlikely(!PageSlab(page))) {
3997 WARN_ON(!PageCompound(page));
a50b854e 3998 return page_size(page);
76994412 3999 }
81819f0f 4000
1b4f59e3 4001 return slab_ksize(page->slab_cache);
81819f0f 4002}
10d1f8cb 4003EXPORT_SYMBOL(__ksize);
81819f0f
CL
4004
4005void kfree(const void *x)
4006{
81819f0f 4007 struct page *page;
5bb983b0 4008 void *object = (void *)x;
81819f0f 4009
2121db74
PE
4010 trace_kfree(_RET_IP_, x);
4011
2408c550 4012 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4013 return;
4014
b49af68f 4015 page = virt_to_head_page(x);
aadb4bc4 4016 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4017 unsigned int order = compound_order(page);
4018
0937502a 4019 BUG_ON(!PageCompound(page));
47adccce 4020 kfree_hook(object);
6a486c0a
VB
4021 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
4022 -(1 << order));
4023 __free_pages(page, order);
aadb4bc4
CL
4024 return;
4025 }
81084651 4026 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4027}
4028EXPORT_SYMBOL(kfree);
4029
832f37f5
VD
4030#define SHRINK_PROMOTE_MAX 32
4031
2086d26a 4032/*
832f37f5
VD
4033 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4034 * up most to the head of the partial lists. New allocations will then
4035 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4036 *
4037 * The slabs with the least items are placed last. This results in them
4038 * being allocated from last increasing the chance that the last objects
4039 * are freed in them.
2086d26a 4040 */
c9fc5864 4041int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4042{
4043 int node;
4044 int i;
4045 struct kmem_cache_node *n;
4046 struct page *page;
4047 struct page *t;
832f37f5
VD
4048 struct list_head discard;
4049 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4050 unsigned long flags;
ce3712d7 4051 int ret = 0;
2086d26a 4052
2086d26a 4053 flush_all(s);
fa45dc25 4054 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4055 INIT_LIST_HEAD(&discard);
4056 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4057 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4058
4059 spin_lock_irqsave(&n->list_lock, flags);
4060
4061 /*
832f37f5 4062 * Build lists of slabs to discard or promote.
2086d26a 4063 *
672bba3a
CL
4064 * Note that concurrent frees may occur while we hold the
4065 * list_lock. page->inuse here is the upper limit.
2086d26a 4066 */
916ac052 4067 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4068 int free = page->objects - page->inuse;
4069
4070 /* Do not reread page->inuse */
4071 barrier();
4072
4073 /* We do not keep full slabs on the list */
4074 BUG_ON(free <= 0);
4075
4076 if (free == page->objects) {
916ac052 4077 list_move(&page->slab_list, &discard);
69cb8e6b 4078 n->nr_partial--;
832f37f5 4079 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4080 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4081 }
4082
2086d26a 4083 /*
832f37f5
VD
4084 * Promote the slabs filled up most to the head of the
4085 * partial list.
2086d26a 4086 */
832f37f5
VD
4087 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4088 list_splice(promote + i, &n->partial);
2086d26a 4089
2086d26a 4090 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4091
4092 /* Release empty slabs */
916ac052 4093 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4094 discard_slab(s, page);
ce3712d7
VD
4095
4096 if (slabs_node(s, node))
4097 ret = 1;
2086d26a
CL
4098 }
4099
ce3712d7 4100 return ret;
2086d26a 4101}
2086d26a 4102
c9fc5864 4103#ifdef CONFIG_MEMCG
43486694 4104void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
01fb58bc 4105{
50862ce7
TH
4106 /*
4107 * Called with all the locks held after a sched RCU grace period.
4108 * Even if @s becomes empty after shrinking, we can't know that @s
4109 * doesn't have allocations already in-flight and thus can't
4110 * destroy @s until the associated memcg is released.
4111 *
4112 * However, let's remove the sysfs files for empty caches here.
4113 * Each cache has a lot of interface files which aren't
4114 * particularly useful for empty draining caches; otherwise, we can
4115 * easily end up with millions of unnecessary sysfs files on
4116 * systems which have a lot of memory and transient cgroups.
4117 */
4118 if (!__kmem_cache_shrink(s))
4119 sysfs_slab_remove(s);
01fb58bc
TH
4120}
4121
c9fc5864
TH
4122void __kmemcg_cache_deactivate(struct kmem_cache *s)
4123{
4124 /*
4125 * Disable empty slabs caching. Used to avoid pinning offline
4126 * memory cgroups by kmem pages that can be freed.
4127 */
e6d0e1dc 4128 slub_set_cpu_partial(s, 0);
c9fc5864 4129 s->min_partial = 0;
c9fc5864 4130}
6dfd1b65 4131#endif /* CONFIG_MEMCG */
c9fc5864 4132
b9049e23
YG
4133static int slab_mem_going_offline_callback(void *arg)
4134{
4135 struct kmem_cache *s;
4136
18004c5d 4137 mutex_lock(&slab_mutex);
b9049e23 4138 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4139 __kmem_cache_shrink(s);
18004c5d 4140 mutex_unlock(&slab_mutex);
b9049e23
YG
4141
4142 return 0;
4143}
4144
4145static void slab_mem_offline_callback(void *arg)
4146{
4147 struct kmem_cache_node *n;
4148 struct kmem_cache *s;
4149 struct memory_notify *marg = arg;
4150 int offline_node;
4151
b9d5ab25 4152 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4153
4154 /*
4155 * If the node still has available memory. we need kmem_cache_node
4156 * for it yet.
4157 */
4158 if (offline_node < 0)
4159 return;
4160
18004c5d 4161 mutex_lock(&slab_mutex);
b9049e23
YG
4162 list_for_each_entry(s, &slab_caches, list) {
4163 n = get_node(s, offline_node);
4164 if (n) {
4165 /*
4166 * if n->nr_slabs > 0, slabs still exist on the node
4167 * that is going down. We were unable to free them,
c9404c9c 4168 * and offline_pages() function shouldn't call this
b9049e23
YG
4169 * callback. So, we must fail.
4170 */
0f389ec6 4171 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4172
4173 s->node[offline_node] = NULL;
8de66a0c 4174 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4175 }
4176 }
18004c5d 4177 mutex_unlock(&slab_mutex);
b9049e23
YG
4178}
4179
4180static int slab_mem_going_online_callback(void *arg)
4181{
4182 struct kmem_cache_node *n;
4183 struct kmem_cache *s;
4184 struct memory_notify *marg = arg;
b9d5ab25 4185 int nid = marg->status_change_nid_normal;
b9049e23
YG
4186 int ret = 0;
4187
4188 /*
4189 * If the node's memory is already available, then kmem_cache_node is
4190 * already created. Nothing to do.
4191 */
4192 if (nid < 0)
4193 return 0;
4194
4195 /*
0121c619 4196 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4197 * allocate a kmem_cache_node structure in order to bring the node
4198 * online.
4199 */
18004c5d 4200 mutex_lock(&slab_mutex);
b9049e23
YG
4201 list_for_each_entry(s, &slab_caches, list) {
4202 /*
4203 * XXX: kmem_cache_alloc_node will fallback to other nodes
4204 * since memory is not yet available from the node that
4205 * is brought up.
4206 */
8de66a0c 4207 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4208 if (!n) {
4209 ret = -ENOMEM;
4210 goto out;
4211 }
4053497d 4212 init_kmem_cache_node(n);
b9049e23
YG
4213 s->node[nid] = n;
4214 }
4215out:
18004c5d 4216 mutex_unlock(&slab_mutex);
b9049e23
YG
4217 return ret;
4218}
4219
4220static int slab_memory_callback(struct notifier_block *self,
4221 unsigned long action, void *arg)
4222{
4223 int ret = 0;
4224
4225 switch (action) {
4226 case MEM_GOING_ONLINE:
4227 ret = slab_mem_going_online_callback(arg);
4228 break;
4229 case MEM_GOING_OFFLINE:
4230 ret = slab_mem_going_offline_callback(arg);
4231 break;
4232 case MEM_OFFLINE:
4233 case MEM_CANCEL_ONLINE:
4234 slab_mem_offline_callback(arg);
4235 break;
4236 case MEM_ONLINE:
4237 case MEM_CANCEL_OFFLINE:
4238 break;
4239 }
dc19f9db
KH
4240 if (ret)
4241 ret = notifier_from_errno(ret);
4242 else
4243 ret = NOTIFY_OK;
b9049e23
YG
4244 return ret;
4245}
4246
3ac38faa
AM
4247static struct notifier_block slab_memory_callback_nb = {
4248 .notifier_call = slab_memory_callback,
4249 .priority = SLAB_CALLBACK_PRI,
4250};
b9049e23 4251
81819f0f
CL
4252/********************************************************************
4253 * Basic setup of slabs
4254 *******************************************************************/
4255
51df1142
CL
4256/*
4257 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4258 * the page allocator. Allocate them properly then fix up the pointers
4259 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4260 */
4261
dffb4d60 4262static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4263{
4264 int node;
dffb4d60 4265 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4266 struct kmem_cache_node *n;
51df1142 4267
dffb4d60 4268 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4269
7d557b3c
GC
4270 /*
4271 * This runs very early, and only the boot processor is supposed to be
4272 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4273 * IPIs around.
4274 */
4275 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4276 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4277 struct page *p;
4278
916ac052 4279 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4280 p->slab_cache = s;
51df1142 4281
607bf324 4282#ifdef CONFIG_SLUB_DEBUG
916ac052 4283 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4284 p->slab_cache = s;
51df1142 4285#endif
51df1142 4286 }
f7ce3190 4287 slab_init_memcg_params(s);
dffb4d60 4288 list_add(&s->list, &slab_caches);
c03914b7 4289 memcg_link_cache(s, NULL);
dffb4d60 4290 return s;
51df1142
CL
4291}
4292
81819f0f
CL
4293void __init kmem_cache_init(void)
4294{
dffb4d60
CL
4295 static __initdata struct kmem_cache boot_kmem_cache,
4296 boot_kmem_cache_node;
51df1142 4297
fc8d8620
SG
4298 if (debug_guardpage_minorder())
4299 slub_max_order = 0;
4300
dffb4d60
CL
4301 kmem_cache_node = &boot_kmem_cache_node;
4302 kmem_cache = &boot_kmem_cache;
51df1142 4303
dffb4d60 4304 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4305 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4306
3ac38faa 4307 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4308
4309 /* Able to allocate the per node structures */
4310 slab_state = PARTIAL;
4311
dffb4d60
CL
4312 create_boot_cache(kmem_cache, "kmem_cache",
4313 offsetof(struct kmem_cache, node) +
4314 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4315 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4316
dffb4d60 4317 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4318 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4319
4320 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4321 setup_kmalloc_cache_index_table();
f97d5f63 4322 create_kmalloc_caches(0);
81819f0f 4323
210e7a43
TG
4324 /* Setup random freelists for each cache */
4325 init_freelist_randomization();
4326
a96a87bf
SAS
4327 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4328 slub_cpu_dead);
81819f0f 4329
b9726c26 4330 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4331 cache_line_size(),
81819f0f
CL
4332 slub_min_order, slub_max_order, slub_min_objects,
4333 nr_cpu_ids, nr_node_ids);
4334}
4335
7e85ee0c
PE
4336void __init kmem_cache_init_late(void)
4337{
7e85ee0c
PE
4338}
4339
2633d7a0 4340struct kmem_cache *
f4957d5b 4341__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4342 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4343{
426589f5 4344 struct kmem_cache *s, *c;
81819f0f 4345
a44cb944 4346 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4347 if (s) {
4348 s->refcount++;
84d0ddd6 4349
81819f0f
CL
4350 /*
4351 * Adjust the object sizes so that we clear
4352 * the complete object on kzalloc.
4353 */
1b473f29 4354 s->object_size = max(s->object_size, size);
52ee6d74 4355 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4356
426589f5 4357 for_each_memcg_cache(c, s) {
84d0ddd6 4358 c->object_size = s->object_size;
52ee6d74 4359 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4360 }
4361
7b8f3b66 4362 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4363 s->refcount--;
cbb79694 4364 s = NULL;
7b8f3b66 4365 }
a0e1d1be 4366 }
6446faa2 4367
cbb79694
CL
4368 return s;
4369}
84c1cf62 4370
d50112ed 4371int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4372{
aac3a166
PE
4373 int err;
4374
4375 err = kmem_cache_open(s, flags);
4376 if (err)
4377 return err;
20cea968 4378
45530c44
CL
4379 /* Mutex is not taken during early boot */
4380 if (slab_state <= UP)
4381 return 0;
4382
107dab5c 4383 memcg_propagate_slab_attrs(s);
aac3a166 4384 err = sysfs_slab_add(s);
aac3a166 4385 if (err)
52b4b950 4386 __kmem_cache_release(s);
20cea968 4387
aac3a166 4388 return err;
81819f0f 4389}
81819f0f 4390
ce71e27c 4391void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4392{
aadb4bc4 4393 struct kmem_cache *s;
94b528d0 4394 void *ret;
aadb4bc4 4395
95a05b42 4396 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4397 return kmalloc_large(size, gfpflags);
4398
2c59dd65 4399 s = kmalloc_slab(size, gfpflags);
81819f0f 4400
2408c550 4401 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4402 return s;
81819f0f 4403
2b847c3c 4404 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4405
25985edc 4406 /* Honor the call site pointer we received. */
ca2b84cb 4407 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4408
4409 return ret;
81819f0f
CL
4410}
4411
5d1f57e4 4412#ifdef CONFIG_NUMA
81819f0f 4413void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4414 int node, unsigned long caller)
81819f0f 4415{
aadb4bc4 4416 struct kmem_cache *s;
94b528d0 4417 void *ret;
aadb4bc4 4418
95a05b42 4419 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4420 ret = kmalloc_large_node(size, gfpflags, node);
4421
4422 trace_kmalloc_node(caller, ret,
4423 size, PAGE_SIZE << get_order(size),
4424 gfpflags, node);
4425
4426 return ret;
4427 }
eada35ef 4428
2c59dd65 4429 s = kmalloc_slab(size, gfpflags);
81819f0f 4430
2408c550 4431 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4432 return s;
81819f0f 4433
2b847c3c 4434 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4435
25985edc 4436 /* Honor the call site pointer we received. */
ca2b84cb 4437 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4438
4439 return ret;
81819f0f 4440}
5d1f57e4 4441#endif
81819f0f 4442
ab4d5ed5 4443#ifdef CONFIG_SYSFS
205ab99d
CL
4444static int count_inuse(struct page *page)
4445{
4446 return page->inuse;
4447}
4448
4449static int count_total(struct page *page)
4450{
4451 return page->objects;
4452}
ab4d5ed5 4453#endif
205ab99d 4454
ab4d5ed5 4455#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4456static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4457{
4458 void *p;
a973e9dd 4459 void *addr = page_address(page);
90e9f6a6
YZ
4460 unsigned long *map;
4461
4462 slab_lock(page);
53e15af0 4463
dd98afd4 4464 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4465 goto unlock;
53e15af0
CL
4466
4467 /* Now we know that a valid freelist exists */
90e9f6a6 4468 map = get_map(s, page);
5f80b13a 4469 for_each_object(p, s, addr, page->objects) {
dd98afd4
YZ
4470 u8 val = test_bit(slab_index(p, s, addr), map) ?
4471 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4472
dd98afd4
YZ
4473 if (!check_object(s, page, p, val))
4474 break;
4475 }
90e9f6a6
YZ
4476 put_map(map);
4477unlock:
881db7fb 4478 slab_unlock(page);
53e15af0
CL
4479}
4480
434e245d 4481static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4482 struct kmem_cache_node *n)
53e15af0
CL
4483{
4484 unsigned long count = 0;
4485 struct page *page;
4486 unsigned long flags;
4487
4488 spin_lock_irqsave(&n->list_lock, flags);
4489
916ac052 4490 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4491 validate_slab(s, page);
53e15af0
CL
4492 count++;
4493 }
4494 if (count != n->nr_partial)
f9f58285
FF
4495 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4496 s->name, count, n->nr_partial);
53e15af0
CL
4497
4498 if (!(s->flags & SLAB_STORE_USER))
4499 goto out;
4500
916ac052 4501 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4502 validate_slab(s, page);
53e15af0
CL
4503 count++;
4504 }
4505 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4506 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4507 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4508
4509out:
4510 spin_unlock_irqrestore(&n->list_lock, flags);
4511 return count;
4512}
4513
434e245d 4514static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4515{
4516 int node;
4517 unsigned long count = 0;
fa45dc25 4518 struct kmem_cache_node *n;
53e15af0
CL
4519
4520 flush_all(s);
fa45dc25 4521 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4522 count += validate_slab_node(s, n);
4523
53e15af0
CL
4524 return count;
4525}
88a420e4 4526/*
672bba3a 4527 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4528 * and freed.
4529 */
4530
4531struct location {
4532 unsigned long count;
ce71e27c 4533 unsigned long addr;
45edfa58
CL
4534 long long sum_time;
4535 long min_time;
4536 long max_time;
4537 long min_pid;
4538 long max_pid;
174596a0 4539 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4540 nodemask_t nodes;
88a420e4
CL
4541};
4542
4543struct loc_track {
4544 unsigned long max;
4545 unsigned long count;
4546 struct location *loc;
4547};
4548
4549static void free_loc_track(struct loc_track *t)
4550{
4551 if (t->max)
4552 free_pages((unsigned long)t->loc,
4553 get_order(sizeof(struct location) * t->max));
4554}
4555
68dff6a9 4556static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4557{
4558 struct location *l;
4559 int order;
4560
88a420e4
CL
4561 order = get_order(sizeof(struct location) * max);
4562
68dff6a9 4563 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4564 if (!l)
4565 return 0;
4566
4567 if (t->count) {
4568 memcpy(l, t->loc, sizeof(struct location) * t->count);
4569 free_loc_track(t);
4570 }
4571 t->max = max;
4572 t->loc = l;
4573 return 1;
4574}
4575
4576static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4577 const struct track *track)
88a420e4
CL
4578{
4579 long start, end, pos;
4580 struct location *l;
ce71e27c 4581 unsigned long caddr;
45edfa58 4582 unsigned long age = jiffies - track->when;
88a420e4
CL
4583
4584 start = -1;
4585 end = t->count;
4586
4587 for ( ; ; ) {
4588 pos = start + (end - start + 1) / 2;
4589
4590 /*
4591 * There is nothing at "end". If we end up there
4592 * we need to add something to before end.
4593 */
4594 if (pos == end)
4595 break;
4596
4597 caddr = t->loc[pos].addr;
45edfa58
CL
4598 if (track->addr == caddr) {
4599
4600 l = &t->loc[pos];
4601 l->count++;
4602 if (track->when) {
4603 l->sum_time += age;
4604 if (age < l->min_time)
4605 l->min_time = age;
4606 if (age > l->max_time)
4607 l->max_time = age;
4608
4609 if (track->pid < l->min_pid)
4610 l->min_pid = track->pid;
4611 if (track->pid > l->max_pid)
4612 l->max_pid = track->pid;
4613
174596a0
RR
4614 cpumask_set_cpu(track->cpu,
4615 to_cpumask(l->cpus));
45edfa58
CL
4616 }
4617 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4618 return 1;
4619 }
4620
45edfa58 4621 if (track->addr < caddr)
88a420e4
CL
4622 end = pos;
4623 else
4624 start = pos;
4625 }
4626
4627 /*
672bba3a 4628 * Not found. Insert new tracking element.
88a420e4 4629 */
68dff6a9 4630 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4631 return 0;
4632
4633 l = t->loc + pos;
4634 if (pos < t->count)
4635 memmove(l + 1, l,
4636 (t->count - pos) * sizeof(struct location));
4637 t->count++;
4638 l->count = 1;
45edfa58
CL
4639 l->addr = track->addr;
4640 l->sum_time = age;
4641 l->min_time = age;
4642 l->max_time = age;
4643 l->min_pid = track->pid;
4644 l->max_pid = track->pid;
174596a0
RR
4645 cpumask_clear(to_cpumask(l->cpus));
4646 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4647 nodes_clear(l->nodes);
4648 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4649 return 1;
4650}
4651
4652static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4653 struct page *page, enum track_item alloc)
88a420e4 4654{
a973e9dd 4655 void *addr = page_address(page);
88a420e4 4656 void *p;
90e9f6a6 4657 unsigned long *map;
88a420e4 4658
90e9f6a6 4659 map = get_map(s, page);
224a88be 4660 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4661 if (!test_bit(slab_index(p, s, addr), map))
4662 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4663 put_map(map);
88a420e4
CL
4664}
4665
4666static int list_locations(struct kmem_cache *s, char *buf,
4667 enum track_item alloc)
4668{
e374d483 4669 int len = 0;
88a420e4 4670 unsigned long i;
68dff6a9 4671 struct loc_track t = { 0, 0, NULL };
88a420e4 4672 int node;
fa45dc25 4673 struct kmem_cache_node *n;
88a420e4 4674
90e9f6a6
YZ
4675 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4676 GFP_KERNEL)) {
68dff6a9 4677 return sprintf(buf, "Out of memory\n");
bbd7d57b 4678 }
88a420e4
CL
4679 /* Push back cpu slabs */
4680 flush_all(s);
4681
fa45dc25 4682 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4683 unsigned long flags;
4684 struct page *page;
4685
9e86943b 4686 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4687 continue;
4688
4689 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4690 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4691 process_slab(&t, s, page, alloc);
916ac052 4692 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4693 process_slab(&t, s, page, alloc);
88a420e4
CL
4694 spin_unlock_irqrestore(&n->list_lock, flags);
4695 }
4696
4697 for (i = 0; i < t.count; i++) {
45edfa58 4698 struct location *l = &t.loc[i];
88a420e4 4699
9c246247 4700 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4701 break;
e374d483 4702 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4703
4704 if (l->addr)
62c70bce 4705 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4706 else
e374d483 4707 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4708
4709 if (l->sum_time != l->min_time) {
e374d483 4710 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4711 l->min_time,
4712 (long)div_u64(l->sum_time, l->count),
4713 l->max_time);
45edfa58 4714 } else
e374d483 4715 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4716 l->min_time);
4717
4718 if (l->min_pid != l->max_pid)
e374d483 4719 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4720 l->min_pid, l->max_pid);
4721 else
e374d483 4722 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4723 l->min_pid);
4724
174596a0
RR
4725 if (num_online_cpus() > 1 &&
4726 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4727 len < PAGE_SIZE - 60)
4728 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4729 " cpus=%*pbl",
4730 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4731
62bc62a8 4732 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4733 len < PAGE_SIZE - 60)
4734 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4735 " nodes=%*pbl",
4736 nodemask_pr_args(&l->nodes));
45edfa58 4737
e374d483 4738 len += sprintf(buf + len, "\n");
88a420e4
CL
4739 }
4740
4741 free_loc_track(&t);
4742 if (!t.count)
e374d483
HH
4743 len += sprintf(buf, "No data\n");
4744 return len;
88a420e4 4745}
6dfd1b65 4746#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4747
a5a84755 4748#ifdef SLUB_RESILIENCY_TEST
c07b8183 4749static void __init resiliency_test(void)
a5a84755
CL
4750{
4751 u8 *p;
cc252eae 4752 int type = KMALLOC_NORMAL;
a5a84755 4753
95a05b42 4754 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4755
f9f58285
FF
4756 pr_err("SLUB resiliency testing\n");
4757 pr_err("-----------------------\n");
4758 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4759
4760 p = kzalloc(16, GFP_KERNEL);
4761 p[16] = 0x12;
f9f58285
FF
4762 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4763 p + 16);
a5a84755 4764
cc252eae 4765 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4766
4767 /* Hmmm... The next two are dangerous */
4768 p = kzalloc(32, GFP_KERNEL);
4769 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4770 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4771 p);
4772 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4773
cc252eae 4774 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4775 p = kzalloc(64, GFP_KERNEL);
4776 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4777 *p = 0x56;
f9f58285
FF
4778 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4779 p);
4780 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4781 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4782
f9f58285 4783 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4784 p = kzalloc(128, GFP_KERNEL);
4785 kfree(p);
4786 *p = 0x78;
f9f58285 4787 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4788 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4789
4790 p = kzalloc(256, GFP_KERNEL);
4791 kfree(p);
4792 p[50] = 0x9a;
f9f58285 4793 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4794 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4795
4796 p = kzalloc(512, GFP_KERNEL);
4797 kfree(p);
4798 p[512] = 0xab;
f9f58285 4799 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4800 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4801}
4802#else
4803#ifdef CONFIG_SYSFS
4804static void resiliency_test(void) {};
4805#endif
6dfd1b65 4806#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4807
ab4d5ed5 4808#ifdef CONFIG_SYSFS
81819f0f 4809enum slab_stat_type {
205ab99d
CL
4810 SL_ALL, /* All slabs */
4811 SL_PARTIAL, /* Only partially allocated slabs */
4812 SL_CPU, /* Only slabs used for cpu caches */
4813 SL_OBJECTS, /* Determine allocated objects not slabs */
4814 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4815};
4816
205ab99d 4817#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4818#define SO_PARTIAL (1 << SL_PARTIAL)
4819#define SO_CPU (1 << SL_CPU)
4820#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4821#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4822
1663f26d
TH
4823#ifdef CONFIG_MEMCG
4824static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4825
4826static int __init setup_slub_memcg_sysfs(char *str)
4827{
4828 int v;
4829
4830 if (get_option(&str, &v) > 0)
4831 memcg_sysfs_enabled = v;
4832
4833 return 1;
4834}
4835
4836__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4837#endif
4838
62e5c4b4
CG
4839static ssize_t show_slab_objects(struct kmem_cache *s,
4840 char *buf, unsigned long flags)
81819f0f
CL
4841{
4842 unsigned long total = 0;
81819f0f
CL
4843 int node;
4844 int x;
4845 unsigned long *nodes;
81819f0f 4846
6396bb22 4847 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4848 if (!nodes)
4849 return -ENOMEM;
81819f0f 4850
205ab99d
CL
4851 if (flags & SO_CPU) {
4852 int cpu;
81819f0f 4853
205ab99d 4854 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4855 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4856 cpu);
ec3ab083 4857 int node;
49e22585 4858 struct page *page;
dfb4f096 4859
4db0c3c2 4860 page = READ_ONCE(c->page);
ec3ab083
CL
4861 if (!page)
4862 continue;
205ab99d 4863
ec3ab083
CL
4864 node = page_to_nid(page);
4865 if (flags & SO_TOTAL)
4866 x = page->objects;
4867 else if (flags & SO_OBJECTS)
4868 x = page->inuse;
4869 else
4870 x = 1;
49e22585 4871
ec3ab083
CL
4872 total += x;
4873 nodes[node] += x;
4874
a93cf07b 4875 page = slub_percpu_partial_read_once(c);
49e22585 4876 if (page) {
8afb1474
LZ
4877 node = page_to_nid(page);
4878 if (flags & SO_TOTAL)
4879 WARN_ON_ONCE(1);
4880 else if (flags & SO_OBJECTS)
4881 WARN_ON_ONCE(1);
4882 else
4883 x = page->pages;
bc6697d8
ED
4884 total += x;
4885 nodes[node] += x;
49e22585 4886 }
81819f0f
CL
4887 }
4888 }
4889
e4f8e513
QC
4890 /*
4891 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4892 * already held which will conflict with an existing lock order:
4893 *
4894 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4895 *
4896 * We don't really need mem_hotplug_lock (to hold off
4897 * slab_mem_going_offline_callback) here because slab's memory hot
4898 * unplug code doesn't destroy the kmem_cache->node[] data.
4899 */
4900
ab4d5ed5 4901#ifdef CONFIG_SLUB_DEBUG
205ab99d 4902 if (flags & SO_ALL) {
fa45dc25
CL
4903 struct kmem_cache_node *n;
4904
4905 for_each_kmem_cache_node(s, node, n) {
205ab99d 4906
d0e0ac97
CG
4907 if (flags & SO_TOTAL)
4908 x = atomic_long_read(&n->total_objects);
4909 else if (flags & SO_OBJECTS)
4910 x = atomic_long_read(&n->total_objects) -
4911 count_partial(n, count_free);
81819f0f 4912 else
205ab99d 4913 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4914 total += x;
4915 nodes[node] += x;
4916 }
4917
ab4d5ed5
CL
4918 } else
4919#endif
4920 if (flags & SO_PARTIAL) {
fa45dc25 4921 struct kmem_cache_node *n;
81819f0f 4922
fa45dc25 4923 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4924 if (flags & SO_TOTAL)
4925 x = count_partial(n, count_total);
4926 else if (flags & SO_OBJECTS)
4927 x = count_partial(n, count_inuse);
81819f0f 4928 else
205ab99d 4929 x = n->nr_partial;
81819f0f
CL
4930 total += x;
4931 nodes[node] += x;
4932 }
4933 }
81819f0f
CL
4934 x = sprintf(buf, "%lu", total);
4935#ifdef CONFIG_NUMA
fa45dc25 4936 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4937 if (nodes[node])
4938 x += sprintf(buf + x, " N%d=%lu",
4939 node, nodes[node]);
4940#endif
4941 kfree(nodes);
4942 return x + sprintf(buf + x, "\n");
4943}
4944
ab4d5ed5 4945#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4946static int any_slab_objects(struct kmem_cache *s)
4947{
4948 int node;
fa45dc25 4949 struct kmem_cache_node *n;
81819f0f 4950
fa45dc25 4951 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4952 if (atomic_long_read(&n->total_objects))
81819f0f 4953 return 1;
fa45dc25 4954
81819f0f
CL
4955 return 0;
4956}
ab4d5ed5 4957#endif
81819f0f
CL
4958
4959#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4960#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4961
4962struct slab_attribute {
4963 struct attribute attr;
4964 ssize_t (*show)(struct kmem_cache *s, char *buf);
4965 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4966};
4967
4968#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4969 static struct slab_attribute _name##_attr = \
4970 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4971
4972#define SLAB_ATTR(_name) \
4973 static struct slab_attribute _name##_attr = \
ab067e99 4974 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4975
81819f0f
CL
4976static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4977{
44065b2e 4978 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4979}
4980SLAB_ATTR_RO(slab_size);
4981
4982static ssize_t align_show(struct kmem_cache *s, char *buf)
4983{
3a3791ec 4984 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
4985}
4986SLAB_ATTR_RO(align);
4987
4988static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4989{
1b473f29 4990 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
4991}
4992SLAB_ATTR_RO(object_size);
4993
4994static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4995{
19af27af 4996 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
4997}
4998SLAB_ATTR_RO(objs_per_slab);
4999
06b285dc
CL
5000static ssize_t order_store(struct kmem_cache *s,
5001 const char *buf, size_t length)
5002{
19af27af 5003 unsigned int order;
0121c619
CL
5004 int err;
5005
19af27af 5006 err = kstrtouint(buf, 10, &order);
0121c619
CL
5007 if (err)
5008 return err;
06b285dc
CL
5009
5010 if (order > slub_max_order || order < slub_min_order)
5011 return -EINVAL;
5012
5013 calculate_sizes(s, order);
5014 return length;
5015}
5016
81819f0f
CL
5017static ssize_t order_show(struct kmem_cache *s, char *buf)
5018{
19af27af 5019 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 5020}
06b285dc 5021SLAB_ATTR(order);
81819f0f 5022
73d342b1
DR
5023static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5024{
5025 return sprintf(buf, "%lu\n", s->min_partial);
5026}
5027
5028static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5029 size_t length)
5030{
5031 unsigned long min;
5032 int err;
5033
3dbb95f7 5034 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5035 if (err)
5036 return err;
5037
c0bdb232 5038 set_min_partial(s, min);
73d342b1
DR
5039 return length;
5040}
5041SLAB_ATTR(min_partial);
5042
49e22585
CL
5043static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5044{
e6d0e1dc 5045 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5046}
5047
5048static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5049 size_t length)
5050{
e5d9998f 5051 unsigned int objects;
49e22585
CL
5052 int err;
5053
e5d9998f 5054 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5055 if (err)
5056 return err;
345c905d 5057 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5058 return -EINVAL;
49e22585 5059
e6d0e1dc 5060 slub_set_cpu_partial(s, objects);
49e22585
CL
5061 flush_all(s);
5062 return length;
5063}
5064SLAB_ATTR(cpu_partial);
5065
81819f0f
CL
5066static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5067{
62c70bce
JP
5068 if (!s->ctor)
5069 return 0;
5070 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5071}
5072SLAB_ATTR_RO(ctor);
5073
81819f0f
CL
5074static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5075{
4307c14f 5076 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5077}
5078SLAB_ATTR_RO(aliases);
5079
81819f0f
CL
5080static ssize_t partial_show(struct kmem_cache *s, char *buf)
5081{
d9acf4b7 5082 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5083}
5084SLAB_ATTR_RO(partial);
5085
5086static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5087{
d9acf4b7 5088 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5089}
5090SLAB_ATTR_RO(cpu_slabs);
5091
5092static ssize_t objects_show(struct kmem_cache *s, char *buf)
5093{
205ab99d 5094 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5095}
5096SLAB_ATTR_RO(objects);
5097
205ab99d
CL
5098static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5099{
5100 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5101}
5102SLAB_ATTR_RO(objects_partial);
5103
49e22585
CL
5104static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5105{
5106 int objects = 0;
5107 int pages = 0;
5108 int cpu;
5109 int len;
5110
5111 for_each_online_cpu(cpu) {
a93cf07b
WY
5112 struct page *page;
5113
5114 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5115
5116 if (page) {
5117 pages += page->pages;
5118 objects += page->pobjects;
5119 }
5120 }
5121
5122 len = sprintf(buf, "%d(%d)", objects, pages);
5123
5124#ifdef CONFIG_SMP
5125 for_each_online_cpu(cpu) {
a93cf07b
WY
5126 struct page *page;
5127
5128 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5129
5130 if (page && len < PAGE_SIZE - 20)
5131 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5132 page->pobjects, page->pages);
5133 }
5134#endif
5135 return len + sprintf(buf + len, "\n");
5136}
5137SLAB_ATTR_RO(slabs_cpu_partial);
5138
a5a84755
CL
5139static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5140{
5141 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5142}
5143
5144static ssize_t reclaim_account_store(struct kmem_cache *s,
5145 const char *buf, size_t length)
5146{
5147 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5148 if (buf[0] == '1')
5149 s->flags |= SLAB_RECLAIM_ACCOUNT;
5150 return length;
5151}
5152SLAB_ATTR(reclaim_account);
5153
5154static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5155{
5156 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5157}
5158SLAB_ATTR_RO(hwcache_align);
5159
5160#ifdef CONFIG_ZONE_DMA
5161static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5162{
5163 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5164}
5165SLAB_ATTR_RO(cache_dma);
5166#endif
5167
8eb8284b
DW
5168static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5169{
7bbdb81e 5170 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5171}
5172SLAB_ATTR_RO(usersize);
5173
a5a84755
CL
5174static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5175{
5f0d5a3a 5176 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5177}
5178SLAB_ATTR_RO(destroy_by_rcu);
5179
ab4d5ed5 5180#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5181static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5182{
5183 return show_slab_objects(s, buf, SO_ALL);
5184}
5185SLAB_ATTR_RO(slabs);
5186
205ab99d
CL
5187static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5188{
5189 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5190}
5191SLAB_ATTR_RO(total_objects);
5192
81819f0f
CL
5193static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5194{
becfda68 5195 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5196}
5197
5198static ssize_t sanity_checks_store(struct kmem_cache *s,
5199 const char *buf, size_t length)
5200{
becfda68 5201 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5202 if (buf[0] == '1') {
5203 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5204 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5205 }
81819f0f
CL
5206 return length;
5207}
5208SLAB_ATTR(sanity_checks);
5209
5210static ssize_t trace_show(struct kmem_cache *s, char *buf)
5211{
5212 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5213}
5214
5215static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5216 size_t length)
5217{
c9e16131
CL
5218 /*
5219 * Tracing a merged cache is going to give confusing results
5220 * as well as cause other issues like converting a mergeable
5221 * cache into an umergeable one.
5222 */
5223 if (s->refcount > 1)
5224 return -EINVAL;
5225
81819f0f 5226 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5227 if (buf[0] == '1') {
5228 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5229 s->flags |= SLAB_TRACE;
b789ef51 5230 }
81819f0f
CL
5231 return length;
5232}
5233SLAB_ATTR(trace);
5234
81819f0f
CL
5235static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5236{
5237 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5238}
5239
5240static ssize_t red_zone_store(struct kmem_cache *s,
5241 const char *buf, size_t length)
5242{
5243 if (any_slab_objects(s))
5244 return -EBUSY;
5245
5246 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5247 if (buf[0] == '1') {
81819f0f 5248 s->flags |= SLAB_RED_ZONE;
b789ef51 5249 }
06b285dc 5250 calculate_sizes(s, -1);
81819f0f
CL
5251 return length;
5252}
5253SLAB_ATTR(red_zone);
5254
5255static ssize_t poison_show(struct kmem_cache *s, char *buf)
5256{
5257 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5258}
5259
5260static ssize_t poison_store(struct kmem_cache *s,
5261 const char *buf, size_t length)
5262{
5263 if (any_slab_objects(s))
5264 return -EBUSY;
5265
5266 s->flags &= ~SLAB_POISON;
b789ef51 5267 if (buf[0] == '1') {
81819f0f 5268 s->flags |= SLAB_POISON;
b789ef51 5269 }
06b285dc 5270 calculate_sizes(s, -1);
81819f0f
CL
5271 return length;
5272}
5273SLAB_ATTR(poison);
5274
5275static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5276{
5277 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5278}
5279
5280static ssize_t store_user_store(struct kmem_cache *s,
5281 const char *buf, size_t length)
5282{
5283 if (any_slab_objects(s))
5284 return -EBUSY;
5285
5286 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5287 if (buf[0] == '1') {
5288 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5289 s->flags |= SLAB_STORE_USER;
b789ef51 5290 }
06b285dc 5291 calculate_sizes(s, -1);
81819f0f
CL
5292 return length;
5293}
5294SLAB_ATTR(store_user);
5295
53e15af0
CL
5296static ssize_t validate_show(struct kmem_cache *s, char *buf)
5297{
5298 return 0;
5299}
5300
5301static ssize_t validate_store(struct kmem_cache *s,
5302 const char *buf, size_t length)
5303{
434e245d
CL
5304 int ret = -EINVAL;
5305
5306 if (buf[0] == '1') {
5307 ret = validate_slab_cache(s);
5308 if (ret >= 0)
5309 ret = length;
5310 }
5311 return ret;
53e15af0
CL
5312}
5313SLAB_ATTR(validate);
a5a84755
CL
5314
5315static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5316{
5317 if (!(s->flags & SLAB_STORE_USER))
5318 return -ENOSYS;
5319 return list_locations(s, buf, TRACK_ALLOC);
5320}
5321SLAB_ATTR_RO(alloc_calls);
5322
5323static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5324{
5325 if (!(s->flags & SLAB_STORE_USER))
5326 return -ENOSYS;
5327 return list_locations(s, buf, TRACK_FREE);
5328}
5329SLAB_ATTR_RO(free_calls);
5330#endif /* CONFIG_SLUB_DEBUG */
5331
5332#ifdef CONFIG_FAILSLAB
5333static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5334{
5335 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5336}
5337
5338static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5339 size_t length)
5340{
c9e16131
CL
5341 if (s->refcount > 1)
5342 return -EINVAL;
5343
a5a84755
CL
5344 s->flags &= ~SLAB_FAILSLAB;
5345 if (buf[0] == '1')
5346 s->flags |= SLAB_FAILSLAB;
5347 return length;
5348}
5349SLAB_ATTR(failslab);
ab4d5ed5 5350#endif
53e15af0 5351
2086d26a
CL
5352static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5353{
5354 return 0;
5355}
5356
5357static ssize_t shrink_store(struct kmem_cache *s,
5358 const char *buf, size_t length)
5359{
832f37f5 5360 if (buf[0] == '1')
04f768a3 5361 kmem_cache_shrink_all(s);
832f37f5 5362 else
2086d26a
CL
5363 return -EINVAL;
5364 return length;
5365}
5366SLAB_ATTR(shrink);
5367
81819f0f 5368#ifdef CONFIG_NUMA
9824601e 5369static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5370{
eb7235eb 5371 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5372}
5373
9824601e 5374static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5375 const char *buf, size_t length)
5376{
eb7235eb 5377 unsigned int ratio;
0121c619
CL
5378 int err;
5379
eb7235eb 5380 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5381 if (err)
5382 return err;
eb7235eb
AD
5383 if (ratio > 100)
5384 return -ERANGE;
0121c619 5385
eb7235eb 5386 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5387
81819f0f
CL
5388 return length;
5389}
9824601e 5390SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5391#endif
5392
8ff12cfc 5393#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5394static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5395{
5396 unsigned long sum = 0;
5397 int cpu;
5398 int len;
6da2ec56 5399 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5400
5401 if (!data)
5402 return -ENOMEM;
5403
5404 for_each_online_cpu(cpu) {
9dfc6e68 5405 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5406
5407 data[cpu] = x;
5408 sum += x;
5409 }
5410
5411 len = sprintf(buf, "%lu", sum);
5412
50ef37b9 5413#ifdef CONFIG_SMP
8ff12cfc
CL
5414 for_each_online_cpu(cpu) {
5415 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5416 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5417 }
50ef37b9 5418#endif
8ff12cfc
CL
5419 kfree(data);
5420 return len + sprintf(buf + len, "\n");
5421}
5422
78eb00cc
DR
5423static void clear_stat(struct kmem_cache *s, enum stat_item si)
5424{
5425 int cpu;
5426
5427 for_each_online_cpu(cpu)
9dfc6e68 5428 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5429}
5430
8ff12cfc
CL
5431#define STAT_ATTR(si, text) \
5432static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5433{ \
5434 return show_stat(s, buf, si); \
5435} \
78eb00cc
DR
5436static ssize_t text##_store(struct kmem_cache *s, \
5437 const char *buf, size_t length) \
5438{ \
5439 if (buf[0] != '0') \
5440 return -EINVAL; \
5441 clear_stat(s, si); \
5442 return length; \
5443} \
5444SLAB_ATTR(text); \
8ff12cfc
CL
5445
5446STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5447STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5448STAT_ATTR(FREE_FASTPATH, free_fastpath);
5449STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5450STAT_ATTR(FREE_FROZEN, free_frozen);
5451STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5452STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5453STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5454STAT_ATTR(ALLOC_SLAB, alloc_slab);
5455STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5456STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5457STAT_ATTR(FREE_SLAB, free_slab);
5458STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5459STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5460STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5461STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5462STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5463STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5464STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5465STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5466STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5467STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5468STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5469STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5470STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5471STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5472#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5473
06428780 5474static struct attribute *slab_attrs[] = {
81819f0f
CL
5475 &slab_size_attr.attr,
5476 &object_size_attr.attr,
5477 &objs_per_slab_attr.attr,
5478 &order_attr.attr,
73d342b1 5479 &min_partial_attr.attr,
49e22585 5480 &cpu_partial_attr.attr,
81819f0f 5481 &objects_attr.attr,
205ab99d 5482 &objects_partial_attr.attr,
81819f0f
CL
5483 &partial_attr.attr,
5484 &cpu_slabs_attr.attr,
5485 &ctor_attr.attr,
81819f0f
CL
5486 &aliases_attr.attr,
5487 &align_attr.attr,
81819f0f
CL
5488 &hwcache_align_attr.attr,
5489 &reclaim_account_attr.attr,
5490 &destroy_by_rcu_attr.attr,
a5a84755 5491 &shrink_attr.attr,
49e22585 5492 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5493#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5494 &total_objects_attr.attr,
5495 &slabs_attr.attr,
5496 &sanity_checks_attr.attr,
5497 &trace_attr.attr,
81819f0f
CL
5498 &red_zone_attr.attr,
5499 &poison_attr.attr,
5500 &store_user_attr.attr,
53e15af0 5501 &validate_attr.attr,
88a420e4
CL
5502 &alloc_calls_attr.attr,
5503 &free_calls_attr.attr,
ab4d5ed5 5504#endif
81819f0f
CL
5505#ifdef CONFIG_ZONE_DMA
5506 &cache_dma_attr.attr,
5507#endif
5508#ifdef CONFIG_NUMA
9824601e 5509 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5510#endif
5511#ifdef CONFIG_SLUB_STATS
5512 &alloc_fastpath_attr.attr,
5513 &alloc_slowpath_attr.attr,
5514 &free_fastpath_attr.attr,
5515 &free_slowpath_attr.attr,
5516 &free_frozen_attr.attr,
5517 &free_add_partial_attr.attr,
5518 &free_remove_partial_attr.attr,
5519 &alloc_from_partial_attr.attr,
5520 &alloc_slab_attr.attr,
5521 &alloc_refill_attr.attr,
e36a2652 5522 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5523 &free_slab_attr.attr,
5524 &cpuslab_flush_attr.attr,
5525 &deactivate_full_attr.attr,
5526 &deactivate_empty_attr.attr,
5527 &deactivate_to_head_attr.attr,
5528 &deactivate_to_tail_attr.attr,
5529 &deactivate_remote_frees_attr.attr,
03e404af 5530 &deactivate_bypass_attr.attr,
65c3376a 5531 &order_fallback_attr.attr,
b789ef51
CL
5532 &cmpxchg_double_fail_attr.attr,
5533 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5534 &cpu_partial_alloc_attr.attr,
5535 &cpu_partial_free_attr.attr,
8028dcea
AS
5536 &cpu_partial_node_attr.attr,
5537 &cpu_partial_drain_attr.attr,
81819f0f 5538#endif
4c13dd3b
DM
5539#ifdef CONFIG_FAILSLAB
5540 &failslab_attr.attr,
5541#endif
8eb8284b 5542 &usersize_attr.attr,
4c13dd3b 5543
81819f0f
CL
5544 NULL
5545};
5546
1fdaaa23 5547static const struct attribute_group slab_attr_group = {
81819f0f
CL
5548 .attrs = slab_attrs,
5549};
5550
5551static ssize_t slab_attr_show(struct kobject *kobj,
5552 struct attribute *attr,
5553 char *buf)
5554{
5555 struct slab_attribute *attribute;
5556 struct kmem_cache *s;
5557 int err;
5558
5559 attribute = to_slab_attr(attr);
5560 s = to_slab(kobj);
5561
5562 if (!attribute->show)
5563 return -EIO;
5564
5565 err = attribute->show(s, buf);
5566
5567 return err;
5568}
5569
5570static ssize_t slab_attr_store(struct kobject *kobj,
5571 struct attribute *attr,
5572 const char *buf, size_t len)
5573{
5574 struct slab_attribute *attribute;
5575 struct kmem_cache *s;
5576 int err;
5577
5578 attribute = to_slab_attr(attr);
5579 s = to_slab(kobj);
5580
5581 if (!attribute->store)
5582 return -EIO;
5583
5584 err = attribute->store(s, buf, len);
127424c8 5585#ifdef CONFIG_MEMCG
107dab5c 5586 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5587 struct kmem_cache *c;
81819f0f 5588
107dab5c
GC
5589 mutex_lock(&slab_mutex);
5590 if (s->max_attr_size < len)
5591 s->max_attr_size = len;
5592
ebe945c2
GC
5593 /*
5594 * This is a best effort propagation, so this function's return
5595 * value will be determined by the parent cache only. This is
5596 * basically because not all attributes will have a well
5597 * defined semantics for rollbacks - most of the actions will
5598 * have permanent effects.
5599 *
5600 * Returning the error value of any of the children that fail
5601 * is not 100 % defined, in the sense that users seeing the
5602 * error code won't be able to know anything about the state of
5603 * the cache.
5604 *
5605 * Only returning the error code for the parent cache at least
5606 * has well defined semantics. The cache being written to
5607 * directly either failed or succeeded, in which case we loop
5608 * through the descendants with best-effort propagation.
5609 */
426589f5
VD
5610 for_each_memcg_cache(c, s)
5611 attribute->store(c, buf, len);
107dab5c
GC
5612 mutex_unlock(&slab_mutex);
5613 }
5614#endif
81819f0f
CL
5615 return err;
5616}
5617
107dab5c
GC
5618static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5619{
127424c8 5620#ifdef CONFIG_MEMCG
107dab5c
GC
5621 int i;
5622 char *buffer = NULL;
93030d83 5623 struct kmem_cache *root_cache;
107dab5c 5624
93030d83 5625 if (is_root_cache(s))
107dab5c
GC
5626 return;
5627
f7ce3190 5628 root_cache = s->memcg_params.root_cache;
93030d83 5629
107dab5c
GC
5630 /*
5631 * This mean this cache had no attribute written. Therefore, no point
5632 * in copying default values around
5633 */
93030d83 5634 if (!root_cache->max_attr_size)
107dab5c
GC
5635 return;
5636
5637 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5638 char mbuf[64];
5639 char *buf;
5640 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5641 ssize_t len;
107dab5c
GC
5642
5643 if (!attr || !attr->store || !attr->show)
5644 continue;
5645
5646 /*
5647 * It is really bad that we have to allocate here, so we will
5648 * do it only as a fallback. If we actually allocate, though,
5649 * we can just use the allocated buffer until the end.
5650 *
5651 * Most of the slub attributes will tend to be very small in
5652 * size, but sysfs allows buffers up to a page, so they can
5653 * theoretically happen.
5654 */
5655 if (buffer)
5656 buf = buffer;
93030d83 5657 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5658 buf = mbuf;
5659 else {
5660 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5661 if (WARN_ON(!buffer))
5662 continue;
5663 buf = buffer;
5664 }
5665
478fe303
TG
5666 len = attr->show(root_cache, buf);
5667 if (len > 0)
5668 attr->store(s, buf, len);
107dab5c
GC
5669 }
5670
5671 if (buffer)
5672 free_page((unsigned long)buffer);
6dfd1b65 5673#endif /* CONFIG_MEMCG */
107dab5c
GC
5674}
5675
41a21285
CL
5676static void kmem_cache_release(struct kobject *k)
5677{
5678 slab_kmem_cache_release(to_slab(k));
5679}
5680
52cf25d0 5681static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5682 .show = slab_attr_show,
5683 .store = slab_attr_store,
5684};
5685
5686static struct kobj_type slab_ktype = {
5687 .sysfs_ops = &slab_sysfs_ops,
41a21285 5688 .release = kmem_cache_release,
81819f0f
CL
5689};
5690
5691static int uevent_filter(struct kset *kset, struct kobject *kobj)
5692{
5693 struct kobj_type *ktype = get_ktype(kobj);
5694
5695 if (ktype == &slab_ktype)
5696 return 1;
5697 return 0;
5698}
5699
9cd43611 5700static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5701 .filter = uevent_filter,
5702};
5703
27c3a314 5704static struct kset *slab_kset;
81819f0f 5705
9a41707b
VD
5706static inline struct kset *cache_kset(struct kmem_cache *s)
5707{
127424c8 5708#ifdef CONFIG_MEMCG
9a41707b 5709 if (!is_root_cache(s))
f7ce3190 5710 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5711#endif
5712 return slab_kset;
5713}
5714
81819f0f
CL
5715#define ID_STR_LENGTH 64
5716
5717/* Create a unique string id for a slab cache:
6446faa2
CL
5718 *
5719 * Format :[flags-]size
81819f0f
CL
5720 */
5721static char *create_unique_id(struct kmem_cache *s)
5722{
5723 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5724 char *p = name;
5725
5726 BUG_ON(!name);
5727
5728 *p++ = ':';
5729 /*
5730 * First flags affecting slabcache operations. We will only
5731 * get here for aliasable slabs so we do not need to support
5732 * too many flags. The flags here must cover all flags that
5733 * are matched during merging to guarantee that the id is
5734 * unique.
5735 */
5736 if (s->flags & SLAB_CACHE_DMA)
5737 *p++ = 'd';
6d6ea1e9
NB
5738 if (s->flags & SLAB_CACHE_DMA32)
5739 *p++ = 'D';
81819f0f
CL
5740 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5741 *p++ = 'a';
becfda68 5742 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5743 *p++ = 'F';
230e9fc2
VD
5744 if (s->flags & SLAB_ACCOUNT)
5745 *p++ = 'A';
81819f0f
CL
5746 if (p != name + 1)
5747 *p++ = '-';
44065b2e 5748 p += sprintf(p, "%07u", s->size);
2633d7a0 5749
81819f0f
CL
5750 BUG_ON(p > name + ID_STR_LENGTH - 1);
5751 return name;
5752}
5753
3b7b3140
TH
5754static void sysfs_slab_remove_workfn(struct work_struct *work)
5755{
5756 struct kmem_cache *s =
5757 container_of(work, struct kmem_cache, kobj_remove_work);
5758
5759 if (!s->kobj.state_in_sysfs)
5760 /*
5761 * For a memcg cache, this may be called during
5762 * deactivation and again on shutdown. Remove only once.
5763 * A cache is never shut down before deactivation is
5764 * complete, so no need to worry about synchronization.
5765 */
f6ba4880 5766 goto out;
3b7b3140
TH
5767
5768#ifdef CONFIG_MEMCG
5769 kset_unregister(s->memcg_kset);
5770#endif
5771 kobject_uevent(&s->kobj, KOBJ_REMOVE);
f6ba4880 5772out:
3b7b3140
TH
5773 kobject_put(&s->kobj);
5774}
5775
81819f0f
CL
5776static int sysfs_slab_add(struct kmem_cache *s)
5777{
5778 int err;
5779 const char *name;
1663f26d 5780 struct kset *kset = cache_kset(s);
45530c44 5781 int unmergeable = slab_unmergeable(s);
81819f0f 5782
3b7b3140
TH
5783 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5784
1663f26d
TH
5785 if (!kset) {
5786 kobject_init(&s->kobj, &slab_ktype);
5787 return 0;
5788 }
5789
11066386
MC
5790 if (!unmergeable && disable_higher_order_debug &&
5791 (slub_debug & DEBUG_METADATA_FLAGS))
5792 unmergeable = 1;
5793
81819f0f
CL
5794 if (unmergeable) {
5795 /*
5796 * Slabcache can never be merged so we can use the name proper.
5797 * This is typically the case for debug situations. In that
5798 * case we can catch duplicate names easily.
5799 */
27c3a314 5800 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5801 name = s->name;
5802 } else {
5803 /*
5804 * Create a unique name for the slab as a target
5805 * for the symlinks.
5806 */
5807 name = create_unique_id(s);
5808 }
5809
1663f26d 5810 s->kobj.kset = kset;
26e4f205 5811 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5812 if (err)
80da026a 5813 goto out;
81819f0f
CL
5814
5815 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5816 if (err)
5817 goto out_del_kobj;
9a41707b 5818
127424c8 5819#ifdef CONFIG_MEMCG
1663f26d 5820 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5821 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5822 if (!s->memcg_kset) {
54b6a731
DJ
5823 err = -ENOMEM;
5824 goto out_del_kobj;
9a41707b
VD
5825 }
5826 }
5827#endif
5828
81819f0f
CL
5829 kobject_uevent(&s->kobj, KOBJ_ADD);
5830 if (!unmergeable) {
5831 /* Setup first alias */
5832 sysfs_slab_alias(s, s->name);
81819f0f 5833 }
54b6a731
DJ
5834out:
5835 if (!unmergeable)
5836 kfree(name);
5837 return err;
5838out_del_kobj:
5839 kobject_del(&s->kobj);
54b6a731 5840 goto out;
81819f0f
CL
5841}
5842
bf5eb3de 5843static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5844{
97d06609 5845 if (slab_state < FULL)
2bce6485
CL
5846 /*
5847 * Sysfs has not been setup yet so no need to remove the
5848 * cache from sysfs.
5849 */
5850 return;
5851
3b7b3140
TH
5852 kobject_get(&s->kobj);
5853 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5854}
5855
d50d82fa
MP
5856void sysfs_slab_unlink(struct kmem_cache *s)
5857{
5858 if (slab_state >= FULL)
5859 kobject_del(&s->kobj);
5860}
5861
bf5eb3de
TH
5862void sysfs_slab_release(struct kmem_cache *s)
5863{
5864 if (slab_state >= FULL)
5865 kobject_put(&s->kobj);
81819f0f
CL
5866}
5867
5868/*
5869 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5870 * available lest we lose that information.
81819f0f
CL
5871 */
5872struct saved_alias {
5873 struct kmem_cache *s;
5874 const char *name;
5875 struct saved_alias *next;
5876};
5877
5af328a5 5878static struct saved_alias *alias_list;
81819f0f
CL
5879
5880static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5881{
5882 struct saved_alias *al;
5883
97d06609 5884 if (slab_state == FULL) {
81819f0f
CL
5885 /*
5886 * If we have a leftover link then remove it.
5887 */
27c3a314
GKH
5888 sysfs_remove_link(&slab_kset->kobj, name);
5889 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5890 }
5891
5892 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5893 if (!al)
5894 return -ENOMEM;
5895
5896 al->s = s;
5897 al->name = name;
5898 al->next = alias_list;
5899 alias_list = al;
5900 return 0;
5901}
5902
5903static int __init slab_sysfs_init(void)
5904{
5b95a4ac 5905 struct kmem_cache *s;
81819f0f
CL
5906 int err;
5907
18004c5d 5908 mutex_lock(&slab_mutex);
2bce6485 5909
0ff21e46 5910 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5911 if (!slab_kset) {
18004c5d 5912 mutex_unlock(&slab_mutex);
f9f58285 5913 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5914 return -ENOSYS;
5915 }
5916
97d06609 5917 slab_state = FULL;
26a7bd03 5918
5b95a4ac 5919 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5920 err = sysfs_slab_add(s);
5d540fb7 5921 if (err)
f9f58285
FF
5922 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5923 s->name);
26a7bd03 5924 }
81819f0f
CL
5925
5926 while (alias_list) {
5927 struct saved_alias *al = alias_list;
5928
5929 alias_list = alias_list->next;
5930 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5931 if (err)
f9f58285
FF
5932 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5933 al->name);
81819f0f
CL
5934 kfree(al);
5935 }
5936
18004c5d 5937 mutex_unlock(&slab_mutex);
81819f0f
CL
5938 resiliency_test();
5939 return 0;
5940}
5941
5942__initcall(slab_sysfs_init);
ab4d5ed5 5943#endif /* CONFIG_SYSFS */
57ed3eda
PE
5944
5945/*
5946 * The /proc/slabinfo ABI
5947 */
5b365771 5948#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5949void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5950{
57ed3eda 5951 unsigned long nr_slabs = 0;
205ab99d
CL
5952 unsigned long nr_objs = 0;
5953 unsigned long nr_free = 0;
57ed3eda 5954 int node;
fa45dc25 5955 struct kmem_cache_node *n;
57ed3eda 5956
fa45dc25 5957 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5958 nr_slabs += node_nr_slabs(n);
5959 nr_objs += node_nr_objs(n);
205ab99d 5960 nr_free += count_partial(n, count_free);
57ed3eda
PE
5961 }
5962
0d7561c6
GC
5963 sinfo->active_objs = nr_objs - nr_free;
5964 sinfo->num_objs = nr_objs;
5965 sinfo->active_slabs = nr_slabs;
5966 sinfo->num_slabs = nr_slabs;
5967 sinfo->objects_per_slab = oo_objects(s->oo);
5968 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5969}
5970
0d7561c6 5971void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5972{
7b3c3a50
AD
5973}
5974
b7454ad3
GC
5975ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5976 size_t count, loff_t *ppos)
7b3c3a50 5977{
b7454ad3 5978 return -EIO;
7b3c3a50 5979}
5b365771 5980#endif /* CONFIG_SLUB_DEBUG */