]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/slub.c
mm, compaction: ignore pageblock skip when manually invoking compaction
[people/arne_f/kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
81819f0f
CL
172/*
173 * Set of flags that will prevent slab merging
174 */
175#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
81819f0f
CL
178
179#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 180 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 181
210b5c06
CG
182#define OO_SHIFT 16
183#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 184#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 185
81819f0f 186/* Internal SLUB flags */
f90ec390 187#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 188#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 189
81819f0f
CL
190#ifdef CONFIG_SMP
191static struct notifier_block slab_notifier;
192#endif
193
02cbc874
CL
194/*
195 * Tracking user of a slab.
196 */
d6543e39 197#define TRACK_ADDRS_COUNT 16
02cbc874 198struct track {
ce71e27c 199 unsigned long addr; /* Called from address */
d6543e39
BG
200#ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202#endif
02cbc874
CL
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206};
207
208enum track_item { TRACK_ALLOC, TRACK_FREE };
209
ab4d5ed5 210#ifdef CONFIG_SYSFS
81819f0f
CL
211static int sysfs_slab_add(struct kmem_cache *);
212static int sysfs_slab_alias(struct kmem_cache *, const char *);
213static void sysfs_slab_remove(struct kmem_cache *);
107dab5c 214static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 215#else
0c710013
CL
216static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 { return 0; }
db265eca 219static inline void sysfs_slab_remove(struct kmem_cache *s) { }
8ff12cfc 220
107dab5c 221static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
222#endif
223
4fdccdfb 224static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
225{
226#ifdef CONFIG_SLUB_STATS
84e554e6 227 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
228#endif
229}
230
81819f0f
CL
231/********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
81819f0f
CL
235static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236{
81819f0f 237 return s->node[node];
81819f0f
CL
238}
239
6446faa2 240/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
241static inline int check_valid_pointer(struct kmem_cache *s,
242 struct page *page, const void *object)
243{
244 void *base;
245
a973e9dd 246 if (!object)
02cbc874
CL
247 return 1;
248
a973e9dd 249 base = page_address(page);
39b26464 250 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
251 (object - base) % s->size) {
252 return 0;
253 }
254
255 return 1;
256}
257
7656c72b
CL
258static inline void *get_freepointer(struct kmem_cache *s, void *object)
259{
260 return *(void **)(object + s->offset);
261}
262
0ad9500e
ED
263static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264{
265 prefetch(object + s->offset);
266}
267
1393d9a1
CL
268static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269{
270 void *p;
271
272#ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274#else
275 p = get_freepointer(s, object);
276#endif
277 return p;
278}
279
7656c72b
CL
280static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281{
282 *(void **)(object + s->offset) = fp;
283}
284
285/* Loop over all objects in a slab */
224a88be
CL
286#define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
288 __p += (__s)->size)
289
7656c72b
CL
290/* Determine object index from a given position */
291static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292{
293 return (p - addr) / s->size;
294}
295
d71f606f
MK
296static inline size_t slab_ksize(const struct kmem_cache *s)
297{
298#ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 304 return s->object_size;
d71f606f
MK
305
306#endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318}
319
ab9a0f19
LJ
320static inline int order_objects(int order, unsigned long size, int reserved)
321{
322 return ((PAGE_SIZE << order) - reserved) / size;
323}
324
834f3d11 325static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 326 unsigned long size, int reserved)
834f3d11
CL
327{
328 struct kmem_cache_order_objects x = {
ab9a0f19 329 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
330 };
331
332 return x;
333}
334
335static inline int oo_order(struct kmem_cache_order_objects x)
336{
210b5c06 337 return x.x >> OO_SHIFT;
834f3d11
CL
338}
339
340static inline int oo_objects(struct kmem_cache_order_objects x)
341{
210b5c06 342 return x.x & OO_MASK;
834f3d11
CL
343}
344
881db7fb
CL
345/*
346 * Per slab locking using the pagelock
347 */
348static __always_inline void slab_lock(struct page *page)
349{
350 bit_spin_lock(PG_locked, &page->flags);
351}
352
353static __always_inline void slab_unlock(struct page *page)
354{
355 __bit_spin_unlock(PG_locked, &page->flags);
356}
357
a0320865
DH
358static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359{
360 struct page tmp;
361 tmp.counters = counters_new;
362 /*
363 * page->counters can cover frozen/inuse/objects as well
364 * as page->_count. If we assign to ->counters directly
365 * we run the risk of losing updates to page->_count, so
366 * be careful and only assign to the fields we need.
367 */
368 page->frozen = tmp.frozen;
369 page->inuse = tmp.inuse;
370 page->objects = tmp.objects;
371}
372
1d07171c
CL
373/* Interrupts must be disabled (for the fallback code to work right) */
374static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 void *freelist_old, unsigned long counters_old,
376 void *freelist_new, unsigned long counters_new,
377 const char *n)
378{
379 VM_BUG_ON(!irqs_disabled());
2565409f
HC
380#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 382 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 383 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
384 freelist_old, counters_old,
385 freelist_new, counters_new))
386 return 1;
387 } else
388#endif
389 {
390 slab_lock(page);
d0e0ac97
CG
391 if (page->freelist == freelist_old &&
392 page->counters == counters_old) {
1d07171c 393 page->freelist = freelist_new;
a0320865 394 set_page_slub_counters(page, counters_new);
1d07171c
CL
395 slab_unlock(page);
396 return 1;
397 }
398 slab_unlock(page);
399 }
400
401 cpu_relax();
402 stat(s, CMPXCHG_DOUBLE_FAIL);
403
404#ifdef SLUB_DEBUG_CMPXCHG
405 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
406#endif
407
408 return 0;
409}
410
b789ef51
CL
411static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 void *freelist_old, unsigned long counters_old,
413 void *freelist_new, unsigned long counters_new,
414 const char *n)
415{
2565409f
HC
416#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 418 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 419 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
420 freelist_old, counters_old,
421 freelist_new, counters_new))
422 return 1;
423 } else
424#endif
425 {
1d07171c
CL
426 unsigned long flags;
427
428 local_irq_save(flags);
881db7fb 429 slab_lock(page);
d0e0ac97
CG
430 if (page->freelist == freelist_old &&
431 page->counters == counters_old) {
b789ef51 432 page->freelist = freelist_new;
a0320865 433 set_page_slub_counters(page, counters_new);
881db7fb 434 slab_unlock(page);
1d07171c 435 local_irq_restore(flags);
b789ef51
CL
436 return 1;
437 }
881db7fb 438 slab_unlock(page);
1d07171c 439 local_irq_restore(flags);
b789ef51
CL
440 }
441
442 cpu_relax();
443 stat(s, CMPXCHG_DOUBLE_FAIL);
444
445#ifdef SLUB_DEBUG_CMPXCHG
446 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
447#endif
448
449 return 0;
450}
451
41ecc55b 452#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
453/*
454 * Determine a map of object in use on a page.
455 *
881db7fb 456 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
457 * not vanish from under us.
458 */
459static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460{
461 void *p;
462 void *addr = page_address(page);
463
464 for (p = page->freelist; p; p = get_freepointer(s, p))
465 set_bit(slab_index(p, s, addr), map);
466}
467
41ecc55b
CL
468/*
469 * Debug settings:
470 */
f0630fff
CL
471#ifdef CONFIG_SLUB_DEBUG_ON
472static int slub_debug = DEBUG_DEFAULT_FLAGS;
473#else
41ecc55b 474static int slub_debug;
f0630fff 475#endif
41ecc55b
CL
476
477static char *slub_debug_slabs;
fa5ec8a1 478static int disable_higher_order_debug;
41ecc55b 479
81819f0f
CL
480/*
481 * Object debugging
482 */
483static void print_section(char *text, u8 *addr, unsigned int length)
484{
ffc79d28
SAS
485 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
486 length, 1);
81819f0f
CL
487}
488
81819f0f
CL
489static struct track *get_track(struct kmem_cache *s, void *object,
490 enum track_item alloc)
491{
492 struct track *p;
493
494 if (s->offset)
495 p = object + s->offset + sizeof(void *);
496 else
497 p = object + s->inuse;
498
499 return p + alloc;
500}
501
502static void set_track(struct kmem_cache *s, void *object,
ce71e27c 503 enum track_item alloc, unsigned long addr)
81819f0f 504{
1a00df4a 505 struct track *p = get_track(s, object, alloc);
81819f0f 506
81819f0f 507 if (addr) {
d6543e39
BG
508#ifdef CONFIG_STACKTRACE
509 struct stack_trace trace;
510 int i;
511
512 trace.nr_entries = 0;
513 trace.max_entries = TRACK_ADDRS_COUNT;
514 trace.entries = p->addrs;
515 trace.skip = 3;
516 save_stack_trace(&trace);
517
518 /* See rant in lockdep.c */
519 if (trace.nr_entries != 0 &&
520 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
521 trace.nr_entries--;
522
523 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
524 p->addrs[i] = 0;
525#endif
81819f0f
CL
526 p->addr = addr;
527 p->cpu = smp_processor_id();
88e4ccf2 528 p->pid = current->pid;
81819f0f
CL
529 p->when = jiffies;
530 } else
531 memset(p, 0, sizeof(struct track));
532}
533
81819f0f
CL
534static void init_tracking(struct kmem_cache *s, void *object)
535{
24922684
CL
536 if (!(s->flags & SLAB_STORE_USER))
537 return;
538
ce71e27c
EGM
539 set_track(s, object, TRACK_FREE, 0UL);
540 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
541}
542
543static void print_track(const char *s, struct track *t)
544{
545 if (!t->addr)
546 return;
547
7daf705f 548 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 549 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
550#ifdef CONFIG_STACKTRACE
551 {
552 int i;
553 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
554 if (t->addrs[i])
555 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
556 else
557 break;
558 }
559#endif
24922684
CL
560}
561
562static void print_tracking(struct kmem_cache *s, void *object)
563{
564 if (!(s->flags & SLAB_STORE_USER))
565 return;
566
567 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
568 print_track("Freed", get_track(s, object, TRACK_FREE));
569}
570
571static void print_page_info(struct page *page)
572{
d0e0ac97
CG
573 printk(KERN_ERR
574 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
576
577}
578
579static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580{
581 va_list args;
582 char buf[100];
583
584 va_start(args, fmt);
585 vsnprintf(buf, sizeof(buf), fmt, args);
586 va_end(args);
587 printk(KERN_ERR "========================================"
588 "=====================================\n");
265d47e7 589 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
590 printk(KERN_ERR "----------------------------------------"
591 "-------------------------------------\n\n");
645df230 592
373d4d09 593 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
594}
595
24922684
CL
596static void slab_fix(struct kmem_cache *s, char *fmt, ...)
597{
598 va_list args;
599 char buf[100];
600
601 va_start(args, fmt);
602 vsnprintf(buf, sizeof(buf), fmt, args);
603 va_end(args);
604 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
605}
606
607static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
608{
609 unsigned int off; /* Offset of last byte */
a973e9dd 610 u8 *addr = page_address(page);
24922684
CL
611
612 print_tracking(s, p);
613
614 print_page_info(page);
615
616 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 p, p - addr, get_freepointer(s, p));
618
619 if (p > addr + 16)
ffc79d28 620 print_section("Bytes b4 ", p - 16, 16);
81819f0f 621
3b0efdfa 622 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 623 PAGE_SIZE));
81819f0f 624 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
625 print_section("Redzone ", p + s->object_size,
626 s->inuse - s->object_size);
81819f0f 627
81819f0f
CL
628 if (s->offset)
629 off = s->offset + sizeof(void *);
630 else
631 off = s->inuse;
632
24922684 633 if (s->flags & SLAB_STORE_USER)
81819f0f 634 off += 2 * sizeof(struct track);
81819f0f
CL
635
636 if (off != s->size)
637 /* Beginning of the filler is the free pointer */
ffc79d28 638 print_section("Padding ", p + off, s->size - off);
24922684
CL
639
640 dump_stack();
81819f0f
CL
641}
642
643static void object_err(struct kmem_cache *s, struct page *page,
644 u8 *object, char *reason)
645{
3dc50637 646 slab_bug(s, "%s", reason);
24922684 647 print_trailer(s, page, object);
81819f0f
CL
648}
649
d0e0ac97
CG
650static void slab_err(struct kmem_cache *s, struct page *page,
651 const char *fmt, ...)
81819f0f
CL
652{
653 va_list args;
654 char buf[100];
655
24922684
CL
656 va_start(args, fmt);
657 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 658 va_end(args);
3dc50637 659 slab_bug(s, "%s", buf);
24922684 660 print_page_info(page);
81819f0f
CL
661 dump_stack();
662}
663
f7cb1933 664static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
665{
666 u8 *p = object;
667
668 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
669 memset(p, POISON_FREE, s->object_size - 1);
670 p[s->object_size - 1] = POISON_END;
81819f0f
CL
671 }
672
673 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 674 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
675}
676
24922684
CL
677static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 void *from, void *to)
679{
680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 memset(from, data, to - from);
682}
683
684static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 u8 *object, char *what,
06428780 686 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
687{
688 u8 *fault;
689 u8 *end;
690
79824820 691 fault = memchr_inv(start, value, bytes);
24922684
CL
692 if (!fault)
693 return 1;
694
695 end = start + bytes;
696 while (end > fault && end[-1] == value)
697 end--;
698
699 slab_bug(s, "%s overwritten", what);
700 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 fault, end - 1, fault[0], value);
702 print_trailer(s, page, object);
703
704 restore_bytes(s, what, value, fault, end);
705 return 0;
81819f0f
CL
706}
707
81819f0f
CL
708/*
709 * Object layout:
710 *
711 * object address
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
672bba3a 715 *
81819f0f
CL
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
717 * 0xa5 (POISON_END)
718 *
3b0efdfa 719 * object + s->object_size
81819f0f 720 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 721 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 722 * object_size == inuse.
672bba3a 723 *
81819f0f
CL
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
726 *
727 * object + s->inuse
672bba3a
CL
728 * Meta data starts here.
729 *
81819f0f
CL
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
672bba3a 732 * C. Padding to reach required alignment boundary or at mininum
6446faa2 733 * one word if debugging is on to be able to detect writes
672bba3a
CL
734 * before the word boundary.
735 *
736 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
737 *
738 * object + s->size
672bba3a 739 * Nothing is used beyond s->size.
81819f0f 740 *
3b0efdfa 741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 742 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
743 * may be used with merged slabcaches.
744 */
745
81819f0f
CL
746static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747{
748 unsigned long off = s->inuse; /* The end of info */
749
750 if (s->offset)
751 /* Freepointer is placed after the object. */
752 off += sizeof(void *);
753
754 if (s->flags & SLAB_STORE_USER)
755 /* We also have user information there */
756 off += 2 * sizeof(struct track);
757
758 if (s->size == off)
759 return 1;
760
24922684
CL
761 return check_bytes_and_report(s, page, p, "Object padding",
762 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
763}
764
39b26464 765/* Check the pad bytes at the end of a slab page */
81819f0f
CL
766static int slab_pad_check(struct kmem_cache *s, struct page *page)
767{
24922684
CL
768 u8 *start;
769 u8 *fault;
770 u8 *end;
771 int length;
772 int remainder;
81819f0f
CL
773
774 if (!(s->flags & SLAB_POISON))
775 return 1;
776
a973e9dd 777 start = page_address(page);
ab9a0f19 778 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
779 end = start + length;
780 remainder = length % s->size;
81819f0f
CL
781 if (!remainder)
782 return 1;
783
79824820 784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
785 if (!fault)
786 return 1;
787 while (end > fault && end[-1] == POISON_INUSE)
788 end--;
789
790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 791 print_section("Padding ", end - remainder, remainder);
24922684 792
8a3d271d 793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 794 return 0;
81819f0f
CL
795}
796
797static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 798 void *object, u8 val)
81819f0f
CL
799{
800 u8 *p = object;
3b0efdfa 801 u8 *endobject = object + s->object_size;
81819f0f
CL
802
803 if (s->flags & SLAB_RED_ZONE) {
24922684 804 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 805 endobject, val, s->inuse - s->object_size))
81819f0f 806 return 0;
81819f0f 807 } else {
3b0efdfa 808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 809 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
810 endobject, POISON_INUSE,
811 s->inuse - s->object_size);
3adbefee 812 }
81819f0f
CL
813 }
814
815 if (s->flags & SLAB_POISON) {
f7cb1933 816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 817 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 818 POISON_FREE, s->object_size - 1) ||
24922684 819 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 820 p + s->object_size - 1, POISON_END, 1)))
81819f0f 821 return 0;
81819f0f
CL
822 /*
823 * check_pad_bytes cleans up on its own.
824 */
825 check_pad_bytes(s, page, p);
826 }
827
f7cb1933 828 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
829 /*
830 * Object and freepointer overlap. Cannot check
831 * freepointer while object is allocated.
832 */
833 return 1;
834
835 /* Check free pointer validity */
836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 object_err(s, page, p, "Freepointer corrupt");
838 /*
9f6c708e 839 * No choice but to zap it and thus lose the remainder
81819f0f 840 * of the free objects in this slab. May cause
672bba3a 841 * another error because the object count is now wrong.
81819f0f 842 */
a973e9dd 843 set_freepointer(s, p, NULL);
81819f0f
CL
844 return 0;
845 }
846 return 1;
847}
848
849static int check_slab(struct kmem_cache *s, struct page *page)
850{
39b26464
CL
851 int maxobj;
852
81819f0f
CL
853 VM_BUG_ON(!irqs_disabled());
854
855 if (!PageSlab(page)) {
24922684 856 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
857 return 0;
858 }
39b26464 859
ab9a0f19 860 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
861 if (page->objects > maxobj) {
862 slab_err(s, page, "objects %u > max %u",
863 s->name, page->objects, maxobj);
864 return 0;
865 }
866 if (page->inuse > page->objects) {
24922684 867 slab_err(s, page, "inuse %u > max %u",
39b26464 868 s->name, page->inuse, page->objects);
81819f0f
CL
869 return 0;
870 }
871 /* Slab_pad_check fixes things up after itself */
872 slab_pad_check(s, page);
873 return 1;
874}
875
876/*
672bba3a
CL
877 * Determine if a certain object on a page is on the freelist. Must hold the
878 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
879 */
880static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881{
882 int nr = 0;
881db7fb 883 void *fp;
81819f0f 884 void *object = NULL;
224a88be 885 unsigned long max_objects;
81819f0f 886
881db7fb 887 fp = page->freelist;
39b26464 888 while (fp && nr <= page->objects) {
81819f0f
CL
889 if (fp == search)
890 return 1;
891 if (!check_valid_pointer(s, page, fp)) {
892 if (object) {
893 object_err(s, page, object,
894 "Freechain corrupt");
a973e9dd 895 set_freepointer(s, object, NULL);
81819f0f 896 } else {
24922684 897 slab_err(s, page, "Freepointer corrupt");
a973e9dd 898 page->freelist = NULL;
39b26464 899 page->inuse = page->objects;
24922684 900 slab_fix(s, "Freelist cleared");
81819f0f
CL
901 return 0;
902 }
903 break;
904 }
905 object = fp;
906 fp = get_freepointer(s, object);
907 nr++;
908 }
909
ab9a0f19 910 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
911 if (max_objects > MAX_OBJS_PER_PAGE)
912 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
913
914 if (page->objects != max_objects) {
915 slab_err(s, page, "Wrong number of objects. Found %d but "
916 "should be %d", page->objects, max_objects);
917 page->objects = max_objects;
918 slab_fix(s, "Number of objects adjusted.");
919 }
39b26464 920 if (page->inuse != page->objects - nr) {
70d71228 921 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
922 "counted were %d", page->inuse, page->objects - nr);
923 page->inuse = page->objects - nr;
24922684 924 slab_fix(s, "Object count adjusted.");
81819f0f
CL
925 }
926 return search == NULL;
927}
928
0121c619
CL
929static void trace(struct kmem_cache *s, struct page *page, void *object,
930 int alloc)
3ec09742
CL
931{
932 if (s->flags & SLAB_TRACE) {
933 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
934 s->name,
935 alloc ? "alloc" : "free",
936 object, page->inuse,
937 page->freelist);
938
939 if (!alloc)
d0e0ac97
CG
940 print_section("Object ", (void *)object,
941 s->object_size);
3ec09742
CL
942
943 dump_stack();
944 }
945}
946
c016b0bd
CL
947/*
948 * Hooks for other subsystems that check memory allocations. In a typical
949 * production configuration these hooks all should produce no code at all.
950 */
d56791b3
RB
951static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952{
953 kmemleak_alloc(ptr, size, 1, flags);
954}
955
956static inline void kfree_hook(const void *x)
957{
958 kmemleak_free(x);
959}
960
c016b0bd
CL
961static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962{
c1d50836 963 flags &= gfp_allowed_mask;
c016b0bd
CL
964 lockdep_trace_alloc(flags);
965 might_sleep_if(flags & __GFP_WAIT);
966
3b0efdfa 967 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
968}
969
d0e0ac97
CG
970static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 gfp_t flags, void *object)
c016b0bd 972{
c1d50836 973 flags &= gfp_allowed_mask;
b3d41885 974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
976}
977
978static inline void slab_free_hook(struct kmem_cache *s, void *x)
979{
980 kmemleak_free_recursive(x, s->flags);
c016b0bd 981
d3f661d6 982 /*
d1756174 983 * Trouble is that we may no longer disable interrupts in the fast path
d3f661d6
CL
984 * So in order to make the debug calls that expect irqs to be
985 * disabled we need to disable interrupts temporarily.
986 */
987#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 {
989 unsigned long flags;
990
991 local_irq_save(flags);
3b0efdfa
CL
992 kmemcheck_slab_free(s, x, s->object_size);
993 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
994 local_irq_restore(flags);
995 }
996#endif
f9b615de 997 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 998 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
999}
1000
643b1138 1001/*
672bba3a 1002 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1003 */
5cc6eee8
CL
1004static void add_full(struct kmem_cache *s,
1005 struct kmem_cache_node *n, struct page *page)
643b1138 1006{
5cc6eee8
CL
1007 if (!(s->flags & SLAB_STORE_USER))
1008 return;
1009
255d0884 1010 lockdep_assert_held(&n->list_lock);
643b1138 1011 list_add(&page->lru, &n->full);
643b1138
CL
1012}
1013
c65c1877 1014static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1015{
643b1138
CL
1016 if (!(s->flags & SLAB_STORE_USER))
1017 return;
1018
255d0884 1019 lockdep_assert_held(&n->list_lock);
643b1138 1020 list_del(&page->lru);
643b1138
CL
1021}
1022
0f389ec6
CL
1023/* Tracking of the number of slabs for debugging purposes */
1024static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1025{
1026 struct kmem_cache_node *n = get_node(s, node);
1027
1028 return atomic_long_read(&n->nr_slabs);
1029}
1030
26c02cf0
AB
1031static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1032{
1033 return atomic_long_read(&n->nr_slabs);
1034}
1035
205ab99d 1036static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1037{
1038 struct kmem_cache_node *n = get_node(s, node);
1039
1040 /*
1041 * May be called early in order to allocate a slab for the
1042 * kmem_cache_node structure. Solve the chicken-egg
1043 * dilemma by deferring the increment of the count during
1044 * bootstrap (see early_kmem_cache_node_alloc).
1045 */
338b2642 1046 if (likely(n)) {
0f389ec6 1047 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1048 atomic_long_add(objects, &n->total_objects);
1049 }
0f389ec6 1050}
205ab99d 1051static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1052{
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 atomic_long_dec(&n->nr_slabs);
205ab99d 1056 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1057}
1058
1059/* Object debug checks for alloc/free paths */
3ec09742
CL
1060static void setup_object_debug(struct kmem_cache *s, struct page *page,
1061 void *object)
1062{
1063 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1064 return;
1065
f7cb1933 1066 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1067 init_tracking(s, object);
1068}
1069
d0e0ac97
CG
1070static noinline int alloc_debug_processing(struct kmem_cache *s,
1071 struct page *page,
ce71e27c 1072 void *object, unsigned long addr)
81819f0f
CL
1073{
1074 if (!check_slab(s, page))
1075 goto bad;
1076
81819f0f
CL
1077 if (!check_valid_pointer(s, page, object)) {
1078 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1079 goto bad;
81819f0f
CL
1080 }
1081
f7cb1933 1082 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1083 goto bad;
81819f0f 1084
3ec09742
CL
1085 /* Success perform special debug activities for allocs */
1086 if (s->flags & SLAB_STORE_USER)
1087 set_track(s, object, TRACK_ALLOC, addr);
1088 trace(s, page, object, 1);
f7cb1933 1089 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1090 return 1;
3ec09742 1091
81819f0f
CL
1092bad:
1093 if (PageSlab(page)) {
1094 /*
1095 * If this is a slab page then lets do the best we can
1096 * to avoid issues in the future. Marking all objects
672bba3a 1097 * as used avoids touching the remaining objects.
81819f0f 1098 */
24922684 1099 slab_fix(s, "Marking all objects used");
39b26464 1100 page->inuse = page->objects;
a973e9dd 1101 page->freelist = NULL;
81819f0f
CL
1102 }
1103 return 0;
1104}
1105
19c7ff9e
CL
1106static noinline struct kmem_cache_node *free_debug_processing(
1107 struct kmem_cache *s, struct page *page, void *object,
1108 unsigned long addr, unsigned long *flags)
81819f0f 1109{
19c7ff9e 1110 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1111
19c7ff9e 1112 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1113 slab_lock(page);
1114
81819f0f
CL
1115 if (!check_slab(s, page))
1116 goto fail;
1117
1118 if (!check_valid_pointer(s, page, object)) {
70d71228 1119 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1120 goto fail;
1121 }
1122
1123 if (on_freelist(s, page, object)) {
24922684 1124 object_err(s, page, object, "Object already free");
81819f0f
CL
1125 goto fail;
1126 }
1127
f7cb1933 1128 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1129 goto out;
81819f0f 1130
1b4f59e3 1131 if (unlikely(s != page->slab_cache)) {
3adbefee 1132 if (!PageSlab(page)) {
70d71228
CL
1133 slab_err(s, page, "Attempt to free object(0x%p) "
1134 "outside of slab", object);
1b4f59e3 1135 } else if (!page->slab_cache) {
81819f0f 1136 printk(KERN_ERR
70d71228 1137 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1138 object);
70d71228 1139 dump_stack();
06428780 1140 } else
24922684
CL
1141 object_err(s, page, object,
1142 "page slab pointer corrupt.");
81819f0f
CL
1143 goto fail;
1144 }
3ec09742 1145
3ec09742
CL
1146 if (s->flags & SLAB_STORE_USER)
1147 set_track(s, object, TRACK_FREE, addr);
1148 trace(s, page, object, 0);
f7cb1933 1149 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1150out:
881db7fb 1151 slab_unlock(page);
19c7ff9e
CL
1152 /*
1153 * Keep node_lock to preserve integrity
1154 * until the object is actually freed
1155 */
1156 return n;
3ec09742 1157
81819f0f 1158fail:
19c7ff9e
CL
1159 slab_unlock(page);
1160 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1161 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1162 return NULL;
81819f0f
CL
1163}
1164
41ecc55b
CL
1165static int __init setup_slub_debug(char *str)
1166{
f0630fff
CL
1167 slub_debug = DEBUG_DEFAULT_FLAGS;
1168 if (*str++ != '=' || !*str)
1169 /*
1170 * No options specified. Switch on full debugging.
1171 */
1172 goto out;
1173
1174 if (*str == ',')
1175 /*
1176 * No options but restriction on slabs. This means full
1177 * debugging for slabs matching a pattern.
1178 */
1179 goto check_slabs;
1180
fa5ec8a1
DR
1181 if (tolower(*str) == 'o') {
1182 /*
1183 * Avoid enabling debugging on caches if its minimum order
1184 * would increase as a result.
1185 */
1186 disable_higher_order_debug = 1;
1187 goto out;
1188 }
1189
f0630fff
CL
1190 slub_debug = 0;
1191 if (*str == '-')
1192 /*
1193 * Switch off all debugging measures.
1194 */
1195 goto out;
1196
1197 /*
1198 * Determine which debug features should be switched on
1199 */
06428780 1200 for (; *str && *str != ','; str++) {
f0630fff
CL
1201 switch (tolower(*str)) {
1202 case 'f':
1203 slub_debug |= SLAB_DEBUG_FREE;
1204 break;
1205 case 'z':
1206 slub_debug |= SLAB_RED_ZONE;
1207 break;
1208 case 'p':
1209 slub_debug |= SLAB_POISON;
1210 break;
1211 case 'u':
1212 slub_debug |= SLAB_STORE_USER;
1213 break;
1214 case 't':
1215 slub_debug |= SLAB_TRACE;
1216 break;
4c13dd3b
DM
1217 case 'a':
1218 slub_debug |= SLAB_FAILSLAB;
1219 break;
f0630fff
CL
1220 default:
1221 printk(KERN_ERR "slub_debug option '%c' "
06428780 1222 "unknown. skipped\n", *str);
f0630fff 1223 }
41ecc55b
CL
1224 }
1225
f0630fff 1226check_slabs:
41ecc55b
CL
1227 if (*str == ',')
1228 slub_debug_slabs = str + 1;
f0630fff 1229out:
41ecc55b
CL
1230 return 1;
1231}
1232
1233__setup("slub_debug", setup_slub_debug);
1234
3b0efdfa 1235static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1236 unsigned long flags, const char *name,
51cc5068 1237 void (*ctor)(void *))
41ecc55b
CL
1238{
1239 /*
e153362a 1240 * Enable debugging if selected on the kernel commandline.
41ecc55b 1241 */
c6f58d9b
CL
1242 if (slub_debug && (!slub_debug_slabs || (name &&
1243 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1244 flags |= slub_debug;
ba0268a8
CL
1245
1246 return flags;
41ecc55b
CL
1247}
1248#else
3ec09742
CL
1249static inline void setup_object_debug(struct kmem_cache *s,
1250 struct page *page, void *object) {}
41ecc55b 1251
3ec09742 1252static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1253 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1254
19c7ff9e
CL
1255static inline struct kmem_cache_node *free_debug_processing(
1256 struct kmem_cache *s, struct page *page, void *object,
1257 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1258
41ecc55b
CL
1259static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1260 { return 1; }
1261static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1262 void *object, u8 val) { return 1; }
5cc6eee8
CL
1263static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1264 struct page *page) {}
c65c1877
PZ
1265static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1266 struct page *page) {}
3b0efdfa 1267static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1268 unsigned long flags, const char *name,
51cc5068 1269 void (*ctor)(void *))
ba0268a8
CL
1270{
1271 return flags;
1272}
41ecc55b 1273#define slub_debug 0
0f389ec6 1274
fdaa45e9
IM
1275#define disable_higher_order_debug 0
1276
0f389ec6
CL
1277static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1278 { return 0; }
26c02cf0
AB
1279static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1280 { return 0; }
205ab99d
CL
1281static inline void inc_slabs_node(struct kmem_cache *s, int node,
1282 int objects) {}
1283static inline void dec_slabs_node(struct kmem_cache *s, int node,
1284 int objects) {}
7d550c56 1285
d56791b3
RB
1286static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1287{
1288 kmemleak_alloc(ptr, size, 1, flags);
1289}
1290
1291static inline void kfree_hook(const void *x)
1292{
1293 kmemleak_free(x);
1294}
1295
7d550c56
CL
1296static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1297 { return 0; }
1298
1299static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
d56791b3
RB
1300 void *object)
1301{
1302 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1303 flags & gfp_allowed_mask);
1304}
7d550c56 1305
d56791b3
RB
1306static inline void slab_free_hook(struct kmem_cache *s, void *x)
1307{
1308 kmemleak_free_recursive(x, s->flags);
1309}
7d550c56 1310
ab4d5ed5 1311#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1312
81819f0f
CL
1313/*
1314 * Slab allocation and freeing
1315 */
65c3376a
CL
1316static inline struct page *alloc_slab_page(gfp_t flags, int node,
1317 struct kmem_cache_order_objects oo)
1318{
1319 int order = oo_order(oo);
1320
b1eeab67
VN
1321 flags |= __GFP_NOTRACK;
1322
2154a336 1323 if (node == NUMA_NO_NODE)
65c3376a
CL
1324 return alloc_pages(flags, order);
1325 else
6b65aaf3 1326 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1327}
1328
81819f0f
CL
1329static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1330{
06428780 1331 struct page *page;
834f3d11 1332 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1333 gfp_t alloc_gfp;
81819f0f 1334
7e0528da
CL
1335 flags &= gfp_allowed_mask;
1336
1337 if (flags & __GFP_WAIT)
1338 local_irq_enable();
1339
b7a49f0d 1340 flags |= s->allocflags;
e12ba74d 1341
ba52270d
PE
1342 /*
1343 * Let the initial higher-order allocation fail under memory pressure
1344 * so we fall-back to the minimum order allocation.
1345 */
1346 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1347
1348 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1349 if (unlikely(!page)) {
1350 oo = s->min;
1351 /*
1352 * Allocation may have failed due to fragmentation.
1353 * Try a lower order alloc if possible
1354 */
1355 page = alloc_slab_page(flags, node, oo);
81819f0f 1356
7e0528da
CL
1357 if (page)
1358 stat(s, ORDER_FALLBACK);
65c3376a 1359 }
5a896d9e 1360
737b719e 1361 if (kmemcheck_enabled && page
5086c389 1362 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1363 int pages = 1 << oo_order(oo);
1364
1365 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1366
1367 /*
1368 * Objects from caches that have a constructor don't get
1369 * cleared when they're allocated, so we need to do it here.
1370 */
1371 if (s->ctor)
1372 kmemcheck_mark_uninitialized_pages(page, pages);
1373 else
1374 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1375 }
1376
737b719e
DR
1377 if (flags & __GFP_WAIT)
1378 local_irq_disable();
1379 if (!page)
1380 return NULL;
1381
834f3d11 1382 page->objects = oo_objects(oo);
81819f0f
CL
1383 mod_zone_page_state(page_zone(page),
1384 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1385 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1386 1 << oo_order(oo));
81819f0f
CL
1387
1388 return page;
1389}
1390
1391static void setup_object(struct kmem_cache *s, struct page *page,
1392 void *object)
1393{
3ec09742 1394 setup_object_debug(s, page, object);
4f104934 1395 if (unlikely(s->ctor))
51cc5068 1396 s->ctor(object);
81819f0f
CL
1397}
1398
1399static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1400{
1401 struct page *page;
81819f0f 1402 void *start;
81819f0f
CL
1403 void *last;
1404 void *p;
1f458cbf 1405 int order;
81819f0f 1406
6cb06229 1407 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1408
6cb06229
CL
1409 page = allocate_slab(s,
1410 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1411 if (!page)
1412 goto out;
1413
1f458cbf 1414 order = compound_order(page);
205ab99d 1415 inc_slabs_node(s, page_to_nid(page), page->objects);
1f458cbf 1416 memcg_bind_pages(s, order);
1b4f59e3 1417 page->slab_cache = s;
c03f94cc 1418 __SetPageSlab(page);
072bb0aa
MG
1419 if (page->pfmemalloc)
1420 SetPageSlabPfmemalloc(page);
81819f0f
CL
1421
1422 start = page_address(page);
81819f0f
CL
1423
1424 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1425 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f
CL
1426
1427 last = start;
224a88be 1428 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1429 setup_object(s, page, last);
1430 set_freepointer(s, last, p);
1431 last = p;
1432 }
1433 setup_object(s, page, last);
a973e9dd 1434 set_freepointer(s, last, NULL);
81819f0f
CL
1435
1436 page->freelist = start;
e6e82ea1 1437 page->inuse = page->objects;
8cb0a506 1438 page->frozen = 1;
81819f0f 1439out:
81819f0f
CL
1440 return page;
1441}
1442
1443static void __free_slab(struct kmem_cache *s, struct page *page)
1444{
834f3d11
CL
1445 int order = compound_order(page);
1446 int pages = 1 << order;
81819f0f 1447
af537b0a 1448 if (kmem_cache_debug(s)) {
81819f0f
CL
1449 void *p;
1450
1451 slab_pad_check(s, page);
224a88be
CL
1452 for_each_object(p, s, page_address(page),
1453 page->objects)
f7cb1933 1454 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1455 }
1456
b1eeab67 1457 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1458
81819f0f
CL
1459 mod_zone_page_state(page_zone(page),
1460 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1461 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1462 -pages);
81819f0f 1463
072bb0aa 1464 __ClearPageSlabPfmemalloc(page);
49bd5221 1465 __ClearPageSlab(page);
1f458cbf
GC
1466
1467 memcg_release_pages(s, order);
22b751c3 1468 page_mapcount_reset(page);
1eb5ac64
NP
1469 if (current->reclaim_state)
1470 current->reclaim_state->reclaimed_slab += pages;
d79923fa 1471 __free_memcg_kmem_pages(page, order);
81819f0f
CL
1472}
1473
da9a638c
LJ
1474#define need_reserve_slab_rcu \
1475 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1476
81819f0f
CL
1477static void rcu_free_slab(struct rcu_head *h)
1478{
1479 struct page *page;
1480
da9a638c
LJ
1481 if (need_reserve_slab_rcu)
1482 page = virt_to_head_page(h);
1483 else
1484 page = container_of((struct list_head *)h, struct page, lru);
1485
1b4f59e3 1486 __free_slab(page->slab_cache, page);
81819f0f
CL
1487}
1488
1489static void free_slab(struct kmem_cache *s, struct page *page)
1490{
1491 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1492 struct rcu_head *head;
1493
1494 if (need_reserve_slab_rcu) {
1495 int order = compound_order(page);
1496 int offset = (PAGE_SIZE << order) - s->reserved;
1497
1498 VM_BUG_ON(s->reserved != sizeof(*head));
1499 head = page_address(page) + offset;
1500 } else {
1501 /*
1502 * RCU free overloads the RCU head over the LRU
1503 */
1504 head = (void *)&page->lru;
1505 }
81819f0f
CL
1506
1507 call_rcu(head, rcu_free_slab);
1508 } else
1509 __free_slab(s, page);
1510}
1511
1512static void discard_slab(struct kmem_cache *s, struct page *page)
1513{
205ab99d 1514 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1515 free_slab(s, page);
1516}
1517
1518/*
5cc6eee8 1519 * Management of partially allocated slabs.
81819f0f 1520 */
1e4dd946
SR
1521static inline void
1522__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1523{
e95eed57 1524 n->nr_partial++;
136333d1 1525 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1526 list_add_tail(&page->lru, &n->partial);
1527 else
1528 list_add(&page->lru, &n->partial);
81819f0f
CL
1529}
1530
1e4dd946
SR
1531static inline void add_partial(struct kmem_cache_node *n,
1532 struct page *page, int tail)
62e346a8 1533{
c65c1877 1534 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1535 __add_partial(n, page, tail);
1536}
c65c1877 1537
1e4dd946
SR
1538static inline void
1539__remove_partial(struct kmem_cache_node *n, struct page *page)
1540{
62e346a8
CL
1541 list_del(&page->lru);
1542 n->nr_partial--;
1543}
1544
1e4dd946
SR
1545static inline void remove_partial(struct kmem_cache_node *n,
1546 struct page *page)
1547{
1548 lockdep_assert_held(&n->list_lock);
1549 __remove_partial(n, page);
1550}
1551
81819f0f 1552/*
7ced3719
CL
1553 * Remove slab from the partial list, freeze it and
1554 * return the pointer to the freelist.
81819f0f 1555 *
497b66f2 1556 * Returns a list of objects or NULL if it fails.
81819f0f 1557 */
497b66f2 1558static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1559 struct kmem_cache_node *n, struct page *page,
633b0764 1560 int mode, int *objects)
81819f0f 1561{
2cfb7455
CL
1562 void *freelist;
1563 unsigned long counters;
1564 struct page new;
1565
c65c1877
PZ
1566 lockdep_assert_held(&n->list_lock);
1567
2cfb7455
CL
1568 /*
1569 * Zap the freelist and set the frozen bit.
1570 * The old freelist is the list of objects for the
1571 * per cpu allocation list.
1572 */
7ced3719
CL
1573 freelist = page->freelist;
1574 counters = page->counters;
1575 new.counters = counters;
633b0764 1576 *objects = new.objects - new.inuse;
23910c50 1577 if (mode) {
7ced3719 1578 new.inuse = page->objects;
23910c50
PE
1579 new.freelist = NULL;
1580 } else {
1581 new.freelist = freelist;
1582 }
2cfb7455 1583
a0132ac0 1584 VM_BUG_ON(new.frozen);
7ced3719 1585 new.frozen = 1;
2cfb7455 1586
7ced3719 1587 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1588 freelist, counters,
02d7633f 1589 new.freelist, new.counters,
7ced3719 1590 "acquire_slab"))
7ced3719 1591 return NULL;
2cfb7455
CL
1592
1593 remove_partial(n, page);
7ced3719 1594 WARN_ON(!freelist);
49e22585 1595 return freelist;
81819f0f
CL
1596}
1597
633b0764 1598static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1599static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1600
81819f0f 1601/*
672bba3a 1602 * Try to allocate a partial slab from a specific node.
81819f0f 1603 */
8ba00bb6
JK
1604static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1605 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1606{
49e22585
CL
1607 struct page *page, *page2;
1608 void *object = NULL;
633b0764
JK
1609 int available = 0;
1610 int objects;
81819f0f
CL
1611
1612 /*
1613 * Racy check. If we mistakenly see no partial slabs then we
1614 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1615 * partial slab and there is none available then get_partials()
1616 * will return NULL.
81819f0f
CL
1617 */
1618 if (!n || !n->nr_partial)
1619 return NULL;
1620
1621 spin_lock(&n->list_lock);
49e22585 1622 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1623 void *t;
49e22585 1624
8ba00bb6
JK
1625 if (!pfmemalloc_match(page, flags))
1626 continue;
1627
633b0764 1628 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1629 if (!t)
1630 break;
1631
633b0764 1632 available += objects;
12d79634 1633 if (!object) {
49e22585 1634 c->page = page;
49e22585 1635 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1636 object = t;
49e22585 1637 } else {
633b0764 1638 put_cpu_partial(s, page, 0);
8028dcea 1639 stat(s, CPU_PARTIAL_NODE);
49e22585 1640 }
345c905d
JK
1641 if (!kmem_cache_has_cpu_partial(s)
1642 || available > s->cpu_partial / 2)
49e22585
CL
1643 break;
1644
497b66f2 1645 }
81819f0f 1646 spin_unlock(&n->list_lock);
497b66f2 1647 return object;
81819f0f
CL
1648}
1649
1650/*
672bba3a 1651 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1652 */
de3ec035 1653static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1654 struct kmem_cache_cpu *c)
81819f0f
CL
1655{
1656#ifdef CONFIG_NUMA
1657 struct zonelist *zonelist;
dd1a239f 1658 struct zoneref *z;
54a6eb5c
MG
1659 struct zone *zone;
1660 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1661 void *object;
cc9a6c87 1662 unsigned int cpuset_mems_cookie;
81819f0f
CL
1663
1664 /*
672bba3a
CL
1665 * The defrag ratio allows a configuration of the tradeoffs between
1666 * inter node defragmentation and node local allocations. A lower
1667 * defrag_ratio increases the tendency to do local allocations
1668 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1669 *
672bba3a
CL
1670 * If the defrag_ratio is set to 0 then kmalloc() always
1671 * returns node local objects. If the ratio is higher then kmalloc()
1672 * may return off node objects because partial slabs are obtained
1673 * from other nodes and filled up.
81819f0f 1674 *
6446faa2 1675 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1676 * defrag_ratio = 1000) then every (well almost) allocation will
1677 * first attempt to defrag slab caches on other nodes. This means
1678 * scanning over all nodes to look for partial slabs which may be
1679 * expensive if we do it every time we are trying to find a slab
1680 * with available objects.
81819f0f 1681 */
9824601e
CL
1682 if (!s->remote_node_defrag_ratio ||
1683 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1684 return NULL;
1685
cc9a6c87
MG
1686 do {
1687 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1688 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1689 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1690 struct kmem_cache_node *n;
1691
1692 n = get_node(s, zone_to_nid(zone));
1693
1694 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1695 n->nr_partial > s->min_partial) {
8ba00bb6 1696 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1697 if (object) {
1698 /*
1699 * Return the object even if
1700 * put_mems_allowed indicated that
1701 * the cpuset mems_allowed was
1702 * updated in parallel. It's a
1703 * harmless race between the alloc
1704 * and the cpuset update.
1705 */
1706 put_mems_allowed(cpuset_mems_cookie);
1707 return object;
1708 }
c0ff7453 1709 }
81819f0f 1710 }
cc9a6c87 1711 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1712#endif
1713 return NULL;
1714}
1715
1716/*
1717 * Get a partial page, lock it and return it.
1718 */
497b66f2 1719static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1720 struct kmem_cache_cpu *c)
81819f0f 1721{
497b66f2 1722 void *object;
2154a336 1723 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1724
8ba00bb6 1725 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1726 if (object || node != NUMA_NO_NODE)
1727 return object;
81819f0f 1728
acd19fd1 1729 return get_any_partial(s, flags, c);
81819f0f
CL
1730}
1731
8a5ec0ba
CL
1732#ifdef CONFIG_PREEMPT
1733/*
1734 * Calculate the next globally unique transaction for disambiguiation
1735 * during cmpxchg. The transactions start with the cpu number and are then
1736 * incremented by CONFIG_NR_CPUS.
1737 */
1738#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1739#else
1740/*
1741 * No preemption supported therefore also no need to check for
1742 * different cpus.
1743 */
1744#define TID_STEP 1
1745#endif
1746
1747static inline unsigned long next_tid(unsigned long tid)
1748{
1749 return tid + TID_STEP;
1750}
1751
1752static inline unsigned int tid_to_cpu(unsigned long tid)
1753{
1754 return tid % TID_STEP;
1755}
1756
1757static inline unsigned long tid_to_event(unsigned long tid)
1758{
1759 return tid / TID_STEP;
1760}
1761
1762static inline unsigned int init_tid(int cpu)
1763{
1764 return cpu;
1765}
1766
1767static inline void note_cmpxchg_failure(const char *n,
1768 const struct kmem_cache *s, unsigned long tid)
1769{
1770#ifdef SLUB_DEBUG_CMPXCHG
1771 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1772
1773 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1774
1775#ifdef CONFIG_PREEMPT
1776 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1777 printk("due to cpu change %d -> %d\n",
1778 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1779 else
1780#endif
1781 if (tid_to_event(tid) != tid_to_event(actual_tid))
1782 printk("due to cpu running other code. Event %ld->%ld\n",
1783 tid_to_event(tid), tid_to_event(actual_tid));
1784 else
1785 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1786 actual_tid, tid, next_tid(tid));
1787#endif
4fdccdfb 1788 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1789}
1790
788e1aad 1791static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1792{
8a5ec0ba
CL
1793 int cpu;
1794
1795 for_each_possible_cpu(cpu)
1796 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1797}
2cfb7455 1798
81819f0f
CL
1799/*
1800 * Remove the cpu slab
1801 */
d0e0ac97
CG
1802static void deactivate_slab(struct kmem_cache *s, struct page *page,
1803 void *freelist)
81819f0f 1804{
2cfb7455 1805 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1806 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1807 int lock = 0;
1808 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1809 void *nextfree;
136333d1 1810 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1811 struct page new;
1812 struct page old;
1813
1814 if (page->freelist) {
84e554e6 1815 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1816 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1817 }
1818
894b8788 1819 /*
2cfb7455
CL
1820 * Stage one: Free all available per cpu objects back
1821 * to the page freelist while it is still frozen. Leave the
1822 * last one.
1823 *
1824 * There is no need to take the list->lock because the page
1825 * is still frozen.
1826 */
1827 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1828 void *prior;
1829 unsigned long counters;
1830
1831 do {
1832 prior = page->freelist;
1833 counters = page->counters;
1834 set_freepointer(s, freelist, prior);
1835 new.counters = counters;
1836 new.inuse--;
a0132ac0 1837 VM_BUG_ON(!new.frozen);
2cfb7455 1838
1d07171c 1839 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1840 prior, counters,
1841 freelist, new.counters,
1842 "drain percpu freelist"));
1843
1844 freelist = nextfree;
1845 }
1846
894b8788 1847 /*
2cfb7455
CL
1848 * Stage two: Ensure that the page is unfrozen while the
1849 * list presence reflects the actual number of objects
1850 * during unfreeze.
1851 *
1852 * We setup the list membership and then perform a cmpxchg
1853 * with the count. If there is a mismatch then the page
1854 * is not unfrozen but the page is on the wrong list.
1855 *
1856 * Then we restart the process which may have to remove
1857 * the page from the list that we just put it on again
1858 * because the number of objects in the slab may have
1859 * changed.
894b8788 1860 */
2cfb7455 1861redo:
894b8788 1862
2cfb7455
CL
1863 old.freelist = page->freelist;
1864 old.counters = page->counters;
a0132ac0 1865 VM_BUG_ON(!old.frozen);
7c2e132c 1866
2cfb7455
CL
1867 /* Determine target state of the slab */
1868 new.counters = old.counters;
1869 if (freelist) {
1870 new.inuse--;
1871 set_freepointer(s, freelist, old.freelist);
1872 new.freelist = freelist;
1873 } else
1874 new.freelist = old.freelist;
1875
1876 new.frozen = 0;
1877
81107188 1878 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1879 m = M_FREE;
1880 else if (new.freelist) {
1881 m = M_PARTIAL;
1882 if (!lock) {
1883 lock = 1;
1884 /*
1885 * Taking the spinlock removes the possiblity
1886 * that acquire_slab() will see a slab page that
1887 * is frozen
1888 */
1889 spin_lock(&n->list_lock);
1890 }
1891 } else {
1892 m = M_FULL;
1893 if (kmem_cache_debug(s) && !lock) {
1894 lock = 1;
1895 /*
1896 * This also ensures that the scanning of full
1897 * slabs from diagnostic functions will not see
1898 * any frozen slabs.
1899 */
1900 spin_lock(&n->list_lock);
1901 }
1902 }
1903
1904 if (l != m) {
1905
1906 if (l == M_PARTIAL)
1907
1908 remove_partial(n, page);
1909
1910 else if (l == M_FULL)
894b8788 1911
c65c1877 1912 remove_full(s, n, page);
2cfb7455
CL
1913
1914 if (m == M_PARTIAL) {
1915
1916 add_partial(n, page, tail);
136333d1 1917 stat(s, tail);
2cfb7455
CL
1918
1919 } else if (m == M_FULL) {
894b8788 1920
2cfb7455
CL
1921 stat(s, DEACTIVATE_FULL);
1922 add_full(s, n, page);
1923
1924 }
1925 }
1926
1927 l = m;
1d07171c 1928 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1929 old.freelist, old.counters,
1930 new.freelist, new.counters,
1931 "unfreezing slab"))
1932 goto redo;
1933
2cfb7455
CL
1934 if (lock)
1935 spin_unlock(&n->list_lock);
1936
1937 if (m == M_FREE) {
1938 stat(s, DEACTIVATE_EMPTY);
1939 discard_slab(s, page);
1940 stat(s, FREE_SLAB);
894b8788 1941 }
81819f0f
CL
1942}
1943
d24ac77f
JK
1944/*
1945 * Unfreeze all the cpu partial slabs.
1946 *
59a09917
CL
1947 * This function must be called with interrupts disabled
1948 * for the cpu using c (or some other guarantee must be there
1949 * to guarantee no concurrent accesses).
d24ac77f 1950 */
59a09917
CL
1951static void unfreeze_partials(struct kmem_cache *s,
1952 struct kmem_cache_cpu *c)
49e22585 1953{
345c905d 1954#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1955 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1956 struct page *page, *discard_page = NULL;
49e22585
CL
1957
1958 while ((page = c->partial)) {
49e22585
CL
1959 struct page new;
1960 struct page old;
1961
1962 c->partial = page->next;
43d77867
JK
1963
1964 n2 = get_node(s, page_to_nid(page));
1965 if (n != n2) {
1966 if (n)
1967 spin_unlock(&n->list_lock);
1968
1969 n = n2;
1970 spin_lock(&n->list_lock);
1971 }
49e22585
CL
1972
1973 do {
1974
1975 old.freelist = page->freelist;
1976 old.counters = page->counters;
a0132ac0 1977 VM_BUG_ON(!old.frozen);
49e22585
CL
1978
1979 new.counters = old.counters;
1980 new.freelist = old.freelist;
1981
1982 new.frozen = 0;
1983
d24ac77f 1984 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1985 old.freelist, old.counters,
1986 new.freelist, new.counters,
1987 "unfreezing slab"));
1988
43d77867 1989 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1990 page->next = discard_page;
1991 discard_page = page;
43d77867
JK
1992 } else {
1993 add_partial(n, page, DEACTIVATE_TO_TAIL);
1994 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1995 }
1996 }
1997
1998 if (n)
1999 spin_unlock(&n->list_lock);
9ada1934
SL
2000
2001 while (discard_page) {
2002 page = discard_page;
2003 discard_page = discard_page->next;
2004
2005 stat(s, DEACTIVATE_EMPTY);
2006 discard_slab(s, page);
2007 stat(s, FREE_SLAB);
2008 }
345c905d 2009#endif
49e22585
CL
2010}
2011
2012/*
2013 * Put a page that was just frozen (in __slab_free) into a partial page
2014 * slot if available. This is done without interrupts disabled and without
2015 * preemption disabled. The cmpxchg is racy and may put the partial page
2016 * onto a random cpus partial slot.
2017 *
2018 * If we did not find a slot then simply move all the partials to the
2019 * per node partial list.
2020 */
633b0764 2021static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2022{
345c905d 2023#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2024 struct page *oldpage;
2025 int pages;
2026 int pobjects;
2027
2028 do {
2029 pages = 0;
2030 pobjects = 0;
2031 oldpage = this_cpu_read(s->cpu_slab->partial);
2032
2033 if (oldpage) {
2034 pobjects = oldpage->pobjects;
2035 pages = oldpage->pages;
2036 if (drain && pobjects > s->cpu_partial) {
2037 unsigned long flags;
2038 /*
2039 * partial array is full. Move the existing
2040 * set to the per node partial list.
2041 */
2042 local_irq_save(flags);
59a09917 2043 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2044 local_irq_restore(flags);
e24fc410 2045 oldpage = NULL;
49e22585
CL
2046 pobjects = 0;
2047 pages = 0;
8028dcea 2048 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2049 }
2050 }
2051
2052 pages++;
2053 pobjects += page->objects - page->inuse;
2054
2055 page->pages = pages;
2056 page->pobjects = pobjects;
2057 page->next = oldpage;
2058
d0e0ac97
CG
2059 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2060 != oldpage);
345c905d 2061#endif
49e22585
CL
2062}
2063
dfb4f096 2064static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2065{
84e554e6 2066 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2067 deactivate_slab(s, c->page, c->freelist);
2068
2069 c->tid = next_tid(c->tid);
2070 c->page = NULL;
2071 c->freelist = NULL;
81819f0f
CL
2072}
2073
2074/*
2075 * Flush cpu slab.
6446faa2 2076 *
81819f0f
CL
2077 * Called from IPI handler with interrupts disabled.
2078 */
0c710013 2079static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2080{
9dfc6e68 2081 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2082
49e22585
CL
2083 if (likely(c)) {
2084 if (c->page)
2085 flush_slab(s, c);
2086
59a09917 2087 unfreeze_partials(s, c);
49e22585 2088 }
81819f0f
CL
2089}
2090
2091static void flush_cpu_slab(void *d)
2092{
2093 struct kmem_cache *s = d;
81819f0f 2094
dfb4f096 2095 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2096}
2097
a8364d55
GBY
2098static bool has_cpu_slab(int cpu, void *info)
2099{
2100 struct kmem_cache *s = info;
2101 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2102
02e1a9cd 2103 return c->page || c->partial;
a8364d55
GBY
2104}
2105
81819f0f
CL
2106static void flush_all(struct kmem_cache *s)
2107{
a8364d55 2108 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2109}
2110
dfb4f096
CL
2111/*
2112 * Check if the objects in a per cpu structure fit numa
2113 * locality expectations.
2114 */
57d437d2 2115static inline int node_match(struct page *page, int node)
dfb4f096
CL
2116{
2117#ifdef CONFIG_NUMA
4d7868e6 2118 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2119 return 0;
2120#endif
2121 return 1;
2122}
2123
781b2ba6
PE
2124static int count_free(struct page *page)
2125{
2126 return page->objects - page->inuse;
2127}
2128
2129static unsigned long count_partial(struct kmem_cache_node *n,
2130 int (*get_count)(struct page *))
2131{
2132 unsigned long flags;
2133 unsigned long x = 0;
2134 struct page *page;
2135
2136 spin_lock_irqsave(&n->list_lock, flags);
2137 list_for_each_entry(page, &n->partial, lru)
2138 x += get_count(page);
2139 spin_unlock_irqrestore(&n->list_lock, flags);
2140 return x;
2141}
2142
26c02cf0
AB
2143static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2144{
2145#ifdef CONFIG_SLUB_DEBUG
2146 return atomic_long_read(&n->total_objects);
2147#else
2148 return 0;
2149#endif
2150}
2151
781b2ba6
PE
2152static noinline void
2153slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2154{
2155 int node;
2156
2157 printk(KERN_WARNING
2158 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2159 nid, gfpflags);
2160 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2161 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2162 s->size, oo_order(s->oo), oo_order(s->min));
2163
3b0efdfa 2164 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2165 printk(KERN_WARNING " %s debugging increased min order, use "
2166 "slub_debug=O to disable.\n", s->name);
2167
781b2ba6
PE
2168 for_each_online_node(node) {
2169 struct kmem_cache_node *n = get_node(s, node);
2170 unsigned long nr_slabs;
2171 unsigned long nr_objs;
2172 unsigned long nr_free;
2173
2174 if (!n)
2175 continue;
2176
26c02cf0
AB
2177 nr_free = count_partial(n, count_free);
2178 nr_slabs = node_nr_slabs(n);
2179 nr_objs = node_nr_objs(n);
781b2ba6
PE
2180
2181 printk(KERN_WARNING
2182 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2183 node, nr_slabs, nr_objs, nr_free);
2184 }
2185}
2186
497b66f2
CL
2187static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2188 int node, struct kmem_cache_cpu **pc)
2189{
6faa6833 2190 void *freelist;
188fd063
CL
2191 struct kmem_cache_cpu *c = *pc;
2192 struct page *page;
497b66f2 2193
188fd063 2194 freelist = get_partial(s, flags, node, c);
497b66f2 2195
188fd063
CL
2196 if (freelist)
2197 return freelist;
2198
2199 page = new_slab(s, flags, node);
497b66f2
CL
2200 if (page) {
2201 c = __this_cpu_ptr(s->cpu_slab);
2202 if (c->page)
2203 flush_slab(s, c);
2204
2205 /*
2206 * No other reference to the page yet so we can
2207 * muck around with it freely without cmpxchg
2208 */
6faa6833 2209 freelist = page->freelist;
497b66f2
CL
2210 page->freelist = NULL;
2211
2212 stat(s, ALLOC_SLAB);
497b66f2
CL
2213 c->page = page;
2214 *pc = c;
2215 } else
6faa6833 2216 freelist = NULL;
497b66f2 2217
6faa6833 2218 return freelist;
497b66f2
CL
2219}
2220
072bb0aa
MG
2221static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2222{
2223 if (unlikely(PageSlabPfmemalloc(page)))
2224 return gfp_pfmemalloc_allowed(gfpflags);
2225
2226 return true;
2227}
2228
213eeb9f 2229/*
d0e0ac97
CG
2230 * Check the page->freelist of a page and either transfer the freelist to the
2231 * per cpu freelist or deactivate the page.
213eeb9f
CL
2232 *
2233 * The page is still frozen if the return value is not NULL.
2234 *
2235 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2236 *
2237 * This function must be called with interrupt disabled.
213eeb9f
CL
2238 */
2239static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2240{
2241 struct page new;
2242 unsigned long counters;
2243 void *freelist;
2244
2245 do {
2246 freelist = page->freelist;
2247 counters = page->counters;
6faa6833 2248
213eeb9f 2249 new.counters = counters;
a0132ac0 2250 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2251
2252 new.inuse = page->objects;
2253 new.frozen = freelist != NULL;
2254
d24ac77f 2255 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2256 freelist, counters,
2257 NULL, new.counters,
2258 "get_freelist"));
2259
2260 return freelist;
2261}
2262
81819f0f 2263/*
894b8788
CL
2264 * Slow path. The lockless freelist is empty or we need to perform
2265 * debugging duties.
2266 *
894b8788
CL
2267 * Processing is still very fast if new objects have been freed to the
2268 * regular freelist. In that case we simply take over the regular freelist
2269 * as the lockless freelist and zap the regular freelist.
81819f0f 2270 *
894b8788
CL
2271 * If that is not working then we fall back to the partial lists. We take the
2272 * first element of the freelist as the object to allocate now and move the
2273 * rest of the freelist to the lockless freelist.
81819f0f 2274 *
894b8788 2275 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2276 * we need to allocate a new slab. This is the slowest path since it involves
2277 * a call to the page allocator and the setup of a new slab.
81819f0f 2278 */
ce71e27c
EGM
2279static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2280 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2281{
6faa6833 2282 void *freelist;
f6e7def7 2283 struct page *page;
8a5ec0ba
CL
2284 unsigned long flags;
2285
2286 local_irq_save(flags);
2287#ifdef CONFIG_PREEMPT
2288 /*
2289 * We may have been preempted and rescheduled on a different
2290 * cpu before disabling interrupts. Need to reload cpu area
2291 * pointer.
2292 */
2293 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2294#endif
81819f0f 2295
f6e7def7
CL
2296 page = c->page;
2297 if (!page)
81819f0f 2298 goto new_slab;
49e22585 2299redo:
6faa6833 2300
57d437d2 2301 if (unlikely(!node_match(page, node))) {
e36a2652 2302 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2303 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2304 c->page = NULL;
2305 c->freelist = NULL;
fc59c053
CL
2306 goto new_slab;
2307 }
6446faa2 2308
072bb0aa
MG
2309 /*
2310 * By rights, we should be searching for a slab page that was
2311 * PFMEMALLOC but right now, we are losing the pfmemalloc
2312 * information when the page leaves the per-cpu allocator
2313 */
2314 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2315 deactivate_slab(s, page, c->freelist);
2316 c->page = NULL;
2317 c->freelist = NULL;
2318 goto new_slab;
2319 }
2320
73736e03 2321 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2322 freelist = c->freelist;
2323 if (freelist)
73736e03 2324 goto load_freelist;
03e404af 2325
2cfb7455 2326 stat(s, ALLOC_SLOWPATH);
03e404af 2327
f6e7def7 2328 freelist = get_freelist(s, page);
6446faa2 2329
6faa6833 2330 if (!freelist) {
03e404af
CL
2331 c->page = NULL;
2332 stat(s, DEACTIVATE_BYPASS);
fc59c053 2333 goto new_slab;
03e404af 2334 }
6446faa2 2335
84e554e6 2336 stat(s, ALLOC_REFILL);
6446faa2 2337
894b8788 2338load_freelist:
507effea
CL
2339 /*
2340 * freelist is pointing to the list of objects to be used.
2341 * page is pointing to the page from which the objects are obtained.
2342 * That page must be frozen for per cpu allocations to work.
2343 */
a0132ac0 2344 VM_BUG_ON(!c->page->frozen);
6faa6833 2345 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2346 c->tid = next_tid(c->tid);
2347 local_irq_restore(flags);
6faa6833 2348 return freelist;
81819f0f 2349
81819f0f 2350new_slab:
2cfb7455 2351
49e22585 2352 if (c->partial) {
f6e7def7
CL
2353 page = c->page = c->partial;
2354 c->partial = page->next;
49e22585
CL
2355 stat(s, CPU_PARTIAL_ALLOC);
2356 c->freelist = NULL;
2357 goto redo;
81819f0f
CL
2358 }
2359
188fd063 2360 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2361
f4697436
CL
2362 if (unlikely(!freelist)) {
2363 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2364 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2365
f4697436
CL
2366 local_irq_restore(flags);
2367 return NULL;
81819f0f 2368 }
2cfb7455 2369
f6e7def7 2370 page = c->page;
5091b74a 2371 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2372 goto load_freelist;
2cfb7455 2373
497b66f2 2374 /* Only entered in the debug case */
d0e0ac97
CG
2375 if (kmem_cache_debug(s) &&
2376 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2377 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2378
f6e7def7 2379 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2380 c->page = NULL;
2381 c->freelist = NULL;
a71ae47a 2382 local_irq_restore(flags);
6faa6833 2383 return freelist;
894b8788
CL
2384}
2385
2386/*
2387 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2388 * have the fastpath folded into their functions. So no function call
2389 * overhead for requests that can be satisfied on the fastpath.
2390 *
2391 * The fastpath works by first checking if the lockless freelist can be used.
2392 * If not then __slab_alloc is called for slow processing.
2393 *
2394 * Otherwise we can simply pick the next object from the lockless free list.
2395 */
2b847c3c 2396static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2397 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2398{
894b8788 2399 void **object;
dfb4f096 2400 struct kmem_cache_cpu *c;
57d437d2 2401 struct page *page;
8a5ec0ba 2402 unsigned long tid;
1f84260c 2403
c016b0bd 2404 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2405 return NULL;
1f84260c 2406
d79923fa 2407 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2408redo:
8a5ec0ba
CL
2409 /*
2410 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2411 * enabled. We may switch back and forth between cpus while
2412 * reading from one cpu area. That does not matter as long
2413 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2414 *
2415 * Preemption is disabled for the retrieval of the tid because that
2416 * must occur from the current processor. We cannot allow rescheduling
2417 * on a different processor between the determination of the pointer
2418 * and the retrieval of the tid.
8a5ec0ba 2419 */
7cccd80b 2420 preempt_disable();
9dfc6e68 2421 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2422
8a5ec0ba
CL
2423 /*
2424 * The transaction ids are globally unique per cpu and per operation on
2425 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2426 * occurs on the right processor and that there was no operation on the
2427 * linked list in between.
2428 */
2429 tid = c->tid;
7cccd80b 2430 preempt_enable();
8a5ec0ba 2431
9dfc6e68 2432 object = c->freelist;
57d437d2 2433 page = c->page;
ac6434e6 2434 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2435 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2436
2437 else {
0ad9500e
ED
2438 void *next_object = get_freepointer_safe(s, object);
2439
8a5ec0ba 2440 /*
25985edc 2441 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2442 * operation and if we are on the right processor.
2443 *
d0e0ac97
CG
2444 * The cmpxchg does the following atomically (without lock
2445 * semantics!)
8a5ec0ba
CL
2446 * 1. Relocate first pointer to the current per cpu area.
2447 * 2. Verify that tid and freelist have not been changed
2448 * 3. If they were not changed replace tid and freelist
2449 *
d0e0ac97
CG
2450 * Since this is without lock semantics the protection is only
2451 * against code executing on this cpu *not* from access by
2452 * other cpus.
8a5ec0ba 2453 */
933393f5 2454 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2455 s->cpu_slab->freelist, s->cpu_slab->tid,
2456 object, tid,
0ad9500e 2457 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2458
2459 note_cmpxchg_failure("slab_alloc", s, tid);
2460 goto redo;
2461 }
0ad9500e 2462 prefetch_freepointer(s, next_object);
84e554e6 2463 stat(s, ALLOC_FASTPATH);
894b8788 2464 }
8a5ec0ba 2465
74e2134f 2466 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2467 memset(object, 0, s->object_size);
d07dbea4 2468
c016b0bd 2469 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2470
894b8788 2471 return object;
81819f0f
CL
2472}
2473
2b847c3c
EG
2474static __always_inline void *slab_alloc(struct kmem_cache *s,
2475 gfp_t gfpflags, unsigned long addr)
2476{
2477 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2478}
2479
81819f0f
CL
2480void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2481{
2b847c3c 2482 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2483
d0e0ac97
CG
2484 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2485 s->size, gfpflags);
5b882be4
EGM
2486
2487 return ret;
81819f0f
CL
2488}
2489EXPORT_SYMBOL(kmem_cache_alloc);
2490
0f24f128 2491#ifdef CONFIG_TRACING
4a92379b
RK
2492void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2493{
2b847c3c 2494 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2495 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2496 return ret;
2497}
2498EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2499#endif
2500
81819f0f
CL
2501#ifdef CONFIG_NUMA
2502void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2503{
2b847c3c 2504 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2505
ca2b84cb 2506 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2507 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2508
2509 return ret;
81819f0f
CL
2510}
2511EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2512
0f24f128 2513#ifdef CONFIG_TRACING
4a92379b 2514void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2515 gfp_t gfpflags,
4a92379b 2516 int node, size_t size)
5b882be4 2517{
2b847c3c 2518 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2519
2520 trace_kmalloc_node(_RET_IP_, ret,
2521 size, s->size, gfpflags, node);
2522 return ret;
5b882be4 2523}
4a92379b 2524EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2525#endif
5d1f57e4 2526#endif
5b882be4 2527
81819f0f 2528/*
894b8788
CL
2529 * Slow patch handling. This may still be called frequently since objects
2530 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2531 *
894b8788
CL
2532 * So we still attempt to reduce cache line usage. Just take the slab
2533 * lock and free the item. If there is no additional partial page
2534 * handling required then we can return immediately.
81819f0f 2535 */
894b8788 2536static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2537 void *x, unsigned long addr)
81819f0f
CL
2538{
2539 void *prior;
2540 void **object = (void *)x;
2cfb7455 2541 int was_frozen;
2cfb7455
CL
2542 struct page new;
2543 unsigned long counters;
2544 struct kmem_cache_node *n = NULL;
61728d1e 2545 unsigned long uninitialized_var(flags);
81819f0f 2546
8a5ec0ba 2547 stat(s, FREE_SLOWPATH);
81819f0f 2548
19c7ff9e
CL
2549 if (kmem_cache_debug(s) &&
2550 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2551 return;
6446faa2 2552
2cfb7455 2553 do {
837d678d
JK
2554 if (unlikely(n)) {
2555 spin_unlock_irqrestore(&n->list_lock, flags);
2556 n = NULL;
2557 }
2cfb7455
CL
2558 prior = page->freelist;
2559 counters = page->counters;
2560 set_freepointer(s, object, prior);
2561 new.counters = counters;
2562 was_frozen = new.frozen;
2563 new.inuse--;
837d678d 2564 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2565
c65c1877 2566 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2567
2568 /*
d0e0ac97
CG
2569 * Slab was on no list before and will be
2570 * partially empty
2571 * We can defer the list move and instead
2572 * freeze it.
49e22585
CL
2573 */
2574 new.frozen = 1;
2575
c65c1877 2576 } else { /* Needs to be taken off a list */
49e22585
CL
2577
2578 n = get_node(s, page_to_nid(page));
2579 /*
2580 * Speculatively acquire the list_lock.
2581 * If the cmpxchg does not succeed then we may
2582 * drop the list_lock without any processing.
2583 *
2584 * Otherwise the list_lock will synchronize with
2585 * other processors updating the list of slabs.
2586 */
2587 spin_lock_irqsave(&n->list_lock, flags);
2588
2589 }
2cfb7455 2590 }
81819f0f 2591
2cfb7455
CL
2592 } while (!cmpxchg_double_slab(s, page,
2593 prior, counters,
2594 object, new.counters,
2595 "__slab_free"));
81819f0f 2596
2cfb7455 2597 if (likely(!n)) {
49e22585
CL
2598
2599 /*
2600 * If we just froze the page then put it onto the
2601 * per cpu partial list.
2602 */
8028dcea 2603 if (new.frozen && !was_frozen) {
49e22585 2604 put_cpu_partial(s, page, 1);
8028dcea
AS
2605 stat(s, CPU_PARTIAL_FREE);
2606 }
49e22585 2607 /*
2cfb7455
CL
2608 * The list lock was not taken therefore no list
2609 * activity can be necessary.
2610 */
2611 if (was_frozen)
2612 stat(s, FREE_FROZEN);
80f08c19 2613 return;
2cfb7455 2614 }
81819f0f 2615
837d678d
JK
2616 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2617 goto slab_empty;
2618
81819f0f 2619 /*
837d678d
JK
2620 * Objects left in the slab. If it was not on the partial list before
2621 * then add it.
81819f0f 2622 */
345c905d
JK
2623 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2624 if (kmem_cache_debug(s))
c65c1877 2625 remove_full(s, n, page);
837d678d
JK
2626 add_partial(n, page, DEACTIVATE_TO_TAIL);
2627 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2628 }
80f08c19 2629 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2630 return;
2631
2632slab_empty:
a973e9dd 2633 if (prior) {
81819f0f 2634 /*
6fbabb20 2635 * Slab on the partial list.
81819f0f 2636 */
5cc6eee8 2637 remove_partial(n, page);
84e554e6 2638 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2639 } else {
6fbabb20 2640 /* Slab must be on the full list */
c65c1877
PZ
2641 remove_full(s, n, page);
2642 }
2cfb7455 2643
80f08c19 2644 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2645 stat(s, FREE_SLAB);
81819f0f 2646 discard_slab(s, page);
81819f0f
CL
2647}
2648
894b8788
CL
2649/*
2650 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2651 * can perform fastpath freeing without additional function calls.
2652 *
2653 * The fastpath is only possible if we are freeing to the current cpu slab
2654 * of this processor. This typically the case if we have just allocated
2655 * the item before.
2656 *
2657 * If fastpath is not possible then fall back to __slab_free where we deal
2658 * with all sorts of special processing.
2659 */
06428780 2660static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2661 struct page *page, void *x, unsigned long addr)
894b8788
CL
2662{
2663 void **object = (void *)x;
dfb4f096 2664 struct kmem_cache_cpu *c;
8a5ec0ba 2665 unsigned long tid;
1f84260c 2666
c016b0bd
CL
2667 slab_free_hook(s, x);
2668
8a5ec0ba
CL
2669redo:
2670 /*
2671 * Determine the currently cpus per cpu slab.
2672 * The cpu may change afterward. However that does not matter since
2673 * data is retrieved via this pointer. If we are on the same cpu
2674 * during the cmpxchg then the free will succedd.
2675 */
7cccd80b 2676 preempt_disable();
9dfc6e68 2677 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2678
8a5ec0ba 2679 tid = c->tid;
7cccd80b 2680 preempt_enable();
c016b0bd 2681
442b06bc 2682 if (likely(page == c->page)) {
ff12059e 2683 set_freepointer(s, object, c->freelist);
8a5ec0ba 2684
933393f5 2685 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2686 s->cpu_slab->freelist, s->cpu_slab->tid,
2687 c->freelist, tid,
2688 object, next_tid(tid)))) {
2689
2690 note_cmpxchg_failure("slab_free", s, tid);
2691 goto redo;
2692 }
84e554e6 2693 stat(s, FREE_FASTPATH);
894b8788 2694 } else
ff12059e 2695 __slab_free(s, page, x, addr);
894b8788 2696
894b8788
CL
2697}
2698
81819f0f
CL
2699void kmem_cache_free(struct kmem_cache *s, void *x)
2700{
b9ce5ef4
GC
2701 s = cache_from_obj(s, x);
2702 if (!s)
79576102 2703 return;
b9ce5ef4 2704 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2705 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2706}
2707EXPORT_SYMBOL(kmem_cache_free);
2708
81819f0f 2709/*
672bba3a
CL
2710 * Object placement in a slab is made very easy because we always start at
2711 * offset 0. If we tune the size of the object to the alignment then we can
2712 * get the required alignment by putting one properly sized object after
2713 * another.
81819f0f
CL
2714 *
2715 * Notice that the allocation order determines the sizes of the per cpu
2716 * caches. Each processor has always one slab available for allocations.
2717 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2718 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2719 * locking overhead.
81819f0f
CL
2720 */
2721
2722/*
2723 * Mininum / Maximum order of slab pages. This influences locking overhead
2724 * and slab fragmentation. A higher order reduces the number of partial slabs
2725 * and increases the number of allocations possible without having to
2726 * take the list_lock.
2727 */
2728static int slub_min_order;
114e9e89 2729static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2730static int slub_min_objects;
81819f0f
CL
2731
2732/*
2733 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2734 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2735 */
2736static int slub_nomerge;
2737
81819f0f
CL
2738/*
2739 * Calculate the order of allocation given an slab object size.
2740 *
672bba3a
CL
2741 * The order of allocation has significant impact on performance and other
2742 * system components. Generally order 0 allocations should be preferred since
2743 * order 0 does not cause fragmentation in the page allocator. Larger objects
2744 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2745 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2746 * would be wasted.
2747 *
2748 * In order to reach satisfactory performance we must ensure that a minimum
2749 * number of objects is in one slab. Otherwise we may generate too much
2750 * activity on the partial lists which requires taking the list_lock. This is
2751 * less a concern for large slabs though which are rarely used.
81819f0f 2752 *
672bba3a
CL
2753 * slub_max_order specifies the order where we begin to stop considering the
2754 * number of objects in a slab as critical. If we reach slub_max_order then
2755 * we try to keep the page order as low as possible. So we accept more waste
2756 * of space in favor of a small page order.
81819f0f 2757 *
672bba3a
CL
2758 * Higher order allocations also allow the placement of more objects in a
2759 * slab and thereby reduce object handling overhead. If the user has
2760 * requested a higher mininum order then we start with that one instead of
2761 * the smallest order which will fit the object.
81819f0f 2762 */
5e6d444e 2763static inline int slab_order(int size, int min_objects,
ab9a0f19 2764 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2765{
2766 int order;
2767 int rem;
6300ea75 2768 int min_order = slub_min_order;
81819f0f 2769
ab9a0f19 2770 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2771 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2772
6300ea75 2773 for (order = max(min_order,
5e6d444e
CL
2774 fls(min_objects * size - 1) - PAGE_SHIFT);
2775 order <= max_order; order++) {
81819f0f 2776
5e6d444e 2777 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2778
ab9a0f19 2779 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2780 continue;
2781
ab9a0f19 2782 rem = (slab_size - reserved) % size;
81819f0f 2783
5e6d444e 2784 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2785 break;
2786
2787 }
672bba3a 2788
81819f0f
CL
2789 return order;
2790}
2791
ab9a0f19 2792static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2793{
2794 int order;
2795 int min_objects;
2796 int fraction;
e8120ff1 2797 int max_objects;
5e6d444e
CL
2798
2799 /*
2800 * Attempt to find best configuration for a slab. This
2801 * works by first attempting to generate a layout with
2802 * the best configuration and backing off gradually.
2803 *
2804 * First we reduce the acceptable waste in a slab. Then
2805 * we reduce the minimum objects required in a slab.
2806 */
2807 min_objects = slub_min_objects;
9b2cd506
CL
2808 if (!min_objects)
2809 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2810 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2811 min_objects = min(min_objects, max_objects);
2812
5e6d444e 2813 while (min_objects > 1) {
c124f5b5 2814 fraction = 16;
5e6d444e
CL
2815 while (fraction >= 4) {
2816 order = slab_order(size, min_objects,
ab9a0f19 2817 slub_max_order, fraction, reserved);
5e6d444e
CL
2818 if (order <= slub_max_order)
2819 return order;
2820 fraction /= 2;
2821 }
5086c389 2822 min_objects--;
5e6d444e
CL
2823 }
2824
2825 /*
2826 * We were unable to place multiple objects in a slab. Now
2827 * lets see if we can place a single object there.
2828 */
ab9a0f19 2829 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2830 if (order <= slub_max_order)
2831 return order;
2832
2833 /*
2834 * Doh this slab cannot be placed using slub_max_order.
2835 */
ab9a0f19 2836 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2837 if (order < MAX_ORDER)
5e6d444e
CL
2838 return order;
2839 return -ENOSYS;
2840}
2841
5595cffc 2842static void
4053497d 2843init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2844{
2845 n->nr_partial = 0;
81819f0f
CL
2846 spin_lock_init(&n->list_lock);
2847 INIT_LIST_HEAD(&n->partial);
8ab1372f 2848#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2849 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2850 atomic_long_set(&n->total_objects, 0);
643b1138 2851 INIT_LIST_HEAD(&n->full);
8ab1372f 2852#endif
81819f0f
CL
2853}
2854
55136592 2855static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2856{
6c182dc0 2857 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2858 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2859
8a5ec0ba 2860 /*
d4d84fef
CM
2861 * Must align to double word boundary for the double cmpxchg
2862 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2863 */
d4d84fef
CM
2864 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2865 2 * sizeof(void *));
8a5ec0ba
CL
2866
2867 if (!s->cpu_slab)
2868 return 0;
2869
2870 init_kmem_cache_cpus(s);
4c93c355 2871
8a5ec0ba 2872 return 1;
4c93c355 2873}
4c93c355 2874
51df1142
CL
2875static struct kmem_cache *kmem_cache_node;
2876
81819f0f
CL
2877/*
2878 * No kmalloc_node yet so do it by hand. We know that this is the first
2879 * slab on the node for this slabcache. There are no concurrent accesses
2880 * possible.
2881 *
721ae22a
ZYW
2882 * Note that this function only works on the kmem_cache_node
2883 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2884 * memory on a fresh node that has no slab structures yet.
81819f0f 2885 */
55136592 2886static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2887{
2888 struct page *page;
2889 struct kmem_cache_node *n;
2890
51df1142 2891 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2892
51df1142 2893 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2894
2895 BUG_ON(!page);
a2f92ee7
CL
2896 if (page_to_nid(page) != node) {
2897 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2898 "node %d\n", node);
2899 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2900 "in order to be able to continue\n");
2901 }
2902
81819f0f
CL
2903 n = page->freelist;
2904 BUG_ON(!n);
51df1142 2905 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2906 page->inuse = 1;
8cb0a506 2907 page->frozen = 0;
51df1142 2908 kmem_cache_node->node[node] = n;
8ab1372f 2909#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2910 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2911 init_tracking(kmem_cache_node, n);
8ab1372f 2912#endif
4053497d 2913 init_kmem_cache_node(n);
51df1142 2914 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2915
67b6c900 2916 /*
1e4dd946
SR
2917 * No locks need to be taken here as it has just been
2918 * initialized and there is no concurrent access.
67b6c900 2919 */
1e4dd946 2920 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2921}
2922
2923static void free_kmem_cache_nodes(struct kmem_cache *s)
2924{
2925 int node;
2926
f64dc58c 2927 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2928 struct kmem_cache_node *n = s->node[node];
51df1142 2929
73367bd8 2930 if (n)
51df1142
CL
2931 kmem_cache_free(kmem_cache_node, n);
2932
81819f0f
CL
2933 s->node[node] = NULL;
2934 }
2935}
2936
55136592 2937static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2938{
2939 int node;
81819f0f 2940
f64dc58c 2941 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2942 struct kmem_cache_node *n;
2943
73367bd8 2944 if (slab_state == DOWN) {
55136592 2945 early_kmem_cache_node_alloc(node);
73367bd8
AD
2946 continue;
2947 }
51df1142 2948 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2949 GFP_KERNEL, node);
81819f0f 2950
73367bd8
AD
2951 if (!n) {
2952 free_kmem_cache_nodes(s);
2953 return 0;
81819f0f 2954 }
73367bd8 2955
81819f0f 2956 s->node[node] = n;
4053497d 2957 init_kmem_cache_node(n);
81819f0f
CL
2958 }
2959 return 1;
2960}
81819f0f 2961
c0bdb232 2962static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2963{
2964 if (min < MIN_PARTIAL)
2965 min = MIN_PARTIAL;
2966 else if (min > MAX_PARTIAL)
2967 min = MAX_PARTIAL;
2968 s->min_partial = min;
2969}
2970
81819f0f
CL
2971/*
2972 * calculate_sizes() determines the order and the distribution of data within
2973 * a slab object.
2974 */
06b285dc 2975static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2976{
2977 unsigned long flags = s->flags;
3b0efdfa 2978 unsigned long size = s->object_size;
834f3d11 2979 int order;
81819f0f 2980
d8b42bf5
CL
2981 /*
2982 * Round up object size to the next word boundary. We can only
2983 * place the free pointer at word boundaries and this determines
2984 * the possible location of the free pointer.
2985 */
2986 size = ALIGN(size, sizeof(void *));
2987
2988#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2989 /*
2990 * Determine if we can poison the object itself. If the user of
2991 * the slab may touch the object after free or before allocation
2992 * then we should never poison the object itself.
2993 */
2994 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2995 !s->ctor)
81819f0f
CL
2996 s->flags |= __OBJECT_POISON;
2997 else
2998 s->flags &= ~__OBJECT_POISON;
2999
81819f0f
CL
3000
3001 /*
672bba3a 3002 * If we are Redzoning then check if there is some space between the
81819f0f 3003 * end of the object and the free pointer. If not then add an
672bba3a 3004 * additional word to have some bytes to store Redzone information.
81819f0f 3005 */
3b0efdfa 3006 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3007 size += sizeof(void *);
41ecc55b 3008#endif
81819f0f
CL
3009
3010 /*
672bba3a
CL
3011 * With that we have determined the number of bytes in actual use
3012 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3013 */
3014 s->inuse = size;
3015
3016 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3017 s->ctor)) {
81819f0f
CL
3018 /*
3019 * Relocate free pointer after the object if it is not
3020 * permitted to overwrite the first word of the object on
3021 * kmem_cache_free.
3022 *
3023 * This is the case if we do RCU, have a constructor or
3024 * destructor or are poisoning the objects.
3025 */
3026 s->offset = size;
3027 size += sizeof(void *);
3028 }
3029
c12b3c62 3030#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3031 if (flags & SLAB_STORE_USER)
3032 /*
3033 * Need to store information about allocs and frees after
3034 * the object.
3035 */
3036 size += 2 * sizeof(struct track);
3037
be7b3fbc 3038 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3039 /*
3040 * Add some empty padding so that we can catch
3041 * overwrites from earlier objects rather than let
3042 * tracking information or the free pointer be
0211a9c8 3043 * corrupted if a user writes before the start
81819f0f
CL
3044 * of the object.
3045 */
3046 size += sizeof(void *);
41ecc55b 3047#endif
672bba3a 3048
81819f0f
CL
3049 /*
3050 * SLUB stores one object immediately after another beginning from
3051 * offset 0. In order to align the objects we have to simply size
3052 * each object to conform to the alignment.
3053 */
45906855 3054 size = ALIGN(size, s->align);
81819f0f 3055 s->size = size;
06b285dc
CL
3056 if (forced_order >= 0)
3057 order = forced_order;
3058 else
ab9a0f19 3059 order = calculate_order(size, s->reserved);
81819f0f 3060
834f3d11 3061 if (order < 0)
81819f0f
CL
3062 return 0;
3063
b7a49f0d 3064 s->allocflags = 0;
834f3d11 3065 if (order)
b7a49f0d
CL
3066 s->allocflags |= __GFP_COMP;
3067
3068 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3069 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3070
3071 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3072 s->allocflags |= __GFP_RECLAIMABLE;
3073
81819f0f
CL
3074 /*
3075 * Determine the number of objects per slab
3076 */
ab9a0f19
LJ
3077 s->oo = oo_make(order, size, s->reserved);
3078 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3079 if (oo_objects(s->oo) > oo_objects(s->max))
3080 s->max = s->oo;
81819f0f 3081
834f3d11 3082 return !!oo_objects(s->oo);
81819f0f
CL
3083}
3084
8a13a4cc 3085static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3086{
8a13a4cc 3087 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3088 s->reserved = 0;
81819f0f 3089
da9a638c
LJ
3090 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3091 s->reserved = sizeof(struct rcu_head);
81819f0f 3092
06b285dc 3093 if (!calculate_sizes(s, -1))
81819f0f 3094 goto error;
3de47213
DR
3095 if (disable_higher_order_debug) {
3096 /*
3097 * Disable debugging flags that store metadata if the min slab
3098 * order increased.
3099 */
3b0efdfa 3100 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3101 s->flags &= ~DEBUG_METADATA_FLAGS;
3102 s->offset = 0;
3103 if (!calculate_sizes(s, -1))
3104 goto error;
3105 }
3106 }
81819f0f 3107
2565409f
HC
3108#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3109 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3110 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3111 /* Enable fast mode */
3112 s->flags |= __CMPXCHG_DOUBLE;
3113#endif
3114
3b89d7d8
DR
3115 /*
3116 * The larger the object size is, the more pages we want on the partial
3117 * list to avoid pounding the page allocator excessively.
3118 */
49e22585
CL
3119 set_min_partial(s, ilog2(s->size) / 2);
3120
3121 /*
3122 * cpu_partial determined the maximum number of objects kept in the
3123 * per cpu partial lists of a processor.
3124 *
3125 * Per cpu partial lists mainly contain slabs that just have one
3126 * object freed. If they are used for allocation then they can be
3127 * filled up again with minimal effort. The slab will never hit the
3128 * per node partial lists and therefore no locking will be required.
3129 *
3130 * This setting also determines
3131 *
3132 * A) The number of objects from per cpu partial slabs dumped to the
3133 * per node list when we reach the limit.
9f264904 3134 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3135 * per node list when we run out of per cpu objects. We only fetch
3136 * 50% to keep some capacity around for frees.
49e22585 3137 */
345c905d 3138 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3139 s->cpu_partial = 0;
3140 else if (s->size >= PAGE_SIZE)
49e22585
CL
3141 s->cpu_partial = 2;
3142 else if (s->size >= 1024)
3143 s->cpu_partial = 6;
3144 else if (s->size >= 256)
3145 s->cpu_partial = 13;
3146 else
3147 s->cpu_partial = 30;
3148
81819f0f 3149#ifdef CONFIG_NUMA
e2cb96b7 3150 s->remote_node_defrag_ratio = 1000;
81819f0f 3151#endif
55136592 3152 if (!init_kmem_cache_nodes(s))
dfb4f096 3153 goto error;
81819f0f 3154
55136592 3155 if (alloc_kmem_cache_cpus(s))
278b1bb1 3156 return 0;
ff12059e 3157
4c93c355 3158 free_kmem_cache_nodes(s);
81819f0f
CL
3159error:
3160 if (flags & SLAB_PANIC)
3161 panic("Cannot create slab %s size=%lu realsize=%u "
3162 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3163 s->name, (unsigned long)s->size, s->size,
3164 oo_order(s->oo), s->offset, flags);
278b1bb1 3165 return -EINVAL;
81819f0f 3166}
81819f0f 3167
33b12c38
CL
3168static void list_slab_objects(struct kmem_cache *s, struct page *page,
3169 const char *text)
3170{
3171#ifdef CONFIG_SLUB_DEBUG
3172 void *addr = page_address(page);
3173 void *p;
a5dd5c11
NK
3174 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3175 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3176 if (!map)
3177 return;
945cf2b6 3178 slab_err(s, page, text, s->name);
33b12c38 3179 slab_lock(page);
33b12c38 3180
5f80b13a 3181 get_map(s, page, map);
33b12c38
CL
3182 for_each_object(p, s, addr, page->objects) {
3183
3184 if (!test_bit(slab_index(p, s, addr), map)) {
3185 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3186 p, p - addr);
3187 print_tracking(s, p);
3188 }
3189 }
3190 slab_unlock(page);
bbd7d57b 3191 kfree(map);
33b12c38
CL
3192#endif
3193}
3194
81819f0f 3195/*
599870b1 3196 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3197 * This is called from kmem_cache_close(). We must be the last thread
3198 * using the cache and therefore we do not need to lock anymore.
81819f0f 3199 */
599870b1 3200static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3201{
81819f0f
CL
3202 struct page *page, *h;
3203
33b12c38 3204 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3205 if (!page->inuse) {
1e4dd946 3206 __remove_partial(n, page);
81819f0f 3207 discard_slab(s, page);
33b12c38
CL
3208 } else {
3209 list_slab_objects(s, page,
945cf2b6 3210 "Objects remaining in %s on kmem_cache_close()");
599870b1 3211 }
33b12c38 3212 }
81819f0f
CL
3213}
3214
3215/*
672bba3a 3216 * Release all resources used by a slab cache.
81819f0f 3217 */
0c710013 3218static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3219{
3220 int node;
3221
3222 flush_all(s);
81819f0f 3223 /* Attempt to free all objects */
f64dc58c 3224 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3225 struct kmem_cache_node *n = get_node(s, node);
3226
599870b1
CL
3227 free_partial(s, n);
3228 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3229 return 1;
3230 }
945cf2b6 3231 free_percpu(s->cpu_slab);
81819f0f
CL
3232 free_kmem_cache_nodes(s);
3233 return 0;
3234}
3235
945cf2b6 3236int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3237{
12c3667f 3238 int rc = kmem_cache_close(s);
945cf2b6 3239
5413dfba
GC
3240 if (!rc) {
3241 /*
3242 * We do the same lock strategy around sysfs_slab_add, see
3243 * __kmem_cache_create. Because this is pretty much the last
3244 * operation we do and the lock will be released shortly after
3245 * that in slab_common.c, we could just move sysfs_slab_remove
3246 * to a later point in common code. We should do that when we
3247 * have a common sysfs framework for all allocators.
3248 */
3249 mutex_unlock(&slab_mutex);
81819f0f 3250 sysfs_slab_remove(s);
5413dfba
GC
3251 mutex_lock(&slab_mutex);
3252 }
12c3667f
CL
3253
3254 return rc;
81819f0f 3255}
81819f0f
CL
3256
3257/********************************************************************
3258 * Kmalloc subsystem
3259 *******************************************************************/
3260
81819f0f
CL
3261static int __init setup_slub_min_order(char *str)
3262{
06428780 3263 get_option(&str, &slub_min_order);
81819f0f
CL
3264
3265 return 1;
3266}
3267
3268__setup("slub_min_order=", setup_slub_min_order);
3269
3270static int __init setup_slub_max_order(char *str)
3271{
06428780 3272 get_option(&str, &slub_max_order);
818cf590 3273 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3274
3275 return 1;
3276}
3277
3278__setup("slub_max_order=", setup_slub_max_order);
3279
3280static int __init setup_slub_min_objects(char *str)
3281{
06428780 3282 get_option(&str, &slub_min_objects);
81819f0f
CL
3283
3284 return 1;
3285}
3286
3287__setup("slub_min_objects=", setup_slub_min_objects);
3288
3289static int __init setup_slub_nomerge(char *str)
3290{
3291 slub_nomerge = 1;
3292 return 1;
3293}
3294
3295__setup("slub_nomerge", setup_slub_nomerge);
3296
81819f0f
CL
3297void *__kmalloc(size_t size, gfp_t flags)
3298{
aadb4bc4 3299 struct kmem_cache *s;
5b882be4 3300 void *ret;
81819f0f 3301
95a05b42 3302 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3303 return kmalloc_large(size, flags);
aadb4bc4 3304
2c59dd65 3305 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3306
3307 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3308 return s;
3309
2b847c3c 3310 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3311
ca2b84cb 3312 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3313
3314 return ret;
81819f0f
CL
3315}
3316EXPORT_SYMBOL(__kmalloc);
3317
5d1f57e4 3318#ifdef CONFIG_NUMA
f619cfe1
CL
3319static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3320{
b1eeab67 3321 struct page *page;
e4f7c0b4 3322 void *ptr = NULL;
f619cfe1 3323
d79923fa 3324 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
b1eeab67 3325 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3326 if (page)
e4f7c0b4
CM
3327 ptr = page_address(page);
3328
d56791b3 3329 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3330 return ptr;
f619cfe1
CL
3331}
3332
81819f0f
CL
3333void *__kmalloc_node(size_t size, gfp_t flags, int node)
3334{
aadb4bc4 3335 struct kmem_cache *s;
5b882be4 3336 void *ret;
81819f0f 3337
95a05b42 3338 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3339 ret = kmalloc_large_node(size, flags, node);
3340
ca2b84cb
EGM
3341 trace_kmalloc_node(_RET_IP_, ret,
3342 size, PAGE_SIZE << get_order(size),
3343 flags, node);
5b882be4
EGM
3344
3345 return ret;
3346 }
aadb4bc4 3347
2c59dd65 3348 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3349
3350 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3351 return s;
3352
2b847c3c 3353 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3354
ca2b84cb 3355 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3356
3357 return ret;
81819f0f
CL
3358}
3359EXPORT_SYMBOL(__kmalloc_node);
3360#endif
3361
3362size_t ksize(const void *object)
3363{
272c1d21 3364 struct page *page;
81819f0f 3365
ef8b4520 3366 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3367 return 0;
3368
294a80a8 3369 page = virt_to_head_page(object);
294a80a8 3370
76994412
PE
3371 if (unlikely(!PageSlab(page))) {
3372 WARN_ON(!PageCompound(page));
294a80a8 3373 return PAGE_SIZE << compound_order(page);
76994412 3374 }
81819f0f 3375
1b4f59e3 3376 return slab_ksize(page->slab_cache);
81819f0f 3377}
b1aabecd 3378EXPORT_SYMBOL(ksize);
81819f0f
CL
3379
3380void kfree(const void *x)
3381{
81819f0f 3382 struct page *page;
5bb983b0 3383 void *object = (void *)x;
81819f0f 3384
2121db74
PE
3385 trace_kfree(_RET_IP_, x);
3386
2408c550 3387 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3388 return;
3389
b49af68f 3390 page = virt_to_head_page(x);
aadb4bc4 3391 if (unlikely(!PageSlab(page))) {
0937502a 3392 BUG_ON(!PageCompound(page));
d56791b3 3393 kfree_hook(x);
d79923fa 3394 __free_memcg_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3395 return;
3396 }
1b4f59e3 3397 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3398}
3399EXPORT_SYMBOL(kfree);
3400
2086d26a 3401/*
672bba3a
CL
3402 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3403 * the remaining slabs by the number of items in use. The slabs with the
3404 * most items in use come first. New allocations will then fill those up
3405 * and thus they can be removed from the partial lists.
3406 *
3407 * The slabs with the least items are placed last. This results in them
3408 * being allocated from last increasing the chance that the last objects
3409 * are freed in them.
2086d26a
CL
3410 */
3411int kmem_cache_shrink(struct kmem_cache *s)
3412{
3413 int node;
3414 int i;
3415 struct kmem_cache_node *n;
3416 struct page *page;
3417 struct page *t;
205ab99d 3418 int objects = oo_objects(s->max);
2086d26a 3419 struct list_head *slabs_by_inuse =
834f3d11 3420 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3421 unsigned long flags;
3422
3423 if (!slabs_by_inuse)
3424 return -ENOMEM;
3425
3426 flush_all(s);
f64dc58c 3427 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3428 n = get_node(s, node);
3429
3430 if (!n->nr_partial)
3431 continue;
3432
834f3d11 3433 for (i = 0; i < objects; i++)
2086d26a
CL
3434 INIT_LIST_HEAD(slabs_by_inuse + i);
3435
3436 spin_lock_irqsave(&n->list_lock, flags);
3437
3438 /*
672bba3a 3439 * Build lists indexed by the items in use in each slab.
2086d26a 3440 *
672bba3a
CL
3441 * Note that concurrent frees may occur while we hold the
3442 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3443 */
3444 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3445 list_move(&page->lru, slabs_by_inuse + page->inuse);
3446 if (!page->inuse)
3447 n->nr_partial--;
2086d26a
CL
3448 }
3449
2086d26a 3450 /*
672bba3a
CL
3451 * Rebuild the partial list with the slabs filled up most
3452 * first and the least used slabs at the end.
2086d26a 3453 */
69cb8e6b 3454 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3455 list_splice(slabs_by_inuse + i, n->partial.prev);
3456
2086d26a 3457 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3458
3459 /* Release empty slabs */
3460 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3461 discard_slab(s, page);
2086d26a
CL
3462 }
3463
3464 kfree(slabs_by_inuse);
3465 return 0;
3466}
3467EXPORT_SYMBOL(kmem_cache_shrink);
3468
b9049e23
YG
3469static int slab_mem_going_offline_callback(void *arg)
3470{
3471 struct kmem_cache *s;
3472
18004c5d 3473 mutex_lock(&slab_mutex);
b9049e23
YG
3474 list_for_each_entry(s, &slab_caches, list)
3475 kmem_cache_shrink(s);
18004c5d 3476 mutex_unlock(&slab_mutex);
b9049e23
YG
3477
3478 return 0;
3479}
3480
3481static void slab_mem_offline_callback(void *arg)
3482{
3483 struct kmem_cache_node *n;
3484 struct kmem_cache *s;
3485 struct memory_notify *marg = arg;
3486 int offline_node;
3487
b9d5ab25 3488 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3489
3490 /*
3491 * If the node still has available memory. we need kmem_cache_node
3492 * for it yet.
3493 */
3494 if (offline_node < 0)
3495 return;
3496
18004c5d 3497 mutex_lock(&slab_mutex);
b9049e23
YG
3498 list_for_each_entry(s, &slab_caches, list) {
3499 n = get_node(s, offline_node);
3500 if (n) {
3501 /*
3502 * if n->nr_slabs > 0, slabs still exist on the node
3503 * that is going down. We were unable to free them,
c9404c9c 3504 * and offline_pages() function shouldn't call this
b9049e23
YG
3505 * callback. So, we must fail.
3506 */
0f389ec6 3507 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3508
3509 s->node[offline_node] = NULL;
8de66a0c 3510 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3511 }
3512 }
18004c5d 3513 mutex_unlock(&slab_mutex);
b9049e23
YG
3514}
3515
3516static int slab_mem_going_online_callback(void *arg)
3517{
3518 struct kmem_cache_node *n;
3519 struct kmem_cache *s;
3520 struct memory_notify *marg = arg;
b9d5ab25 3521 int nid = marg->status_change_nid_normal;
b9049e23
YG
3522 int ret = 0;
3523
3524 /*
3525 * If the node's memory is already available, then kmem_cache_node is
3526 * already created. Nothing to do.
3527 */
3528 if (nid < 0)
3529 return 0;
3530
3531 /*
0121c619 3532 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3533 * allocate a kmem_cache_node structure in order to bring the node
3534 * online.
3535 */
18004c5d 3536 mutex_lock(&slab_mutex);
b9049e23
YG
3537 list_for_each_entry(s, &slab_caches, list) {
3538 /*
3539 * XXX: kmem_cache_alloc_node will fallback to other nodes
3540 * since memory is not yet available from the node that
3541 * is brought up.
3542 */
8de66a0c 3543 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3544 if (!n) {
3545 ret = -ENOMEM;
3546 goto out;
3547 }
4053497d 3548 init_kmem_cache_node(n);
b9049e23
YG
3549 s->node[nid] = n;
3550 }
3551out:
18004c5d 3552 mutex_unlock(&slab_mutex);
b9049e23
YG
3553 return ret;
3554}
3555
3556static int slab_memory_callback(struct notifier_block *self,
3557 unsigned long action, void *arg)
3558{
3559 int ret = 0;
3560
3561 switch (action) {
3562 case MEM_GOING_ONLINE:
3563 ret = slab_mem_going_online_callback(arg);
3564 break;
3565 case MEM_GOING_OFFLINE:
3566 ret = slab_mem_going_offline_callback(arg);
3567 break;
3568 case MEM_OFFLINE:
3569 case MEM_CANCEL_ONLINE:
3570 slab_mem_offline_callback(arg);
3571 break;
3572 case MEM_ONLINE:
3573 case MEM_CANCEL_OFFLINE:
3574 break;
3575 }
dc19f9db
KH
3576 if (ret)
3577 ret = notifier_from_errno(ret);
3578 else
3579 ret = NOTIFY_OK;
b9049e23
YG
3580 return ret;
3581}
3582
3ac38faa
AM
3583static struct notifier_block slab_memory_callback_nb = {
3584 .notifier_call = slab_memory_callback,
3585 .priority = SLAB_CALLBACK_PRI,
3586};
b9049e23 3587
81819f0f
CL
3588/********************************************************************
3589 * Basic setup of slabs
3590 *******************************************************************/
3591
51df1142
CL
3592/*
3593 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3594 * the page allocator. Allocate them properly then fix up the pointers
3595 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3596 */
3597
dffb4d60 3598static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3599{
3600 int node;
dffb4d60 3601 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
51df1142 3602
dffb4d60 3603 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3604
7d557b3c
GC
3605 /*
3606 * This runs very early, and only the boot processor is supposed to be
3607 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3608 * IPIs around.
3609 */
3610 __flush_cpu_slab(s, smp_processor_id());
51df1142
CL
3611 for_each_node_state(node, N_NORMAL_MEMORY) {
3612 struct kmem_cache_node *n = get_node(s, node);
3613 struct page *p;
3614
3615 if (n) {
3616 list_for_each_entry(p, &n->partial, lru)
1b4f59e3 3617 p->slab_cache = s;
51df1142 3618
607bf324 3619#ifdef CONFIG_SLUB_DEBUG
51df1142 3620 list_for_each_entry(p, &n->full, lru)
1b4f59e3 3621 p->slab_cache = s;
51df1142
CL
3622#endif
3623 }
3624 }
dffb4d60
CL
3625 list_add(&s->list, &slab_caches);
3626 return s;
51df1142
CL
3627}
3628
81819f0f
CL
3629void __init kmem_cache_init(void)
3630{
dffb4d60
CL
3631 static __initdata struct kmem_cache boot_kmem_cache,
3632 boot_kmem_cache_node;
51df1142 3633
fc8d8620
SG
3634 if (debug_guardpage_minorder())
3635 slub_max_order = 0;
3636
dffb4d60
CL
3637 kmem_cache_node = &boot_kmem_cache_node;
3638 kmem_cache = &boot_kmem_cache;
51df1142 3639
dffb4d60
CL
3640 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3641 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3642
3ac38faa 3643 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3644
3645 /* Able to allocate the per node structures */
3646 slab_state = PARTIAL;
3647
dffb4d60
CL
3648 create_boot_cache(kmem_cache, "kmem_cache",
3649 offsetof(struct kmem_cache, node) +
3650 nr_node_ids * sizeof(struct kmem_cache_node *),
3651 SLAB_HWCACHE_ALIGN);
8a13a4cc 3652
dffb4d60 3653 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3654
51df1142
CL
3655 /*
3656 * Allocate kmem_cache_node properly from the kmem_cache slab.
3657 * kmem_cache_node is separately allocated so no need to
3658 * update any list pointers.
3659 */
dffb4d60 3660 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3661
3662 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3663 create_kmalloc_caches(0);
81819f0f
CL
3664
3665#ifdef CONFIG_SMP
3666 register_cpu_notifier(&slab_notifier);
9dfc6e68 3667#endif
81819f0f 3668
3adbefee 3669 printk(KERN_INFO
f97d5f63 3670 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0 3671 " CPUs=%d, Nodes=%d\n",
f97d5f63 3672 cache_line_size(),
81819f0f
CL
3673 slub_min_order, slub_max_order, slub_min_objects,
3674 nr_cpu_ids, nr_node_ids);
3675}
3676
7e85ee0c
PE
3677void __init kmem_cache_init_late(void)
3678{
7e85ee0c
PE
3679}
3680
81819f0f
CL
3681/*
3682 * Find a mergeable slab cache
3683 */
3684static int slab_unmergeable(struct kmem_cache *s)
3685{
3686 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3687 return 1;
3688
c59def9f 3689 if (s->ctor)
81819f0f
CL
3690 return 1;
3691
8ffa6875
CL
3692 /*
3693 * We may have set a slab to be unmergeable during bootstrap.
3694 */
3695 if (s->refcount < 0)
3696 return 1;
3697
81819f0f
CL
3698 return 0;
3699}
3700
2633d7a0 3701static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
ba0268a8 3702 size_t align, unsigned long flags, const char *name,
51cc5068 3703 void (*ctor)(void *))
81819f0f 3704{
5b95a4ac 3705 struct kmem_cache *s;
81819f0f
CL
3706
3707 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3708 return NULL;
3709
c59def9f 3710 if (ctor)
81819f0f
CL
3711 return NULL;
3712
3713 size = ALIGN(size, sizeof(void *));
3714 align = calculate_alignment(flags, align, size);
3715 size = ALIGN(size, align);
ba0268a8 3716 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3717
5b95a4ac 3718 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3719 if (slab_unmergeable(s))
3720 continue;
3721
3722 if (size > s->size)
3723 continue;
3724
ba0268a8 3725 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3726 continue;
3727 /*
3728 * Check if alignment is compatible.
3729 * Courtesy of Adrian Drzewiecki
3730 */
06428780 3731 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3732 continue;
3733
3734 if (s->size - size >= sizeof(void *))
3735 continue;
3736
2633d7a0
GC
3737 if (!cache_match_memcg(s, memcg))
3738 continue;
3739
81819f0f
CL
3740 return s;
3741 }
3742 return NULL;
3743}
3744
2633d7a0
GC
3745struct kmem_cache *
3746__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3747 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3748{
3749 struct kmem_cache *s;
3750
2633d7a0 3751 s = find_mergeable(memcg, size, align, flags, name, ctor);
81819f0f
CL
3752 if (s) {
3753 s->refcount++;
3754 /*
3755 * Adjust the object sizes so that we clear
3756 * the complete object on kzalloc.
3757 */
3b0efdfa 3758 s->object_size = max(s->object_size, (int)size);
81819f0f 3759 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3760
7b8f3b66 3761 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3762 s->refcount--;
cbb79694 3763 s = NULL;
7b8f3b66 3764 }
a0e1d1be 3765 }
6446faa2 3766
cbb79694
CL
3767 return s;
3768}
84c1cf62 3769
8a13a4cc 3770int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3771{
aac3a166
PE
3772 int err;
3773
3774 err = kmem_cache_open(s, flags);
3775 if (err)
3776 return err;
20cea968 3777
45530c44
CL
3778 /* Mutex is not taken during early boot */
3779 if (slab_state <= UP)
3780 return 0;
3781
107dab5c 3782 memcg_propagate_slab_attrs(s);
aac3a166
PE
3783 mutex_unlock(&slab_mutex);
3784 err = sysfs_slab_add(s);
3785 mutex_lock(&slab_mutex);
20cea968 3786
aac3a166
PE
3787 if (err)
3788 kmem_cache_close(s);
20cea968 3789
aac3a166 3790 return err;
81819f0f 3791}
81819f0f 3792
81819f0f 3793#ifdef CONFIG_SMP
81819f0f 3794/*
672bba3a
CL
3795 * Use the cpu notifier to insure that the cpu slabs are flushed when
3796 * necessary.
81819f0f 3797 */
0db0628d 3798static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3799 unsigned long action, void *hcpu)
3800{
3801 long cpu = (long)hcpu;
5b95a4ac
CL
3802 struct kmem_cache *s;
3803 unsigned long flags;
81819f0f
CL
3804
3805 switch (action) {
3806 case CPU_UP_CANCELED:
8bb78442 3807 case CPU_UP_CANCELED_FROZEN:
81819f0f 3808 case CPU_DEAD:
8bb78442 3809 case CPU_DEAD_FROZEN:
18004c5d 3810 mutex_lock(&slab_mutex);
5b95a4ac
CL
3811 list_for_each_entry(s, &slab_caches, list) {
3812 local_irq_save(flags);
3813 __flush_cpu_slab(s, cpu);
3814 local_irq_restore(flags);
3815 }
18004c5d 3816 mutex_unlock(&slab_mutex);
81819f0f
CL
3817 break;
3818 default:
3819 break;
3820 }
3821 return NOTIFY_OK;
3822}
3823
0db0628d 3824static struct notifier_block slab_notifier = {
3adbefee 3825 .notifier_call = slab_cpuup_callback
06428780 3826};
81819f0f
CL
3827
3828#endif
3829
ce71e27c 3830void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3831{
aadb4bc4 3832 struct kmem_cache *s;
94b528d0 3833 void *ret;
aadb4bc4 3834
95a05b42 3835 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3836 return kmalloc_large(size, gfpflags);
3837
2c59dd65 3838 s = kmalloc_slab(size, gfpflags);
81819f0f 3839
2408c550 3840 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3841 return s;
81819f0f 3842
2b847c3c 3843 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3844
25985edc 3845 /* Honor the call site pointer we received. */
ca2b84cb 3846 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3847
3848 return ret;
81819f0f
CL
3849}
3850
5d1f57e4 3851#ifdef CONFIG_NUMA
81819f0f 3852void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3853 int node, unsigned long caller)
81819f0f 3854{
aadb4bc4 3855 struct kmem_cache *s;
94b528d0 3856 void *ret;
aadb4bc4 3857
95a05b42 3858 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3859 ret = kmalloc_large_node(size, gfpflags, node);
3860
3861 trace_kmalloc_node(caller, ret,
3862 size, PAGE_SIZE << get_order(size),
3863 gfpflags, node);
3864
3865 return ret;
3866 }
eada35ef 3867
2c59dd65 3868 s = kmalloc_slab(size, gfpflags);
81819f0f 3869
2408c550 3870 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3871 return s;
81819f0f 3872
2b847c3c 3873 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3874
25985edc 3875 /* Honor the call site pointer we received. */
ca2b84cb 3876 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3877
3878 return ret;
81819f0f 3879}
5d1f57e4 3880#endif
81819f0f 3881
ab4d5ed5 3882#ifdef CONFIG_SYSFS
205ab99d
CL
3883static int count_inuse(struct page *page)
3884{
3885 return page->inuse;
3886}
3887
3888static int count_total(struct page *page)
3889{
3890 return page->objects;
3891}
ab4d5ed5 3892#endif
205ab99d 3893
ab4d5ed5 3894#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3895static int validate_slab(struct kmem_cache *s, struct page *page,
3896 unsigned long *map)
53e15af0
CL
3897{
3898 void *p;
a973e9dd 3899 void *addr = page_address(page);
53e15af0
CL
3900
3901 if (!check_slab(s, page) ||
3902 !on_freelist(s, page, NULL))
3903 return 0;
3904
3905 /* Now we know that a valid freelist exists */
39b26464 3906 bitmap_zero(map, page->objects);
53e15af0 3907
5f80b13a
CL
3908 get_map(s, page, map);
3909 for_each_object(p, s, addr, page->objects) {
3910 if (test_bit(slab_index(p, s, addr), map))
3911 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3912 return 0;
53e15af0
CL
3913 }
3914
224a88be 3915 for_each_object(p, s, addr, page->objects)
7656c72b 3916 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3917 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3918 return 0;
3919 return 1;
3920}
3921
434e245d
CL
3922static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3923 unsigned long *map)
53e15af0 3924{
881db7fb
CL
3925 slab_lock(page);
3926 validate_slab(s, page, map);
3927 slab_unlock(page);
53e15af0
CL
3928}
3929
434e245d
CL
3930static int validate_slab_node(struct kmem_cache *s,
3931 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3932{
3933 unsigned long count = 0;
3934 struct page *page;
3935 unsigned long flags;
3936
3937 spin_lock_irqsave(&n->list_lock, flags);
3938
3939 list_for_each_entry(page, &n->partial, lru) {
434e245d 3940 validate_slab_slab(s, page, map);
53e15af0
CL
3941 count++;
3942 }
3943 if (count != n->nr_partial)
3944 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3945 "counter=%ld\n", s->name, count, n->nr_partial);
3946
3947 if (!(s->flags & SLAB_STORE_USER))
3948 goto out;
3949
3950 list_for_each_entry(page, &n->full, lru) {
434e245d 3951 validate_slab_slab(s, page, map);
53e15af0
CL
3952 count++;
3953 }
3954 if (count != atomic_long_read(&n->nr_slabs))
3955 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3956 "counter=%ld\n", s->name, count,
3957 atomic_long_read(&n->nr_slabs));
3958
3959out:
3960 spin_unlock_irqrestore(&n->list_lock, flags);
3961 return count;
3962}
3963
434e245d 3964static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3965{
3966 int node;
3967 unsigned long count = 0;
205ab99d 3968 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3969 sizeof(unsigned long), GFP_KERNEL);
3970
3971 if (!map)
3972 return -ENOMEM;
53e15af0
CL
3973
3974 flush_all(s);
f64dc58c 3975 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3976 struct kmem_cache_node *n = get_node(s, node);
3977
434e245d 3978 count += validate_slab_node(s, n, map);
53e15af0 3979 }
434e245d 3980 kfree(map);
53e15af0
CL
3981 return count;
3982}
88a420e4 3983/*
672bba3a 3984 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3985 * and freed.
3986 */
3987
3988struct location {
3989 unsigned long count;
ce71e27c 3990 unsigned long addr;
45edfa58
CL
3991 long long sum_time;
3992 long min_time;
3993 long max_time;
3994 long min_pid;
3995 long max_pid;
174596a0 3996 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3997 nodemask_t nodes;
88a420e4
CL
3998};
3999
4000struct loc_track {
4001 unsigned long max;
4002 unsigned long count;
4003 struct location *loc;
4004};
4005
4006static void free_loc_track(struct loc_track *t)
4007{
4008 if (t->max)
4009 free_pages((unsigned long)t->loc,
4010 get_order(sizeof(struct location) * t->max));
4011}
4012
68dff6a9 4013static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4014{
4015 struct location *l;
4016 int order;
4017
88a420e4
CL
4018 order = get_order(sizeof(struct location) * max);
4019
68dff6a9 4020 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4021 if (!l)
4022 return 0;
4023
4024 if (t->count) {
4025 memcpy(l, t->loc, sizeof(struct location) * t->count);
4026 free_loc_track(t);
4027 }
4028 t->max = max;
4029 t->loc = l;
4030 return 1;
4031}
4032
4033static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4034 const struct track *track)
88a420e4
CL
4035{
4036 long start, end, pos;
4037 struct location *l;
ce71e27c 4038 unsigned long caddr;
45edfa58 4039 unsigned long age = jiffies - track->when;
88a420e4
CL
4040
4041 start = -1;
4042 end = t->count;
4043
4044 for ( ; ; ) {
4045 pos = start + (end - start + 1) / 2;
4046
4047 /*
4048 * There is nothing at "end". If we end up there
4049 * we need to add something to before end.
4050 */
4051 if (pos == end)
4052 break;
4053
4054 caddr = t->loc[pos].addr;
45edfa58
CL
4055 if (track->addr == caddr) {
4056
4057 l = &t->loc[pos];
4058 l->count++;
4059 if (track->when) {
4060 l->sum_time += age;
4061 if (age < l->min_time)
4062 l->min_time = age;
4063 if (age > l->max_time)
4064 l->max_time = age;
4065
4066 if (track->pid < l->min_pid)
4067 l->min_pid = track->pid;
4068 if (track->pid > l->max_pid)
4069 l->max_pid = track->pid;
4070
174596a0
RR
4071 cpumask_set_cpu(track->cpu,
4072 to_cpumask(l->cpus));
45edfa58
CL
4073 }
4074 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4075 return 1;
4076 }
4077
45edfa58 4078 if (track->addr < caddr)
88a420e4
CL
4079 end = pos;
4080 else
4081 start = pos;
4082 }
4083
4084 /*
672bba3a 4085 * Not found. Insert new tracking element.
88a420e4 4086 */
68dff6a9 4087 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4088 return 0;
4089
4090 l = t->loc + pos;
4091 if (pos < t->count)
4092 memmove(l + 1, l,
4093 (t->count - pos) * sizeof(struct location));
4094 t->count++;
4095 l->count = 1;
45edfa58
CL
4096 l->addr = track->addr;
4097 l->sum_time = age;
4098 l->min_time = age;
4099 l->max_time = age;
4100 l->min_pid = track->pid;
4101 l->max_pid = track->pid;
174596a0
RR
4102 cpumask_clear(to_cpumask(l->cpus));
4103 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4104 nodes_clear(l->nodes);
4105 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4106 return 1;
4107}
4108
4109static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4110 struct page *page, enum track_item alloc,
a5dd5c11 4111 unsigned long *map)
88a420e4 4112{
a973e9dd 4113 void *addr = page_address(page);
88a420e4
CL
4114 void *p;
4115
39b26464 4116 bitmap_zero(map, page->objects);
5f80b13a 4117 get_map(s, page, map);
88a420e4 4118
224a88be 4119 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4120 if (!test_bit(slab_index(p, s, addr), map))
4121 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4122}
4123
4124static int list_locations(struct kmem_cache *s, char *buf,
4125 enum track_item alloc)
4126{
e374d483 4127 int len = 0;
88a420e4 4128 unsigned long i;
68dff6a9 4129 struct loc_track t = { 0, 0, NULL };
88a420e4 4130 int node;
bbd7d57b
ED
4131 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4132 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4133
bbd7d57b
ED
4134 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4135 GFP_TEMPORARY)) {
4136 kfree(map);
68dff6a9 4137 return sprintf(buf, "Out of memory\n");
bbd7d57b 4138 }
88a420e4
CL
4139 /* Push back cpu slabs */
4140 flush_all(s);
4141
f64dc58c 4142 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4143 struct kmem_cache_node *n = get_node(s, node);
4144 unsigned long flags;
4145 struct page *page;
4146
9e86943b 4147 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4148 continue;
4149
4150 spin_lock_irqsave(&n->list_lock, flags);
4151 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4152 process_slab(&t, s, page, alloc, map);
88a420e4 4153 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4154 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4155 spin_unlock_irqrestore(&n->list_lock, flags);
4156 }
4157
4158 for (i = 0; i < t.count; i++) {
45edfa58 4159 struct location *l = &t.loc[i];
88a420e4 4160
9c246247 4161 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4162 break;
e374d483 4163 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4164
4165 if (l->addr)
62c70bce 4166 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4167 else
e374d483 4168 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4169
4170 if (l->sum_time != l->min_time) {
e374d483 4171 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4172 l->min_time,
4173 (long)div_u64(l->sum_time, l->count),
4174 l->max_time);
45edfa58 4175 } else
e374d483 4176 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4177 l->min_time);
4178
4179 if (l->min_pid != l->max_pid)
e374d483 4180 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4181 l->min_pid, l->max_pid);
4182 else
e374d483 4183 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4184 l->min_pid);
4185
174596a0
RR
4186 if (num_online_cpus() > 1 &&
4187 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4188 len < PAGE_SIZE - 60) {
4189 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4190 len += cpulist_scnprintf(buf + len,
4191 PAGE_SIZE - len - 50,
174596a0 4192 to_cpumask(l->cpus));
45edfa58
CL
4193 }
4194
62bc62a8 4195 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4196 len < PAGE_SIZE - 60) {
4197 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4198 len += nodelist_scnprintf(buf + len,
4199 PAGE_SIZE - len - 50,
4200 l->nodes);
45edfa58
CL
4201 }
4202
e374d483 4203 len += sprintf(buf + len, "\n");
88a420e4
CL
4204 }
4205
4206 free_loc_track(&t);
bbd7d57b 4207 kfree(map);
88a420e4 4208 if (!t.count)
e374d483
HH
4209 len += sprintf(buf, "No data\n");
4210 return len;
88a420e4 4211}
ab4d5ed5 4212#endif
88a420e4 4213
a5a84755
CL
4214#ifdef SLUB_RESILIENCY_TEST
4215static void resiliency_test(void)
4216{
4217 u8 *p;
4218
95a05b42 4219 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755
CL
4220
4221 printk(KERN_ERR "SLUB resiliency testing\n");
4222 printk(KERN_ERR "-----------------------\n");
4223 printk(KERN_ERR "A. Corruption after allocation\n");
4224
4225 p = kzalloc(16, GFP_KERNEL);
4226 p[16] = 0x12;
4227 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4228 " 0x12->0x%p\n\n", p + 16);
4229
4230 validate_slab_cache(kmalloc_caches[4]);
4231
4232 /* Hmmm... The next two are dangerous */
4233 p = kzalloc(32, GFP_KERNEL);
4234 p[32 + sizeof(void *)] = 0x34;
4235 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4236 " 0x34 -> -0x%p\n", p);
4237 printk(KERN_ERR
4238 "If allocated object is overwritten then not detectable\n\n");
4239
4240 validate_slab_cache(kmalloc_caches[5]);
4241 p = kzalloc(64, GFP_KERNEL);
4242 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4243 *p = 0x56;
4244 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4245 p);
4246 printk(KERN_ERR
4247 "If allocated object is overwritten then not detectable\n\n");
4248 validate_slab_cache(kmalloc_caches[6]);
4249
4250 printk(KERN_ERR "\nB. Corruption after free\n");
4251 p = kzalloc(128, GFP_KERNEL);
4252 kfree(p);
4253 *p = 0x78;
4254 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4255 validate_slab_cache(kmalloc_caches[7]);
4256
4257 p = kzalloc(256, GFP_KERNEL);
4258 kfree(p);
4259 p[50] = 0x9a;
4260 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4261 p);
4262 validate_slab_cache(kmalloc_caches[8]);
4263
4264 p = kzalloc(512, GFP_KERNEL);
4265 kfree(p);
4266 p[512] = 0xab;
4267 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4268 validate_slab_cache(kmalloc_caches[9]);
4269}
4270#else
4271#ifdef CONFIG_SYSFS
4272static void resiliency_test(void) {};
4273#endif
4274#endif
4275
ab4d5ed5 4276#ifdef CONFIG_SYSFS
81819f0f 4277enum slab_stat_type {
205ab99d
CL
4278 SL_ALL, /* All slabs */
4279 SL_PARTIAL, /* Only partially allocated slabs */
4280 SL_CPU, /* Only slabs used for cpu caches */
4281 SL_OBJECTS, /* Determine allocated objects not slabs */
4282 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4283};
4284
205ab99d 4285#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4286#define SO_PARTIAL (1 << SL_PARTIAL)
4287#define SO_CPU (1 << SL_CPU)
4288#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4289#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4290
62e5c4b4
CG
4291static ssize_t show_slab_objects(struct kmem_cache *s,
4292 char *buf, unsigned long flags)
81819f0f
CL
4293{
4294 unsigned long total = 0;
81819f0f
CL
4295 int node;
4296 int x;
4297 unsigned long *nodes;
81819f0f 4298
e35e1a97 4299 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4300 if (!nodes)
4301 return -ENOMEM;
81819f0f 4302
205ab99d
CL
4303 if (flags & SO_CPU) {
4304 int cpu;
81819f0f 4305
205ab99d 4306 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4307 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4308 cpu);
ec3ab083 4309 int node;
49e22585 4310 struct page *page;
dfb4f096 4311
bc6697d8 4312 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4313 if (!page)
4314 continue;
205ab99d 4315
ec3ab083
CL
4316 node = page_to_nid(page);
4317 if (flags & SO_TOTAL)
4318 x = page->objects;
4319 else if (flags & SO_OBJECTS)
4320 x = page->inuse;
4321 else
4322 x = 1;
49e22585 4323
ec3ab083
CL
4324 total += x;
4325 nodes[node] += x;
4326
4327 page = ACCESS_ONCE(c->partial);
49e22585 4328 if (page) {
8afb1474
LZ
4329 node = page_to_nid(page);
4330 if (flags & SO_TOTAL)
4331 WARN_ON_ONCE(1);
4332 else if (flags & SO_OBJECTS)
4333 WARN_ON_ONCE(1);
4334 else
4335 x = page->pages;
bc6697d8
ED
4336 total += x;
4337 nodes[node] += x;
49e22585 4338 }
81819f0f
CL
4339 }
4340 }
4341
04d94879 4342 lock_memory_hotplug();
ab4d5ed5 4343#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4344 if (flags & SO_ALL) {
4345 for_each_node_state(node, N_NORMAL_MEMORY) {
4346 struct kmem_cache_node *n = get_node(s, node);
4347
d0e0ac97
CG
4348 if (flags & SO_TOTAL)
4349 x = atomic_long_read(&n->total_objects);
4350 else if (flags & SO_OBJECTS)
4351 x = atomic_long_read(&n->total_objects) -
4352 count_partial(n, count_free);
81819f0f 4353 else
205ab99d 4354 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4355 total += x;
4356 nodes[node] += x;
4357 }
4358
ab4d5ed5
CL
4359 } else
4360#endif
4361 if (flags & SO_PARTIAL) {
205ab99d
CL
4362 for_each_node_state(node, N_NORMAL_MEMORY) {
4363 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4364
205ab99d
CL
4365 if (flags & SO_TOTAL)
4366 x = count_partial(n, count_total);
4367 else if (flags & SO_OBJECTS)
4368 x = count_partial(n, count_inuse);
81819f0f 4369 else
205ab99d 4370 x = n->nr_partial;
81819f0f
CL
4371 total += x;
4372 nodes[node] += x;
4373 }
4374 }
81819f0f
CL
4375 x = sprintf(buf, "%lu", total);
4376#ifdef CONFIG_NUMA
f64dc58c 4377 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4378 if (nodes[node])
4379 x += sprintf(buf + x, " N%d=%lu",
4380 node, nodes[node]);
4381#endif
04d94879 4382 unlock_memory_hotplug();
81819f0f
CL
4383 kfree(nodes);
4384 return x + sprintf(buf + x, "\n");
4385}
4386
ab4d5ed5 4387#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4388static int any_slab_objects(struct kmem_cache *s)
4389{
4390 int node;
81819f0f 4391
dfb4f096 4392 for_each_online_node(node) {
81819f0f
CL
4393 struct kmem_cache_node *n = get_node(s, node);
4394
dfb4f096
CL
4395 if (!n)
4396 continue;
4397
4ea33e2d 4398 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4399 return 1;
4400 }
4401 return 0;
4402}
ab4d5ed5 4403#endif
81819f0f
CL
4404
4405#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4406#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4407
4408struct slab_attribute {
4409 struct attribute attr;
4410 ssize_t (*show)(struct kmem_cache *s, char *buf);
4411 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4412};
4413
4414#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4415 static struct slab_attribute _name##_attr = \
4416 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4417
4418#define SLAB_ATTR(_name) \
4419 static struct slab_attribute _name##_attr = \
ab067e99 4420 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4421
81819f0f
CL
4422static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4423{
4424 return sprintf(buf, "%d\n", s->size);
4425}
4426SLAB_ATTR_RO(slab_size);
4427
4428static ssize_t align_show(struct kmem_cache *s, char *buf)
4429{
4430 return sprintf(buf, "%d\n", s->align);
4431}
4432SLAB_ATTR_RO(align);
4433
4434static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4435{
3b0efdfa 4436 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4437}
4438SLAB_ATTR_RO(object_size);
4439
4440static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4441{
834f3d11 4442 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4443}
4444SLAB_ATTR_RO(objs_per_slab);
4445
06b285dc
CL
4446static ssize_t order_store(struct kmem_cache *s,
4447 const char *buf, size_t length)
4448{
0121c619
CL
4449 unsigned long order;
4450 int err;
4451
3dbb95f7 4452 err = kstrtoul(buf, 10, &order);
0121c619
CL
4453 if (err)
4454 return err;
06b285dc
CL
4455
4456 if (order > slub_max_order || order < slub_min_order)
4457 return -EINVAL;
4458
4459 calculate_sizes(s, order);
4460 return length;
4461}
4462
81819f0f
CL
4463static ssize_t order_show(struct kmem_cache *s, char *buf)
4464{
834f3d11 4465 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4466}
06b285dc 4467SLAB_ATTR(order);
81819f0f 4468
73d342b1
DR
4469static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4470{
4471 return sprintf(buf, "%lu\n", s->min_partial);
4472}
4473
4474static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4475 size_t length)
4476{
4477 unsigned long min;
4478 int err;
4479
3dbb95f7 4480 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4481 if (err)
4482 return err;
4483
c0bdb232 4484 set_min_partial(s, min);
73d342b1
DR
4485 return length;
4486}
4487SLAB_ATTR(min_partial);
4488
49e22585
CL
4489static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4490{
4491 return sprintf(buf, "%u\n", s->cpu_partial);
4492}
4493
4494static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4495 size_t length)
4496{
4497 unsigned long objects;
4498 int err;
4499
3dbb95f7 4500 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4501 if (err)
4502 return err;
345c905d 4503 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4504 return -EINVAL;
49e22585
CL
4505
4506 s->cpu_partial = objects;
4507 flush_all(s);
4508 return length;
4509}
4510SLAB_ATTR(cpu_partial);
4511
81819f0f
CL
4512static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4513{
62c70bce
JP
4514 if (!s->ctor)
4515 return 0;
4516 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4517}
4518SLAB_ATTR_RO(ctor);
4519
81819f0f
CL
4520static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4521{
4522 return sprintf(buf, "%d\n", s->refcount - 1);
4523}
4524SLAB_ATTR_RO(aliases);
4525
81819f0f
CL
4526static ssize_t partial_show(struct kmem_cache *s, char *buf)
4527{
d9acf4b7 4528 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4529}
4530SLAB_ATTR_RO(partial);
4531
4532static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4533{
d9acf4b7 4534 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4535}
4536SLAB_ATTR_RO(cpu_slabs);
4537
4538static ssize_t objects_show(struct kmem_cache *s, char *buf)
4539{
205ab99d 4540 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4541}
4542SLAB_ATTR_RO(objects);
4543
205ab99d
CL
4544static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4545{
4546 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4547}
4548SLAB_ATTR_RO(objects_partial);
4549
49e22585
CL
4550static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4551{
4552 int objects = 0;
4553 int pages = 0;
4554 int cpu;
4555 int len;
4556
4557 for_each_online_cpu(cpu) {
4558 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4559
4560 if (page) {
4561 pages += page->pages;
4562 objects += page->pobjects;
4563 }
4564 }
4565
4566 len = sprintf(buf, "%d(%d)", objects, pages);
4567
4568#ifdef CONFIG_SMP
4569 for_each_online_cpu(cpu) {
4570 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4571
4572 if (page && len < PAGE_SIZE - 20)
4573 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4574 page->pobjects, page->pages);
4575 }
4576#endif
4577 return len + sprintf(buf + len, "\n");
4578}
4579SLAB_ATTR_RO(slabs_cpu_partial);
4580
a5a84755
CL
4581static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4582{
4583 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4584}
4585
4586static ssize_t reclaim_account_store(struct kmem_cache *s,
4587 const char *buf, size_t length)
4588{
4589 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4590 if (buf[0] == '1')
4591 s->flags |= SLAB_RECLAIM_ACCOUNT;
4592 return length;
4593}
4594SLAB_ATTR(reclaim_account);
4595
4596static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4597{
4598 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4599}
4600SLAB_ATTR_RO(hwcache_align);
4601
4602#ifdef CONFIG_ZONE_DMA
4603static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4604{
4605 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4606}
4607SLAB_ATTR_RO(cache_dma);
4608#endif
4609
4610static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4611{
4612 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4613}
4614SLAB_ATTR_RO(destroy_by_rcu);
4615
ab9a0f19
LJ
4616static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4617{
4618 return sprintf(buf, "%d\n", s->reserved);
4619}
4620SLAB_ATTR_RO(reserved);
4621
ab4d5ed5 4622#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4623static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4624{
4625 return show_slab_objects(s, buf, SO_ALL);
4626}
4627SLAB_ATTR_RO(slabs);
4628
205ab99d
CL
4629static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4630{
4631 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4632}
4633SLAB_ATTR_RO(total_objects);
4634
81819f0f
CL
4635static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4636{
4637 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4638}
4639
4640static ssize_t sanity_checks_store(struct kmem_cache *s,
4641 const char *buf, size_t length)
4642{
4643 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4644 if (buf[0] == '1') {
4645 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4646 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4647 }
81819f0f
CL
4648 return length;
4649}
4650SLAB_ATTR(sanity_checks);
4651
4652static ssize_t trace_show(struct kmem_cache *s, char *buf)
4653{
4654 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4655}
4656
4657static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4658 size_t length)
4659{
4660 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4661 if (buf[0] == '1') {
4662 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4663 s->flags |= SLAB_TRACE;
b789ef51 4664 }
81819f0f
CL
4665 return length;
4666}
4667SLAB_ATTR(trace);
4668
81819f0f
CL
4669static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4670{
4671 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4672}
4673
4674static ssize_t red_zone_store(struct kmem_cache *s,
4675 const char *buf, size_t length)
4676{
4677 if (any_slab_objects(s))
4678 return -EBUSY;
4679
4680 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4681 if (buf[0] == '1') {
4682 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4683 s->flags |= SLAB_RED_ZONE;
b789ef51 4684 }
06b285dc 4685 calculate_sizes(s, -1);
81819f0f
CL
4686 return length;
4687}
4688SLAB_ATTR(red_zone);
4689
4690static ssize_t poison_show(struct kmem_cache *s, char *buf)
4691{
4692 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4693}
4694
4695static ssize_t poison_store(struct kmem_cache *s,
4696 const char *buf, size_t length)
4697{
4698 if (any_slab_objects(s))
4699 return -EBUSY;
4700
4701 s->flags &= ~SLAB_POISON;
b789ef51
CL
4702 if (buf[0] == '1') {
4703 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4704 s->flags |= SLAB_POISON;
b789ef51 4705 }
06b285dc 4706 calculate_sizes(s, -1);
81819f0f
CL
4707 return length;
4708}
4709SLAB_ATTR(poison);
4710
4711static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4712{
4713 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4714}
4715
4716static ssize_t store_user_store(struct kmem_cache *s,
4717 const char *buf, size_t length)
4718{
4719 if (any_slab_objects(s))
4720 return -EBUSY;
4721
4722 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4723 if (buf[0] == '1') {
4724 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4725 s->flags |= SLAB_STORE_USER;
b789ef51 4726 }
06b285dc 4727 calculate_sizes(s, -1);
81819f0f
CL
4728 return length;
4729}
4730SLAB_ATTR(store_user);
4731
53e15af0
CL
4732static ssize_t validate_show(struct kmem_cache *s, char *buf)
4733{
4734 return 0;
4735}
4736
4737static ssize_t validate_store(struct kmem_cache *s,
4738 const char *buf, size_t length)
4739{
434e245d
CL
4740 int ret = -EINVAL;
4741
4742 if (buf[0] == '1') {
4743 ret = validate_slab_cache(s);
4744 if (ret >= 0)
4745 ret = length;
4746 }
4747 return ret;
53e15af0
CL
4748}
4749SLAB_ATTR(validate);
a5a84755
CL
4750
4751static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4752{
4753 if (!(s->flags & SLAB_STORE_USER))
4754 return -ENOSYS;
4755 return list_locations(s, buf, TRACK_ALLOC);
4756}
4757SLAB_ATTR_RO(alloc_calls);
4758
4759static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4760{
4761 if (!(s->flags & SLAB_STORE_USER))
4762 return -ENOSYS;
4763 return list_locations(s, buf, TRACK_FREE);
4764}
4765SLAB_ATTR_RO(free_calls);
4766#endif /* CONFIG_SLUB_DEBUG */
4767
4768#ifdef CONFIG_FAILSLAB
4769static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4770{
4771 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4772}
4773
4774static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4775 size_t length)
4776{
4777 s->flags &= ~SLAB_FAILSLAB;
4778 if (buf[0] == '1')
4779 s->flags |= SLAB_FAILSLAB;
4780 return length;
4781}
4782SLAB_ATTR(failslab);
ab4d5ed5 4783#endif
53e15af0 4784
2086d26a
CL
4785static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4786{
4787 return 0;
4788}
4789
4790static ssize_t shrink_store(struct kmem_cache *s,
4791 const char *buf, size_t length)
4792{
4793 if (buf[0] == '1') {
4794 int rc = kmem_cache_shrink(s);
4795
4796 if (rc)
4797 return rc;
4798 } else
4799 return -EINVAL;
4800 return length;
4801}
4802SLAB_ATTR(shrink);
4803
81819f0f 4804#ifdef CONFIG_NUMA
9824601e 4805static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4806{
9824601e 4807 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4808}
4809
9824601e 4810static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4811 const char *buf, size_t length)
4812{
0121c619
CL
4813 unsigned long ratio;
4814 int err;
4815
3dbb95f7 4816 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4817 if (err)
4818 return err;
4819
e2cb96b7 4820 if (ratio <= 100)
0121c619 4821 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4822
81819f0f
CL
4823 return length;
4824}
9824601e 4825SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4826#endif
4827
8ff12cfc 4828#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4829static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4830{
4831 unsigned long sum = 0;
4832 int cpu;
4833 int len;
4834 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4835
4836 if (!data)
4837 return -ENOMEM;
4838
4839 for_each_online_cpu(cpu) {
9dfc6e68 4840 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4841
4842 data[cpu] = x;
4843 sum += x;
4844 }
4845
4846 len = sprintf(buf, "%lu", sum);
4847
50ef37b9 4848#ifdef CONFIG_SMP
8ff12cfc
CL
4849 for_each_online_cpu(cpu) {
4850 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4851 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4852 }
50ef37b9 4853#endif
8ff12cfc
CL
4854 kfree(data);
4855 return len + sprintf(buf + len, "\n");
4856}
4857
78eb00cc
DR
4858static void clear_stat(struct kmem_cache *s, enum stat_item si)
4859{
4860 int cpu;
4861
4862 for_each_online_cpu(cpu)
9dfc6e68 4863 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4864}
4865
8ff12cfc
CL
4866#define STAT_ATTR(si, text) \
4867static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4868{ \
4869 return show_stat(s, buf, si); \
4870} \
78eb00cc
DR
4871static ssize_t text##_store(struct kmem_cache *s, \
4872 const char *buf, size_t length) \
4873{ \
4874 if (buf[0] != '0') \
4875 return -EINVAL; \
4876 clear_stat(s, si); \
4877 return length; \
4878} \
4879SLAB_ATTR(text); \
8ff12cfc
CL
4880
4881STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4882STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4883STAT_ATTR(FREE_FASTPATH, free_fastpath);
4884STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4885STAT_ATTR(FREE_FROZEN, free_frozen);
4886STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4887STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4888STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4889STAT_ATTR(ALLOC_SLAB, alloc_slab);
4890STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4891STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4892STAT_ATTR(FREE_SLAB, free_slab);
4893STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4894STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4895STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4896STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4897STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4898STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4899STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4900STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4901STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4902STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4903STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4904STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4905STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4906STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4907#endif
4908
06428780 4909static struct attribute *slab_attrs[] = {
81819f0f
CL
4910 &slab_size_attr.attr,
4911 &object_size_attr.attr,
4912 &objs_per_slab_attr.attr,
4913 &order_attr.attr,
73d342b1 4914 &min_partial_attr.attr,
49e22585 4915 &cpu_partial_attr.attr,
81819f0f 4916 &objects_attr.attr,
205ab99d 4917 &objects_partial_attr.attr,
81819f0f
CL
4918 &partial_attr.attr,
4919 &cpu_slabs_attr.attr,
4920 &ctor_attr.attr,
81819f0f
CL
4921 &aliases_attr.attr,
4922 &align_attr.attr,
81819f0f
CL
4923 &hwcache_align_attr.attr,
4924 &reclaim_account_attr.attr,
4925 &destroy_by_rcu_attr.attr,
a5a84755 4926 &shrink_attr.attr,
ab9a0f19 4927 &reserved_attr.attr,
49e22585 4928 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4929#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4930 &total_objects_attr.attr,
4931 &slabs_attr.attr,
4932 &sanity_checks_attr.attr,
4933 &trace_attr.attr,
81819f0f
CL
4934 &red_zone_attr.attr,
4935 &poison_attr.attr,
4936 &store_user_attr.attr,
53e15af0 4937 &validate_attr.attr,
88a420e4
CL
4938 &alloc_calls_attr.attr,
4939 &free_calls_attr.attr,
ab4d5ed5 4940#endif
81819f0f
CL
4941#ifdef CONFIG_ZONE_DMA
4942 &cache_dma_attr.attr,
4943#endif
4944#ifdef CONFIG_NUMA
9824601e 4945 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4946#endif
4947#ifdef CONFIG_SLUB_STATS
4948 &alloc_fastpath_attr.attr,
4949 &alloc_slowpath_attr.attr,
4950 &free_fastpath_attr.attr,
4951 &free_slowpath_attr.attr,
4952 &free_frozen_attr.attr,
4953 &free_add_partial_attr.attr,
4954 &free_remove_partial_attr.attr,
4955 &alloc_from_partial_attr.attr,
4956 &alloc_slab_attr.attr,
4957 &alloc_refill_attr.attr,
e36a2652 4958 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4959 &free_slab_attr.attr,
4960 &cpuslab_flush_attr.attr,
4961 &deactivate_full_attr.attr,
4962 &deactivate_empty_attr.attr,
4963 &deactivate_to_head_attr.attr,
4964 &deactivate_to_tail_attr.attr,
4965 &deactivate_remote_frees_attr.attr,
03e404af 4966 &deactivate_bypass_attr.attr,
65c3376a 4967 &order_fallback_attr.attr,
b789ef51
CL
4968 &cmpxchg_double_fail_attr.attr,
4969 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4970 &cpu_partial_alloc_attr.attr,
4971 &cpu_partial_free_attr.attr,
8028dcea
AS
4972 &cpu_partial_node_attr.attr,
4973 &cpu_partial_drain_attr.attr,
81819f0f 4974#endif
4c13dd3b
DM
4975#ifdef CONFIG_FAILSLAB
4976 &failslab_attr.attr,
4977#endif
4978
81819f0f
CL
4979 NULL
4980};
4981
4982static struct attribute_group slab_attr_group = {
4983 .attrs = slab_attrs,
4984};
4985
4986static ssize_t slab_attr_show(struct kobject *kobj,
4987 struct attribute *attr,
4988 char *buf)
4989{
4990 struct slab_attribute *attribute;
4991 struct kmem_cache *s;
4992 int err;
4993
4994 attribute = to_slab_attr(attr);
4995 s = to_slab(kobj);
4996
4997 if (!attribute->show)
4998 return -EIO;
4999
5000 err = attribute->show(s, buf);
5001
5002 return err;
5003}
5004
5005static ssize_t slab_attr_store(struct kobject *kobj,
5006 struct attribute *attr,
5007 const char *buf, size_t len)
5008{
5009 struct slab_attribute *attribute;
5010 struct kmem_cache *s;
5011 int err;
5012
5013 attribute = to_slab_attr(attr);
5014 s = to_slab(kobj);
5015
5016 if (!attribute->store)
5017 return -EIO;
5018
5019 err = attribute->store(s, buf, len);
107dab5c
GC
5020#ifdef CONFIG_MEMCG_KMEM
5021 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5022 int i;
81819f0f 5023
107dab5c
GC
5024 mutex_lock(&slab_mutex);
5025 if (s->max_attr_size < len)
5026 s->max_attr_size = len;
5027
ebe945c2
GC
5028 /*
5029 * This is a best effort propagation, so this function's return
5030 * value will be determined by the parent cache only. This is
5031 * basically because not all attributes will have a well
5032 * defined semantics for rollbacks - most of the actions will
5033 * have permanent effects.
5034 *
5035 * Returning the error value of any of the children that fail
5036 * is not 100 % defined, in the sense that users seeing the
5037 * error code won't be able to know anything about the state of
5038 * the cache.
5039 *
5040 * Only returning the error code for the parent cache at least
5041 * has well defined semantics. The cache being written to
5042 * directly either failed or succeeded, in which case we loop
5043 * through the descendants with best-effort propagation.
5044 */
107dab5c 5045 for_each_memcg_cache_index(i) {
2ade4de8 5046 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
5047 if (c)
5048 attribute->store(c, buf, len);
5049 }
5050 mutex_unlock(&slab_mutex);
5051 }
5052#endif
81819f0f
CL
5053 return err;
5054}
5055
107dab5c
GC
5056static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5057{
5058#ifdef CONFIG_MEMCG_KMEM
5059 int i;
5060 char *buffer = NULL;
5061
5062 if (!is_root_cache(s))
5063 return;
5064
5065 /*
5066 * This mean this cache had no attribute written. Therefore, no point
5067 * in copying default values around
5068 */
5069 if (!s->max_attr_size)
5070 return;
5071
5072 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5073 char mbuf[64];
5074 char *buf;
5075 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5076
5077 if (!attr || !attr->store || !attr->show)
5078 continue;
5079
5080 /*
5081 * It is really bad that we have to allocate here, so we will
5082 * do it only as a fallback. If we actually allocate, though,
5083 * we can just use the allocated buffer until the end.
5084 *
5085 * Most of the slub attributes will tend to be very small in
5086 * size, but sysfs allows buffers up to a page, so they can
5087 * theoretically happen.
5088 */
5089 if (buffer)
5090 buf = buffer;
5091 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5092 buf = mbuf;
5093 else {
5094 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5095 if (WARN_ON(!buffer))
5096 continue;
5097 buf = buffer;
5098 }
5099
5100 attr->show(s->memcg_params->root_cache, buf);
5101 attr->store(s, buf, strlen(buf));
5102 }
5103
5104 if (buffer)
5105 free_page((unsigned long)buffer);
5106#endif
5107}
5108
52cf25d0 5109static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5110 .show = slab_attr_show,
5111 .store = slab_attr_store,
5112};
5113
5114static struct kobj_type slab_ktype = {
5115 .sysfs_ops = &slab_sysfs_ops,
5116};
5117
5118static int uevent_filter(struct kset *kset, struct kobject *kobj)
5119{
5120 struct kobj_type *ktype = get_ktype(kobj);
5121
5122 if (ktype == &slab_ktype)
5123 return 1;
5124 return 0;
5125}
5126
9cd43611 5127static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5128 .filter = uevent_filter,
5129};
5130
27c3a314 5131static struct kset *slab_kset;
81819f0f
CL
5132
5133#define ID_STR_LENGTH 64
5134
5135/* Create a unique string id for a slab cache:
6446faa2
CL
5136 *
5137 * Format :[flags-]size
81819f0f
CL
5138 */
5139static char *create_unique_id(struct kmem_cache *s)
5140{
5141 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5142 char *p = name;
5143
5144 BUG_ON(!name);
5145
5146 *p++ = ':';
5147 /*
5148 * First flags affecting slabcache operations. We will only
5149 * get here for aliasable slabs so we do not need to support
5150 * too many flags. The flags here must cover all flags that
5151 * are matched during merging to guarantee that the id is
5152 * unique.
5153 */
5154 if (s->flags & SLAB_CACHE_DMA)
5155 *p++ = 'd';
5156 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5157 *p++ = 'a';
5158 if (s->flags & SLAB_DEBUG_FREE)
5159 *p++ = 'F';
5a896d9e
VN
5160 if (!(s->flags & SLAB_NOTRACK))
5161 *p++ = 't';
81819f0f
CL
5162 if (p != name + 1)
5163 *p++ = '-';
5164 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5165
5166#ifdef CONFIG_MEMCG_KMEM
5167 if (!is_root_cache(s))
d0e0ac97
CG
5168 p += sprintf(p, "-%08d",
5169 memcg_cache_id(s->memcg_params->memcg));
2633d7a0
GC
5170#endif
5171
81819f0f
CL
5172 BUG_ON(p > name + ID_STR_LENGTH - 1);
5173 return name;
5174}
5175
5176static int sysfs_slab_add(struct kmem_cache *s)
5177{
5178 int err;
5179 const char *name;
45530c44 5180 int unmergeable = slab_unmergeable(s);
81819f0f 5181
81819f0f
CL
5182 if (unmergeable) {
5183 /*
5184 * Slabcache can never be merged so we can use the name proper.
5185 * This is typically the case for debug situations. In that
5186 * case we can catch duplicate names easily.
5187 */
27c3a314 5188 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5189 name = s->name;
5190 } else {
5191 /*
5192 * Create a unique name for the slab as a target
5193 * for the symlinks.
5194 */
5195 name = create_unique_id(s);
5196 }
5197
27c3a314 5198 s->kobj.kset = slab_kset;
26e4f205 5199 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
1eada11c
GKH
5200 if (err) {
5201 kobject_put(&s->kobj);
81819f0f 5202 return err;
1eada11c 5203 }
81819f0f
CL
5204
5205 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5206 if (err) {
5207 kobject_del(&s->kobj);
5208 kobject_put(&s->kobj);
81819f0f 5209 return err;
5788d8ad 5210 }
81819f0f
CL
5211 kobject_uevent(&s->kobj, KOBJ_ADD);
5212 if (!unmergeable) {
5213 /* Setup first alias */
5214 sysfs_slab_alias(s, s->name);
5215 kfree(name);
5216 }
5217 return 0;
5218}
5219
5220static void sysfs_slab_remove(struct kmem_cache *s)
5221{
97d06609 5222 if (slab_state < FULL)
2bce6485
CL
5223 /*
5224 * Sysfs has not been setup yet so no need to remove the
5225 * cache from sysfs.
5226 */
5227 return;
5228
81819f0f
CL
5229 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5230 kobject_del(&s->kobj);
151c602f 5231 kobject_put(&s->kobj);
81819f0f
CL
5232}
5233
5234/*
5235 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5236 * available lest we lose that information.
81819f0f
CL
5237 */
5238struct saved_alias {
5239 struct kmem_cache *s;
5240 const char *name;
5241 struct saved_alias *next;
5242};
5243
5af328a5 5244static struct saved_alias *alias_list;
81819f0f
CL
5245
5246static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5247{
5248 struct saved_alias *al;
5249
97d06609 5250 if (slab_state == FULL) {
81819f0f
CL
5251 /*
5252 * If we have a leftover link then remove it.
5253 */
27c3a314
GKH
5254 sysfs_remove_link(&slab_kset->kobj, name);
5255 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5256 }
5257
5258 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5259 if (!al)
5260 return -ENOMEM;
5261
5262 al->s = s;
5263 al->name = name;
5264 al->next = alias_list;
5265 alias_list = al;
5266 return 0;
5267}
5268
5269static int __init slab_sysfs_init(void)
5270{
5b95a4ac 5271 struct kmem_cache *s;
81819f0f
CL
5272 int err;
5273
18004c5d 5274 mutex_lock(&slab_mutex);
2bce6485 5275
0ff21e46 5276 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5277 if (!slab_kset) {
18004c5d 5278 mutex_unlock(&slab_mutex);
81819f0f
CL
5279 printk(KERN_ERR "Cannot register slab subsystem.\n");
5280 return -ENOSYS;
5281 }
5282
97d06609 5283 slab_state = FULL;
26a7bd03 5284
5b95a4ac 5285 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5286 err = sysfs_slab_add(s);
5d540fb7
CL
5287 if (err)
5288 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5289 " to sysfs\n", s->name);
26a7bd03 5290 }
81819f0f
CL
5291
5292 while (alias_list) {
5293 struct saved_alias *al = alias_list;
5294
5295 alias_list = alias_list->next;
5296 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5297 if (err)
5298 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5299 " %s to sysfs\n", al->name);
81819f0f
CL
5300 kfree(al);
5301 }
5302
18004c5d 5303 mutex_unlock(&slab_mutex);
81819f0f
CL
5304 resiliency_test();
5305 return 0;
5306}
5307
5308__initcall(slab_sysfs_init);
ab4d5ed5 5309#endif /* CONFIG_SYSFS */
57ed3eda
PE
5310
5311/*
5312 * The /proc/slabinfo ABI
5313 */
158a9624 5314#ifdef CONFIG_SLABINFO
0d7561c6 5315void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5316{
57ed3eda 5317 unsigned long nr_slabs = 0;
205ab99d
CL
5318 unsigned long nr_objs = 0;
5319 unsigned long nr_free = 0;
57ed3eda
PE
5320 int node;
5321
57ed3eda
PE
5322 for_each_online_node(node) {
5323 struct kmem_cache_node *n = get_node(s, node);
5324
5325 if (!n)
5326 continue;
5327
c17fd13e
WL
5328 nr_slabs += node_nr_slabs(n);
5329 nr_objs += node_nr_objs(n);
205ab99d 5330 nr_free += count_partial(n, count_free);
57ed3eda
PE
5331 }
5332
0d7561c6
GC
5333 sinfo->active_objs = nr_objs - nr_free;
5334 sinfo->num_objs = nr_objs;
5335 sinfo->active_slabs = nr_slabs;
5336 sinfo->num_slabs = nr_slabs;
5337 sinfo->objects_per_slab = oo_objects(s->oo);
5338 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5339}
5340
0d7561c6 5341void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5342{
7b3c3a50
AD
5343}
5344
b7454ad3
GC
5345ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5346 size_t count, loff_t *ppos)
7b3c3a50 5347{
b7454ad3 5348 return -EIO;
7b3c3a50 5349}
158a9624 5350#endif /* CONFIG_SLABINFO */