]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/slub.c
slub: Avoid warning for !CONFIG_SLUB_DEBUG
[people/arne_f/kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f 30
4a92379b
RK
31#include <trace/events/kmem.h>
32
81819f0f
CL
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
2086d26a
CL
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
76be8950 138#define MIN_PARTIAL 5
e95eed57 139
2086d26a
CL
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
81819f0f
CL
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
672bba3a 149
fa5ec8a1 150/*
3de47213
DR
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
fa5ec8a1 154 */
3de47213 155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 156
81819f0f
CL
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
81819f0f
CL
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 165 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 166
210b5c06
CG
167#define OO_SHIFT 16
168#define OO_MASK ((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
81819f0f 171/* Internal SLUB flags */
f90ec390 172#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181 DOWN, /* No slab functionality available */
51df1142 182 PARTIAL, /* Kmem_cache_node works */
672bba3a 183 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
184 SYSFS /* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
5af328a5 189static LIST_HEAD(slab_caches);
81819f0f 190
02cbc874
CL
191/*
192 * Tracking user of a slab.
193 */
194struct track {
ce71e27c 195 unsigned long addr; /* Called from address */
02cbc874
CL
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199};
200
201enum track_item { TRACK_ALLOC, TRACK_FREE };
202
ab4d5ed5 203#ifdef CONFIG_SYSFS
81819f0f
CL
204static int sysfs_slab_add(struct kmem_cache *);
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 207
81819f0f 208#else
0c710013
CL
209static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
151c602f
CL
212static inline void sysfs_slab_remove(struct kmem_cache *s)
213{
84c1cf62 214 kfree(s->name);
151c602f
CL
215 kfree(s);
216}
8ff12cfc 217
81819f0f
CL
218#endif
219
4fdccdfb 220static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
221{
222#ifdef CONFIG_SLUB_STATS
84e554e6 223 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
224#endif
225}
226
81819f0f
CL
227/********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233 return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
81819f0f 238 return s->node[node];
81819f0f
CL
239}
240
6446faa2 241/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
242static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244{
245 void *base;
246
a973e9dd 247 if (!object)
02cbc874
CL
248 return 1;
249
a973e9dd 250 base = page_address(page);
39b26464 251 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257}
258
7656c72b
CL
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261 return *(void **)(object + s->offset);
262}
263
264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265{
266 *(void **)(object + s->offset) = fp;
267}
268
269/* Loop over all objects in a slab */
224a88be
CL
270#define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
272 __p += (__s)->size)
273
7656c72b
CL
274/* Determine object index from a given position */
275static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
276{
277 return (p - addr) / s->size;
278}
279
d71f606f
MK
280static inline size_t slab_ksize(const struct kmem_cache *s)
281{
282#ifdef CONFIG_SLUB_DEBUG
283 /*
284 * Debugging requires use of the padding between object
285 * and whatever may come after it.
286 */
287 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
288 return s->objsize;
289
290#endif
291 /*
292 * If we have the need to store the freelist pointer
293 * back there or track user information then we can
294 * only use the space before that information.
295 */
296 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
297 return s->inuse;
298 /*
299 * Else we can use all the padding etc for the allocation
300 */
301 return s->size;
302}
303
ab9a0f19
LJ
304static inline int order_objects(int order, unsigned long size, int reserved)
305{
306 return ((PAGE_SIZE << order) - reserved) / size;
307}
308
834f3d11 309static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 310 unsigned long size, int reserved)
834f3d11
CL
311{
312 struct kmem_cache_order_objects x = {
ab9a0f19 313 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
314 };
315
316 return x;
317}
318
319static inline int oo_order(struct kmem_cache_order_objects x)
320{
210b5c06 321 return x.x >> OO_SHIFT;
834f3d11
CL
322}
323
324static inline int oo_objects(struct kmem_cache_order_objects x)
325{
210b5c06 326 return x.x & OO_MASK;
834f3d11
CL
327}
328
6332aa9d 329#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
330/*
331 * Determine a map of object in use on a page.
332 *
333 * Slab lock or node listlock must be held to guarantee that the page does
334 * not vanish from under us.
335 */
336static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
337{
338 void *p;
339 void *addr = page_address(page);
340
341 for (p = page->freelist; p; p = get_freepointer(s, p))
342 set_bit(slab_index(p, s, addr), map);
343}
344
41ecc55b
CL
345/*
346 * Debug settings:
347 */
f0630fff
CL
348#ifdef CONFIG_SLUB_DEBUG_ON
349static int slub_debug = DEBUG_DEFAULT_FLAGS;
350#else
41ecc55b 351static int slub_debug;
f0630fff 352#endif
41ecc55b
CL
353
354static char *slub_debug_slabs;
fa5ec8a1 355static int disable_higher_order_debug;
41ecc55b 356
81819f0f
CL
357/*
358 * Object debugging
359 */
360static void print_section(char *text, u8 *addr, unsigned int length)
361{
362 int i, offset;
363 int newline = 1;
364 char ascii[17];
365
366 ascii[16] = 0;
367
368 for (i = 0; i < length; i++) {
369 if (newline) {
24922684 370 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
371 newline = 0;
372 }
06428780 373 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
374 offset = i % 16;
375 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
376 if (offset == 15) {
06428780 377 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
378 newline = 1;
379 }
380 }
381 if (!newline) {
382 i %= 16;
383 while (i < 16) {
06428780 384 printk(KERN_CONT " ");
81819f0f
CL
385 ascii[i] = ' ';
386 i++;
387 }
06428780 388 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
389 }
390}
391
81819f0f
CL
392static struct track *get_track(struct kmem_cache *s, void *object,
393 enum track_item alloc)
394{
395 struct track *p;
396
397 if (s->offset)
398 p = object + s->offset + sizeof(void *);
399 else
400 p = object + s->inuse;
401
402 return p + alloc;
403}
404
405static void set_track(struct kmem_cache *s, void *object,
ce71e27c 406 enum track_item alloc, unsigned long addr)
81819f0f 407{
1a00df4a 408 struct track *p = get_track(s, object, alloc);
81819f0f 409
81819f0f
CL
410 if (addr) {
411 p->addr = addr;
412 p->cpu = smp_processor_id();
88e4ccf2 413 p->pid = current->pid;
81819f0f
CL
414 p->when = jiffies;
415 } else
416 memset(p, 0, sizeof(struct track));
417}
418
81819f0f
CL
419static void init_tracking(struct kmem_cache *s, void *object)
420{
24922684
CL
421 if (!(s->flags & SLAB_STORE_USER))
422 return;
423
ce71e27c
EGM
424 set_track(s, object, TRACK_FREE, 0UL);
425 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
426}
427
428static void print_track(const char *s, struct track *t)
429{
430 if (!t->addr)
431 return;
432
7daf705f 433 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 434 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
435}
436
437static void print_tracking(struct kmem_cache *s, void *object)
438{
439 if (!(s->flags & SLAB_STORE_USER))
440 return;
441
442 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
443 print_track("Freed", get_track(s, object, TRACK_FREE));
444}
445
446static void print_page_info(struct page *page)
447{
39b26464
CL
448 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
449 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
450
451}
452
453static void slab_bug(struct kmem_cache *s, char *fmt, ...)
454{
455 va_list args;
456 char buf[100];
457
458 va_start(args, fmt);
459 vsnprintf(buf, sizeof(buf), fmt, args);
460 va_end(args);
461 printk(KERN_ERR "========================================"
462 "=====================================\n");
463 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
464 printk(KERN_ERR "----------------------------------------"
465 "-------------------------------------\n\n");
81819f0f
CL
466}
467
24922684
CL
468static void slab_fix(struct kmem_cache *s, char *fmt, ...)
469{
470 va_list args;
471 char buf[100];
472
473 va_start(args, fmt);
474 vsnprintf(buf, sizeof(buf), fmt, args);
475 va_end(args);
476 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
477}
478
479static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
480{
481 unsigned int off; /* Offset of last byte */
a973e9dd 482 u8 *addr = page_address(page);
24922684
CL
483
484 print_tracking(s, p);
485
486 print_page_info(page);
487
488 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
489 p, p - addr, get_freepointer(s, p));
490
491 if (p > addr + 16)
492 print_section("Bytes b4", p - 16, 16);
493
0ebd652b 494 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
495
496 if (s->flags & SLAB_RED_ZONE)
497 print_section("Redzone", p + s->objsize,
498 s->inuse - s->objsize);
499
81819f0f
CL
500 if (s->offset)
501 off = s->offset + sizeof(void *);
502 else
503 off = s->inuse;
504
24922684 505 if (s->flags & SLAB_STORE_USER)
81819f0f 506 off += 2 * sizeof(struct track);
81819f0f
CL
507
508 if (off != s->size)
509 /* Beginning of the filler is the free pointer */
24922684
CL
510 print_section("Padding", p + off, s->size - off);
511
512 dump_stack();
81819f0f
CL
513}
514
515static void object_err(struct kmem_cache *s, struct page *page,
516 u8 *object, char *reason)
517{
3dc50637 518 slab_bug(s, "%s", reason);
24922684 519 print_trailer(s, page, object);
81819f0f
CL
520}
521
24922684 522static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
523{
524 va_list args;
525 char buf[100];
526
24922684
CL
527 va_start(args, fmt);
528 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 529 va_end(args);
3dc50637 530 slab_bug(s, "%s", buf);
24922684 531 print_page_info(page);
81819f0f
CL
532 dump_stack();
533}
534
f7cb1933 535static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
536{
537 u8 *p = object;
538
539 if (s->flags & __OBJECT_POISON) {
540 memset(p, POISON_FREE, s->objsize - 1);
06428780 541 p[s->objsize - 1] = POISON_END;
81819f0f
CL
542 }
543
544 if (s->flags & SLAB_RED_ZONE)
f7cb1933 545 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
546}
547
24922684 548static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
549{
550 while (bytes) {
551 if (*start != (u8)value)
24922684 552 return start;
81819f0f
CL
553 start++;
554 bytes--;
555 }
24922684
CL
556 return NULL;
557}
558
559static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
560 void *from, void *to)
561{
562 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
563 memset(from, data, to - from);
564}
565
566static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
567 u8 *object, char *what,
06428780 568 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
569{
570 u8 *fault;
571 u8 *end;
572
573 fault = check_bytes(start, value, bytes);
574 if (!fault)
575 return 1;
576
577 end = start + bytes;
578 while (end > fault && end[-1] == value)
579 end--;
580
581 slab_bug(s, "%s overwritten", what);
582 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
583 fault, end - 1, fault[0], value);
584 print_trailer(s, page, object);
585
586 restore_bytes(s, what, value, fault, end);
587 return 0;
81819f0f
CL
588}
589
81819f0f
CL
590/*
591 * Object layout:
592 *
593 * object address
594 * Bytes of the object to be managed.
595 * If the freepointer may overlay the object then the free
596 * pointer is the first word of the object.
672bba3a 597 *
81819f0f
CL
598 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
599 * 0xa5 (POISON_END)
600 *
601 * object + s->objsize
602 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
603 * Padding is extended by another word if Redzoning is enabled and
604 * objsize == inuse.
605 *
81819f0f
CL
606 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
607 * 0xcc (RED_ACTIVE) for objects in use.
608 *
609 * object + s->inuse
672bba3a
CL
610 * Meta data starts here.
611 *
81819f0f
CL
612 * A. Free pointer (if we cannot overwrite object on free)
613 * B. Tracking data for SLAB_STORE_USER
672bba3a 614 * C. Padding to reach required alignment boundary or at mininum
6446faa2 615 * one word if debugging is on to be able to detect writes
672bba3a
CL
616 * before the word boundary.
617 *
618 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
619 *
620 * object + s->size
672bba3a 621 * Nothing is used beyond s->size.
81819f0f 622 *
672bba3a
CL
623 * If slabcaches are merged then the objsize and inuse boundaries are mostly
624 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
625 * may be used with merged slabcaches.
626 */
627
81819f0f
CL
628static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
629{
630 unsigned long off = s->inuse; /* The end of info */
631
632 if (s->offset)
633 /* Freepointer is placed after the object. */
634 off += sizeof(void *);
635
636 if (s->flags & SLAB_STORE_USER)
637 /* We also have user information there */
638 off += 2 * sizeof(struct track);
639
640 if (s->size == off)
641 return 1;
642
24922684
CL
643 return check_bytes_and_report(s, page, p, "Object padding",
644 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
645}
646
39b26464 647/* Check the pad bytes at the end of a slab page */
81819f0f
CL
648static int slab_pad_check(struct kmem_cache *s, struct page *page)
649{
24922684
CL
650 u8 *start;
651 u8 *fault;
652 u8 *end;
653 int length;
654 int remainder;
81819f0f
CL
655
656 if (!(s->flags & SLAB_POISON))
657 return 1;
658
a973e9dd 659 start = page_address(page);
ab9a0f19 660 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
661 end = start + length;
662 remainder = length % s->size;
81819f0f
CL
663 if (!remainder)
664 return 1;
665
39b26464 666 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
667 if (!fault)
668 return 1;
669 while (end > fault && end[-1] == POISON_INUSE)
670 end--;
671
672 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 673 print_section("Padding", end - remainder, remainder);
24922684 674
8a3d271d 675 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 676 return 0;
81819f0f
CL
677}
678
679static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 680 void *object, u8 val)
81819f0f
CL
681{
682 u8 *p = object;
683 u8 *endobject = object + s->objsize;
684
685 if (s->flags & SLAB_RED_ZONE) {
24922684 686 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 687 endobject, val, s->inuse - s->objsize))
81819f0f 688 return 0;
81819f0f 689 } else {
3adbefee
IM
690 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
691 check_bytes_and_report(s, page, p, "Alignment padding",
692 endobject, POISON_INUSE, s->inuse - s->objsize);
693 }
81819f0f
CL
694 }
695
696 if (s->flags & SLAB_POISON) {
f7cb1933 697 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
698 (!check_bytes_and_report(s, page, p, "Poison", p,
699 POISON_FREE, s->objsize - 1) ||
700 !check_bytes_and_report(s, page, p, "Poison",
06428780 701 p + s->objsize - 1, POISON_END, 1)))
81819f0f 702 return 0;
81819f0f
CL
703 /*
704 * check_pad_bytes cleans up on its own.
705 */
706 check_pad_bytes(s, page, p);
707 }
708
f7cb1933 709 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
710 /*
711 * Object and freepointer overlap. Cannot check
712 * freepointer while object is allocated.
713 */
714 return 1;
715
716 /* Check free pointer validity */
717 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
718 object_err(s, page, p, "Freepointer corrupt");
719 /*
9f6c708e 720 * No choice but to zap it and thus lose the remainder
81819f0f 721 * of the free objects in this slab. May cause
672bba3a 722 * another error because the object count is now wrong.
81819f0f 723 */
a973e9dd 724 set_freepointer(s, p, NULL);
81819f0f
CL
725 return 0;
726 }
727 return 1;
728}
729
730static int check_slab(struct kmem_cache *s, struct page *page)
731{
39b26464
CL
732 int maxobj;
733
81819f0f
CL
734 VM_BUG_ON(!irqs_disabled());
735
736 if (!PageSlab(page)) {
24922684 737 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
738 return 0;
739 }
39b26464 740
ab9a0f19 741 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
742 if (page->objects > maxobj) {
743 slab_err(s, page, "objects %u > max %u",
744 s->name, page->objects, maxobj);
745 return 0;
746 }
747 if (page->inuse > page->objects) {
24922684 748 slab_err(s, page, "inuse %u > max %u",
39b26464 749 s->name, page->inuse, page->objects);
81819f0f
CL
750 return 0;
751 }
752 /* Slab_pad_check fixes things up after itself */
753 slab_pad_check(s, page);
754 return 1;
755}
756
757/*
672bba3a
CL
758 * Determine if a certain object on a page is on the freelist. Must hold the
759 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
760 */
761static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
762{
763 int nr = 0;
764 void *fp = page->freelist;
765 void *object = NULL;
224a88be 766 unsigned long max_objects;
81819f0f 767
39b26464 768 while (fp && nr <= page->objects) {
81819f0f
CL
769 if (fp == search)
770 return 1;
771 if (!check_valid_pointer(s, page, fp)) {
772 if (object) {
773 object_err(s, page, object,
774 "Freechain corrupt");
a973e9dd 775 set_freepointer(s, object, NULL);
81819f0f
CL
776 break;
777 } else {
24922684 778 slab_err(s, page, "Freepointer corrupt");
a973e9dd 779 page->freelist = NULL;
39b26464 780 page->inuse = page->objects;
24922684 781 slab_fix(s, "Freelist cleared");
81819f0f
CL
782 return 0;
783 }
784 break;
785 }
786 object = fp;
787 fp = get_freepointer(s, object);
788 nr++;
789 }
790
ab9a0f19 791 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
792 if (max_objects > MAX_OBJS_PER_PAGE)
793 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
794
795 if (page->objects != max_objects) {
796 slab_err(s, page, "Wrong number of objects. Found %d but "
797 "should be %d", page->objects, max_objects);
798 page->objects = max_objects;
799 slab_fix(s, "Number of objects adjusted.");
800 }
39b26464 801 if (page->inuse != page->objects - nr) {
70d71228 802 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
803 "counted were %d", page->inuse, page->objects - nr);
804 page->inuse = page->objects - nr;
24922684 805 slab_fix(s, "Object count adjusted.");
81819f0f
CL
806 }
807 return search == NULL;
808}
809
0121c619
CL
810static void trace(struct kmem_cache *s, struct page *page, void *object,
811 int alloc)
3ec09742
CL
812{
813 if (s->flags & SLAB_TRACE) {
814 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
815 s->name,
816 alloc ? "alloc" : "free",
817 object, page->inuse,
818 page->freelist);
819
820 if (!alloc)
821 print_section("Object", (void *)object, s->objsize);
822
823 dump_stack();
824 }
825}
826
c016b0bd
CL
827/*
828 * Hooks for other subsystems that check memory allocations. In a typical
829 * production configuration these hooks all should produce no code at all.
830 */
831static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
832{
c1d50836 833 flags &= gfp_allowed_mask;
c016b0bd
CL
834 lockdep_trace_alloc(flags);
835 might_sleep_if(flags & __GFP_WAIT);
836
837 return should_failslab(s->objsize, flags, s->flags);
838}
839
840static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
841{
c1d50836 842 flags &= gfp_allowed_mask;
b3d41885 843 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
844 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
845}
846
847static inline void slab_free_hook(struct kmem_cache *s, void *x)
848{
849 kmemleak_free_recursive(x, s->flags);
c016b0bd 850
d3f661d6
CL
851 /*
852 * Trouble is that we may no longer disable interupts in the fast path
853 * So in order to make the debug calls that expect irqs to be
854 * disabled we need to disable interrupts temporarily.
855 */
856#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
857 {
858 unsigned long flags;
859
860 local_irq_save(flags);
861 kmemcheck_slab_free(s, x, s->objsize);
862 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
863 local_irq_restore(flags);
864 }
865#endif
f9b615de
TG
866 if (!(s->flags & SLAB_DEBUG_OBJECTS))
867 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
868}
869
643b1138 870/*
672bba3a 871 * Tracking of fully allocated slabs for debugging purposes.
643b1138 872 */
e95eed57 873static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 874{
643b1138
CL
875 spin_lock(&n->list_lock);
876 list_add(&page->lru, &n->full);
877 spin_unlock(&n->list_lock);
878}
879
880static void remove_full(struct kmem_cache *s, struct page *page)
881{
882 struct kmem_cache_node *n;
883
884 if (!(s->flags & SLAB_STORE_USER))
885 return;
886
887 n = get_node(s, page_to_nid(page));
888
889 spin_lock(&n->list_lock);
890 list_del(&page->lru);
891 spin_unlock(&n->list_lock);
892}
893
0f389ec6
CL
894/* Tracking of the number of slabs for debugging purposes */
895static inline unsigned long slabs_node(struct kmem_cache *s, int node)
896{
897 struct kmem_cache_node *n = get_node(s, node);
898
899 return atomic_long_read(&n->nr_slabs);
900}
901
26c02cf0
AB
902static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
903{
904 return atomic_long_read(&n->nr_slabs);
905}
906
205ab99d 907static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
908{
909 struct kmem_cache_node *n = get_node(s, node);
910
911 /*
912 * May be called early in order to allocate a slab for the
913 * kmem_cache_node structure. Solve the chicken-egg
914 * dilemma by deferring the increment of the count during
915 * bootstrap (see early_kmem_cache_node_alloc).
916 */
7340cc84 917 if (n) {
0f389ec6 918 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
919 atomic_long_add(objects, &n->total_objects);
920 }
0f389ec6 921}
205ab99d 922static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
923{
924 struct kmem_cache_node *n = get_node(s, node);
925
926 atomic_long_dec(&n->nr_slabs);
205ab99d 927 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
928}
929
930/* Object debug checks for alloc/free paths */
3ec09742
CL
931static void setup_object_debug(struct kmem_cache *s, struct page *page,
932 void *object)
933{
934 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
935 return;
936
f7cb1933 937 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
938 init_tracking(s, object);
939}
940
1537066c 941static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 942 void *object, unsigned long addr)
81819f0f
CL
943{
944 if (!check_slab(s, page))
945 goto bad;
946
d692ef6d 947 if (!on_freelist(s, page, object)) {
24922684 948 object_err(s, page, object, "Object already allocated");
70d71228 949 goto bad;
81819f0f
CL
950 }
951
952 if (!check_valid_pointer(s, page, object)) {
953 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 954 goto bad;
81819f0f
CL
955 }
956
f7cb1933 957 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 958 goto bad;
81819f0f 959
3ec09742
CL
960 /* Success perform special debug activities for allocs */
961 if (s->flags & SLAB_STORE_USER)
962 set_track(s, object, TRACK_ALLOC, addr);
963 trace(s, page, object, 1);
f7cb1933 964 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 965 return 1;
3ec09742 966
81819f0f
CL
967bad:
968 if (PageSlab(page)) {
969 /*
970 * If this is a slab page then lets do the best we can
971 * to avoid issues in the future. Marking all objects
672bba3a 972 * as used avoids touching the remaining objects.
81819f0f 973 */
24922684 974 slab_fix(s, "Marking all objects used");
39b26464 975 page->inuse = page->objects;
a973e9dd 976 page->freelist = NULL;
81819f0f
CL
977 }
978 return 0;
979}
980
1537066c
CL
981static noinline int free_debug_processing(struct kmem_cache *s,
982 struct page *page, void *object, unsigned long addr)
81819f0f
CL
983{
984 if (!check_slab(s, page))
985 goto fail;
986
987 if (!check_valid_pointer(s, page, object)) {
70d71228 988 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
989 goto fail;
990 }
991
992 if (on_freelist(s, page, object)) {
24922684 993 object_err(s, page, object, "Object already free");
81819f0f
CL
994 goto fail;
995 }
996
f7cb1933 997 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
998 return 0;
999
1000 if (unlikely(s != page->slab)) {
3adbefee 1001 if (!PageSlab(page)) {
70d71228
CL
1002 slab_err(s, page, "Attempt to free object(0x%p) "
1003 "outside of slab", object);
3adbefee 1004 } else if (!page->slab) {
81819f0f 1005 printk(KERN_ERR
70d71228 1006 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1007 object);
70d71228 1008 dump_stack();
06428780 1009 } else
24922684
CL
1010 object_err(s, page, object,
1011 "page slab pointer corrupt.");
81819f0f
CL
1012 goto fail;
1013 }
3ec09742
CL
1014
1015 /* Special debug activities for freeing objects */
8a38082d 1016 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
1017 remove_full(s, page);
1018 if (s->flags & SLAB_STORE_USER)
1019 set_track(s, object, TRACK_FREE, addr);
1020 trace(s, page, object, 0);
f7cb1933 1021 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 1022 return 1;
3ec09742 1023
81819f0f 1024fail:
24922684 1025 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
1026 return 0;
1027}
1028
41ecc55b
CL
1029static int __init setup_slub_debug(char *str)
1030{
f0630fff
CL
1031 slub_debug = DEBUG_DEFAULT_FLAGS;
1032 if (*str++ != '=' || !*str)
1033 /*
1034 * No options specified. Switch on full debugging.
1035 */
1036 goto out;
1037
1038 if (*str == ',')
1039 /*
1040 * No options but restriction on slabs. This means full
1041 * debugging for slabs matching a pattern.
1042 */
1043 goto check_slabs;
1044
fa5ec8a1
DR
1045 if (tolower(*str) == 'o') {
1046 /*
1047 * Avoid enabling debugging on caches if its minimum order
1048 * would increase as a result.
1049 */
1050 disable_higher_order_debug = 1;
1051 goto out;
1052 }
1053
f0630fff
CL
1054 slub_debug = 0;
1055 if (*str == '-')
1056 /*
1057 * Switch off all debugging measures.
1058 */
1059 goto out;
1060
1061 /*
1062 * Determine which debug features should be switched on
1063 */
06428780 1064 for (; *str && *str != ','; str++) {
f0630fff
CL
1065 switch (tolower(*str)) {
1066 case 'f':
1067 slub_debug |= SLAB_DEBUG_FREE;
1068 break;
1069 case 'z':
1070 slub_debug |= SLAB_RED_ZONE;
1071 break;
1072 case 'p':
1073 slub_debug |= SLAB_POISON;
1074 break;
1075 case 'u':
1076 slub_debug |= SLAB_STORE_USER;
1077 break;
1078 case 't':
1079 slub_debug |= SLAB_TRACE;
1080 break;
4c13dd3b
DM
1081 case 'a':
1082 slub_debug |= SLAB_FAILSLAB;
1083 break;
f0630fff
CL
1084 default:
1085 printk(KERN_ERR "slub_debug option '%c' "
06428780 1086 "unknown. skipped\n", *str);
f0630fff 1087 }
41ecc55b
CL
1088 }
1089
f0630fff 1090check_slabs:
41ecc55b
CL
1091 if (*str == ',')
1092 slub_debug_slabs = str + 1;
f0630fff 1093out:
41ecc55b
CL
1094 return 1;
1095}
1096
1097__setup("slub_debug", setup_slub_debug);
1098
ba0268a8
CL
1099static unsigned long kmem_cache_flags(unsigned long objsize,
1100 unsigned long flags, const char *name,
51cc5068 1101 void (*ctor)(void *))
41ecc55b
CL
1102{
1103 /*
e153362a 1104 * Enable debugging if selected on the kernel commandline.
41ecc55b 1105 */
e153362a 1106 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1107 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1108 flags |= slub_debug;
ba0268a8
CL
1109
1110 return flags;
41ecc55b
CL
1111}
1112#else
3ec09742
CL
1113static inline void setup_object_debug(struct kmem_cache *s,
1114 struct page *page, void *object) {}
41ecc55b 1115
3ec09742 1116static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1117 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1118
3ec09742 1119static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1120 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1121
41ecc55b
CL
1122static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1123 { return 1; }
1124static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1125 void *object, u8 val) { return 1; }
3ec09742 1126static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1127static inline unsigned long kmem_cache_flags(unsigned long objsize,
1128 unsigned long flags, const char *name,
51cc5068 1129 void (*ctor)(void *))
ba0268a8
CL
1130{
1131 return flags;
1132}
41ecc55b 1133#define slub_debug 0
0f389ec6 1134
fdaa45e9
IM
1135#define disable_higher_order_debug 0
1136
0f389ec6
CL
1137static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1138 { return 0; }
26c02cf0
AB
1139static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1140 { return 0; }
205ab99d
CL
1141static inline void inc_slabs_node(struct kmem_cache *s, int node,
1142 int objects) {}
1143static inline void dec_slabs_node(struct kmem_cache *s, int node,
1144 int objects) {}
7d550c56
CL
1145
1146static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1147 { return 0; }
1148
1149static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1150 void *object) {}
1151
1152static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1153
ab4d5ed5 1154#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1155
81819f0f
CL
1156/*
1157 * Slab allocation and freeing
1158 */
65c3376a
CL
1159static inline struct page *alloc_slab_page(gfp_t flags, int node,
1160 struct kmem_cache_order_objects oo)
1161{
1162 int order = oo_order(oo);
1163
b1eeab67
VN
1164 flags |= __GFP_NOTRACK;
1165
2154a336 1166 if (node == NUMA_NO_NODE)
65c3376a
CL
1167 return alloc_pages(flags, order);
1168 else
6b65aaf3 1169 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1170}
1171
81819f0f
CL
1172static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1173{
06428780 1174 struct page *page;
834f3d11 1175 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1176 gfp_t alloc_gfp;
81819f0f 1177
b7a49f0d 1178 flags |= s->allocflags;
e12ba74d 1179
ba52270d
PE
1180 /*
1181 * Let the initial higher-order allocation fail under memory pressure
1182 * so we fall-back to the minimum order allocation.
1183 */
1184 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1185
1186 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1187 if (unlikely(!page)) {
1188 oo = s->min;
1189 /*
1190 * Allocation may have failed due to fragmentation.
1191 * Try a lower order alloc if possible
1192 */
1193 page = alloc_slab_page(flags, node, oo);
1194 if (!page)
1195 return NULL;
81819f0f 1196
84e554e6 1197 stat(s, ORDER_FALLBACK);
65c3376a 1198 }
5a896d9e
VN
1199
1200 if (kmemcheck_enabled
5086c389 1201 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1202 int pages = 1 << oo_order(oo);
1203
1204 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1205
1206 /*
1207 * Objects from caches that have a constructor don't get
1208 * cleared when they're allocated, so we need to do it here.
1209 */
1210 if (s->ctor)
1211 kmemcheck_mark_uninitialized_pages(page, pages);
1212 else
1213 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1214 }
1215
834f3d11 1216 page->objects = oo_objects(oo);
81819f0f
CL
1217 mod_zone_page_state(page_zone(page),
1218 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1219 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1220 1 << oo_order(oo));
81819f0f
CL
1221
1222 return page;
1223}
1224
1225static void setup_object(struct kmem_cache *s, struct page *page,
1226 void *object)
1227{
3ec09742 1228 setup_object_debug(s, page, object);
4f104934 1229 if (unlikely(s->ctor))
51cc5068 1230 s->ctor(object);
81819f0f
CL
1231}
1232
1233static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1234{
1235 struct page *page;
81819f0f 1236 void *start;
81819f0f
CL
1237 void *last;
1238 void *p;
1239
6cb06229 1240 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1241
6cb06229
CL
1242 page = allocate_slab(s,
1243 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1244 if (!page)
1245 goto out;
1246
205ab99d 1247 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1248 page->slab = s;
1249 page->flags |= 1 << PG_slab;
81819f0f
CL
1250
1251 start = page_address(page);
81819f0f
CL
1252
1253 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1254 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1255
1256 last = start;
224a88be 1257 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1258 setup_object(s, page, last);
1259 set_freepointer(s, last, p);
1260 last = p;
1261 }
1262 setup_object(s, page, last);
a973e9dd 1263 set_freepointer(s, last, NULL);
81819f0f
CL
1264
1265 page->freelist = start;
1266 page->inuse = 0;
1267out:
81819f0f
CL
1268 return page;
1269}
1270
1271static void __free_slab(struct kmem_cache *s, struct page *page)
1272{
834f3d11
CL
1273 int order = compound_order(page);
1274 int pages = 1 << order;
81819f0f 1275
af537b0a 1276 if (kmem_cache_debug(s)) {
81819f0f
CL
1277 void *p;
1278
1279 slab_pad_check(s, page);
224a88be
CL
1280 for_each_object(p, s, page_address(page),
1281 page->objects)
f7cb1933 1282 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1283 }
1284
b1eeab67 1285 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1286
81819f0f
CL
1287 mod_zone_page_state(page_zone(page),
1288 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1289 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1290 -pages);
81819f0f 1291
49bd5221
CL
1292 __ClearPageSlab(page);
1293 reset_page_mapcount(page);
1eb5ac64
NP
1294 if (current->reclaim_state)
1295 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1296 __free_pages(page, order);
81819f0f
CL
1297}
1298
da9a638c
LJ
1299#define need_reserve_slab_rcu \
1300 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1301
81819f0f
CL
1302static void rcu_free_slab(struct rcu_head *h)
1303{
1304 struct page *page;
1305
da9a638c
LJ
1306 if (need_reserve_slab_rcu)
1307 page = virt_to_head_page(h);
1308 else
1309 page = container_of((struct list_head *)h, struct page, lru);
1310
81819f0f
CL
1311 __free_slab(page->slab, page);
1312}
1313
1314static void free_slab(struct kmem_cache *s, struct page *page)
1315{
1316 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1317 struct rcu_head *head;
1318
1319 if (need_reserve_slab_rcu) {
1320 int order = compound_order(page);
1321 int offset = (PAGE_SIZE << order) - s->reserved;
1322
1323 VM_BUG_ON(s->reserved != sizeof(*head));
1324 head = page_address(page) + offset;
1325 } else {
1326 /*
1327 * RCU free overloads the RCU head over the LRU
1328 */
1329 head = (void *)&page->lru;
1330 }
81819f0f
CL
1331
1332 call_rcu(head, rcu_free_slab);
1333 } else
1334 __free_slab(s, page);
1335}
1336
1337static void discard_slab(struct kmem_cache *s, struct page *page)
1338{
205ab99d 1339 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1340 free_slab(s, page);
1341}
1342
1343/*
1344 * Per slab locking using the pagelock
1345 */
1346static __always_inline void slab_lock(struct page *page)
1347{
1348 bit_spin_lock(PG_locked, &page->flags);
1349}
1350
1351static __always_inline void slab_unlock(struct page *page)
1352{
a76d3546 1353 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1354}
1355
1356static __always_inline int slab_trylock(struct page *page)
1357{
1358 int rc = 1;
1359
1360 rc = bit_spin_trylock(PG_locked, &page->flags);
1361 return rc;
1362}
1363
1364/*
1365 * Management of partially allocated slabs
1366 */
7c2e132c
CL
1367static void add_partial(struct kmem_cache_node *n,
1368 struct page *page, int tail)
81819f0f 1369{
e95eed57
CL
1370 spin_lock(&n->list_lock);
1371 n->nr_partial++;
7c2e132c
CL
1372 if (tail)
1373 list_add_tail(&page->lru, &n->partial);
1374 else
1375 list_add(&page->lru, &n->partial);
81819f0f
CL
1376 spin_unlock(&n->list_lock);
1377}
1378
62e346a8
CL
1379static inline void __remove_partial(struct kmem_cache_node *n,
1380 struct page *page)
1381{
1382 list_del(&page->lru);
1383 n->nr_partial--;
1384}
1385
0121c619 1386static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1387{
1388 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1389
1390 spin_lock(&n->list_lock);
62e346a8 1391 __remove_partial(n, page);
81819f0f
CL
1392 spin_unlock(&n->list_lock);
1393}
1394
1395/*
672bba3a 1396 * Lock slab and remove from the partial list.
81819f0f 1397 *
672bba3a 1398 * Must hold list_lock.
81819f0f 1399 */
0121c619
CL
1400static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1401 struct page *page)
81819f0f
CL
1402{
1403 if (slab_trylock(page)) {
62e346a8 1404 __remove_partial(n, page);
8a38082d 1405 __SetPageSlubFrozen(page);
81819f0f
CL
1406 return 1;
1407 }
1408 return 0;
1409}
1410
1411/*
672bba3a 1412 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1413 */
1414static struct page *get_partial_node(struct kmem_cache_node *n)
1415{
1416 struct page *page;
1417
1418 /*
1419 * Racy check. If we mistakenly see no partial slabs then we
1420 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1421 * partial slab and there is none available then get_partials()
1422 * will return NULL.
81819f0f
CL
1423 */
1424 if (!n || !n->nr_partial)
1425 return NULL;
1426
1427 spin_lock(&n->list_lock);
1428 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1429 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1430 goto out;
1431 page = NULL;
1432out:
1433 spin_unlock(&n->list_lock);
1434 return page;
1435}
1436
1437/*
672bba3a 1438 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1439 */
1440static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1441{
1442#ifdef CONFIG_NUMA
1443 struct zonelist *zonelist;
dd1a239f 1444 struct zoneref *z;
54a6eb5c
MG
1445 struct zone *zone;
1446 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1447 struct page *page;
1448
1449 /*
672bba3a
CL
1450 * The defrag ratio allows a configuration of the tradeoffs between
1451 * inter node defragmentation and node local allocations. A lower
1452 * defrag_ratio increases the tendency to do local allocations
1453 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1454 *
672bba3a
CL
1455 * If the defrag_ratio is set to 0 then kmalloc() always
1456 * returns node local objects. If the ratio is higher then kmalloc()
1457 * may return off node objects because partial slabs are obtained
1458 * from other nodes and filled up.
81819f0f 1459 *
6446faa2 1460 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1461 * defrag_ratio = 1000) then every (well almost) allocation will
1462 * first attempt to defrag slab caches on other nodes. This means
1463 * scanning over all nodes to look for partial slabs which may be
1464 * expensive if we do it every time we are trying to find a slab
1465 * with available objects.
81819f0f 1466 */
9824601e
CL
1467 if (!s->remote_node_defrag_ratio ||
1468 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1469 return NULL;
1470
c0ff7453 1471 get_mems_allowed();
0e88460d 1472 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1473 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1474 struct kmem_cache_node *n;
1475
54a6eb5c 1476 n = get_node(s, zone_to_nid(zone));
81819f0f 1477
54a6eb5c 1478 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1479 n->nr_partial > s->min_partial) {
81819f0f 1480 page = get_partial_node(n);
c0ff7453
MX
1481 if (page) {
1482 put_mems_allowed();
81819f0f 1483 return page;
c0ff7453 1484 }
81819f0f
CL
1485 }
1486 }
c0ff7453 1487 put_mems_allowed();
81819f0f
CL
1488#endif
1489 return NULL;
1490}
1491
1492/*
1493 * Get a partial page, lock it and return it.
1494 */
1495static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1496{
1497 struct page *page;
2154a336 1498 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1499
1500 page = get_partial_node(get_node(s, searchnode));
33de04ec 1501 if (page || node != NUMA_NO_NODE)
81819f0f
CL
1502 return page;
1503
1504 return get_any_partial(s, flags);
1505}
1506
1507/*
1508 * Move a page back to the lists.
1509 *
1510 * Must be called with the slab lock held.
1511 *
1512 * On exit the slab lock will have been dropped.
1513 */
7c2e132c 1514static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
3478973d 1515 __releases(bitlock)
81819f0f 1516{
e95eed57
CL
1517 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1518
8a38082d 1519 __ClearPageSlubFrozen(page);
81819f0f 1520 if (page->inuse) {
e95eed57 1521
a973e9dd 1522 if (page->freelist) {
7c2e132c 1523 add_partial(n, page, tail);
84e554e6 1524 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1525 } else {
84e554e6 1526 stat(s, DEACTIVATE_FULL);
af537b0a 1527 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1528 add_full(n, page);
1529 }
81819f0f
CL
1530 slab_unlock(page);
1531 } else {
84e554e6 1532 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1533 if (n->nr_partial < s->min_partial) {
e95eed57 1534 /*
672bba3a
CL
1535 * Adding an empty slab to the partial slabs in order
1536 * to avoid page allocator overhead. This slab needs
1537 * to come after the other slabs with objects in
6446faa2
CL
1538 * so that the others get filled first. That way the
1539 * size of the partial list stays small.
1540 *
0121c619
CL
1541 * kmem_cache_shrink can reclaim any empty slabs from
1542 * the partial list.
e95eed57 1543 */
7c2e132c 1544 add_partial(n, page, 1);
e95eed57
CL
1545 slab_unlock(page);
1546 } else {
1547 slab_unlock(page);
84e554e6 1548 stat(s, FREE_SLAB);
e95eed57
CL
1549 discard_slab(s, page);
1550 }
81819f0f
CL
1551 }
1552}
1553
8a5ec0ba
CL
1554#ifdef CONFIG_PREEMPT
1555/*
1556 * Calculate the next globally unique transaction for disambiguiation
1557 * during cmpxchg. The transactions start with the cpu number and are then
1558 * incremented by CONFIG_NR_CPUS.
1559 */
1560#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1561#else
1562/*
1563 * No preemption supported therefore also no need to check for
1564 * different cpus.
1565 */
1566#define TID_STEP 1
1567#endif
1568
1569static inline unsigned long next_tid(unsigned long tid)
1570{
1571 return tid + TID_STEP;
1572}
1573
1574static inline unsigned int tid_to_cpu(unsigned long tid)
1575{
1576 return tid % TID_STEP;
1577}
1578
1579static inline unsigned long tid_to_event(unsigned long tid)
1580{
1581 return tid / TID_STEP;
1582}
1583
1584static inline unsigned int init_tid(int cpu)
1585{
1586 return cpu;
1587}
1588
1589static inline void note_cmpxchg_failure(const char *n,
1590 const struct kmem_cache *s, unsigned long tid)
1591{
1592#ifdef SLUB_DEBUG_CMPXCHG
1593 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1594
1595 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1596
1597#ifdef CONFIG_PREEMPT
1598 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1599 printk("due to cpu change %d -> %d\n",
1600 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1601 else
1602#endif
1603 if (tid_to_event(tid) != tid_to_event(actual_tid))
1604 printk("due to cpu running other code. Event %ld->%ld\n",
1605 tid_to_event(tid), tid_to_event(actual_tid));
1606 else
1607 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1608 actual_tid, tid, next_tid(tid));
1609#endif
4fdccdfb 1610 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1611}
1612
8a5ec0ba
CL
1613void init_kmem_cache_cpus(struct kmem_cache *s)
1614{
8a5ec0ba
CL
1615 int cpu;
1616
1617 for_each_possible_cpu(cpu)
1618 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1619}
81819f0f
CL
1620/*
1621 * Remove the cpu slab
1622 */
dfb4f096 1623static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3478973d 1624 __releases(bitlock)
81819f0f 1625{
dfb4f096 1626 struct page *page = c->page;
7c2e132c 1627 int tail = 1;
8ff12cfc 1628
b773ad73 1629 if (page->freelist)
84e554e6 1630 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1631 /*
6446faa2 1632 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1633 * because both freelists are empty. So this is unlikely
1634 * to occur.
1635 */
a973e9dd 1636 while (unlikely(c->freelist)) {
894b8788
CL
1637 void **object;
1638
7c2e132c
CL
1639 tail = 0; /* Hot objects. Put the slab first */
1640
894b8788 1641 /* Retrieve object from cpu_freelist */
dfb4f096 1642 object = c->freelist;
ff12059e 1643 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1644
1645 /* And put onto the regular freelist */
ff12059e 1646 set_freepointer(s, object, page->freelist);
894b8788
CL
1647 page->freelist = object;
1648 page->inuse--;
1649 }
dfb4f096 1650 c->page = NULL;
8a5ec0ba 1651 c->tid = next_tid(c->tid);
7c2e132c 1652 unfreeze_slab(s, page, tail);
81819f0f
CL
1653}
1654
dfb4f096 1655static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1656{
84e554e6 1657 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1658 slab_lock(c->page);
1659 deactivate_slab(s, c);
81819f0f
CL
1660}
1661
1662/*
1663 * Flush cpu slab.
6446faa2 1664 *
81819f0f
CL
1665 * Called from IPI handler with interrupts disabled.
1666 */
0c710013 1667static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1668{
9dfc6e68 1669 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1670
dfb4f096
CL
1671 if (likely(c && c->page))
1672 flush_slab(s, c);
81819f0f
CL
1673}
1674
1675static void flush_cpu_slab(void *d)
1676{
1677 struct kmem_cache *s = d;
81819f0f 1678
dfb4f096 1679 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1680}
1681
1682static void flush_all(struct kmem_cache *s)
1683{
15c8b6c1 1684 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1685}
1686
dfb4f096
CL
1687/*
1688 * Check if the objects in a per cpu structure fit numa
1689 * locality expectations.
1690 */
1691static inline int node_match(struct kmem_cache_cpu *c, int node)
1692{
1693#ifdef CONFIG_NUMA
2154a336 1694 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1695 return 0;
1696#endif
1697 return 1;
1698}
1699
781b2ba6
PE
1700static int count_free(struct page *page)
1701{
1702 return page->objects - page->inuse;
1703}
1704
1705static unsigned long count_partial(struct kmem_cache_node *n,
1706 int (*get_count)(struct page *))
1707{
1708 unsigned long flags;
1709 unsigned long x = 0;
1710 struct page *page;
1711
1712 spin_lock_irqsave(&n->list_lock, flags);
1713 list_for_each_entry(page, &n->partial, lru)
1714 x += get_count(page);
1715 spin_unlock_irqrestore(&n->list_lock, flags);
1716 return x;
1717}
1718
26c02cf0
AB
1719static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1720{
1721#ifdef CONFIG_SLUB_DEBUG
1722 return atomic_long_read(&n->total_objects);
1723#else
1724 return 0;
1725#endif
1726}
1727
781b2ba6
PE
1728static noinline void
1729slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1730{
1731 int node;
1732
1733 printk(KERN_WARNING
1734 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1735 nid, gfpflags);
1736 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1737 "default order: %d, min order: %d\n", s->name, s->objsize,
1738 s->size, oo_order(s->oo), oo_order(s->min));
1739
fa5ec8a1
DR
1740 if (oo_order(s->min) > get_order(s->objsize))
1741 printk(KERN_WARNING " %s debugging increased min order, use "
1742 "slub_debug=O to disable.\n", s->name);
1743
781b2ba6
PE
1744 for_each_online_node(node) {
1745 struct kmem_cache_node *n = get_node(s, node);
1746 unsigned long nr_slabs;
1747 unsigned long nr_objs;
1748 unsigned long nr_free;
1749
1750 if (!n)
1751 continue;
1752
26c02cf0
AB
1753 nr_free = count_partial(n, count_free);
1754 nr_slabs = node_nr_slabs(n);
1755 nr_objs = node_nr_objs(n);
781b2ba6
PE
1756
1757 printk(KERN_WARNING
1758 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1759 node, nr_slabs, nr_objs, nr_free);
1760 }
1761}
1762
81819f0f 1763/*
894b8788
CL
1764 * Slow path. The lockless freelist is empty or we need to perform
1765 * debugging duties.
1766 *
1767 * Interrupts are disabled.
81819f0f 1768 *
894b8788
CL
1769 * Processing is still very fast if new objects have been freed to the
1770 * regular freelist. In that case we simply take over the regular freelist
1771 * as the lockless freelist and zap the regular freelist.
81819f0f 1772 *
894b8788
CL
1773 * If that is not working then we fall back to the partial lists. We take the
1774 * first element of the freelist as the object to allocate now and move the
1775 * rest of the freelist to the lockless freelist.
81819f0f 1776 *
894b8788 1777 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1778 * we need to allocate a new slab. This is the slowest path since it involves
1779 * a call to the page allocator and the setup of a new slab.
81819f0f 1780 */
ce71e27c
EGM
1781static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1782 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1783{
81819f0f 1784 void **object;
01ad8a7b 1785 struct page *page;
8a5ec0ba
CL
1786 unsigned long flags;
1787
1788 local_irq_save(flags);
1789#ifdef CONFIG_PREEMPT
1790 /*
1791 * We may have been preempted and rescheduled on a different
1792 * cpu before disabling interrupts. Need to reload cpu area
1793 * pointer.
1794 */
1795 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1796#endif
81819f0f 1797
e72e9c23
LT
1798 /* We handle __GFP_ZERO in the caller */
1799 gfpflags &= ~__GFP_ZERO;
1800
01ad8a7b
CL
1801 page = c->page;
1802 if (!page)
81819f0f
CL
1803 goto new_slab;
1804
01ad8a7b 1805 slab_lock(page);
dfb4f096 1806 if (unlikely(!node_match(c, node)))
81819f0f 1807 goto another_slab;
6446faa2 1808
84e554e6 1809 stat(s, ALLOC_REFILL);
6446faa2 1810
894b8788 1811load_freelist:
01ad8a7b 1812 object = page->freelist;
a973e9dd 1813 if (unlikely(!object))
81819f0f 1814 goto another_slab;
af537b0a 1815 if (kmem_cache_debug(s))
81819f0f
CL
1816 goto debug;
1817
ff12059e 1818 c->freelist = get_freepointer(s, object);
01ad8a7b
CL
1819 page->inuse = page->objects;
1820 page->freelist = NULL;
01ad8a7b 1821
1f84260c 1822unlock_out:
01ad8a7b 1823 slab_unlock(page);
8a5ec0ba
CL
1824 c->tid = next_tid(c->tid);
1825 local_irq_restore(flags);
84e554e6 1826 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1827 return object;
1828
1829another_slab:
dfb4f096 1830 deactivate_slab(s, c);
81819f0f
CL
1831
1832new_slab:
01ad8a7b
CL
1833 page = get_partial(s, gfpflags, node);
1834 if (page) {
84e554e6 1835 stat(s, ALLOC_FROM_PARTIAL);
dc1fb7f4
CL
1836load_from_page:
1837 c->node = page_to_nid(page);
1838 c->page = page;
894b8788 1839 goto load_freelist;
81819f0f
CL
1840 }
1841
c1d50836 1842 gfpflags &= gfp_allowed_mask;
b811c202
CL
1843 if (gfpflags & __GFP_WAIT)
1844 local_irq_enable();
1845
01ad8a7b 1846 page = new_slab(s, gfpflags, node);
b811c202
CL
1847
1848 if (gfpflags & __GFP_WAIT)
1849 local_irq_disable();
1850
01ad8a7b 1851 if (page) {
9dfc6e68 1852 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1853 stat(s, ALLOC_SLAB);
05aa3450 1854 if (c->page)
dfb4f096 1855 flush_slab(s, c);
01ad8a7b
CL
1856
1857 slab_lock(page);
1858 __SetPageSlubFrozen(page);
dc1fb7f4
CL
1859
1860 goto load_from_page;
81819f0f 1861 }
95f85989
PE
1862 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1863 slab_out_of_memory(s, gfpflags, node);
2fd66c51 1864 local_irq_restore(flags);
71c7a06f 1865 return NULL;
81819f0f 1866debug:
01ad8a7b 1867 if (!alloc_debug_processing(s, page, object, addr))
81819f0f 1868 goto another_slab;
894b8788 1869
01ad8a7b
CL
1870 page->inuse++;
1871 page->freelist = get_freepointer(s, object);
15b7c514 1872 c->node = NUMA_NO_NODE;
1f84260c 1873 goto unlock_out;
894b8788
CL
1874}
1875
1876/*
1877 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1878 * have the fastpath folded into their functions. So no function call
1879 * overhead for requests that can be satisfied on the fastpath.
1880 *
1881 * The fastpath works by first checking if the lockless freelist can be used.
1882 * If not then __slab_alloc is called for slow processing.
1883 *
1884 * Otherwise we can simply pick the next object from the lockless free list.
1885 */
06428780 1886static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1887 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1888{
894b8788 1889 void **object;
dfb4f096 1890 struct kmem_cache_cpu *c;
8a5ec0ba 1891 unsigned long tid;
1f84260c 1892
c016b0bd 1893 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1894 return NULL;
1f84260c 1895
8a5ec0ba 1896redo:
8a5ec0ba
CL
1897
1898 /*
1899 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1900 * enabled. We may switch back and forth between cpus while
1901 * reading from one cpu area. That does not matter as long
1902 * as we end up on the original cpu again when doing the cmpxchg.
1903 */
9dfc6e68 1904 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1905
8a5ec0ba
CL
1906 /*
1907 * The transaction ids are globally unique per cpu and per operation on
1908 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1909 * occurs on the right processor and that there was no operation on the
1910 * linked list in between.
1911 */
1912 tid = c->tid;
1913 barrier();
8a5ec0ba 1914
9dfc6e68 1915 object = c->freelist;
9dfc6e68 1916 if (unlikely(!object || !node_match(c, node)))
894b8788 1917
dfb4f096 1918 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1919
1920 else {
8a5ec0ba
CL
1921 /*
1922 * The cmpxchg will only match if there was no additonal
1923 * operation and if we are on the right processor.
1924 *
1925 * The cmpxchg does the following atomically (without lock semantics!)
1926 * 1. Relocate first pointer to the current per cpu area.
1927 * 2. Verify that tid and freelist have not been changed
1928 * 3. If they were not changed replace tid and freelist
1929 *
1930 * Since this is without lock semantics the protection is only against
1931 * code executing on this cpu *not* from access by other cpus.
1932 */
1933 if (unlikely(!this_cpu_cmpxchg_double(
1934 s->cpu_slab->freelist, s->cpu_slab->tid,
1935 object, tid,
1936 get_freepointer(s, object), next_tid(tid)))) {
1937
1938 note_cmpxchg_failure("slab_alloc", s, tid);
1939 goto redo;
1940 }
84e554e6 1941 stat(s, ALLOC_FASTPATH);
894b8788 1942 }
8a5ec0ba 1943
74e2134f 1944 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1945 memset(object, 0, s->objsize);
d07dbea4 1946
c016b0bd 1947 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1948
894b8788 1949 return object;
81819f0f
CL
1950}
1951
1952void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1953{
2154a336 1954 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1955
ca2b84cb 1956 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1957
1958 return ret;
81819f0f
CL
1959}
1960EXPORT_SYMBOL(kmem_cache_alloc);
1961
0f24f128 1962#ifdef CONFIG_TRACING
4a92379b
RK
1963void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1964{
1965 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1966 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1967 return ret;
1968}
1969EXPORT_SYMBOL(kmem_cache_alloc_trace);
1970
1971void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 1972{
4a92379b
RK
1973 void *ret = kmalloc_order(size, flags, order);
1974 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1975 return ret;
5b882be4 1976}
4a92379b 1977EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
1978#endif
1979
81819f0f
CL
1980#ifdef CONFIG_NUMA
1981void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1982{
5b882be4
EGM
1983 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1984
ca2b84cb
EGM
1985 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1986 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1987
1988 return ret;
81819f0f
CL
1989}
1990EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 1991
0f24f128 1992#ifdef CONFIG_TRACING
4a92379b 1993void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 1994 gfp_t gfpflags,
4a92379b 1995 int node, size_t size)
5b882be4 1996{
4a92379b
RK
1997 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1998
1999 trace_kmalloc_node(_RET_IP_, ret,
2000 size, s->size, gfpflags, node);
2001 return ret;
5b882be4 2002}
4a92379b 2003EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2004#endif
5d1f57e4 2005#endif
5b882be4 2006
81819f0f 2007/*
894b8788
CL
2008 * Slow patch handling. This may still be called frequently since objects
2009 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2010 *
894b8788
CL
2011 * So we still attempt to reduce cache line usage. Just take the slab
2012 * lock and free the item. If there is no additional partial page
2013 * handling required then we can return immediately.
81819f0f 2014 */
894b8788 2015static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2016 void *x, unsigned long addr)
81819f0f
CL
2017{
2018 void *prior;
2019 void **object = (void *)x;
8a5ec0ba 2020 unsigned long flags;
81819f0f 2021
8a5ec0ba 2022 local_irq_save(flags);
81819f0f 2023 slab_lock(page);
8a5ec0ba 2024 stat(s, FREE_SLOWPATH);
81819f0f 2025
8dc16c6c
CL
2026 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2027 goto out_unlock;
6446faa2 2028
ff12059e
CL
2029 prior = page->freelist;
2030 set_freepointer(s, object, prior);
81819f0f
CL
2031 page->freelist = object;
2032 page->inuse--;
2033
8a38082d 2034 if (unlikely(PageSlubFrozen(page))) {
84e554e6 2035 stat(s, FREE_FROZEN);
81819f0f 2036 goto out_unlock;
8ff12cfc 2037 }
81819f0f
CL
2038
2039 if (unlikely(!page->inuse))
2040 goto slab_empty;
2041
2042 /*
6446faa2 2043 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
2044 * then add it.
2045 */
a973e9dd 2046 if (unlikely(!prior)) {
7c2e132c 2047 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 2048 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2049 }
81819f0f
CL
2050
2051out_unlock:
2052 slab_unlock(page);
8a5ec0ba 2053 local_irq_restore(flags);
81819f0f
CL
2054 return;
2055
2056slab_empty:
a973e9dd 2057 if (prior) {
81819f0f 2058 /*
672bba3a 2059 * Slab still on the partial list.
81819f0f
CL
2060 */
2061 remove_partial(s, page);
84e554e6 2062 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 2063 }
81819f0f 2064 slab_unlock(page);
8a5ec0ba 2065 local_irq_restore(flags);
84e554e6 2066 stat(s, FREE_SLAB);
81819f0f 2067 discard_slab(s, page);
81819f0f
CL
2068}
2069
894b8788
CL
2070/*
2071 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2072 * can perform fastpath freeing without additional function calls.
2073 *
2074 * The fastpath is only possible if we are freeing to the current cpu slab
2075 * of this processor. This typically the case if we have just allocated
2076 * the item before.
2077 *
2078 * If fastpath is not possible then fall back to __slab_free where we deal
2079 * with all sorts of special processing.
2080 */
06428780 2081static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2082 struct page *page, void *x, unsigned long addr)
894b8788
CL
2083{
2084 void **object = (void *)x;
dfb4f096 2085 struct kmem_cache_cpu *c;
8a5ec0ba 2086 unsigned long tid;
1f84260c 2087
c016b0bd
CL
2088 slab_free_hook(s, x);
2089
8a5ec0ba 2090redo:
a24c5a0e 2091
8a5ec0ba
CL
2092 /*
2093 * Determine the currently cpus per cpu slab.
2094 * The cpu may change afterward. However that does not matter since
2095 * data is retrieved via this pointer. If we are on the same cpu
2096 * during the cmpxchg then the free will succedd.
2097 */
9dfc6e68 2098 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2099
8a5ec0ba
CL
2100 tid = c->tid;
2101 barrier();
c016b0bd 2102
15b7c514 2103 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
ff12059e 2104 set_freepointer(s, object, c->freelist);
8a5ec0ba 2105
8a5ec0ba
CL
2106 if (unlikely(!this_cpu_cmpxchg_double(
2107 s->cpu_slab->freelist, s->cpu_slab->tid,
2108 c->freelist, tid,
2109 object, next_tid(tid)))) {
2110
2111 note_cmpxchg_failure("slab_free", s, tid);
2112 goto redo;
2113 }
84e554e6 2114 stat(s, FREE_FASTPATH);
894b8788 2115 } else
ff12059e 2116 __slab_free(s, page, x, addr);
894b8788 2117
894b8788
CL
2118}
2119
81819f0f
CL
2120void kmem_cache_free(struct kmem_cache *s, void *x)
2121{
77c5e2d0 2122 struct page *page;
81819f0f 2123
b49af68f 2124 page = virt_to_head_page(x);
81819f0f 2125
ce71e27c 2126 slab_free(s, page, x, _RET_IP_);
5b882be4 2127
ca2b84cb 2128 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2129}
2130EXPORT_SYMBOL(kmem_cache_free);
2131
81819f0f 2132/*
672bba3a
CL
2133 * Object placement in a slab is made very easy because we always start at
2134 * offset 0. If we tune the size of the object to the alignment then we can
2135 * get the required alignment by putting one properly sized object after
2136 * another.
81819f0f
CL
2137 *
2138 * Notice that the allocation order determines the sizes of the per cpu
2139 * caches. Each processor has always one slab available for allocations.
2140 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2141 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2142 * locking overhead.
81819f0f
CL
2143 */
2144
2145/*
2146 * Mininum / Maximum order of slab pages. This influences locking overhead
2147 * and slab fragmentation. A higher order reduces the number of partial slabs
2148 * and increases the number of allocations possible without having to
2149 * take the list_lock.
2150 */
2151static int slub_min_order;
114e9e89 2152static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2153static int slub_min_objects;
81819f0f
CL
2154
2155/*
2156 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2157 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2158 */
2159static int slub_nomerge;
2160
81819f0f
CL
2161/*
2162 * Calculate the order of allocation given an slab object size.
2163 *
672bba3a
CL
2164 * The order of allocation has significant impact on performance and other
2165 * system components. Generally order 0 allocations should be preferred since
2166 * order 0 does not cause fragmentation in the page allocator. Larger objects
2167 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2168 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2169 * would be wasted.
2170 *
2171 * In order to reach satisfactory performance we must ensure that a minimum
2172 * number of objects is in one slab. Otherwise we may generate too much
2173 * activity on the partial lists which requires taking the list_lock. This is
2174 * less a concern for large slabs though which are rarely used.
81819f0f 2175 *
672bba3a
CL
2176 * slub_max_order specifies the order where we begin to stop considering the
2177 * number of objects in a slab as critical. If we reach slub_max_order then
2178 * we try to keep the page order as low as possible. So we accept more waste
2179 * of space in favor of a small page order.
81819f0f 2180 *
672bba3a
CL
2181 * Higher order allocations also allow the placement of more objects in a
2182 * slab and thereby reduce object handling overhead. If the user has
2183 * requested a higher mininum order then we start with that one instead of
2184 * the smallest order which will fit the object.
81819f0f 2185 */
5e6d444e 2186static inline int slab_order(int size, int min_objects,
ab9a0f19 2187 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2188{
2189 int order;
2190 int rem;
6300ea75 2191 int min_order = slub_min_order;
81819f0f 2192
ab9a0f19 2193 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2194 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2195
6300ea75 2196 for (order = max(min_order,
5e6d444e
CL
2197 fls(min_objects * size - 1) - PAGE_SHIFT);
2198 order <= max_order; order++) {
81819f0f 2199
5e6d444e 2200 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2201
ab9a0f19 2202 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2203 continue;
2204
ab9a0f19 2205 rem = (slab_size - reserved) % size;
81819f0f 2206
5e6d444e 2207 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2208 break;
2209
2210 }
672bba3a 2211
81819f0f
CL
2212 return order;
2213}
2214
ab9a0f19 2215static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2216{
2217 int order;
2218 int min_objects;
2219 int fraction;
e8120ff1 2220 int max_objects;
5e6d444e
CL
2221
2222 /*
2223 * Attempt to find best configuration for a slab. This
2224 * works by first attempting to generate a layout with
2225 * the best configuration and backing off gradually.
2226 *
2227 * First we reduce the acceptable waste in a slab. Then
2228 * we reduce the minimum objects required in a slab.
2229 */
2230 min_objects = slub_min_objects;
9b2cd506
CL
2231 if (!min_objects)
2232 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2233 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2234 min_objects = min(min_objects, max_objects);
2235
5e6d444e 2236 while (min_objects > 1) {
c124f5b5 2237 fraction = 16;
5e6d444e
CL
2238 while (fraction >= 4) {
2239 order = slab_order(size, min_objects,
ab9a0f19 2240 slub_max_order, fraction, reserved);
5e6d444e
CL
2241 if (order <= slub_max_order)
2242 return order;
2243 fraction /= 2;
2244 }
5086c389 2245 min_objects--;
5e6d444e
CL
2246 }
2247
2248 /*
2249 * We were unable to place multiple objects in a slab. Now
2250 * lets see if we can place a single object there.
2251 */
ab9a0f19 2252 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2253 if (order <= slub_max_order)
2254 return order;
2255
2256 /*
2257 * Doh this slab cannot be placed using slub_max_order.
2258 */
ab9a0f19 2259 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2260 if (order < MAX_ORDER)
5e6d444e
CL
2261 return order;
2262 return -ENOSYS;
2263}
2264
81819f0f 2265/*
672bba3a 2266 * Figure out what the alignment of the objects will be.
81819f0f
CL
2267 */
2268static unsigned long calculate_alignment(unsigned long flags,
2269 unsigned long align, unsigned long size)
2270{
2271 /*
6446faa2
CL
2272 * If the user wants hardware cache aligned objects then follow that
2273 * suggestion if the object is sufficiently large.
81819f0f 2274 *
6446faa2
CL
2275 * The hardware cache alignment cannot override the specified
2276 * alignment though. If that is greater then use it.
81819f0f 2277 */
b6210386
NP
2278 if (flags & SLAB_HWCACHE_ALIGN) {
2279 unsigned long ralign = cache_line_size();
2280 while (size <= ralign / 2)
2281 ralign /= 2;
2282 align = max(align, ralign);
2283 }
81819f0f
CL
2284
2285 if (align < ARCH_SLAB_MINALIGN)
b6210386 2286 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2287
2288 return ALIGN(align, sizeof(void *));
2289}
2290
5595cffc
PE
2291static void
2292init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2293{
2294 n->nr_partial = 0;
81819f0f
CL
2295 spin_lock_init(&n->list_lock);
2296 INIT_LIST_HEAD(&n->partial);
8ab1372f 2297#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2298 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2299 atomic_long_set(&n->total_objects, 0);
643b1138 2300 INIT_LIST_HEAD(&n->full);
8ab1372f 2301#endif
81819f0f
CL
2302}
2303
55136592 2304static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2305{
6c182dc0
CL
2306 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2307 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2308
8a5ec0ba
CL
2309#ifdef CONFIG_CMPXCHG_LOCAL
2310 /*
2311 * Must align to double word boundary for the double cmpxchg instructions
2312 * to work.
2313 */
2314 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
2315#else
2316 /* Regular alignment is sufficient */
6c182dc0 2317 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
8a5ec0ba
CL
2318#endif
2319
2320 if (!s->cpu_slab)
2321 return 0;
2322
2323 init_kmem_cache_cpus(s);
4c93c355 2324
8a5ec0ba 2325 return 1;
4c93c355 2326}
4c93c355 2327
51df1142
CL
2328static struct kmem_cache *kmem_cache_node;
2329
81819f0f
CL
2330/*
2331 * No kmalloc_node yet so do it by hand. We know that this is the first
2332 * slab on the node for this slabcache. There are no concurrent accesses
2333 * possible.
2334 *
2335 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2336 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2337 * memory on a fresh node that has no slab structures yet.
81819f0f 2338 */
55136592 2339static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2340{
2341 struct page *page;
2342 struct kmem_cache_node *n;
ba84c73c 2343 unsigned long flags;
81819f0f 2344
51df1142 2345 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2346
51df1142 2347 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2348
2349 BUG_ON(!page);
a2f92ee7
CL
2350 if (page_to_nid(page) != node) {
2351 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2352 "node %d\n", node);
2353 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2354 "in order to be able to continue\n");
2355 }
2356
81819f0f
CL
2357 n = page->freelist;
2358 BUG_ON(!n);
51df1142 2359 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2360 page->inuse++;
51df1142 2361 kmem_cache_node->node[node] = n;
8ab1372f 2362#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2363 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2364 init_tracking(kmem_cache_node, n);
8ab1372f 2365#endif
51df1142
CL
2366 init_kmem_cache_node(n, kmem_cache_node);
2367 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2368
ba84c73c 2369 /*
2370 * lockdep requires consistent irq usage for each lock
2371 * so even though there cannot be a race this early in
2372 * the boot sequence, we still disable irqs.
2373 */
2374 local_irq_save(flags);
7c2e132c 2375 add_partial(n, page, 0);
ba84c73c 2376 local_irq_restore(flags);
81819f0f
CL
2377}
2378
2379static void free_kmem_cache_nodes(struct kmem_cache *s)
2380{
2381 int node;
2382
f64dc58c 2383 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2384 struct kmem_cache_node *n = s->node[node];
51df1142 2385
73367bd8 2386 if (n)
51df1142
CL
2387 kmem_cache_free(kmem_cache_node, n);
2388
81819f0f
CL
2389 s->node[node] = NULL;
2390 }
2391}
2392
55136592 2393static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2394{
2395 int node;
81819f0f 2396
f64dc58c 2397 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2398 struct kmem_cache_node *n;
2399
73367bd8 2400 if (slab_state == DOWN) {
55136592 2401 early_kmem_cache_node_alloc(node);
73367bd8
AD
2402 continue;
2403 }
51df1142 2404 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2405 GFP_KERNEL, node);
81819f0f 2406
73367bd8
AD
2407 if (!n) {
2408 free_kmem_cache_nodes(s);
2409 return 0;
81819f0f 2410 }
73367bd8 2411
81819f0f 2412 s->node[node] = n;
5595cffc 2413 init_kmem_cache_node(n, s);
81819f0f
CL
2414 }
2415 return 1;
2416}
81819f0f 2417
c0bdb232 2418static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2419{
2420 if (min < MIN_PARTIAL)
2421 min = MIN_PARTIAL;
2422 else if (min > MAX_PARTIAL)
2423 min = MAX_PARTIAL;
2424 s->min_partial = min;
2425}
2426
81819f0f
CL
2427/*
2428 * calculate_sizes() determines the order and the distribution of data within
2429 * a slab object.
2430 */
06b285dc 2431static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2432{
2433 unsigned long flags = s->flags;
2434 unsigned long size = s->objsize;
2435 unsigned long align = s->align;
834f3d11 2436 int order;
81819f0f 2437
d8b42bf5
CL
2438 /*
2439 * Round up object size to the next word boundary. We can only
2440 * place the free pointer at word boundaries and this determines
2441 * the possible location of the free pointer.
2442 */
2443 size = ALIGN(size, sizeof(void *));
2444
2445#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2446 /*
2447 * Determine if we can poison the object itself. If the user of
2448 * the slab may touch the object after free or before allocation
2449 * then we should never poison the object itself.
2450 */
2451 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2452 !s->ctor)
81819f0f
CL
2453 s->flags |= __OBJECT_POISON;
2454 else
2455 s->flags &= ~__OBJECT_POISON;
2456
81819f0f
CL
2457
2458 /*
672bba3a 2459 * If we are Redzoning then check if there is some space between the
81819f0f 2460 * end of the object and the free pointer. If not then add an
672bba3a 2461 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2462 */
2463 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2464 size += sizeof(void *);
41ecc55b 2465#endif
81819f0f
CL
2466
2467 /*
672bba3a
CL
2468 * With that we have determined the number of bytes in actual use
2469 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2470 */
2471 s->inuse = size;
2472
2473 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2474 s->ctor)) {
81819f0f
CL
2475 /*
2476 * Relocate free pointer after the object if it is not
2477 * permitted to overwrite the first word of the object on
2478 * kmem_cache_free.
2479 *
2480 * This is the case if we do RCU, have a constructor or
2481 * destructor or are poisoning the objects.
2482 */
2483 s->offset = size;
2484 size += sizeof(void *);
2485 }
2486
c12b3c62 2487#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2488 if (flags & SLAB_STORE_USER)
2489 /*
2490 * Need to store information about allocs and frees after
2491 * the object.
2492 */
2493 size += 2 * sizeof(struct track);
2494
be7b3fbc 2495 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2496 /*
2497 * Add some empty padding so that we can catch
2498 * overwrites from earlier objects rather than let
2499 * tracking information or the free pointer be
0211a9c8 2500 * corrupted if a user writes before the start
81819f0f
CL
2501 * of the object.
2502 */
2503 size += sizeof(void *);
41ecc55b 2504#endif
672bba3a 2505
81819f0f
CL
2506 /*
2507 * Determine the alignment based on various parameters that the
65c02d4c
CL
2508 * user specified and the dynamic determination of cache line size
2509 * on bootup.
81819f0f
CL
2510 */
2511 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2512 s->align = align;
81819f0f
CL
2513
2514 /*
2515 * SLUB stores one object immediately after another beginning from
2516 * offset 0. In order to align the objects we have to simply size
2517 * each object to conform to the alignment.
2518 */
2519 size = ALIGN(size, align);
2520 s->size = size;
06b285dc
CL
2521 if (forced_order >= 0)
2522 order = forced_order;
2523 else
ab9a0f19 2524 order = calculate_order(size, s->reserved);
81819f0f 2525
834f3d11 2526 if (order < 0)
81819f0f
CL
2527 return 0;
2528
b7a49f0d 2529 s->allocflags = 0;
834f3d11 2530 if (order)
b7a49f0d
CL
2531 s->allocflags |= __GFP_COMP;
2532
2533 if (s->flags & SLAB_CACHE_DMA)
2534 s->allocflags |= SLUB_DMA;
2535
2536 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2537 s->allocflags |= __GFP_RECLAIMABLE;
2538
81819f0f
CL
2539 /*
2540 * Determine the number of objects per slab
2541 */
ab9a0f19
LJ
2542 s->oo = oo_make(order, size, s->reserved);
2543 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2544 if (oo_objects(s->oo) > oo_objects(s->max))
2545 s->max = s->oo;
81819f0f 2546
834f3d11 2547 return !!oo_objects(s->oo);
81819f0f
CL
2548
2549}
2550
55136592 2551static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2552 const char *name, size_t size,
2553 size_t align, unsigned long flags,
51cc5068 2554 void (*ctor)(void *))
81819f0f
CL
2555{
2556 memset(s, 0, kmem_size);
2557 s->name = name;
2558 s->ctor = ctor;
81819f0f 2559 s->objsize = size;
81819f0f 2560 s->align = align;
ba0268a8 2561 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2562 s->reserved = 0;
81819f0f 2563
da9a638c
LJ
2564 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2565 s->reserved = sizeof(struct rcu_head);
81819f0f 2566
06b285dc 2567 if (!calculate_sizes(s, -1))
81819f0f 2568 goto error;
3de47213
DR
2569 if (disable_higher_order_debug) {
2570 /*
2571 * Disable debugging flags that store metadata if the min slab
2572 * order increased.
2573 */
2574 if (get_order(s->size) > get_order(s->objsize)) {
2575 s->flags &= ~DEBUG_METADATA_FLAGS;
2576 s->offset = 0;
2577 if (!calculate_sizes(s, -1))
2578 goto error;
2579 }
2580 }
81819f0f 2581
3b89d7d8
DR
2582 /*
2583 * The larger the object size is, the more pages we want on the partial
2584 * list to avoid pounding the page allocator excessively.
2585 */
c0bdb232 2586 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2587 s->refcount = 1;
2588#ifdef CONFIG_NUMA
e2cb96b7 2589 s->remote_node_defrag_ratio = 1000;
81819f0f 2590#endif
55136592 2591 if (!init_kmem_cache_nodes(s))
dfb4f096 2592 goto error;
81819f0f 2593
55136592 2594 if (alloc_kmem_cache_cpus(s))
81819f0f 2595 return 1;
ff12059e 2596
4c93c355 2597 free_kmem_cache_nodes(s);
81819f0f
CL
2598error:
2599 if (flags & SLAB_PANIC)
2600 panic("Cannot create slab %s size=%lu realsize=%u "
2601 "order=%u offset=%u flags=%lx\n",
834f3d11 2602 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2603 s->offset, flags);
2604 return 0;
2605}
81819f0f 2606
81819f0f
CL
2607/*
2608 * Determine the size of a slab object
2609 */
2610unsigned int kmem_cache_size(struct kmem_cache *s)
2611{
2612 return s->objsize;
2613}
2614EXPORT_SYMBOL(kmem_cache_size);
2615
33b12c38
CL
2616static void list_slab_objects(struct kmem_cache *s, struct page *page,
2617 const char *text)
2618{
2619#ifdef CONFIG_SLUB_DEBUG
2620 void *addr = page_address(page);
2621 void *p;
a5dd5c11
NK
2622 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2623 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2624 if (!map)
2625 return;
33b12c38
CL
2626 slab_err(s, page, "%s", text);
2627 slab_lock(page);
33b12c38 2628
5f80b13a 2629 get_map(s, page, map);
33b12c38
CL
2630 for_each_object(p, s, addr, page->objects) {
2631
2632 if (!test_bit(slab_index(p, s, addr), map)) {
2633 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2634 p, p - addr);
2635 print_tracking(s, p);
2636 }
2637 }
2638 slab_unlock(page);
bbd7d57b 2639 kfree(map);
33b12c38
CL
2640#endif
2641}
2642
81819f0f 2643/*
599870b1 2644 * Attempt to free all partial slabs on a node.
81819f0f 2645 */
599870b1 2646static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2647{
81819f0f
CL
2648 unsigned long flags;
2649 struct page *page, *h;
2650
2651 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2652 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2653 if (!page->inuse) {
62e346a8 2654 __remove_partial(n, page);
81819f0f 2655 discard_slab(s, page);
33b12c38
CL
2656 } else {
2657 list_slab_objects(s, page,
2658 "Objects remaining on kmem_cache_close()");
599870b1 2659 }
33b12c38 2660 }
81819f0f 2661 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2662}
2663
2664/*
672bba3a 2665 * Release all resources used by a slab cache.
81819f0f 2666 */
0c710013 2667static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2668{
2669 int node;
2670
2671 flush_all(s);
9dfc6e68 2672 free_percpu(s->cpu_slab);
81819f0f 2673 /* Attempt to free all objects */
f64dc58c 2674 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2675 struct kmem_cache_node *n = get_node(s, node);
2676
599870b1
CL
2677 free_partial(s, n);
2678 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2679 return 1;
2680 }
2681 free_kmem_cache_nodes(s);
2682 return 0;
2683}
2684
2685/*
2686 * Close a cache and release the kmem_cache structure
2687 * (must be used for caches created using kmem_cache_create)
2688 */
2689void kmem_cache_destroy(struct kmem_cache *s)
2690{
2691 down_write(&slub_lock);
2692 s->refcount--;
2693 if (!s->refcount) {
2694 list_del(&s->list);
d629d819
PE
2695 if (kmem_cache_close(s)) {
2696 printk(KERN_ERR "SLUB %s: %s called for cache that "
2697 "still has objects.\n", s->name, __func__);
2698 dump_stack();
2699 }
d76b1590
ED
2700 if (s->flags & SLAB_DESTROY_BY_RCU)
2701 rcu_barrier();
81819f0f 2702 sysfs_slab_remove(s);
2bce6485
CL
2703 }
2704 up_write(&slub_lock);
81819f0f
CL
2705}
2706EXPORT_SYMBOL(kmem_cache_destroy);
2707
2708/********************************************************************
2709 * Kmalloc subsystem
2710 *******************************************************************/
2711
51df1142 2712struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2713EXPORT_SYMBOL(kmalloc_caches);
2714
51df1142
CL
2715static struct kmem_cache *kmem_cache;
2716
55136592 2717#ifdef CONFIG_ZONE_DMA
51df1142 2718static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2719#endif
2720
81819f0f
CL
2721static int __init setup_slub_min_order(char *str)
2722{
06428780 2723 get_option(&str, &slub_min_order);
81819f0f
CL
2724
2725 return 1;
2726}
2727
2728__setup("slub_min_order=", setup_slub_min_order);
2729
2730static int __init setup_slub_max_order(char *str)
2731{
06428780 2732 get_option(&str, &slub_max_order);
818cf590 2733 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2734
2735 return 1;
2736}
2737
2738__setup("slub_max_order=", setup_slub_max_order);
2739
2740static int __init setup_slub_min_objects(char *str)
2741{
06428780 2742 get_option(&str, &slub_min_objects);
81819f0f
CL
2743
2744 return 1;
2745}
2746
2747__setup("slub_min_objects=", setup_slub_min_objects);
2748
2749static int __init setup_slub_nomerge(char *str)
2750{
2751 slub_nomerge = 1;
2752 return 1;
2753}
2754
2755__setup("slub_nomerge", setup_slub_nomerge);
2756
51df1142
CL
2757static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2758 int size, unsigned int flags)
81819f0f 2759{
51df1142
CL
2760 struct kmem_cache *s;
2761
2762 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2763
83b519e8
PE
2764 /*
2765 * This function is called with IRQs disabled during early-boot on
2766 * single CPU so there's no need to take slub_lock here.
2767 */
55136592 2768 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2769 flags, NULL))
81819f0f
CL
2770 goto panic;
2771
2772 list_add(&s->list, &slab_caches);
51df1142 2773 return s;
81819f0f
CL
2774
2775panic:
2776 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2777 return NULL;
81819f0f
CL
2778}
2779
f1b26339
CL
2780/*
2781 * Conversion table for small slabs sizes / 8 to the index in the
2782 * kmalloc array. This is necessary for slabs < 192 since we have non power
2783 * of two cache sizes there. The size of larger slabs can be determined using
2784 * fls.
2785 */
2786static s8 size_index[24] = {
2787 3, /* 8 */
2788 4, /* 16 */
2789 5, /* 24 */
2790 5, /* 32 */
2791 6, /* 40 */
2792 6, /* 48 */
2793 6, /* 56 */
2794 6, /* 64 */
2795 1, /* 72 */
2796 1, /* 80 */
2797 1, /* 88 */
2798 1, /* 96 */
2799 7, /* 104 */
2800 7, /* 112 */
2801 7, /* 120 */
2802 7, /* 128 */
2803 2, /* 136 */
2804 2, /* 144 */
2805 2, /* 152 */
2806 2, /* 160 */
2807 2, /* 168 */
2808 2, /* 176 */
2809 2, /* 184 */
2810 2 /* 192 */
2811};
2812
acdfcd04
AK
2813static inline int size_index_elem(size_t bytes)
2814{
2815 return (bytes - 1) / 8;
2816}
2817
81819f0f
CL
2818static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2819{
f1b26339 2820 int index;
81819f0f 2821
f1b26339
CL
2822 if (size <= 192) {
2823 if (!size)
2824 return ZERO_SIZE_PTR;
81819f0f 2825
acdfcd04 2826 index = size_index[size_index_elem(size)];
aadb4bc4 2827 } else
f1b26339 2828 index = fls(size - 1);
81819f0f
CL
2829
2830#ifdef CONFIG_ZONE_DMA
f1b26339 2831 if (unlikely((flags & SLUB_DMA)))
51df1142 2832 return kmalloc_dma_caches[index];
f1b26339 2833
81819f0f 2834#endif
51df1142 2835 return kmalloc_caches[index];
81819f0f
CL
2836}
2837
2838void *__kmalloc(size_t size, gfp_t flags)
2839{
aadb4bc4 2840 struct kmem_cache *s;
5b882be4 2841 void *ret;
81819f0f 2842
ffadd4d0 2843 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2844 return kmalloc_large(size, flags);
aadb4bc4
CL
2845
2846 s = get_slab(size, flags);
2847
2848 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2849 return s;
2850
2154a336 2851 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2852
ca2b84cb 2853 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2854
2855 return ret;
81819f0f
CL
2856}
2857EXPORT_SYMBOL(__kmalloc);
2858
5d1f57e4 2859#ifdef CONFIG_NUMA
f619cfe1
CL
2860static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2861{
b1eeab67 2862 struct page *page;
e4f7c0b4 2863 void *ptr = NULL;
f619cfe1 2864
b1eeab67
VN
2865 flags |= __GFP_COMP | __GFP_NOTRACK;
2866 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2867 if (page)
e4f7c0b4
CM
2868 ptr = page_address(page);
2869
2870 kmemleak_alloc(ptr, size, 1, flags);
2871 return ptr;
f619cfe1
CL
2872}
2873
81819f0f
CL
2874void *__kmalloc_node(size_t size, gfp_t flags, int node)
2875{
aadb4bc4 2876 struct kmem_cache *s;
5b882be4 2877 void *ret;
81819f0f 2878
057685cf 2879 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2880 ret = kmalloc_large_node(size, flags, node);
2881
ca2b84cb
EGM
2882 trace_kmalloc_node(_RET_IP_, ret,
2883 size, PAGE_SIZE << get_order(size),
2884 flags, node);
5b882be4
EGM
2885
2886 return ret;
2887 }
aadb4bc4
CL
2888
2889 s = get_slab(size, flags);
2890
2891 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2892 return s;
2893
5b882be4
EGM
2894 ret = slab_alloc(s, flags, node, _RET_IP_);
2895
ca2b84cb 2896 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2897
2898 return ret;
81819f0f
CL
2899}
2900EXPORT_SYMBOL(__kmalloc_node);
2901#endif
2902
2903size_t ksize(const void *object)
2904{
272c1d21 2905 struct page *page;
81819f0f 2906
ef8b4520 2907 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2908 return 0;
2909
294a80a8 2910 page = virt_to_head_page(object);
294a80a8 2911
76994412
PE
2912 if (unlikely(!PageSlab(page))) {
2913 WARN_ON(!PageCompound(page));
294a80a8 2914 return PAGE_SIZE << compound_order(page);
76994412 2915 }
81819f0f 2916
b3d41885 2917 return slab_ksize(page->slab);
81819f0f 2918}
b1aabecd 2919EXPORT_SYMBOL(ksize);
81819f0f
CL
2920
2921void kfree(const void *x)
2922{
81819f0f 2923 struct page *page;
5bb983b0 2924 void *object = (void *)x;
81819f0f 2925
2121db74
PE
2926 trace_kfree(_RET_IP_, x);
2927
2408c550 2928 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2929 return;
2930
b49af68f 2931 page = virt_to_head_page(x);
aadb4bc4 2932 if (unlikely(!PageSlab(page))) {
0937502a 2933 BUG_ON(!PageCompound(page));
e4f7c0b4 2934 kmemleak_free(x);
aadb4bc4
CL
2935 put_page(page);
2936 return;
2937 }
ce71e27c 2938 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2939}
2940EXPORT_SYMBOL(kfree);
2941
2086d26a 2942/*
672bba3a
CL
2943 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2944 * the remaining slabs by the number of items in use. The slabs with the
2945 * most items in use come first. New allocations will then fill those up
2946 * and thus they can be removed from the partial lists.
2947 *
2948 * The slabs with the least items are placed last. This results in them
2949 * being allocated from last increasing the chance that the last objects
2950 * are freed in them.
2086d26a
CL
2951 */
2952int kmem_cache_shrink(struct kmem_cache *s)
2953{
2954 int node;
2955 int i;
2956 struct kmem_cache_node *n;
2957 struct page *page;
2958 struct page *t;
205ab99d 2959 int objects = oo_objects(s->max);
2086d26a 2960 struct list_head *slabs_by_inuse =
834f3d11 2961 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2962 unsigned long flags;
2963
2964 if (!slabs_by_inuse)
2965 return -ENOMEM;
2966
2967 flush_all(s);
f64dc58c 2968 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2969 n = get_node(s, node);
2970
2971 if (!n->nr_partial)
2972 continue;
2973
834f3d11 2974 for (i = 0; i < objects; i++)
2086d26a
CL
2975 INIT_LIST_HEAD(slabs_by_inuse + i);
2976
2977 spin_lock_irqsave(&n->list_lock, flags);
2978
2979 /*
672bba3a 2980 * Build lists indexed by the items in use in each slab.
2086d26a 2981 *
672bba3a
CL
2982 * Note that concurrent frees may occur while we hold the
2983 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2984 */
2985 list_for_each_entry_safe(page, t, &n->partial, lru) {
2986 if (!page->inuse && slab_trylock(page)) {
2987 /*
2988 * Must hold slab lock here because slab_free
2989 * may have freed the last object and be
2990 * waiting to release the slab.
2991 */
62e346a8 2992 __remove_partial(n, page);
2086d26a
CL
2993 slab_unlock(page);
2994 discard_slab(s, page);
2995 } else {
fcda3d89
CL
2996 list_move(&page->lru,
2997 slabs_by_inuse + page->inuse);
2086d26a
CL
2998 }
2999 }
3000
2086d26a 3001 /*
672bba3a
CL
3002 * Rebuild the partial list with the slabs filled up most
3003 * first and the least used slabs at the end.
2086d26a 3004 */
834f3d11 3005 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3006 list_splice(slabs_by_inuse + i, n->partial.prev);
3007
2086d26a
CL
3008 spin_unlock_irqrestore(&n->list_lock, flags);
3009 }
3010
3011 kfree(slabs_by_inuse);
3012 return 0;
3013}
3014EXPORT_SYMBOL(kmem_cache_shrink);
3015
92a5bbc1 3016#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3017static int slab_mem_going_offline_callback(void *arg)
3018{
3019 struct kmem_cache *s;
3020
3021 down_read(&slub_lock);
3022 list_for_each_entry(s, &slab_caches, list)
3023 kmem_cache_shrink(s);
3024 up_read(&slub_lock);
3025
3026 return 0;
3027}
3028
3029static void slab_mem_offline_callback(void *arg)
3030{
3031 struct kmem_cache_node *n;
3032 struct kmem_cache *s;
3033 struct memory_notify *marg = arg;
3034 int offline_node;
3035
3036 offline_node = marg->status_change_nid;
3037
3038 /*
3039 * If the node still has available memory. we need kmem_cache_node
3040 * for it yet.
3041 */
3042 if (offline_node < 0)
3043 return;
3044
3045 down_read(&slub_lock);
3046 list_for_each_entry(s, &slab_caches, list) {
3047 n = get_node(s, offline_node);
3048 if (n) {
3049 /*
3050 * if n->nr_slabs > 0, slabs still exist on the node
3051 * that is going down. We were unable to free them,
c9404c9c 3052 * and offline_pages() function shouldn't call this
b9049e23
YG
3053 * callback. So, we must fail.
3054 */
0f389ec6 3055 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3056
3057 s->node[offline_node] = NULL;
8de66a0c 3058 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3059 }
3060 }
3061 up_read(&slub_lock);
3062}
3063
3064static int slab_mem_going_online_callback(void *arg)
3065{
3066 struct kmem_cache_node *n;
3067 struct kmem_cache *s;
3068 struct memory_notify *marg = arg;
3069 int nid = marg->status_change_nid;
3070 int ret = 0;
3071
3072 /*
3073 * If the node's memory is already available, then kmem_cache_node is
3074 * already created. Nothing to do.
3075 */
3076 if (nid < 0)
3077 return 0;
3078
3079 /*
0121c619 3080 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3081 * allocate a kmem_cache_node structure in order to bring the node
3082 * online.
3083 */
3084 down_read(&slub_lock);
3085 list_for_each_entry(s, &slab_caches, list) {
3086 /*
3087 * XXX: kmem_cache_alloc_node will fallback to other nodes
3088 * since memory is not yet available from the node that
3089 * is brought up.
3090 */
8de66a0c 3091 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3092 if (!n) {
3093 ret = -ENOMEM;
3094 goto out;
3095 }
5595cffc 3096 init_kmem_cache_node(n, s);
b9049e23
YG
3097 s->node[nid] = n;
3098 }
3099out:
3100 up_read(&slub_lock);
3101 return ret;
3102}
3103
3104static int slab_memory_callback(struct notifier_block *self,
3105 unsigned long action, void *arg)
3106{
3107 int ret = 0;
3108
3109 switch (action) {
3110 case MEM_GOING_ONLINE:
3111 ret = slab_mem_going_online_callback(arg);
3112 break;
3113 case MEM_GOING_OFFLINE:
3114 ret = slab_mem_going_offline_callback(arg);
3115 break;
3116 case MEM_OFFLINE:
3117 case MEM_CANCEL_ONLINE:
3118 slab_mem_offline_callback(arg);
3119 break;
3120 case MEM_ONLINE:
3121 case MEM_CANCEL_OFFLINE:
3122 break;
3123 }
dc19f9db
KH
3124 if (ret)
3125 ret = notifier_from_errno(ret);
3126 else
3127 ret = NOTIFY_OK;
b9049e23
YG
3128 return ret;
3129}
3130
3131#endif /* CONFIG_MEMORY_HOTPLUG */
3132
81819f0f
CL
3133/********************************************************************
3134 * Basic setup of slabs
3135 *******************************************************************/
3136
51df1142
CL
3137/*
3138 * Used for early kmem_cache structures that were allocated using
3139 * the page allocator
3140 */
3141
3142static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3143{
3144 int node;
3145
3146 list_add(&s->list, &slab_caches);
3147 s->refcount = -1;
3148
3149 for_each_node_state(node, N_NORMAL_MEMORY) {
3150 struct kmem_cache_node *n = get_node(s, node);
3151 struct page *p;
3152
3153 if (n) {
3154 list_for_each_entry(p, &n->partial, lru)
3155 p->slab = s;
3156
607bf324 3157#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3158 list_for_each_entry(p, &n->full, lru)
3159 p->slab = s;
3160#endif
3161 }
3162 }
3163}
3164
81819f0f
CL
3165void __init kmem_cache_init(void)
3166{
3167 int i;
4b356be0 3168 int caches = 0;
51df1142
CL
3169 struct kmem_cache *temp_kmem_cache;
3170 int order;
51df1142
CL
3171 struct kmem_cache *temp_kmem_cache_node;
3172 unsigned long kmalloc_size;
3173
3174 kmem_size = offsetof(struct kmem_cache, node) +
3175 nr_node_ids * sizeof(struct kmem_cache_node *);
3176
3177 /* Allocate two kmem_caches from the page allocator */
3178 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3179 order = get_order(2 * kmalloc_size);
3180 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3181
81819f0f
CL
3182 /*
3183 * Must first have the slab cache available for the allocations of the
672bba3a 3184 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3185 * kmem_cache_open for slab_state == DOWN.
3186 */
51df1142
CL
3187 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3188
3189 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3190 sizeof(struct kmem_cache_node),
3191 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3192
0c40ba4f 3193 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3194
3195 /* Able to allocate the per node structures */
3196 slab_state = PARTIAL;
3197
51df1142
CL
3198 temp_kmem_cache = kmem_cache;
3199 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3200 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3201 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3202 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3203
51df1142
CL
3204 /*
3205 * Allocate kmem_cache_node properly from the kmem_cache slab.
3206 * kmem_cache_node is separately allocated so no need to
3207 * update any list pointers.
3208 */
3209 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3210
51df1142
CL
3211 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3212 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3213
3214 kmem_cache_bootstrap_fixup(kmem_cache_node);
3215
3216 caches++;
51df1142
CL
3217 kmem_cache_bootstrap_fixup(kmem_cache);
3218 caches++;
3219 /* Free temporary boot structure */
3220 free_pages((unsigned long)temp_kmem_cache, order);
3221
3222 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3223
3224 /*
3225 * Patch up the size_index table if we have strange large alignment
3226 * requirements for the kmalloc array. This is only the case for
6446faa2 3227 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3228 *
3229 * Largest permitted alignment is 256 bytes due to the way we
3230 * handle the index determination for the smaller caches.
3231 *
3232 * Make sure that nothing crazy happens if someone starts tinkering
3233 * around with ARCH_KMALLOC_MINALIGN
3234 */
3235 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3236 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3237
acdfcd04
AK
3238 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3239 int elem = size_index_elem(i);
3240 if (elem >= ARRAY_SIZE(size_index))
3241 break;
3242 size_index[elem] = KMALLOC_SHIFT_LOW;
3243 }
f1b26339 3244
acdfcd04
AK
3245 if (KMALLOC_MIN_SIZE == 64) {
3246 /*
3247 * The 96 byte size cache is not used if the alignment
3248 * is 64 byte.
3249 */
3250 for (i = 64 + 8; i <= 96; i += 8)
3251 size_index[size_index_elem(i)] = 7;
3252 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3253 /*
3254 * The 192 byte sized cache is not used if the alignment
3255 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3256 * instead.
3257 */
3258 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3259 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3260 }
3261
51df1142
CL
3262 /* Caches that are not of the two-to-the-power-of size */
3263 if (KMALLOC_MIN_SIZE <= 32) {
3264 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3265 caches++;
3266 }
3267
3268 if (KMALLOC_MIN_SIZE <= 64) {
3269 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3270 caches++;
3271 }
3272
3273 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3274 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3275 caches++;
3276 }
3277
81819f0f
CL
3278 slab_state = UP;
3279
3280 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3281 if (KMALLOC_MIN_SIZE <= 32) {
3282 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3283 BUG_ON(!kmalloc_caches[1]->name);
3284 }
3285
3286 if (KMALLOC_MIN_SIZE <= 64) {
3287 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3288 BUG_ON(!kmalloc_caches[2]->name);
3289 }
3290
d7278bd7
CL
3291 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3292 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3293
3294 BUG_ON(!s);
51df1142 3295 kmalloc_caches[i]->name = s;
d7278bd7 3296 }
81819f0f
CL
3297
3298#ifdef CONFIG_SMP
3299 register_cpu_notifier(&slab_notifier);
9dfc6e68 3300#endif
81819f0f 3301
55136592 3302#ifdef CONFIG_ZONE_DMA
51df1142
CL
3303 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3304 struct kmem_cache *s = kmalloc_caches[i];
55136592 3305
51df1142 3306 if (s && s->size) {
55136592
CL
3307 char *name = kasprintf(GFP_NOWAIT,
3308 "dma-kmalloc-%d", s->objsize);
3309
3310 BUG_ON(!name);
51df1142
CL
3311 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3312 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3313 }
3314 }
3315#endif
3adbefee
IM
3316 printk(KERN_INFO
3317 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3318 " CPUs=%d, Nodes=%d\n",
3319 caches, cache_line_size(),
81819f0f
CL
3320 slub_min_order, slub_max_order, slub_min_objects,
3321 nr_cpu_ids, nr_node_ids);
3322}
3323
7e85ee0c
PE
3324void __init kmem_cache_init_late(void)
3325{
7e85ee0c
PE
3326}
3327
81819f0f
CL
3328/*
3329 * Find a mergeable slab cache
3330 */
3331static int slab_unmergeable(struct kmem_cache *s)
3332{
3333 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3334 return 1;
3335
c59def9f 3336 if (s->ctor)
81819f0f
CL
3337 return 1;
3338
8ffa6875
CL
3339 /*
3340 * We may have set a slab to be unmergeable during bootstrap.
3341 */
3342 if (s->refcount < 0)
3343 return 1;
3344
81819f0f
CL
3345 return 0;
3346}
3347
3348static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3349 size_t align, unsigned long flags, const char *name,
51cc5068 3350 void (*ctor)(void *))
81819f0f 3351{
5b95a4ac 3352 struct kmem_cache *s;
81819f0f
CL
3353
3354 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3355 return NULL;
3356
c59def9f 3357 if (ctor)
81819f0f
CL
3358 return NULL;
3359
3360 size = ALIGN(size, sizeof(void *));
3361 align = calculate_alignment(flags, align, size);
3362 size = ALIGN(size, align);
ba0268a8 3363 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3364
5b95a4ac 3365 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3366 if (slab_unmergeable(s))
3367 continue;
3368
3369 if (size > s->size)
3370 continue;
3371
ba0268a8 3372 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3373 continue;
3374 /*
3375 * Check if alignment is compatible.
3376 * Courtesy of Adrian Drzewiecki
3377 */
06428780 3378 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3379 continue;
3380
3381 if (s->size - size >= sizeof(void *))
3382 continue;
3383
3384 return s;
3385 }
3386 return NULL;
3387}
3388
3389struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3390 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3391{
3392 struct kmem_cache *s;
84c1cf62 3393 char *n;
81819f0f 3394
fe1ff49d
BH
3395 if (WARN_ON(!name))
3396 return NULL;
3397
81819f0f 3398 down_write(&slub_lock);
ba0268a8 3399 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3400 if (s) {
3401 s->refcount++;
3402 /*
3403 * Adjust the object sizes so that we clear
3404 * the complete object on kzalloc.
3405 */
3406 s->objsize = max(s->objsize, (int)size);
3407 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3408
7b8f3b66 3409 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3410 s->refcount--;
81819f0f 3411 goto err;
7b8f3b66 3412 }
2bce6485 3413 up_write(&slub_lock);
a0e1d1be
CL
3414 return s;
3415 }
6446faa2 3416
84c1cf62
PE
3417 n = kstrdup(name, GFP_KERNEL);
3418 if (!n)
3419 goto err;
3420
a0e1d1be
CL
3421 s = kmalloc(kmem_size, GFP_KERNEL);
3422 if (s) {
84c1cf62 3423 if (kmem_cache_open(s, n,
c59def9f 3424 size, align, flags, ctor)) {
81819f0f 3425 list_add(&s->list, &slab_caches);
7b8f3b66 3426 if (sysfs_slab_add(s)) {
7b8f3b66 3427 list_del(&s->list);
84c1cf62 3428 kfree(n);
7b8f3b66 3429 kfree(s);
a0e1d1be 3430 goto err;
7b8f3b66 3431 }
2bce6485 3432 up_write(&slub_lock);
a0e1d1be
CL
3433 return s;
3434 }
84c1cf62 3435 kfree(n);
a0e1d1be 3436 kfree(s);
81819f0f 3437 }
68cee4f1 3438err:
81819f0f 3439 up_write(&slub_lock);
81819f0f 3440
81819f0f
CL
3441 if (flags & SLAB_PANIC)
3442 panic("Cannot create slabcache %s\n", name);
3443 else
3444 s = NULL;
3445 return s;
3446}
3447EXPORT_SYMBOL(kmem_cache_create);
3448
81819f0f 3449#ifdef CONFIG_SMP
81819f0f 3450/*
672bba3a
CL
3451 * Use the cpu notifier to insure that the cpu slabs are flushed when
3452 * necessary.
81819f0f
CL
3453 */
3454static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3455 unsigned long action, void *hcpu)
3456{
3457 long cpu = (long)hcpu;
5b95a4ac
CL
3458 struct kmem_cache *s;
3459 unsigned long flags;
81819f0f
CL
3460
3461 switch (action) {
3462 case CPU_UP_CANCELED:
8bb78442 3463 case CPU_UP_CANCELED_FROZEN:
81819f0f 3464 case CPU_DEAD:
8bb78442 3465 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3466 down_read(&slub_lock);
3467 list_for_each_entry(s, &slab_caches, list) {
3468 local_irq_save(flags);
3469 __flush_cpu_slab(s, cpu);
3470 local_irq_restore(flags);
3471 }
3472 up_read(&slub_lock);
81819f0f
CL
3473 break;
3474 default:
3475 break;
3476 }
3477 return NOTIFY_OK;
3478}
3479
06428780 3480static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3481 .notifier_call = slab_cpuup_callback
06428780 3482};
81819f0f
CL
3483
3484#endif
3485
ce71e27c 3486void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3487{
aadb4bc4 3488 struct kmem_cache *s;
94b528d0 3489 void *ret;
aadb4bc4 3490
ffadd4d0 3491 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3492 return kmalloc_large(size, gfpflags);
3493
aadb4bc4 3494 s = get_slab(size, gfpflags);
81819f0f 3495
2408c550 3496 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3497 return s;
81819f0f 3498
2154a336 3499 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3500
3501 /* Honor the call site pointer we recieved. */
ca2b84cb 3502 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3503
3504 return ret;
81819f0f
CL
3505}
3506
5d1f57e4 3507#ifdef CONFIG_NUMA
81819f0f 3508void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3509 int node, unsigned long caller)
81819f0f 3510{
aadb4bc4 3511 struct kmem_cache *s;
94b528d0 3512 void *ret;
aadb4bc4 3513
d3e14aa3
XF
3514 if (unlikely(size > SLUB_MAX_SIZE)) {
3515 ret = kmalloc_large_node(size, gfpflags, node);
3516
3517 trace_kmalloc_node(caller, ret,
3518 size, PAGE_SIZE << get_order(size),
3519 gfpflags, node);
3520
3521 return ret;
3522 }
eada35ef 3523
aadb4bc4 3524 s = get_slab(size, gfpflags);
81819f0f 3525
2408c550 3526 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3527 return s;
81819f0f 3528
94b528d0
EGM
3529 ret = slab_alloc(s, gfpflags, node, caller);
3530
3531 /* Honor the call site pointer we recieved. */
ca2b84cb 3532 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3533
3534 return ret;
81819f0f 3535}
5d1f57e4 3536#endif
81819f0f 3537
ab4d5ed5 3538#ifdef CONFIG_SYSFS
205ab99d
CL
3539static int count_inuse(struct page *page)
3540{
3541 return page->inuse;
3542}
3543
3544static int count_total(struct page *page)
3545{
3546 return page->objects;
3547}
ab4d5ed5 3548#endif
205ab99d 3549
ab4d5ed5 3550#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3551static int validate_slab(struct kmem_cache *s, struct page *page,
3552 unsigned long *map)
53e15af0
CL
3553{
3554 void *p;
a973e9dd 3555 void *addr = page_address(page);
53e15af0
CL
3556
3557 if (!check_slab(s, page) ||
3558 !on_freelist(s, page, NULL))
3559 return 0;
3560
3561 /* Now we know that a valid freelist exists */
39b26464 3562 bitmap_zero(map, page->objects);
53e15af0 3563
5f80b13a
CL
3564 get_map(s, page, map);
3565 for_each_object(p, s, addr, page->objects) {
3566 if (test_bit(slab_index(p, s, addr), map))
3567 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3568 return 0;
53e15af0
CL
3569 }
3570
224a88be 3571 for_each_object(p, s, addr, page->objects)
7656c72b 3572 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3573 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3574 return 0;
3575 return 1;
3576}
3577
434e245d
CL
3578static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3579 unsigned long *map)
53e15af0
CL
3580{
3581 if (slab_trylock(page)) {
434e245d 3582 validate_slab(s, page, map);
53e15af0
CL
3583 slab_unlock(page);
3584 } else
3585 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3586 s->name, page);
53e15af0
CL
3587}
3588
434e245d
CL
3589static int validate_slab_node(struct kmem_cache *s,
3590 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3591{
3592 unsigned long count = 0;
3593 struct page *page;
3594 unsigned long flags;
3595
3596 spin_lock_irqsave(&n->list_lock, flags);
3597
3598 list_for_each_entry(page, &n->partial, lru) {
434e245d 3599 validate_slab_slab(s, page, map);
53e15af0
CL
3600 count++;
3601 }
3602 if (count != n->nr_partial)
3603 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3604 "counter=%ld\n", s->name, count, n->nr_partial);
3605
3606 if (!(s->flags & SLAB_STORE_USER))
3607 goto out;
3608
3609 list_for_each_entry(page, &n->full, lru) {
434e245d 3610 validate_slab_slab(s, page, map);
53e15af0
CL
3611 count++;
3612 }
3613 if (count != atomic_long_read(&n->nr_slabs))
3614 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3615 "counter=%ld\n", s->name, count,
3616 atomic_long_read(&n->nr_slabs));
3617
3618out:
3619 spin_unlock_irqrestore(&n->list_lock, flags);
3620 return count;
3621}
3622
434e245d 3623static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3624{
3625 int node;
3626 unsigned long count = 0;
205ab99d 3627 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3628 sizeof(unsigned long), GFP_KERNEL);
3629
3630 if (!map)
3631 return -ENOMEM;
53e15af0
CL
3632
3633 flush_all(s);
f64dc58c 3634 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3635 struct kmem_cache_node *n = get_node(s, node);
3636
434e245d 3637 count += validate_slab_node(s, n, map);
53e15af0 3638 }
434e245d 3639 kfree(map);
53e15af0
CL
3640 return count;
3641}
88a420e4 3642/*
672bba3a 3643 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3644 * and freed.
3645 */
3646
3647struct location {
3648 unsigned long count;
ce71e27c 3649 unsigned long addr;
45edfa58
CL
3650 long long sum_time;
3651 long min_time;
3652 long max_time;
3653 long min_pid;
3654 long max_pid;
174596a0 3655 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3656 nodemask_t nodes;
88a420e4
CL
3657};
3658
3659struct loc_track {
3660 unsigned long max;
3661 unsigned long count;
3662 struct location *loc;
3663};
3664
3665static void free_loc_track(struct loc_track *t)
3666{
3667 if (t->max)
3668 free_pages((unsigned long)t->loc,
3669 get_order(sizeof(struct location) * t->max));
3670}
3671
68dff6a9 3672static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3673{
3674 struct location *l;
3675 int order;
3676
88a420e4
CL
3677 order = get_order(sizeof(struct location) * max);
3678
68dff6a9 3679 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3680 if (!l)
3681 return 0;
3682
3683 if (t->count) {
3684 memcpy(l, t->loc, sizeof(struct location) * t->count);
3685 free_loc_track(t);
3686 }
3687 t->max = max;
3688 t->loc = l;
3689 return 1;
3690}
3691
3692static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3693 const struct track *track)
88a420e4
CL
3694{
3695 long start, end, pos;
3696 struct location *l;
ce71e27c 3697 unsigned long caddr;
45edfa58 3698 unsigned long age = jiffies - track->when;
88a420e4
CL
3699
3700 start = -1;
3701 end = t->count;
3702
3703 for ( ; ; ) {
3704 pos = start + (end - start + 1) / 2;
3705
3706 /*
3707 * There is nothing at "end". If we end up there
3708 * we need to add something to before end.
3709 */
3710 if (pos == end)
3711 break;
3712
3713 caddr = t->loc[pos].addr;
45edfa58
CL
3714 if (track->addr == caddr) {
3715
3716 l = &t->loc[pos];
3717 l->count++;
3718 if (track->when) {
3719 l->sum_time += age;
3720 if (age < l->min_time)
3721 l->min_time = age;
3722 if (age > l->max_time)
3723 l->max_time = age;
3724
3725 if (track->pid < l->min_pid)
3726 l->min_pid = track->pid;
3727 if (track->pid > l->max_pid)
3728 l->max_pid = track->pid;
3729
174596a0
RR
3730 cpumask_set_cpu(track->cpu,
3731 to_cpumask(l->cpus));
45edfa58
CL
3732 }
3733 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3734 return 1;
3735 }
3736
45edfa58 3737 if (track->addr < caddr)
88a420e4
CL
3738 end = pos;
3739 else
3740 start = pos;
3741 }
3742
3743 /*
672bba3a 3744 * Not found. Insert new tracking element.
88a420e4 3745 */
68dff6a9 3746 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3747 return 0;
3748
3749 l = t->loc + pos;
3750 if (pos < t->count)
3751 memmove(l + 1, l,
3752 (t->count - pos) * sizeof(struct location));
3753 t->count++;
3754 l->count = 1;
45edfa58
CL
3755 l->addr = track->addr;
3756 l->sum_time = age;
3757 l->min_time = age;
3758 l->max_time = age;
3759 l->min_pid = track->pid;
3760 l->max_pid = track->pid;
174596a0
RR
3761 cpumask_clear(to_cpumask(l->cpus));
3762 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3763 nodes_clear(l->nodes);
3764 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3765 return 1;
3766}
3767
3768static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3769 struct page *page, enum track_item alloc,
a5dd5c11 3770 unsigned long *map)
88a420e4 3771{
a973e9dd 3772 void *addr = page_address(page);
88a420e4
CL
3773 void *p;
3774
39b26464 3775 bitmap_zero(map, page->objects);
5f80b13a 3776 get_map(s, page, map);
88a420e4 3777
224a88be 3778 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3779 if (!test_bit(slab_index(p, s, addr), map))
3780 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3781}
3782
3783static int list_locations(struct kmem_cache *s, char *buf,
3784 enum track_item alloc)
3785{
e374d483 3786 int len = 0;
88a420e4 3787 unsigned long i;
68dff6a9 3788 struct loc_track t = { 0, 0, NULL };
88a420e4 3789 int node;
bbd7d57b
ED
3790 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3791 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3792
bbd7d57b
ED
3793 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3794 GFP_TEMPORARY)) {
3795 kfree(map);
68dff6a9 3796 return sprintf(buf, "Out of memory\n");
bbd7d57b 3797 }
88a420e4
CL
3798 /* Push back cpu slabs */
3799 flush_all(s);
3800
f64dc58c 3801 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3802 struct kmem_cache_node *n = get_node(s, node);
3803 unsigned long flags;
3804 struct page *page;
3805
9e86943b 3806 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3807 continue;
3808
3809 spin_lock_irqsave(&n->list_lock, flags);
3810 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3811 process_slab(&t, s, page, alloc, map);
88a420e4 3812 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3813 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3814 spin_unlock_irqrestore(&n->list_lock, flags);
3815 }
3816
3817 for (i = 0; i < t.count; i++) {
45edfa58 3818 struct location *l = &t.loc[i];
88a420e4 3819
9c246247 3820 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3821 break;
e374d483 3822 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3823
3824 if (l->addr)
62c70bce 3825 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 3826 else
e374d483 3827 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3828
3829 if (l->sum_time != l->min_time) {
e374d483 3830 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3831 l->min_time,
3832 (long)div_u64(l->sum_time, l->count),
3833 l->max_time);
45edfa58 3834 } else
e374d483 3835 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3836 l->min_time);
3837
3838 if (l->min_pid != l->max_pid)
e374d483 3839 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3840 l->min_pid, l->max_pid);
3841 else
e374d483 3842 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3843 l->min_pid);
3844
174596a0
RR
3845 if (num_online_cpus() > 1 &&
3846 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3847 len < PAGE_SIZE - 60) {
3848 len += sprintf(buf + len, " cpus=");
3849 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3850 to_cpumask(l->cpus));
45edfa58
CL
3851 }
3852
62bc62a8 3853 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3854 len < PAGE_SIZE - 60) {
3855 len += sprintf(buf + len, " nodes=");
3856 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3857 l->nodes);
3858 }
3859
e374d483 3860 len += sprintf(buf + len, "\n");
88a420e4
CL
3861 }
3862
3863 free_loc_track(&t);
bbd7d57b 3864 kfree(map);
88a420e4 3865 if (!t.count)
e374d483
HH
3866 len += sprintf(buf, "No data\n");
3867 return len;
88a420e4 3868}
ab4d5ed5 3869#endif
88a420e4 3870
a5a84755
CL
3871#ifdef SLUB_RESILIENCY_TEST
3872static void resiliency_test(void)
3873{
3874 u8 *p;
3875
3876 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3877
3878 printk(KERN_ERR "SLUB resiliency testing\n");
3879 printk(KERN_ERR "-----------------------\n");
3880 printk(KERN_ERR "A. Corruption after allocation\n");
3881
3882 p = kzalloc(16, GFP_KERNEL);
3883 p[16] = 0x12;
3884 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3885 " 0x12->0x%p\n\n", p + 16);
3886
3887 validate_slab_cache(kmalloc_caches[4]);
3888
3889 /* Hmmm... The next two are dangerous */
3890 p = kzalloc(32, GFP_KERNEL);
3891 p[32 + sizeof(void *)] = 0x34;
3892 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3893 " 0x34 -> -0x%p\n", p);
3894 printk(KERN_ERR
3895 "If allocated object is overwritten then not detectable\n\n");
3896
3897 validate_slab_cache(kmalloc_caches[5]);
3898 p = kzalloc(64, GFP_KERNEL);
3899 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3900 *p = 0x56;
3901 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3902 p);
3903 printk(KERN_ERR
3904 "If allocated object is overwritten then not detectable\n\n");
3905 validate_slab_cache(kmalloc_caches[6]);
3906
3907 printk(KERN_ERR "\nB. Corruption after free\n");
3908 p = kzalloc(128, GFP_KERNEL);
3909 kfree(p);
3910 *p = 0x78;
3911 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3912 validate_slab_cache(kmalloc_caches[7]);
3913
3914 p = kzalloc(256, GFP_KERNEL);
3915 kfree(p);
3916 p[50] = 0x9a;
3917 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3918 p);
3919 validate_slab_cache(kmalloc_caches[8]);
3920
3921 p = kzalloc(512, GFP_KERNEL);
3922 kfree(p);
3923 p[512] = 0xab;
3924 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3925 validate_slab_cache(kmalloc_caches[9]);
3926}
3927#else
3928#ifdef CONFIG_SYSFS
3929static void resiliency_test(void) {};
3930#endif
3931#endif
3932
ab4d5ed5 3933#ifdef CONFIG_SYSFS
81819f0f 3934enum slab_stat_type {
205ab99d
CL
3935 SL_ALL, /* All slabs */
3936 SL_PARTIAL, /* Only partially allocated slabs */
3937 SL_CPU, /* Only slabs used for cpu caches */
3938 SL_OBJECTS, /* Determine allocated objects not slabs */
3939 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3940};
3941
205ab99d 3942#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3943#define SO_PARTIAL (1 << SL_PARTIAL)
3944#define SO_CPU (1 << SL_CPU)
3945#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3946#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3947
62e5c4b4
CG
3948static ssize_t show_slab_objects(struct kmem_cache *s,
3949 char *buf, unsigned long flags)
81819f0f
CL
3950{
3951 unsigned long total = 0;
81819f0f
CL
3952 int node;
3953 int x;
3954 unsigned long *nodes;
3955 unsigned long *per_cpu;
3956
3957 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3958 if (!nodes)
3959 return -ENOMEM;
81819f0f
CL
3960 per_cpu = nodes + nr_node_ids;
3961
205ab99d
CL
3962 if (flags & SO_CPU) {
3963 int cpu;
81819f0f 3964
205ab99d 3965 for_each_possible_cpu(cpu) {
9dfc6e68 3966 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3967
205ab99d
CL
3968 if (!c || c->node < 0)
3969 continue;
3970
3971 if (c->page) {
3972 if (flags & SO_TOTAL)
3973 x = c->page->objects;
3974 else if (flags & SO_OBJECTS)
3975 x = c->page->inuse;
81819f0f
CL
3976 else
3977 x = 1;
205ab99d 3978
81819f0f 3979 total += x;
205ab99d 3980 nodes[c->node] += x;
81819f0f 3981 }
205ab99d 3982 per_cpu[c->node]++;
81819f0f
CL
3983 }
3984 }
3985
04d94879 3986 lock_memory_hotplug();
ab4d5ed5 3987#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3988 if (flags & SO_ALL) {
3989 for_each_node_state(node, N_NORMAL_MEMORY) {
3990 struct kmem_cache_node *n = get_node(s, node);
3991
3992 if (flags & SO_TOTAL)
3993 x = atomic_long_read(&n->total_objects);
3994 else if (flags & SO_OBJECTS)
3995 x = atomic_long_read(&n->total_objects) -
3996 count_partial(n, count_free);
81819f0f 3997
81819f0f 3998 else
205ab99d 3999 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4000 total += x;
4001 nodes[node] += x;
4002 }
4003
ab4d5ed5
CL
4004 } else
4005#endif
4006 if (flags & SO_PARTIAL) {
205ab99d
CL
4007 for_each_node_state(node, N_NORMAL_MEMORY) {
4008 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4009
205ab99d
CL
4010 if (flags & SO_TOTAL)
4011 x = count_partial(n, count_total);
4012 else if (flags & SO_OBJECTS)
4013 x = count_partial(n, count_inuse);
81819f0f 4014 else
205ab99d 4015 x = n->nr_partial;
81819f0f
CL
4016 total += x;
4017 nodes[node] += x;
4018 }
4019 }
81819f0f
CL
4020 x = sprintf(buf, "%lu", total);
4021#ifdef CONFIG_NUMA
f64dc58c 4022 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4023 if (nodes[node])
4024 x += sprintf(buf + x, " N%d=%lu",
4025 node, nodes[node]);
4026#endif
04d94879 4027 unlock_memory_hotplug();
81819f0f
CL
4028 kfree(nodes);
4029 return x + sprintf(buf + x, "\n");
4030}
4031
ab4d5ed5 4032#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4033static int any_slab_objects(struct kmem_cache *s)
4034{
4035 int node;
81819f0f 4036
dfb4f096 4037 for_each_online_node(node) {
81819f0f
CL
4038 struct kmem_cache_node *n = get_node(s, node);
4039
dfb4f096
CL
4040 if (!n)
4041 continue;
4042
4ea33e2d 4043 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4044 return 1;
4045 }
4046 return 0;
4047}
ab4d5ed5 4048#endif
81819f0f
CL
4049
4050#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4051#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4052
4053struct slab_attribute {
4054 struct attribute attr;
4055 ssize_t (*show)(struct kmem_cache *s, char *buf);
4056 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4057};
4058
4059#define SLAB_ATTR_RO(_name) \
4060 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4061
4062#define SLAB_ATTR(_name) \
4063 static struct slab_attribute _name##_attr = \
4064 __ATTR(_name, 0644, _name##_show, _name##_store)
4065
81819f0f
CL
4066static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4067{
4068 return sprintf(buf, "%d\n", s->size);
4069}
4070SLAB_ATTR_RO(slab_size);
4071
4072static ssize_t align_show(struct kmem_cache *s, char *buf)
4073{
4074 return sprintf(buf, "%d\n", s->align);
4075}
4076SLAB_ATTR_RO(align);
4077
4078static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4079{
4080 return sprintf(buf, "%d\n", s->objsize);
4081}
4082SLAB_ATTR_RO(object_size);
4083
4084static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4085{
834f3d11 4086 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4087}
4088SLAB_ATTR_RO(objs_per_slab);
4089
06b285dc
CL
4090static ssize_t order_store(struct kmem_cache *s,
4091 const char *buf, size_t length)
4092{
0121c619
CL
4093 unsigned long order;
4094 int err;
4095
4096 err = strict_strtoul(buf, 10, &order);
4097 if (err)
4098 return err;
06b285dc
CL
4099
4100 if (order > slub_max_order || order < slub_min_order)
4101 return -EINVAL;
4102
4103 calculate_sizes(s, order);
4104 return length;
4105}
4106
81819f0f
CL
4107static ssize_t order_show(struct kmem_cache *s, char *buf)
4108{
834f3d11 4109 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4110}
06b285dc 4111SLAB_ATTR(order);
81819f0f 4112
73d342b1
DR
4113static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4114{
4115 return sprintf(buf, "%lu\n", s->min_partial);
4116}
4117
4118static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4119 size_t length)
4120{
4121 unsigned long min;
4122 int err;
4123
4124 err = strict_strtoul(buf, 10, &min);
4125 if (err)
4126 return err;
4127
c0bdb232 4128 set_min_partial(s, min);
73d342b1
DR
4129 return length;
4130}
4131SLAB_ATTR(min_partial);
4132
81819f0f
CL
4133static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4134{
62c70bce
JP
4135 if (!s->ctor)
4136 return 0;
4137 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4138}
4139SLAB_ATTR_RO(ctor);
4140
81819f0f
CL
4141static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4142{
4143 return sprintf(buf, "%d\n", s->refcount - 1);
4144}
4145SLAB_ATTR_RO(aliases);
4146
81819f0f
CL
4147static ssize_t partial_show(struct kmem_cache *s, char *buf)
4148{
d9acf4b7 4149 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4150}
4151SLAB_ATTR_RO(partial);
4152
4153static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4154{
d9acf4b7 4155 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4156}
4157SLAB_ATTR_RO(cpu_slabs);
4158
4159static ssize_t objects_show(struct kmem_cache *s, char *buf)
4160{
205ab99d 4161 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4162}
4163SLAB_ATTR_RO(objects);
4164
205ab99d
CL
4165static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4166{
4167 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4168}
4169SLAB_ATTR_RO(objects_partial);
4170
a5a84755
CL
4171static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4172{
4173 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4174}
4175
4176static ssize_t reclaim_account_store(struct kmem_cache *s,
4177 const char *buf, size_t length)
4178{
4179 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4180 if (buf[0] == '1')
4181 s->flags |= SLAB_RECLAIM_ACCOUNT;
4182 return length;
4183}
4184SLAB_ATTR(reclaim_account);
4185
4186static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4187{
4188 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4189}
4190SLAB_ATTR_RO(hwcache_align);
4191
4192#ifdef CONFIG_ZONE_DMA
4193static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4194{
4195 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4196}
4197SLAB_ATTR_RO(cache_dma);
4198#endif
4199
4200static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4201{
4202 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4203}
4204SLAB_ATTR_RO(destroy_by_rcu);
4205
ab9a0f19
LJ
4206static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4207{
4208 return sprintf(buf, "%d\n", s->reserved);
4209}
4210SLAB_ATTR_RO(reserved);
4211
ab4d5ed5 4212#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4213static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4214{
4215 return show_slab_objects(s, buf, SO_ALL);
4216}
4217SLAB_ATTR_RO(slabs);
4218
205ab99d
CL
4219static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4220{
4221 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4222}
4223SLAB_ATTR_RO(total_objects);
4224
81819f0f
CL
4225static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4226{
4227 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4228}
4229
4230static ssize_t sanity_checks_store(struct kmem_cache *s,
4231 const char *buf, size_t length)
4232{
4233 s->flags &= ~SLAB_DEBUG_FREE;
4234 if (buf[0] == '1')
4235 s->flags |= SLAB_DEBUG_FREE;
4236 return length;
4237}
4238SLAB_ATTR(sanity_checks);
4239
4240static ssize_t trace_show(struct kmem_cache *s, char *buf)
4241{
4242 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4243}
4244
4245static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4246 size_t length)
4247{
4248 s->flags &= ~SLAB_TRACE;
4249 if (buf[0] == '1')
4250 s->flags |= SLAB_TRACE;
4251 return length;
4252}
4253SLAB_ATTR(trace);
4254
81819f0f
CL
4255static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4256{
4257 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4258}
4259
4260static ssize_t red_zone_store(struct kmem_cache *s,
4261 const char *buf, size_t length)
4262{
4263 if (any_slab_objects(s))
4264 return -EBUSY;
4265
4266 s->flags &= ~SLAB_RED_ZONE;
4267 if (buf[0] == '1')
4268 s->flags |= SLAB_RED_ZONE;
06b285dc 4269 calculate_sizes(s, -1);
81819f0f
CL
4270 return length;
4271}
4272SLAB_ATTR(red_zone);
4273
4274static ssize_t poison_show(struct kmem_cache *s, char *buf)
4275{
4276 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4277}
4278
4279static ssize_t poison_store(struct kmem_cache *s,
4280 const char *buf, size_t length)
4281{
4282 if (any_slab_objects(s))
4283 return -EBUSY;
4284
4285 s->flags &= ~SLAB_POISON;
4286 if (buf[0] == '1')
4287 s->flags |= SLAB_POISON;
06b285dc 4288 calculate_sizes(s, -1);
81819f0f
CL
4289 return length;
4290}
4291SLAB_ATTR(poison);
4292
4293static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4294{
4295 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4296}
4297
4298static ssize_t store_user_store(struct kmem_cache *s,
4299 const char *buf, size_t length)
4300{
4301 if (any_slab_objects(s))
4302 return -EBUSY;
4303
4304 s->flags &= ~SLAB_STORE_USER;
4305 if (buf[0] == '1')
4306 s->flags |= SLAB_STORE_USER;
06b285dc 4307 calculate_sizes(s, -1);
81819f0f
CL
4308 return length;
4309}
4310SLAB_ATTR(store_user);
4311
53e15af0
CL
4312static ssize_t validate_show(struct kmem_cache *s, char *buf)
4313{
4314 return 0;
4315}
4316
4317static ssize_t validate_store(struct kmem_cache *s,
4318 const char *buf, size_t length)
4319{
434e245d
CL
4320 int ret = -EINVAL;
4321
4322 if (buf[0] == '1') {
4323 ret = validate_slab_cache(s);
4324 if (ret >= 0)
4325 ret = length;
4326 }
4327 return ret;
53e15af0
CL
4328}
4329SLAB_ATTR(validate);
a5a84755
CL
4330
4331static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4332{
4333 if (!(s->flags & SLAB_STORE_USER))
4334 return -ENOSYS;
4335 return list_locations(s, buf, TRACK_ALLOC);
4336}
4337SLAB_ATTR_RO(alloc_calls);
4338
4339static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4340{
4341 if (!(s->flags & SLAB_STORE_USER))
4342 return -ENOSYS;
4343 return list_locations(s, buf, TRACK_FREE);
4344}
4345SLAB_ATTR_RO(free_calls);
4346#endif /* CONFIG_SLUB_DEBUG */
4347
4348#ifdef CONFIG_FAILSLAB
4349static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4350{
4351 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4352}
4353
4354static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4355 size_t length)
4356{
4357 s->flags &= ~SLAB_FAILSLAB;
4358 if (buf[0] == '1')
4359 s->flags |= SLAB_FAILSLAB;
4360 return length;
4361}
4362SLAB_ATTR(failslab);
ab4d5ed5 4363#endif
53e15af0 4364
2086d26a
CL
4365static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4366{
4367 return 0;
4368}
4369
4370static ssize_t shrink_store(struct kmem_cache *s,
4371 const char *buf, size_t length)
4372{
4373 if (buf[0] == '1') {
4374 int rc = kmem_cache_shrink(s);
4375
4376 if (rc)
4377 return rc;
4378 } else
4379 return -EINVAL;
4380 return length;
4381}
4382SLAB_ATTR(shrink);
4383
81819f0f 4384#ifdef CONFIG_NUMA
9824601e 4385static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4386{
9824601e 4387 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4388}
4389
9824601e 4390static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4391 const char *buf, size_t length)
4392{
0121c619
CL
4393 unsigned long ratio;
4394 int err;
4395
4396 err = strict_strtoul(buf, 10, &ratio);
4397 if (err)
4398 return err;
4399
e2cb96b7 4400 if (ratio <= 100)
0121c619 4401 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4402
81819f0f
CL
4403 return length;
4404}
9824601e 4405SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4406#endif
4407
8ff12cfc 4408#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4409static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4410{
4411 unsigned long sum = 0;
4412 int cpu;
4413 int len;
4414 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4415
4416 if (!data)
4417 return -ENOMEM;
4418
4419 for_each_online_cpu(cpu) {
9dfc6e68 4420 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4421
4422 data[cpu] = x;
4423 sum += x;
4424 }
4425
4426 len = sprintf(buf, "%lu", sum);
4427
50ef37b9 4428#ifdef CONFIG_SMP
8ff12cfc
CL
4429 for_each_online_cpu(cpu) {
4430 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4431 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4432 }
50ef37b9 4433#endif
8ff12cfc
CL
4434 kfree(data);
4435 return len + sprintf(buf + len, "\n");
4436}
4437
78eb00cc
DR
4438static void clear_stat(struct kmem_cache *s, enum stat_item si)
4439{
4440 int cpu;
4441
4442 for_each_online_cpu(cpu)
9dfc6e68 4443 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4444}
4445
8ff12cfc
CL
4446#define STAT_ATTR(si, text) \
4447static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4448{ \
4449 return show_stat(s, buf, si); \
4450} \
78eb00cc
DR
4451static ssize_t text##_store(struct kmem_cache *s, \
4452 const char *buf, size_t length) \
4453{ \
4454 if (buf[0] != '0') \
4455 return -EINVAL; \
4456 clear_stat(s, si); \
4457 return length; \
4458} \
4459SLAB_ATTR(text); \
8ff12cfc
CL
4460
4461STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4462STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4463STAT_ATTR(FREE_FASTPATH, free_fastpath);
4464STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4465STAT_ATTR(FREE_FROZEN, free_frozen);
4466STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4467STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4468STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4469STAT_ATTR(ALLOC_SLAB, alloc_slab);
4470STAT_ATTR(ALLOC_REFILL, alloc_refill);
4471STAT_ATTR(FREE_SLAB, free_slab);
4472STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4473STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4474STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4475STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4476STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4477STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4478STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4479#endif
4480
06428780 4481static struct attribute *slab_attrs[] = {
81819f0f
CL
4482 &slab_size_attr.attr,
4483 &object_size_attr.attr,
4484 &objs_per_slab_attr.attr,
4485 &order_attr.attr,
73d342b1 4486 &min_partial_attr.attr,
81819f0f 4487 &objects_attr.attr,
205ab99d 4488 &objects_partial_attr.attr,
81819f0f
CL
4489 &partial_attr.attr,
4490 &cpu_slabs_attr.attr,
4491 &ctor_attr.attr,
81819f0f
CL
4492 &aliases_attr.attr,
4493 &align_attr.attr,
81819f0f
CL
4494 &hwcache_align_attr.attr,
4495 &reclaim_account_attr.attr,
4496 &destroy_by_rcu_attr.attr,
a5a84755 4497 &shrink_attr.attr,
ab9a0f19 4498 &reserved_attr.attr,
ab4d5ed5 4499#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4500 &total_objects_attr.attr,
4501 &slabs_attr.attr,
4502 &sanity_checks_attr.attr,
4503 &trace_attr.attr,
81819f0f
CL
4504 &red_zone_attr.attr,
4505 &poison_attr.attr,
4506 &store_user_attr.attr,
53e15af0 4507 &validate_attr.attr,
88a420e4
CL
4508 &alloc_calls_attr.attr,
4509 &free_calls_attr.attr,
ab4d5ed5 4510#endif
81819f0f
CL
4511#ifdef CONFIG_ZONE_DMA
4512 &cache_dma_attr.attr,
4513#endif
4514#ifdef CONFIG_NUMA
9824601e 4515 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4516#endif
4517#ifdef CONFIG_SLUB_STATS
4518 &alloc_fastpath_attr.attr,
4519 &alloc_slowpath_attr.attr,
4520 &free_fastpath_attr.attr,
4521 &free_slowpath_attr.attr,
4522 &free_frozen_attr.attr,
4523 &free_add_partial_attr.attr,
4524 &free_remove_partial_attr.attr,
4525 &alloc_from_partial_attr.attr,
4526 &alloc_slab_attr.attr,
4527 &alloc_refill_attr.attr,
4528 &free_slab_attr.attr,
4529 &cpuslab_flush_attr.attr,
4530 &deactivate_full_attr.attr,
4531 &deactivate_empty_attr.attr,
4532 &deactivate_to_head_attr.attr,
4533 &deactivate_to_tail_attr.attr,
4534 &deactivate_remote_frees_attr.attr,
65c3376a 4535 &order_fallback_attr.attr,
81819f0f 4536#endif
4c13dd3b
DM
4537#ifdef CONFIG_FAILSLAB
4538 &failslab_attr.attr,
4539#endif
4540
81819f0f
CL
4541 NULL
4542};
4543
4544static struct attribute_group slab_attr_group = {
4545 .attrs = slab_attrs,
4546};
4547
4548static ssize_t slab_attr_show(struct kobject *kobj,
4549 struct attribute *attr,
4550 char *buf)
4551{
4552 struct slab_attribute *attribute;
4553 struct kmem_cache *s;
4554 int err;
4555
4556 attribute = to_slab_attr(attr);
4557 s = to_slab(kobj);
4558
4559 if (!attribute->show)
4560 return -EIO;
4561
4562 err = attribute->show(s, buf);
4563
4564 return err;
4565}
4566
4567static ssize_t slab_attr_store(struct kobject *kobj,
4568 struct attribute *attr,
4569 const char *buf, size_t len)
4570{
4571 struct slab_attribute *attribute;
4572 struct kmem_cache *s;
4573 int err;
4574
4575 attribute = to_slab_attr(attr);
4576 s = to_slab(kobj);
4577
4578 if (!attribute->store)
4579 return -EIO;
4580
4581 err = attribute->store(s, buf, len);
4582
4583 return err;
4584}
4585
151c602f
CL
4586static void kmem_cache_release(struct kobject *kobj)
4587{
4588 struct kmem_cache *s = to_slab(kobj);
4589
84c1cf62 4590 kfree(s->name);
151c602f
CL
4591 kfree(s);
4592}
4593
52cf25d0 4594static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4595 .show = slab_attr_show,
4596 .store = slab_attr_store,
4597};
4598
4599static struct kobj_type slab_ktype = {
4600 .sysfs_ops = &slab_sysfs_ops,
151c602f 4601 .release = kmem_cache_release
81819f0f
CL
4602};
4603
4604static int uevent_filter(struct kset *kset, struct kobject *kobj)
4605{
4606 struct kobj_type *ktype = get_ktype(kobj);
4607
4608 if (ktype == &slab_ktype)
4609 return 1;
4610 return 0;
4611}
4612
9cd43611 4613static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4614 .filter = uevent_filter,
4615};
4616
27c3a314 4617static struct kset *slab_kset;
81819f0f
CL
4618
4619#define ID_STR_LENGTH 64
4620
4621/* Create a unique string id for a slab cache:
6446faa2
CL
4622 *
4623 * Format :[flags-]size
81819f0f
CL
4624 */
4625static char *create_unique_id(struct kmem_cache *s)
4626{
4627 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4628 char *p = name;
4629
4630 BUG_ON(!name);
4631
4632 *p++ = ':';
4633 /*
4634 * First flags affecting slabcache operations. We will only
4635 * get here for aliasable slabs so we do not need to support
4636 * too many flags. The flags here must cover all flags that
4637 * are matched during merging to guarantee that the id is
4638 * unique.
4639 */
4640 if (s->flags & SLAB_CACHE_DMA)
4641 *p++ = 'd';
4642 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4643 *p++ = 'a';
4644 if (s->flags & SLAB_DEBUG_FREE)
4645 *p++ = 'F';
5a896d9e
VN
4646 if (!(s->flags & SLAB_NOTRACK))
4647 *p++ = 't';
81819f0f
CL
4648 if (p != name + 1)
4649 *p++ = '-';
4650 p += sprintf(p, "%07d", s->size);
4651 BUG_ON(p > name + ID_STR_LENGTH - 1);
4652 return name;
4653}
4654
4655static int sysfs_slab_add(struct kmem_cache *s)
4656{
4657 int err;
4658 const char *name;
4659 int unmergeable;
4660
4661 if (slab_state < SYSFS)
4662 /* Defer until later */
4663 return 0;
4664
4665 unmergeable = slab_unmergeable(s);
4666 if (unmergeable) {
4667 /*
4668 * Slabcache can never be merged so we can use the name proper.
4669 * This is typically the case for debug situations. In that
4670 * case we can catch duplicate names easily.
4671 */
27c3a314 4672 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4673 name = s->name;
4674 } else {
4675 /*
4676 * Create a unique name for the slab as a target
4677 * for the symlinks.
4678 */
4679 name = create_unique_id(s);
4680 }
4681
27c3a314 4682 s->kobj.kset = slab_kset;
1eada11c
GKH
4683 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4684 if (err) {
4685 kobject_put(&s->kobj);
81819f0f 4686 return err;
1eada11c 4687 }
81819f0f
CL
4688
4689 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4690 if (err) {
4691 kobject_del(&s->kobj);
4692 kobject_put(&s->kobj);
81819f0f 4693 return err;
5788d8ad 4694 }
81819f0f
CL
4695 kobject_uevent(&s->kobj, KOBJ_ADD);
4696 if (!unmergeable) {
4697 /* Setup first alias */
4698 sysfs_slab_alias(s, s->name);
4699 kfree(name);
4700 }
4701 return 0;
4702}
4703
4704static void sysfs_slab_remove(struct kmem_cache *s)
4705{
2bce6485
CL
4706 if (slab_state < SYSFS)
4707 /*
4708 * Sysfs has not been setup yet so no need to remove the
4709 * cache from sysfs.
4710 */
4711 return;
4712
81819f0f
CL
4713 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4714 kobject_del(&s->kobj);
151c602f 4715 kobject_put(&s->kobj);
81819f0f
CL
4716}
4717
4718/*
4719 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4720 * available lest we lose that information.
81819f0f
CL
4721 */
4722struct saved_alias {
4723 struct kmem_cache *s;
4724 const char *name;
4725 struct saved_alias *next;
4726};
4727
5af328a5 4728static struct saved_alias *alias_list;
81819f0f
CL
4729
4730static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4731{
4732 struct saved_alias *al;
4733
4734 if (slab_state == SYSFS) {
4735 /*
4736 * If we have a leftover link then remove it.
4737 */
27c3a314
GKH
4738 sysfs_remove_link(&slab_kset->kobj, name);
4739 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4740 }
4741
4742 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4743 if (!al)
4744 return -ENOMEM;
4745
4746 al->s = s;
4747 al->name = name;
4748 al->next = alias_list;
4749 alias_list = al;
4750 return 0;
4751}
4752
4753static int __init slab_sysfs_init(void)
4754{
5b95a4ac 4755 struct kmem_cache *s;
81819f0f
CL
4756 int err;
4757
2bce6485
CL
4758 down_write(&slub_lock);
4759
0ff21e46 4760 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4761 if (!slab_kset) {
2bce6485 4762 up_write(&slub_lock);
81819f0f
CL
4763 printk(KERN_ERR "Cannot register slab subsystem.\n");
4764 return -ENOSYS;
4765 }
4766
26a7bd03
CL
4767 slab_state = SYSFS;
4768
5b95a4ac 4769 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4770 err = sysfs_slab_add(s);
5d540fb7
CL
4771 if (err)
4772 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4773 " to sysfs\n", s->name);
26a7bd03 4774 }
81819f0f
CL
4775
4776 while (alias_list) {
4777 struct saved_alias *al = alias_list;
4778
4779 alias_list = alias_list->next;
4780 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4781 if (err)
4782 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4783 " %s to sysfs\n", s->name);
81819f0f
CL
4784 kfree(al);
4785 }
4786
2bce6485 4787 up_write(&slub_lock);
81819f0f
CL
4788 resiliency_test();
4789 return 0;
4790}
4791
4792__initcall(slab_sysfs_init);
ab4d5ed5 4793#endif /* CONFIG_SYSFS */
57ed3eda
PE
4794
4795/*
4796 * The /proc/slabinfo ABI
4797 */
158a9624 4798#ifdef CONFIG_SLABINFO
57ed3eda
PE
4799static void print_slabinfo_header(struct seq_file *m)
4800{
4801 seq_puts(m, "slabinfo - version: 2.1\n");
4802 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4803 "<objperslab> <pagesperslab>");
4804 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4805 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4806 seq_putc(m, '\n');
4807}
4808
4809static void *s_start(struct seq_file *m, loff_t *pos)
4810{
4811 loff_t n = *pos;
4812
4813 down_read(&slub_lock);
4814 if (!n)
4815 print_slabinfo_header(m);
4816
4817 return seq_list_start(&slab_caches, *pos);
4818}
4819
4820static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4821{
4822 return seq_list_next(p, &slab_caches, pos);
4823}
4824
4825static void s_stop(struct seq_file *m, void *p)
4826{
4827 up_read(&slub_lock);
4828}
4829
4830static int s_show(struct seq_file *m, void *p)
4831{
4832 unsigned long nr_partials = 0;
4833 unsigned long nr_slabs = 0;
4834 unsigned long nr_inuse = 0;
205ab99d
CL
4835 unsigned long nr_objs = 0;
4836 unsigned long nr_free = 0;
57ed3eda
PE
4837 struct kmem_cache *s;
4838 int node;
4839
4840 s = list_entry(p, struct kmem_cache, list);
4841
4842 for_each_online_node(node) {
4843 struct kmem_cache_node *n = get_node(s, node);
4844
4845 if (!n)
4846 continue;
4847
4848 nr_partials += n->nr_partial;
4849 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4850 nr_objs += atomic_long_read(&n->total_objects);
4851 nr_free += count_partial(n, count_free);
57ed3eda
PE
4852 }
4853
205ab99d 4854 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4855
4856 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4857 nr_objs, s->size, oo_objects(s->oo),
4858 (1 << oo_order(s->oo)));
57ed3eda
PE
4859 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4860 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4861 0UL);
4862 seq_putc(m, '\n');
4863 return 0;
4864}
4865
7b3c3a50 4866static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4867 .start = s_start,
4868 .next = s_next,
4869 .stop = s_stop,
4870 .show = s_show,
4871};
4872
7b3c3a50
AD
4873static int slabinfo_open(struct inode *inode, struct file *file)
4874{
4875 return seq_open(file, &slabinfo_op);
4876}
4877
4878static const struct file_operations proc_slabinfo_operations = {
4879 .open = slabinfo_open,
4880 .read = seq_read,
4881 .llseek = seq_lseek,
4882 .release = seq_release,
4883};
4884
4885static int __init slab_proc_init(void)
4886{
cf5d1131 4887 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4888 return 0;
4889}
4890module_init(slab_proc_init);
158a9624 4891#endif /* CONFIG_SLABINFO */