]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/slub.c
mm: shmem: convert shmem_enabled_show to use sysfs_emit_at
[thirdparty/linux.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
aed68148 96 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f 111 *
aed68148 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
ca0cab65
VB
117#ifdef CONFIG_SLUB_DEBUG
118#ifdef CONFIG_SLUB_DEBUG_ON
119DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120#else
121DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122#endif
123#endif
124
59052e89
VB
125static inline bool kmem_cache_debug(struct kmem_cache *s)
126{
127 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 128}
5577bd8a 129
117d54df 130void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 131{
59052e89 132 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
133 p += s->red_left_pad;
134
135 return p;
136}
137
345c905d
JK
138static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139{
140#ifdef CONFIG_SLUB_CPU_PARTIAL
141 return !kmem_cache_debug(s);
142#else
143 return false;
144#endif
145}
146
81819f0f
CL
147/*
148 * Issues still to be resolved:
149 *
81819f0f
CL
150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151 *
81819f0f
CL
152 * - Variable sizing of the per node arrays
153 */
154
155/* Enable to test recovery from slab corruption on boot */
156#undef SLUB_RESILIENCY_TEST
157
b789ef51
CL
158/* Enable to log cmpxchg failures */
159#undef SLUB_DEBUG_CMPXCHG
160
2086d26a
CL
161/*
162 * Mininum number of partial slabs. These will be left on the partial
163 * lists even if they are empty. kmem_cache_shrink may reclaim them.
164 */
76be8950 165#define MIN_PARTIAL 5
e95eed57 166
2086d26a
CL
167/*
168 * Maximum number of desirable partial slabs.
169 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 170 * sort the partial list by the number of objects in use.
2086d26a
CL
171 */
172#define MAX_PARTIAL 10
173
becfda68 174#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 175 SLAB_POISON | SLAB_STORE_USER)
672bba3a 176
149daaf3
LA
177/*
178 * These debug flags cannot use CMPXCHG because there might be consistency
179 * issues when checking or reading debug information
180 */
181#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 SLAB_TRACE)
183
184
fa5ec8a1 185/*
3de47213
DR
186 * Debugging flags that require metadata to be stored in the slab. These get
187 * disabled when slub_debug=O is used and a cache's min order increases with
188 * metadata.
fa5ec8a1 189 */
3de47213 190#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 191
210b5c06
CG
192#define OO_SHIFT 16
193#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 194#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 195
81819f0f 196/* Internal SLUB flags */
d50112ed 197/* Poison object */
4fd0b46e 198#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 199/* Use cmpxchg_double */
4fd0b46e 200#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 201
02cbc874
CL
202/*
203 * Tracking user of a slab.
204 */
d6543e39 205#define TRACK_ADDRS_COUNT 16
02cbc874 206struct track {
ce71e27c 207 unsigned long addr; /* Called from address */
d6543e39
BG
208#ifdef CONFIG_STACKTRACE
209 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
210#endif
02cbc874
CL
211 int cpu; /* Was running on cpu */
212 int pid; /* Pid context */
213 unsigned long when; /* When did the operation occur */
214};
215
216enum track_item { TRACK_ALLOC, TRACK_FREE };
217
ab4d5ed5 218#ifdef CONFIG_SYSFS
81819f0f
CL
219static int sysfs_slab_add(struct kmem_cache *);
220static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
251 /*
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
260 */
261 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
263#else
264 return ptr;
265#endif
266}
267
268/* Returns the freelist pointer recorded at location ptr_addr. */
269static inline void *freelist_dereference(const struct kmem_cache *s,
270 void *ptr_addr)
271{
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
274}
275
7656c72b
CL
276static inline void *get_freepointer(struct kmem_cache *s, void *object)
277{
2482ddec 278 return freelist_dereference(s, object + s->offset);
7656c72b
CL
279}
280
0ad9500e
ED
281static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282{
0882ff91 283 prefetch(object + s->offset);
0ad9500e
ED
284}
285
1393d9a1
CL
286static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287{
2482ddec 288 unsigned long freepointer_addr;
1393d9a1
CL
289 void *p;
290
8e57f8ac 291 if (!debug_pagealloc_enabled_static())
922d566c
JK
292 return get_freepointer(s, object);
293
2482ddec 294 freepointer_addr = (unsigned long)object + s->offset;
fe557319 295 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 296 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
297}
298
7656c72b
CL
299static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300{
2482ddec
KC
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
302
ce6fa91b
AP
303#ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
305#endif
306
2482ddec 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
308}
309
310/* Loop over all objects in a slab */
224a88be 311#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
314 __p += (__s)->size)
7656c72b 315
9736d2a9 316static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 317{
9736d2a9 318 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
319}
320
19af27af 321static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 322 unsigned int size)
834f3d11
CL
323{
324 struct kmem_cache_order_objects x = {
9736d2a9 325 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
326 };
327
328 return x;
329}
330
19af27af 331static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 332{
210b5c06 333 return x.x >> OO_SHIFT;
834f3d11
CL
334}
335
19af27af 336static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 337{
210b5c06 338 return x.x & OO_MASK;
834f3d11
CL
339}
340
881db7fb
CL
341/*
342 * Per slab locking using the pagelock
343 */
344static __always_inline void slab_lock(struct page *page)
345{
48c935ad 346 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
347 bit_spin_lock(PG_locked, &page->flags);
348}
349
350static __always_inline void slab_unlock(struct page *page)
351{
48c935ad 352 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
353 __bit_spin_unlock(PG_locked, &page->flags);
354}
355
1d07171c
CL
356/* Interrupts must be disabled (for the fallback code to work right) */
357static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
358 void *freelist_old, unsigned long counters_old,
359 void *freelist_new, unsigned long counters_new,
360 const char *n)
361{
362 VM_BUG_ON(!irqs_disabled());
2565409f
HC
363#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
364 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 365 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 366 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
367 freelist_old, counters_old,
368 freelist_new, counters_new))
6f6528a1 369 return true;
1d07171c
CL
370 } else
371#endif
372 {
373 slab_lock(page);
d0e0ac97
CG
374 if (page->freelist == freelist_old &&
375 page->counters == counters_old) {
1d07171c 376 page->freelist = freelist_new;
7d27a04b 377 page->counters = counters_new;
1d07171c 378 slab_unlock(page);
6f6528a1 379 return true;
1d07171c
CL
380 }
381 slab_unlock(page);
382 }
383
384 cpu_relax();
385 stat(s, CMPXCHG_DOUBLE_FAIL);
386
387#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 388 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
389#endif
390
6f6528a1 391 return false;
1d07171c
CL
392}
393
b789ef51
CL
394static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
395 void *freelist_old, unsigned long counters_old,
396 void *freelist_new, unsigned long counters_new,
397 const char *n)
398{
2565409f
HC
399#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
400 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 401 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 402 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
403 freelist_old, counters_old,
404 freelist_new, counters_new))
6f6528a1 405 return true;
b789ef51
CL
406 } else
407#endif
408 {
1d07171c
CL
409 unsigned long flags;
410
411 local_irq_save(flags);
881db7fb 412 slab_lock(page);
d0e0ac97
CG
413 if (page->freelist == freelist_old &&
414 page->counters == counters_old) {
b789ef51 415 page->freelist = freelist_new;
7d27a04b 416 page->counters = counters_new;
881db7fb 417 slab_unlock(page);
1d07171c 418 local_irq_restore(flags);
6f6528a1 419 return true;
b789ef51 420 }
881db7fb 421 slab_unlock(page);
1d07171c 422 local_irq_restore(flags);
b789ef51
CL
423 }
424
425 cpu_relax();
426 stat(s, CMPXCHG_DOUBLE_FAIL);
427
428#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 429 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
430#endif
431
6f6528a1 432 return false;
b789ef51
CL
433}
434
41ecc55b 435#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
436static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
437static DEFINE_SPINLOCK(object_map_lock);
438
5f80b13a
CL
439/*
440 * Determine a map of object in use on a page.
441 *
881db7fb 442 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
443 * not vanish from under us.
444 */
90e9f6a6 445static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 446 __acquires(&object_map_lock)
5f80b13a
CL
447{
448 void *p;
449 void *addr = page_address(page);
450
90e9f6a6
YZ
451 VM_BUG_ON(!irqs_disabled());
452
453 spin_lock(&object_map_lock);
454
455 bitmap_zero(object_map, page->objects);
456
5f80b13a 457 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 458 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
459
460 return object_map;
461}
462
81aba9e0 463static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
464{
465 VM_BUG_ON(map != object_map);
90e9f6a6 466 spin_unlock(&object_map_lock);
5f80b13a
CL
467}
468
870b1fbb 469static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
470{
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
473
474 return s->size;
475}
476
477static inline void *restore_red_left(struct kmem_cache *s, void *p)
478{
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
481
482 return p;
483}
484
41ecc55b
CL
485/*
486 * Debug settings:
487 */
89d3c87e 488#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 489static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 490#else
d50112ed 491static slab_flags_t slub_debug;
f0630fff 492#endif
41ecc55b 493
e17f1dfb 494static char *slub_debug_string;
fa5ec8a1 495static int disable_higher_order_debug;
41ecc55b 496
a79316c6
AR
497/*
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
502 */
503static inline void metadata_access_enable(void)
504{
505 kasan_disable_current();
506}
507
508static inline void metadata_access_disable(void)
509{
510 kasan_enable_current();
511}
512
81819f0f
CL
513/*
514 * Object debugging
515 */
d86bd1be
JK
516
517/* Verify that a pointer has an address that is valid within a slab page */
518static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
520{
521 void *base;
522
523 if (!object)
524 return 1;
525
526 base = page_address(page);
338cfaad 527 object = kasan_reset_tag(object);
d86bd1be
JK
528 object = restore_red_left(s, object);
529 if (object < base || object >= base + page->objects * s->size ||
530 (object - base) % s->size) {
531 return 0;
532 }
533
534 return 1;
535}
536
aa2efd5e
DT
537static void print_section(char *level, char *text, u8 *addr,
538 unsigned int length)
81819f0f 539{
a79316c6 540 metadata_access_enable();
aa2efd5e 541 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 542 length, 1);
a79316c6 543 metadata_access_disable();
81819f0f
CL
544}
545
cbfc35a4
WL
546/*
547 * See comment in calculate_sizes().
548 */
549static inline bool freeptr_outside_object(struct kmem_cache *s)
550{
551 return s->offset >= s->inuse;
552}
553
554/*
555 * Return offset of the end of info block which is inuse + free pointer if
556 * not overlapping with object.
557 */
558static inline unsigned int get_info_end(struct kmem_cache *s)
559{
560 if (freeptr_outside_object(s))
561 return s->inuse + sizeof(void *);
562 else
563 return s->inuse;
564}
565
81819f0f
CL
566static struct track *get_track(struct kmem_cache *s, void *object,
567 enum track_item alloc)
568{
569 struct track *p;
570
cbfc35a4 571 p = object + get_info_end(s);
81819f0f
CL
572
573 return p + alloc;
574}
575
576static void set_track(struct kmem_cache *s, void *object,
ce71e27c 577 enum track_item alloc, unsigned long addr)
81819f0f 578{
1a00df4a 579 struct track *p = get_track(s, object, alloc);
81819f0f 580
81819f0f 581 if (addr) {
d6543e39 582#ifdef CONFIG_STACKTRACE
79716799 583 unsigned int nr_entries;
d6543e39 584
a79316c6 585 metadata_access_enable();
79716799 586 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 587 metadata_access_disable();
d6543e39 588
79716799
TG
589 if (nr_entries < TRACK_ADDRS_COUNT)
590 p->addrs[nr_entries] = 0;
d6543e39 591#endif
81819f0f
CL
592 p->addr = addr;
593 p->cpu = smp_processor_id();
88e4ccf2 594 p->pid = current->pid;
81819f0f 595 p->when = jiffies;
b8ca7ff7 596 } else {
81819f0f 597 memset(p, 0, sizeof(struct track));
b8ca7ff7 598 }
81819f0f
CL
599}
600
81819f0f
CL
601static void init_tracking(struct kmem_cache *s, void *object)
602{
24922684
CL
603 if (!(s->flags & SLAB_STORE_USER))
604 return;
605
ce71e27c
EGM
606 set_track(s, object, TRACK_FREE, 0UL);
607 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
608}
609
86609d33 610static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
611{
612 if (!t->addr)
613 return;
614
f9f58285 615 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 616 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
617#ifdef CONFIG_STACKTRACE
618 {
619 int i;
620 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
621 if (t->addrs[i])
f9f58285 622 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
623 else
624 break;
625 }
626#endif
24922684
CL
627}
628
e42f174e 629void print_tracking(struct kmem_cache *s, void *object)
24922684 630{
86609d33 631 unsigned long pr_time = jiffies;
24922684
CL
632 if (!(s->flags & SLAB_STORE_USER))
633 return;
634
86609d33
CP
635 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
636 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
637}
638
639static void print_page_info(struct page *page)
640{
f9f58285 641 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 642 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
643
644}
645
646static void slab_bug(struct kmem_cache *s, char *fmt, ...)
647{
ecc42fbe 648 struct va_format vaf;
24922684 649 va_list args;
24922684
CL
650
651 va_start(args, fmt);
ecc42fbe
FF
652 vaf.fmt = fmt;
653 vaf.va = &args;
f9f58285 654 pr_err("=============================================================================\n");
ecc42fbe 655 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 656 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 657
373d4d09 658 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 659 va_end(args);
81819f0f
CL
660}
661
24922684
CL
662static void slab_fix(struct kmem_cache *s, char *fmt, ...)
663{
ecc42fbe 664 struct va_format vaf;
24922684 665 va_list args;
24922684
CL
666
667 va_start(args, fmt);
ecc42fbe
FF
668 vaf.fmt = fmt;
669 vaf.va = &args;
670 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 671 va_end(args);
24922684
CL
672}
673
52f23478 674static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 675 void **freelist, void *nextfree)
52f23478
DZ
676{
677 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
678 !check_valid_pointer(s, page, nextfree) && freelist) {
679 object_err(s, page, *freelist, "Freechain corrupt");
680 *freelist = NULL;
52f23478
DZ
681 slab_fix(s, "Isolate corrupted freechain");
682 return true;
683 }
684
685 return false;
686}
687
24922684 688static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
689{
690 unsigned int off; /* Offset of last byte */
a973e9dd 691 u8 *addr = page_address(page);
24922684
CL
692
693 print_tracking(s, p);
694
695 print_page_info(page);
696
f9f58285
FF
697 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
698 p, p - addr, get_freepointer(s, p));
24922684 699
d86bd1be 700 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
701 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
702 s->red_left_pad);
d86bd1be 703 else if (p > addr + 16)
aa2efd5e 704 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 705
aa2efd5e 706 print_section(KERN_ERR, "Object ", p,
1b473f29 707 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 708 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 709 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 710 s->inuse - s->object_size);
81819f0f 711
cbfc35a4 712 off = get_info_end(s);
81819f0f 713
24922684 714 if (s->flags & SLAB_STORE_USER)
81819f0f 715 off += 2 * sizeof(struct track);
81819f0f 716
80a9201a
AP
717 off += kasan_metadata_size(s);
718
d86bd1be 719 if (off != size_from_object(s))
81819f0f 720 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
721 print_section(KERN_ERR, "Padding ", p + off,
722 size_from_object(s) - off);
24922684
CL
723
724 dump_stack();
81819f0f
CL
725}
726
75c66def 727void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
728 u8 *object, char *reason)
729{
3dc50637 730 slab_bug(s, "%s", reason);
24922684 731 print_trailer(s, page, object);
81819f0f
CL
732}
733
a38965bf 734static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 735 const char *fmt, ...)
81819f0f
CL
736{
737 va_list args;
738 char buf[100];
739
24922684
CL
740 va_start(args, fmt);
741 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 742 va_end(args);
3dc50637 743 slab_bug(s, "%s", buf);
24922684 744 print_page_info(page);
81819f0f
CL
745 dump_stack();
746}
747
f7cb1933 748static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
749{
750 u8 *p = object;
751
d86bd1be
JK
752 if (s->flags & SLAB_RED_ZONE)
753 memset(p - s->red_left_pad, val, s->red_left_pad);
754
81819f0f 755 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
756 memset(p, POISON_FREE, s->object_size - 1);
757 p[s->object_size - 1] = POISON_END;
81819f0f
CL
758 }
759
760 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 761 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
762}
763
24922684
CL
764static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
765 void *from, void *to)
766{
767 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
768 memset(from, data, to - from);
769}
770
771static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
772 u8 *object, char *what,
06428780 773 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
774{
775 u8 *fault;
776 u8 *end;
e1b70dd1 777 u8 *addr = page_address(page);
24922684 778
a79316c6 779 metadata_access_enable();
79824820 780 fault = memchr_inv(start, value, bytes);
a79316c6 781 metadata_access_disable();
24922684
CL
782 if (!fault)
783 return 1;
784
785 end = start + bytes;
786 while (end > fault && end[-1] == value)
787 end--;
788
789 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
790 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
791 fault, end - 1, fault - addr,
792 fault[0], value);
24922684
CL
793 print_trailer(s, page, object);
794
795 restore_bytes(s, what, value, fault, end);
796 return 0;
81819f0f
CL
797}
798
81819f0f
CL
799/*
800 * Object layout:
801 *
802 * object address
803 * Bytes of the object to be managed.
804 * If the freepointer may overlay the object then the free
cbfc35a4 805 * pointer is at the middle of the object.
672bba3a 806 *
81819f0f
CL
807 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
808 * 0xa5 (POISON_END)
809 *
3b0efdfa 810 * object + s->object_size
81819f0f 811 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 812 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 813 * object_size == inuse.
672bba3a 814 *
81819f0f
CL
815 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
816 * 0xcc (RED_ACTIVE) for objects in use.
817 *
818 * object + s->inuse
672bba3a
CL
819 * Meta data starts here.
820 *
81819f0f
CL
821 * A. Free pointer (if we cannot overwrite object on free)
822 * B. Tracking data for SLAB_STORE_USER
672bba3a 823 * C. Padding to reach required alignment boundary or at mininum
6446faa2 824 * one word if debugging is on to be able to detect writes
672bba3a
CL
825 * before the word boundary.
826 *
827 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
828 *
829 * object + s->size
672bba3a 830 * Nothing is used beyond s->size.
81819f0f 831 *
3b0efdfa 832 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 833 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
834 * may be used with merged slabcaches.
835 */
836
81819f0f
CL
837static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
838{
cbfc35a4 839 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
840
841 if (s->flags & SLAB_STORE_USER)
842 /* We also have user information there */
843 off += 2 * sizeof(struct track);
844
80a9201a
AP
845 off += kasan_metadata_size(s);
846
d86bd1be 847 if (size_from_object(s) == off)
81819f0f
CL
848 return 1;
849
24922684 850 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 851 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
852}
853
39b26464 854/* Check the pad bytes at the end of a slab page */
81819f0f
CL
855static int slab_pad_check(struct kmem_cache *s, struct page *page)
856{
24922684
CL
857 u8 *start;
858 u8 *fault;
859 u8 *end;
5d682681 860 u8 *pad;
24922684
CL
861 int length;
862 int remainder;
81819f0f
CL
863
864 if (!(s->flags & SLAB_POISON))
865 return 1;
866
a973e9dd 867 start = page_address(page);
a50b854e 868 length = page_size(page);
39b26464
CL
869 end = start + length;
870 remainder = length % s->size;
81819f0f
CL
871 if (!remainder)
872 return 1;
873
5d682681 874 pad = end - remainder;
a79316c6 875 metadata_access_enable();
5d682681 876 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 877 metadata_access_disable();
24922684
CL
878 if (!fault)
879 return 1;
880 while (end > fault && end[-1] == POISON_INUSE)
881 end--;
882
e1b70dd1
MC
883 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
884 fault, end - 1, fault - start);
5d682681 885 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 886
5d682681 887 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 888 return 0;
81819f0f
CL
889}
890
891static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 892 void *object, u8 val)
81819f0f
CL
893{
894 u8 *p = object;
3b0efdfa 895 u8 *endobject = object + s->object_size;
81819f0f
CL
896
897 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
898 if (!check_bytes_and_report(s, page, object, "Redzone",
899 object - s->red_left_pad, val, s->red_left_pad))
900 return 0;
901
24922684 902 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 903 endobject, val, s->inuse - s->object_size))
81819f0f 904 return 0;
81819f0f 905 } else {
3b0efdfa 906 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 907 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
908 endobject, POISON_INUSE,
909 s->inuse - s->object_size);
3adbefee 910 }
81819f0f
CL
911 }
912
913 if (s->flags & SLAB_POISON) {
f7cb1933 914 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 915 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 916 POISON_FREE, s->object_size - 1) ||
24922684 917 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 918 p + s->object_size - 1, POISON_END, 1)))
81819f0f 919 return 0;
81819f0f
CL
920 /*
921 * check_pad_bytes cleans up on its own.
922 */
923 check_pad_bytes(s, page, p);
924 }
925
cbfc35a4 926 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
927 /*
928 * Object and freepointer overlap. Cannot check
929 * freepointer while object is allocated.
930 */
931 return 1;
932
933 /* Check free pointer validity */
934 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
935 object_err(s, page, p, "Freepointer corrupt");
936 /*
9f6c708e 937 * No choice but to zap it and thus lose the remainder
81819f0f 938 * of the free objects in this slab. May cause
672bba3a 939 * another error because the object count is now wrong.
81819f0f 940 */
a973e9dd 941 set_freepointer(s, p, NULL);
81819f0f
CL
942 return 0;
943 }
944 return 1;
945}
946
947static int check_slab(struct kmem_cache *s, struct page *page)
948{
39b26464
CL
949 int maxobj;
950
81819f0f
CL
951 VM_BUG_ON(!irqs_disabled());
952
953 if (!PageSlab(page)) {
24922684 954 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
955 return 0;
956 }
39b26464 957
9736d2a9 958 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
959 if (page->objects > maxobj) {
960 slab_err(s, page, "objects %u > max %u",
f6edde9c 961 page->objects, maxobj);
39b26464
CL
962 return 0;
963 }
964 if (page->inuse > page->objects) {
24922684 965 slab_err(s, page, "inuse %u > max %u",
f6edde9c 966 page->inuse, page->objects);
81819f0f
CL
967 return 0;
968 }
969 /* Slab_pad_check fixes things up after itself */
970 slab_pad_check(s, page);
971 return 1;
972}
973
974/*
672bba3a
CL
975 * Determine if a certain object on a page is on the freelist. Must hold the
976 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
977 */
978static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
979{
980 int nr = 0;
881db7fb 981 void *fp;
81819f0f 982 void *object = NULL;
f6edde9c 983 int max_objects;
81819f0f 984
881db7fb 985 fp = page->freelist;
39b26464 986 while (fp && nr <= page->objects) {
81819f0f
CL
987 if (fp == search)
988 return 1;
989 if (!check_valid_pointer(s, page, fp)) {
990 if (object) {
991 object_err(s, page, object,
992 "Freechain corrupt");
a973e9dd 993 set_freepointer(s, object, NULL);
81819f0f 994 } else {
24922684 995 slab_err(s, page, "Freepointer corrupt");
a973e9dd 996 page->freelist = NULL;
39b26464 997 page->inuse = page->objects;
24922684 998 slab_fix(s, "Freelist cleared");
81819f0f
CL
999 return 0;
1000 }
1001 break;
1002 }
1003 object = fp;
1004 fp = get_freepointer(s, object);
1005 nr++;
1006 }
1007
9736d2a9 1008 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1009 if (max_objects > MAX_OBJS_PER_PAGE)
1010 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1011
1012 if (page->objects != max_objects) {
756a025f
JP
1013 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1014 page->objects, max_objects);
224a88be
CL
1015 page->objects = max_objects;
1016 slab_fix(s, "Number of objects adjusted.");
1017 }
39b26464 1018 if (page->inuse != page->objects - nr) {
756a025f
JP
1019 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1020 page->inuse, page->objects - nr);
39b26464 1021 page->inuse = page->objects - nr;
24922684 1022 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1023 }
1024 return search == NULL;
1025}
1026
0121c619
CL
1027static void trace(struct kmem_cache *s, struct page *page, void *object,
1028 int alloc)
3ec09742
CL
1029{
1030 if (s->flags & SLAB_TRACE) {
f9f58285 1031 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1032 s->name,
1033 alloc ? "alloc" : "free",
1034 object, page->inuse,
1035 page->freelist);
1036
1037 if (!alloc)
aa2efd5e 1038 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1039 s->object_size);
3ec09742
CL
1040
1041 dump_stack();
1042 }
1043}
1044
643b1138 1045/*
672bba3a 1046 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1047 */
5cc6eee8
CL
1048static void add_full(struct kmem_cache *s,
1049 struct kmem_cache_node *n, struct page *page)
643b1138 1050{
5cc6eee8
CL
1051 if (!(s->flags & SLAB_STORE_USER))
1052 return;
1053
255d0884 1054 lockdep_assert_held(&n->list_lock);
916ac052 1055 list_add(&page->slab_list, &n->full);
643b1138
CL
1056}
1057
c65c1877 1058static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1059{
643b1138
CL
1060 if (!(s->flags & SLAB_STORE_USER))
1061 return;
1062
255d0884 1063 lockdep_assert_held(&n->list_lock);
916ac052 1064 list_del(&page->slab_list);
643b1138
CL
1065}
1066
0f389ec6
CL
1067/* Tracking of the number of slabs for debugging purposes */
1068static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1069{
1070 struct kmem_cache_node *n = get_node(s, node);
1071
1072 return atomic_long_read(&n->nr_slabs);
1073}
1074
26c02cf0
AB
1075static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1076{
1077 return atomic_long_read(&n->nr_slabs);
1078}
1079
205ab99d 1080static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1081{
1082 struct kmem_cache_node *n = get_node(s, node);
1083
1084 /*
1085 * May be called early in order to allocate a slab for the
1086 * kmem_cache_node structure. Solve the chicken-egg
1087 * dilemma by deferring the increment of the count during
1088 * bootstrap (see early_kmem_cache_node_alloc).
1089 */
338b2642 1090 if (likely(n)) {
0f389ec6 1091 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1092 atomic_long_add(objects, &n->total_objects);
1093 }
0f389ec6 1094}
205ab99d 1095static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1096{
1097 struct kmem_cache_node *n = get_node(s, node);
1098
1099 atomic_long_dec(&n->nr_slabs);
205ab99d 1100 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1101}
1102
1103/* Object debug checks for alloc/free paths */
3ec09742
CL
1104static void setup_object_debug(struct kmem_cache *s, struct page *page,
1105 void *object)
1106{
8fc8d666 1107 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1108 return;
1109
f7cb1933 1110 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1111 init_tracking(s, object);
1112}
1113
a50b854e
MWO
1114static
1115void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1116{
8fc8d666 1117 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1118 return;
1119
1120 metadata_access_enable();
a50b854e 1121 memset(addr, POISON_INUSE, page_size(page));
a7101224
AK
1122 metadata_access_disable();
1123}
1124
becfda68 1125static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1126 struct page *page, void *object)
81819f0f
CL
1127{
1128 if (!check_slab(s, page))
becfda68 1129 return 0;
81819f0f 1130
81819f0f
CL
1131 if (!check_valid_pointer(s, page, object)) {
1132 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1133 return 0;
81819f0f
CL
1134 }
1135
f7cb1933 1136 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1137 return 0;
1138
1139 return 1;
1140}
1141
1142static noinline int alloc_debug_processing(struct kmem_cache *s,
1143 struct page *page,
1144 void *object, unsigned long addr)
1145{
1146 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1147 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1148 goto bad;
1149 }
81819f0f 1150
3ec09742
CL
1151 /* Success perform special debug activities for allocs */
1152 if (s->flags & SLAB_STORE_USER)
1153 set_track(s, object, TRACK_ALLOC, addr);
1154 trace(s, page, object, 1);
f7cb1933 1155 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1156 return 1;
3ec09742 1157
81819f0f
CL
1158bad:
1159 if (PageSlab(page)) {
1160 /*
1161 * If this is a slab page then lets do the best we can
1162 * to avoid issues in the future. Marking all objects
672bba3a 1163 * as used avoids touching the remaining objects.
81819f0f 1164 */
24922684 1165 slab_fix(s, "Marking all objects used");
39b26464 1166 page->inuse = page->objects;
a973e9dd 1167 page->freelist = NULL;
81819f0f
CL
1168 }
1169 return 0;
1170}
1171
becfda68
LA
1172static inline int free_consistency_checks(struct kmem_cache *s,
1173 struct page *page, void *object, unsigned long addr)
81819f0f 1174{
81819f0f 1175 if (!check_valid_pointer(s, page, object)) {
70d71228 1176 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1177 return 0;
81819f0f
CL
1178 }
1179
1180 if (on_freelist(s, page, object)) {
24922684 1181 object_err(s, page, object, "Object already free");
becfda68 1182 return 0;
81819f0f
CL
1183 }
1184
f7cb1933 1185 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1186 return 0;
81819f0f 1187
1b4f59e3 1188 if (unlikely(s != page->slab_cache)) {
3adbefee 1189 if (!PageSlab(page)) {
756a025f
JP
1190 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1191 object);
1b4f59e3 1192 } else if (!page->slab_cache) {
f9f58285
FF
1193 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1194 object);
70d71228 1195 dump_stack();
06428780 1196 } else
24922684
CL
1197 object_err(s, page, object,
1198 "page slab pointer corrupt.");
becfda68
LA
1199 return 0;
1200 }
1201 return 1;
1202}
1203
1204/* Supports checking bulk free of a constructed freelist */
1205static noinline int free_debug_processing(
1206 struct kmem_cache *s, struct page *page,
1207 void *head, void *tail, int bulk_cnt,
1208 unsigned long addr)
1209{
1210 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1211 void *object = head;
1212 int cnt = 0;
3f649ab7 1213 unsigned long flags;
becfda68
LA
1214 int ret = 0;
1215
1216 spin_lock_irqsave(&n->list_lock, flags);
1217 slab_lock(page);
1218
1219 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1220 if (!check_slab(s, page))
1221 goto out;
1222 }
1223
1224next_object:
1225 cnt++;
1226
1227 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1228 if (!free_consistency_checks(s, page, object, addr))
1229 goto out;
81819f0f 1230 }
3ec09742 1231
3ec09742
CL
1232 if (s->flags & SLAB_STORE_USER)
1233 set_track(s, object, TRACK_FREE, addr);
1234 trace(s, page, object, 0);
81084651 1235 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1236 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1237
1238 /* Reached end of constructed freelist yet? */
1239 if (object != tail) {
1240 object = get_freepointer(s, object);
1241 goto next_object;
1242 }
804aa132
LA
1243 ret = 1;
1244
5c2e4bbb 1245out:
81084651
JDB
1246 if (cnt != bulk_cnt)
1247 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1248 bulk_cnt, cnt);
1249
881db7fb 1250 slab_unlock(page);
282acb43 1251 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1252 if (!ret)
1253 slab_fix(s, "Object at 0x%p not freed", object);
1254 return ret;
81819f0f
CL
1255}
1256
e17f1dfb
VB
1257/*
1258 * Parse a block of slub_debug options. Blocks are delimited by ';'
1259 *
1260 * @str: start of block
1261 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1262 * @slabs: return start of list of slabs, or NULL when there's no list
1263 * @init: assume this is initial parsing and not per-kmem-create parsing
1264 *
1265 * returns the start of next block if there's any, or NULL
1266 */
1267static char *
1268parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1269{
e17f1dfb 1270 bool higher_order_disable = false;
f0630fff 1271
e17f1dfb
VB
1272 /* Skip any completely empty blocks */
1273 while (*str && *str == ';')
1274 str++;
1275
1276 if (*str == ',') {
f0630fff
CL
1277 /*
1278 * No options but restriction on slabs. This means full
1279 * debugging for slabs matching a pattern.
1280 */
e17f1dfb 1281 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1282 goto check_slabs;
e17f1dfb
VB
1283 }
1284 *flags = 0;
f0630fff 1285
e17f1dfb
VB
1286 /* Determine which debug features should be switched on */
1287 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1288 switch (tolower(*str)) {
e17f1dfb
VB
1289 case '-':
1290 *flags = 0;
1291 break;
f0630fff 1292 case 'f':
e17f1dfb 1293 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1294 break;
1295 case 'z':
e17f1dfb 1296 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1297 break;
1298 case 'p':
e17f1dfb 1299 *flags |= SLAB_POISON;
f0630fff
CL
1300 break;
1301 case 'u':
e17f1dfb 1302 *flags |= SLAB_STORE_USER;
f0630fff
CL
1303 break;
1304 case 't':
e17f1dfb 1305 *flags |= SLAB_TRACE;
f0630fff 1306 break;
4c13dd3b 1307 case 'a':
e17f1dfb 1308 *flags |= SLAB_FAILSLAB;
4c13dd3b 1309 break;
08303a73
CA
1310 case 'o':
1311 /*
1312 * Avoid enabling debugging on caches if its minimum
1313 * order would increase as a result.
1314 */
e17f1dfb 1315 higher_order_disable = true;
08303a73 1316 break;
f0630fff 1317 default:
e17f1dfb
VB
1318 if (init)
1319 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1320 }
41ecc55b 1321 }
f0630fff 1322check_slabs:
41ecc55b 1323 if (*str == ',')
e17f1dfb
VB
1324 *slabs = ++str;
1325 else
1326 *slabs = NULL;
1327
1328 /* Skip over the slab list */
1329 while (*str && *str != ';')
1330 str++;
1331
1332 /* Skip any completely empty blocks */
1333 while (*str && *str == ';')
1334 str++;
1335
1336 if (init && higher_order_disable)
1337 disable_higher_order_debug = 1;
1338
1339 if (*str)
1340 return str;
1341 else
1342 return NULL;
1343}
1344
1345static int __init setup_slub_debug(char *str)
1346{
1347 slab_flags_t flags;
1348 char *saved_str;
1349 char *slab_list;
1350 bool global_slub_debug_changed = false;
1351 bool slab_list_specified = false;
1352
1353 slub_debug = DEBUG_DEFAULT_FLAGS;
1354 if (*str++ != '=' || !*str)
1355 /*
1356 * No options specified. Switch on full debugging.
1357 */
1358 goto out;
1359
1360 saved_str = str;
1361 while (str) {
1362 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1363
1364 if (!slab_list) {
1365 slub_debug = flags;
1366 global_slub_debug_changed = true;
1367 } else {
1368 slab_list_specified = true;
1369 }
1370 }
1371
1372 /*
1373 * For backwards compatibility, a single list of flags with list of
1374 * slabs means debugging is only enabled for those slabs, so the global
1375 * slub_debug should be 0. We can extended that to multiple lists as
1376 * long as there is no option specifying flags without a slab list.
1377 */
1378 if (slab_list_specified) {
1379 if (!global_slub_debug_changed)
1380 slub_debug = 0;
1381 slub_debug_string = saved_str;
1382 }
f0630fff 1383out:
ca0cab65
VB
1384 if (slub_debug != 0 || slub_debug_string)
1385 static_branch_enable(&slub_debug_enabled);
6471384a
AP
1386 if ((static_branch_unlikely(&init_on_alloc) ||
1387 static_branch_unlikely(&init_on_free)) &&
1388 (slub_debug & SLAB_POISON))
1389 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1390 return 1;
1391}
1392
1393__setup("slub_debug", setup_slub_debug);
1394
c5fd3ca0
AT
1395/*
1396 * kmem_cache_flags - apply debugging options to the cache
1397 * @object_size: the size of an object without meta data
1398 * @flags: flags to set
1399 * @name: name of the cache
1400 * @ctor: constructor function
1401 *
1402 * Debug option(s) are applied to @flags. In addition to the debug
1403 * option(s), if a slab name (or multiple) is specified i.e.
1404 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1405 * then only the select slabs will receive the debug option(s).
1406 */
0293d1fd 1407slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1408 slab_flags_t flags, const char *name,
51cc5068 1409 void (*ctor)(void *))
41ecc55b 1410{
c5fd3ca0
AT
1411 char *iter;
1412 size_t len;
e17f1dfb
VB
1413 char *next_block;
1414 slab_flags_t block_flags;
c5fd3ca0 1415
c5fd3ca0 1416 len = strlen(name);
e17f1dfb
VB
1417 next_block = slub_debug_string;
1418 /* Go through all blocks of debug options, see if any matches our slab's name */
1419 while (next_block) {
1420 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1421 if (!iter)
1422 continue;
1423 /* Found a block that has a slab list, search it */
1424 while (*iter) {
1425 char *end, *glob;
1426 size_t cmplen;
1427
1428 end = strchrnul(iter, ',');
1429 if (next_block && next_block < end)
1430 end = next_block - 1;
1431
1432 glob = strnchr(iter, end - iter, '*');
1433 if (glob)
1434 cmplen = glob - iter;
1435 else
1436 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1437
e17f1dfb
VB
1438 if (!strncmp(name, iter, cmplen)) {
1439 flags |= block_flags;
1440 return flags;
1441 }
c5fd3ca0 1442
e17f1dfb
VB
1443 if (!*end || *end == ';')
1444 break;
1445 iter = end + 1;
c5fd3ca0 1446 }
c5fd3ca0 1447 }
ba0268a8 1448
484cfaca 1449 return flags | slub_debug;
41ecc55b 1450}
b4a64718 1451#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1452static inline void setup_object_debug(struct kmem_cache *s,
1453 struct page *page, void *object) {}
a50b854e
MWO
1454static inline
1455void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1456
3ec09742 1457static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1458 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1459
282acb43 1460static inline int free_debug_processing(
81084651
JDB
1461 struct kmem_cache *s, struct page *page,
1462 void *head, void *tail, int bulk_cnt,
282acb43 1463 unsigned long addr) { return 0; }
41ecc55b 1464
41ecc55b
CL
1465static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1466 { return 1; }
1467static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1468 void *object, u8 val) { return 1; }
5cc6eee8
CL
1469static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1470 struct page *page) {}
c65c1877
PZ
1471static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1472 struct page *page) {}
0293d1fd 1473slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1474 slab_flags_t flags, const char *name,
51cc5068 1475 void (*ctor)(void *))
ba0268a8
CL
1476{
1477 return flags;
1478}
41ecc55b 1479#define slub_debug 0
0f389ec6 1480
fdaa45e9
IM
1481#define disable_higher_order_debug 0
1482
0f389ec6
CL
1483static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1484 { return 0; }
26c02cf0
AB
1485static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1486 { return 0; }
205ab99d
CL
1487static inline void inc_slabs_node(struct kmem_cache *s, int node,
1488 int objects) {}
1489static inline void dec_slabs_node(struct kmem_cache *s, int node,
1490 int objects) {}
7d550c56 1491
52f23478 1492static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1493 void **freelist, void *nextfree)
52f23478
DZ
1494{
1495 return false;
1496}
02e72cc6
AR
1497#endif /* CONFIG_SLUB_DEBUG */
1498
1499/*
1500 * Hooks for other subsystems that check memory allocations. In a typical
1501 * production configuration these hooks all should produce no code at all.
1502 */
0116523c 1503static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1504{
53128245 1505 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1506 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1507 kmemleak_alloc(ptr, size, 1, flags);
53128245 1508 return ptr;
d56791b3
RB
1509}
1510
ee3ce779 1511static __always_inline void kfree_hook(void *x)
d56791b3
RB
1512{
1513 kmemleak_free(x);
ee3ce779 1514 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1515}
1516
c3895391 1517static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1518{
1519 kmemleak_free_recursive(x, s->flags);
7d550c56 1520
02e72cc6
AR
1521 /*
1522 * Trouble is that we may no longer disable interrupts in the fast path
1523 * So in order to make the debug calls that expect irqs to be
1524 * disabled we need to disable interrupts temporarily.
1525 */
4675ff05 1526#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1527 {
1528 unsigned long flags;
1529
1530 local_irq_save(flags);
02e72cc6
AR
1531 debug_check_no_locks_freed(x, s->object_size);
1532 local_irq_restore(flags);
1533 }
1534#endif
1535 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1536 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1537
cfbe1636
ME
1538 /* Use KCSAN to help debug racy use-after-free. */
1539 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1540 __kcsan_check_access(x, s->object_size,
1541 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1542
c3895391
AK
1543 /* KASAN might put x into memory quarantine, delaying its reuse */
1544 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1545}
205ab99d 1546
c3895391
AK
1547static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1548 void **head, void **tail)
81084651 1549{
6471384a
AP
1550
1551 void *object;
1552 void *next = *head;
1553 void *old_tail = *tail ? *tail : *head;
1554 int rsize;
1555
aea4df4c
LA
1556 /* Head and tail of the reconstructed freelist */
1557 *head = NULL;
1558 *tail = NULL;
1b7e816f 1559
aea4df4c
LA
1560 do {
1561 object = next;
1562 next = get_freepointer(s, object);
1563
1564 if (slab_want_init_on_free(s)) {
6471384a
AP
1565 /*
1566 * Clear the object and the metadata, but don't touch
1567 * the redzone.
1568 */
1569 memset(object, 0, s->object_size);
1570 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1571 : 0;
1572 memset((char *)object + s->inuse, 0,
1573 s->size - s->inuse - rsize);
81084651 1574
aea4df4c 1575 }
c3895391
AK
1576 /* If object's reuse doesn't have to be delayed */
1577 if (!slab_free_hook(s, object)) {
1578 /* Move object to the new freelist */
1579 set_freepointer(s, object, *head);
1580 *head = object;
1581 if (!*tail)
1582 *tail = object;
1583 }
1584 } while (object != old_tail);
1585
1586 if (*head == *tail)
1587 *tail = NULL;
1588
1589 return *head != NULL;
81084651
JDB
1590}
1591
4d176711 1592static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1593 void *object)
1594{
1595 setup_object_debug(s, page, object);
4d176711 1596 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1597 if (unlikely(s->ctor)) {
1598 kasan_unpoison_object_data(s, object);
1599 s->ctor(object);
1600 kasan_poison_object_data(s, object);
1601 }
4d176711 1602 return object;
588f8ba9
TG
1603}
1604
81819f0f
CL
1605/*
1606 * Slab allocation and freeing
1607 */
5dfb4175
VD
1608static inline struct page *alloc_slab_page(struct kmem_cache *s,
1609 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1610{
5dfb4175 1611 struct page *page;
19af27af 1612 unsigned int order = oo_order(oo);
65c3376a 1613
2154a336 1614 if (node == NUMA_NO_NODE)
5dfb4175 1615 page = alloc_pages(flags, order);
65c3376a 1616 else
96db800f 1617 page = __alloc_pages_node(node, flags, order);
5dfb4175 1618
10befea9 1619 if (page)
74d555be 1620 account_slab_page(page, order, s);
5dfb4175
VD
1621
1622 return page;
65c3376a
CL
1623}
1624
210e7a43
TG
1625#ifdef CONFIG_SLAB_FREELIST_RANDOM
1626/* Pre-initialize the random sequence cache */
1627static int init_cache_random_seq(struct kmem_cache *s)
1628{
19af27af 1629 unsigned int count = oo_objects(s->oo);
210e7a43 1630 int err;
210e7a43 1631
a810007a
SR
1632 /* Bailout if already initialised */
1633 if (s->random_seq)
1634 return 0;
1635
210e7a43
TG
1636 err = cache_random_seq_create(s, count, GFP_KERNEL);
1637 if (err) {
1638 pr_err("SLUB: Unable to initialize free list for %s\n",
1639 s->name);
1640 return err;
1641 }
1642
1643 /* Transform to an offset on the set of pages */
1644 if (s->random_seq) {
19af27af
AD
1645 unsigned int i;
1646
210e7a43
TG
1647 for (i = 0; i < count; i++)
1648 s->random_seq[i] *= s->size;
1649 }
1650 return 0;
1651}
1652
1653/* Initialize each random sequence freelist per cache */
1654static void __init init_freelist_randomization(void)
1655{
1656 struct kmem_cache *s;
1657
1658 mutex_lock(&slab_mutex);
1659
1660 list_for_each_entry(s, &slab_caches, list)
1661 init_cache_random_seq(s);
1662
1663 mutex_unlock(&slab_mutex);
1664}
1665
1666/* Get the next entry on the pre-computed freelist randomized */
1667static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1668 unsigned long *pos, void *start,
1669 unsigned long page_limit,
1670 unsigned long freelist_count)
1671{
1672 unsigned int idx;
1673
1674 /*
1675 * If the target page allocation failed, the number of objects on the
1676 * page might be smaller than the usual size defined by the cache.
1677 */
1678 do {
1679 idx = s->random_seq[*pos];
1680 *pos += 1;
1681 if (*pos >= freelist_count)
1682 *pos = 0;
1683 } while (unlikely(idx >= page_limit));
1684
1685 return (char *)start + idx;
1686}
1687
1688/* Shuffle the single linked freelist based on a random pre-computed sequence */
1689static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1690{
1691 void *start;
1692 void *cur;
1693 void *next;
1694 unsigned long idx, pos, page_limit, freelist_count;
1695
1696 if (page->objects < 2 || !s->random_seq)
1697 return false;
1698
1699 freelist_count = oo_objects(s->oo);
1700 pos = get_random_int() % freelist_count;
1701
1702 page_limit = page->objects * s->size;
1703 start = fixup_red_left(s, page_address(page));
1704
1705 /* First entry is used as the base of the freelist */
1706 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1707 freelist_count);
4d176711 1708 cur = setup_object(s, page, cur);
210e7a43
TG
1709 page->freelist = cur;
1710
1711 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1712 next = next_freelist_entry(s, page, &pos, start, page_limit,
1713 freelist_count);
4d176711 1714 next = setup_object(s, page, next);
210e7a43
TG
1715 set_freepointer(s, cur, next);
1716 cur = next;
1717 }
210e7a43
TG
1718 set_freepointer(s, cur, NULL);
1719
1720 return true;
1721}
1722#else
1723static inline int init_cache_random_seq(struct kmem_cache *s)
1724{
1725 return 0;
1726}
1727static inline void init_freelist_randomization(void) { }
1728static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1729{
1730 return false;
1731}
1732#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1733
81819f0f
CL
1734static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1735{
06428780 1736 struct page *page;
834f3d11 1737 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1738 gfp_t alloc_gfp;
4d176711 1739 void *start, *p, *next;
a50b854e 1740 int idx;
210e7a43 1741 bool shuffle;
81819f0f 1742
7e0528da
CL
1743 flags &= gfp_allowed_mask;
1744
d0164adc 1745 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1746 local_irq_enable();
1747
b7a49f0d 1748 flags |= s->allocflags;
e12ba74d 1749
ba52270d
PE
1750 /*
1751 * Let the initial higher-order allocation fail under memory pressure
1752 * so we fall-back to the minimum order allocation.
1753 */
1754 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1755 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1756 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1757
5dfb4175 1758 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1759 if (unlikely(!page)) {
1760 oo = s->min;
80c3a998 1761 alloc_gfp = flags;
65c3376a
CL
1762 /*
1763 * Allocation may have failed due to fragmentation.
1764 * Try a lower order alloc if possible
1765 */
5dfb4175 1766 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1767 if (unlikely(!page))
1768 goto out;
1769 stat(s, ORDER_FALLBACK);
65c3376a 1770 }
5a896d9e 1771
834f3d11 1772 page->objects = oo_objects(oo);
81819f0f 1773
1b4f59e3 1774 page->slab_cache = s;
c03f94cc 1775 __SetPageSlab(page);
2f064f34 1776 if (page_is_pfmemalloc(page))
072bb0aa 1777 SetPageSlabPfmemalloc(page);
81819f0f 1778
a7101224 1779 kasan_poison_slab(page);
81819f0f 1780
a7101224 1781 start = page_address(page);
81819f0f 1782
a50b854e 1783 setup_page_debug(s, page, start);
0316bec2 1784
210e7a43
TG
1785 shuffle = shuffle_freelist(s, page);
1786
1787 if (!shuffle) {
4d176711
AK
1788 start = fixup_red_left(s, start);
1789 start = setup_object(s, page, start);
1790 page->freelist = start;
18e50661
AK
1791 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1792 next = p + s->size;
1793 next = setup_object(s, page, next);
1794 set_freepointer(s, p, next);
1795 p = next;
1796 }
1797 set_freepointer(s, p, NULL);
81819f0f 1798 }
81819f0f 1799
e6e82ea1 1800 page->inuse = page->objects;
8cb0a506 1801 page->frozen = 1;
588f8ba9 1802
81819f0f 1803out:
d0164adc 1804 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1805 local_irq_disable();
1806 if (!page)
1807 return NULL;
1808
588f8ba9
TG
1809 inc_slabs_node(s, page_to_nid(page), page->objects);
1810
81819f0f
CL
1811 return page;
1812}
1813
588f8ba9
TG
1814static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1815{
44405099
LL
1816 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1817 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1818
1819 return allocate_slab(s,
1820 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1821}
1822
81819f0f
CL
1823static void __free_slab(struct kmem_cache *s, struct page *page)
1824{
834f3d11
CL
1825 int order = compound_order(page);
1826 int pages = 1 << order;
81819f0f 1827
8fc8d666 1828 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1829 void *p;
1830
1831 slab_pad_check(s, page);
224a88be
CL
1832 for_each_object(p, s, page_address(page),
1833 page->objects)
f7cb1933 1834 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1835 }
1836
072bb0aa 1837 __ClearPageSlabPfmemalloc(page);
49bd5221 1838 __ClearPageSlab(page);
0c06dd75
VB
1839 /* In union with page->mapping where page allocator expects NULL */
1840 page->slab_cache = NULL;
1eb5ac64
NP
1841 if (current->reclaim_state)
1842 current->reclaim_state->reclaimed_slab += pages;
74d555be 1843 unaccount_slab_page(page, order, s);
27ee57c9 1844 __free_pages(page, order);
81819f0f
CL
1845}
1846
1847static void rcu_free_slab(struct rcu_head *h)
1848{
bf68c214 1849 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1850
1b4f59e3 1851 __free_slab(page->slab_cache, page);
81819f0f
CL
1852}
1853
1854static void free_slab(struct kmem_cache *s, struct page *page)
1855{
5f0d5a3a 1856 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1857 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1858 } else
1859 __free_slab(s, page);
1860}
1861
1862static void discard_slab(struct kmem_cache *s, struct page *page)
1863{
205ab99d 1864 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1865 free_slab(s, page);
1866}
1867
1868/*
5cc6eee8 1869 * Management of partially allocated slabs.
81819f0f 1870 */
1e4dd946
SR
1871static inline void
1872__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1873{
e95eed57 1874 n->nr_partial++;
136333d1 1875 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1876 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1877 else
916ac052 1878 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1879}
1880
1e4dd946
SR
1881static inline void add_partial(struct kmem_cache_node *n,
1882 struct page *page, int tail)
62e346a8 1883{
c65c1877 1884 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1885 __add_partial(n, page, tail);
1886}
c65c1877 1887
1e4dd946
SR
1888static inline void remove_partial(struct kmem_cache_node *n,
1889 struct page *page)
1890{
1891 lockdep_assert_held(&n->list_lock);
916ac052 1892 list_del(&page->slab_list);
52b4b950 1893 n->nr_partial--;
1e4dd946
SR
1894}
1895
81819f0f 1896/*
7ced3719
CL
1897 * Remove slab from the partial list, freeze it and
1898 * return the pointer to the freelist.
81819f0f 1899 *
497b66f2 1900 * Returns a list of objects or NULL if it fails.
81819f0f 1901 */
497b66f2 1902static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1903 struct kmem_cache_node *n, struct page *page,
633b0764 1904 int mode, int *objects)
81819f0f 1905{
2cfb7455
CL
1906 void *freelist;
1907 unsigned long counters;
1908 struct page new;
1909
c65c1877
PZ
1910 lockdep_assert_held(&n->list_lock);
1911
2cfb7455
CL
1912 /*
1913 * Zap the freelist and set the frozen bit.
1914 * The old freelist is the list of objects for the
1915 * per cpu allocation list.
1916 */
7ced3719
CL
1917 freelist = page->freelist;
1918 counters = page->counters;
1919 new.counters = counters;
633b0764 1920 *objects = new.objects - new.inuse;
23910c50 1921 if (mode) {
7ced3719 1922 new.inuse = page->objects;
23910c50
PE
1923 new.freelist = NULL;
1924 } else {
1925 new.freelist = freelist;
1926 }
2cfb7455 1927
a0132ac0 1928 VM_BUG_ON(new.frozen);
7ced3719 1929 new.frozen = 1;
2cfb7455 1930
7ced3719 1931 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1932 freelist, counters,
02d7633f 1933 new.freelist, new.counters,
7ced3719 1934 "acquire_slab"))
7ced3719 1935 return NULL;
2cfb7455
CL
1936
1937 remove_partial(n, page);
7ced3719 1938 WARN_ON(!freelist);
49e22585 1939 return freelist;
81819f0f
CL
1940}
1941
633b0764 1942static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1943static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1944
81819f0f 1945/*
672bba3a 1946 * Try to allocate a partial slab from a specific node.
81819f0f 1947 */
8ba00bb6
JK
1948static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1949 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1950{
49e22585
CL
1951 struct page *page, *page2;
1952 void *object = NULL;
e5d9998f 1953 unsigned int available = 0;
633b0764 1954 int objects;
81819f0f
CL
1955
1956 /*
1957 * Racy check. If we mistakenly see no partial slabs then we
1958 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 1959 * partial slab and there is none available then get_partial()
672bba3a 1960 * will return NULL.
81819f0f
CL
1961 */
1962 if (!n || !n->nr_partial)
1963 return NULL;
1964
1965 spin_lock(&n->list_lock);
916ac052 1966 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1967 void *t;
49e22585 1968
8ba00bb6
JK
1969 if (!pfmemalloc_match(page, flags))
1970 continue;
1971
633b0764 1972 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1973 if (!t)
1974 break;
1975
633b0764 1976 available += objects;
12d79634 1977 if (!object) {
49e22585 1978 c->page = page;
49e22585 1979 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1980 object = t;
49e22585 1981 } else {
633b0764 1982 put_cpu_partial(s, page, 0);
8028dcea 1983 stat(s, CPU_PARTIAL_NODE);
49e22585 1984 }
345c905d 1985 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1986 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1987 break;
1988
497b66f2 1989 }
81819f0f 1990 spin_unlock(&n->list_lock);
497b66f2 1991 return object;
81819f0f
CL
1992}
1993
1994/*
672bba3a 1995 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1996 */
de3ec035 1997static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1998 struct kmem_cache_cpu *c)
81819f0f
CL
1999{
2000#ifdef CONFIG_NUMA
2001 struct zonelist *zonelist;
dd1a239f 2002 struct zoneref *z;
54a6eb5c 2003 struct zone *zone;
97a225e6 2004 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2005 void *object;
cc9a6c87 2006 unsigned int cpuset_mems_cookie;
81819f0f
CL
2007
2008 /*
672bba3a
CL
2009 * The defrag ratio allows a configuration of the tradeoffs between
2010 * inter node defragmentation and node local allocations. A lower
2011 * defrag_ratio increases the tendency to do local allocations
2012 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2013 *
672bba3a
CL
2014 * If the defrag_ratio is set to 0 then kmalloc() always
2015 * returns node local objects. If the ratio is higher then kmalloc()
2016 * may return off node objects because partial slabs are obtained
2017 * from other nodes and filled up.
81819f0f 2018 *
43efd3ea
LP
2019 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2020 * (which makes defrag_ratio = 1000) then every (well almost)
2021 * allocation will first attempt to defrag slab caches on other nodes.
2022 * This means scanning over all nodes to look for partial slabs which
2023 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2024 * with available objects.
81819f0f 2025 */
9824601e
CL
2026 if (!s->remote_node_defrag_ratio ||
2027 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2028 return NULL;
2029
cc9a6c87 2030 do {
d26914d1 2031 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2032 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2033 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2034 struct kmem_cache_node *n;
2035
2036 n = get_node(s, zone_to_nid(zone));
2037
dee2f8aa 2038 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2039 n->nr_partial > s->min_partial) {
8ba00bb6 2040 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2041 if (object) {
2042 /*
d26914d1
MG
2043 * Don't check read_mems_allowed_retry()
2044 * here - if mems_allowed was updated in
2045 * parallel, that was a harmless race
2046 * between allocation and the cpuset
2047 * update
cc9a6c87 2048 */
cc9a6c87
MG
2049 return object;
2050 }
c0ff7453 2051 }
81819f0f 2052 }
d26914d1 2053 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2054#endif /* CONFIG_NUMA */
81819f0f
CL
2055 return NULL;
2056}
2057
2058/*
2059 * Get a partial page, lock it and return it.
2060 */
497b66f2 2061static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2062 struct kmem_cache_cpu *c)
81819f0f 2063{
497b66f2 2064 void *object;
a561ce00
JK
2065 int searchnode = node;
2066
2067 if (node == NUMA_NO_NODE)
2068 searchnode = numa_mem_id();
81819f0f 2069
8ba00bb6 2070 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2071 if (object || node != NUMA_NO_NODE)
2072 return object;
81819f0f 2073
acd19fd1 2074 return get_any_partial(s, flags, c);
81819f0f
CL
2075}
2076
923717cb 2077#ifdef CONFIG_PREEMPTION
8a5ec0ba 2078/*
0d645ed1 2079 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2080 * during cmpxchg. The transactions start with the cpu number and are then
2081 * incremented by CONFIG_NR_CPUS.
2082 */
2083#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2084#else
2085/*
2086 * No preemption supported therefore also no need to check for
2087 * different cpus.
2088 */
2089#define TID_STEP 1
2090#endif
2091
2092static inline unsigned long next_tid(unsigned long tid)
2093{
2094 return tid + TID_STEP;
2095}
2096
9d5f0be0 2097#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2098static inline unsigned int tid_to_cpu(unsigned long tid)
2099{
2100 return tid % TID_STEP;
2101}
2102
2103static inline unsigned long tid_to_event(unsigned long tid)
2104{
2105 return tid / TID_STEP;
2106}
9d5f0be0 2107#endif
8a5ec0ba
CL
2108
2109static inline unsigned int init_tid(int cpu)
2110{
2111 return cpu;
2112}
2113
2114static inline void note_cmpxchg_failure(const char *n,
2115 const struct kmem_cache *s, unsigned long tid)
2116{
2117#ifdef SLUB_DEBUG_CMPXCHG
2118 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2119
f9f58285 2120 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2121
923717cb 2122#ifdef CONFIG_PREEMPTION
8a5ec0ba 2123 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2124 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2125 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2126 else
2127#endif
2128 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2129 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2130 tid_to_event(tid), tid_to_event(actual_tid));
2131 else
f9f58285 2132 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2133 actual_tid, tid, next_tid(tid));
2134#endif
4fdccdfb 2135 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2136}
2137
788e1aad 2138static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2139{
8a5ec0ba
CL
2140 int cpu;
2141
2142 for_each_possible_cpu(cpu)
2143 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2144}
2cfb7455 2145
81819f0f
CL
2146/*
2147 * Remove the cpu slab
2148 */
d0e0ac97 2149static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2150 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2151{
2cfb7455 2152 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2153 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2154 int lock = 0;
2155 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2156 void *nextfree;
136333d1 2157 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2158 struct page new;
2159 struct page old;
2160
2161 if (page->freelist) {
84e554e6 2162 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2163 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2164 }
2165
894b8788 2166 /*
2cfb7455
CL
2167 * Stage one: Free all available per cpu objects back
2168 * to the page freelist while it is still frozen. Leave the
2169 * last one.
2170 *
2171 * There is no need to take the list->lock because the page
2172 * is still frozen.
2173 */
2174 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2175 void *prior;
2176 unsigned long counters;
2177
52f23478
DZ
2178 /*
2179 * If 'nextfree' is invalid, it is possible that the object at
2180 * 'freelist' is already corrupted. So isolate all objects
2181 * starting at 'freelist'.
2182 */
dc07a728 2183 if (freelist_corrupted(s, page, &freelist, nextfree))
52f23478
DZ
2184 break;
2185
2cfb7455
CL
2186 do {
2187 prior = page->freelist;
2188 counters = page->counters;
2189 set_freepointer(s, freelist, prior);
2190 new.counters = counters;
2191 new.inuse--;
a0132ac0 2192 VM_BUG_ON(!new.frozen);
2cfb7455 2193
1d07171c 2194 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2195 prior, counters,
2196 freelist, new.counters,
2197 "drain percpu freelist"));
2198
2199 freelist = nextfree;
2200 }
2201
894b8788 2202 /*
2cfb7455
CL
2203 * Stage two: Ensure that the page is unfrozen while the
2204 * list presence reflects the actual number of objects
2205 * during unfreeze.
2206 *
2207 * We setup the list membership and then perform a cmpxchg
2208 * with the count. If there is a mismatch then the page
2209 * is not unfrozen but the page is on the wrong list.
2210 *
2211 * Then we restart the process which may have to remove
2212 * the page from the list that we just put it on again
2213 * because the number of objects in the slab may have
2214 * changed.
894b8788 2215 */
2cfb7455 2216redo:
894b8788 2217
2cfb7455
CL
2218 old.freelist = page->freelist;
2219 old.counters = page->counters;
a0132ac0 2220 VM_BUG_ON(!old.frozen);
7c2e132c 2221
2cfb7455
CL
2222 /* Determine target state of the slab */
2223 new.counters = old.counters;
2224 if (freelist) {
2225 new.inuse--;
2226 set_freepointer(s, freelist, old.freelist);
2227 new.freelist = freelist;
2228 } else
2229 new.freelist = old.freelist;
2230
2231 new.frozen = 0;
2232
8a5b20ae 2233 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2234 m = M_FREE;
2235 else if (new.freelist) {
2236 m = M_PARTIAL;
2237 if (!lock) {
2238 lock = 1;
2239 /*
8bb4e7a2 2240 * Taking the spinlock removes the possibility
2cfb7455
CL
2241 * that acquire_slab() will see a slab page that
2242 * is frozen
2243 */
2244 spin_lock(&n->list_lock);
2245 }
2246 } else {
2247 m = M_FULL;
965c4848 2248 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2249 lock = 1;
2250 /*
2251 * This also ensures that the scanning of full
2252 * slabs from diagnostic functions will not see
2253 * any frozen slabs.
2254 */
2255 spin_lock(&n->list_lock);
2256 }
2257 }
2258
2259 if (l != m) {
2cfb7455 2260 if (l == M_PARTIAL)
2cfb7455 2261 remove_partial(n, page);
2cfb7455 2262 else if (l == M_FULL)
c65c1877 2263 remove_full(s, n, page);
2cfb7455 2264
88349a28 2265 if (m == M_PARTIAL)
2cfb7455 2266 add_partial(n, page, tail);
88349a28 2267 else if (m == M_FULL)
2cfb7455 2268 add_full(s, n, page);
2cfb7455
CL
2269 }
2270
2271 l = m;
1d07171c 2272 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2273 old.freelist, old.counters,
2274 new.freelist, new.counters,
2275 "unfreezing slab"))
2276 goto redo;
2277
2cfb7455
CL
2278 if (lock)
2279 spin_unlock(&n->list_lock);
2280
88349a28
WY
2281 if (m == M_PARTIAL)
2282 stat(s, tail);
2283 else if (m == M_FULL)
2284 stat(s, DEACTIVATE_FULL);
2285 else if (m == M_FREE) {
2cfb7455
CL
2286 stat(s, DEACTIVATE_EMPTY);
2287 discard_slab(s, page);
2288 stat(s, FREE_SLAB);
894b8788 2289 }
d4ff6d35
WY
2290
2291 c->page = NULL;
2292 c->freelist = NULL;
81819f0f
CL
2293}
2294
d24ac77f
JK
2295/*
2296 * Unfreeze all the cpu partial slabs.
2297 *
59a09917
CL
2298 * This function must be called with interrupts disabled
2299 * for the cpu using c (or some other guarantee must be there
2300 * to guarantee no concurrent accesses).
d24ac77f 2301 */
59a09917
CL
2302static void unfreeze_partials(struct kmem_cache *s,
2303 struct kmem_cache_cpu *c)
49e22585 2304{
345c905d 2305#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2306 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2307 struct page *page, *discard_page = NULL;
49e22585 2308
4c7ba22e 2309 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2310 struct page new;
2311 struct page old;
2312
4c7ba22e 2313 slub_set_percpu_partial(c, page);
43d77867
JK
2314
2315 n2 = get_node(s, page_to_nid(page));
2316 if (n != n2) {
2317 if (n)
2318 spin_unlock(&n->list_lock);
2319
2320 n = n2;
2321 spin_lock(&n->list_lock);
2322 }
49e22585
CL
2323
2324 do {
2325
2326 old.freelist = page->freelist;
2327 old.counters = page->counters;
a0132ac0 2328 VM_BUG_ON(!old.frozen);
49e22585
CL
2329
2330 new.counters = old.counters;
2331 new.freelist = old.freelist;
2332
2333 new.frozen = 0;
2334
d24ac77f 2335 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2336 old.freelist, old.counters,
2337 new.freelist, new.counters,
2338 "unfreezing slab"));
2339
8a5b20ae 2340 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2341 page->next = discard_page;
2342 discard_page = page;
43d77867
JK
2343 } else {
2344 add_partial(n, page, DEACTIVATE_TO_TAIL);
2345 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2346 }
2347 }
2348
2349 if (n)
2350 spin_unlock(&n->list_lock);
9ada1934
SL
2351
2352 while (discard_page) {
2353 page = discard_page;
2354 discard_page = discard_page->next;
2355
2356 stat(s, DEACTIVATE_EMPTY);
2357 discard_slab(s, page);
2358 stat(s, FREE_SLAB);
2359 }
6dfd1b65 2360#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2361}
2362
2363/*
9234bae9
WY
2364 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2365 * partial page slot if available.
49e22585
CL
2366 *
2367 * If we did not find a slot then simply move all the partials to the
2368 * per node partial list.
2369 */
633b0764 2370static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2371{
345c905d 2372#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2373 struct page *oldpage;
2374 int pages;
2375 int pobjects;
2376
d6e0b7fa 2377 preempt_disable();
49e22585
CL
2378 do {
2379 pages = 0;
2380 pobjects = 0;
2381 oldpage = this_cpu_read(s->cpu_slab->partial);
2382
2383 if (oldpage) {
2384 pobjects = oldpage->pobjects;
2385 pages = oldpage->pages;
bbd4e305 2386 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2387 unsigned long flags;
2388 /*
2389 * partial array is full. Move the existing
2390 * set to the per node partial list.
2391 */
2392 local_irq_save(flags);
59a09917 2393 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2394 local_irq_restore(flags);
e24fc410 2395 oldpage = NULL;
49e22585
CL
2396 pobjects = 0;
2397 pages = 0;
8028dcea 2398 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2399 }
2400 }
2401
2402 pages++;
2403 pobjects += page->objects - page->inuse;
2404
2405 page->pages = pages;
2406 page->pobjects = pobjects;
2407 page->next = oldpage;
2408
d0e0ac97
CG
2409 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2410 != oldpage);
bbd4e305 2411 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2412 unsigned long flags;
2413
2414 local_irq_save(flags);
2415 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2416 local_irq_restore(flags);
2417 }
2418 preempt_enable();
6dfd1b65 2419#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2420}
2421
dfb4f096 2422static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2423{
84e554e6 2424 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2425 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2426
2427 c->tid = next_tid(c->tid);
81819f0f
CL
2428}
2429
2430/*
2431 * Flush cpu slab.
6446faa2 2432 *
81819f0f
CL
2433 * Called from IPI handler with interrupts disabled.
2434 */
0c710013 2435static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2436{
9dfc6e68 2437 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2438
1265ef2d
WY
2439 if (c->page)
2440 flush_slab(s, c);
49e22585 2441
1265ef2d 2442 unfreeze_partials(s, c);
81819f0f
CL
2443}
2444
2445static void flush_cpu_slab(void *d)
2446{
2447 struct kmem_cache *s = d;
81819f0f 2448
dfb4f096 2449 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2450}
2451
a8364d55
GBY
2452static bool has_cpu_slab(int cpu, void *info)
2453{
2454 struct kmem_cache *s = info;
2455 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2456
a93cf07b 2457 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2458}
2459
81819f0f
CL
2460static void flush_all(struct kmem_cache *s)
2461{
cb923159 2462 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2463}
2464
a96a87bf
SAS
2465/*
2466 * Use the cpu notifier to insure that the cpu slabs are flushed when
2467 * necessary.
2468 */
2469static int slub_cpu_dead(unsigned int cpu)
2470{
2471 struct kmem_cache *s;
2472 unsigned long flags;
2473
2474 mutex_lock(&slab_mutex);
2475 list_for_each_entry(s, &slab_caches, list) {
2476 local_irq_save(flags);
2477 __flush_cpu_slab(s, cpu);
2478 local_irq_restore(flags);
2479 }
2480 mutex_unlock(&slab_mutex);
2481 return 0;
2482}
2483
dfb4f096
CL
2484/*
2485 * Check if the objects in a per cpu structure fit numa
2486 * locality expectations.
2487 */
57d437d2 2488static inline int node_match(struct page *page, int node)
dfb4f096
CL
2489{
2490#ifdef CONFIG_NUMA
6159d0f5 2491 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2492 return 0;
2493#endif
2494 return 1;
2495}
2496
9a02d699 2497#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2498static int count_free(struct page *page)
2499{
2500 return page->objects - page->inuse;
2501}
2502
9a02d699
DR
2503static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2504{
2505 return atomic_long_read(&n->total_objects);
2506}
2507#endif /* CONFIG_SLUB_DEBUG */
2508
2509#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2510static unsigned long count_partial(struct kmem_cache_node *n,
2511 int (*get_count)(struct page *))
2512{
2513 unsigned long flags;
2514 unsigned long x = 0;
2515 struct page *page;
2516
2517 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2518 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2519 x += get_count(page);
2520 spin_unlock_irqrestore(&n->list_lock, flags);
2521 return x;
2522}
9a02d699 2523#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2524
781b2ba6
PE
2525static noinline void
2526slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2527{
9a02d699
DR
2528#ifdef CONFIG_SLUB_DEBUG
2529 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2530 DEFAULT_RATELIMIT_BURST);
781b2ba6 2531 int node;
fa45dc25 2532 struct kmem_cache_node *n;
781b2ba6 2533
9a02d699
DR
2534 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2535 return;
2536
5b3810e5
VB
2537 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2538 nid, gfpflags, &gfpflags);
19af27af 2539 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2540 s->name, s->object_size, s->size, oo_order(s->oo),
2541 oo_order(s->min));
781b2ba6 2542
3b0efdfa 2543 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2544 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2545 s->name);
fa5ec8a1 2546
fa45dc25 2547 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2548 unsigned long nr_slabs;
2549 unsigned long nr_objs;
2550 unsigned long nr_free;
2551
26c02cf0
AB
2552 nr_free = count_partial(n, count_free);
2553 nr_slabs = node_nr_slabs(n);
2554 nr_objs = node_nr_objs(n);
781b2ba6 2555
f9f58285 2556 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2557 node, nr_slabs, nr_objs, nr_free);
2558 }
9a02d699 2559#endif
781b2ba6
PE
2560}
2561
497b66f2
CL
2562static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2563 int node, struct kmem_cache_cpu **pc)
2564{
6faa6833 2565 void *freelist;
188fd063
CL
2566 struct kmem_cache_cpu *c = *pc;
2567 struct page *page;
497b66f2 2568
128227e7
MW
2569 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2570
188fd063 2571 freelist = get_partial(s, flags, node, c);
497b66f2 2572
188fd063
CL
2573 if (freelist)
2574 return freelist;
2575
2576 page = new_slab(s, flags, node);
497b66f2 2577 if (page) {
7c8e0181 2578 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2579 if (c->page)
2580 flush_slab(s, c);
2581
2582 /*
2583 * No other reference to the page yet so we can
2584 * muck around with it freely without cmpxchg
2585 */
6faa6833 2586 freelist = page->freelist;
497b66f2
CL
2587 page->freelist = NULL;
2588
2589 stat(s, ALLOC_SLAB);
497b66f2
CL
2590 c->page = page;
2591 *pc = c;
edde82b6 2592 }
497b66f2 2593
6faa6833 2594 return freelist;
497b66f2
CL
2595}
2596
072bb0aa
MG
2597static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2598{
2599 if (unlikely(PageSlabPfmemalloc(page)))
2600 return gfp_pfmemalloc_allowed(gfpflags);
2601
2602 return true;
2603}
2604
213eeb9f 2605/*
d0e0ac97
CG
2606 * Check the page->freelist of a page and either transfer the freelist to the
2607 * per cpu freelist or deactivate the page.
213eeb9f
CL
2608 *
2609 * The page is still frozen if the return value is not NULL.
2610 *
2611 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2612 *
2613 * This function must be called with interrupt disabled.
213eeb9f
CL
2614 */
2615static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2616{
2617 struct page new;
2618 unsigned long counters;
2619 void *freelist;
2620
2621 do {
2622 freelist = page->freelist;
2623 counters = page->counters;
6faa6833 2624
213eeb9f 2625 new.counters = counters;
a0132ac0 2626 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2627
2628 new.inuse = page->objects;
2629 new.frozen = freelist != NULL;
2630
d24ac77f 2631 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2632 freelist, counters,
2633 NULL, new.counters,
2634 "get_freelist"));
2635
2636 return freelist;
2637}
2638
81819f0f 2639/*
894b8788
CL
2640 * Slow path. The lockless freelist is empty or we need to perform
2641 * debugging duties.
2642 *
894b8788
CL
2643 * Processing is still very fast if new objects have been freed to the
2644 * regular freelist. In that case we simply take over the regular freelist
2645 * as the lockless freelist and zap the regular freelist.
81819f0f 2646 *
894b8788
CL
2647 * If that is not working then we fall back to the partial lists. We take the
2648 * first element of the freelist as the object to allocate now and move the
2649 * rest of the freelist to the lockless freelist.
81819f0f 2650 *
894b8788 2651 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2652 * we need to allocate a new slab. This is the slowest path since it involves
2653 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2654 *
2655 * Version of __slab_alloc to use when we know that interrupts are
2656 * already disabled (which is the case for bulk allocation).
81819f0f 2657 */
a380a3c7 2658static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2659 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2660{
6faa6833 2661 void *freelist;
f6e7def7 2662 struct page *page;
81819f0f 2663
9f986d99
AW
2664 stat(s, ALLOC_SLOWPATH);
2665
f6e7def7 2666 page = c->page;
0715e6c5
VB
2667 if (!page) {
2668 /*
2669 * if the node is not online or has no normal memory, just
2670 * ignore the node constraint
2671 */
2672 if (unlikely(node != NUMA_NO_NODE &&
2673 !node_state(node, N_NORMAL_MEMORY)))
2674 node = NUMA_NO_NODE;
81819f0f 2675 goto new_slab;
0715e6c5 2676 }
49e22585 2677redo:
6faa6833 2678
57d437d2 2679 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2680 /*
2681 * same as above but node_match() being false already
2682 * implies node != NUMA_NO_NODE
2683 */
2684 if (!node_state(node, N_NORMAL_MEMORY)) {
2685 node = NUMA_NO_NODE;
2686 goto redo;
2687 } else {
a561ce00 2688 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2689 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2690 goto new_slab;
2691 }
fc59c053 2692 }
6446faa2 2693
072bb0aa
MG
2694 /*
2695 * By rights, we should be searching for a slab page that was
2696 * PFMEMALLOC but right now, we are losing the pfmemalloc
2697 * information when the page leaves the per-cpu allocator
2698 */
2699 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2700 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2701 goto new_slab;
2702 }
2703
73736e03 2704 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2705 freelist = c->freelist;
2706 if (freelist)
73736e03 2707 goto load_freelist;
03e404af 2708
f6e7def7 2709 freelist = get_freelist(s, page);
6446faa2 2710
6faa6833 2711 if (!freelist) {
03e404af
CL
2712 c->page = NULL;
2713 stat(s, DEACTIVATE_BYPASS);
fc59c053 2714 goto new_slab;
03e404af 2715 }
6446faa2 2716
84e554e6 2717 stat(s, ALLOC_REFILL);
6446faa2 2718
894b8788 2719load_freelist:
507effea
CL
2720 /*
2721 * freelist is pointing to the list of objects to be used.
2722 * page is pointing to the page from which the objects are obtained.
2723 * That page must be frozen for per cpu allocations to work.
2724 */
a0132ac0 2725 VM_BUG_ON(!c->page->frozen);
6faa6833 2726 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2727 c->tid = next_tid(c->tid);
6faa6833 2728 return freelist;
81819f0f 2729
81819f0f 2730new_slab:
2cfb7455 2731
a93cf07b
WY
2732 if (slub_percpu_partial(c)) {
2733 page = c->page = slub_percpu_partial(c);
2734 slub_set_percpu_partial(c, page);
49e22585 2735 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2736 goto redo;
81819f0f
CL
2737 }
2738
188fd063 2739 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2740
f4697436 2741 if (unlikely(!freelist)) {
9a02d699 2742 slab_out_of_memory(s, gfpflags, node);
f4697436 2743 return NULL;
81819f0f 2744 }
2cfb7455 2745
f6e7def7 2746 page = c->page;
5091b74a 2747 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2748 goto load_freelist;
2cfb7455 2749
497b66f2 2750 /* Only entered in the debug case */
d0e0ac97
CG
2751 if (kmem_cache_debug(s) &&
2752 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2753 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2754
d4ff6d35 2755 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2756 return freelist;
894b8788
CL
2757}
2758
a380a3c7
CL
2759/*
2760 * Another one that disabled interrupt and compensates for possible
2761 * cpu changes by refetching the per cpu area pointer.
2762 */
2763static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2764 unsigned long addr, struct kmem_cache_cpu *c)
2765{
2766 void *p;
2767 unsigned long flags;
2768
2769 local_irq_save(flags);
923717cb 2770#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2771 /*
2772 * We may have been preempted and rescheduled on a different
2773 * cpu before disabling interrupts. Need to reload cpu area
2774 * pointer.
2775 */
2776 c = this_cpu_ptr(s->cpu_slab);
2777#endif
2778
2779 p = ___slab_alloc(s, gfpflags, node, addr, c);
2780 local_irq_restore(flags);
2781 return p;
2782}
2783
0f181f9f
AP
2784/*
2785 * If the object has been wiped upon free, make sure it's fully initialized by
2786 * zeroing out freelist pointer.
2787 */
2788static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2789 void *obj)
2790{
2791 if (unlikely(slab_want_init_on_free(s)) && obj)
2792 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2793}
2794
894b8788
CL
2795/*
2796 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2797 * have the fastpath folded into their functions. So no function call
2798 * overhead for requests that can be satisfied on the fastpath.
2799 *
2800 * The fastpath works by first checking if the lockless freelist can be used.
2801 * If not then __slab_alloc is called for slow processing.
2802 *
2803 * Otherwise we can simply pick the next object from the lockless free list.
2804 */
2b847c3c 2805static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2806 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2807{
03ec0ed5 2808 void *object;
dfb4f096 2809 struct kmem_cache_cpu *c;
57d437d2 2810 struct page *page;
8a5ec0ba 2811 unsigned long tid;
964d4bd3 2812 struct obj_cgroup *objcg = NULL;
1f84260c 2813
964d4bd3 2814 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2815 if (!s)
773ff60e 2816 return NULL;
8a5ec0ba 2817redo:
8a5ec0ba
CL
2818 /*
2819 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2820 * enabled. We may switch back and forth between cpus while
2821 * reading from one cpu area. That does not matter as long
2822 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2823 *
9aabf810 2824 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2825 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2826 * to check if it is matched or not.
8a5ec0ba 2827 */
9aabf810
JK
2828 do {
2829 tid = this_cpu_read(s->cpu_slab->tid);
2830 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2831 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2832 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2833
2834 /*
2835 * Irqless object alloc/free algorithm used here depends on sequence
2836 * of fetching cpu_slab's data. tid should be fetched before anything
2837 * on c to guarantee that object and page associated with previous tid
2838 * won't be used with current tid. If we fetch tid first, object and
2839 * page could be one associated with next tid and our alloc/free
2840 * request will be failed. In this case, we will retry. So, no problem.
2841 */
2842 barrier();
8a5ec0ba 2843
8a5ec0ba
CL
2844 /*
2845 * The transaction ids are globally unique per cpu and per operation on
2846 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2847 * occurs on the right processor and that there was no operation on the
2848 * linked list in between.
2849 */
8a5ec0ba 2850
9dfc6e68 2851 object = c->freelist;
57d437d2 2852 page = c->page;
22e4663e 2853 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2854 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2855 } else {
0ad9500e
ED
2856 void *next_object = get_freepointer_safe(s, object);
2857
8a5ec0ba 2858 /*
25985edc 2859 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2860 * operation and if we are on the right processor.
2861 *
d0e0ac97
CG
2862 * The cmpxchg does the following atomically (without lock
2863 * semantics!)
8a5ec0ba
CL
2864 * 1. Relocate first pointer to the current per cpu area.
2865 * 2. Verify that tid and freelist have not been changed
2866 * 3. If they were not changed replace tid and freelist
2867 *
d0e0ac97
CG
2868 * Since this is without lock semantics the protection is only
2869 * against code executing on this cpu *not* from access by
2870 * other cpus.
8a5ec0ba 2871 */
933393f5 2872 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2873 s->cpu_slab->freelist, s->cpu_slab->tid,
2874 object, tid,
0ad9500e 2875 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2876
2877 note_cmpxchg_failure("slab_alloc", s, tid);
2878 goto redo;
2879 }
0ad9500e 2880 prefetch_freepointer(s, next_object);
84e554e6 2881 stat(s, ALLOC_FASTPATH);
894b8788 2882 }
0f181f9f
AP
2883
2884 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2885
6471384a 2886 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2887 memset(object, 0, s->object_size);
d07dbea4 2888
964d4bd3 2889 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
5a896d9e 2890
894b8788 2891 return object;
81819f0f
CL
2892}
2893
2b847c3c
EG
2894static __always_inline void *slab_alloc(struct kmem_cache *s,
2895 gfp_t gfpflags, unsigned long addr)
2896{
2897 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2898}
2899
81819f0f
CL
2900void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2901{
2b847c3c 2902 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2903
d0e0ac97
CG
2904 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2905 s->size, gfpflags);
5b882be4
EGM
2906
2907 return ret;
81819f0f
CL
2908}
2909EXPORT_SYMBOL(kmem_cache_alloc);
2910
0f24f128 2911#ifdef CONFIG_TRACING
4a92379b
RK
2912void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2913{
2b847c3c 2914 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2915 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2916 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2917 return ret;
2918}
2919EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2920#endif
2921
81819f0f
CL
2922#ifdef CONFIG_NUMA
2923void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2924{
2b847c3c 2925 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2926
ca2b84cb 2927 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2928 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2929
2930 return ret;
81819f0f
CL
2931}
2932EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2933
0f24f128 2934#ifdef CONFIG_TRACING
4a92379b 2935void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2936 gfp_t gfpflags,
4a92379b 2937 int node, size_t size)
5b882be4 2938{
2b847c3c 2939 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2940
2941 trace_kmalloc_node(_RET_IP_, ret,
2942 size, s->size, gfpflags, node);
0316bec2 2943
0116523c 2944 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2945 return ret;
5b882be4 2946}
4a92379b 2947EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2948#endif
6dfd1b65 2949#endif /* CONFIG_NUMA */
5b882be4 2950
81819f0f 2951/*
94e4d712 2952 * Slow path handling. This may still be called frequently since objects
894b8788 2953 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2954 *
894b8788
CL
2955 * So we still attempt to reduce cache line usage. Just take the slab
2956 * lock and free the item. If there is no additional partial page
2957 * handling required then we can return immediately.
81819f0f 2958 */
894b8788 2959static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2960 void *head, void *tail, int cnt,
2961 unsigned long addr)
2962
81819f0f
CL
2963{
2964 void *prior;
2cfb7455 2965 int was_frozen;
2cfb7455
CL
2966 struct page new;
2967 unsigned long counters;
2968 struct kmem_cache_node *n = NULL;
3f649ab7 2969 unsigned long flags;
81819f0f 2970
8a5ec0ba 2971 stat(s, FREE_SLOWPATH);
81819f0f 2972
19c7ff9e 2973 if (kmem_cache_debug(s) &&
282acb43 2974 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2975 return;
6446faa2 2976
2cfb7455 2977 do {
837d678d
JK
2978 if (unlikely(n)) {
2979 spin_unlock_irqrestore(&n->list_lock, flags);
2980 n = NULL;
2981 }
2cfb7455
CL
2982 prior = page->freelist;
2983 counters = page->counters;
81084651 2984 set_freepointer(s, tail, prior);
2cfb7455
CL
2985 new.counters = counters;
2986 was_frozen = new.frozen;
81084651 2987 new.inuse -= cnt;
837d678d 2988 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2989
c65c1877 2990 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2991
2992 /*
d0e0ac97
CG
2993 * Slab was on no list before and will be
2994 * partially empty
2995 * We can defer the list move and instead
2996 * freeze it.
49e22585
CL
2997 */
2998 new.frozen = 1;
2999
c65c1877 3000 } else { /* Needs to be taken off a list */
49e22585 3001
b455def2 3002 n = get_node(s, page_to_nid(page));
49e22585
CL
3003 /*
3004 * Speculatively acquire the list_lock.
3005 * If the cmpxchg does not succeed then we may
3006 * drop the list_lock without any processing.
3007 *
3008 * Otherwise the list_lock will synchronize with
3009 * other processors updating the list of slabs.
3010 */
3011 spin_lock_irqsave(&n->list_lock, flags);
3012
3013 }
2cfb7455 3014 }
81819f0f 3015
2cfb7455
CL
3016 } while (!cmpxchg_double_slab(s, page,
3017 prior, counters,
81084651 3018 head, new.counters,
2cfb7455 3019 "__slab_free"));
81819f0f 3020
2cfb7455 3021 if (likely(!n)) {
49e22585 3022
c270cf30
AW
3023 if (likely(was_frozen)) {
3024 /*
3025 * The list lock was not taken therefore no list
3026 * activity can be necessary.
3027 */
3028 stat(s, FREE_FROZEN);
3029 } else if (new.frozen) {
3030 /*
3031 * If we just froze the page then put it onto the
3032 * per cpu partial list.
3033 */
49e22585 3034 put_cpu_partial(s, page, 1);
8028dcea
AS
3035 stat(s, CPU_PARTIAL_FREE);
3036 }
c270cf30 3037
b455def2
L
3038 return;
3039 }
81819f0f 3040
8a5b20ae 3041 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3042 goto slab_empty;
3043
81819f0f 3044 /*
837d678d
JK
3045 * Objects left in the slab. If it was not on the partial list before
3046 * then add it.
81819f0f 3047 */
345c905d 3048 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3049 remove_full(s, n, page);
837d678d
JK
3050 add_partial(n, page, DEACTIVATE_TO_TAIL);
3051 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3052 }
80f08c19 3053 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3054 return;
3055
3056slab_empty:
a973e9dd 3057 if (prior) {
81819f0f 3058 /*
6fbabb20 3059 * Slab on the partial list.
81819f0f 3060 */
5cc6eee8 3061 remove_partial(n, page);
84e554e6 3062 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3063 } else {
6fbabb20 3064 /* Slab must be on the full list */
c65c1877
PZ
3065 remove_full(s, n, page);
3066 }
2cfb7455 3067
80f08c19 3068 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3069 stat(s, FREE_SLAB);
81819f0f 3070 discard_slab(s, page);
81819f0f
CL
3071}
3072
894b8788
CL
3073/*
3074 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3075 * can perform fastpath freeing without additional function calls.
3076 *
3077 * The fastpath is only possible if we are freeing to the current cpu slab
3078 * of this processor. This typically the case if we have just allocated
3079 * the item before.
3080 *
3081 * If fastpath is not possible then fall back to __slab_free where we deal
3082 * with all sorts of special processing.
81084651
JDB
3083 *
3084 * Bulk free of a freelist with several objects (all pointing to the
3085 * same page) possible by specifying head and tail ptr, plus objects
3086 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3087 */
80a9201a
AP
3088static __always_inline void do_slab_free(struct kmem_cache *s,
3089 struct page *page, void *head, void *tail,
3090 int cnt, unsigned long addr)
894b8788 3091{
81084651 3092 void *tail_obj = tail ? : head;
dfb4f096 3093 struct kmem_cache_cpu *c;
8a5ec0ba 3094 unsigned long tid;
964d4bd3 3095
d1b2cf6c 3096 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3097redo:
3098 /*
3099 * Determine the currently cpus per cpu slab.
3100 * The cpu may change afterward. However that does not matter since
3101 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3102 * during the cmpxchg then the free will succeed.
8a5ec0ba 3103 */
9aabf810
JK
3104 do {
3105 tid = this_cpu_read(s->cpu_slab->tid);
3106 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3107 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3108 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3109
9aabf810
JK
3110 /* Same with comment on barrier() in slab_alloc_node() */
3111 barrier();
c016b0bd 3112
442b06bc 3113 if (likely(page == c->page)) {
5076190d
LT
3114 void **freelist = READ_ONCE(c->freelist);
3115
3116 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3117
933393f5 3118 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3119 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3120 freelist, tid,
81084651 3121 head, next_tid(tid)))) {
8a5ec0ba
CL
3122
3123 note_cmpxchg_failure("slab_free", s, tid);
3124 goto redo;
3125 }
84e554e6 3126 stat(s, FREE_FASTPATH);
894b8788 3127 } else
81084651 3128 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3129
894b8788
CL
3130}
3131
80a9201a
AP
3132static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3133 void *head, void *tail, int cnt,
3134 unsigned long addr)
3135{
80a9201a 3136 /*
c3895391
AK
3137 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3138 * to remove objects, whose reuse must be delayed.
80a9201a 3139 */
c3895391
AK
3140 if (slab_free_freelist_hook(s, &head, &tail))
3141 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3142}
3143
2bd926b4 3144#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3145void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3146{
3147 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3148}
3149#endif
3150
81819f0f
CL
3151void kmem_cache_free(struct kmem_cache *s, void *x)
3152{
b9ce5ef4
GC
3153 s = cache_from_obj(s, x);
3154 if (!s)
79576102 3155 return;
81084651 3156 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3157 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3158}
3159EXPORT_SYMBOL(kmem_cache_free);
3160
d0ecd894 3161struct detached_freelist {
fbd02630 3162 struct page *page;
d0ecd894
JDB
3163 void *tail;
3164 void *freelist;
3165 int cnt;
376bf125 3166 struct kmem_cache *s;
d0ecd894 3167};
fbd02630 3168
d0ecd894
JDB
3169/*
3170 * This function progressively scans the array with free objects (with
3171 * a limited look ahead) and extract objects belonging to the same
3172 * page. It builds a detached freelist directly within the given
3173 * page/objects. This can happen without any need for
3174 * synchronization, because the objects are owned by running process.
3175 * The freelist is build up as a single linked list in the objects.
3176 * The idea is, that this detached freelist can then be bulk
3177 * transferred to the real freelist(s), but only requiring a single
3178 * synchronization primitive. Look ahead in the array is limited due
3179 * to performance reasons.
3180 */
376bf125
JDB
3181static inline
3182int build_detached_freelist(struct kmem_cache *s, size_t size,
3183 void **p, struct detached_freelist *df)
d0ecd894
JDB
3184{
3185 size_t first_skipped_index = 0;
3186 int lookahead = 3;
3187 void *object;
ca257195 3188 struct page *page;
fbd02630 3189
d0ecd894
JDB
3190 /* Always re-init detached_freelist */
3191 df->page = NULL;
fbd02630 3192
d0ecd894
JDB
3193 do {
3194 object = p[--size];
ca257195 3195 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3196 } while (!object && size);
3eed034d 3197
d0ecd894
JDB
3198 if (!object)
3199 return 0;
fbd02630 3200
ca257195
JDB
3201 page = virt_to_head_page(object);
3202 if (!s) {
3203 /* Handle kalloc'ed objects */
3204 if (unlikely(!PageSlab(page))) {
3205 BUG_ON(!PageCompound(page));
3206 kfree_hook(object);
4949148a 3207 __free_pages(page, compound_order(page));
ca257195
JDB
3208 p[size] = NULL; /* mark object processed */
3209 return size;
3210 }
3211 /* Derive kmem_cache from object */
3212 df->s = page->slab_cache;
3213 } else {
3214 df->s = cache_from_obj(s, object); /* Support for memcg */
3215 }
376bf125 3216
d0ecd894 3217 /* Start new detached freelist */
ca257195 3218 df->page = page;
376bf125 3219 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3220 df->tail = object;
3221 df->freelist = object;
3222 p[size] = NULL; /* mark object processed */
3223 df->cnt = 1;
3224
3225 while (size) {
3226 object = p[--size];
3227 if (!object)
3228 continue; /* Skip processed objects */
3229
3230 /* df->page is always set at this point */
3231 if (df->page == virt_to_head_page(object)) {
3232 /* Opportunity build freelist */
376bf125 3233 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3234 df->freelist = object;
3235 df->cnt++;
3236 p[size] = NULL; /* mark object processed */
3237
3238 continue;
fbd02630 3239 }
d0ecd894
JDB
3240
3241 /* Limit look ahead search */
3242 if (!--lookahead)
3243 break;
3244
3245 if (!first_skipped_index)
3246 first_skipped_index = size + 1;
fbd02630 3247 }
d0ecd894
JDB
3248
3249 return first_skipped_index;
3250}
3251
d0ecd894 3252/* Note that interrupts must be enabled when calling this function. */
376bf125 3253void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3254{
3255 if (WARN_ON(!size))
3256 return;
3257
d1b2cf6c 3258 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3259 do {
3260 struct detached_freelist df;
3261
3262 size = build_detached_freelist(s, size, p, &df);
84582c8a 3263 if (!df.page)
d0ecd894
JDB
3264 continue;
3265
376bf125 3266 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3267 } while (likely(size));
484748f0
CL
3268}
3269EXPORT_SYMBOL(kmem_cache_free_bulk);
3270
994eb764 3271/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3272int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3273 void **p)
484748f0 3274{
994eb764
JDB
3275 struct kmem_cache_cpu *c;
3276 int i;
964d4bd3 3277 struct obj_cgroup *objcg = NULL;
994eb764 3278
03ec0ed5 3279 /* memcg and kmem_cache debug support */
964d4bd3 3280 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3281 if (unlikely(!s))
3282 return false;
994eb764
JDB
3283 /*
3284 * Drain objects in the per cpu slab, while disabling local
3285 * IRQs, which protects against PREEMPT and interrupts
3286 * handlers invoking normal fastpath.
3287 */
3288 local_irq_disable();
3289 c = this_cpu_ptr(s->cpu_slab);
3290
3291 for (i = 0; i < size; i++) {
3292 void *object = c->freelist;
3293
ebe909e0 3294 if (unlikely(!object)) {
fd4d9c7d
JH
3295 /*
3296 * We may have removed an object from c->freelist using
3297 * the fastpath in the previous iteration; in that case,
3298 * c->tid has not been bumped yet.
3299 * Since ___slab_alloc() may reenable interrupts while
3300 * allocating memory, we should bump c->tid now.
3301 */
3302 c->tid = next_tid(c->tid);
3303
ebe909e0
JDB
3304 /*
3305 * Invoking slow path likely have side-effect
3306 * of re-populating per CPU c->freelist
3307 */
87098373 3308 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3309 _RET_IP_, c);
87098373
CL
3310 if (unlikely(!p[i]))
3311 goto error;
3312
ebe909e0 3313 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3314 maybe_wipe_obj_freeptr(s, p[i]);
3315
ebe909e0
JDB
3316 continue; /* goto for-loop */
3317 }
994eb764
JDB
3318 c->freelist = get_freepointer(s, object);
3319 p[i] = object;
0f181f9f 3320 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3321 }
3322 c->tid = next_tid(c->tid);
3323 local_irq_enable();
3324
3325 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3326 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3327 int j;
3328
3329 for (j = 0; j < i; j++)
3330 memset(p[j], 0, s->object_size);
3331 }
3332
03ec0ed5 3333 /* memcg and kmem_cache debug support */
964d4bd3 3334 slab_post_alloc_hook(s, objcg, flags, size, p);
865762a8 3335 return i;
87098373 3336error:
87098373 3337 local_irq_enable();
964d4bd3 3338 slab_post_alloc_hook(s, objcg, flags, i, p);
03ec0ed5 3339 __kmem_cache_free_bulk(s, i, p);
865762a8 3340 return 0;
484748f0
CL
3341}
3342EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3343
3344
81819f0f 3345/*
672bba3a
CL
3346 * Object placement in a slab is made very easy because we always start at
3347 * offset 0. If we tune the size of the object to the alignment then we can
3348 * get the required alignment by putting one properly sized object after
3349 * another.
81819f0f
CL
3350 *
3351 * Notice that the allocation order determines the sizes of the per cpu
3352 * caches. Each processor has always one slab available for allocations.
3353 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3354 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3355 * locking overhead.
81819f0f
CL
3356 */
3357
3358/*
3359 * Mininum / Maximum order of slab pages. This influences locking overhead
3360 * and slab fragmentation. A higher order reduces the number of partial slabs
3361 * and increases the number of allocations possible without having to
3362 * take the list_lock.
3363 */
19af27af
AD
3364static unsigned int slub_min_order;
3365static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3366static unsigned int slub_min_objects;
81819f0f 3367
81819f0f
CL
3368/*
3369 * Calculate the order of allocation given an slab object size.
3370 *
672bba3a
CL
3371 * The order of allocation has significant impact on performance and other
3372 * system components. Generally order 0 allocations should be preferred since
3373 * order 0 does not cause fragmentation in the page allocator. Larger objects
3374 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3375 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3376 * would be wasted.
3377 *
3378 * In order to reach satisfactory performance we must ensure that a minimum
3379 * number of objects is in one slab. Otherwise we may generate too much
3380 * activity on the partial lists which requires taking the list_lock. This is
3381 * less a concern for large slabs though which are rarely used.
81819f0f 3382 *
672bba3a
CL
3383 * slub_max_order specifies the order where we begin to stop considering the
3384 * number of objects in a slab as critical. If we reach slub_max_order then
3385 * we try to keep the page order as low as possible. So we accept more waste
3386 * of space in favor of a small page order.
81819f0f 3387 *
672bba3a
CL
3388 * Higher order allocations also allow the placement of more objects in a
3389 * slab and thereby reduce object handling overhead. If the user has
3390 * requested a higher mininum order then we start with that one instead of
3391 * the smallest order which will fit the object.
81819f0f 3392 */
19af27af
AD
3393static inline unsigned int slab_order(unsigned int size,
3394 unsigned int min_objects, unsigned int max_order,
9736d2a9 3395 unsigned int fract_leftover)
81819f0f 3396{
19af27af
AD
3397 unsigned int min_order = slub_min_order;
3398 unsigned int order;
81819f0f 3399
9736d2a9 3400 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3401 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3402
9736d2a9 3403 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3404 order <= max_order; order++) {
81819f0f 3405
19af27af
AD
3406 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3407 unsigned int rem;
81819f0f 3408
9736d2a9 3409 rem = slab_size % size;
81819f0f 3410
5e6d444e 3411 if (rem <= slab_size / fract_leftover)
81819f0f 3412 break;
81819f0f 3413 }
672bba3a 3414
81819f0f
CL
3415 return order;
3416}
3417
9736d2a9 3418static inline int calculate_order(unsigned int size)
5e6d444e 3419{
19af27af
AD
3420 unsigned int order;
3421 unsigned int min_objects;
3422 unsigned int max_objects;
5e6d444e
CL
3423
3424 /*
3425 * Attempt to find best configuration for a slab. This
3426 * works by first attempting to generate a layout with
3427 * the best configuration and backing off gradually.
3428 *
422ff4d7 3429 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3430 * we reduce the minimum objects required in a slab.
3431 */
3432 min_objects = slub_min_objects;
9b2cd506 3433 if (!min_objects)
045ab8c9 3434 min_objects = 4 * (fls(num_online_cpus()) + 1);
9736d2a9 3435 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3436 min_objects = min(min_objects, max_objects);
3437
5e6d444e 3438 while (min_objects > 1) {
19af27af
AD
3439 unsigned int fraction;
3440
c124f5b5 3441 fraction = 16;
5e6d444e
CL
3442 while (fraction >= 4) {
3443 order = slab_order(size, min_objects,
9736d2a9 3444 slub_max_order, fraction);
5e6d444e
CL
3445 if (order <= slub_max_order)
3446 return order;
3447 fraction /= 2;
3448 }
5086c389 3449 min_objects--;
5e6d444e
CL
3450 }
3451
3452 /*
3453 * We were unable to place multiple objects in a slab. Now
3454 * lets see if we can place a single object there.
3455 */
9736d2a9 3456 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3457 if (order <= slub_max_order)
3458 return order;
3459
3460 /*
3461 * Doh this slab cannot be placed using slub_max_order.
3462 */
9736d2a9 3463 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3464 if (order < MAX_ORDER)
5e6d444e
CL
3465 return order;
3466 return -ENOSYS;
3467}
3468
5595cffc 3469static void
4053497d 3470init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3471{
3472 n->nr_partial = 0;
81819f0f
CL
3473 spin_lock_init(&n->list_lock);
3474 INIT_LIST_HEAD(&n->partial);
8ab1372f 3475#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3476 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3477 atomic_long_set(&n->total_objects, 0);
643b1138 3478 INIT_LIST_HEAD(&n->full);
8ab1372f 3479#endif
81819f0f
CL
3480}
3481
55136592 3482static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3483{
6c182dc0 3484 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3485 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3486
8a5ec0ba 3487 /*
d4d84fef
CM
3488 * Must align to double word boundary for the double cmpxchg
3489 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3490 */
d4d84fef
CM
3491 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3492 2 * sizeof(void *));
8a5ec0ba
CL
3493
3494 if (!s->cpu_slab)
3495 return 0;
3496
3497 init_kmem_cache_cpus(s);
4c93c355 3498
8a5ec0ba 3499 return 1;
4c93c355 3500}
4c93c355 3501
51df1142
CL
3502static struct kmem_cache *kmem_cache_node;
3503
81819f0f
CL
3504/*
3505 * No kmalloc_node yet so do it by hand. We know that this is the first
3506 * slab on the node for this slabcache. There are no concurrent accesses
3507 * possible.
3508 *
721ae22a
ZYW
3509 * Note that this function only works on the kmem_cache_node
3510 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3511 * memory on a fresh node that has no slab structures yet.
81819f0f 3512 */
55136592 3513static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3514{
3515 struct page *page;
3516 struct kmem_cache_node *n;
3517
51df1142 3518 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3519
51df1142 3520 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3521
3522 BUG_ON(!page);
a2f92ee7 3523 if (page_to_nid(page) != node) {
f9f58285
FF
3524 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3525 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3526 }
3527
81819f0f
CL
3528 n = page->freelist;
3529 BUG_ON(!n);
8ab1372f 3530#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3531 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3532 init_tracking(kmem_cache_node, n);
8ab1372f 3533#endif
12b22386 3534 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3535 GFP_KERNEL);
12b22386
AK
3536 page->freelist = get_freepointer(kmem_cache_node, n);
3537 page->inuse = 1;
3538 page->frozen = 0;
3539 kmem_cache_node->node[node] = n;
4053497d 3540 init_kmem_cache_node(n);
51df1142 3541 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3542
67b6c900 3543 /*
1e4dd946
SR
3544 * No locks need to be taken here as it has just been
3545 * initialized and there is no concurrent access.
67b6c900 3546 */
1e4dd946 3547 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3548}
3549
3550static void free_kmem_cache_nodes(struct kmem_cache *s)
3551{
3552 int node;
fa45dc25 3553 struct kmem_cache_node *n;
81819f0f 3554
fa45dc25 3555 for_each_kmem_cache_node(s, node, n) {
81819f0f 3556 s->node[node] = NULL;
ea37df54 3557 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3558 }
3559}
3560
52b4b950
DS
3561void __kmem_cache_release(struct kmem_cache *s)
3562{
210e7a43 3563 cache_random_seq_destroy(s);
52b4b950
DS
3564 free_percpu(s->cpu_slab);
3565 free_kmem_cache_nodes(s);
3566}
3567
55136592 3568static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3569{
3570 int node;
81819f0f 3571
f64dc58c 3572 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3573 struct kmem_cache_node *n;
3574
73367bd8 3575 if (slab_state == DOWN) {
55136592 3576 early_kmem_cache_node_alloc(node);
73367bd8
AD
3577 continue;
3578 }
51df1142 3579 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3580 GFP_KERNEL, node);
81819f0f 3581
73367bd8
AD
3582 if (!n) {
3583 free_kmem_cache_nodes(s);
3584 return 0;
81819f0f 3585 }
73367bd8 3586
4053497d 3587 init_kmem_cache_node(n);
ea37df54 3588 s->node[node] = n;
81819f0f
CL
3589 }
3590 return 1;
3591}
81819f0f 3592
c0bdb232 3593static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3594{
3595 if (min < MIN_PARTIAL)
3596 min = MIN_PARTIAL;
3597 else if (min > MAX_PARTIAL)
3598 min = MAX_PARTIAL;
3599 s->min_partial = min;
3600}
3601
e6d0e1dc
WY
3602static void set_cpu_partial(struct kmem_cache *s)
3603{
3604#ifdef CONFIG_SLUB_CPU_PARTIAL
3605 /*
3606 * cpu_partial determined the maximum number of objects kept in the
3607 * per cpu partial lists of a processor.
3608 *
3609 * Per cpu partial lists mainly contain slabs that just have one
3610 * object freed. If they are used for allocation then they can be
3611 * filled up again with minimal effort. The slab will never hit the
3612 * per node partial lists and therefore no locking will be required.
3613 *
3614 * This setting also determines
3615 *
3616 * A) The number of objects from per cpu partial slabs dumped to the
3617 * per node list when we reach the limit.
3618 * B) The number of objects in cpu partial slabs to extract from the
3619 * per node list when we run out of per cpu objects. We only fetch
3620 * 50% to keep some capacity around for frees.
3621 */
3622 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3623 slub_set_cpu_partial(s, 0);
e6d0e1dc 3624 else if (s->size >= PAGE_SIZE)
bbd4e305 3625 slub_set_cpu_partial(s, 2);
e6d0e1dc 3626 else if (s->size >= 1024)
bbd4e305 3627 slub_set_cpu_partial(s, 6);
e6d0e1dc 3628 else if (s->size >= 256)
bbd4e305 3629 slub_set_cpu_partial(s, 13);
e6d0e1dc 3630 else
bbd4e305 3631 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3632#endif
3633}
3634
81819f0f
CL
3635/*
3636 * calculate_sizes() determines the order and the distribution of data within
3637 * a slab object.
3638 */
06b285dc 3639static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3640{
d50112ed 3641 slab_flags_t flags = s->flags;
be4a7988 3642 unsigned int size = s->object_size;
89b83f28 3643 unsigned int freepointer_area;
19af27af 3644 unsigned int order;
81819f0f 3645
d8b42bf5
CL
3646 /*
3647 * Round up object size to the next word boundary. We can only
3648 * place the free pointer at word boundaries and this determines
3649 * the possible location of the free pointer.
3650 */
3651 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3652 /*
3653 * This is the area of the object where a freepointer can be
3654 * safely written. If redzoning adds more to the inuse size, we
3655 * can't use that portion for writing the freepointer, so
3656 * s->offset must be limited within this for the general case.
3657 */
3658 freepointer_area = size;
d8b42bf5
CL
3659
3660#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3661 /*
3662 * Determine if we can poison the object itself. If the user of
3663 * the slab may touch the object after free or before allocation
3664 * then we should never poison the object itself.
3665 */
5f0d5a3a 3666 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3667 !s->ctor)
81819f0f
CL
3668 s->flags |= __OBJECT_POISON;
3669 else
3670 s->flags &= ~__OBJECT_POISON;
3671
81819f0f
CL
3672
3673 /*
672bba3a 3674 * If we are Redzoning then check if there is some space between the
81819f0f 3675 * end of the object and the free pointer. If not then add an
672bba3a 3676 * additional word to have some bytes to store Redzone information.
81819f0f 3677 */
3b0efdfa 3678 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3679 size += sizeof(void *);
41ecc55b 3680#endif
81819f0f
CL
3681
3682 /*
672bba3a
CL
3683 * With that we have determined the number of bytes in actual use
3684 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3685 */
3686 s->inuse = size;
3687
5f0d5a3a 3688 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3689 s->ctor)) {
81819f0f
CL
3690 /*
3691 * Relocate free pointer after the object if it is not
3692 * permitted to overwrite the first word of the object on
3693 * kmem_cache_free.
3694 *
3695 * This is the case if we do RCU, have a constructor or
3696 * destructor or are poisoning the objects.
cbfc35a4
WL
3697 *
3698 * The assumption that s->offset >= s->inuse means free
3699 * pointer is outside of the object is used in the
3700 * freeptr_outside_object() function. If that is no
3701 * longer true, the function needs to be modified.
81819f0f
CL
3702 */
3703 s->offset = size;
3704 size += sizeof(void *);
89b83f28 3705 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3706 /*
3707 * Store freelist pointer near middle of object to keep
3708 * it away from the edges of the object to avoid small
3709 * sized over/underflows from neighboring allocations.
3710 */
89b83f28 3711 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3712 }
3713
c12b3c62 3714#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3715 if (flags & SLAB_STORE_USER)
3716 /*
3717 * Need to store information about allocs and frees after
3718 * the object.
3719 */
3720 size += 2 * sizeof(struct track);
80a9201a 3721#endif
81819f0f 3722
80a9201a
AP
3723 kasan_cache_create(s, &size, &s->flags);
3724#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3725 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3726 /*
3727 * Add some empty padding so that we can catch
3728 * overwrites from earlier objects rather than let
3729 * tracking information or the free pointer be
0211a9c8 3730 * corrupted if a user writes before the start
81819f0f
CL
3731 * of the object.
3732 */
3733 size += sizeof(void *);
d86bd1be
JK
3734
3735 s->red_left_pad = sizeof(void *);
3736 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3737 size += s->red_left_pad;
3738 }
41ecc55b 3739#endif
672bba3a 3740
81819f0f
CL
3741 /*
3742 * SLUB stores one object immediately after another beginning from
3743 * offset 0. In order to align the objects we have to simply size
3744 * each object to conform to the alignment.
3745 */
45906855 3746 size = ALIGN(size, s->align);
81819f0f 3747 s->size = size;
4138fdfc 3748 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3749 if (forced_order >= 0)
3750 order = forced_order;
3751 else
9736d2a9 3752 order = calculate_order(size);
81819f0f 3753
19af27af 3754 if ((int)order < 0)
81819f0f
CL
3755 return 0;
3756
b7a49f0d 3757 s->allocflags = 0;
834f3d11 3758 if (order)
b7a49f0d
CL
3759 s->allocflags |= __GFP_COMP;
3760
3761 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3762 s->allocflags |= GFP_DMA;
b7a49f0d 3763
6d6ea1e9
NB
3764 if (s->flags & SLAB_CACHE_DMA32)
3765 s->allocflags |= GFP_DMA32;
3766
b7a49f0d
CL
3767 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3768 s->allocflags |= __GFP_RECLAIMABLE;
3769
81819f0f
CL
3770 /*
3771 * Determine the number of objects per slab
3772 */
9736d2a9
MW
3773 s->oo = oo_make(order, size);
3774 s->min = oo_make(get_order(size), size);
205ab99d
CL
3775 if (oo_objects(s->oo) > oo_objects(s->max))
3776 s->max = s->oo;
81819f0f 3777
834f3d11 3778 return !!oo_objects(s->oo);
81819f0f
CL
3779}
3780
d50112ed 3781static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3782{
8a13a4cc 3783 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3784#ifdef CONFIG_SLAB_FREELIST_HARDENED
3785 s->random = get_random_long();
3786#endif
81819f0f 3787
06b285dc 3788 if (!calculate_sizes(s, -1))
81819f0f 3789 goto error;
3de47213
DR
3790 if (disable_higher_order_debug) {
3791 /*
3792 * Disable debugging flags that store metadata if the min slab
3793 * order increased.
3794 */
3b0efdfa 3795 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3796 s->flags &= ~DEBUG_METADATA_FLAGS;
3797 s->offset = 0;
3798 if (!calculate_sizes(s, -1))
3799 goto error;
3800 }
3801 }
81819f0f 3802
2565409f
HC
3803#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3804 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3805 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3806 /* Enable fast mode */
3807 s->flags |= __CMPXCHG_DOUBLE;
3808#endif
3809
3b89d7d8
DR
3810 /*
3811 * The larger the object size is, the more pages we want on the partial
3812 * list to avoid pounding the page allocator excessively.
3813 */
49e22585
CL
3814 set_min_partial(s, ilog2(s->size) / 2);
3815
e6d0e1dc 3816 set_cpu_partial(s);
49e22585 3817
81819f0f 3818#ifdef CONFIG_NUMA
e2cb96b7 3819 s->remote_node_defrag_ratio = 1000;
81819f0f 3820#endif
210e7a43
TG
3821
3822 /* Initialize the pre-computed randomized freelist if slab is up */
3823 if (slab_state >= UP) {
3824 if (init_cache_random_seq(s))
3825 goto error;
3826 }
3827
55136592 3828 if (!init_kmem_cache_nodes(s))
dfb4f096 3829 goto error;
81819f0f 3830
55136592 3831 if (alloc_kmem_cache_cpus(s))
278b1bb1 3832 return 0;
ff12059e 3833
4c93c355 3834 free_kmem_cache_nodes(s);
81819f0f 3835error:
278b1bb1 3836 return -EINVAL;
81819f0f 3837}
81819f0f 3838
33b12c38 3839static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3840 const char *text)
33b12c38
CL
3841{
3842#ifdef CONFIG_SLUB_DEBUG
3843 void *addr = page_address(page);
55860d96 3844 unsigned long *map;
33b12c38 3845 void *p;
aa456c7a 3846
945cf2b6 3847 slab_err(s, page, text, s->name);
33b12c38 3848 slab_lock(page);
33b12c38 3849
90e9f6a6 3850 map = get_map(s, page);
33b12c38
CL
3851 for_each_object(p, s, addr, page->objects) {
3852
4138fdfc 3853 if (!test_bit(__obj_to_index(s, addr, p), map)) {
f9f58285 3854 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3855 print_tracking(s, p);
3856 }
3857 }
55860d96 3858 put_map(map);
33b12c38
CL
3859 slab_unlock(page);
3860#endif
3861}
3862
81819f0f 3863/*
599870b1 3864 * Attempt to free all partial slabs on a node.
52b4b950
DS
3865 * This is called from __kmem_cache_shutdown(). We must take list_lock
3866 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3867 */
599870b1 3868static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3869{
60398923 3870 LIST_HEAD(discard);
81819f0f
CL
3871 struct page *page, *h;
3872
52b4b950
DS
3873 BUG_ON(irqs_disabled());
3874 spin_lock_irq(&n->list_lock);
916ac052 3875 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3876 if (!page->inuse) {
52b4b950 3877 remove_partial(n, page);
916ac052 3878 list_add(&page->slab_list, &discard);
33b12c38
CL
3879 } else {
3880 list_slab_objects(s, page,
55860d96 3881 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3882 }
33b12c38 3883 }
52b4b950 3884 spin_unlock_irq(&n->list_lock);
60398923 3885
916ac052 3886 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3887 discard_slab(s, page);
81819f0f
CL
3888}
3889
f9e13c0a
SB
3890bool __kmem_cache_empty(struct kmem_cache *s)
3891{
3892 int node;
3893 struct kmem_cache_node *n;
3894
3895 for_each_kmem_cache_node(s, node, n)
3896 if (n->nr_partial || slabs_node(s, node))
3897 return false;
3898 return true;
3899}
3900
81819f0f 3901/*
672bba3a 3902 * Release all resources used by a slab cache.
81819f0f 3903 */
52b4b950 3904int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3905{
3906 int node;
fa45dc25 3907 struct kmem_cache_node *n;
81819f0f
CL
3908
3909 flush_all(s);
81819f0f 3910 /* Attempt to free all objects */
fa45dc25 3911 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3912 free_partial(s, n);
3913 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3914 return 1;
3915 }
81819f0f
CL
3916 return 0;
3917}
3918
81819f0f
CL
3919/********************************************************************
3920 * Kmalloc subsystem
3921 *******************************************************************/
3922
81819f0f
CL
3923static int __init setup_slub_min_order(char *str)
3924{
19af27af 3925 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3926
3927 return 1;
3928}
3929
3930__setup("slub_min_order=", setup_slub_min_order);
3931
3932static int __init setup_slub_max_order(char *str)
3933{
19af27af
AD
3934 get_option(&str, (int *)&slub_max_order);
3935 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3936
3937 return 1;
3938}
3939
3940__setup("slub_max_order=", setup_slub_max_order);
3941
3942static int __init setup_slub_min_objects(char *str)
3943{
19af27af 3944 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3945
3946 return 1;
3947}
3948
3949__setup("slub_min_objects=", setup_slub_min_objects);
3950
81819f0f
CL
3951void *__kmalloc(size_t size, gfp_t flags)
3952{
aadb4bc4 3953 struct kmem_cache *s;
5b882be4 3954 void *ret;
81819f0f 3955
95a05b42 3956 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3957 return kmalloc_large(size, flags);
aadb4bc4 3958
2c59dd65 3959 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3960
3961 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3962 return s;
3963
2b847c3c 3964 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3965
ca2b84cb 3966 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3967
0116523c 3968 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3969
5b882be4 3970 return ret;
81819f0f
CL
3971}
3972EXPORT_SYMBOL(__kmalloc);
3973
5d1f57e4 3974#ifdef CONFIG_NUMA
f619cfe1
CL
3975static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3976{
b1eeab67 3977 struct page *page;
e4f7c0b4 3978 void *ptr = NULL;
6a486c0a 3979 unsigned int order = get_order(size);
f619cfe1 3980
75f296d9 3981 flags |= __GFP_COMP;
6a486c0a
VB
3982 page = alloc_pages_node(node, flags, order);
3983 if (page) {
e4f7c0b4 3984 ptr = page_address(page);
d42f3245
RG
3985 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
3986 PAGE_SIZE << order);
6a486c0a 3987 }
e4f7c0b4 3988
0116523c 3989 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3990}
3991
81819f0f
CL
3992void *__kmalloc_node(size_t size, gfp_t flags, int node)
3993{
aadb4bc4 3994 struct kmem_cache *s;
5b882be4 3995 void *ret;
81819f0f 3996
95a05b42 3997 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3998 ret = kmalloc_large_node(size, flags, node);
3999
ca2b84cb
EGM
4000 trace_kmalloc_node(_RET_IP_, ret,
4001 size, PAGE_SIZE << get_order(size),
4002 flags, node);
5b882be4
EGM
4003
4004 return ret;
4005 }
aadb4bc4 4006
2c59dd65 4007 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4008
4009 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4010 return s;
4011
2b847c3c 4012 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 4013
ca2b84cb 4014 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4015
0116523c 4016 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4017
5b882be4 4018 return ret;
81819f0f
CL
4019}
4020EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4021#endif /* CONFIG_NUMA */
81819f0f 4022
ed18adc1
KC
4023#ifdef CONFIG_HARDENED_USERCOPY
4024/*
afcc90f8
KC
4025 * Rejects incorrectly sized objects and objects that are to be copied
4026 * to/from userspace but do not fall entirely within the containing slab
4027 * cache's usercopy region.
ed18adc1
KC
4028 *
4029 * Returns NULL if check passes, otherwise const char * to name of cache
4030 * to indicate an error.
4031 */
f4e6e289
KC
4032void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4033 bool to_user)
ed18adc1
KC
4034{
4035 struct kmem_cache *s;
44065b2e 4036 unsigned int offset;
ed18adc1
KC
4037 size_t object_size;
4038
96fedce2
AK
4039 ptr = kasan_reset_tag(ptr);
4040
ed18adc1
KC
4041 /* Find object and usable object size. */
4042 s = page->slab_cache;
ed18adc1
KC
4043
4044 /* Reject impossible pointers. */
4045 if (ptr < page_address(page))
f4e6e289
KC
4046 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4047 to_user, 0, n);
ed18adc1
KC
4048
4049 /* Find offset within object. */
4050 offset = (ptr - page_address(page)) % s->size;
4051
4052 /* Adjust for redzone and reject if within the redzone. */
59052e89 4053 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4054 if (offset < s->red_left_pad)
f4e6e289
KC
4055 usercopy_abort("SLUB object in left red zone",
4056 s->name, to_user, offset, n);
ed18adc1
KC
4057 offset -= s->red_left_pad;
4058 }
4059
afcc90f8
KC
4060 /* Allow address range falling entirely within usercopy region. */
4061 if (offset >= s->useroffset &&
4062 offset - s->useroffset <= s->usersize &&
4063 n <= s->useroffset - offset + s->usersize)
f4e6e289 4064 return;
ed18adc1 4065
afcc90f8
KC
4066 /*
4067 * If the copy is still within the allocated object, produce
4068 * a warning instead of rejecting the copy. This is intended
4069 * to be a temporary method to find any missing usercopy
4070 * whitelists.
4071 */
4072 object_size = slab_ksize(s);
2d891fbc
KC
4073 if (usercopy_fallback &&
4074 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4075 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4076 return;
4077 }
ed18adc1 4078
f4e6e289 4079 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4080}
4081#endif /* CONFIG_HARDENED_USERCOPY */
4082
10d1f8cb 4083size_t __ksize(const void *object)
81819f0f 4084{
272c1d21 4085 struct page *page;
81819f0f 4086
ef8b4520 4087 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4088 return 0;
4089
294a80a8 4090 page = virt_to_head_page(object);
294a80a8 4091
76994412
PE
4092 if (unlikely(!PageSlab(page))) {
4093 WARN_ON(!PageCompound(page));
a50b854e 4094 return page_size(page);
76994412 4095 }
81819f0f 4096
1b4f59e3 4097 return slab_ksize(page->slab_cache);
81819f0f 4098}
10d1f8cb 4099EXPORT_SYMBOL(__ksize);
81819f0f
CL
4100
4101void kfree(const void *x)
4102{
81819f0f 4103 struct page *page;
5bb983b0 4104 void *object = (void *)x;
81819f0f 4105
2121db74
PE
4106 trace_kfree(_RET_IP_, x);
4107
2408c550 4108 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4109 return;
4110
b49af68f 4111 page = virt_to_head_page(x);
aadb4bc4 4112 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4113 unsigned int order = compound_order(page);
4114
0937502a 4115 BUG_ON(!PageCompound(page));
47adccce 4116 kfree_hook(object);
d42f3245
RG
4117 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4118 -(PAGE_SIZE << order));
6a486c0a 4119 __free_pages(page, order);
aadb4bc4
CL
4120 return;
4121 }
81084651 4122 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4123}
4124EXPORT_SYMBOL(kfree);
4125
832f37f5
VD
4126#define SHRINK_PROMOTE_MAX 32
4127
2086d26a 4128/*
832f37f5
VD
4129 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4130 * up most to the head of the partial lists. New allocations will then
4131 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4132 *
4133 * The slabs with the least items are placed last. This results in them
4134 * being allocated from last increasing the chance that the last objects
4135 * are freed in them.
2086d26a 4136 */
c9fc5864 4137int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4138{
4139 int node;
4140 int i;
4141 struct kmem_cache_node *n;
4142 struct page *page;
4143 struct page *t;
832f37f5
VD
4144 struct list_head discard;
4145 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4146 unsigned long flags;
ce3712d7 4147 int ret = 0;
2086d26a 4148
2086d26a 4149 flush_all(s);
fa45dc25 4150 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4151 INIT_LIST_HEAD(&discard);
4152 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4153 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4154
4155 spin_lock_irqsave(&n->list_lock, flags);
4156
4157 /*
832f37f5 4158 * Build lists of slabs to discard or promote.
2086d26a 4159 *
672bba3a
CL
4160 * Note that concurrent frees may occur while we hold the
4161 * list_lock. page->inuse here is the upper limit.
2086d26a 4162 */
916ac052 4163 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4164 int free = page->objects - page->inuse;
4165
4166 /* Do not reread page->inuse */
4167 barrier();
4168
4169 /* We do not keep full slabs on the list */
4170 BUG_ON(free <= 0);
4171
4172 if (free == page->objects) {
916ac052 4173 list_move(&page->slab_list, &discard);
69cb8e6b 4174 n->nr_partial--;
832f37f5 4175 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4176 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4177 }
4178
2086d26a 4179 /*
832f37f5
VD
4180 * Promote the slabs filled up most to the head of the
4181 * partial list.
2086d26a 4182 */
832f37f5
VD
4183 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4184 list_splice(promote + i, &n->partial);
2086d26a 4185
2086d26a 4186 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4187
4188 /* Release empty slabs */
916ac052 4189 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4190 discard_slab(s, page);
ce3712d7
VD
4191
4192 if (slabs_node(s, node))
4193 ret = 1;
2086d26a
CL
4194 }
4195
ce3712d7 4196 return ret;
2086d26a 4197}
2086d26a 4198
b9049e23
YG
4199static int slab_mem_going_offline_callback(void *arg)
4200{
4201 struct kmem_cache *s;
4202
18004c5d 4203 mutex_lock(&slab_mutex);
b9049e23 4204 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4205 __kmem_cache_shrink(s);
18004c5d 4206 mutex_unlock(&slab_mutex);
b9049e23
YG
4207
4208 return 0;
4209}
4210
4211static void slab_mem_offline_callback(void *arg)
4212{
4213 struct kmem_cache_node *n;
4214 struct kmem_cache *s;
4215 struct memory_notify *marg = arg;
4216 int offline_node;
4217
b9d5ab25 4218 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4219
4220 /*
4221 * If the node still has available memory. we need kmem_cache_node
4222 * for it yet.
4223 */
4224 if (offline_node < 0)
4225 return;
4226
18004c5d 4227 mutex_lock(&slab_mutex);
b9049e23
YG
4228 list_for_each_entry(s, &slab_caches, list) {
4229 n = get_node(s, offline_node);
4230 if (n) {
4231 /*
4232 * if n->nr_slabs > 0, slabs still exist on the node
4233 * that is going down. We were unable to free them,
c9404c9c 4234 * and offline_pages() function shouldn't call this
b9049e23
YG
4235 * callback. So, we must fail.
4236 */
0f389ec6 4237 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4238
4239 s->node[offline_node] = NULL;
8de66a0c 4240 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4241 }
4242 }
18004c5d 4243 mutex_unlock(&slab_mutex);
b9049e23
YG
4244}
4245
4246static int slab_mem_going_online_callback(void *arg)
4247{
4248 struct kmem_cache_node *n;
4249 struct kmem_cache *s;
4250 struct memory_notify *marg = arg;
b9d5ab25 4251 int nid = marg->status_change_nid_normal;
b9049e23
YG
4252 int ret = 0;
4253
4254 /*
4255 * If the node's memory is already available, then kmem_cache_node is
4256 * already created. Nothing to do.
4257 */
4258 if (nid < 0)
4259 return 0;
4260
4261 /*
0121c619 4262 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4263 * allocate a kmem_cache_node structure in order to bring the node
4264 * online.
4265 */
18004c5d 4266 mutex_lock(&slab_mutex);
b9049e23
YG
4267 list_for_each_entry(s, &slab_caches, list) {
4268 /*
4269 * XXX: kmem_cache_alloc_node will fallback to other nodes
4270 * since memory is not yet available from the node that
4271 * is brought up.
4272 */
8de66a0c 4273 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4274 if (!n) {
4275 ret = -ENOMEM;
4276 goto out;
4277 }
4053497d 4278 init_kmem_cache_node(n);
b9049e23
YG
4279 s->node[nid] = n;
4280 }
4281out:
18004c5d 4282 mutex_unlock(&slab_mutex);
b9049e23
YG
4283 return ret;
4284}
4285
4286static int slab_memory_callback(struct notifier_block *self,
4287 unsigned long action, void *arg)
4288{
4289 int ret = 0;
4290
4291 switch (action) {
4292 case MEM_GOING_ONLINE:
4293 ret = slab_mem_going_online_callback(arg);
4294 break;
4295 case MEM_GOING_OFFLINE:
4296 ret = slab_mem_going_offline_callback(arg);
4297 break;
4298 case MEM_OFFLINE:
4299 case MEM_CANCEL_ONLINE:
4300 slab_mem_offline_callback(arg);
4301 break;
4302 case MEM_ONLINE:
4303 case MEM_CANCEL_OFFLINE:
4304 break;
4305 }
dc19f9db
KH
4306 if (ret)
4307 ret = notifier_from_errno(ret);
4308 else
4309 ret = NOTIFY_OK;
b9049e23
YG
4310 return ret;
4311}
4312
3ac38faa
AM
4313static struct notifier_block slab_memory_callback_nb = {
4314 .notifier_call = slab_memory_callback,
4315 .priority = SLAB_CALLBACK_PRI,
4316};
b9049e23 4317
81819f0f
CL
4318/********************************************************************
4319 * Basic setup of slabs
4320 *******************************************************************/
4321
51df1142
CL
4322/*
4323 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4324 * the page allocator. Allocate them properly then fix up the pointers
4325 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4326 */
4327
dffb4d60 4328static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4329{
4330 int node;
dffb4d60 4331 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4332 struct kmem_cache_node *n;
51df1142 4333
dffb4d60 4334 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4335
7d557b3c
GC
4336 /*
4337 * This runs very early, and only the boot processor is supposed to be
4338 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4339 * IPIs around.
4340 */
4341 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4342 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4343 struct page *p;
4344
916ac052 4345 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4346 p->slab_cache = s;
51df1142 4347
607bf324 4348#ifdef CONFIG_SLUB_DEBUG
916ac052 4349 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4350 p->slab_cache = s;
51df1142 4351#endif
51df1142 4352 }
dffb4d60
CL
4353 list_add(&s->list, &slab_caches);
4354 return s;
51df1142
CL
4355}
4356
81819f0f
CL
4357void __init kmem_cache_init(void)
4358{
dffb4d60
CL
4359 static __initdata struct kmem_cache boot_kmem_cache,
4360 boot_kmem_cache_node;
51df1142 4361
fc8d8620
SG
4362 if (debug_guardpage_minorder())
4363 slub_max_order = 0;
4364
dffb4d60
CL
4365 kmem_cache_node = &boot_kmem_cache_node;
4366 kmem_cache = &boot_kmem_cache;
51df1142 4367
dffb4d60 4368 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4369 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4370
3ac38faa 4371 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4372
4373 /* Able to allocate the per node structures */
4374 slab_state = PARTIAL;
4375
dffb4d60
CL
4376 create_boot_cache(kmem_cache, "kmem_cache",
4377 offsetof(struct kmem_cache, node) +
4378 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4379 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4380
dffb4d60 4381 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4382 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4383
4384 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4385 setup_kmalloc_cache_index_table();
f97d5f63 4386 create_kmalloc_caches(0);
81819f0f 4387
210e7a43
TG
4388 /* Setup random freelists for each cache */
4389 init_freelist_randomization();
4390
a96a87bf
SAS
4391 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4392 slub_cpu_dead);
81819f0f 4393
b9726c26 4394 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4395 cache_line_size(),
81819f0f
CL
4396 slub_min_order, slub_max_order, slub_min_objects,
4397 nr_cpu_ids, nr_node_ids);
4398}
4399
7e85ee0c
PE
4400void __init kmem_cache_init_late(void)
4401{
7e85ee0c
PE
4402}
4403
2633d7a0 4404struct kmem_cache *
f4957d5b 4405__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4406 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4407{
10befea9 4408 struct kmem_cache *s;
81819f0f 4409
a44cb944 4410 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4411 if (s) {
4412 s->refcount++;
84d0ddd6 4413
81819f0f
CL
4414 /*
4415 * Adjust the object sizes so that we clear
4416 * the complete object on kzalloc.
4417 */
1b473f29 4418 s->object_size = max(s->object_size, size);
52ee6d74 4419 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4420
7b8f3b66 4421 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4422 s->refcount--;
cbb79694 4423 s = NULL;
7b8f3b66 4424 }
a0e1d1be 4425 }
6446faa2 4426
cbb79694
CL
4427 return s;
4428}
84c1cf62 4429
d50112ed 4430int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4431{
aac3a166
PE
4432 int err;
4433
4434 err = kmem_cache_open(s, flags);
4435 if (err)
4436 return err;
20cea968 4437
45530c44
CL
4438 /* Mutex is not taken during early boot */
4439 if (slab_state <= UP)
4440 return 0;
4441
aac3a166 4442 err = sysfs_slab_add(s);
aac3a166 4443 if (err)
52b4b950 4444 __kmem_cache_release(s);
20cea968 4445
aac3a166 4446 return err;
81819f0f 4447}
81819f0f 4448
ce71e27c 4449void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4450{
aadb4bc4 4451 struct kmem_cache *s;
94b528d0 4452 void *ret;
aadb4bc4 4453
95a05b42 4454 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4455 return kmalloc_large(size, gfpflags);
4456
2c59dd65 4457 s = kmalloc_slab(size, gfpflags);
81819f0f 4458
2408c550 4459 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4460 return s;
81819f0f 4461
2b847c3c 4462 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4463
25985edc 4464 /* Honor the call site pointer we received. */
ca2b84cb 4465 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4466
4467 return ret;
81819f0f 4468}
fd7cb575 4469EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4470
5d1f57e4 4471#ifdef CONFIG_NUMA
81819f0f 4472void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4473 int node, unsigned long caller)
81819f0f 4474{
aadb4bc4 4475 struct kmem_cache *s;
94b528d0 4476 void *ret;
aadb4bc4 4477
95a05b42 4478 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4479 ret = kmalloc_large_node(size, gfpflags, node);
4480
4481 trace_kmalloc_node(caller, ret,
4482 size, PAGE_SIZE << get_order(size),
4483 gfpflags, node);
4484
4485 return ret;
4486 }
eada35ef 4487
2c59dd65 4488 s = kmalloc_slab(size, gfpflags);
81819f0f 4489
2408c550 4490 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4491 return s;
81819f0f 4492
2b847c3c 4493 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4494
25985edc 4495 /* Honor the call site pointer we received. */
ca2b84cb 4496 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4497
4498 return ret;
81819f0f 4499}
fd7cb575 4500EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4501#endif
81819f0f 4502
ab4d5ed5 4503#ifdef CONFIG_SYSFS
205ab99d
CL
4504static int count_inuse(struct page *page)
4505{
4506 return page->inuse;
4507}
4508
4509static int count_total(struct page *page)
4510{
4511 return page->objects;
4512}
ab4d5ed5 4513#endif
205ab99d 4514
ab4d5ed5 4515#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4516static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4517{
4518 void *p;
a973e9dd 4519 void *addr = page_address(page);
90e9f6a6
YZ
4520 unsigned long *map;
4521
4522 slab_lock(page);
53e15af0 4523
dd98afd4 4524 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4525 goto unlock;
53e15af0
CL
4526
4527 /* Now we know that a valid freelist exists */
90e9f6a6 4528 map = get_map(s, page);
5f80b13a 4529 for_each_object(p, s, addr, page->objects) {
4138fdfc 4530 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4531 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4532
dd98afd4
YZ
4533 if (!check_object(s, page, p, val))
4534 break;
4535 }
90e9f6a6
YZ
4536 put_map(map);
4537unlock:
881db7fb 4538 slab_unlock(page);
53e15af0
CL
4539}
4540
434e245d 4541static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4542 struct kmem_cache_node *n)
53e15af0
CL
4543{
4544 unsigned long count = 0;
4545 struct page *page;
4546 unsigned long flags;
4547
4548 spin_lock_irqsave(&n->list_lock, flags);
4549
916ac052 4550 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4551 validate_slab(s, page);
53e15af0
CL
4552 count++;
4553 }
4554 if (count != n->nr_partial)
f9f58285
FF
4555 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4556 s->name, count, n->nr_partial);
53e15af0
CL
4557
4558 if (!(s->flags & SLAB_STORE_USER))
4559 goto out;
4560
916ac052 4561 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4562 validate_slab(s, page);
53e15af0
CL
4563 count++;
4564 }
4565 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4566 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4567 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4568
4569out:
4570 spin_unlock_irqrestore(&n->list_lock, flags);
4571 return count;
4572}
4573
434e245d 4574static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4575{
4576 int node;
4577 unsigned long count = 0;
fa45dc25 4578 struct kmem_cache_node *n;
53e15af0
CL
4579
4580 flush_all(s);
fa45dc25 4581 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4582 count += validate_slab_node(s, n);
4583
53e15af0
CL
4584 return count;
4585}
88a420e4 4586/*
672bba3a 4587 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4588 * and freed.
4589 */
4590
4591struct location {
4592 unsigned long count;
ce71e27c 4593 unsigned long addr;
45edfa58
CL
4594 long long sum_time;
4595 long min_time;
4596 long max_time;
4597 long min_pid;
4598 long max_pid;
174596a0 4599 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4600 nodemask_t nodes;
88a420e4
CL
4601};
4602
4603struct loc_track {
4604 unsigned long max;
4605 unsigned long count;
4606 struct location *loc;
4607};
4608
4609static void free_loc_track(struct loc_track *t)
4610{
4611 if (t->max)
4612 free_pages((unsigned long)t->loc,
4613 get_order(sizeof(struct location) * t->max));
4614}
4615
68dff6a9 4616static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4617{
4618 struct location *l;
4619 int order;
4620
88a420e4
CL
4621 order = get_order(sizeof(struct location) * max);
4622
68dff6a9 4623 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4624 if (!l)
4625 return 0;
4626
4627 if (t->count) {
4628 memcpy(l, t->loc, sizeof(struct location) * t->count);
4629 free_loc_track(t);
4630 }
4631 t->max = max;
4632 t->loc = l;
4633 return 1;
4634}
4635
4636static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4637 const struct track *track)
88a420e4
CL
4638{
4639 long start, end, pos;
4640 struct location *l;
ce71e27c 4641 unsigned long caddr;
45edfa58 4642 unsigned long age = jiffies - track->when;
88a420e4
CL
4643
4644 start = -1;
4645 end = t->count;
4646
4647 for ( ; ; ) {
4648 pos = start + (end - start + 1) / 2;
4649
4650 /*
4651 * There is nothing at "end". If we end up there
4652 * we need to add something to before end.
4653 */
4654 if (pos == end)
4655 break;
4656
4657 caddr = t->loc[pos].addr;
45edfa58
CL
4658 if (track->addr == caddr) {
4659
4660 l = &t->loc[pos];
4661 l->count++;
4662 if (track->when) {
4663 l->sum_time += age;
4664 if (age < l->min_time)
4665 l->min_time = age;
4666 if (age > l->max_time)
4667 l->max_time = age;
4668
4669 if (track->pid < l->min_pid)
4670 l->min_pid = track->pid;
4671 if (track->pid > l->max_pid)
4672 l->max_pid = track->pid;
4673
174596a0
RR
4674 cpumask_set_cpu(track->cpu,
4675 to_cpumask(l->cpus));
45edfa58
CL
4676 }
4677 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4678 return 1;
4679 }
4680
45edfa58 4681 if (track->addr < caddr)
88a420e4
CL
4682 end = pos;
4683 else
4684 start = pos;
4685 }
4686
4687 /*
672bba3a 4688 * Not found. Insert new tracking element.
88a420e4 4689 */
68dff6a9 4690 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4691 return 0;
4692
4693 l = t->loc + pos;
4694 if (pos < t->count)
4695 memmove(l + 1, l,
4696 (t->count - pos) * sizeof(struct location));
4697 t->count++;
4698 l->count = 1;
45edfa58
CL
4699 l->addr = track->addr;
4700 l->sum_time = age;
4701 l->min_time = age;
4702 l->max_time = age;
4703 l->min_pid = track->pid;
4704 l->max_pid = track->pid;
174596a0
RR
4705 cpumask_clear(to_cpumask(l->cpus));
4706 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4707 nodes_clear(l->nodes);
4708 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4709 return 1;
4710}
4711
4712static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4713 struct page *page, enum track_item alloc)
88a420e4 4714{
a973e9dd 4715 void *addr = page_address(page);
88a420e4 4716 void *p;
90e9f6a6 4717 unsigned long *map;
88a420e4 4718
90e9f6a6 4719 map = get_map(s, page);
224a88be 4720 for_each_object(p, s, addr, page->objects)
4138fdfc 4721 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4722 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4723 put_map(map);
88a420e4
CL
4724}
4725
4726static int list_locations(struct kmem_cache *s, char *buf,
4727 enum track_item alloc)
4728{
e374d483 4729 int len = 0;
88a420e4 4730 unsigned long i;
68dff6a9 4731 struct loc_track t = { 0, 0, NULL };
88a420e4 4732 int node;
fa45dc25 4733 struct kmem_cache_node *n;
88a420e4 4734
90e9f6a6
YZ
4735 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4736 GFP_KERNEL)) {
68dff6a9 4737 return sprintf(buf, "Out of memory\n");
bbd7d57b 4738 }
88a420e4
CL
4739 /* Push back cpu slabs */
4740 flush_all(s);
4741
fa45dc25 4742 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4743 unsigned long flags;
4744 struct page *page;
4745
9e86943b 4746 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4747 continue;
4748
4749 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4750 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4751 process_slab(&t, s, page, alloc);
916ac052 4752 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4753 process_slab(&t, s, page, alloc);
88a420e4
CL
4754 spin_unlock_irqrestore(&n->list_lock, flags);
4755 }
4756
4757 for (i = 0; i < t.count; i++) {
45edfa58 4758 struct location *l = &t.loc[i];
88a420e4 4759
9c246247 4760 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4761 break;
e374d483 4762 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4763
4764 if (l->addr)
62c70bce 4765 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4766 else
e374d483 4767 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4768
4769 if (l->sum_time != l->min_time) {
e374d483 4770 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4771 l->min_time,
4772 (long)div_u64(l->sum_time, l->count),
4773 l->max_time);
45edfa58 4774 } else
e374d483 4775 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4776 l->min_time);
4777
4778 if (l->min_pid != l->max_pid)
e374d483 4779 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4780 l->min_pid, l->max_pid);
4781 else
e374d483 4782 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4783 l->min_pid);
4784
174596a0
RR
4785 if (num_online_cpus() > 1 &&
4786 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4787 len < PAGE_SIZE - 60)
4788 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4789 " cpus=%*pbl",
4790 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4791
62bc62a8 4792 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4793 len < PAGE_SIZE - 60)
4794 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4795 " nodes=%*pbl",
4796 nodemask_pr_args(&l->nodes));
45edfa58 4797
e374d483 4798 len += sprintf(buf + len, "\n");
88a420e4
CL
4799 }
4800
4801 free_loc_track(&t);
4802 if (!t.count)
e374d483
HH
4803 len += sprintf(buf, "No data\n");
4804 return len;
88a420e4 4805}
6dfd1b65 4806#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4807
a5a84755 4808#ifdef SLUB_RESILIENCY_TEST
c07b8183 4809static void __init resiliency_test(void)
a5a84755
CL
4810{
4811 u8 *p;
cc252eae 4812 int type = KMALLOC_NORMAL;
a5a84755 4813
95a05b42 4814 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4815
f9f58285
FF
4816 pr_err("SLUB resiliency testing\n");
4817 pr_err("-----------------------\n");
4818 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4819
4820 p = kzalloc(16, GFP_KERNEL);
4821 p[16] = 0x12;
f9f58285
FF
4822 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4823 p + 16);
a5a84755 4824
cc252eae 4825 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4826
4827 /* Hmmm... The next two are dangerous */
4828 p = kzalloc(32, GFP_KERNEL);
4829 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4830 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4831 p);
4832 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4833
cc252eae 4834 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4835 p = kzalloc(64, GFP_KERNEL);
4836 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4837 *p = 0x56;
f9f58285
FF
4838 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4839 p);
4840 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4841 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4842
f9f58285 4843 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4844 p = kzalloc(128, GFP_KERNEL);
4845 kfree(p);
4846 *p = 0x78;
f9f58285 4847 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4848 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4849
4850 p = kzalloc(256, GFP_KERNEL);
4851 kfree(p);
4852 p[50] = 0x9a;
f9f58285 4853 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4854 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4855
4856 p = kzalloc(512, GFP_KERNEL);
4857 kfree(p);
4858 p[512] = 0xab;
f9f58285 4859 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4860 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4861}
4862#else
4863#ifdef CONFIG_SYSFS
4864static void resiliency_test(void) {};
4865#endif
6dfd1b65 4866#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4867
ab4d5ed5 4868#ifdef CONFIG_SYSFS
81819f0f 4869enum slab_stat_type {
205ab99d
CL
4870 SL_ALL, /* All slabs */
4871 SL_PARTIAL, /* Only partially allocated slabs */
4872 SL_CPU, /* Only slabs used for cpu caches */
4873 SL_OBJECTS, /* Determine allocated objects not slabs */
4874 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4875};
4876
205ab99d 4877#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4878#define SO_PARTIAL (1 << SL_PARTIAL)
4879#define SO_CPU (1 << SL_CPU)
4880#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4881#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4882
1663f26d
TH
4883#ifdef CONFIG_MEMCG
4884static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4885
4886static int __init setup_slub_memcg_sysfs(char *str)
4887{
4888 int v;
4889
4890 if (get_option(&str, &v) > 0)
4891 memcg_sysfs_enabled = v;
4892
4893 return 1;
4894}
4895
4896__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4897#endif
4898
62e5c4b4
CG
4899static ssize_t show_slab_objects(struct kmem_cache *s,
4900 char *buf, unsigned long flags)
81819f0f
CL
4901{
4902 unsigned long total = 0;
81819f0f
CL
4903 int node;
4904 int x;
4905 unsigned long *nodes;
81819f0f 4906
6396bb22 4907 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4908 if (!nodes)
4909 return -ENOMEM;
81819f0f 4910
205ab99d
CL
4911 if (flags & SO_CPU) {
4912 int cpu;
81819f0f 4913
205ab99d 4914 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4915 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4916 cpu);
ec3ab083 4917 int node;
49e22585 4918 struct page *page;
dfb4f096 4919
4db0c3c2 4920 page = READ_ONCE(c->page);
ec3ab083
CL
4921 if (!page)
4922 continue;
205ab99d 4923
ec3ab083
CL
4924 node = page_to_nid(page);
4925 if (flags & SO_TOTAL)
4926 x = page->objects;
4927 else if (flags & SO_OBJECTS)
4928 x = page->inuse;
4929 else
4930 x = 1;
49e22585 4931
ec3ab083
CL
4932 total += x;
4933 nodes[node] += x;
4934
a93cf07b 4935 page = slub_percpu_partial_read_once(c);
49e22585 4936 if (page) {
8afb1474
LZ
4937 node = page_to_nid(page);
4938 if (flags & SO_TOTAL)
4939 WARN_ON_ONCE(1);
4940 else if (flags & SO_OBJECTS)
4941 WARN_ON_ONCE(1);
4942 else
4943 x = page->pages;
bc6697d8
ED
4944 total += x;
4945 nodes[node] += x;
49e22585 4946 }
81819f0f
CL
4947 }
4948 }
4949
e4f8e513
QC
4950 /*
4951 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4952 * already held which will conflict with an existing lock order:
4953 *
4954 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4955 *
4956 * We don't really need mem_hotplug_lock (to hold off
4957 * slab_mem_going_offline_callback) here because slab's memory hot
4958 * unplug code doesn't destroy the kmem_cache->node[] data.
4959 */
4960
ab4d5ed5 4961#ifdef CONFIG_SLUB_DEBUG
205ab99d 4962 if (flags & SO_ALL) {
fa45dc25
CL
4963 struct kmem_cache_node *n;
4964
4965 for_each_kmem_cache_node(s, node, n) {
205ab99d 4966
d0e0ac97
CG
4967 if (flags & SO_TOTAL)
4968 x = atomic_long_read(&n->total_objects);
4969 else if (flags & SO_OBJECTS)
4970 x = atomic_long_read(&n->total_objects) -
4971 count_partial(n, count_free);
81819f0f 4972 else
205ab99d 4973 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4974 total += x;
4975 nodes[node] += x;
4976 }
4977
ab4d5ed5
CL
4978 } else
4979#endif
4980 if (flags & SO_PARTIAL) {
fa45dc25 4981 struct kmem_cache_node *n;
81819f0f 4982
fa45dc25 4983 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4984 if (flags & SO_TOTAL)
4985 x = count_partial(n, count_total);
4986 else if (flags & SO_OBJECTS)
4987 x = count_partial(n, count_inuse);
81819f0f 4988 else
205ab99d 4989 x = n->nr_partial;
81819f0f
CL
4990 total += x;
4991 nodes[node] += x;
4992 }
4993 }
81819f0f
CL
4994 x = sprintf(buf, "%lu", total);
4995#ifdef CONFIG_NUMA
fa45dc25 4996 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4997 if (nodes[node])
4998 x += sprintf(buf + x, " N%d=%lu",
4999 node, nodes[node]);
5000#endif
5001 kfree(nodes);
5002 return x + sprintf(buf + x, "\n");
5003}
5004
81819f0f 5005#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5006#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5007
5008struct slab_attribute {
5009 struct attribute attr;
5010 ssize_t (*show)(struct kmem_cache *s, char *buf);
5011 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5012};
5013
5014#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5015 static struct slab_attribute _name##_attr = \
5016 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5017
5018#define SLAB_ATTR(_name) \
5019 static struct slab_attribute _name##_attr = \
ab067e99 5020 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5021
81819f0f
CL
5022static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5023{
44065b2e 5024 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
5025}
5026SLAB_ATTR_RO(slab_size);
5027
5028static ssize_t align_show(struct kmem_cache *s, char *buf)
5029{
3a3791ec 5030 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
5031}
5032SLAB_ATTR_RO(align);
5033
5034static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5035{
1b473f29 5036 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
5037}
5038SLAB_ATTR_RO(object_size);
5039
5040static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5041{
19af27af 5042 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5043}
5044SLAB_ATTR_RO(objs_per_slab);
5045
5046static ssize_t order_show(struct kmem_cache *s, char *buf)
5047{
19af27af 5048 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 5049}
32a6f409 5050SLAB_ATTR_RO(order);
81819f0f 5051
73d342b1
DR
5052static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5053{
5054 return sprintf(buf, "%lu\n", s->min_partial);
5055}
5056
5057static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5058 size_t length)
5059{
5060 unsigned long min;
5061 int err;
5062
3dbb95f7 5063 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5064 if (err)
5065 return err;
5066
c0bdb232 5067 set_min_partial(s, min);
73d342b1
DR
5068 return length;
5069}
5070SLAB_ATTR(min_partial);
5071
49e22585
CL
5072static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5073{
e6d0e1dc 5074 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5075}
5076
5077static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5078 size_t length)
5079{
e5d9998f 5080 unsigned int objects;
49e22585
CL
5081 int err;
5082
e5d9998f 5083 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5084 if (err)
5085 return err;
345c905d 5086 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5087 return -EINVAL;
49e22585 5088
e6d0e1dc 5089 slub_set_cpu_partial(s, objects);
49e22585
CL
5090 flush_all(s);
5091 return length;
5092}
5093SLAB_ATTR(cpu_partial);
5094
81819f0f
CL
5095static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5096{
62c70bce
JP
5097 if (!s->ctor)
5098 return 0;
5099 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5100}
5101SLAB_ATTR_RO(ctor);
5102
81819f0f
CL
5103static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5104{
4307c14f 5105 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5106}
5107SLAB_ATTR_RO(aliases);
5108
81819f0f
CL
5109static ssize_t partial_show(struct kmem_cache *s, char *buf)
5110{
d9acf4b7 5111 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5112}
5113SLAB_ATTR_RO(partial);
5114
5115static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5116{
d9acf4b7 5117 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5118}
5119SLAB_ATTR_RO(cpu_slabs);
5120
5121static ssize_t objects_show(struct kmem_cache *s, char *buf)
5122{
205ab99d 5123 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5124}
5125SLAB_ATTR_RO(objects);
5126
205ab99d
CL
5127static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5128{
5129 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5130}
5131SLAB_ATTR_RO(objects_partial);
5132
49e22585
CL
5133static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5134{
5135 int objects = 0;
5136 int pages = 0;
5137 int cpu;
5138 int len;
5139
5140 for_each_online_cpu(cpu) {
a93cf07b
WY
5141 struct page *page;
5142
5143 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5144
5145 if (page) {
5146 pages += page->pages;
5147 objects += page->pobjects;
5148 }
5149 }
5150
5151 len = sprintf(buf, "%d(%d)", objects, pages);
5152
5153#ifdef CONFIG_SMP
5154 for_each_online_cpu(cpu) {
a93cf07b
WY
5155 struct page *page;
5156
5157 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5158
5159 if (page && len < PAGE_SIZE - 20)
5160 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5161 page->pobjects, page->pages);
5162 }
5163#endif
5164 return len + sprintf(buf + len, "\n");
5165}
5166SLAB_ATTR_RO(slabs_cpu_partial);
5167
a5a84755
CL
5168static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5169{
5170 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5171}
8f58119a 5172SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5173
5174static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5175{
5176 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5177}
5178SLAB_ATTR_RO(hwcache_align);
5179
5180#ifdef CONFIG_ZONE_DMA
5181static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5182{
5183 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5184}
5185SLAB_ATTR_RO(cache_dma);
5186#endif
5187
8eb8284b
DW
5188static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5189{
7bbdb81e 5190 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5191}
5192SLAB_ATTR_RO(usersize);
5193
a5a84755
CL
5194static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5195{
5f0d5a3a 5196 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5197}
5198SLAB_ATTR_RO(destroy_by_rcu);
5199
ab4d5ed5 5200#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5201static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5202{
5203 return show_slab_objects(s, buf, SO_ALL);
5204}
5205SLAB_ATTR_RO(slabs);
5206
205ab99d
CL
5207static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5208{
5209 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5210}
5211SLAB_ATTR_RO(total_objects);
5212
81819f0f
CL
5213static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5214{
becfda68 5215 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5216}
060807f8 5217SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5218
5219static ssize_t trace_show(struct kmem_cache *s, char *buf)
5220{
5221 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5222}
060807f8 5223SLAB_ATTR_RO(trace);
81819f0f 5224
81819f0f
CL
5225static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5226{
5227 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5228}
5229
ad38b5b1 5230SLAB_ATTR_RO(red_zone);
81819f0f
CL
5231
5232static ssize_t poison_show(struct kmem_cache *s, char *buf)
5233{
5234 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5235}
5236
ad38b5b1 5237SLAB_ATTR_RO(poison);
81819f0f
CL
5238
5239static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5240{
5241 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5242}
5243
ad38b5b1 5244SLAB_ATTR_RO(store_user);
81819f0f 5245
53e15af0
CL
5246static ssize_t validate_show(struct kmem_cache *s, char *buf)
5247{
5248 return 0;
5249}
5250
5251static ssize_t validate_store(struct kmem_cache *s,
5252 const char *buf, size_t length)
5253{
434e245d
CL
5254 int ret = -EINVAL;
5255
5256 if (buf[0] == '1') {
5257 ret = validate_slab_cache(s);
5258 if (ret >= 0)
5259 ret = length;
5260 }
5261 return ret;
53e15af0
CL
5262}
5263SLAB_ATTR(validate);
a5a84755
CL
5264
5265static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5266{
5267 if (!(s->flags & SLAB_STORE_USER))
5268 return -ENOSYS;
5269 return list_locations(s, buf, TRACK_ALLOC);
5270}
5271SLAB_ATTR_RO(alloc_calls);
5272
5273static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5274{
5275 if (!(s->flags & SLAB_STORE_USER))
5276 return -ENOSYS;
5277 return list_locations(s, buf, TRACK_FREE);
5278}
5279SLAB_ATTR_RO(free_calls);
5280#endif /* CONFIG_SLUB_DEBUG */
5281
5282#ifdef CONFIG_FAILSLAB
5283static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5284{
5285 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5286}
060807f8 5287SLAB_ATTR_RO(failslab);
ab4d5ed5 5288#endif
53e15af0 5289
2086d26a
CL
5290static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5291{
5292 return 0;
5293}
5294
5295static ssize_t shrink_store(struct kmem_cache *s,
5296 const char *buf, size_t length)
5297{
832f37f5 5298 if (buf[0] == '1')
10befea9 5299 kmem_cache_shrink(s);
832f37f5 5300 else
2086d26a
CL
5301 return -EINVAL;
5302 return length;
5303}
5304SLAB_ATTR(shrink);
5305
81819f0f 5306#ifdef CONFIG_NUMA
9824601e 5307static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5308{
eb7235eb 5309 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5310}
5311
9824601e 5312static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5313 const char *buf, size_t length)
5314{
eb7235eb 5315 unsigned int ratio;
0121c619
CL
5316 int err;
5317
eb7235eb 5318 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5319 if (err)
5320 return err;
eb7235eb
AD
5321 if (ratio > 100)
5322 return -ERANGE;
0121c619 5323
eb7235eb 5324 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5325
81819f0f
CL
5326 return length;
5327}
9824601e 5328SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5329#endif
5330
8ff12cfc 5331#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5332static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5333{
5334 unsigned long sum = 0;
5335 int cpu;
5336 int len;
6da2ec56 5337 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5338
5339 if (!data)
5340 return -ENOMEM;
5341
5342 for_each_online_cpu(cpu) {
9dfc6e68 5343 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5344
5345 data[cpu] = x;
5346 sum += x;
5347 }
5348
5349 len = sprintf(buf, "%lu", sum);
5350
50ef37b9 5351#ifdef CONFIG_SMP
8ff12cfc
CL
5352 for_each_online_cpu(cpu) {
5353 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5354 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5355 }
50ef37b9 5356#endif
8ff12cfc
CL
5357 kfree(data);
5358 return len + sprintf(buf + len, "\n");
5359}
5360
78eb00cc
DR
5361static void clear_stat(struct kmem_cache *s, enum stat_item si)
5362{
5363 int cpu;
5364
5365 for_each_online_cpu(cpu)
9dfc6e68 5366 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5367}
5368
8ff12cfc
CL
5369#define STAT_ATTR(si, text) \
5370static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5371{ \
5372 return show_stat(s, buf, si); \
5373} \
78eb00cc
DR
5374static ssize_t text##_store(struct kmem_cache *s, \
5375 const char *buf, size_t length) \
5376{ \
5377 if (buf[0] != '0') \
5378 return -EINVAL; \
5379 clear_stat(s, si); \
5380 return length; \
5381} \
5382SLAB_ATTR(text); \
8ff12cfc
CL
5383
5384STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5385STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5386STAT_ATTR(FREE_FASTPATH, free_fastpath);
5387STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5388STAT_ATTR(FREE_FROZEN, free_frozen);
5389STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5390STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5391STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5392STAT_ATTR(ALLOC_SLAB, alloc_slab);
5393STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5394STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5395STAT_ATTR(FREE_SLAB, free_slab);
5396STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5397STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5398STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5399STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5400STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5401STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5402STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5403STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5404STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5405STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5406STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5407STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5408STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5409STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5410#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5411
06428780 5412static struct attribute *slab_attrs[] = {
81819f0f
CL
5413 &slab_size_attr.attr,
5414 &object_size_attr.attr,
5415 &objs_per_slab_attr.attr,
5416 &order_attr.attr,
73d342b1 5417 &min_partial_attr.attr,
49e22585 5418 &cpu_partial_attr.attr,
81819f0f 5419 &objects_attr.attr,
205ab99d 5420 &objects_partial_attr.attr,
81819f0f
CL
5421 &partial_attr.attr,
5422 &cpu_slabs_attr.attr,
5423 &ctor_attr.attr,
81819f0f
CL
5424 &aliases_attr.attr,
5425 &align_attr.attr,
81819f0f
CL
5426 &hwcache_align_attr.attr,
5427 &reclaim_account_attr.attr,
5428 &destroy_by_rcu_attr.attr,
a5a84755 5429 &shrink_attr.attr,
49e22585 5430 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5431#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5432 &total_objects_attr.attr,
5433 &slabs_attr.attr,
5434 &sanity_checks_attr.attr,
5435 &trace_attr.attr,
81819f0f
CL
5436 &red_zone_attr.attr,
5437 &poison_attr.attr,
5438 &store_user_attr.attr,
53e15af0 5439 &validate_attr.attr,
88a420e4
CL
5440 &alloc_calls_attr.attr,
5441 &free_calls_attr.attr,
ab4d5ed5 5442#endif
81819f0f
CL
5443#ifdef CONFIG_ZONE_DMA
5444 &cache_dma_attr.attr,
5445#endif
5446#ifdef CONFIG_NUMA
9824601e 5447 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5448#endif
5449#ifdef CONFIG_SLUB_STATS
5450 &alloc_fastpath_attr.attr,
5451 &alloc_slowpath_attr.attr,
5452 &free_fastpath_attr.attr,
5453 &free_slowpath_attr.attr,
5454 &free_frozen_attr.attr,
5455 &free_add_partial_attr.attr,
5456 &free_remove_partial_attr.attr,
5457 &alloc_from_partial_attr.attr,
5458 &alloc_slab_attr.attr,
5459 &alloc_refill_attr.attr,
e36a2652 5460 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5461 &free_slab_attr.attr,
5462 &cpuslab_flush_attr.attr,
5463 &deactivate_full_attr.attr,
5464 &deactivate_empty_attr.attr,
5465 &deactivate_to_head_attr.attr,
5466 &deactivate_to_tail_attr.attr,
5467 &deactivate_remote_frees_attr.attr,
03e404af 5468 &deactivate_bypass_attr.attr,
65c3376a 5469 &order_fallback_attr.attr,
b789ef51
CL
5470 &cmpxchg_double_fail_attr.attr,
5471 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5472 &cpu_partial_alloc_attr.attr,
5473 &cpu_partial_free_attr.attr,
8028dcea
AS
5474 &cpu_partial_node_attr.attr,
5475 &cpu_partial_drain_attr.attr,
81819f0f 5476#endif
4c13dd3b
DM
5477#ifdef CONFIG_FAILSLAB
5478 &failslab_attr.attr,
5479#endif
8eb8284b 5480 &usersize_attr.attr,
4c13dd3b 5481
81819f0f
CL
5482 NULL
5483};
5484
1fdaaa23 5485static const struct attribute_group slab_attr_group = {
81819f0f
CL
5486 .attrs = slab_attrs,
5487};
5488
5489static ssize_t slab_attr_show(struct kobject *kobj,
5490 struct attribute *attr,
5491 char *buf)
5492{
5493 struct slab_attribute *attribute;
5494 struct kmem_cache *s;
5495 int err;
5496
5497 attribute = to_slab_attr(attr);
5498 s = to_slab(kobj);
5499
5500 if (!attribute->show)
5501 return -EIO;
5502
5503 err = attribute->show(s, buf);
5504
5505 return err;
5506}
5507
5508static ssize_t slab_attr_store(struct kobject *kobj,
5509 struct attribute *attr,
5510 const char *buf, size_t len)
5511{
5512 struct slab_attribute *attribute;
5513 struct kmem_cache *s;
5514 int err;
5515
5516 attribute = to_slab_attr(attr);
5517 s = to_slab(kobj);
5518
5519 if (!attribute->store)
5520 return -EIO;
5521
5522 err = attribute->store(s, buf, len);
81819f0f
CL
5523 return err;
5524}
5525
41a21285
CL
5526static void kmem_cache_release(struct kobject *k)
5527{
5528 slab_kmem_cache_release(to_slab(k));
5529}
5530
52cf25d0 5531static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5532 .show = slab_attr_show,
5533 .store = slab_attr_store,
5534};
5535
5536static struct kobj_type slab_ktype = {
5537 .sysfs_ops = &slab_sysfs_ops,
41a21285 5538 .release = kmem_cache_release,
81819f0f
CL
5539};
5540
27c3a314 5541static struct kset *slab_kset;
81819f0f 5542
9a41707b
VD
5543static inline struct kset *cache_kset(struct kmem_cache *s)
5544{
9a41707b
VD
5545 return slab_kset;
5546}
5547
81819f0f
CL
5548#define ID_STR_LENGTH 64
5549
5550/* Create a unique string id for a slab cache:
6446faa2
CL
5551 *
5552 * Format :[flags-]size
81819f0f
CL
5553 */
5554static char *create_unique_id(struct kmem_cache *s)
5555{
5556 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5557 char *p = name;
5558
5559 BUG_ON(!name);
5560
5561 *p++ = ':';
5562 /*
5563 * First flags affecting slabcache operations. We will only
5564 * get here for aliasable slabs so we do not need to support
5565 * too many flags. The flags here must cover all flags that
5566 * are matched during merging to guarantee that the id is
5567 * unique.
5568 */
5569 if (s->flags & SLAB_CACHE_DMA)
5570 *p++ = 'd';
6d6ea1e9
NB
5571 if (s->flags & SLAB_CACHE_DMA32)
5572 *p++ = 'D';
81819f0f
CL
5573 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5574 *p++ = 'a';
becfda68 5575 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5576 *p++ = 'F';
230e9fc2
VD
5577 if (s->flags & SLAB_ACCOUNT)
5578 *p++ = 'A';
81819f0f
CL
5579 if (p != name + 1)
5580 *p++ = '-';
44065b2e 5581 p += sprintf(p, "%07u", s->size);
2633d7a0 5582
81819f0f
CL
5583 BUG_ON(p > name + ID_STR_LENGTH - 1);
5584 return name;
5585}
5586
5587static int sysfs_slab_add(struct kmem_cache *s)
5588{
5589 int err;
5590 const char *name;
1663f26d 5591 struct kset *kset = cache_kset(s);
45530c44 5592 int unmergeable = slab_unmergeable(s);
81819f0f 5593
1663f26d
TH
5594 if (!kset) {
5595 kobject_init(&s->kobj, &slab_ktype);
5596 return 0;
5597 }
5598
11066386
MC
5599 if (!unmergeable && disable_higher_order_debug &&
5600 (slub_debug & DEBUG_METADATA_FLAGS))
5601 unmergeable = 1;
5602
81819f0f
CL
5603 if (unmergeable) {
5604 /*
5605 * Slabcache can never be merged so we can use the name proper.
5606 * This is typically the case for debug situations. In that
5607 * case we can catch duplicate names easily.
5608 */
27c3a314 5609 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5610 name = s->name;
5611 } else {
5612 /*
5613 * Create a unique name for the slab as a target
5614 * for the symlinks.
5615 */
5616 name = create_unique_id(s);
5617 }
5618
1663f26d 5619 s->kobj.kset = kset;
26e4f205 5620 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
dde3c6b7
WH
5621 if (err) {
5622 kobject_put(&s->kobj);
80da026a 5623 goto out;
dde3c6b7 5624 }
81819f0f
CL
5625
5626 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5627 if (err)
5628 goto out_del_kobj;
9a41707b 5629
81819f0f
CL
5630 if (!unmergeable) {
5631 /* Setup first alias */
5632 sysfs_slab_alias(s, s->name);
81819f0f 5633 }
54b6a731
DJ
5634out:
5635 if (!unmergeable)
5636 kfree(name);
5637 return err;
5638out_del_kobj:
5639 kobject_del(&s->kobj);
54b6a731 5640 goto out;
81819f0f
CL
5641}
5642
d50d82fa
MP
5643void sysfs_slab_unlink(struct kmem_cache *s)
5644{
5645 if (slab_state >= FULL)
5646 kobject_del(&s->kobj);
5647}
5648
bf5eb3de
TH
5649void sysfs_slab_release(struct kmem_cache *s)
5650{
5651 if (slab_state >= FULL)
5652 kobject_put(&s->kobj);
81819f0f
CL
5653}
5654
5655/*
5656 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5657 * available lest we lose that information.
81819f0f
CL
5658 */
5659struct saved_alias {
5660 struct kmem_cache *s;
5661 const char *name;
5662 struct saved_alias *next;
5663};
5664
5af328a5 5665static struct saved_alias *alias_list;
81819f0f
CL
5666
5667static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5668{
5669 struct saved_alias *al;
5670
97d06609 5671 if (slab_state == FULL) {
81819f0f
CL
5672 /*
5673 * If we have a leftover link then remove it.
5674 */
27c3a314
GKH
5675 sysfs_remove_link(&slab_kset->kobj, name);
5676 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5677 }
5678
5679 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5680 if (!al)
5681 return -ENOMEM;
5682
5683 al->s = s;
5684 al->name = name;
5685 al->next = alias_list;
5686 alias_list = al;
5687 return 0;
5688}
5689
5690static int __init slab_sysfs_init(void)
5691{
5b95a4ac 5692 struct kmem_cache *s;
81819f0f
CL
5693 int err;
5694
18004c5d 5695 mutex_lock(&slab_mutex);
2bce6485 5696
d7660ce5 5697 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5698 if (!slab_kset) {
18004c5d 5699 mutex_unlock(&slab_mutex);
f9f58285 5700 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5701 return -ENOSYS;
5702 }
5703
97d06609 5704 slab_state = FULL;
26a7bd03 5705
5b95a4ac 5706 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5707 err = sysfs_slab_add(s);
5d540fb7 5708 if (err)
f9f58285
FF
5709 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5710 s->name);
26a7bd03 5711 }
81819f0f
CL
5712
5713 while (alias_list) {
5714 struct saved_alias *al = alias_list;
5715
5716 alias_list = alias_list->next;
5717 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5718 if (err)
f9f58285
FF
5719 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5720 al->name);
81819f0f
CL
5721 kfree(al);
5722 }
5723
18004c5d 5724 mutex_unlock(&slab_mutex);
81819f0f
CL
5725 resiliency_test();
5726 return 0;
5727}
5728
5729__initcall(slab_sysfs_init);
ab4d5ed5 5730#endif /* CONFIG_SYSFS */
57ed3eda
PE
5731
5732/*
5733 * The /proc/slabinfo ABI
5734 */
5b365771 5735#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5736void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5737{
57ed3eda 5738 unsigned long nr_slabs = 0;
205ab99d
CL
5739 unsigned long nr_objs = 0;
5740 unsigned long nr_free = 0;
57ed3eda 5741 int node;
fa45dc25 5742 struct kmem_cache_node *n;
57ed3eda 5743
fa45dc25 5744 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5745 nr_slabs += node_nr_slabs(n);
5746 nr_objs += node_nr_objs(n);
205ab99d 5747 nr_free += count_partial(n, count_free);
57ed3eda
PE
5748 }
5749
0d7561c6
GC
5750 sinfo->active_objs = nr_objs - nr_free;
5751 sinfo->num_objs = nr_objs;
5752 sinfo->active_slabs = nr_slabs;
5753 sinfo->num_slabs = nr_slabs;
5754 sinfo->objects_per_slab = oo_objects(s->oo);
5755 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5756}
5757
0d7561c6 5758void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5759{
7b3c3a50
AD
5760}
5761
b7454ad3
GC
5762ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5763 size_t count, loff_t *ppos)
7b3c3a50 5764{
b7454ad3 5765 return -EIO;
7b3c3a50 5766}
5b365771 5767#endif /* CONFIG_SLUB_DEBUG */