]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/slub.c
slab: fix for_each_kmem_cache_node()
[people/arne_f/kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
81819f0f
CL
172/*
173 * Set of flags that will prevent slab merging
174 */
175#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
81819f0f
CL
178
179#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 180 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 181
210b5c06
CG
182#define OO_SHIFT 16
183#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 184#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 185
81819f0f 186/* Internal SLUB flags */
f90ec390 187#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 188#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 189
81819f0f
CL
190#ifdef CONFIG_SMP
191static struct notifier_block slab_notifier;
192#endif
193
02cbc874
CL
194/*
195 * Tracking user of a slab.
196 */
d6543e39 197#define TRACK_ADDRS_COUNT 16
02cbc874 198struct track {
ce71e27c 199 unsigned long addr; /* Called from address */
d6543e39
BG
200#ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202#endif
02cbc874
CL
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206};
207
208enum track_item { TRACK_ALLOC, TRACK_FREE };
209
ab4d5ed5 210#ifdef CONFIG_SYSFS
81819f0f
CL
211static int sysfs_slab_add(struct kmem_cache *);
212static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 213static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 214#else
0c710013
CL
215static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
216static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
217 { return 0; }
107dab5c 218static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
219#endif
220
4fdccdfb 221static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
222{
223#ifdef CONFIG_SLUB_STATS
88da03a6
CL
224 /*
225 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 * avoid this_cpu_add()'s irq-disable overhead.
227 */
228 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
229#endif
230}
231
81819f0f
CL
232/********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
235
6446faa2 236/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
237static inline int check_valid_pointer(struct kmem_cache *s,
238 struct page *page, const void *object)
239{
240 void *base;
241
a973e9dd 242 if (!object)
02cbc874
CL
243 return 1;
244
a973e9dd 245 base = page_address(page);
39b26464 246 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
247 (object - base) % s->size) {
248 return 0;
249 }
250
251 return 1;
252}
253
7656c72b
CL
254static inline void *get_freepointer(struct kmem_cache *s, void *object)
255{
256 return *(void **)(object + s->offset);
257}
258
0ad9500e
ED
259static void prefetch_freepointer(const struct kmem_cache *s, void *object)
260{
261 prefetch(object + s->offset);
262}
263
1393d9a1
CL
264static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
265{
266 void *p;
267
268#ifdef CONFIG_DEBUG_PAGEALLOC
269 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
270#else
271 p = get_freepointer(s, object);
272#endif
273 return p;
274}
275
7656c72b
CL
276static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277{
278 *(void **)(object + s->offset) = fp;
279}
280
281/* Loop over all objects in a slab */
224a88be
CL
282#define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
284 __p += (__s)->size)
285
54266640
WY
286#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
287 for (__p = (__addr), __idx = 1; __idx <= __objects;\
288 __p += (__s)->size, __idx++)
289
7656c72b
CL
290/* Determine object index from a given position */
291static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292{
293 return (p - addr) / s->size;
294}
295
d71f606f
MK
296static inline size_t slab_ksize(const struct kmem_cache *s)
297{
298#ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 304 return s->object_size;
d71f606f
MK
305
306#endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318}
319
ab9a0f19
LJ
320static inline int order_objects(int order, unsigned long size, int reserved)
321{
322 return ((PAGE_SIZE << order) - reserved) / size;
323}
324
834f3d11 325static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 326 unsigned long size, int reserved)
834f3d11
CL
327{
328 struct kmem_cache_order_objects x = {
ab9a0f19 329 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
330 };
331
332 return x;
333}
334
335static inline int oo_order(struct kmem_cache_order_objects x)
336{
210b5c06 337 return x.x >> OO_SHIFT;
834f3d11
CL
338}
339
340static inline int oo_objects(struct kmem_cache_order_objects x)
341{
210b5c06 342 return x.x & OO_MASK;
834f3d11
CL
343}
344
881db7fb
CL
345/*
346 * Per slab locking using the pagelock
347 */
348static __always_inline void slab_lock(struct page *page)
349{
350 bit_spin_lock(PG_locked, &page->flags);
351}
352
353static __always_inline void slab_unlock(struct page *page)
354{
355 __bit_spin_unlock(PG_locked, &page->flags);
356}
357
a0320865
DH
358static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359{
360 struct page tmp;
361 tmp.counters = counters_new;
362 /*
363 * page->counters can cover frozen/inuse/objects as well
364 * as page->_count. If we assign to ->counters directly
365 * we run the risk of losing updates to page->_count, so
366 * be careful and only assign to the fields we need.
367 */
368 page->frozen = tmp.frozen;
369 page->inuse = tmp.inuse;
370 page->objects = tmp.objects;
371}
372
1d07171c
CL
373/* Interrupts must be disabled (for the fallback code to work right) */
374static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 void *freelist_old, unsigned long counters_old,
376 void *freelist_new, unsigned long counters_new,
377 const char *n)
378{
379 VM_BUG_ON(!irqs_disabled());
2565409f
HC
380#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 382 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 383 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
384 freelist_old, counters_old,
385 freelist_new, counters_new))
386 return 1;
1d07171c
CL
387 } else
388#endif
389 {
390 slab_lock(page);
d0e0ac97
CG
391 if (page->freelist == freelist_old &&
392 page->counters == counters_old) {
1d07171c 393 page->freelist = freelist_new;
a0320865 394 set_page_slub_counters(page, counters_new);
1d07171c
CL
395 slab_unlock(page);
396 return 1;
397 }
398 slab_unlock(page);
399 }
400
401 cpu_relax();
402 stat(s, CMPXCHG_DOUBLE_FAIL);
403
404#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 405 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
406#endif
407
408 return 0;
409}
410
b789ef51
CL
411static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 void *freelist_old, unsigned long counters_old,
413 void *freelist_new, unsigned long counters_new,
414 const char *n)
415{
2565409f
HC
416#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 418 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 419 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
420 freelist_old, counters_old,
421 freelist_new, counters_new))
422 return 1;
b789ef51
CL
423 } else
424#endif
425 {
1d07171c
CL
426 unsigned long flags;
427
428 local_irq_save(flags);
881db7fb 429 slab_lock(page);
d0e0ac97
CG
430 if (page->freelist == freelist_old &&
431 page->counters == counters_old) {
b789ef51 432 page->freelist = freelist_new;
a0320865 433 set_page_slub_counters(page, counters_new);
881db7fb 434 slab_unlock(page);
1d07171c 435 local_irq_restore(flags);
b789ef51
CL
436 return 1;
437 }
881db7fb 438 slab_unlock(page);
1d07171c 439 local_irq_restore(flags);
b789ef51
CL
440 }
441
442 cpu_relax();
443 stat(s, CMPXCHG_DOUBLE_FAIL);
444
445#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 446 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
447#endif
448
449 return 0;
450}
451
41ecc55b 452#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
453/*
454 * Determine a map of object in use on a page.
455 *
881db7fb 456 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
457 * not vanish from under us.
458 */
459static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460{
461 void *p;
462 void *addr = page_address(page);
463
464 for (p = page->freelist; p; p = get_freepointer(s, p))
465 set_bit(slab_index(p, s, addr), map);
466}
467
41ecc55b
CL
468/*
469 * Debug settings:
470 */
f0630fff
CL
471#ifdef CONFIG_SLUB_DEBUG_ON
472static int slub_debug = DEBUG_DEFAULT_FLAGS;
473#else
41ecc55b 474static int slub_debug;
f0630fff 475#endif
41ecc55b
CL
476
477static char *slub_debug_slabs;
fa5ec8a1 478static int disable_higher_order_debug;
41ecc55b 479
81819f0f
CL
480/*
481 * Object debugging
482 */
483static void print_section(char *text, u8 *addr, unsigned int length)
484{
ffc79d28
SAS
485 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
486 length, 1);
81819f0f
CL
487}
488
81819f0f
CL
489static struct track *get_track(struct kmem_cache *s, void *object,
490 enum track_item alloc)
491{
492 struct track *p;
493
494 if (s->offset)
495 p = object + s->offset + sizeof(void *);
496 else
497 p = object + s->inuse;
498
499 return p + alloc;
500}
501
502static void set_track(struct kmem_cache *s, void *object,
ce71e27c 503 enum track_item alloc, unsigned long addr)
81819f0f 504{
1a00df4a 505 struct track *p = get_track(s, object, alloc);
81819f0f 506
81819f0f 507 if (addr) {
d6543e39
BG
508#ifdef CONFIG_STACKTRACE
509 struct stack_trace trace;
510 int i;
511
512 trace.nr_entries = 0;
513 trace.max_entries = TRACK_ADDRS_COUNT;
514 trace.entries = p->addrs;
515 trace.skip = 3;
516 save_stack_trace(&trace);
517
518 /* See rant in lockdep.c */
519 if (trace.nr_entries != 0 &&
520 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
521 trace.nr_entries--;
522
523 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
524 p->addrs[i] = 0;
525#endif
81819f0f
CL
526 p->addr = addr;
527 p->cpu = smp_processor_id();
88e4ccf2 528 p->pid = current->pid;
81819f0f
CL
529 p->when = jiffies;
530 } else
531 memset(p, 0, sizeof(struct track));
532}
533
81819f0f
CL
534static void init_tracking(struct kmem_cache *s, void *object)
535{
24922684
CL
536 if (!(s->flags & SLAB_STORE_USER))
537 return;
538
ce71e27c
EGM
539 set_track(s, object, TRACK_FREE, 0UL);
540 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
541}
542
543static void print_track(const char *s, struct track *t)
544{
545 if (!t->addr)
546 return;
547
f9f58285
FF
548 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
549 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
550#ifdef CONFIG_STACKTRACE
551 {
552 int i;
553 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
554 if (t->addrs[i])
f9f58285 555 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
556 else
557 break;
558 }
559#endif
24922684
CL
560}
561
562static void print_tracking(struct kmem_cache *s, void *object)
563{
564 if (!(s->flags & SLAB_STORE_USER))
565 return;
566
567 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
568 print_track("Freed", get_track(s, object, TRACK_FREE));
569}
570
571static void print_page_info(struct page *page)
572{
f9f58285 573 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 574 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
575
576}
577
578static void slab_bug(struct kmem_cache *s, char *fmt, ...)
579{
ecc42fbe 580 struct va_format vaf;
24922684 581 va_list args;
24922684
CL
582
583 va_start(args, fmt);
ecc42fbe
FF
584 vaf.fmt = fmt;
585 vaf.va = &args;
f9f58285 586 pr_err("=============================================================================\n");
ecc42fbe 587 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 588 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 589
373d4d09 590 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 591 va_end(args);
81819f0f
CL
592}
593
24922684
CL
594static void slab_fix(struct kmem_cache *s, char *fmt, ...)
595{
ecc42fbe 596 struct va_format vaf;
24922684 597 va_list args;
24922684
CL
598
599 va_start(args, fmt);
ecc42fbe
FF
600 vaf.fmt = fmt;
601 vaf.va = &args;
602 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 603 va_end(args);
24922684
CL
604}
605
606static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
607{
608 unsigned int off; /* Offset of last byte */
a973e9dd 609 u8 *addr = page_address(page);
24922684
CL
610
611 print_tracking(s, p);
612
613 print_page_info(page);
614
f9f58285
FF
615 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
616 p, p - addr, get_freepointer(s, p));
24922684
CL
617
618 if (p > addr + 16)
ffc79d28 619 print_section("Bytes b4 ", p - 16, 16);
81819f0f 620
3b0efdfa 621 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 622 PAGE_SIZE));
81819f0f 623 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
624 print_section("Redzone ", p + s->object_size,
625 s->inuse - s->object_size);
81819f0f 626
81819f0f
CL
627 if (s->offset)
628 off = s->offset + sizeof(void *);
629 else
630 off = s->inuse;
631
24922684 632 if (s->flags & SLAB_STORE_USER)
81819f0f 633 off += 2 * sizeof(struct track);
81819f0f
CL
634
635 if (off != s->size)
636 /* Beginning of the filler is the free pointer */
ffc79d28 637 print_section("Padding ", p + off, s->size - off);
24922684
CL
638
639 dump_stack();
81819f0f
CL
640}
641
642static void object_err(struct kmem_cache *s, struct page *page,
643 u8 *object, char *reason)
644{
3dc50637 645 slab_bug(s, "%s", reason);
24922684 646 print_trailer(s, page, object);
81819f0f
CL
647}
648
d0e0ac97
CG
649static void slab_err(struct kmem_cache *s, struct page *page,
650 const char *fmt, ...)
81819f0f
CL
651{
652 va_list args;
653 char buf[100];
654
24922684
CL
655 va_start(args, fmt);
656 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 657 va_end(args);
3dc50637 658 slab_bug(s, "%s", buf);
24922684 659 print_page_info(page);
81819f0f
CL
660 dump_stack();
661}
662
f7cb1933 663static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
664{
665 u8 *p = object;
666
667 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
668 memset(p, POISON_FREE, s->object_size - 1);
669 p[s->object_size - 1] = POISON_END;
81819f0f
CL
670 }
671
672 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 673 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
674}
675
24922684
CL
676static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
677 void *from, void *to)
678{
679 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
680 memset(from, data, to - from);
681}
682
683static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
684 u8 *object, char *what,
06428780 685 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
686{
687 u8 *fault;
688 u8 *end;
689
79824820 690 fault = memchr_inv(start, value, bytes);
24922684
CL
691 if (!fault)
692 return 1;
693
694 end = start + bytes;
695 while (end > fault && end[-1] == value)
696 end--;
697
698 slab_bug(s, "%s overwritten", what);
f9f58285 699 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
700 fault, end - 1, fault[0], value);
701 print_trailer(s, page, object);
702
703 restore_bytes(s, what, value, fault, end);
704 return 0;
81819f0f
CL
705}
706
81819f0f
CL
707/*
708 * Object layout:
709 *
710 * object address
711 * Bytes of the object to be managed.
712 * If the freepointer may overlay the object then the free
713 * pointer is the first word of the object.
672bba3a 714 *
81819f0f
CL
715 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
716 * 0xa5 (POISON_END)
717 *
3b0efdfa 718 * object + s->object_size
81819f0f 719 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 720 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 721 * object_size == inuse.
672bba3a 722 *
81819f0f
CL
723 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
724 * 0xcc (RED_ACTIVE) for objects in use.
725 *
726 * object + s->inuse
672bba3a
CL
727 * Meta data starts here.
728 *
81819f0f
CL
729 * A. Free pointer (if we cannot overwrite object on free)
730 * B. Tracking data for SLAB_STORE_USER
672bba3a 731 * C. Padding to reach required alignment boundary or at mininum
6446faa2 732 * one word if debugging is on to be able to detect writes
672bba3a
CL
733 * before the word boundary.
734 *
735 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
736 *
737 * object + s->size
672bba3a 738 * Nothing is used beyond s->size.
81819f0f 739 *
3b0efdfa 740 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 741 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
742 * may be used with merged slabcaches.
743 */
744
81819f0f
CL
745static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
746{
747 unsigned long off = s->inuse; /* The end of info */
748
749 if (s->offset)
750 /* Freepointer is placed after the object. */
751 off += sizeof(void *);
752
753 if (s->flags & SLAB_STORE_USER)
754 /* We also have user information there */
755 off += 2 * sizeof(struct track);
756
757 if (s->size == off)
758 return 1;
759
24922684
CL
760 return check_bytes_and_report(s, page, p, "Object padding",
761 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
762}
763
39b26464 764/* Check the pad bytes at the end of a slab page */
81819f0f
CL
765static int slab_pad_check(struct kmem_cache *s, struct page *page)
766{
24922684
CL
767 u8 *start;
768 u8 *fault;
769 u8 *end;
770 int length;
771 int remainder;
81819f0f
CL
772
773 if (!(s->flags & SLAB_POISON))
774 return 1;
775
a973e9dd 776 start = page_address(page);
ab9a0f19 777 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
778 end = start + length;
779 remainder = length % s->size;
81819f0f
CL
780 if (!remainder)
781 return 1;
782
79824820 783 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
784 if (!fault)
785 return 1;
786 while (end > fault && end[-1] == POISON_INUSE)
787 end--;
788
789 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 790 print_section("Padding ", end - remainder, remainder);
24922684 791
8a3d271d 792 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 793 return 0;
81819f0f
CL
794}
795
796static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 797 void *object, u8 val)
81819f0f
CL
798{
799 u8 *p = object;
3b0efdfa 800 u8 *endobject = object + s->object_size;
81819f0f
CL
801
802 if (s->flags & SLAB_RED_ZONE) {
24922684 803 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 804 endobject, val, s->inuse - s->object_size))
81819f0f 805 return 0;
81819f0f 806 } else {
3b0efdfa 807 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 808 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
809 endobject, POISON_INUSE,
810 s->inuse - s->object_size);
3adbefee 811 }
81819f0f
CL
812 }
813
814 if (s->flags & SLAB_POISON) {
f7cb1933 815 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 816 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 817 POISON_FREE, s->object_size - 1) ||
24922684 818 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 819 p + s->object_size - 1, POISON_END, 1)))
81819f0f 820 return 0;
81819f0f
CL
821 /*
822 * check_pad_bytes cleans up on its own.
823 */
824 check_pad_bytes(s, page, p);
825 }
826
f7cb1933 827 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
828 /*
829 * Object and freepointer overlap. Cannot check
830 * freepointer while object is allocated.
831 */
832 return 1;
833
834 /* Check free pointer validity */
835 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
836 object_err(s, page, p, "Freepointer corrupt");
837 /*
9f6c708e 838 * No choice but to zap it and thus lose the remainder
81819f0f 839 * of the free objects in this slab. May cause
672bba3a 840 * another error because the object count is now wrong.
81819f0f 841 */
a973e9dd 842 set_freepointer(s, p, NULL);
81819f0f
CL
843 return 0;
844 }
845 return 1;
846}
847
848static int check_slab(struct kmem_cache *s, struct page *page)
849{
39b26464
CL
850 int maxobj;
851
81819f0f
CL
852 VM_BUG_ON(!irqs_disabled());
853
854 if (!PageSlab(page)) {
24922684 855 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
856 return 0;
857 }
39b26464 858
ab9a0f19 859 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
860 if (page->objects > maxobj) {
861 slab_err(s, page, "objects %u > max %u",
862 s->name, page->objects, maxobj);
863 return 0;
864 }
865 if (page->inuse > page->objects) {
24922684 866 slab_err(s, page, "inuse %u > max %u",
39b26464 867 s->name, page->inuse, page->objects);
81819f0f
CL
868 return 0;
869 }
870 /* Slab_pad_check fixes things up after itself */
871 slab_pad_check(s, page);
872 return 1;
873}
874
875/*
672bba3a
CL
876 * Determine if a certain object on a page is on the freelist. Must hold the
877 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
878 */
879static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
880{
881 int nr = 0;
881db7fb 882 void *fp;
81819f0f 883 void *object = NULL;
224a88be 884 unsigned long max_objects;
81819f0f 885
881db7fb 886 fp = page->freelist;
39b26464 887 while (fp && nr <= page->objects) {
81819f0f
CL
888 if (fp == search)
889 return 1;
890 if (!check_valid_pointer(s, page, fp)) {
891 if (object) {
892 object_err(s, page, object,
893 "Freechain corrupt");
a973e9dd 894 set_freepointer(s, object, NULL);
81819f0f 895 } else {
24922684 896 slab_err(s, page, "Freepointer corrupt");
a973e9dd 897 page->freelist = NULL;
39b26464 898 page->inuse = page->objects;
24922684 899 slab_fix(s, "Freelist cleared");
81819f0f
CL
900 return 0;
901 }
902 break;
903 }
904 object = fp;
905 fp = get_freepointer(s, object);
906 nr++;
907 }
908
ab9a0f19 909 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
910 if (max_objects > MAX_OBJS_PER_PAGE)
911 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
912
913 if (page->objects != max_objects) {
914 slab_err(s, page, "Wrong number of objects. Found %d but "
915 "should be %d", page->objects, max_objects);
916 page->objects = max_objects;
917 slab_fix(s, "Number of objects adjusted.");
918 }
39b26464 919 if (page->inuse != page->objects - nr) {
70d71228 920 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
921 "counted were %d", page->inuse, page->objects - nr);
922 page->inuse = page->objects - nr;
24922684 923 slab_fix(s, "Object count adjusted.");
81819f0f
CL
924 }
925 return search == NULL;
926}
927
0121c619
CL
928static void trace(struct kmem_cache *s, struct page *page, void *object,
929 int alloc)
3ec09742
CL
930{
931 if (s->flags & SLAB_TRACE) {
f9f58285 932 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
933 s->name,
934 alloc ? "alloc" : "free",
935 object, page->inuse,
936 page->freelist);
937
938 if (!alloc)
d0e0ac97
CG
939 print_section("Object ", (void *)object,
940 s->object_size);
3ec09742
CL
941
942 dump_stack();
943 }
944}
945
643b1138 946/*
672bba3a 947 * Tracking of fully allocated slabs for debugging purposes.
643b1138 948 */
5cc6eee8
CL
949static void add_full(struct kmem_cache *s,
950 struct kmem_cache_node *n, struct page *page)
643b1138 951{
5cc6eee8
CL
952 if (!(s->flags & SLAB_STORE_USER))
953 return;
954
255d0884 955 lockdep_assert_held(&n->list_lock);
643b1138 956 list_add(&page->lru, &n->full);
643b1138
CL
957}
958
c65c1877 959static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 960{
643b1138
CL
961 if (!(s->flags & SLAB_STORE_USER))
962 return;
963
255d0884 964 lockdep_assert_held(&n->list_lock);
643b1138 965 list_del(&page->lru);
643b1138
CL
966}
967
0f389ec6
CL
968/* Tracking of the number of slabs for debugging purposes */
969static inline unsigned long slabs_node(struct kmem_cache *s, int node)
970{
971 struct kmem_cache_node *n = get_node(s, node);
972
973 return atomic_long_read(&n->nr_slabs);
974}
975
26c02cf0
AB
976static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
977{
978 return atomic_long_read(&n->nr_slabs);
979}
980
205ab99d 981static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
982{
983 struct kmem_cache_node *n = get_node(s, node);
984
985 /*
986 * May be called early in order to allocate a slab for the
987 * kmem_cache_node structure. Solve the chicken-egg
988 * dilemma by deferring the increment of the count during
989 * bootstrap (see early_kmem_cache_node_alloc).
990 */
338b2642 991 if (likely(n)) {
0f389ec6 992 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
993 atomic_long_add(objects, &n->total_objects);
994 }
0f389ec6 995}
205ab99d 996static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
997{
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 atomic_long_dec(&n->nr_slabs);
205ab99d 1001 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1002}
1003
1004/* Object debug checks for alloc/free paths */
3ec09742
CL
1005static void setup_object_debug(struct kmem_cache *s, struct page *page,
1006 void *object)
1007{
1008 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1009 return;
1010
f7cb1933 1011 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1012 init_tracking(s, object);
1013}
1014
d0e0ac97
CG
1015static noinline int alloc_debug_processing(struct kmem_cache *s,
1016 struct page *page,
ce71e27c 1017 void *object, unsigned long addr)
81819f0f
CL
1018{
1019 if (!check_slab(s, page))
1020 goto bad;
1021
81819f0f
CL
1022 if (!check_valid_pointer(s, page, object)) {
1023 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1024 goto bad;
81819f0f
CL
1025 }
1026
f7cb1933 1027 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1028 goto bad;
81819f0f 1029
3ec09742
CL
1030 /* Success perform special debug activities for allocs */
1031 if (s->flags & SLAB_STORE_USER)
1032 set_track(s, object, TRACK_ALLOC, addr);
1033 trace(s, page, object, 1);
f7cb1933 1034 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1035 return 1;
3ec09742 1036
81819f0f
CL
1037bad:
1038 if (PageSlab(page)) {
1039 /*
1040 * If this is a slab page then lets do the best we can
1041 * to avoid issues in the future. Marking all objects
672bba3a 1042 * as used avoids touching the remaining objects.
81819f0f 1043 */
24922684 1044 slab_fix(s, "Marking all objects used");
39b26464 1045 page->inuse = page->objects;
a973e9dd 1046 page->freelist = NULL;
81819f0f
CL
1047 }
1048 return 0;
1049}
1050
19c7ff9e
CL
1051static noinline struct kmem_cache_node *free_debug_processing(
1052 struct kmem_cache *s, struct page *page, void *object,
1053 unsigned long addr, unsigned long *flags)
81819f0f 1054{
19c7ff9e 1055 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1056
19c7ff9e 1057 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1058 slab_lock(page);
1059
81819f0f
CL
1060 if (!check_slab(s, page))
1061 goto fail;
1062
1063 if (!check_valid_pointer(s, page, object)) {
70d71228 1064 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1065 goto fail;
1066 }
1067
1068 if (on_freelist(s, page, object)) {
24922684 1069 object_err(s, page, object, "Object already free");
81819f0f
CL
1070 goto fail;
1071 }
1072
f7cb1933 1073 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1074 goto out;
81819f0f 1075
1b4f59e3 1076 if (unlikely(s != page->slab_cache)) {
3adbefee 1077 if (!PageSlab(page)) {
70d71228
CL
1078 slab_err(s, page, "Attempt to free object(0x%p) "
1079 "outside of slab", object);
1b4f59e3 1080 } else if (!page->slab_cache) {
f9f58285
FF
1081 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1082 object);
70d71228 1083 dump_stack();
06428780 1084 } else
24922684
CL
1085 object_err(s, page, object,
1086 "page slab pointer corrupt.");
81819f0f
CL
1087 goto fail;
1088 }
3ec09742 1089
3ec09742
CL
1090 if (s->flags & SLAB_STORE_USER)
1091 set_track(s, object, TRACK_FREE, addr);
1092 trace(s, page, object, 0);
f7cb1933 1093 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1094out:
881db7fb 1095 slab_unlock(page);
19c7ff9e
CL
1096 /*
1097 * Keep node_lock to preserve integrity
1098 * until the object is actually freed
1099 */
1100 return n;
3ec09742 1101
81819f0f 1102fail:
19c7ff9e
CL
1103 slab_unlock(page);
1104 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1105 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1106 return NULL;
81819f0f
CL
1107}
1108
41ecc55b
CL
1109static int __init setup_slub_debug(char *str)
1110{
f0630fff
CL
1111 slub_debug = DEBUG_DEFAULT_FLAGS;
1112 if (*str++ != '=' || !*str)
1113 /*
1114 * No options specified. Switch on full debugging.
1115 */
1116 goto out;
1117
1118 if (*str == ',')
1119 /*
1120 * No options but restriction on slabs. This means full
1121 * debugging for slabs matching a pattern.
1122 */
1123 goto check_slabs;
1124
fa5ec8a1
DR
1125 if (tolower(*str) == 'o') {
1126 /*
1127 * Avoid enabling debugging on caches if its minimum order
1128 * would increase as a result.
1129 */
1130 disable_higher_order_debug = 1;
1131 goto out;
1132 }
1133
f0630fff
CL
1134 slub_debug = 0;
1135 if (*str == '-')
1136 /*
1137 * Switch off all debugging measures.
1138 */
1139 goto out;
1140
1141 /*
1142 * Determine which debug features should be switched on
1143 */
06428780 1144 for (; *str && *str != ','; str++) {
f0630fff
CL
1145 switch (tolower(*str)) {
1146 case 'f':
1147 slub_debug |= SLAB_DEBUG_FREE;
1148 break;
1149 case 'z':
1150 slub_debug |= SLAB_RED_ZONE;
1151 break;
1152 case 'p':
1153 slub_debug |= SLAB_POISON;
1154 break;
1155 case 'u':
1156 slub_debug |= SLAB_STORE_USER;
1157 break;
1158 case 't':
1159 slub_debug |= SLAB_TRACE;
1160 break;
4c13dd3b
DM
1161 case 'a':
1162 slub_debug |= SLAB_FAILSLAB;
1163 break;
f0630fff 1164 default:
f9f58285
FF
1165 pr_err("slub_debug option '%c' unknown. skipped\n",
1166 *str);
f0630fff 1167 }
41ecc55b
CL
1168 }
1169
f0630fff 1170check_slabs:
41ecc55b
CL
1171 if (*str == ',')
1172 slub_debug_slabs = str + 1;
f0630fff 1173out:
41ecc55b
CL
1174 return 1;
1175}
1176
1177__setup("slub_debug", setup_slub_debug);
1178
3b0efdfa 1179static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1180 unsigned long flags, const char *name,
51cc5068 1181 void (*ctor)(void *))
41ecc55b
CL
1182{
1183 /*
e153362a 1184 * Enable debugging if selected on the kernel commandline.
41ecc55b 1185 */
c6f58d9b
CL
1186 if (slub_debug && (!slub_debug_slabs || (name &&
1187 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1188 flags |= slub_debug;
ba0268a8
CL
1189
1190 return flags;
41ecc55b
CL
1191}
1192#else
3ec09742
CL
1193static inline void setup_object_debug(struct kmem_cache *s,
1194 struct page *page, void *object) {}
41ecc55b 1195
3ec09742 1196static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1197 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1198
19c7ff9e
CL
1199static inline struct kmem_cache_node *free_debug_processing(
1200 struct kmem_cache *s, struct page *page, void *object,
1201 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1202
41ecc55b
CL
1203static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1204 { return 1; }
1205static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1206 void *object, u8 val) { return 1; }
5cc6eee8
CL
1207static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1208 struct page *page) {}
c65c1877
PZ
1209static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1210 struct page *page) {}
3b0efdfa 1211static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1212 unsigned long flags, const char *name,
51cc5068 1213 void (*ctor)(void *))
ba0268a8
CL
1214{
1215 return flags;
1216}
41ecc55b 1217#define slub_debug 0
0f389ec6 1218
fdaa45e9
IM
1219#define disable_higher_order_debug 0
1220
0f389ec6
CL
1221static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1222 { return 0; }
26c02cf0
AB
1223static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1224 { return 0; }
205ab99d
CL
1225static inline void inc_slabs_node(struct kmem_cache *s, int node,
1226 int objects) {}
1227static inline void dec_slabs_node(struct kmem_cache *s, int node,
1228 int objects) {}
7d550c56 1229
02e72cc6
AR
1230#endif /* CONFIG_SLUB_DEBUG */
1231
1232/*
1233 * Hooks for other subsystems that check memory allocations. In a typical
1234 * production configuration these hooks all should produce no code at all.
1235 */
d56791b3
RB
1236static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1237{
1238 kmemleak_alloc(ptr, size, 1, flags);
1239}
1240
1241static inline void kfree_hook(const void *x)
1242{
1243 kmemleak_free(x);
1244}
1245
7d550c56 1246static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
02e72cc6
AR
1247{
1248 flags &= gfp_allowed_mask;
1249 lockdep_trace_alloc(flags);
1250 might_sleep_if(flags & __GFP_WAIT);
7d550c56 1251
02e72cc6
AR
1252 return should_failslab(s->object_size, flags, s->flags);
1253}
1254
1255static inline void slab_post_alloc_hook(struct kmem_cache *s,
1256 gfp_t flags, void *object)
d56791b3 1257{
02e72cc6
AR
1258 flags &= gfp_allowed_mask;
1259 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1260 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
d56791b3 1261}
7d550c56 1262
d56791b3
RB
1263static inline void slab_free_hook(struct kmem_cache *s, void *x)
1264{
1265 kmemleak_free_recursive(x, s->flags);
7d550c56 1266
02e72cc6
AR
1267 /*
1268 * Trouble is that we may no longer disable interrupts in the fast path
1269 * So in order to make the debug calls that expect irqs to be
1270 * disabled we need to disable interrupts temporarily.
1271 */
1272#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1273 {
1274 unsigned long flags;
1275
1276 local_irq_save(flags);
1277 kmemcheck_slab_free(s, x, s->object_size);
1278 debug_check_no_locks_freed(x, s->object_size);
1279 local_irq_restore(flags);
1280 }
1281#endif
1282 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1283 debug_check_no_obj_freed(x, s->object_size);
1284}
205ab99d 1285
81819f0f
CL
1286/*
1287 * Slab allocation and freeing
1288 */
5dfb4175
VD
1289static inline struct page *alloc_slab_page(struct kmem_cache *s,
1290 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1291{
5dfb4175 1292 struct page *page;
65c3376a
CL
1293 int order = oo_order(oo);
1294
b1eeab67
VN
1295 flags |= __GFP_NOTRACK;
1296
5dfb4175
VD
1297 if (memcg_charge_slab(s, flags, order))
1298 return NULL;
1299
2154a336 1300 if (node == NUMA_NO_NODE)
5dfb4175 1301 page = alloc_pages(flags, order);
65c3376a 1302 else
5dfb4175
VD
1303 page = alloc_pages_exact_node(node, flags, order);
1304
1305 if (!page)
1306 memcg_uncharge_slab(s, order);
1307
1308 return page;
65c3376a
CL
1309}
1310
81819f0f
CL
1311static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1312{
06428780 1313 struct page *page;
834f3d11 1314 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1315 gfp_t alloc_gfp;
81819f0f 1316
7e0528da
CL
1317 flags &= gfp_allowed_mask;
1318
1319 if (flags & __GFP_WAIT)
1320 local_irq_enable();
1321
b7a49f0d 1322 flags |= s->allocflags;
e12ba74d 1323
ba52270d
PE
1324 /*
1325 * Let the initial higher-order allocation fail under memory pressure
1326 * so we fall-back to the minimum order allocation.
1327 */
1328 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1329
5dfb4175 1330 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1331 if (unlikely(!page)) {
1332 oo = s->min;
80c3a998 1333 alloc_gfp = flags;
65c3376a
CL
1334 /*
1335 * Allocation may have failed due to fragmentation.
1336 * Try a lower order alloc if possible
1337 */
5dfb4175 1338 page = alloc_slab_page(s, alloc_gfp, node, oo);
81819f0f 1339
7e0528da
CL
1340 if (page)
1341 stat(s, ORDER_FALLBACK);
65c3376a 1342 }
5a896d9e 1343
737b719e 1344 if (kmemcheck_enabled && page
5086c389 1345 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1346 int pages = 1 << oo_order(oo);
1347
80c3a998 1348 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1349
1350 /*
1351 * Objects from caches that have a constructor don't get
1352 * cleared when they're allocated, so we need to do it here.
1353 */
1354 if (s->ctor)
1355 kmemcheck_mark_uninitialized_pages(page, pages);
1356 else
1357 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1358 }
1359
737b719e
DR
1360 if (flags & __GFP_WAIT)
1361 local_irq_disable();
1362 if (!page)
1363 return NULL;
1364
834f3d11 1365 page->objects = oo_objects(oo);
81819f0f
CL
1366 mod_zone_page_state(page_zone(page),
1367 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1368 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1369 1 << oo_order(oo));
81819f0f
CL
1370
1371 return page;
1372}
1373
1374static void setup_object(struct kmem_cache *s, struct page *page,
1375 void *object)
1376{
3ec09742 1377 setup_object_debug(s, page, object);
4f104934 1378 if (unlikely(s->ctor))
51cc5068 1379 s->ctor(object);
81819f0f
CL
1380}
1381
1382static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1383{
1384 struct page *page;
81819f0f 1385 void *start;
81819f0f 1386 void *p;
1f458cbf 1387 int order;
54266640 1388 int idx;
81819f0f 1389
6cb06229 1390 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1391
6cb06229
CL
1392 page = allocate_slab(s,
1393 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1394 if (!page)
1395 goto out;
1396
1f458cbf 1397 order = compound_order(page);
205ab99d 1398 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1399 page->slab_cache = s;
c03f94cc 1400 __SetPageSlab(page);
072bb0aa
MG
1401 if (page->pfmemalloc)
1402 SetPageSlabPfmemalloc(page);
81819f0f
CL
1403
1404 start = page_address(page);
81819f0f
CL
1405
1406 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1407 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1408
54266640
WY
1409 for_each_object_idx(p, idx, s, start, page->objects) {
1410 setup_object(s, page, p);
1411 if (likely(idx < page->objects))
1412 set_freepointer(s, p, p + s->size);
1413 else
1414 set_freepointer(s, p, NULL);
81819f0f 1415 }
81819f0f
CL
1416
1417 page->freelist = start;
e6e82ea1 1418 page->inuse = page->objects;
8cb0a506 1419 page->frozen = 1;
81819f0f 1420out:
81819f0f
CL
1421 return page;
1422}
1423
1424static void __free_slab(struct kmem_cache *s, struct page *page)
1425{
834f3d11
CL
1426 int order = compound_order(page);
1427 int pages = 1 << order;
81819f0f 1428
af537b0a 1429 if (kmem_cache_debug(s)) {
81819f0f
CL
1430 void *p;
1431
1432 slab_pad_check(s, page);
224a88be
CL
1433 for_each_object(p, s, page_address(page),
1434 page->objects)
f7cb1933 1435 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1436 }
1437
b1eeab67 1438 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1439
81819f0f
CL
1440 mod_zone_page_state(page_zone(page),
1441 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1442 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1443 -pages);
81819f0f 1444
072bb0aa 1445 __ClearPageSlabPfmemalloc(page);
49bd5221 1446 __ClearPageSlab(page);
1f458cbf 1447
22b751c3 1448 page_mapcount_reset(page);
1eb5ac64
NP
1449 if (current->reclaim_state)
1450 current->reclaim_state->reclaimed_slab += pages;
5dfb4175
VD
1451 __free_pages(page, order);
1452 memcg_uncharge_slab(s, order);
81819f0f
CL
1453}
1454
da9a638c
LJ
1455#define need_reserve_slab_rcu \
1456 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1457
81819f0f
CL
1458static void rcu_free_slab(struct rcu_head *h)
1459{
1460 struct page *page;
1461
da9a638c
LJ
1462 if (need_reserve_slab_rcu)
1463 page = virt_to_head_page(h);
1464 else
1465 page = container_of((struct list_head *)h, struct page, lru);
1466
1b4f59e3 1467 __free_slab(page->slab_cache, page);
81819f0f
CL
1468}
1469
1470static void free_slab(struct kmem_cache *s, struct page *page)
1471{
1472 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1473 struct rcu_head *head;
1474
1475 if (need_reserve_slab_rcu) {
1476 int order = compound_order(page);
1477 int offset = (PAGE_SIZE << order) - s->reserved;
1478
1479 VM_BUG_ON(s->reserved != sizeof(*head));
1480 head = page_address(page) + offset;
1481 } else {
1482 /*
1483 * RCU free overloads the RCU head over the LRU
1484 */
1485 head = (void *)&page->lru;
1486 }
81819f0f
CL
1487
1488 call_rcu(head, rcu_free_slab);
1489 } else
1490 __free_slab(s, page);
1491}
1492
1493static void discard_slab(struct kmem_cache *s, struct page *page)
1494{
205ab99d 1495 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1496 free_slab(s, page);
1497}
1498
1499/*
5cc6eee8 1500 * Management of partially allocated slabs.
81819f0f 1501 */
1e4dd946
SR
1502static inline void
1503__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1504{
e95eed57 1505 n->nr_partial++;
136333d1 1506 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1507 list_add_tail(&page->lru, &n->partial);
1508 else
1509 list_add(&page->lru, &n->partial);
81819f0f
CL
1510}
1511
1e4dd946
SR
1512static inline void add_partial(struct kmem_cache_node *n,
1513 struct page *page, int tail)
62e346a8 1514{
c65c1877 1515 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1516 __add_partial(n, page, tail);
1517}
c65c1877 1518
1e4dd946
SR
1519static inline void
1520__remove_partial(struct kmem_cache_node *n, struct page *page)
1521{
62e346a8
CL
1522 list_del(&page->lru);
1523 n->nr_partial--;
1524}
1525
1e4dd946
SR
1526static inline void remove_partial(struct kmem_cache_node *n,
1527 struct page *page)
1528{
1529 lockdep_assert_held(&n->list_lock);
1530 __remove_partial(n, page);
1531}
1532
81819f0f 1533/*
7ced3719
CL
1534 * Remove slab from the partial list, freeze it and
1535 * return the pointer to the freelist.
81819f0f 1536 *
497b66f2 1537 * Returns a list of objects or NULL if it fails.
81819f0f 1538 */
497b66f2 1539static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1540 struct kmem_cache_node *n, struct page *page,
633b0764 1541 int mode, int *objects)
81819f0f 1542{
2cfb7455
CL
1543 void *freelist;
1544 unsigned long counters;
1545 struct page new;
1546
c65c1877
PZ
1547 lockdep_assert_held(&n->list_lock);
1548
2cfb7455
CL
1549 /*
1550 * Zap the freelist and set the frozen bit.
1551 * The old freelist is the list of objects for the
1552 * per cpu allocation list.
1553 */
7ced3719
CL
1554 freelist = page->freelist;
1555 counters = page->counters;
1556 new.counters = counters;
633b0764 1557 *objects = new.objects - new.inuse;
23910c50 1558 if (mode) {
7ced3719 1559 new.inuse = page->objects;
23910c50
PE
1560 new.freelist = NULL;
1561 } else {
1562 new.freelist = freelist;
1563 }
2cfb7455 1564
a0132ac0 1565 VM_BUG_ON(new.frozen);
7ced3719 1566 new.frozen = 1;
2cfb7455 1567
7ced3719 1568 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1569 freelist, counters,
02d7633f 1570 new.freelist, new.counters,
7ced3719 1571 "acquire_slab"))
7ced3719 1572 return NULL;
2cfb7455
CL
1573
1574 remove_partial(n, page);
7ced3719 1575 WARN_ON(!freelist);
49e22585 1576 return freelist;
81819f0f
CL
1577}
1578
633b0764 1579static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1580static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1581
81819f0f 1582/*
672bba3a 1583 * Try to allocate a partial slab from a specific node.
81819f0f 1584 */
8ba00bb6
JK
1585static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1586 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1587{
49e22585
CL
1588 struct page *page, *page2;
1589 void *object = NULL;
633b0764
JK
1590 int available = 0;
1591 int objects;
81819f0f
CL
1592
1593 /*
1594 * Racy check. If we mistakenly see no partial slabs then we
1595 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1596 * partial slab and there is none available then get_partials()
1597 * will return NULL.
81819f0f
CL
1598 */
1599 if (!n || !n->nr_partial)
1600 return NULL;
1601
1602 spin_lock(&n->list_lock);
49e22585 1603 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1604 void *t;
49e22585 1605
8ba00bb6
JK
1606 if (!pfmemalloc_match(page, flags))
1607 continue;
1608
633b0764 1609 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1610 if (!t)
1611 break;
1612
633b0764 1613 available += objects;
12d79634 1614 if (!object) {
49e22585 1615 c->page = page;
49e22585 1616 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1617 object = t;
49e22585 1618 } else {
633b0764 1619 put_cpu_partial(s, page, 0);
8028dcea 1620 stat(s, CPU_PARTIAL_NODE);
49e22585 1621 }
345c905d
JK
1622 if (!kmem_cache_has_cpu_partial(s)
1623 || available > s->cpu_partial / 2)
49e22585
CL
1624 break;
1625
497b66f2 1626 }
81819f0f 1627 spin_unlock(&n->list_lock);
497b66f2 1628 return object;
81819f0f
CL
1629}
1630
1631/*
672bba3a 1632 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1633 */
de3ec035 1634static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1635 struct kmem_cache_cpu *c)
81819f0f
CL
1636{
1637#ifdef CONFIG_NUMA
1638 struct zonelist *zonelist;
dd1a239f 1639 struct zoneref *z;
54a6eb5c
MG
1640 struct zone *zone;
1641 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1642 void *object;
cc9a6c87 1643 unsigned int cpuset_mems_cookie;
81819f0f
CL
1644
1645 /*
672bba3a
CL
1646 * The defrag ratio allows a configuration of the tradeoffs between
1647 * inter node defragmentation and node local allocations. A lower
1648 * defrag_ratio increases the tendency to do local allocations
1649 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1650 *
672bba3a
CL
1651 * If the defrag_ratio is set to 0 then kmalloc() always
1652 * returns node local objects. If the ratio is higher then kmalloc()
1653 * may return off node objects because partial slabs are obtained
1654 * from other nodes and filled up.
81819f0f 1655 *
6446faa2 1656 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1657 * defrag_ratio = 1000) then every (well almost) allocation will
1658 * first attempt to defrag slab caches on other nodes. This means
1659 * scanning over all nodes to look for partial slabs which may be
1660 * expensive if we do it every time we are trying to find a slab
1661 * with available objects.
81819f0f 1662 */
9824601e
CL
1663 if (!s->remote_node_defrag_ratio ||
1664 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1665 return NULL;
1666
cc9a6c87 1667 do {
d26914d1 1668 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1669 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1670 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1671 struct kmem_cache_node *n;
1672
1673 n = get_node(s, zone_to_nid(zone));
1674
1675 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1676 n->nr_partial > s->min_partial) {
8ba00bb6 1677 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1678 if (object) {
1679 /*
d26914d1
MG
1680 * Don't check read_mems_allowed_retry()
1681 * here - if mems_allowed was updated in
1682 * parallel, that was a harmless race
1683 * between allocation and the cpuset
1684 * update
cc9a6c87 1685 */
cc9a6c87
MG
1686 return object;
1687 }
c0ff7453 1688 }
81819f0f 1689 }
d26914d1 1690 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1691#endif
1692 return NULL;
1693}
1694
1695/*
1696 * Get a partial page, lock it and return it.
1697 */
497b66f2 1698static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1699 struct kmem_cache_cpu *c)
81819f0f 1700{
497b66f2 1701 void *object;
a561ce00
JK
1702 int searchnode = node;
1703
1704 if (node == NUMA_NO_NODE)
1705 searchnode = numa_mem_id();
1706 else if (!node_present_pages(node))
1707 searchnode = node_to_mem_node(node);
81819f0f 1708
8ba00bb6 1709 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1710 if (object || node != NUMA_NO_NODE)
1711 return object;
81819f0f 1712
acd19fd1 1713 return get_any_partial(s, flags, c);
81819f0f
CL
1714}
1715
8a5ec0ba
CL
1716#ifdef CONFIG_PREEMPT
1717/*
1718 * Calculate the next globally unique transaction for disambiguiation
1719 * during cmpxchg. The transactions start with the cpu number and are then
1720 * incremented by CONFIG_NR_CPUS.
1721 */
1722#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1723#else
1724/*
1725 * No preemption supported therefore also no need to check for
1726 * different cpus.
1727 */
1728#define TID_STEP 1
1729#endif
1730
1731static inline unsigned long next_tid(unsigned long tid)
1732{
1733 return tid + TID_STEP;
1734}
1735
1736static inline unsigned int tid_to_cpu(unsigned long tid)
1737{
1738 return tid % TID_STEP;
1739}
1740
1741static inline unsigned long tid_to_event(unsigned long tid)
1742{
1743 return tid / TID_STEP;
1744}
1745
1746static inline unsigned int init_tid(int cpu)
1747{
1748 return cpu;
1749}
1750
1751static inline void note_cmpxchg_failure(const char *n,
1752 const struct kmem_cache *s, unsigned long tid)
1753{
1754#ifdef SLUB_DEBUG_CMPXCHG
1755 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1756
f9f58285 1757 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1758
1759#ifdef CONFIG_PREEMPT
1760 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1761 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1762 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1763 else
1764#endif
1765 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1766 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1767 tid_to_event(tid), tid_to_event(actual_tid));
1768 else
f9f58285 1769 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1770 actual_tid, tid, next_tid(tid));
1771#endif
4fdccdfb 1772 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1773}
1774
788e1aad 1775static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1776{
8a5ec0ba
CL
1777 int cpu;
1778
1779 for_each_possible_cpu(cpu)
1780 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1781}
2cfb7455 1782
81819f0f
CL
1783/*
1784 * Remove the cpu slab
1785 */
d0e0ac97
CG
1786static void deactivate_slab(struct kmem_cache *s, struct page *page,
1787 void *freelist)
81819f0f 1788{
2cfb7455 1789 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1790 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1791 int lock = 0;
1792 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1793 void *nextfree;
136333d1 1794 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1795 struct page new;
1796 struct page old;
1797
1798 if (page->freelist) {
84e554e6 1799 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1800 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1801 }
1802
894b8788 1803 /*
2cfb7455
CL
1804 * Stage one: Free all available per cpu objects back
1805 * to the page freelist while it is still frozen. Leave the
1806 * last one.
1807 *
1808 * There is no need to take the list->lock because the page
1809 * is still frozen.
1810 */
1811 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1812 void *prior;
1813 unsigned long counters;
1814
1815 do {
1816 prior = page->freelist;
1817 counters = page->counters;
1818 set_freepointer(s, freelist, prior);
1819 new.counters = counters;
1820 new.inuse--;
a0132ac0 1821 VM_BUG_ON(!new.frozen);
2cfb7455 1822
1d07171c 1823 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1824 prior, counters,
1825 freelist, new.counters,
1826 "drain percpu freelist"));
1827
1828 freelist = nextfree;
1829 }
1830
894b8788 1831 /*
2cfb7455
CL
1832 * Stage two: Ensure that the page is unfrozen while the
1833 * list presence reflects the actual number of objects
1834 * during unfreeze.
1835 *
1836 * We setup the list membership and then perform a cmpxchg
1837 * with the count. If there is a mismatch then the page
1838 * is not unfrozen but the page is on the wrong list.
1839 *
1840 * Then we restart the process which may have to remove
1841 * the page from the list that we just put it on again
1842 * because the number of objects in the slab may have
1843 * changed.
894b8788 1844 */
2cfb7455 1845redo:
894b8788 1846
2cfb7455
CL
1847 old.freelist = page->freelist;
1848 old.counters = page->counters;
a0132ac0 1849 VM_BUG_ON(!old.frozen);
7c2e132c 1850
2cfb7455
CL
1851 /* Determine target state of the slab */
1852 new.counters = old.counters;
1853 if (freelist) {
1854 new.inuse--;
1855 set_freepointer(s, freelist, old.freelist);
1856 new.freelist = freelist;
1857 } else
1858 new.freelist = old.freelist;
1859
1860 new.frozen = 0;
1861
8a5b20ae 1862 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1863 m = M_FREE;
1864 else if (new.freelist) {
1865 m = M_PARTIAL;
1866 if (!lock) {
1867 lock = 1;
1868 /*
1869 * Taking the spinlock removes the possiblity
1870 * that acquire_slab() will see a slab page that
1871 * is frozen
1872 */
1873 spin_lock(&n->list_lock);
1874 }
1875 } else {
1876 m = M_FULL;
1877 if (kmem_cache_debug(s) && !lock) {
1878 lock = 1;
1879 /*
1880 * This also ensures that the scanning of full
1881 * slabs from diagnostic functions will not see
1882 * any frozen slabs.
1883 */
1884 spin_lock(&n->list_lock);
1885 }
1886 }
1887
1888 if (l != m) {
1889
1890 if (l == M_PARTIAL)
1891
1892 remove_partial(n, page);
1893
1894 else if (l == M_FULL)
894b8788 1895
c65c1877 1896 remove_full(s, n, page);
2cfb7455
CL
1897
1898 if (m == M_PARTIAL) {
1899
1900 add_partial(n, page, tail);
136333d1 1901 stat(s, tail);
2cfb7455
CL
1902
1903 } else if (m == M_FULL) {
894b8788 1904
2cfb7455
CL
1905 stat(s, DEACTIVATE_FULL);
1906 add_full(s, n, page);
1907
1908 }
1909 }
1910
1911 l = m;
1d07171c 1912 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1913 old.freelist, old.counters,
1914 new.freelist, new.counters,
1915 "unfreezing slab"))
1916 goto redo;
1917
2cfb7455
CL
1918 if (lock)
1919 spin_unlock(&n->list_lock);
1920
1921 if (m == M_FREE) {
1922 stat(s, DEACTIVATE_EMPTY);
1923 discard_slab(s, page);
1924 stat(s, FREE_SLAB);
894b8788 1925 }
81819f0f
CL
1926}
1927
d24ac77f
JK
1928/*
1929 * Unfreeze all the cpu partial slabs.
1930 *
59a09917
CL
1931 * This function must be called with interrupts disabled
1932 * for the cpu using c (or some other guarantee must be there
1933 * to guarantee no concurrent accesses).
d24ac77f 1934 */
59a09917
CL
1935static void unfreeze_partials(struct kmem_cache *s,
1936 struct kmem_cache_cpu *c)
49e22585 1937{
345c905d 1938#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1939 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1940 struct page *page, *discard_page = NULL;
49e22585
CL
1941
1942 while ((page = c->partial)) {
49e22585
CL
1943 struct page new;
1944 struct page old;
1945
1946 c->partial = page->next;
43d77867
JK
1947
1948 n2 = get_node(s, page_to_nid(page));
1949 if (n != n2) {
1950 if (n)
1951 spin_unlock(&n->list_lock);
1952
1953 n = n2;
1954 spin_lock(&n->list_lock);
1955 }
49e22585
CL
1956
1957 do {
1958
1959 old.freelist = page->freelist;
1960 old.counters = page->counters;
a0132ac0 1961 VM_BUG_ON(!old.frozen);
49e22585
CL
1962
1963 new.counters = old.counters;
1964 new.freelist = old.freelist;
1965
1966 new.frozen = 0;
1967
d24ac77f 1968 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1969 old.freelist, old.counters,
1970 new.freelist, new.counters,
1971 "unfreezing slab"));
1972
8a5b20ae 1973 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
1974 page->next = discard_page;
1975 discard_page = page;
43d77867
JK
1976 } else {
1977 add_partial(n, page, DEACTIVATE_TO_TAIL);
1978 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1979 }
1980 }
1981
1982 if (n)
1983 spin_unlock(&n->list_lock);
9ada1934
SL
1984
1985 while (discard_page) {
1986 page = discard_page;
1987 discard_page = discard_page->next;
1988
1989 stat(s, DEACTIVATE_EMPTY);
1990 discard_slab(s, page);
1991 stat(s, FREE_SLAB);
1992 }
345c905d 1993#endif
49e22585
CL
1994}
1995
1996/*
1997 * Put a page that was just frozen (in __slab_free) into a partial page
1998 * slot if available. This is done without interrupts disabled and without
1999 * preemption disabled. The cmpxchg is racy and may put the partial page
2000 * onto a random cpus partial slot.
2001 *
2002 * If we did not find a slot then simply move all the partials to the
2003 * per node partial list.
2004 */
633b0764 2005static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2006{
345c905d 2007#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2008 struct page *oldpage;
2009 int pages;
2010 int pobjects;
2011
2012 do {
2013 pages = 0;
2014 pobjects = 0;
2015 oldpage = this_cpu_read(s->cpu_slab->partial);
2016
2017 if (oldpage) {
2018 pobjects = oldpage->pobjects;
2019 pages = oldpage->pages;
2020 if (drain && pobjects > s->cpu_partial) {
2021 unsigned long flags;
2022 /*
2023 * partial array is full. Move the existing
2024 * set to the per node partial list.
2025 */
2026 local_irq_save(flags);
59a09917 2027 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2028 local_irq_restore(flags);
e24fc410 2029 oldpage = NULL;
49e22585
CL
2030 pobjects = 0;
2031 pages = 0;
8028dcea 2032 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2033 }
2034 }
2035
2036 pages++;
2037 pobjects += page->objects - page->inuse;
2038
2039 page->pages = pages;
2040 page->pobjects = pobjects;
2041 page->next = oldpage;
2042
d0e0ac97
CG
2043 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2044 != oldpage);
345c905d 2045#endif
49e22585
CL
2046}
2047
dfb4f096 2048static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2049{
84e554e6 2050 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2051 deactivate_slab(s, c->page, c->freelist);
2052
2053 c->tid = next_tid(c->tid);
2054 c->page = NULL;
2055 c->freelist = NULL;
81819f0f
CL
2056}
2057
2058/*
2059 * Flush cpu slab.
6446faa2 2060 *
81819f0f
CL
2061 * Called from IPI handler with interrupts disabled.
2062 */
0c710013 2063static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2064{
9dfc6e68 2065 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2066
49e22585
CL
2067 if (likely(c)) {
2068 if (c->page)
2069 flush_slab(s, c);
2070
59a09917 2071 unfreeze_partials(s, c);
49e22585 2072 }
81819f0f
CL
2073}
2074
2075static void flush_cpu_slab(void *d)
2076{
2077 struct kmem_cache *s = d;
81819f0f 2078
dfb4f096 2079 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2080}
2081
a8364d55
GBY
2082static bool has_cpu_slab(int cpu, void *info)
2083{
2084 struct kmem_cache *s = info;
2085 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2086
02e1a9cd 2087 return c->page || c->partial;
a8364d55
GBY
2088}
2089
81819f0f
CL
2090static void flush_all(struct kmem_cache *s)
2091{
a8364d55 2092 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2093}
2094
dfb4f096
CL
2095/*
2096 * Check if the objects in a per cpu structure fit numa
2097 * locality expectations.
2098 */
57d437d2 2099static inline int node_match(struct page *page, int node)
dfb4f096
CL
2100{
2101#ifdef CONFIG_NUMA
4d7868e6 2102 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2103 return 0;
2104#endif
2105 return 1;
2106}
2107
9a02d699 2108#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2109static int count_free(struct page *page)
2110{
2111 return page->objects - page->inuse;
2112}
2113
9a02d699
DR
2114static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2115{
2116 return atomic_long_read(&n->total_objects);
2117}
2118#endif /* CONFIG_SLUB_DEBUG */
2119
2120#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2121static unsigned long count_partial(struct kmem_cache_node *n,
2122 int (*get_count)(struct page *))
2123{
2124 unsigned long flags;
2125 unsigned long x = 0;
2126 struct page *page;
2127
2128 spin_lock_irqsave(&n->list_lock, flags);
2129 list_for_each_entry(page, &n->partial, lru)
2130 x += get_count(page);
2131 spin_unlock_irqrestore(&n->list_lock, flags);
2132 return x;
2133}
9a02d699 2134#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2135
781b2ba6
PE
2136static noinline void
2137slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2138{
9a02d699
DR
2139#ifdef CONFIG_SLUB_DEBUG
2140 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2141 DEFAULT_RATELIMIT_BURST);
781b2ba6 2142 int node;
fa45dc25 2143 struct kmem_cache_node *n;
781b2ba6 2144
9a02d699
DR
2145 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2146 return;
2147
f9f58285 2148 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2149 nid, gfpflags);
f9f58285
FF
2150 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2151 s->name, s->object_size, s->size, oo_order(s->oo),
2152 oo_order(s->min));
781b2ba6 2153
3b0efdfa 2154 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2155 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2156 s->name);
fa5ec8a1 2157
fa45dc25 2158 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2159 unsigned long nr_slabs;
2160 unsigned long nr_objs;
2161 unsigned long nr_free;
2162
26c02cf0
AB
2163 nr_free = count_partial(n, count_free);
2164 nr_slabs = node_nr_slabs(n);
2165 nr_objs = node_nr_objs(n);
781b2ba6 2166
f9f58285 2167 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2168 node, nr_slabs, nr_objs, nr_free);
2169 }
9a02d699 2170#endif
781b2ba6
PE
2171}
2172
497b66f2
CL
2173static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2174 int node, struct kmem_cache_cpu **pc)
2175{
6faa6833 2176 void *freelist;
188fd063
CL
2177 struct kmem_cache_cpu *c = *pc;
2178 struct page *page;
497b66f2 2179
188fd063 2180 freelist = get_partial(s, flags, node, c);
497b66f2 2181
188fd063
CL
2182 if (freelist)
2183 return freelist;
2184
2185 page = new_slab(s, flags, node);
497b66f2 2186 if (page) {
7c8e0181 2187 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2188 if (c->page)
2189 flush_slab(s, c);
2190
2191 /*
2192 * No other reference to the page yet so we can
2193 * muck around with it freely without cmpxchg
2194 */
6faa6833 2195 freelist = page->freelist;
497b66f2
CL
2196 page->freelist = NULL;
2197
2198 stat(s, ALLOC_SLAB);
497b66f2
CL
2199 c->page = page;
2200 *pc = c;
2201 } else
6faa6833 2202 freelist = NULL;
497b66f2 2203
6faa6833 2204 return freelist;
497b66f2
CL
2205}
2206
072bb0aa
MG
2207static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2208{
2209 if (unlikely(PageSlabPfmemalloc(page)))
2210 return gfp_pfmemalloc_allowed(gfpflags);
2211
2212 return true;
2213}
2214
213eeb9f 2215/*
d0e0ac97
CG
2216 * Check the page->freelist of a page and either transfer the freelist to the
2217 * per cpu freelist or deactivate the page.
213eeb9f
CL
2218 *
2219 * The page is still frozen if the return value is not NULL.
2220 *
2221 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2222 *
2223 * This function must be called with interrupt disabled.
213eeb9f
CL
2224 */
2225static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2226{
2227 struct page new;
2228 unsigned long counters;
2229 void *freelist;
2230
2231 do {
2232 freelist = page->freelist;
2233 counters = page->counters;
6faa6833 2234
213eeb9f 2235 new.counters = counters;
a0132ac0 2236 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2237
2238 new.inuse = page->objects;
2239 new.frozen = freelist != NULL;
2240
d24ac77f 2241 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2242 freelist, counters,
2243 NULL, new.counters,
2244 "get_freelist"));
2245
2246 return freelist;
2247}
2248
81819f0f 2249/*
894b8788
CL
2250 * Slow path. The lockless freelist is empty or we need to perform
2251 * debugging duties.
2252 *
894b8788
CL
2253 * Processing is still very fast if new objects have been freed to the
2254 * regular freelist. In that case we simply take over the regular freelist
2255 * as the lockless freelist and zap the regular freelist.
81819f0f 2256 *
894b8788
CL
2257 * If that is not working then we fall back to the partial lists. We take the
2258 * first element of the freelist as the object to allocate now and move the
2259 * rest of the freelist to the lockless freelist.
81819f0f 2260 *
894b8788 2261 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2262 * we need to allocate a new slab. This is the slowest path since it involves
2263 * a call to the page allocator and the setup of a new slab.
81819f0f 2264 */
ce71e27c
EGM
2265static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2266 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2267{
6faa6833 2268 void *freelist;
f6e7def7 2269 struct page *page;
8a5ec0ba
CL
2270 unsigned long flags;
2271
2272 local_irq_save(flags);
2273#ifdef CONFIG_PREEMPT
2274 /*
2275 * We may have been preempted and rescheduled on a different
2276 * cpu before disabling interrupts. Need to reload cpu area
2277 * pointer.
2278 */
2279 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2280#endif
81819f0f 2281
f6e7def7
CL
2282 page = c->page;
2283 if (!page)
81819f0f 2284 goto new_slab;
49e22585 2285redo:
6faa6833 2286
57d437d2 2287 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2288 int searchnode = node;
2289
2290 if (node != NUMA_NO_NODE && !node_present_pages(node))
2291 searchnode = node_to_mem_node(node);
2292
2293 if (unlikely(!node_match(page, searchnode))) {
2294 stat(s, ALLOC_NODE_MISMATCH);
2295 deactivate_slab(s, page, c->freelist);
2296 c->page = NULL;
2297 c->freelist = NULL;
2298 goto new_slab;
2299 }
fc59c053 2300 }
6446faa2 2301
072bb0aa
MG
2302 /*
2303 * By rights, we should be searching for a slab page that was
2304 * PFMEMALLOC but right now, we are losing the pfmemalloc
2305 * information when the page leaves the per-cpu allocator
2306 */
2307 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2308 deactivate_slab(s, page, c->freelist);
2309 c->page = NULL;
2310 c->freelist = NULL;
2311 goto new_slab;
2312 }
2313
73736e03 2314 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2315 freelist = c->freelist;
2316 if (freelist)
73736e03 2317 goto load_freelist;
03e404af 2318
f6e7def7 2319 freelist = get_freelist(s, page);
6446faa2 2320
6faa6833 2321 if (!freelist) {
03e404af
CL
2322 c->page = NULL;
2323 stat(s, DEACTIVATE_BYPASS);
fc59c053 2324 goto new_slab;
03e404af 2325 }
6446faa2 2326
84e554e6 2327 stat(s, ALLOC_REFILL);
6446faa2 2328
894b8788 2329load_freelist:
507effea
CL
2330 /*
2331 * freelist is pointing to the list of objects to be used.
2332 * page is pointing to the page from which the objects are obtained.
2333 * That page must be frozen for per cpu allocations to work.
2334 */
a0132ac0 2335 VM_BUG_ON(!c->page->frozen);
6faa6833 2336 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2337 c->tid = next_tid(c->tid);
2338 local_irq_restore(flags);
6faa6833 2339 return freelist;
81819f0f 2340
81819f0f 2341new_slab:
2cfb7455 2342
49e22585 2343 if (c->partial) {
f6e7def7
CL
2344 page = c->page = c->partial;
2345 c->partial = page->next;
49e22585
CL
2346 stat(s, CPU_PARTIAL_ALLOC);
2347 c->freelist = NULL;
2348 goto redo;
81819f0f
CL
2349 }
2350
188fd063 2351 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2352
f4697436 2353 if (unlikely(!freelist)) {
9a02d699 2354 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2355 local_irq_restore(flags);
2356 return NULL;
81819f0f 2357 }
2cfb7455 2358
f6e7def7 2359 page = c->page;
5091b74a 2360 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2361 goto load_freelist;
2cfb7455 2362
497b66f2 2363 /* Only entered in the debug case */
d0e0ac97
CG
2364 if (kmem_cache_debug(s) &&
2365 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2366 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2367
f6e7def7 2368 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2369 c->page = NULL;
2370 c->freelist = NULL;
a71ae47a 2371 local_irq_restore(flags);
6faa6833 2372 return freelist;
894b8788
CL
2373}
2374
2375/*
2376 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2377 * have the fastpath folded into their functions. So no function call
2378 * overhead for requests that can be satisfied on the fastpath.
2379 *
2380 * The fastpath works by first checking if the lockless freelist can be used.
2381 * If not then __slab_alloc is called for slow processing.
2382 *
2383 * Otherwise we can simply pick the next object from the lockless free list.
2384 */
2b847c3c 2385static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2386 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2387{
894b8788 2388 void **object;
dfb4f096 2389 struct kmem_cache_cpu *c;
57d437d2 2390 struct page *page;
8a5ec0ba 2391 unsigned long tid;
1f84260c 2392
c016b0bd 2393 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2394 return NULL;
1f84260c 2395
d79923fa 2396 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2397redo:
8a5ec0ba
CL
2398 /*
2399 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2400 * enabled. We may switch back and forth between cpus while
2401 * reading from one cpu area. That does not matter as long
2402 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2403 *
2404 * Preemption is disabled for the retrieval of the tid because that
2405 * must occur from the current processor. We cannot allow rescheduling
2406 * on a different processor between the determination of the pointer
2407 * and the retrieval of the tid.
8a5ec0ba 2408 */
7cccd80b 2409 preempt_disable();
7c8e0181 2410 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2411
8a5ec0ba
CL
2412 /*
2413 * The transaction ids are globally unique per cpu and per operation on
2414 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2415 * occurs on the right processor and that there was no operation on the
2416 * linked list in between.
2417 */
2418 tid = c->tid;
7cccd80b 2419 preempt_enable();
8a5ec0ba 2420
9dfc6e68 2421 object = c->freelist;
57d437d2 2422 page = c->page;
8eae1492 2423 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2424 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2425 stat(s, ALLOC_SLOWPATH);
2426 } else {
0ad9500e
ED
2427 void *next_object = get_freepointer_safe(s, object);
2428
8a5ec0ba 2429 /*
25985edc 2430 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2431 * operation and if we are on the right processor.
2432 *
d0e0ac97
CG
2433 * The cmpxchg does the following atomically (without lock
2434 * semantics!)
8a5ec0ba
CL
2435 * 1. Relocate first pointer to the current per cpu area.
2436 * 2. Verify that tid and freelist have not been changed
2437 * 3. If they were not changed replace tid and freelist
2438 *
d0e0ac97
CG
2439 * Since this is without lock semantics the protection is only
2440 * against code executing on this cpu *not* from access by
2441 * other cpus.
8a5ec0ba 2442 */
933393f5 2443 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2444 s->cpu_slab->freelist, s->cpu_slab->tid,
2445 object, tid,
0ad9500e 2446 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2447
2448 note_cmpxchg_failure("slab_alloc", s, tid);
2449 goto redo;
2450 }
0ad9500e 2451 prefetch_freepointer(s, next_object);
84e554e6 2452 stat(s, ALLOC_FASTPATH);
894b8788 2453 }
8a5ec0ba 2454
74e2134f 2455 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2456 memset(object, 0, s->object_size);
d07dbea4 2457
c016b0bd 2458 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2459
894b8788 2460 return object;
81819f0f
CL
2461}
2462
2b847c3c
EG
2463static __always_inline void *slab_alloc(struct kmem_cache *s,
2464 gfp_t gfpflags, unsigned long addr)
2465{
2466 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2467}
2468
81819f0f
CL
2469void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2470{
2b847c3c 2471 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2472
d0e0ac97
CG
2473 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2474 s->size, gfpflags);
5b882be4
EGM
2475
2476 return ret;
81819f0f
CL
2477}
2478EXPORT_SYMBOL(kmem_cache_alloc);
2479
0f24f128 2480#ifdef CONFIG_TRACING
4a92379b
RK
2481void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2482{
2b847c3c 2483 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2484 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2485 return ret;
2486}
2487EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2488#endif
2489
81819f0f
CL
2490#ifdef CONFIG_NUMA
2491void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2492{
2b847c3c 2493 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2494
ca2b84cb 2495 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2496 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2497
2498 return ret;
81819f0f
CL
2499}
2500EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2501
0f24f128 2502#ifdef CONFIG_TRACING
4a92379b 2503void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2504 gfp_t gfpflags,
4a92379b 2505 int node, size_t size)
5b882be4 2506{
2b847c3c 2507 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2508
2509 trace_kmalloc_node(_RET_IP_, ret,
2510 size, s->size, gfpflags, node);
2511 return ret;
5b882be4 2512}
4a92379b 2513EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2514#endif
5d1f57e4 2515#endif
5b882be4 2516
81819f0f 2517/*
894b8788
CL
2518 * Slow patch handling. This may still be called frequently since objects
2519 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2520 *
894b8788
CL
2521 * So we still attempt to reduce cache line usage. Just take the slab
2522 * lock and free the item. If there is no additional partial page
2523 * handling required then we can return immediately.
81819f0f 2524 */
894b8788 2525static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2526 void *x, unsigned long addr)
81819f0f
CL
2527{
2528 void *prior;
2529 void **object = (void *)x;
2cfb7455 2530 int was_frozen;
2cfb7455
CL
2531 struct page new;
2532 unsigned long counters;
2533 struct kmem_cache_node *n = NULL;
61728d1e 2534 unsigned long uninitialized_var(flags);
81819f0f 2535
8a5ec0ba 2536 stat(s, FREE_SLOWPATH);
81819f0f 2537
19c7ff9e
CL
2538 if (kmem_cache_debug(s) &&
2539 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2540 return;
6446faa2 2541
2cfb7455 2542 do {
837d678d
JK
2543 if (unlikely(n)) {
2544 spin_unlock_irqrestore(&n->list_lock, flags);
2545 n = NULL;
2546 }
2cfb7455
CL
2547 prior = page->freelist;
2548 counters = page->counters;
2549 set_freepointer(s, object, prior);
2550 new.counters = counters;
2551 was_frozen = new.frozen;
2552 new.inuse--;
837d678d 2553 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2554
c65c1877 2555 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2556
2557 /*
d0e0ac97
CG
2558 * Slab was on no list before and will be
2559 * partially empty
2560 * We can defer the list move and instead
2561 * freeze it.
49e22585
CL
2562 */
2563 new.frozen = 1;
2564
c65c1877 2565 } else { /* Needs to be taken off a list */
49e22585
CL
2566
2567 n = get_node(s, page_to_nid(page));
2568 /*
2569 * Speculatively acquire the list_lock.
2570 * If the cmpxchg does not succeed then we may
2571 * drop the list_lock without any processing.
2572 *
2573 * Otherwise the list_lock will synchronize with
2574 * other processors updating the list of slabs.
2575 */
2576 spin_lock_irqsave(&n->list_lock, flags);
2577
2578 }
2cfb7455 2579 }
81819f0f 2580
2cfb7455
CL
2581 } while (!cmpxchg_double_slab(s, page,
2582 prior, counters,
2583 object, new.counters,
2584 "__slab_free"));
81819f0f 2585
2cfb7455 2586 if (likely(!n)) {
49e22585
CL
2587
2588 /*
2589 * If we just froze the page then put it onto the
2590 * per cpu partial list.
2591 */
8028dcea 2592 if (new.frozen && !was_frozen) {
49e22585 2593 put_cpu_partial(s, page, 1);
8028dcea
AS
2594 stat(s, CPU_PARTIAL_FREE);
2595 }
49e22585 2596 /*
2cfb7455
CL
2597 * The list lock was not taken therefore no list
2598 * activity can be necessary.
2599 */
2600 if (was_frozen)
2601 stat(s, FREE_FROZEN);
80f08c19 2602 return;
2cfb7455 2603 }
81819f0f 2604
8a5b20ae 2605 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2606 goto slab_empty;
2607
81819f0f 2608 /*
837d678d
JK
2609 * Objects left in the slab. If it was not on the partial list before
2610 * then add it.
81819f0f 2611 */
345c905d
JK
2612 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2613 if (kmem_cache_debug(s))
c65c1877 2614 remove_full(s, n, page);
837d678d
JK
2615 add_partial(n, page, DEACTIVATE_TO_TAIL);
2616 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2617 }
80f08c19 2618 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2619 return;
2620
2621slab_empty:
a973e9dd 2622 if (prior) {
81819f0f 2623 /*
6fbabb20 2624 * Slab on the partial list.
81819f0f 2625 */
5cc6eee8 2626 remove_partial(n, page);
84e554e6 2627 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2628 } else {
6fbabb20 2629 /* Slab must be on the full list */
c65c1877
PZ
2630 remove_full(s, n, page);
2631 }
2cfb7455 2632
80f08c19 2633 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2634 stat(s, FREE_SLAB);
81819f0f 2635 discard_slab(s, page);
81819f0f
CL
2636}
2637
894b8788
CL
2638/*
2639 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2640 * can perform fastpath freeing without additional function calls.
2641 *
2642 * The fastpath is only possible if we are freeing to the current cpu slab
2643 * of this processor. This typically the case if we have just allocated
2644 * the item before.
2645 *
2646 * If fastpath is not possible then fall back to __slab_free where we deal
2647 * with all sorts of special processing.
2648 */
06428780 2649static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2650 struct page *page, void *x, unsigned long addr)
894b8788
CL
2651{
2652 void **object = (void *)x;
dfb4f096 2653 struct kmem_cache_cpu *c;
8a5ec0ba 2654 unsigned long tid;
1f84260c 2655
c016b0bd
CL
2656 slab_free_hook(s, x);
2657
8a5ec0ba
CL
2658redo:
2659 /*
2660 * Determine the currently cpus per cpu slab.
2661 * The cpu may change afterward. However that does not matter since
2662 * data is retrieved via this pointer. If we are on the same cpu
2663 * during the cmpxchg then the free will succedd.
2664 */
7cccd80b 2665 preempt_disable();
7c8e0181 2666 c = this_cpu_ptr(s->cpu_slab);
c016b0bd 2667
8a5ec0ba 2668 tid = c->tid;
7cccd80b 2669 preempt_enable();
c016b0bd 2670
442b06bc 2671 if (likely(page == c->page)) {
ff12059e 2672 set_freepointer(s, object, c->freelist);
8a5ec0ba 2673
933393f5 2674 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2675 s->cpu_slab->freelist, s->cpu_slab->tid,
2676 c->freelist, tid,
2677 object, next_tid(tid)))) {
2678
2679 note_cmpxchg_failure("slab_free", s, tid);
2680 goto redo;
2681 }
84e554e6 2682 stat(s, FREE_FASTPATH);
894b8788 2683 } else
ff12059e 2684 __slab_free(s, page, x, addr);
894b8788 2685
894b8788
CL
2686}
2687
81819f0f
CL
2688void kmem_cache_free(struct kmem_cache *s, void *x)
2689{
b9ce5ef4
GC
2690 s = cache_from_obj(s, x);
2691 if (!s)
79576102 2692 return;
b9ce5ef4 2693 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2694 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2695}
2696EXPORT_SYMBOL(kmem_cache_free);
2697
81819f0f 2698/*
672bba3a
CL
2699 * Object placement in a slab is made very easy because we always start at
2700 * offset 0. If we tune the size of the object to the alignment then we can
2701 * get the required alignment by putting one properly sized object after
2702 * another.
81819f0f
CL
2703 *
2704 * Notice that the allocation order determines the sizes of the per cpu
2705 * caches. Each processor has always one slab available for allocations.
2706 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2707 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2708 * locking overhead.
81819f0f
CL
2709 */
2710
2711/*
2712 * Mininum / Maximum order of slab pages. This influences locking overhead
2713 * and slab fragmentation. A higher order reduces the number of partial slabs
2714 * and increases the number of allocations possible without having to
2715 * take the list_lock.
2716 */
2717static int slub_min_order;
114e9e89 2718static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2719static int slub_min_objects;
81819f0f
CL
2720
2721/*
2722 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2723 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2724 */
2725static int slub_nomerge;
2726
81819f0f
CL
2727/*
2728 * Calculate the order of allocation given an slab object size.
2729 *
672bba3a
CL
2730 * The order of allocation has significant impact on performance and other
2731 * system components. Generally order 0 allocations should be preferred since
2732 * order 0 does not cause fragmentation in the page allocator. Larger objects
2733 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2734 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2735 * would be wasted.
2736 *
2737 * In order to reach satisfactory performance we must ensure that a minimum
2738 * number of objects is in one slab. Otherwise we may generate too much
2739 * activity on the partial lists which requires taking the list_lock. This is
2740 * less a concern for large slabs though which are rarely used.
81819f0f 2741 *
672bba3a
CL
2742 * slub_max_order specifies the order where we begin to stop considering the
2743 * number of objects in a slab as critical. If we reach slub_max_order then
2744 * we try to keep the page order as low as possible. So we accept more waste
2745 * of space in favor of a small page order.
81819f0f 2746 *
672bba3a
CL
2747 * Higher order allocations also allow the placement of more objects in a
2748 * slab and thereby reduce object handling overhead. If the user has
2749 * requested a higher mininum order then we start with that one instead of
2750 * the smallest order which will fit the object.
81819f0f 2751 */
5e6d444e 2752static inline int slab_order(int size, int min_objects,
ab9a0f19 2753 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2754{
2755 int order;
2756 int rem;
6300ea75 2757 int min_order = slub_min_order;
81819f0f 2758
ab9a0f19 2759 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2760 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2761
6300ea75 2762 for (order = max(min_order,
5e6d444e
CL
2763 fls(min_objects * size - 1) - PAGE_SHIFT);
2764 order <= max_order; order++) {
81819f0f 2765
5e6d444e 2766 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2767
ab9a0f19 2768 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2769 continue;
2770
ab9a0f19 2771 rem = (slab_size - reserved) % size;
81819f0f 2772
5e6d444e 2773 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2774 break;
2775
2776 }
672bba3a 2777
81819f0f
CL
2778 return order;
2779}
2780
ab9a0f19 2781static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2782{
2783 int order;
2784 int min_objects;
2785 int fraction;
e8120ff1 2786 int max_objects;
5e6d444e
CL
2787
2788 /*
2789 * Attempt to find best configuration for a slab. This
2790 * works by first attempting to generate a layout with
2791 * the best configuration and backing off gradually.
2792 *
2793 * First we reduce the acceptable waste in a slab. Then
2794 * we reduce the minimum objects required in a slab.
2795 */
2796 min_objects = slub_min_objects;
9b2cd506
CL
2797 if (!min_objects)
2798 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2799 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2800 min_objects = min(min_objects, max_objects);
2801
5e6d444e 2802 while (min_objects > 1) {
c124f5b5 2803 fraction = 16;
5e6d444e
CL
2804 while (fraction >= 4) {
2805 order = slab_order(size, min_objects,
ab9a0f19 2806 slub_max_order, fraction, reserved);
5e6d444e
CL
2807 if (order <= slub_max_order)
2808 return order;
2809 fraction /= 2;
2810 }
5086c389 2811 min_objects--;
5e6d444e
CL
2812 }
2813
2814 /*
2815 * We were unable to place multiple objects in a slab. Now
2816 * lets see if we can place a single object there.
2817 */
ab9a0f19 2818 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2819 if (order <= slub_max_order)
2820 return order;
2821
2822 /*
2823 * Doh this slab cannot be placed using slub_max_order.
2824 */
ab9a0f19 2825 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2826 if (order < MAX_ORDER)
5e6d444e
CL
2827 return order;
2828 return -ENOSYS;
2829}
2830
5595cffc 2831static void
4053497d 2832init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2833{
2834 n->nr_partial = 0;
81819f0f
CL
2835 spin_lock_init(&n->list_lock);
2836 INIT_LIST_HEAD(&n->partial);
8ab1372f 2837#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2838 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2839 atomic_long_set(&n->total_objects, 0);
643b1138 2840 INIT_LIST_HEAD(&n->full);
8ab1372f 2841#endif
81819f0f
CL
2842}
2843
55136592 2844static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2845{
6c182dc0 2846 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2847 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2848
8a5ec0ba 2849 /*
d4d84fef
CM
2850 * Must align to double word boundary for the double cmpxchg
2851 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2852 */
d4d84fef
CM
2853 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2854 2 * sizeof(void *));
8a5ec0ba
CL
2855
2856 if (!s->cpu_slab)
2857 return 0;
2858
2859 init_kmem_cache_cpus(s);
4c93c355 2860
8a5ec0ba 2861 return 1;
4c93c355 2862}
4c93c355 2863
51df1142
CL
2864static struct kmem_cache *kmem_cache_node;
2865
81819f0f
CL
2866/*
2867 * No kmalloc_node yet so do it by hand. We know that this is the first
2868 * slab on the node for this slabcache. There are no concurrent accesses
2869 * possible.
2870 *
721ae22a
ZYW
2871 * Note that this function only works on the kmem_cache_node
2872 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2873 * memory on a fresh node that has no slab structures yet.
81819f0f 2874 */
55136592 2875static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2876{
2877 struct page *page;
2878 struct kmem_cache_node *n;
2879
51df1142 2880 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2881
51df1142 2882 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2883
2884 BUG_ON(!page);
a2f92ee7 2885 if (page_to_nid(page) != node) {
f9f58285
FF
2886 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2887 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2888 }
2889
81819f0f
CL
2890 n = page->freelist;
2891 BUG_ON(!n);
51df1142 2892 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2893 page->inuse = 1;
8cb0a506 2894 page->frozen = 0;
51df1142 2895 kmem_cache_node->node[node] = n;
8ab1372f 2896#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2897 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2898 init_tracking(kmem_cache_node, n);
8ab1372f 2899#endif
4053497d 2900 init_kmem_cache_node(n);
51df1142 2901 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2902
67b6c900 2903 /*
1e4dd946
SR
2904 * No locks need to be taken here as it has just been
2905 * initialized and there is no concurrent access.
67b6c900 2906 */
1e4dd946 2907 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2908}
2909
2910static void free_kmem_cache_nodes(struct kmem_cache *s)
2911{
2912 int node;
fa45dc25 2913 struct kmem_cache_node *n;
81819f0f 2914
fa45dc25
CL
2915 for_each_kmem_cache_node(s, node, n) {
2916 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
2917 s->node[node] = NULL;
2918 }
2919}
2920
55136592 2921static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2922{
2923 int node;
81819f0f 2924
f64dc58c 2925 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2926 struct kmem_cache_node *n;
2927
73367bd8 2928 if (slab_state == DOWN) {
55136592 2929 early_kmem_cache_node_alloc(node);
73367bd8
AD
2930 continue;
2931 }
51df1142 2932 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2933 GFP_KERNEL, node);
81819f0f 2934
73367bd8
AD
2935 if (!n) {
2936 free_kmem_cache_nodes(s);
2937 return 0;
81819f0f 2938 }
73367bd8 2939
81819f0f 2940 s->node[node] = n;
4053497d 2941 init_kmem_cache_node(n);
81819f0f
CL
2942 }
2943 return 1;
2944}
81819f0f 2945
c0bdb232 2946static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2947{
2948 if (min < MIN_PARTIAL)
2949 min = MIN_PARTIAL;
2950 else if (min > MAX_PARTIAL)
2951 min = MAX_PARTIAL;
2952 s->min_partial = min;
2953}
2954
81819f0f
CL
2955/*
2956 * calculate_sizes() determines the order and the distribution of data within
2957 * a slab object.
2958 */
06b285dc 2959static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2960{
2961 unsigned long flags = s->flags;
3b0efdfa 2962 unsigned long size = s->object_size;
834f3d11 2963 int order;
81819f0f 2964
d8b42bf5
CL
2965 /*
2966 * Round up object size to the next word boundary. We can only
2967 * place the free pointer at word boundaries and this determines
2968 * the possible location of the free pointer.
2969 */
2970 size = ALIGN(size, sizeof(void *));
2971
2972#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2973 /*
2974 * Determine if we can poison the object itself. If the user of
2975 * the slab may touch the object after free or before allocation
2976 * then we should never poison the object itself.
2977 */
2978 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2979 !s->ctor)
81819f0f
CL
2980 s->flags |= __OBJECT_POISON;
2981 else
2982 s->flags &= ~__OBJECT_POISON;
2983
81819f0f
CL
2984
2985 /*
672bba3a 2986 * If we are Redzoning then check if there is some space between the
81819f0f 2987 * end of the object and the free pointer. If not then add an
672bba3a 2988 * additional word to have some bytes to store Redzone information.
81819f0f 2989 */
3b0efdfa 2990 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2991 size += sizeof(void *);
41ecc55b 2992#endif
81819f0f
CL
2993
2994 /*
672bba3a
CL
2995 * With that we have determined the number of bytes in actual use
2996 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2997 */
2998 s->inuse = size;
2999
3000 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3001 s->ctor)) {
81819f0f
CL
3002 /*
3003 * Relocate free pointer after the object if it is not
3004 * permitted to overwrite the first word of the object on
3005 * kmem_cache_free.
3006 *
3007 * This is the case if we do RCU, have a constructor or
3008 * destructor or are poisoning the objects.
3009 */
3010 s->offset = size;
3011 size += sizeof(void *);
3012 }
3013
c12b3c62 3014#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3015 if (flags & SLAB_STORE_USER)
3016 /*
3017 * Need to store information about allocs and frees after
3018 * the object.
3019 */
3020 size += 2 * sizeof(struct track);
3021
be7b3fbc 3022 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3023 /*
3024 * Add some empty padding so that we can catch
3025 * overwrites from earlier objects rather than let
3026 * tracking information or the free pointer be
0211a9c8 3027 * corrupted if a user writes before the start
81819f0f
CL
3028 * of the object.
3029 */
3030 size += sizeof(void *);
41ecc55b 3031#endif
672bba3a 3032
81819f0f
CL
3033 /*
3034 * SLUB stores one object immediately after another beginning from
3035 * offset 0. In order to align the objects we have to simply size
3036 * each object to conform to the alignment.
3037 */
45906855 3038 size = ALIGN(size, s->align);
81819f0f 3039 s->size = size;
06b285dc
CL
3040 if (forced_order >= 0)
3041 order = forced_order;
3042 else
ab9a0f19 3043 order = calculate_order(size, s->reserved);
81819f0f 3044
834f3d11 3045 if (order < 0)
81819f0f
CL
3046 return 0;
3047
b7a49f0d 3048 s->allocflags = 0;
834f3d11 3049 if (order)
b7a49f0d
CL
3050 s->allocflags |= __GFP_COMP;
3051
3052 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3053 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3054
3055 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3056 s->allocflags |= __GFP_RECLAIMABLE;
3057
81819f0f
CL
3058 /*
3059 * Determine the number of objects per slab
3060 */
ab9a0f19
LJ
3061 s->oo = oo_make(order, size, s->reserved);
3062 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3063 if (oo_objects(s->oo) > oo_objects(s->max))
3064 s->max = s->oo;
81819f0f 3065
834f3d11 3066 return !!oo_objects(s->oo);
81819f0f
CL
3067}
3068
8a13a4cc 3069static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3070{
8a13a4cc 3071 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3072 s->reserved = 0;
81819f0f 3073
da9a638c
LJ
3074 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3075 s->reserved = sizeof(struct rcu_head);
81819f0f 3076
06b285dc 3077 if (!calculate_sizes(s, -1))
81819f0f 3078 goto error;
3de47213
DR
3079 if (disable_higher_order_debug) {
3080 /*
3081 * Disable debugging flags that store metadata if the min slab
3082 * order increased.
3083 */
3b0efdfa 3084 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3085 s->flags &= ~DEBUG_METADATA_FLAGS;
3086 s->offset = 0;
3087 if (!calculate_sizes(s, -1))
3088 goto error;
3089 }
3090 }
81819f0f 3091
2565409f
HC
3092#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3093 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3094 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3095 /* Enable fast mode */
3096 s->flags |= __CMPXCHG_DOUBLE;
3097#endif
3098
3b89d7d8
DR
3099 /*
3100 * The larger the object size is, the more pages we want on the partial
3101 * list to avoid pounding the page allocator excessively.
3102 */
49e22585
CL
3103 set_min_partial(s, ilog2(s->size) / 2);
3104
3105 /*
3106 * cpu_partial determined the maximum number of objects kept in the
3107 * per cpu partial lists of a processor.
3108 *
3109 * Per cpu partial lists mainly contain slabs that just have one
3110 * object freed. If they are used for allocation then they can be
3111 * filled up again with minimal effort. The slab will never hit the
3112 * per node partial lists and therefore no locking will be required.
3113 *
3114 * This setting also determines
3115 *
3116 * A) The number of objects from per cpu partial slabs dumped to the
3117 * per node list when we reach the limit.
9f264904 3118 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3119 * per node list when we run out of per cpu objects. We only fetch
3120 * 50% to keep some capacity around for frees.
49e22585 3121 */
345c905d 3122 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3123 s->cpu_partial = 0;
3124 else if (s->size >= PAGE_SIZE)
49e22585
CL
3125 s->cpu_partial = 2;
3126 else if (s->size >= 1024)
3127 s->cpu_partial = 6;
3128 else if (s->size >= 256)
3129 s->cpu_partial = 13;
3130 else
3131 s->cpu_partial = 30;
3132
81819f0f 3133#ifdef CONFIG_NUMA
e2cb96b7 3134 s->remote_node_defrag_ratio = 1000;
81819f0f 3135#endif
55136592 3136 if (!init_kmem_cache_nodes(s))
dfb4f096 3137 goto error;
81819f0f 3138
55136592 3139 if (alloc_kmem_cache_cpus(s))
278b1bb1 3140 return 0;
ff12059e 3141
4c93c355 3142 free_kmem_cache_nodes(s);
81819f0f
CL
3143error:
3144 if (flags & SLAB_PANIC)
3145 panic("Cannot create slab %s size=%lu realsize=%u "
3146 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3147 s->name, (unsigned long)s->size, s->size,
3148 oo_order(s->oo), s->offset, flags);
278b1bb1 3149 return -EINVAL;
81819f0f 3150}
81819f0f 3151
33b12c38
CL
3152static void list_slab_objects(struct kmem_cache *s, struct page *page,
3153 const char *text)
3154{
3155#ifdef CONFIG_SLUB_DEBUG
3156 void *addr = page_address(page);
3157 void *p;
a5dd5c11
NK
3158 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3159 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3160 if (!map)
3161 return;
945cf2b6 3162 slab_err(s, page, text, s->name);
33b12c38 3163 slab_lock(page);
33b12c38 3164
5f80b13a 3165 get_map(s, page, map);
33b12c38
CL
3166 for_each_object(p, s, addr, page->objects) {
3167
3168 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3169 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3170 print_tracking(s, p);
3171 }
3172 }
3173 slab_unlock(page);
bbd7d57b 3174 kfree(map);
33b12c38
CL
3175#endif
3176}
3177
81819f0f 3178/*
599870b1 3179 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3180 * This is called from kmem_cache_close(). We must be the last thread
3181 * using the cache and therefore we do not need to lock anymore.
81819f0f 3182 */
599870b1 3183static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3184{
81819f0f
CL
3185 struct page *page, *h;
3186
33b12c38 3187 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3188 if (!page->inuse) {
1e4dd946 3189 __remove_partial(n, page);
81819f0f 3190 discard_slab(s, page);
33b12c38
CL
3191 } else {
3192 list_slab_objects(s, page,
945cf2b6 3193 "Objects remaining in %s on kmem_cache_close()");
599870b1 3194 }
33b12c38 3195 }
81819f0f
CL
3196}
3197
3198/*
672bba3a 3199 * Release all resources used by a slab cache.
81819f0f 3200 */
0c710013 3201static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3202{
3203 int node;
fa45dc25 3204 struct kmem_cache_node *n;
81819f0f
CL
3205
3206 flush_all(s);
81819f0f 3207 /* Attempt to free all objects */
fa45dc25 3208 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3209 free_partial(s, n);
3210 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3211 return 1;
3212 }
945cf2b6 3213 free_percpu(s->cpu_slab);
81819f0f
CL
3214 free_kmem_cache_nodes(s);
3215 return 0;
3216}
3217
945cf2b6 3218int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3219{
41a21285 3220 return kmem_cache_close(s);
81819f0f 3221}
81819f0f
CL
3222
3223/********************************************************************
3224 * Kmalloc subsystem
3225 *******************************************************************/
3226
81819f0f
CL
3227static int __init setup_slub_min_order(char *str)
3228{
06428780 3229 get_option(&str, &slub_min_order);
81819f0f
CL
3230
3231 return 1;
3232}
3233
3234__setup("slub_min_order=", setup_slub_min_order);
3235
3236static int __init setup_slub_max_order(char *str)
3237{
06428780 3238 get_option(&str, &slub_max_order);
818cf590 3239 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3240
3241 return 1;
3242}
3243
3244__setup("slub_max_order=", setup_slub_max_order);
3245
3246static int __init setup_slub_min_objects(char *str)
3247{
06428780 3248 get_option(&str, &slub_min_objects);
81819f0f
CL
3249
3250 return 1;
3251}
3252
3253__setup("slub_min_objects=", setup_slub_min_objects);
3254
3255static int __init setup_slub_nomerge(char *str)
3256{
3257 slub_nomerge = 1;
3258 return 1;
3259}
3260
3261__setup("slub_nomerge", setup_slub_nomerge);
3262
81819f0f
CL
3263void *__kmalloc(size_t size, gfp_t flags)
3264{
aadb4bc4 3265 struct kmem_cache *s;
5b882be4 3266 void *ret;
81819f0f 3267
95a05b42 3268 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3269 return kmalloc_large(size, flags);
aadb4bc4 3270
2c59dd65 3271 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3272
3273 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3274 return s;
3275
2b847c3c 3276 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3277
ca2b84cb 3278 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3279
3280 return ret;
81819f0f
CL
3281}
3282EXPORT_SYMBOL(__kmalloc);
3283
5d1f57e4 3284#ifdef CONFIG_NUMA
f619cfe1
CL
3285static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3286{
b1eeab67 3287 struct page *page;
e4f7c0b4 3288 void *ptr = NULL;
f619cfe1 3289
52383431
VD
3290 flags |= __GFP_COMP | __GFP_NOTRACK;
3291 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3292 if (page)
e4f7c0b4
CM
3293 ptr = page_address(page);
3294
d56791b3 3295 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3296 return ptr;
f619cfe1
CL
3297}
3298
81819f0f
CL
3299void *__kmalloc_node(size_t size, gfp_t flags, int node)
3300{
aadb4bc4 3301 struct kmem_cache *s;
5b882be4 3302 void *ret;
81819f0f 3303
95a05b42 3304 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3305 ret = kmalloc_large_node(size, flags, node);
3306
ca2b84cb
EGM
3307 trace_kmalloc_node(_RET_IP_, ret,
3308 size, PAGE_SIZE << get_order(size),
3309 flags, node);
5b882be4
EGM
3310
3311 return ret;
3312 }
aadb4bc4 3313
2c59dd65 3314 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3315
3316 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3317 return s;
3318
2b847c3c 3319 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3320
ca2b84cb 3321 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3322
3323 return ret;
81819f0f
CL
3324}
3325EXPORT_SYMBOL(__kmalloc_node);
3326#endif
3327
3328size_t ksize(const void *object)
3329{
272c1d21 3330 struct page *page;
81819f0f 3331
ef8b4520 3332 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3333 return 0;
3334
294a80a8 3335 page = virt_to_head_page(object);
294a80a8 3336
76994412
PE
3337 if (unlikely(!PageSlab(page))) {
3338 WARN_ON(!PageCompound(page));
294a80a8 3339 return PAGE_SIZE << compound_order(page);
76994412 3340 }
81819f0f 3341
1b4f59e3 3342 return slab_ksize(page->slab_cache);
81819f0f 3343}
b1aabecd 3344EXPORT_SYMBOL(ksize);
81819f0f
CL
3345
3346void kfree(const void *x)
3347{
81819f0f 3348 struct page *page;
5bb983b0 3349 void *object = (void *)x;
81819f0f 3350
2121db74
PE
3351 trace_kfree(_RET_IP_, x);
3352
2408c550 3353 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3354 return;
3355
b49af68f 3356 page = virt_to_head_page(x);
aadb4bc4 3357 if (unlikely(!PageSlab(page))) {
0937502a 3358 BUG_ON(!PageCompound(page));
d56791b3 3359 kfree_hook(x);
52383431 3360 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3361 return;
3362 }
1b4f59e3 3363 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3364}
3365EXPORT_SYMBOL(kfree);
3366
2086d26a 3367/*
672bba3a
CL
3368 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3369 * the remaining slabs by the number of items in use. The slabs with the
3370 * most items in use come first. New allocations will then fill those up
3371 * and thus they can be removed from the partial lists.
3372 *
3373 * The slabs with the least items are placed last. This results in them
3374 * being allocated from last increasing the chance that the last objects
3375 * are freed in them.
2086d26a 3376 */
03afc0e2 3377int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3378{
3379 int node;
3380 int i;
3381 struct kmem_cache_node *n;
3382 struct page *page;
3383 struct page *t;
205ab99d 3384 int objects = oo_objects(s->max);
2086d26a 3385 struct list_head *slabs_by_inuse =
834f3d11 3386 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3387 unsigned long flags;
3388
3389 if (!slabs_by_inuse)
3390 return -ENOMEM;
3391
3392 flush_all(s);
fa45dc25 3393 for_each_kmem_cache_node(s, node, n) {
2086d26a
CL
3394 if (!n->nr_partial)
3395 continue;
3396
834f3d11 3397 for (i = 0; i < objects; i++)
2086d26a
CL
3398 INIT_LIST_HEAD(slabs_by_inuse + i);
3399
3400 spin_lock_irqsave(&n->list_lock, flags);
3401
3402 /*
672bba3a 3403 * Build lists indexed by the items in use in each slab.
2086d26a 3404 *
672bba3a
CL
3405 * Note that concurrent frees may occur while we hold the
3406 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3407 */
3408 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3409 list_move(&page->lru, slabs_by_inuse + page->inuse);
3410 if (!page->inuse)
3411 n->nr_partial--;
2086d26a
CL
3412 }
3413
2086d26a 3414 /*
672bba3a
CL
3415 * Rebuild the partial list with the slabs filled up most
3416 * first and the least used slabs at the end.
2086d26a 3417 */
69cb8e6b 3418 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3419 list_splice(slabs_by_inuse + i, n->partial.prev);
3420
2086d26a 3421 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3422
3423 /* Release empty slabs */
3424 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3425 discard_slab(s, page);
2086d26a
CL
3426 }
3427
3428 kfree(slabs_by_inuse);
3429 return 0;
3430}
2086d26a 3431
b9049e23
YG
3432static int slab_mem_going_offline_callback(void *arg)
3433{
3434 struct kmem_cache *s;
3435
18004c5d 3436 mutex_lock(&slab_mutex);
b9049e23 3437 list_for_each_entry(s, &slab_caches, list)
03afc0e2 3438 __kmem_cache_shrink(s);
18004c5d 3439 mutex_unlock(&slab_mutex);
b9049e23
YG
3440
3441 return 0;
3442}
3443
3444static void slab_mem_offline_callback(void *arg)
3445{
3446 struct kmem_cache_node *n;
3447 struct kmem_cache *s;
3448 struct memory_notify *marg = arg;
3449 int offline_node;
3450
b9d5ab25 3451 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3452
3453 /*
3454 * If the node still has available memory. we need kmem_cache_node
3455 * for it yet.
3456 */
3457 if (offline_node < 0)
3458 return;
3459
18004c5d 3460 mutex_lock(&slab_mutex);
b9049e23
YG
3461 list_for_each_entry(s, &slab_caches, list) {
3462 n = get_node(s, offline_node);
3463 if (n) {
3464 /*
3465 * if n->nr_slabs > 0, slabs still exist on the node
3466 * that is going down. We were unable to free them,
c9404c9c 3467 * and offline_pages() function shouldn't call this
b9049e23
YG
3468 * callback. So, we must fail.
3469 */
0f389ec6 3470 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3471
3472 s->node[offline_node] = NULL;
8de66a0c 3473 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3474 }
3475 }
18004c5d 3476 mutex_unlock(&slab_mutex);
b9049e23
YG
3477}
3478
3479static int slab_mem_going_online_callback(void *arg)
3480{
3481 struct kmem_cache_node *n;
3482 struct kmem_cache *s;
3483 struct memory_notify *marg = arg;
b9d5ab25 3484 int nid = marg->status_change_nid_normal;
b9049e23
YG
3485 int ret = 0;
3486
3487 /*
3488 * If the node's memory is already available, then kmem_cache_node is
3489 * already created. Nothing to do.
3490 */
3491 if (nid < 0)
3492 return 0;
3493
3494 /*
0121c619 3495 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3496 * allocate a kmem_cache_node structure in order to bring the node
3497 * online.
3498 */
18004c5d 3499 mutex_lock(&slab_mutex);
b9049e23
YG
3500 list_for_each_entry(s, &slab_caches, list) {
3501 /*
3502 * XXX: kmem_cache_alloc_node will fallback to other nodes
3503 * since memory is not yet available from the node that
3504 * is brought up.
3505 */
8de66a0c 3506 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3507 if (!n) {
3508 ret = -ENOMEM;
3509 goto out;
3510 }
4053497d 3511 init_kmem_cache_node(n);
b9049e23
YG
3512 s->node[nid] = n;
3513 }
3514out:
18004c5d 3515 mutex_unlock(&slab_mutex);
b9049e23
YG
3516 return ret;
3517}
3518
3519static int slab_memory_callback(struct notifier_block *self,
3520 unsigned long action, void *arg)
3521{
3522 int ret = 0;
3523
3524 switch (action) {
3525 case MEM_GOING_ONLINE:
3526 ret = slab_mem_going_online_callback(arg);
3527 break;
3528 case MEM_GOING_OFFLINE:
3529 ret = slab_mem_going_offline_callback(arg);
3530 break;
3531 case MEM_OFFLINE:
3532 case MEM_CANCEL_ONLINE:
3533 slab_mem_offline_callback(arg);
3534 break;
3535 case MEM_ONLINE:
3536 case MEM_CANCEL_OFFLINE:
3537 break;
3538 }
dc19f9db
KH
3539 if (ret)
3540 ret = notifier_from_errno(ret);
3541 else
3542 ret = NOTIFY_OK;
b9049e23
YG
3543 return ret;
3544}
3545
3ac38faa
AM
3546static struct notifier_block slab_memory_callback_nb = {
3547 .notifier_call = slab_memory_callback,
3548 .priority = SLAB_CALLBACK_PRI,
3549};
b9049e23 3550
81819f0f
CL
3551/********************************************************************
3552 * Basic setup of slabs
3553 *******************************************************************/
3554
51df1142
CL
3555/*
3556 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3557 * the page allocator. Allocate them properly then fix up the pointers
3558 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3559 */
3560
dffb4d60 3561static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3562{
3563 int node;
dffb4d60 3564 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3565 struct kmem_cache_node *n;
51df1142 3566
dffb4d60 3567 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3568
7d557b3c
GC
3569 /*
3570 * This runs very early, and only the boot processor is supposed to be
3571 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3572 * IPIs around.
3573 */
3574 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3575 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3576 struct page *p;
3577
fa45dc25
CL
3578 list_for_each_entry(p, &n->partial, lru)
3579 p->slab_cache = s;
51df1142 3580
607bf324 3581#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3582 list_for_each_entry(p, &n->full, lru)
3583 p->slab_cache = s;
51df1142 3584#endif
51df1142 3585 }
dffb4d60
CL
3586 list_add(&s->list, &slab_caches);
3587 return s;
51df1142
CL
3588}
3589
81819f0f
CL
3590void __init kmem_cache_init(void)
3591{
dffb4d60
CL
3592 static __initdata struct kmem_cache boot_kmem_cache,
3593 boot_kmem_cache_node;
51df1142 3594
fc8d8620
SG
3595 if (debug_guardpage_minorder())
3596 slub_max_order = 0;
3597
dffb4d60
CL
3598 kmem_cache_node = &boot_kmem_cache_node;
3599 kmem_cache = &boot_kmem_cache;
51df1142 3600
dffb4d60
CL
3601 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3602 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3603
3ac38faa 3604 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3605
3606 /* Able to allocate the per node structures */
3607 slab_state = PARTIAL;
3608
dffb4d60
CL
3609 create_boot_cache(kmem_cache, "kmem_cache",
3610 offsetof(struct kmem_cache, node) +
3611 nr_node_ids * sizeof(struct kmem_cache_node *),
3612 SLAB_HWCACHE_ALIGN);
8a13a4cc 3613
dffb4d60 3614 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3615
51df1142
CL
3616 /*
3617 * Allocate kmem_cache_node properly from the kmem_cache slab.
3618 * kmem_cache_node is separately allocated so no need to
3619 * update any list pointers.
3620 */
dffb4d60 3621 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3622
3623 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3624 create_kmalloc_caches(0);
81819f0f
CL
3625
3626#ifdef CONFIG_SMP
3627 register_cpu_notifier(&slab_notifier);
9dfc6e68 3628#endif
81819f0f 3629
f9f58285 3630 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3631 cache_line_size(),
81819f0f
CL
3632 slub_min_order, slub_max_order, slub_min_objects,
3633 nr_cpu_ids, nr_node_ids);
3634}
3635
7e85ee0c
PE
3636void __init kmem_cache_init_late(void)
3637{
7e85ee0c
PE
3638}
3639
81819f0f
CL
3640/*
3641 * Find a mergeable slab cache
3642 */
3643static int slab_unmergeable(struct kmem_cache *s)
3644{
3645 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3646 return 1;
3647
a44cb944
VD
3648 if (!is_root_cache(s))
3649 return 1;
3650
c59def9f 3651 if (s->ctor)
81819f0f
CL
3652 return 1;
3653
8ffa6875
CL
3654 /*
3655 * We may have set a slab to be unmergeable during bootstrap.
3656 */
3657 if (s->refcount < 0)
3658 return 1;
3659
81819f0f
CL
3660 return 0;
3661}
3662
a44cb944
VD
3663static struct kmem_cache *find_mergeable(size_t size, size_t align,
3664 unsigned long flags, const char *name, void (*ctor)(void *))
81819f0f 3665{
5b95a4ac 3666 struct kmem_cache *s;
81819f0f
CL
3667
3668 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3669 return NULL;
3670
c59def9f 3671 if (ctor)
81819f0f
CL
3672 return NULL;
3673
3674 size = ALIGN(size, sizeof(void *));
3675 align = calculate_alignment(flags, align, size);
3676 size = ALIGN(size, align);
ba0268a8 3677 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3678
5b95a4ac 3679 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3680 if (slab_unmergeable(s))
3681 continue;
3682
3683 if (size > s->size)
3684 continue;
3685
ba0268a8 3686 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
a44cb944 3687 continue;
81819f0f
CL
3688 /*
3689 * Check if alignment is compatible.
3690 * Courtesy of Adrian Drzewiecki
3691 */
06428780 3692 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3693 continue;
3694
3695 if (s->size - size >= sizeof(void *))
3696 continue;
3697
3698 return s;
3699 }
3700 return NULL;
3701}
3702
2633d7a0 3703struct kmem_cache *
a44cb944
VD
3704__kmem_cache_alias(const char *name, size_t size, size_t align,
3705 unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3706{
3707 struct kmem_cache *s;
3708
a44cb944 3709 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3710 if (s) {
84d0ddd6
VD
3711 int i;
3712 struct kmem_cache *c;
3713
81819f0f 3714 s->refcount++;
84d0ddd6 3715
81819f0f
CL
3716 /*
3717 * Adjust the object sizes so that we clear
3718 * the complete object on kzalloc.
3719 */
3b0efdfa 3720 s->object_size = max(s->object_size, (int)size);
81819f0f 3721 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3722
84d0ddd6
VD
3723 for_each_memcg_cache_index(i) {
3724 c = cache_from_memcg_idx(s, i);
3725 if (!c)
3726 continue;
3727 c->object_size = s->object_size;
3728 c->inuse = max_t(int, c->inuse,
3729 ALIGN(size, sizeof(void *)));
3730 }
3731
7b8f3b66 3732 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3733 s->refcount--;
cbb79694 3734 s = NULL;
7b8f3b66 3735 }
a0e1d1be 3736 }
6446faa2 3737
cbb79694
CL
3738 return s;
3739}
84c1cf62 3740
8a13a4cc 3741int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3742{
aac3a166
PE
3743 int err;
3744
3745 err = kmem_cache_open(s, flags);
3746 if (err)
3747 return err;
20cea968 3748
45530c44
CL
3749 /* Mutex is not taken during early boot */
3750 if (slab_state <= UP)
3751 return 0;
3752
107dab5c 3753 memcg_propagate_slab_attrs(s);
aac3a166 3754 err = sysfs_slab_add(s);
aac3a166
PE
3755 if (err)
3756 kmem_cache_close(s);
20cea968 3757
aac3a166 3758 return err;
81819f0f 3759}
81819f0f 3760
81819f0f 3761#ifdef CONFIG_SMP
81819f0f 3762/*
672bba3a
CL
3763 * Use the cpu notifier to insure that the cpu slabs are flushed when
3764 * necessary.
81819f0f 3765 */
0db0628d 3766static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3767 unsigned long action, void *hcpu)
3768{
3769 long cpu = (long)hcpu;
5b95a4ac
CL
3770 struct kmem_cache *s;
3771 unsigned long flags;
81819f0f
CL
3772
3773 switch (action) {
3774 case CPU_UP_CANCELED:
8bb78442 3775 case CPU_UP_CANCELED_FROZEN:
81819f0f 3776 case CPU_DEAD:
8bb78442 3777 case CPU_DEAD_FROZEN:
18004c5d 3778 mutex_lock(&slab_mutex);
5b95a4ac
CL
3779 list_for_each_entry(s, &slab_caches, list) {
3780 local_irq_save(flags);
3781 __flush_cpu_slab(s, cpu);
3782 local_irq_restore(flags);
3783 }
18004c5d 3784 mutex_unlock(&slab_mutex);
81819f0f
CL
3785 break;
3786 default:
3787 break;
3788 }
3789 return NOTIFY_OK;
3790}
3791
0db0628d 3792static struct notifier_block slab_notifier = {
3adbefee 3793 .notifier_call = slab_cpuup_callback
06428780 3794};
81819f0f
CL
3795
3796#endif
3797
ce71e27c 3798void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3799{
aadb4bc4 3800 struct kmem_cache *s;
94b528d0 3801 void *ret;
aadb4bc4 3802
95a05b42 3803 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3804 return kmalloc_large(size, gfpflags);
3805
2c59dd65 3806 s = kmalloc_slab(size, gfpflags);
81819f0f 3807
2408c550 3808 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3809 return s;
81819f0f 3810
2b847c3c 3811 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3812
25985edc 3813 /* Honor the call site pointer we received. */
ca2b84cb 3814 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3815
3816 return ret;
81819f0f
CL
3817}
3818
5d1f57e4 3819#ifdef CONFIG_NUMA
81819f0f 3820void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3821 int node, unsigned long caller)
81819f0f 3822{
aadb4bc4 3823 struct kmem_cache *s;
94b528d0 3824 void *ret;
aadb4bc4 3825
95a05b42 3826 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3827 ret = kmalloc_large_node(size, gfpflags, node);
3828
3829 trace_kmalloc_node(caller, ret,
3830 size, PAGE_SIZE << get_order(size),
3831 gfpflags, node);
3832
3833 return ret;
3834 }
eada35ef 3835
2c59dd65 3836 s = kmalloc_slab(size, gfpflags);
81819f0f 3837
2408c550 3838 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3839 return s;
81819f0f 3840
2b847c3c 3841 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3842
25985edc 3843 /* Honor the call site pointer we received. */
ca2b84cb 3844 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3845
3846 return ret;
81819f0f 3847}
5d1f57e4 3848#endif
81819f0f 3849
ab4d5ed5 3850#ifdef CONFIG_SYSFS
205ab99d
CL
3851static int count_inuse(struct page *page)
3852{
3853 return page->inuse;
3854}
3855
3856static int count_total(struct page *page)
3857{
3858 return page->objects;
3859}
ab4d5ed5 3860#endif
205ab99d 3861
ab4d5ed5 3862#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3863static int validate_slab(struct kmem_cache *s, struct page *page,
3864 unsigned long *map)
53e15af0
CL
3865{
3866 void *p;
a973e9dd 3867 void *addr = page_address(page);
53e15af0
CL
3868
3869 if (!check_slab(s, page) ||
3870 !on_freelist(s, page, NULL))
3871 return 0;
3872
3873 /* Now we know that a valid freelist exists */
39b26464 3874 bitmap_zero(map, page->objects);
53e15af0 3875
5f80b13a
CL
3876 get_map(s, page, map);
3877 for_each_object(p, s, addr, page->objects) {
3878 if (test_bit(slab_index(p, s, addr), map))
3879 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3880 return 0;
53e15af0
CL
3881 }
3882
224a88be 3883 for_each_object(p, s, addr, page->objects)
7656c72b 3884 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3885 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3886 return 0;
3887 return 1;
3888}
3889
434e245d
CL
3890static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3891 unsigned long *map)
53e15af0 3892{
881db7fb
CL
3893 slab_lock(page);
3894 validate_slab(s, page, map);
3895 slab_unlock(page);
53e15af0
CL
3896}
3897
434e245d
CL
3898static int validate_slab_node(struct kmem_cache *s,
3899 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3900{
3901 unsigned long count = 0;
3902 struct page *page;
3903 unsigned long flags;
3904
3905 spin_lock_irqsave(&n->list_lock, flags);
3906
3907 list_for_each_entry(page, &n->partial, lru) {
434e245d 3908 validate_slab_slab(s, page, map);
53e15af0
CL
3909 count++;
3910 }
3911 if (count != n->nr_partial)
f9f58285
FF
3912 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3913 s->name, count, n->nr_partial);
53e15af0
CL
3914
3915 if (!(s->flags & SLAB_STORE_USER))
3916 goto out;
3917
3918 list_for_each_entry(page, &n->full, lru) {
434e245d 3919 validate_slab_slab(s, page, map);
53e15af0
CL
3920 count++;
3921 }
3922 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3923 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3924 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3925
3926out:
3927 spin_unlock_irqrestore(&n->list_lock, flags);
3928 return count;
3929}
3930
434e245d 3931static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3932{
3933 int node;
3934 unsigned long count = 0;
205ab99d 3935 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 3936 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 3937 struct kmem_cache_node *n;
434e245d
CL
3938
3939 if (!map)
3940 return -ENOMEM;
53e15af0
CL
3941
3942 flush_all(s);
fa45dc25 3943 for_each_kmem_cache_node(s, node, n)
434e245d 3944 count += validate_slab_node(s, n, map);
434e245d 3945 kfree(map);
53e15af0
CL
3946 return count;
3947}
88a420e4 3948/*
672bba3a 3949 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3950 * and freed.
3951 */
3952
3953struct location {
3954 unsigned long count;
ce71e27c 3955 unsigned long addr;
45edfa58
CL
3956 long long sum_time;
3957 long min_time;
3958 long max_time;
3959 long min_pid;
3960 long max_pid;
174596a0 3961 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3962 nodemask_t nodes;
88a420e4
CL
3963};
3964
3965struct loc_track {
3966 unsigned long max;
3967 unsigned long count;
3968 struct location *loc;
3969};
3970
3971static void free_loc_track(struct loc_track *t)
3972{
3973 if (t->max)
3974 free_pages((unsigned long)t->loc,
3975 get_order(sizeof(struct location) * t->max));
3976}
3977
68dff6a9 3978static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3979{
3980 struct location *l;
3981 int order;
3982
88a420e4
CL
3983 order = get_order(sizeof(struct location) * max);
3984
68dff6a9 3985 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3986 if (!l)
3987 return 0;
3988
3989 if (t->count) {
3990 memcpy(l, t->loc, sizeof(struct location) * t->count);
3991 free_loc_track(t);
3992 }
3993 t->max = max;
3994 t->loc = l;
3995 return 1;
3996}
3997
3998static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3999 const struct track *track)
88a420e4
CL
4000{
4001 long start, end, pos;
4002 struct location *l;
ce71e27c 4003 unsigned long caddr;
45edfa58 4004 unsigned long age = jiffies - track->when;
88a420e4
CL
4005
4006 start = -1;
4007 end = t->count;
4008
4009 for ( ; ; ) {
4010 pos = start + (end - start + 1) / 2;
4011
4012 /*
4013 * There is nothing at "end". If we end up there
4014 * we need to add something to before end.
4015 */
4016 if (pos == end)
4017 break;
4018
4019 caddr = t->loc[pos].addr;
45edfa58
CL
4020 if (track->addr == caddr) {
4021
4022 l = &t->loc[pos];
4023 l->count++;
4024 if (track->when) {
4025 l->sum_time += age;
4026 if (age < l->min_time)
4027 l->min_time = age;
4028 if (age > l->max_time)
4029 l->max_time = age;
4030
4031 if (track->pid < l->min_pid)
4032 l->min_pid = track->pid;
4033 if (track->pid > l->max_pid)
4034 l->max_pid = track->pid;
4035
174596a0
RR
4036 cpumask_set_cpu(track->cpu,
4037 to_cpumask(l->cpus));
45edfa58
CL
4038 }
4039 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4040 return 1;
4041 }
4042
45edfa58 4043 if (track->addr < caddr)
88a420e4
CL
4044 end = pos;
4045 else
4046 start = pos;
4047 }
4048
4049 /*
672bba3a 4050 * Not found. Insert new tracking element.
88a420e4 4051 */
68dff6a9 4052 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4053 return 0;
4054
4055 l = t->loc + pos;
4056 if (pos < t->count)
4057 memmove(l + 1, l,
4058 (t->count - pos) * sizeof(struct location));
4059 t->count++;
4060 l->count = 1;
45edfa58
CL
4061 l->addr = track->addr;
4062 l->sum_time = age;
4063 l->min_time = age;
4064 l->max_time = age;
4065 l->min_pid = track->pid;
4066 l->max_pid = track->pid;
174596a0
RR
4067 cpumask_clear(to_cpumask(l->cpus));
4068 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4069 nodes_clear(l->nodes);
4070 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4071 return 1;
4072}
4073
4074static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4075 struct page *page, enum track_item alloc,
a5dd5c11 4076 unsigned long *map)
88a420e4 4077{
a973e9dd 4078 void *addr = page_address(page);
88a420e4
CL
4079 void *p;
4080
39b26464 4081 bitmap_zero(map, page->objects);
5f80b13a 4082 get_map(s, page, map);
88a420e4 4083
224a88be 4084 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4085 if (!test_bit(slab_index(p, s, addr), map))
4086 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4087}
4088
4089static int list_locations(struct kmem_cache *s, char *buf,
4090 enum track_item alloc)
4091{
e374d483 4092 int len = 0;
88a420e4 4093 unsigned long i;
68dff6a9 4094 struct loc_track t = { 0, 0, NULL };
88a420e4 4095 int node;
bbd7d57b
ED
4096 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4097 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4098 struct kmem_cache_node *n;
88a420e4 4099
bbd7d57b
ED
4100 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4101 GFP_TEMPORARY)) {
4102 kfree(map);
68dff6a9 4103 return sprintf(buf, "Out of memory\n");
bbd7d57b 4104 }
88a420e4
CL
4105 /* Push back cpu slabs */
4106 flush_all(s);
4107
fa45dc25 4108 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4109 unsigned long flags;
4110 struct page *page;
4111
9e86943b 4112 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4113 continue;
4114
4115 spin_lock_irqsave(&n->list_lock, flags);
4116 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4117 process_slab(&t, s, page, alloc, map);
88a420e4 4118 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4119 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4120 spin_unlock_irqrestore(&n->list_lock, flags);
4121 }
4122
4123 for (i = 0; i < t.count; i++) {
45edfa58 4124 struct location *l = &t.loc[i];
88a420e4 4125
9c246247 4126 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4127 break;
e374d483 4128 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4129
4130 if (l->addr)
62c70bce 4131 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4132 else
e374d483 4133 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4134
4135 if (l->sum_time != l->min_time) {
e374d483 4136 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4137 l->min_time,
4138 (long)div_u64(l->sum_time, l->count),
4139 l->max_time);
45edfa58 4140 } else
e374d483 4141 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4142 l->min_time);
4143
4144 if (l->min_pid != l->max_pid)
e374d483 4145 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4146 l->min_pid, l->max_pid);
4147 else
e374d483 4148 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4149 l->min_pid);
4150
174596a0
RR
4151 if (num_online_cpus() > 1 &&
4152 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4153 len < PAGE_SIZE - 60) {
4154 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4155 len += cpulist_scnprintf(buf + len,
4156 PAGE_SIZE - len - 50,
174596a0 4157 to_cpumask(l->cpus));
45edfa58
CL
4158 }
4159
62bc62a8 4160 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4161 len < PAGE_SIZE - 60) {
4162 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4163 len += nodelist_scnprintf(buf + len,
4164 PAGE_SIZE - len - 50,
4165 l->nodes);
45edfa58
CL
4166 }
4167
e374d483 4168 len += sprintf(buf + len, "\n");
88a420e4
CL
4169 }
4170
4171 free_loc_track(&t);
bbd7d57b 4172 kfree(map);
88a420e4 4173 if (!t.count)
e374d483
HH
4174 len += sprintf(buf, "No data\n");
4175 return len;
88a420e4 4176}
ab4d5ed5 4177#endif
88a420e4 4178
a5a84755 4179#ifdef SLUB_RESILIENCY_TEST
c07b8183 4180static void __init resiliency_test(void)
a5a84755
CL
4181{
4182 u8 *p;
4183
95a05b42 4184 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4185
f9f58285
FF
4186 pr_err("SLUB resiliency testing\n");
4187 pr_err("-----------------------\n");
4188 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4189
4190 p = kzalloc(16, GFP_KERNEL);
4191 p[16] = 0x12;
f9f58285
FF
4192 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4193 p + 16);
a5a84755
CL
4194
4195 validate_slab_cache(kmalloc_caches[4]);
4196
4197 /* Hmmm... The next two are dangerous */
4198 p = kzalloc(32, GFP_KERNEL);
4199 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4200 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4201 p);
4202 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4203
4204 validate_slab_cache(kmalloc_caches[5]);
4205 p = kzalloc(64, GFP_KERNEL);
4206 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4207 *p = 0x56;
f9f58285
FF
4208 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4209 p);
4210 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4211 validate_slab_cache(kmalloc_caches[6]);
4212
f9f58285 4213 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4214 p = kzalloc(128, GFP_KERNEL);
4215 kfree(p);
4216 *p = 0x78;
f9f58285 4217 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4218 validate_slab_cache(kmalloc_caches[7]);
4219
4220 p = kzalloc(256, GFP_KERNEL);
4221 kfree(p);
4222 p[50] = 0x9a;
f9f58285 4223 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4224 validate_slab_cache(kmalloc_caches[8]);
4225
4226 p = kzalloc(512, GFP_KERNEL);
4227 kfree(p);
4228 p[512] = 0xab;
f9f58285 4229 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4230 validate_slab_cache(kmalloc_caches[9]);
4231}
4232#else
4233#ifdef CONFIG_SYSFS
4234static void resiliency_test(void) {};
4235#endif
4236#endif
4237
ab4d5ed5 4238#ifdef CONFIG_SYSFS
81819f0f 4239enum slab_stat_type {
205ab99d
CL
4240 SL_ALL, /* All slabs */
4241 SL_PARTIAL, /* Only partially allocated slabs */
4242 SL_CPU, /* Only slabs used for cpu caches */
4243 SL_OBJECTS, /* Determine allocated objects not slabs */
4244 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4245};
4246
205ab99d 4247#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4248#define SO_PARTIAL (1 << SL_PARTIAL)
4249#define SO_CPU (1 << SL_CPU)
4250#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4251#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4252
62e5c4b4
CG
4253static ssize_t show_slab_objects(struct kmem_cache *s,
4254 char *buf, unsigned long flags)
81819f0f
CL
4255{
4256 unsigned long total = 0;
81819f0f
CL
4257 int node;
4258 int x;
4259 unsigned long *nodes;
81819f0f 4260
e35e1a97 4261 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4262 if (!nodes)
4263 return -ENOMEM;
81819f0f 4264
205ab99d
CL
4265 if (flags & SO_CPU) {
4266 int cpu;
81819f0f 4267
205ab99d 4268 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4269 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4270 cpu);
ec3ab083 4271 int node;
49e22585 4272 struct page *page;
dfb4f096 4273
bc6697d8 4274 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4275 if (!page)
4276 continue;
205ab99d 4277
ec3ab083
CL
4278 node = page_to_nid(page);
4279 if (flags & SO_TOTAL)
4280 x = page->objects;
4281 else if (flags & SO_OBJECTS)
4282 x = page->inuse;
4283 else
4284 x = 1;
49e22585 4285
ec3ab083
CL
4286 total += x;
4287 nodes[node] += x;
4288
4289 page = ACCESS_ONCE(c->partial);
49e22585 4290 if (page) {
8afb1474
LZ
4291 node = page_to_nid(page);
4292 if (flags & SO_TOTAL)
4293 WARN_ON_ONCE(1);
4294 else if (flags & SO_OBJECTS)
4295 WARN_ON_ONCE(1);
4296 else
4297 x = page->pages;
bc6697d8
ED
4298 total += x;
4299 nodes[node] += x;
49e22585 4300 }
81819f0f
CL
4301 }
4302 }
4303
bfc8c901 4304 get_online_mems();
ab4d5ed5 4305#ifdef CONFIG_SLUB_DEBUG
205ab99d 4306 if (flags & SO_ALL) {
fa45dc25
CL
4307 struct kmem_cache_node *n;
4308
4309 for_each_kmem_cache_node(s, node, n) {
205ab99d 4310
d0e0ac97
CG
4311 if (flags & SO_TOTAL)
4312 x = atomic_long_read(&n->total_objects);
4313 else if (flags & SO_OBJECTS)
4314 x = atomic_long_read(&n->total_objects) -
4315 count_partial(n, count_free);
81819f0f 4316 else
205ab99d 4317 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4318 total += x;
4319 nodes[node] += x;
4320 }
4321
ab4d5ed5
CL
4322 } else
4323#endif
4324 if (flags & SO_PARTIAL) {
fa45dc25 4325 struct kmem_cache_node *n;
81819f0f 4326
fa45dc25 4327 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4328 if (flags & SO_TOTAL)
4329 x = count_partial(n, count_total);
4330 else if (flags & SO_OBJECTS)
4331 x = count_partial(n, count_inuse);
81819f0f 4332 else
205ab99d 4333 x = n->nr_partial;
81819f0f
CL
4334 total += x;
4335 nodes[node] += x;
4336 }
4337 }
81819f0f
CL
4338 x = sprintf(buf, "%lu", total);
4339#ifdef CONFIG_NUMA
fa45dc25 4340 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4341 if (nodes[node])
4342 x += sprintf(buf + x, " N%d=%lu",
4343 node, nodes[node]);
4344#endif
bfc8c901 4345 put_online_mems();
81819f0f
CL
4346 kfree(nodes);
4347 return x + sprintf(buf + x, "\n");
4348}
4349
ab4d5ed5 4350#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4351static int any_slab_objects(struct kmem_cache *s)
4352{
4353 int node;
fa45dc25 4354 struct kmem_cache_node *n;
81819f0f 4355
fa45dc25 4356 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4357 if (atomic_long_read(&n->total_objects))
81819f0f 4358 return 1;
fa45dc25 4359
81819f0f
CL
4360 return 0;
4361}
ab4d5ed5 4362#endif
81819f0f
CL
4363
4364#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4365#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4366
4367struct slab_attribute {
4368 struct attribute attr;
4369 ssize_t (*show)(struct kmem_cache *s, char *buf);
4370 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4371};
4372
4373#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4374 static struct slab_attribute _name##_attr = \
4375 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4376
4377#define SLAB_ATTR(_name) \
4378 static struct slab_attribute _name##_attr = \
ab067e99 4379 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4380
81819f0f
CL
4381static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4382{
4383 return sprintf(buf, "%d\n", s->size);
4384}
4385SLAB_ATTR_RO(slab_size);
4386
4387static ssize_t align_show(struct kmem_cache *s, char *buf)
4388{
4389 return sprintf(buf, "%d\n", s->align);
4390}
4391SLAB_ATTR_RO(align);
4392
4393static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4394{
3b0efdfa 4395 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4396}
4397SLAB_ATTR_RO(object_size);
4398
4399static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4400{
834f3d11 4401 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4402}
4403SLAB_ATTR_RO(objs_per_slab);
4404
06b285dc
CL
4405static ssize_t order_store(struct kmem_cache *s,
4406 const char *buf, size_t length)
4407{
0121c619
CL
4408 unsigned long order;
4409 int err;
4410
3dbb95f7 4411 err = kstrtoul(buf, 10, &order);
0121c619
CL
4412 if (err)
4413 return err;
06b285dc
CL
4414
4415 if (order > slub_max_order || order < slub_min_order)
4416 return -EINVAL;
4417
4418 calculate_sizes(s, order);
4419 return length;
4420}
4421
81819f0f
CL
4422static ssize_t order_show(struct kmem_cache *s, char *buf)
4423{
834f3d11 4424 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4425}
06b285dc 4426SLAB_ATTR(order);
81819f0f 4427
73d342b1
DR
4428static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4429{
4430 return sprintf(buf, "%lu\n", s->min_partial);
4431}
4432
4433static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4434 size_t length)
4435{
4436 unsigned long min;
4437 int err;
4438
3dbb95f7 4439 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4440 if (err)
4441 return err;
4442
c0bdb232 4443 set_min_partial(s, min);
73d342b1
DR
4444 return length;
4445}
4446SLAB_ATTR(min_partial);
4447
49e22585
CL
4448static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4449{
4450 return sprintf(buf, "%u\n", s->cpu_partial);
4451}
4452
4453static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4454 size_t length)
4455{
4456 unsigned long objects;
4457 int err;
4458
3dbb95f7 4459 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4460 if (err)
4461 return err;
345c905d 4462 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4463 return -EINVAL;
49e22585
CL
4464
4465 s->cpu_partial = objects;
4466 flush_all(s);
4467 return length;
4468}
4469SLAB_ATTR(cpu_partial);
4470
81819f0f
CL
4471static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4472{
62c70bce
JP
4473 if (!s->ctor)
4474 return 0;
4475 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4476}
4477SLAB_ATTR_RO(ctor);
4478
81819f0f
CL
4479static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4480{
4307c14f 4481 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4482}
4483SLAB_ATTR_RO(aliases);
4484
81819f0f
CL
4485static ssize_t partial_show(struct kmem_cache *s, char *buf)
4486{
d9acf4b7 4487 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4488}
4489SLAB_ATTR_RO(partial);
4490
4491static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4492{
d9acf4b7 4493 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4494}
4495SLAB_ATTR_RO(cpu_slabs);
4496
4497static ssize_t objects_show(struct kmem_cache *s, char *buf)
4498{
205ab99d 4499 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4500}
4501SLAB_ATTR_RO(objects);
4502
205ab99d
CL
4503static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4504{
4505 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4506}
4507SLAB_ATTR_RO(objects_partial);
4508
49e22585
CL
4509static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4510{
4511 int objects = 0;
4512 int pages = 0;
4513 int cpu;
4514 int len;
4515
4516 for_each_online_cpu(cpu) {
4517 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4518
4519 if (page) {
4520 pages += page->pages;
4521 objects += page->pobjects;
4522 }
4523 }
4524
4525 len = sprintf(buf, "%d(%d)", objects, pages);
4526
4527#ifdef CONFIG_SMP
4528 for_each_online_cpu(cpu) {
4529 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4530
4531 if (page && len < PAGE_SIZE - 20)
4532 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4533 page->pobjects, page->pages);
4534 }
4535#endif
4536 return len + sprintf(buf + len, "\n");
4537}
4538SLAB_ATTR_RO(slabs_cpu_partial);
4539
a5a84755
CL
4540static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4541{
4542 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4543}
4544
4545static ssize_t reclaim_account_store(struct kmem_cache *s,
4546 const char *buf, size_t length)
4547{
4548 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4549 if (buf[0] == '1')
4550 s->flags |= SLAB_RECLAIM_ACCOUNT;
4551 return length;
4552}
4553SLAB_ATTR(reclaim_account);
4554
4555static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4556{
4557 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4558}
4559SLAB_ATTR_RO(hwcache_align);
4560
4561#ifdef CONFIG_ZONE_DMA
4562static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4563{
4564 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4565}
4566SLAB_ATTR_RO(cache_dma);
4567#endif
4568
4569static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4570{
4571 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4572}
4573SLAB_ATTR_RO(destroy_by_rcu);
4574
ab9a0f19
LJ
4575static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4576{
4577 return sprintf(buf, "%d\n", s->reserved);
4578}
4579SLAB_ATTR_RO(reserved);
4580
ab4d5ed5 4581#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4582static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4583{
4584 return show_slab_objects(s, buf, SO_ALL);
4585}
4586SLAB_ATTR_RO(slabs);
4587
205ab99d
CL
4588static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4589{
4590 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4591}
4592SLAB_ATTR_RO(total_objects);
4593
81819f0f
CL
4594static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4595{
4596 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4597}
4598
4599static ssize_t sanity_checks_store(struct kmem_cache *s,
4600 const char *buf, size_t length)
4601{
4602 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4603 if (buf[0] == '1') {
4604 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4605 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4606 }
81819f0f
CL
4607 return length;
4608}
4609SLAB_ATTR(sanity_checks);
4610
4611static ssize_t trace_show(struct kmem_cache *s, char *buf)
4612{
4613 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4614}
4615
4616static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4617 size_t length)
4618{
c9e16131
CL
4619 /*
4620 * Tracing a merged cache is going to give confusing results
4621 * as well as cause other issues like converting a mergeable
4622 * cache into an umergeable one.
4623 */
4624 if (s->refcount > 1)
4625 return -EINVAL;
4626
81819f0f 4627 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4628 if (buf[0] == '1') {
4629 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4630 s->flags |= SLAB_TRACE;
b789ef51 4631 }
81819f0f
CL
4632 return length;
4633}
4634SLAB_ATTR(trace);
4635
81819f0f
CL
4636static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4637{
4638 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4639}
4640
4641static ssize_t red_zone_store(struct kmem_cache *s,
4642 const char *buf, size_t length)
4643{
4644 if (any_slab_objects(s))
4645 return -EBUSY;
4646
4647 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4648 if (buf[0] == '1') {
4649 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4650 s->flags |= SLAB_RED_ZONE;
b789ef51 4651 }
06b285dc 4652 calculate_sizes(s, -1);
81819f0f
CL
4653 return length;
4654}
4655SLAB_ATTR(red_zone);
4656
4657static ssize_t poison_show(struct kmem_cache *s, char *buf)
4658{
4659 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4660}
4661
4662static ssize_t poison_store(struct kmem_cache *s,
4663 const char *buf, size_t length)
4664{
4665 if (any_slab_objects(s))
4666 return -EBUSY;
4667
4668 s->flags &= ~SLAB_POISON;
b789ef51
CL
4669 if (buf[0] == '1') {
4670 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4671 s->flags |= SLAB_POISON;
b789ef51 4672 }
06b285dc 4673 calculate_sizes(s, -1);
81819f0f
CL
4674 return length;
4675}
4676SLAB_ATTR(poison);
4677
4678static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4679{
4680 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4681}
4682
4683static ssize_t store_user_store(struct kmem_cache *s,
4684 const char *buf, size_t length)
4685{
4686 if (any_slab_objects(s))
4687 return -EBUSY;
4688
4689 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4690 if (buf[0] == '1') {
4691 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4692 s->flags |= SLAB_STORE_USER;
b789ef51 4693 }
06b285dc 4694 calculate_sizes(s, -1);
81819f0f
CL
4695 return length;
4696}
4697SLAB_ATTR(store_user);
4698
53e15af0
CL
4699static ssize_t validate_show(struct kmem_cache *s, char *buf)
4700{
4701 return 0;
4702}
4703
4704static ssize_t validate_store(struct kmem_cache *s,
4705 const char *buf, size_t length)
4706{
434e245d
CL
4707 int ret = -EINVAL;
4708
4709 if (buf[0] == '1') {
4710 ret = validate_slab_cache(s);
4711 if (ret >= 0)
4712 ret = length;
4713 }
4714 return ret;
53e15af0
CL
4715}
4716SLAB_ATTR(validate);
a5a84755
CL
4717
4718static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4719{
4720 if (!(s->flags & SLAB_STORE_USER))
4721 return -ENOSYS;
4722 return list_locations(s, buf, TRACK_ALLOC);
4723}
4724SLAB_ATTR_RO(alloc_calls);
4725
4726static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4727{
4728 if (!(s->flags & SLAB_STORE_USER))
4729 return -ENOSYS;
4730 return list_locations(s, buf, TRACK_FREE);
4731}
4732SLAB_ATTR_RO(free_calls);
4733#endif /* CONFIG_SLUB_DEBUG */
4734
4735#ifdef CONFIG_FAILSLAB
4736static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4737{
4738 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4739}
4740
4741static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4742 size_t length)
4743{
c9e16131
CL
4744 if (s->refcount > 1)
4745 return -EINVAL;
4746
a5a84755
CL
4747 s->flags &= ~SLAB_FAILSLAB;
4748 if (buf[0] == '1')
4749 s->flags |= SLAB_FAILSLAB;
4750 return length;
4751}
4752SLAB_ATTR(failslab);
ab4d5ed5 4753#endif
53e15af0 4754
2086d26a
CL
4755static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4756{
4757 return 0;
4758}
4759
4760static ssize_t shrink_store(struct kmem_cache *s,
4761 const char *buf, size_t length)
4762{
4763 if (buf[0] == '1') {
4764 int rc = kmem_cache_shrink(s);
4765
4766 if (rc)
4767 return rc;
4768 } else
4769 return -EINVAL;
4770 return length;
4771}
4772SLAB_ATTR(shrink);
4773
81819f0f 4774#ifdef CONFIG_NUMA
9824601e 4775static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4776{
9824601e 4777 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4778}
4779
9824601e 4780static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4781 const char *buf, size_t length)
4782{
0121c619
CL
4783 unsigned long ratio;
4784 int err;
4785
3dbb95f7 4786 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4787 if (err)
4788 return err;
4789
e2cb96b7 4790 if (ratio <= 100)
0121c619 4791 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4792
81819f0f
CL
4793 return length;
4794}
9824601e 4795SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4796#endif
4797
8ff12cfc 4798#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4799static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4800{
4801 unsigned long sum = 0;
4802 int cpu;
4803 int len;
4804 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4805
4806 if (!data)
4807 return -ENOMEM;
4808
4809 for_each_online_cpu(cpu) {
9dfc6e68 4810 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4811
4812 data[cpu] = x;
4813 sum += x;
4814 }
4815
4816 len = sprintf(buf, "%lu", sum);
4817
50ef37b9 4818#ifdef CONFIG_SMP
8ff12cfc
CL
4819 for_each_online_cpu(cpu) {
4820 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4821 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4822 }
50ef37b9 4823#endif
8ff12cfc
CL
4824 kfree(data);
4825 return len + sprintf(buf + len, "\n");
4826}
4827
78eb00cc
DR
4828static void clear_stat(struct kmem_cache *s, enum stat_item si)
4829{
4830 int cpu;
4831
4832 for_each_online_cpu(cpu)
9dfc6e68 4833 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4834}
4835
8ff12cfc
CL
4836#define STAT_ATTR(si, text) \
4837static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4838{ \
4839 return show_stat(s, buf, si); \
4840} \
78eb00cc
DR
4841static ssize_t text##_store(struct kmem_cache *s, \
4842 const char *buf, size_t length) \
4843{ \
4844 if (buf[0] != '0') \
4845 return -EINVAL; \
4846 clear_stat(s, si); \
4847 return length; \
4848} \
4849SLAB_ATTR(text); \
8ff12cfc
CL
4850
4851STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4852STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4853STAT_ATTR(FREE_FASTPATH, free_fastpath);
4854STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4855STAT_ATTR(FREE_FROZEN, free_frozen);
4856STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4857STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4858STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4859STAT_ATTR(ALLOC_SLAB, alloc_slab);
4860STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4861STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4862STAT_ATTR(FREE_SLAB, free_slab);
4863STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4864STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4865STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4866STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4867STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4868STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4869STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4870STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4871STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4872STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4873STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4874STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4875STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4876STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4877#endif
4878
06428780 4879static struct attribute *slab_attrs[] = {
81819f0f
CL
4880 &slab_size_attr.attr,
4881 &object_size_attr.attr,
4882 &objs_per_slab_attr.attr,
4883 &order_attr.attr,
73d342b1 4884 &min_partial_attr.attr,
49e22585 4885 &cpu_partial_attr.attr,
81819f0f 4886 &objects_attr.attr,
205ab99d 4887 &objects_partial_attr.attr,
81819f0f
CL
4888 &partial_attr.attr,
4889 &cpu_slabs_attr.attr,
4890 &ctor_attr.attr,
81819f0f
CL
4891 &aliases_attr.attr,
4892 &align_attr.attr,
81819f0f
CL
4893 &hwcache_align_attr.attr,
4894 &reclaim_account_attr.attr,
4895 &destroy_by_rcu_attr.attr,
a5a84755 4896 &shrink_attr.attr,
ab9a0f19 4897 &reserved_attr.attr,
49e22585 4898 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4899#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4900 &total_objects_attr.attr,
4901 &slabs_attr.attr,
4902 &sanity_checks_attr.attr,
4903 &trace_attr.attr,
81819f0f
CL
4904 &red_zone_attr.attr,
4905 &poison_attr.attr,
4906 &store_user_attr.attr,
53e15af0 4907 &validate_attr.attr,
88a420e4
CL
4908 &alloc_calls_attr.attr,
4909 &free_calls_attr.attr,
ab4d5ed5 4910#endif
81819f0f
CL
4911#ifdef CONFIG_ZONE_DMA
4912 &cache_dma_attr.attr,
4913#endif
4914#ifdef CONFIG_NUMA
9824601e 4915 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4916#endif
4917#ifdef CONFIG_SLUB_STATS
4918 &alloc_fastpath_attr.attr,
4919 &alloc_slowpath_attr.attr,
4920 &free_fastpath_attr.attr,
4921 &free_slowpath_attr.attr,
4922 &free_frozen_attr.attr,
4923 &free_add_partial_attr.attr,
4924 &free_remove_partial_attr.attr,
4925 &alloc_from_partial_attr.attr,
4926 &alloc_slab_attr.attr,
4927 &alloc_refill_attr.attr,
e36a2652 4928 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4929 &free_slab_attr.attr,
4930 &cpuslab_flush_attr.attr,
4931 &deactivate_full_attr.attr,
4932 &deactivate_empty_attr.attr,
4933 &deactivate_to_head_attr.attr,
4934 &deactivate_to_tail_attr.attr,
4935 &deactivate_remote_frees_attr.attr,
03e404af 4936 &deactivate_bypass_attr.attr,
65c3376a 4937 &order_fallback_attr.attr,
b789ef51
CL
4938 &cmpxchg_double_fail_attr.attr,
4939 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4940 &cpu_partial_alloc_attr.attr,
4941 &cpu_partial_free_attr.attr,
8028dcea
AS
4942 &cpu_partial_node_attr.attr,
4943 &cpu_partial_drain_attr.attr,
81819f0f 4944#endif
4c13dd3b
DM
4945#ifdef CONFIG_FAILSLAB
4946 &failslab_attr.attr,
4947#endif
4948
81819f0f
CL
4949 NULL
4950};
4951
4952static struct attribute_group slab_attr_group = {
4953 .attrs = slab_attrs,
4954};
4955
4956static ssize_t slab_attr_show(struct kobject *kobj,
4957 struct attribute *attr,
4958 char *buf)
4959{
4960 struct slab_attribute *attribute;
4961 struct kmem_cache *s;
4962 int err;
4963
4964 attribute = to_slab_attr(attr);
4965 s = to_slab(kobj);
4966
4967 if (!attribute->show)
4968 return -EIO;
4969
4970 err = attribute->show(s, buf);
4971
4972 return err;
4973}
4974
4975static ssize_t slab_attr_store(struct kobject *kobj,
4976 struct attribute *attr,
4977 const char *buf, size_t len)
4978{
4979 struct slab_attribute *attribute;
4980 struct kmem_cache *s;
4981 int err;
4982
4983 attribute = to_slab_attr(attr);
4984 s = to_slab(kobj);
4985
4986 if (!attribute->store)
4987 return -EIO;
4988
4989 err = attribute->store(s, buf, len);
107dab5c
GC
4990#ifdef CONFIG_MEMCG_KMEM
4991 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4992 int i;
81819f0f 4993
107dab5c
GC
4994 mutex_lock(&slab_mutex);
4995 if (s->max_attr_size < len)
4996 s->max_attr_size = len;
4997
ebe945c2
GC
4998 /*
4999 * This is a best effort propagation, so this function's return
5000 * value will be determined by the parent cache only. This is
5001 * basically because not all attributes will have a well
5002 * defined semantics for rollbacks - most of the actions will
5003 * have permanent effects.
5004 *
5005 * Returning the error value of any of the children that fail
5006 * is not 100 % defined, in the sense that users seeing the
5007 * error code won't be able to know anything about the state of
5008 * the cache.
5009 *
5010 * Only returning the error code for the parent cache at least
5011 * has well defined semantics. The cache being written to
5012 * directly either failed or succeeded, in which case we loop
5013 * through the descendants with best-effort propagation.
5014 */
107dab5c 5015 for_each_memcg_cache_index(i) {
2ade4de8 5016 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
5017 if (c)
5018 attribute->store(c, buf, len);
5019 }
5020 mutex_unlock(&slab_mutex);
5021 }
5022#endif
81819f0f
CL
5023 return err;
5024}
5025
107dab5c
GC
5026static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5027{
5028#ifdef CONFIG_MEMCG_KMEM
5029 int i;
5030 char *buffer = NULL;
93030d83 5031 struct kmem_cache *root_cache;
107dab5c 5032
93030d83 5033 if (is_root_cache(s))
107dab5c
GC
5034 return;
5035
93030d83
VD
5036 root_cache = s->memcg_params->root_cache;
5037
107dab5c
GC
5038 /*
5039 * This mean this cache had no attribute written. Therefore, no point
5040 * in copying default values around
5041 */
93030d83 5042 if (!root_cache->max_attr_size)
107dab5c
GC
5043 return;
5044
5045 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5046 char mbuf[64];
5047 char *buf;
5048 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5049
5050 if (!attr || !attr->store || !attr->show)
5051 continue;
5052
5053 /*
5054 * It is really bad that we have to allocate here, so we will
5055 * do it only as a fallback. If we actually allocate, though,
5056 * we can just use the allocated buffer until the end.
5057 *
5058 * Most of the slub attributes will tend to be very small in
5059 * size, but sysfs allows buffers up to a page, so they can
5060 * theoretically happen.
5061 */
5062 if (buffer)
5063 buf = buffer;
93030d83 5064 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5065 buf = mbuf;
5066 else {
5067 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5068 if (WARN_ON(!buffer))
5069 continue;
5070 buf = buffer;
5071 }
5072
93030d83 5073 attr->show(root_cache, buf);
107dab5c
GC
5074 attr->store(s, buf, strlen(buf));
5075 }
5076
5077 if (buffer)
5078 free_page((unsigned long)buffer);
5079#endif
5080}
5081
41a21285
CL
5082static void kmem_cache_release(struct kobject *k)
5083{
5084 slab_kmem_cache_release(to_slab(k));
5085}
5086
52cf25d0 5087static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5088 .show = slab_attr_show,
5089 .store = slab_attr_store,
5090};
5091
5092static struct kobj_type slab_ktype = {
5093 .sysfs_ops = &slab_sysfs_ops,
41a21285 5094 .release = kmem_cache_release,
81819f0f
CL
5095};
5096
5097static int uevent_filter(struct kset *kset, struct kobject *kobj)
5098{
5099 struct kobj_type *ktype = get_ktype(kobj);
5100
5101 if (ktype == &slab_ktype)
5102 return 1;
5103 return 0;
5104}
5105
9cd43611 5106static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5107 .filter = uevent_filter,
5108};
5109
27c3a314 5110static struct kset *slab_kset;
81819f0f 5111
9a41707b
VD
5112static inline struct kset *cache_kset(struct kmem_cache *s)
5113{
5114#ifdef CONFIG_MEMCG_KMEM
5115 if (!is_root_cache(s))
5116 return s->memcg_params->root_cache->memcg_kset;
5117#endif
5118 return slab_kset;
5119}
5120
81819f0f
CL
5121#define ID_STR_LENGTH 64
5122
5123/* Create a unique string id for a slab cache:
6446faa2
CL
5124 *
5125 * Format :[flags-]size
81819f0f
CL
5126 */
5127static char *create_unique_id(struct kmem_cache *s)
5128{
5129 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5130 char *p = name;
5131
5132 BUG_ON(!name);
5133
5134 *p++ = ':';
5135 /*
5136 * First flags affecting slabcache operations. We will only
5137 * get here for aliasable slabs so we do not need to support
5138 * too many flags. The flags here must cover all flags that
5139 * are matched during merging to guarantee that the id is
5140 * unique.
5141 */
5142 if (s->flags & SLAB_CACHE_DMA)
5143 *p++ = 'd';
5144 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5145 *p++ = 'a';
5146 if (s->flags & SLAB_DEBUG_FREE)
5147 *p++ = 'F';
5a896d9e
VN
5148 if (!(s->flags & SLAB_NOTRACK))
5149 *p++ = 't';
81819f0f
CL
5150 if (p != name + 1)
5151 *p++ = '-';
5152 p += sprintf(p, "%07d", s->size);
2633d7a0 5153
81819f0f
CL
5154 BUG_ON(p > name + ID_STR_LENGTH - 1);
5155 return name;
5156}
5157
5158static int sysfs_slab_add(struct kmem_cache *s)
5159{
5160 int err;
5161 const char *name;
45530c44 5162 int unmergeable = slab_unmergeable(s);
81819f0f 5163
81819f0f
CL
5164 if (unmergeable) {
5165 /*
5166 * Slabcache can never be merged so we can use the name proper.
5167 * This is typically the case for debug situations. In that
5168 * case we can catch duplicate names easily.
5169 */
27c3a314 5170 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5171 name = s->name;
5172 } else {
5173 /*
5174 * Create a unique name for the slab as a target
5175 * for the symlinks.
5176 */
5177 name = create_unique_id(s);
5178 }
5179
9a41707b 5180 s->kobj.kset = cache_kset(s);
26e4f205 5181 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5182 if (err)
5183 goto out_put_kobj;
81819f0f
CL
5184
5185 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5186 if (err)
5187 goto out_del_kobj;
9a41707b
VD
5188
5189#ifdef CONFIG_MEMCG_KMEM
5190 if (is_root_cache(s)) {
5191 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5192 if (!s->memcg_kset) {
54b6a731
DJ
5193 err = -ENOMEM;
5194 goto out_del_kobj;
9a41707b
VD
5195 }
5196 }
5197#endif
5198
81819f0f
CL
5199 kobject_uevent(&s->kobj, KOBJ_ADD);
5200 if (!unmergeable) {
5201 /* Setup first alias */
5202 sysfs_slab_alias(s, s->name);
81819f0f 5203 }
54b6a731
DJ
5204out:
5205 if (!unmergeable)
5206 kfree(name);
5207 return err;
5208out_del_kobj:
5209 kobject_del(&s->kobj);
5210out_put_kobj:
5211 kobject_put(&s->kobj);
5212 goto out;
81819f0f
CL
5213}
5214
41a21285 5215void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5216{
97d06609 5217 if (slab_state < FULL)
2bce6485
CL
5218 /*
5219 * Sysfs has not been setup yet so no need to remove the
5220 * cache from sysfs.
5221 */
5222 return;
5223
9a41707b
VD
5224#ifdef CONFIG_MEMCG_KMEM
5225 kset_unregister(s->memcg_kset);
5226#endif
81819f0f
CL
5227 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5228 kobject_del(&s->kobj);
151c602f 5229 kobject_put(&s->kobj);
81819f0f
CL
5230}
5231
5232/*
5233 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5234 * available lest we lose that information.
81819f0f
CL
5235 */
5236struct saved_alias {
5237 struct kmem_cache *s;
5238 const char *name;
5239 struct saved_alias *next;
5240};
5241
5af328a5 5242static struct saved_alias *alias_list;
81819f0f
CL
5243
5244static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5245{
5246 struct saved_alias *al;
5247
97d06609 5248 if (slab_state == FULL) {
81819f0f
CL
5249 /*
5250 * If we have a leftover link then remove it.
5251 */
27c3a314
GKH
5252 sysfs_remove_link(&slab_kset->kobj, name);
5253 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5254 }
5255
5256 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5257 if (!al)
5258 return -ENOMEM;
5259
5260 al->s = s;
5261 al->name = name;
5262 al->next = alias_list;
5263 alias_list = al;
5264 return 0;
5265}
5266
5267static int __init slab_sysfs_init(void)
5268{
5b95a4ac 5269 struct kmem_cache *s;
81819f0f
CL
5270 int err;
5271
18004c5d 5272 mutex_lock(&slab_mutex);
2bce6485 5273
0ff21e46 5274 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5275 if (!slab_kset) {
18004c5d 5276 mutex_unlock(&slab_mutex);
f9f58285 5277 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5278 return -ENOSYS;
5279 }
5280
97d06609 5281 slab_state = FULL;
26a7bd03 5282
5b95a4ac 5283 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5284 err = sysfs_slab_add(s);
5d540fb7 5285 if (err)
f9f58285
FF
5286 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5287 s->name);
26a7bd03 5288 }
81819f0f
CL
5289
5290 while (alias_list) {
5291 struct saved_alias *al = alias_list;
5292
5293 alias_list = alias_list->next;
5294 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5295 if (err)
f9f58285
FF
5296 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5297 al->name);
81819f0f
CL
5298 kfree(al);
5299 }
5300
18004c5d 5301 mutex_unlock(&slab_mutex);
81819f0f
CL
5302 resiliency_test();
5303 return 0;
5304}
5305
5306__initcall(slab_sysfs_init);
ab4d5ed5 5307#endif /* CONFIG_SYSFS */
57ed3eda
PE
5308
5309/*
5310 * The /proc/slabinfo ABI
5311 */
158a9624 5312#ifdef CONFIG_SLABINFO
0d7561c6 5313void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5314{
57ed3eda 5315 unsigned long nr_slabs = 0;
205ab99d
CL
5316 unsigned long nr_objs = 0;
5317 unsigned long nr_free = 0;
57ed3eda 5318 int node;
fa45dc25 5319 struct kmem_cache_node *n;
57ed3eda 5320
fa45dc25 5321 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5322 nr_slabs += node_nr_slabs(n);
5323 nr_objs += node_nr_objs(n);
205ab99d 5324 nr_free += count_partial(n, count_free);
57ed3eda
PE
5325 }
5326
0d7561c6
GC
5327 sinfo->active_objs = nr_objs - nr_free;
5328 sinfo->num_objs = nr_objs;
5329 sinfo->active_slabs = nr_slabs;
5330 sinfo->num_slabs = nr_slabs;
5331 sinfo->objects_per_slab = oo_objects(s->oo);
5332 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5333}
5334
0d7561c6 5335void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5336{
7b3c3a50
AD
5337}
5338
b7454ad3
GC
5339ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5340 size_t count, loff_t *ppos)
7b3c3a50 5341{
b7454ad3 5342 return -EIO;
7b3c3a50 5343}
158a9624 5344#endif /* CONFIG_SLABINFO */