]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/slub.c
mm, slub: remove redundant unfreeze_partials() from put_cpu_partial()
[thirdparty/linux.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
dc84207d 6 * The allocator synchronizes using per slab locks or atomic operations
881db7fb 7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
1b3865d0 18#include <linux/swab.h>
81819f0f
CL
19#include <linux/bitops.h>
20#include <linux/slab.h>
97d06609 21#include "slab.h"
7b3c3a50 22#include <linux/proc_fs.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b89fb5ef 31#include <linux/kfence.h>
b9049e23 32#include <linux/memory.h>
f8bd2258 33#include <linux/math64.h>
773ff60e 34#include <linux/fault-inject.h>
bfa71457 35#include <linux/stacktrace.h>
4de900b4 36#include <linux/prefetch.h>
2633d7a0 37#include <linux/memcontrol.h>
2482ddec 38#include <linux/random.h>
1f9f78b1 39#include <kunit/test.h>
81819f0f 40
64dd6849 41#include <linux/debugfs.h>
4a92379b
RK
42#include <trace/events/kmem.h>
43
072bb0aa
MG
44#include "internal.h"
45
81819f0f
CL
46/*
47 * Lock order:
18004c5d 48 * 1. slab_mutex (Global Mutex)
881db7fb
CL
49 * 2. node->list_lock
50 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 51 *
18004c5d 52 * slab_mutex
881db7fb 53 *
18004c5d 54 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
55 * and to synchronize major metadata changes to slab cache structures.
56 *
57 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 58 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 59 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
60 * B. page->inuse -> Number of objects in use
61 * C. page->objects -> Number of objects in page
62 * D. page->frozen -> frozen state
881db7fb
CL
63 *
64 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
65 * on any list except per cpu partial list. The processor that froze the
66 * slab is the one who can perform list operations on the page. Other
67 * processors may put objects onto the freelist but the processor that
68 * froze the slab is the only one that can retrieve the objects from the
69 * page's freelist.
81819f0f
CL
70 *
71 * The list_lock protects the partial and full list on each node and
72 * the partial slab counter. If taken then no new slabs may be added or
73 * removed from the lists nor make the number of partial slabs be modified.
74 * (Note that the total number of slabs is an atomic value that may be
75 * modified without taking the list lock).
76 *
77 * The list_lock is a centralized lock and thus we avoid taking it as
78 * much as possible. As long as SLUB does not have to handle partial
79 * slabs, operations can continue without any centralized lock. F.e.
80 * allocating a long series of objects that fill up slabs does not require
81 * the list lock.
81819f0f
CL
82 * Interrupts are disabled during allocation and deallocation in order to
83 * make the slab allocator safe to use in the context of an irq. In addition
84 * interrupts are disabled to ensure that the processor does not change
85 * while handling per_cpu slabs, due to kernel preemption.
86 *
87 * SLUB assigns one slab for allocation to each processor.
88 * Allocations only occur from these slabs called cpu slabs.
89 *
672bba3a
CL
90 * Slabs with free elements are kept on a partial list and during regular
91 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 92 * freed then the slab will show up again on the partial lists.
672bba3a
CL
93 * We track full slabs for debugging purposes though because otherwise we
94 * cannot scan all objects.
81819f0f
CL
95 *
96 * Slabs are freed when they become empty. Teardown and setup is
97 * minimal so we rely on the page allocators per cpu caches for
98 * fast frees and allocs.
99 *
aed68148 100 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
101 * This means that the slab is dedicated to a purpose
102 * such as satisfying allocations for a specific
103 * processor. Objects may be freed in the slab while
104 * it is frozen but slab_free will then skip the usual
105 * list operations. It is up to the processor holding
106 * the slab to integrate the slab into the slab lists
107 * when the slab is no longer needed.
108 *
109 * One use of this flag is to mark slabs that are
110 * used for allocations. Then such a slab becomes a cpu
111 * slab. The cpu slab may be equipped with an additional
dfb4f096 112 * freelist that allows lockless access to
894b8788
CL
113 * free objects in addition to the regular freelist
114 * that requires the slab lock.
81819f0f 115 *
aed68148 116 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 117 * options set. This moves slab handling out of
894b8788 118 * the fast path and disables lockless freelists.
81819f0f
CL
119 */
120
ca0cab65
VB
121#ifdef CONFIG_SLUB_DEBUG
122#ifdef CONFIG_SLUB_DEBUG_ON
123DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
124#else
125DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
126#endif
79270291 127#endif /* CONFIG_SLUB_DEBUG */
ca0cab65 128
59052e89
VB
129static inline bool kmem_cache_debug(struct kmem_cache *s)
130{
131 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 132}
5577bd8a 133
117d54df 134void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 135{
59052e89 136 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
137 p += s->red_left_pad;
138
139 return p;
140}
141
345c905d
JK
142static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
143{
144#ifdef CONFIG_SLUB_CPU_PARTIAL
145 return !kmem_cache_debug(s);
146#else
147 return false;
148#endif
149}
150
81819f0f
CL
151/*
152 * Issues still to be resolved:
153 *
81819f0f
CL
154 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
155 *
81819f0f
CL
156 * - Variable sizing of the per node arrays
157 */
158
b789ef51
CL
159/* Enable to log cmpxchg failures */
160#undef SLUB_DEBUG_CMPXCHG
161
2086d26a 162/*
dc84207d 163 * Minimum number of partial slabs. These will be left on the partial
2086d26a
CL
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
76be8950 166#define MIN_PARTIAL 5
e95eed57 167
2086d26a
CL
168/*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 171 * sort the partial list by the number of objects in use.
2086d26a
CL
172 */
173#define MAX_PARTIAL 10
174
becfda68 175#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 176 SLAB_POISON | SLAB_STORE_USER)
672bba3a 177
149daaf3
LA
178/*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
fa5ec8a1 186/*
3de47213
DR
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
fa5ec8a1 190 */
3de47213 191#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 192
210b5c06
CG
193#define OO_SHIFT 16
194#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 195#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 196
81819f0f 197/* Internal SLUB flags */
d50112ed 198/* Poison object */
4fd0b46e 199#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 200/* Use cmpxchg_double */
4fd0b46e 201#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 202
02cbc874
CL
203/*
204 * Tracking user of a slab.
205 */
d6543e39 206#define TRACK_ADDRS_COUNT 16
02cbc874 207struct track {
ce71e27c 208 unsigned long addr; /* Called from address */
ae14c63a
LT
209#ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
d6543e39 211#endif
02cbc874
CL
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215};
216
217enum track_item { TRACK_ALLOC, TRACK_FREE };
218
ab4d5ed5 219#ifdef CONFIG_SYSFS
81819f0f
CL
220static int sysfs_slab_add(struct kmem_cache *);
221static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 222#else
0c710013
CL
223static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
81819f0f
CL
226#endif
227
64dd6849
FM
228#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
229static void debugfs_slab_add(struct kmem_cache *);
230#else
231static inline void debugfs_slab_add(struct kmem_cache *s) { }
232#endif
233
4fdccdfb 234static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
235{
236#ifdef CONFIG_SLUB_STATS
88da03a6
CL
237 /*
238 * The rmw is racy on a preemptible kernel but this is acceptable, so
239 * avoid this_cpu_add()'s irq-disable overhead.
240 */
241 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
242#endif
243}
244
7e1fa93d
VB
245/*
246 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
247 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
248 * differ during memory hotplug/hotremove operations.
249 * Protected by slab_mutex.
250 */
251static nodemask_t slab_nodes;
252
81819f0f
CL
253/********************************************************************
254 * Core slab cache functions
255 *******************************************************************/
256
2482ddec
KC
257/*
258 * Returns freelist pointer (ptr). With hardening, this is obfuscated
259 * with an XOR of the address where the pointer is held and a per-cache
260 * random number.
261 */
262static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
263 unsigned long ptr_addr)
264{
265#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 266 /*
aa1ef4d7 267 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
268 * Normally, this doesn't cause any issues, as both set_freepointer()
269 * and get_freepointer() are called with a pointer with the same tag.
270 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
271 * example, when __free_slub() iterates over objects in a cache, it
272 * passes untagged pointers to check_object(). check_object() in turns
273 * calls get_freepointer() with an untagged pointer, which causes the
274 * freepointer to be restored incorrectly.
275 */
276 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 277 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
278#else
279 return ptr;
280#endif
281}
282
283/* Returns the freelist pointer recorded at location ptr_addr. */
284static inline void *freelist_dereference(const struct kmem_cache *s,
285 void *ptr_addr)
286{
287 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
288 (unsigned long)ptr_addr);
289}
290
7656c72b
CL
291static inline void *get_freepointer(struct kmem_cache *s, void *object)
292{
aa1ef4d7 293 object = kasan_reset_tag(object);
2482ddec 294 return freelist_dereference(s, object + s->offset);
7656c72b
CL
295}
296
0ad9500e
ED
297static void prefetch_freepointer(const struct kmem_cache *s, void *object)
298{
0882ff91 299 prefetch(object + s->offset);
0ad9500e
ED
300}
301
1393d9a1
CL
302static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
303{
2482ddec 304 unsigned long freepointer_addr;
1393d9a1
CL
305 void *p;
306
8e57f8ac 307 if (!debug_pagealloc_enabled_static())
922d566c
JK
308 return get_freepointer(s, object);
309
f70b0049 310 object = kasan_reset_tag(object);
2482ddec 311 freepointer_addr = (unsigned long)object + s->offset;
fe557319 312 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 313 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
314}
315
7656c72b
CL
316static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
317{
2482ddec
KC
318 unsigned long freeptr_addr = (unsigned long)object + s->offset;
319
ce6fa91b
AP
320#ifdef CONFIG_SLAB_FREELIST_HARDENED
321 BUG_ON(object == fp); /* naive detection of double free or corruption */
322#endif
323
aa1ef4d7 324 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 325 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
326}
327
328/* Loop over all objects in a slab */
224a88be 329#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
330 for (__p = fixup_red_left(__s, __addr); \
331 __p < (__addr) + (__objects) * (__s)->size; \
332 __p += (__s)->size)
7656c72b 333
9736d2a9 334static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 335{
9736d2a9 336 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
337}
338
19af27af 339static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 340 unsigned int size)
834f3d11
CL
341{
342 struct kmem_cache_order_objects x = {
9736d2a9 343 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
344 };
345
346 return x;
347}
348
19af27af 349static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 350{
210b5c06 351 return x.x >> OO_SHIFT;
834f3d11
CL
352}
353
19af27af 354static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 355{
210b5c06 356 return x.x & OO_MASK;
834f3d11
CL
357}
358
881db7fb
CL
359/*
360 * Per slab locking using the pagelock
361 */
362static __always_inline void slab_lock(struct page *page)
363{
48c935ad 364 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
365 bit_spin_lock(PG_locked, &page->flags);
366}
367
368static __always_inline void slab_unlock(struct page *page)
369{
48c935ad 370 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
371 __bit_spin_unlock(PG_locked, &page->flags);
372}
373
1d07171c
CL
374/* Interrupts must be disabled (for the fallback code to work right) */
375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379{
380 VM_BUG_ON(!irqs_disabled());
2565409f
HC
381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 383 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 384 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
385 freelist_old, counters_old,
386 freelist_new, counters_new))
6f6528a1 387 return true;
1d07171c
CL
388 } else
389#endif
390 {
391 slab_lock(page);
d0e0ac97
CG
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
1d07171c 394 page->freelist = freelist_new;
7d27a04b 395 page->counters = counters_new;
1d07171c 396 slab_unlock(page);
6f6528a1 397 return true;
1d07171c
CL
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
407#endif
408
6f6528a1 409 return false;
1d07171c
CL
410}
411
b789ef51
CL
412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416{
2565409f
HC
417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 419 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 420 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
421 freelist_old, counters_old,
422 freelist_new, counters_new))
6f6528a1 423 return true;
b789ef51
CL
424 } else
425#endif
426 {
1d07171c
CL
427 unsigned long flags;
428
429 local_irq_save(flags);
881db7fb 430 slab_lock(page);
d0e0ac97
CG
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
b789ef51 433 page->freelist = freelist_new;
7d27a04b 434 page->counters = counters_new;
881db7fb 435 slab_unlock(page);
1d07171c 436 local_irq_restore(flags);
6f6528a1 437 return true;
b789ef51 438 }
881db7fb 439 slab_unlock(page);
1d07171c 440 local_irq_restore(flags);
b789ef51
CL
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
448#endif
449
6f6528a1 450 return false;
b789ef51
CL
451}
452
41ecc55b 453#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
454static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
455static DEFINE_SPINLOCK(object_map_lock);
456
b3fd64e1
VB
457static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
458 struct page *page)
459{
460 void *addr = page_address(page);
461 void *p;
462
463 bitmap_zero(obj_map, page->objects);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(__obj_to_index(s, addr, p), obj_map);
467}
468
1f9f78b1
OG
469#if IS_ENABLED(CONFIG_KUNIT)
470static bool slab_add_kunit_errors(void)
471{
472 struct kunit_resource *resource;
473
474 if (likely(!current->kunit_test))
475 return false;
476
477 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
478 if (!resource)
479 return false;
480
481 (*(int *)resource->data)++;
482 kunit_put_resource(resource);
483 return true;
484}
485#else
486static inline bool slab_add_kunit_errors(void) { return false; }
487#endif
488
5f80b13a
CL
489/*
490 * Determine a map of object in use on a page.
491 *
881db7fb 492 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
493 * not vanish from under us.
494 */
90e9f6a6 495static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 496 __acquires(&object_map_lock)
5f80b13a 497{
90e9f6a6
YZ
498 VM_BUG_ON(!irqs_disabled());
499
500 spin_lock(&object_map_lock);
501
b3fd64e1 502 __fill_map(object_map, s, page);
90e9f6a6
YZ
503
504 return object_map;
505}
506
81aba9e0 507static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
508{
509 VM_BUG_ON(map != object_map);
90e9f6a6 510 spin_unlock(&object_map_lock);
5f80b13a
CL
511}
512
870b1fbb 513static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
514{
515 if (s->flags & SLAB_RED_ZONE)
516 return s->size - s->red_left_pad;
517
518 return s->size;
519}
520
521static inline void *restore_red_left(struct kmem_cache *s, void *p)
522{
523 if (s->flags & SLAB_RED_ZONE)
524 p -= s->red_left_pad;
525
526 return p;
527}
528
41ecc55b
CL
529/*
530 * Debug settings:
531 */
89d3c87e 532#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 533static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 534#else
d50112ed 535static slab_flags_t slub_debug;
f0630fff 536#endif
41ecc55b 537
e17f1dfb 538static char *slub_debug_string;
fa5ec8a1 539static int disable_higher_order_debug;
41ecc55b 540
a79316c6
AR
541/*
542 * slub is about to manipulate internal object metadata. This memory lies
543 * outside the range of the allocated object, so accessing it would normally
544 * be reported by kasan as a bounds error. metadata_access_enable() is used
545 * to tell kasan that these accesses are OK.
546 */
547static inline void metadata_access_enable(void)
548{
549 kasan_disable_current();
550}
551
552static inline void metadata_access_disable(void)
553{
554 kasan_enable_current();
555}
556
81819f0f
CL
557/*
558 * Object debugging
559 */
d86bd1be
JK
560
561/* Verify that a pointer has an address that is valid within a slab page */
562static inline int check_valid_pointer(struct kmem_cache *s,
563 struct page *page, void *object)
564{
565 void *base;
566
567 if (!object)
568 return 1;
569
570 base = page_address(page);
338cfaad 571 object = kasan_reset_tag(object);
d86bd1be
JK
572 object = restore_red_left(s, object);
573 if (object < base || object >= base + page->objects * s->size ||
574 (object - base) % s->size) {
575 return 0;
576 }
577
578 return 1;
579}
580
aa2efd5e
DT
581static void print_section(char *level, char *text, u8 *addr,
582 unsigned int length)
81819f0f 583{
a79316c6 584 metadata_access_enable();
340caf17
KYL
585 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
586 16, 1, kasan_reset_tag((void *)addr), length, 1);
a79316c6 587 metadata_access_disable();
81819f0f
CL
588}
589
cbfc35a4
WL
590/*
591 * See comment in calculate_sizes().
592 */
593static inline bool freeptr_outside_object(struct kmem_cache *s)
594{
595 return s->offset >= s->inuse;
596}
597
598/*
599 * Return offset of the end of info block which is inuse + free pointer if
600 * not overlapping with object.
601 */
602static inline unsigned int get_info_end(struct kmem_cache *s)
603{
604 if (freeptr_outside_object(s))
605 return s->inuse + sizeof(void *);
606 else
607 return s->inuse;
608}
609
81819f0f
CL
610static struct track *get_track(struct kmem_cache *s, void *object,
611 enum track_item alloc)
612{
613 struct track *p;
614
cbfc35a4 615 p = object + get_info_end(s);
81819f0f 616
aa1ef4d7 617 return kasan_reset_tag(p + alloc);
81819f0f
CL
618}
619
620static void set_track(struct kmem_cache *s, void *object,
ce71e27c 621 enum track_item alloc, unsigned long addr)
81819f0f 622{
1a00df4a 623 struct track *p = get_track(s, object, alloc);
81819f0f 624
81819f0f 625 if (addr) {
ae14c63a
LT
626#ifdef CONFIG_STACKTRACE
627 unsigned int nr_entries;
628
629 metadata_access_enable();
630 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
631 TRACK_ADDRS_COUNT, 3);
632 metadata_access_disable();
633
634 if (nr_entries < TRACK_ADDRS_COUNT)
635 p->addrs[nr_entries] = 0;
d6543e39 636#endif
81819f0f
CL
637 p->addr = addr;
638 p->cpu = smp_processor_id();
88e4ccf2 639 p->pid = current->pid;
81819f0f 640 p->when = jiffies;
b8ca7ff7 641 } else {
81819f0f 642 memset(p, 0, sizeof(struct track));
b8ca7ff7 643 }
81819f0f
CL
644}
645
81819f0f
CL
646static void init_tracking(struct kmem_cache *s, void *object)
647{
24922684
CL
648 if (!(s->flags & SLAB_STORE_USER))
649 return;
650
ce71e27c
EGM
651 set_track(s, object, TRACK_FREE, 0UL);
652 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
653}
654
86609d33 655static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
656{
657 if (!t->addr)
658 return;
659
96b94abc 660 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 661 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
ae14c63a 662#ifdef CONFIG_STACKTRACE
d6543e39 663 {
ae14c63a
LT
664 int i;
665 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
666 if (t->addrs[i])
667 pr_err("\t%pS\n", (void *)t->addrs[i]);
668 else
669 break;
d6543e39
BG
670 }
671#endif
24922684
CL
672}
673
e42f174e 674void print_tracking(struct kmem_cache *s, void *object)
24922684 675{
86609d33 676 unsigned long pr_time = jiffies;
24922684
CL
677 if (!(s->flags & SLAB_STORE_USER))
678 return;
679
86609d33
CP
680 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
681 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
682}
683
684static void print_page_info(struct page *page)
685{
96b94abc 686 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
4a8ef190
YS
687 page, page->objects, page->inuse, page->freelist,
688 page->flags, &page->flags);
24922684
CL
689
690}
691
692static void slab_bug(struct kmem_cache *s, char *fmt, ...)
693{
ecc42fbe 694 struct va_format vaf;
24922684 695 va_list args;
24922684
CL
696
697 va_start(args, fmt);
ecc42fbe
FF
698 vaf.fmt = fmt;
699 vaf.va = &args;
f9f58285 700 pr_err("=============================================================================\n");
ecc42fbe 701 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 702 pr_err("-----------------------------------------------------------------------------\n\n");
ecc42fbe 703 va_end(args);
81819f0f
CL
704}
705
582d1212 706__printf(2, 3)
24922684
CL
707static void slab_fix(struct kmem_cache *s, char *fmt, ...)
708{
ecc42fbe 709 struct va_format vaf;
24922684 710 va_list args;
24922684 711
1f9f78b1
OG
712 if (slab_add_kunit_errors())
713 return;
714
24922684 715 va_start(args, fmt);
ecc42fbe
FF
716 vaf.fmt = fmt;
717 vaf.va = &args;
718 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 719 va_end(args);
24922684
CL
720}
721
52f23478 722static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 723 void **freelist, void *nextfree)
52f23478
DZ
724{
725 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
726 !check_valid_pointer(s, page, nextfree) && freelist) {
727 object_err(s, page, *freelist, "Freechain corrupt");
728 *freelist = NULL;
52f23478
DZ
729 slab_fix(s, "Isolate corrupted freechain");
730 return true;
731 }
732
733 return false;
734}
735
24922684 736static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
737{
738 unsigned int off; /* Offset of last byte */
a973e9dd 739 u8 *addr = page_address(page);
24922684
CL
740
741 print_tracking(s, p);
742
743 print_page_info(page);
744
96b94abc 745 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
f9f58285 746 p, p - addr, get_freepointer(s, p));
24922684 747
d86bd1be 748 if (s->flags & SLAB_RED_ZONE)
8669dbab 749 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
aa2efd5e 750 s->red_left_pad);
d86bd1be 751 else if (p > addr + 16)
aa2efd5e 752 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 753
8669dbab 754 print_section(KERN_ERR, "Object ", p,
1b473f29 755 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 756 if (s->flags & SLAB_RED_ZONE)
8669dbab 757 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 758 s->inuse - s->object_size);
81819f0f 759
cbfc35a4 760 off = get_info_end(s);
81819f0f 761
24922684 762 if (s->flags & SLAB_STORE_USER)
81819f0f 763 off += 2 * sizeof(struct track);
81819f0f 764
80a9201a
AP
765 off += kasan_metadata_size(s);
766
d86bd1be 767 if (off != size_from_object(s))
81819f0f 768 /* Beginning of the filler is the free pointer */
8669dbab 769 print_section(KERN_ERR, "Padding ", p + off,
aa2efd5e 770 size_from_object(s) - off);
24922684
CL
771
772 dump_stack();
81819f0f
CL
773}
774
75c66def 775void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
776 u8 *object, char *reason)
777{
1f9f78b1
OG
778 if (slab_add_kunit_errors())
779 return;
780
3dc50637 781 slab_bug(s, "%s", reason);
24922684 782 print_trailer(s, page, object);
65ebdeef 783 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
784}
785
a38965bf 786static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 787 const char *fmt, ...)
81819f0f
CL
788{
789 va_list args;
790 char buf[100];
791
1f9f78b1
OG
792 if (slab_add_kunit_errors())
793 return;
794
24922684
CL
795 va_start(args, fmt);
796 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 797 va_end(args);
3dc50637 798 slab_bug(s, "%s", buf);
24922684 799 print_page_info(page);
81819f0f 800 dump_stack();
65ebdeef 801 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
802}
803
f7cb1933 804static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 805{
aa1ef4d7 806 u8 *p = kasan_reset_tag(object);
81819f0f 807
d86bd1be
JK
808 if (s->flags & SLAB_RED_ZONE)
809 memset(p - s->red_left_pad, val, s->red_left_pad);
810
81819f0f 811 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
812 memset(p, POISON_FREE, s->object_size - 1);
813 p[s->object_size - 1] = POISON_END;
81819f0f
CL
814 }
815
816 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 817 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
818}
819
24922684
CL
820static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
821 void *from, void *to)
822{
582d1212 823 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
24922684
CL
824 memset(from, data, to - from);
825}
826
827static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
828 u8 *object, char *what,
06428780 829 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
830{
831 u8 *fault;
832 u8 *end;
e1b70dd1 833 u8 *addr = page_address(page);
24922684 834
a79316c6 835 metadata_access_enable();
aa1ef4d7 836 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 837 metadata_access_disable();
24922684
CL
838 if (!fault)
839 return 1;
840
841 end = start + bytes;
842 while (end > fault && end[-1] == value)
843 end--;
844
1f9f78b1
OG
845 if (slab_add_kunit_errors())
846 goto skip_bug_print;
847
24922684 848 slab_bug(s, "%s overwritten", what);
96b94abc 849 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
e1b70dd1
MC
850 fault, end - 1, fault - addr,
851 fault[0], value);
24922684 852 print_trailer(s, page, object);
65ebdeef 853 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
24922684 854
1f9f78b1 855skip_bug_print:
24922684
CL
856 restore_bytes(s, what, value, fault, end);
857 return 0;
81819f0f
CL
858}
859
81819f0f
CL
860/*
861 * Object layout:
862 *
863 * object address
864 * Bytes of the object to be managed.
865 * If the freepointer may overlay the object then the free
cbfc35a4 866 * pointer is at the middle of the object.
672bba3a 867 *
81819f0f
CL
868 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
869 * 0xa5 (POISON_END)
870 *
3b0efdfa 871 * object + s->object_size
81819f0f 872 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 873 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 874 * object_size == inuse.
672bba3a 875 *
81819f0f
CL
876 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
877 * 0xcc (RED_ACTIVE) for objects in use.
878 *
879 * object + s->inuse
672bba3a
CL
880 * Meta data starts here.
881 *
81819f0f
CL
882 * A. Free pointer (if we cannot overwrite object on free)
883 * B. Tracking data for SLAB_STORE_USER
dc84207d 884 * C. Padding to reach required alignment boundary or at minimum
6446faa2 885 * one word if debugging is on to be able to detect writes
672bba3a
CL
886 * before the word boundary.
887 *
888 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
889 *
890 * object + s->size
672bba3a 891 * Nothing is used beyond s->size.
81819f0f 892 *
3b0efdfa 893 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 894 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
895 * may be used with merged slabcaches.
896 */
897
81819f0f
CL
898static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
899{
cbfc35a4 900 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
901
902 if (s->flags & SLAB_STORE_USER)
903 /* We also have user information there */
904 off += 2 * sizeof(struct track);
905
80a9201a
AP
906 off += kasan_metadata_size(s);
907
d86bd1be 908 if (size_from_object(s) == off)
81819f0f
CL
909 return 1;
910
24922684 911 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 912 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
913}
914
39b26464 915/* Check the pad bytes at the end of a slab page */
81819f0f
CL
916static int slab_pad_check(struct kmem_cache *s, struct page *page)
917{
24922684
CL
918 u8 *start;
919 u8 *fault;
920 u8 *end;
5d682681 921 u8 *pad;
24922684
CL
922 int length;
923 int remainder;
81819f0f
CL
924
925 if (!(s->flags & SLAB_POISON))
926 return 1;
927
a973e9dd 928 start = page_address(page);
a50b854e 929 length = page_size(page);
39b26464
CL
930 end = start + length;
931 remainder = length % s->size;
81819f0f
CL
932 if (!remainder)
933 return 1;
934
5d682681 935 pad = end - remainder;
a79316c6 936 metadata_access_enable();
aa1ef4d7 937 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 938 metadata_access_disable();
24922684
CL
939 if (!fault)
940 return 1;
941 while (end > fault && end[-1] == POISON_INUSE)
942 end--;
943
e1b70dd1
MC
944 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
945 fault, end - 1, fault - start);
5d682681 946 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 947
5d682681 948 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 949 return 0;
81819f0f
CL
950}
951
952static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 953 void *object, u8 val)
81819f0f
CL
954{
955 u8 *p = object;
3b0efdfa 956 u8 *endobject = object + s->object_size;
81819f0f
CL
957
958 if (s->flags & SLAB_RED_ZONE) {
8669dbab 959 if (!check_bytes_and_report(s, page, object, "Left Redzone",
d86bd1be
JK
960 object - s->red_left_pad, val, s->red_left_pad))
961 return 0;
962
8669dbab 963 if (!check_bytes_and_report(s, page, object, "Right Redzone",
3b0efdfa 964 endobject, val, s->inuse - s->object_size))
81819f0f 965 return 0;
81819f0f 966 } else {
3b0efdfa 967 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 968 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
969 endobject, POISON_INUSE,
970 s->inuse - s->object_size);
3adbefee 971 }
81819f0f
CL
972 }
973
974 if (s->flags & SLAB_POISON) {
f7cb1933 975 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 976 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 977 POISON_FREE, s->object_size - 1) ||
8669dbab 978 !check_bytes_and_report(s, page, p, "End Poison",
3b0efdfa 979 p + s->object_size - 1, POISON_END, 1)))
81819f0f 980 return 0;
81819f0f
CL
981 /*
982 * check_pad_bytes cleans up on its own.
983 */
984 check_pad_bytes(s, page, p);
985 }
986
cbfc35a4 987 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
988 /*
989 * Object and freepointer overlap. Cannot check
990 * freepointer while object is allocated.
991 */
992 return 1;
993
994 /* Check free pointer validity */
995 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
996 object_err(s, page, p, "Freepointer corrupt");
997 /*
9f6c708e 998 * No choice but to zap it and thus lose the remainder
81819f0f 999 * of the free objects in this slab. May cause
672bba3a 1000 * another error because the object count is now wrong.
81819f0f 1001 */
a973e9dd 1002 set_freepointer(s, p, NULL);
81819f0f
CL
1003 return 0;
1004 }
1005 return 1;
1006}
1007
1008static int check_slab(struct kmem_cache *s, struct page *page)
1009{
39b26464
CL
1010 int maxobj;
1011
81819f0f
CL
1012 VM_BUG_ON(!irqs_disabled());
1013
1014 if (!PageSlab(page)) {
24922684 1015 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
1016 return 0;
1017 }
39b26464 1018
9736d2a9 1019 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
1020 if (page->objects > maxobj) {
1021 slab_err(s, page, "objects %u > max %u",
f6edde9c 1022 page->objects, maxobj);
39b26464
CL
1023 return 0;
1024 }
1025 if (page->inuse > page->objects) {
24922684 1026 slab_err(s, page, "inuse %u > max %u",
f6edde9c 1027 page->inuse, page->objects);
81819f0f
CL
1028 return 0;
1029 }
1030 /* Slab_pad_check fixes things up after itself */
1031 slab_pad_check(s, page);
1032 return 1;
1033}
1034
1035/*
672bba3a
CL
1036 * Determine if a certain object on a page is on the freelist. Must hold the
1037 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
1038 */
1039static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1040{
1041 int nr = 0;
881db7fb 1042 void *fp;
81819f0f 1043 void *object = NULL;
f6edde9c 1044 int max_objects;
81819f0f 1045
881db7fb 1046 fp = page->freelist;
39b26464 1047 while (fp && nr <= page->objects) {
81819f0f
CL
1048 if (fp == search)
1049 return 1;
1050 if (!check_valid_pointer(s, page, fp)) {
1051 if (object) {
1052 object_err(s, page, object,
1053 "Freechain corrupt");
a973e9dd 1054 set_freepointer(s, object, NULL);
81819f0f 1055 } else {
24922684 1056 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1057 page->freelist = NULL;
39b26464 1058 page->inuse = page->objects;
24922684 1059 slab_fix(s, "Freelist cleared");
81819f0f
CL
1060 return 0;
1061 }
1062 break;
1063 }
1064 object = fp;
1065 fp = get_freepointer(s, object);
1066 nr++;
1067 }
1068
9736d2a9 1069 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1070 if (max_objects > MAX_OBJS_PER_PAGE)
1071 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1072
1073 if (page->objects != max_objects) {
756a025f
JP
1074 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1075 page->objects, max_objects);
224a88be 1076 page->objects = max_objects;
582d1212 1077 slab_fix(s, "Number of objects adjusted");
224a88be 1078 }
39b26464 1079 if (page->inuse != page->objects - nr) {
756a025f
JP
1080 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1081 page->inuse, page->objects - nr);
39b26464 1082 page->inuse = page->objects - nr;
582d1212 1083 slab_fix(s, "Object count adjusted");
81819f0f
CL
1084 }
1085 return search == NULL;
1086}
1087
0121c619
CL
1088static void trace(struct kmem_cache *s, struct page *page, void *object,
1089 int alloc)
3ec09742
CL
1090{
1091 if (s->flags & SLAB_TRACE) {
f9f58285 1092 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1093 s->name,
1094 alloc ? "alloc" : "free",
1095 object, page->inuse,
1096 page->freelist);
1097
1098 if (!alloc)
aa2efd5e 1099 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1100 s->object_size);
3ec09742
CL
1101
1102 dump_stack();
1103 }
1104}
1105
643b1138 1106/*
672bba3a 1107 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1108 */
5cc6eee8
CL
1109static void add_full(struct kmem_cache *s,
1110 struct kmem_cache_node *n, struct page *page)
643b1138 1111{
5cc6eee8
CL
1112 if (!(s->flags & SLAB_STORE_USER))
1113 return;
1114
255d0884 1115 lockdep_assert_held(&n->list_lock);
916ac052 1116 list_add(&page->slab_list, &n->full);
643b1138
CL
1117}
1118
c65c1877 1119static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1120{
643b1138
CL
1121 if (!(s->flags & SLAB_STORE_USER))
1122 return;
1123
255d0884 1124 lockdep_assert_held(&n->list_lock);
916ac052 1125 list_del(&page->slab_list);
643b1138
CL
1126}
1127
0f389ec6
CL
1128/* Tracking of the number of slabs for debugging purposes */
1129static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1130{
1131 struct kmem_cache_node *n = get_node(s, node);
1132
1133 return atomic_long_read(&n->nr_slabs);
1134}
1135
26c02cf0
AB
1136static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1137{
1138 return atomic_long_read(&n->nr_slabs);
1139}
1140
205ab99d 1141static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1142{
1143 struct kmem_cache_node *n = get_node(s, node);
1144
1145 /*
1146 * May be called early in order to allocate a slab for the
1147 * kmem_cache_node structure. Solve the chicken-egg
1148 * dilemma by deferring the increment of the count during
1149 * bootstrap (see early_kmem_cache_node_alloc).
1150 */
338b2642 1151 if (likely(n)) {
0f389ec6 1152 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1153 atomic_long_add(objects, &n->total_objects);
1154 }
0f389ec6 1155}
205ab99d 1156static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1157{
1158 struct kmem_cache_node *n = get_node(s, node);
1159
1160 atomic_long_dec(&n->nr_slabs);
205ab99d 1161 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1162}
1163
1164/* Object debug checks for alloc/free paths */
3ec09742
CL
1165static void setup_object_debug(struct kmem_cache *s, struct page *page,
1166 void *object)
1167{
8fc8d666 1168 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1169 return;
1170
f7cb1933 1171 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1172 init_tracking(s, object);
1173}
1174
a50b854e
MWO
1175static
1176void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1177{
8fc8d666 1178 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1179 return;
1180
1181 metadata_access_enable();
aa1ef4d7 1182 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1183 metadata_access_disable();
1184}
1185
becfda68 1186static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1187 struct page *page, void *object)
81819f0f
CL
1188{
1189 if (!check_slab(s, page))
becfda68 1190 return 0;
81819f0f 1191
81819f0f
CL
1192 if (!check_valid_pointer(s, page, object)) {
1193 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1194 return 0;
81819f0f
CL
1195 }
1196
f7cb1933 1197 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1198 return 0;
1199
1200 return 1;
1201}
1202
1203static noinline int alloc_debug_processing(struct kmem_cache *s,
1204 struct page *page,
1205 void *object, unsigned long addr)
1206{
1207 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1208 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1209 goto bad;
1210 }
81819f0f 1211
3ec09742
CL
1212 /* Success perform special debug activities for allocs */
1213 if (s->flags & SLAB_STORE_USER)
1214 set_track(s, object, TRACK_ALLOC, addr);
1215 trace(s, page, object, 1);
f7cb1933 1216 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1217 return 1;
3ec09742 1218
81819f0f
CL
1219bad:
1220 if (PageSlab(page)) {
1221 /*
1222 * If this is a slab page then lets do the best we can
1223 * to avoid issues in the future. Marking all objects
672bba3a 1224 * as used avoids touching the remaining objects.
81819f0f 1225 */
24922684 1226 slab_fix(s, "Marking all objects used");
39b26464 1227 page->inuse = page->objects;
a973e9dd 1228 page->freelist = NULL;
81819f0f
CL
1229 }
1230 return 0;
1231}
1232
becfda68
LA
1233static inline int free_consistency_checks(struct kmem_cache *s,
1234 struct page *page, void *object, unsigned long addr)
81819f0f 1235{
81819f0f 1236 if (!check_valid_pointer(s, page, object)) {
70d71228 1237 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1238 return 0;
81819f0f
CL
1239 }
1240
1241 if (on_freelist(s, page, object)) {
24922684 1242 object_err(s, page, object, "Object already free");
becfda68 1243 return 0;
81819f0f
CL
1244 }
1245
f7cb1933 1246 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1247 return 0;
81819f0f 1248
1b4f59e3 1249 if (unlikely(s != page->slab_cache)) {
3adbefee 1250 if (!PageSlab(page)) {
756a025f
JP
1251 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1252 object);
1b4f59e3 1253 } else if (!page->slab_cache) {
f9f58285
FF
1254 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1255 object);
70d71228 1256 dump_stack();
06428780 1257 } else
24922684
CL
1258 object_err(s, page, object,
1259 "page slab pointer corrupt.");
becfda68
LA
1260 return 0;
1261 }
1262 return 1;
1263}
1264
1265/* Supports checking bulk free of a constructed freelist */
1266static noinline int free_debug_processing(
1267 struct kmem_cache *s, struct page *page,
1268 void *head, void *tail, int bulk_cnt,
1269 unsigned long addr)
1270{
1271 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1272 void *object = head;
1273 int cnt = 0;
3f649ab7 1274 unsigned long flags;
becfda68
LA
1275 int ret = 0;
1276
1277 spin_lock_irqsave(&n->list_lock, flags);
1278 slab_lock(page);
1279
1280 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1281 if (!check_slab(s, page))
1282 goto out;
1283 }
1284
1285next_object:
1286 cnt++;
1287
1288 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1289 if (!free_consistency_checks(s, page, object, addr))
1290 goto out;
81819f0f 1291 }
3ec09742 1292
3ec09742
CL
1293 if (s->flags & SLAB_STORE_USER)
1294 set_track(s, object, TRACK_FREE, addr);
1295 trace(s, page, object, 0);
81084651 1296 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1297 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1298
1299 /* Reached end of constructed freelist yet? */
1300 if (object != tail) {
1301 object = get_freepointer(s, object);
1302 goto next_object;
1303 }
804aa132
LA
1304 ret = 1;
1305
5c2e4bbb 1306out:
81084651
JDB
1307 if (cnt != bulk_cnt)
1308 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1309 bulk_cnt, cnt);
1310
881db7fb 1311 slab_unlock(page);
282acb43 1312 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1313 if (!ret)
1314 slab_fix(s, "Object at 0x%p not freed", object);
1315 return ret;
81819f0f
CL
1316}
1317
e17f1dfb
VB
1318/*
1319 * Parse a block of slub_debug options. Blocks are delimited by ';'
1320 *
1321 * @str: start of block
1322 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1323 * @slabs: return start of list of slabs, or NULL when there's no list
1324 * @init: assume this is initial parsing and not per-kmem-create parsing
1325 *
1326 * returns the start of next block if there's any, or NULL
1327 */
1328static char *
1329parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1330{
e17f1dfb 1331 bool higher_order_disable = false;
f0630fff 1332
e17f1dfb
VB
1333 /* Skip any completely empty blocks */
1334 while (*str && *str == ';')
1335 str++;
1336
1337 if (*str == ',') {
f0630fff
CL
1338 /*
1339 * No options but restriction on slabs. This means full
1340 * debugging for slabs matching a pattern.
1341 */
e17f1dfb 1342 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1343 goto check_slabs;
e17f1dfb
VB
1344 }
1345 *flags = 0;
f0630fff 1346
e17f1dfb
VB
1347 /* Determine which debug features should be switched on */
1348 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1349 switch (tolower(*str)) {
e17f1dfb
VB
1350 case '-':
1351 *flags = 0;
1352 break;
f0630fff 1353 case 'f':
e17f1dfb 1354 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1355 break;
1356 case 'z':
e17f1dfb 1357 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1358 break;
1359 case 'p':
e17f1dfb 1360 *flags |= SLAB_POISON;
f0630fff
CL
1361 break;
1362 case 'u':
e17f1dfb 1363 *flags |= SLAB_STORE_USER;
f0630fff
CL
1364 break;
1365 case 't':
e17f1dfb 1366 *flags |= SLAB_TRACE;
f0630fff 1367 break;
4c13dd3b 1368 case 'a':
e17f1dfb 1369 *flags |= SLAB_FAILSLAB;
4c13dd3b 1370 break;
08303a73
CA
1371 case 'o':
1372 /*
1373 * Avoid enabling debugging on caches if its minimum
1374 * order would increase as a result.
1375 */
e17f1dfb 1376 higher_order_disable = true;
08303a73 1377 break;
f0630fff 1378 default:
e17f1dfb
VB
1379 if (init)
1380 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1381 }
41ecc55b 1382 }
f0630fff 1383check_slabs:
41ecc55b 1384 if (*str == ',')
e17f1dfb
VB
1385 *slabs = ++str;
1386 else
1387 *slabs = NULL;
1388
1389 /* Skip over the slab list */
1390 while (*str && *str != ';')
1391 str++;
1392
1393 /* Skip any completely empty blocks */
1394 while (*str && *str == ';')
1395 str++;
1396
1397 if (init && higher_order_disable)
1398 disable_higher_order_debug = 1;
1399
1400 if (*str)
1401 return str;
1402 else
1403 return NULL;
1404}
1405
1406static int __init setup_slub_debug(char *str)
1407{
1408 slab_flags_t flags;
a7f1d485 1409 slab_flags_t global_flags;
e17f1dfb
VB
1410 char *saved_str;
1411 char *slab_list;
1412 bool global_slub_debug_changed = false;
1413 bool slab_list_specified = false;
1414
a7f1d485 1415 global_flags = DEBUG_DEFAULT_FLAGS;
e17f1dfb
VB
1416 if (*str++ != '=' || !*str)
1417 /*
1418 * No options specified. Switch on full debugging.
1419 */
1420 goto out;
1421
1422 saved_str = str;
1423 while (str) {
1424 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1425
1426 if (!slab_list) {
a7f1d485 1427 global_flags = flags;
e17f1dfb
VB
1428 global_slub_debug_changed = true;
1429 } else {
1430 slab_list_specified = true;
1431 }
1432 }
1433
1434 /*
1435 * For backwards compatibility, a single list of flags with list of
a7f1d485
VB
1436 * slabs means debugging is only changed for those slabs, so the global
1437 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1438 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
e17f1dfb
VB
1439 * long as there is no option specifying flags without a slab list.
1440 */
1441 if (slab_list_specified) {
1442 if (!global_slub_debug_changed)
a7f1d485 1443 global_flags = slub_debug;
e17f1dfb
VB
1444 slub_debug_string = saved_str;
1445 }
f0630fff 1446out:
a7f1d485 1447 slub_debug = global_flags;
ca0cab65
VB
1448 if (slub_debug != 0 || slub_debug_string)
1449 static_branch_enable(&slub_debug_enabled);
02ac47d0
SB
1450 else
1451 static_branch_disable(&slub_debug_enabled);
6471384a
AP
1452 if ((static_branch_unlikely(&init_on_alloc) ||
1453 static_branch_unlikely(&init_on_free)) &&
1454 (slub_debug & SLAB_POISON))
1455 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1456 return 1;
1457}
1458
1459__setup("slub_debug", setup_slub_debug);
1460
c5fd3ca0
AT
1461/*
1462 * kmem_cache_flags - apply debugging options to the cache
1463 * @object_size: the size of an object without meta data
1464 * @flags: flags to set
1465 * @name: name of the cache
c5fd3ca0
AT
1466 *
1467 * Debug option(s) are applied to @flags. In addition to the debug
1468 * option(s), if a slab name (or multiple) is specified i.e.
1469 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1470 * then only the select slabs will receive the debug option(s).
1471 */
0293d1fd 1472slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1473 slab_flags_t flags, const char *name)
41ecc55b 1474{
c5fd3ca0
AT
1475 char *iter;
1476 size_t len;
e17f1dfb
VB
1477 char *next_block;
1478 slab_flags_t block_flags;
ca220593
JB
1479 slab_flags_t slub_debug_local = slub_debug;
1480
1481 /*
1482 * If the slab cache is for debugging (e.g. kmemleak) then
1483 * don't store user (stack trace) information by default,
1484 * but let the user enable it via the command line below.
1485 */
1486 if (flags & SLAB_NOLEAKTRACE)
1487 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1488
c5fd3ca0 1489 len = strlen(name);
e17f1dfb
VB
1490 next_block = slub_debug_string;
1491 /* Go through all blocks of debug options, see if any matches our slab's name */
1492 while (next_block) {
1493 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1494 if (!iter)
1495 continue;
1496 /* Found a block that has a slab list, search it */
1497 while (*iter) {
1498 char *end, *glob;
1499 size_t cmplen;
1500
1501 end = strchrnul(iter, ',');
1502 if (next_block && next_block < end)
1503 end = next_block - 1;
1504
1505 glob = strnchr(iter, end - iter, '*');
1506 if (glob)
1507 cmplen = glob - iter;
1508 else
1509 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1510
e17f1dfb
VB
1511 if (!strncmp(name, iter, cmplen)) {
1512 flags |= block_flags;
1513 return flags;
1514 }
c5fd3ca0 1515
e17f1dfb
VB
1516 if (!*end || *end == ';')
1517 break;
1518 iter = end + 1;
c5fd3ca0 1519 }
c5fd3ca0 1520 }
ba0268a8 1521
ca220593 1522 return flags | slub_debug_local;
41ecc55b 1523}
b4a64718 1524#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1525static inline void setup_object_debug(struct kmem_cache *s,
1526 struct page *page, void *object) {}
a50b854e
MWO
1527static inline
1528void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1529
3ec09742 1530static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1531 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1532
282acb43 1533static inline int free_debug_processing(
81084651
JDB
1534 struct kmem_cache *s, struct page *page,
1535 void *head, void *tail, int bulk_cnt,
282acb43 1536 unsigned long addr) { return 0; }
41ecc55b 1537
41ecc55b
CL
1538static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1539 { return 1; }
1540static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1541 void *object, u8 val) { return 1; }
5cc6eee8
CL
1542static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1543 struct page *page) {}
c65c1877
PZ
1544static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1545 struct page *page) {}
0293d1fd 1546slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1547 slab_flags_t flags, const char *name)
ba0268a8
CL
1548{
1549 return flags;
1550}
41ecc55b 1551#define slub_debug 0
0f389ec6 1552
fdaa45e9
IM
1553#define disable_higher_order_debug 0
1554
0f389ec6
CL
1555static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1556 { return 0; }
26c02cf0
AB
1557static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1558 { return 0; }
205ab99d
CL
1559static inline void inc_slabs_node(struct kmem_cache *s, int node,
1560 int objects) {}
1561static inline void dec_slabs_node(struct kmem_cache *s, int node,
1562 int objects) {}
7d550c56 1563
52f23478 1564static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1565 void **freelist, void *nextfree)
52f23478
DZ
1566{
1567 return false;
1568}
02e72cc6
AR
1569#endif /* CONFIG_SLUB_DEBUG */
1570
1571/*
1572 * Hooks for other subsystems that check memory allocations. In a typical
1573 * production configuration these hooks all should produce no code at all.
1574 */
0116523c 1575static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1576{
53128245 1577 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1578 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1579 kmemleak_alloc(ptr, size, 1, flags);
53128245 1580 return ptr;
d56791b3
RB
1581}
1582
ee3ce779 1583static __always_inline void kfree_hook(void *x)
d56791b3
RB
1584{
1585 kmemleak_free(x);
027b37b5 1586 kasan_kfree_large(x);
d56791b3
RB
1587}
1588
d57a964e
AK
1589static __always_inline bool slab_free_hook(struct kmem_cache *s,
1590 void *x, bool init)
d56791b3
RB
1591{
1592 kmemleak_free_recursive(x, s->flags);
7d550c56 1593
84048039 1594 debug_check_no_locks_freed(x, s->object_size);
02e72cc6 1595
02e72cc6
AR
1596 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1597 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1598
cfbe1636
ME
1599 /* Use KCSAN to help debug racy use-after-free. */
1600 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1601 __kcsan_check_access(x, s->object_size,
1602 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1603
d57a964e
AK
1604 /*
1605 * As memory initialization might be integrated into KASAN,
1606 * kasan_slab_free and initialization memset's must be
1607 * kept together to avoid discrepancies in behavior.
1608 *
1609 * The initialization memset's clear the object and the metadata,
1610 * but don't touch the SLAB redzone.
1611 */
1612 if (init) {
1613 int rsize;
1614
1615 if (!kasan_has_integrated_init())
1616 memset(kasan_reset_tag(x), 0, s->object_size);
1617 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1618 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1619 s->size - s->inuse - rsize);
1620 }
1621 /* KASAN might put x into memory quarantine, delaying its reuse. */
1622 return kasan_slab_free(s, x, init);
02e72cc6 1623}
205ab99d 1624
c3895391
AK
1625static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1626 void **head, void **tail)
81084651 1627{
6471384a
AP
1628
1629 void *object;
1630 void *next = *head;
1631 void *old_tail = *tail ? *tail : *head;
6471384a 1632
b89fb5ef 1633 if (is_kfence_address(next)) {
d57a964e 1634 slab_free_hook(s, next, false);
b89fb5ef
AP
1635 return true;
1636 }
1637
aea4df4c
LA
1638 /* Head and tail of the reconstructed freelist */
1639 *head = NULL;
1640 *tail = NULL;
1b7e816f 1641
aea4df4c
LA
1642 do {
1643 object = next;
1644 next = get_freepointer(s, object);
1645
c3895391 1646 /* If object's reuse doesn't have to be delayed */
d57a964e 1647 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
c3895391
AK
1648 /* Move object to the new freelist */
1649 set_freepointer(s, object, *head);
1650 *head = object;
1651 if (!*tail)
1652 *tail = object;
1653 }
1654 } while (object != old_tail);
1655
1656 if (*head == *tail)
1657 *tail = NULL;
1658
1659 return *head != NULL;
81084651
JDB
1660}
1661
4d176711 1662static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1663 void *object)
1664{
1665 setup_object_debug(s, page, object);
4d176711 1666 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1667 if (unlikely(s->ctor)) {
1668 kasan_unpoison_object_data(s, object);
1669 s->ctor(object);
1670 kasan_poison_object_data(s, object);
1671 }
4d176711 1672 return object;
588f8ba9
TG
1673}
1674
81819f0f
CL
1675/*
1676 * Slab allocation and freeing
1677 */
5dfb4175
VD
1678static inline struct page *alloc_slab_page(struct kmem_cache *s,
1679 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1680{
5dfb4175 1681 struct page *page;
19af27af 1682 unsigned int order = oo_order(oo);
65c3376a 1683
2154a336 1684 if (node == NUMA_NO_NODE)
5dfb4175 1685 page = alloc_pages(flags, order);
65c3376a 1686 else
96db800f 1687 page = __alloc_pages_node(node, flags, order);
5dfb4175 1688
5dfb4175 1689 return page;
65c3376a
CL
1690}
1691
210e7a43
TG
1692#ifdef CONFIG_SLAB_FREELIST_RANDOM
1693/* Pre-initialize the random sequence cache */
1694static int init_cache_random_seq(struct kmem_cache *s)
1695{
19af27af 1696 unsigned int count = oo_objects(s->oo);
210e7a43 1697 int err;
210e7a43 1698
a810007a
SR
1699 /* Bailout if already initialised */
1700 if (s->random_seq)
1701 return 0;
1702
210e7a43
TG
1703 err = cache_random_seq_create(s, count, GFP_KERNEL);
1704 if (err) {
1705 pr_err("SLUB: Unable to initialize free list for %s\n",
1706 s->name);
1707 return err;
1708 }
1709
1710 /* Transform to an offset on the set of pages */
1711 if (s->random_seq) {
19af27af
AD
1712 unsigned int i;
1713
210e7a43
TG
1714 for (i = 0; i < count; i++)
1715 s->random_seq[i] *= s->size;
1716 }
1717 return 0;
1718}
1719
1720/* Initialize each random sequence freelist per cache */
1721static void __init init_freelist_randomization(void)
1722{
1723 struct kmem_cache *s;
1724
1725 mutex_lock(&slab_mutex);
1726
1727 list_for_each_entry(s, &slab_caches, list)
1728 init_cache_random_seq(s);
1729
1730 mutex_unlock(&slab_mutex);
1731}
1732
1733/* Get the next entry on the pre-computed freelist randomized */
1734static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1735 unsigned long *pos, void *start,
1736 unsigned long page_limit,
1737 unsigned long freelist_count)
1738{
1739 unsigned int idx;
1740
1741 /*
1742 * If the target page allocation failed, the number of objects on the
1743 * page might be smaller than the usual size defined by the cache.
1744 */
1745 do {
1746 idx = s->random_seq[*pos];
1747 *pos += 1;
1748 if (*pos >= freelist_count)
1749 *pos = 0;
1750 } while (unlikely(idx >= page_limit));
1751
1752 return (char *)start + idx;
1753}
1754
1755/* Shuffle the single linked freelist based on a random pre-computed sequence */
1756static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1757{
1758 void *start;
1759 void *cur;
1760 void *next;
1761 unsigned long idx, pos, page_limit, freelist_count;
1762
1763 if (page->objects < 2 || !s->random_seq)
1764 return false;
1765
1766 freelist_count = oo_objects(s->oo);
1767 pos = get_random_int() % freelist_count;
1768
1769 page_limit = page->objects * s->size;
1770 start = fixup_red_left(s, page_address(page));
1771
1772 /* First entry is used as the base of the freelist */
1773 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1774 freelist_count);
4d176711 1775 cur = setup_object(s, page, cur);
210e7a43
TG
1776 page->freelist = cur;
1777
1778 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1779 next = next_freelist_entry(s, page, &pos, start, page_limit,
1780 freelist_count);
4d176711 1781 next = setup_object(s, page, next);
210e7a43
TG
1782 set_freepointer(s, cur, next);
1783 cur = next;
1784 }
210e7a43
TG
1785 set_freepointer(s, cur, NULL);
1786
1787 return true;
1788}
1789#else
1790static inline int init_cache_random_seq(struct kmem_cache *s)
1791{
1792 return 0;
1793}
1794static inline void init_freelist_randomization(void) { }
1795static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1796{
1797 return false;
1798}
1799#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1800
81819f0f
CL
1801static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1802{
06428780 1803 struct page *page;
834f3d11 1804 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1805 gfp_t alloc_gfp;
4d176711 1806 void *start, *p, *next;
a50b854e 1807 int idx;
210e7a43 1808 bool shuffle;
81819f0f 1809
7e0528da
CL
1810 flags &= gfp_allowed_mask;
1811
d0164adc 1812 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1813 local_irq_enable();
1814
b7a49f0d 1815 flags |= s->allocflags;
e12ba74d 1816
ba52270d
PE
1817 /*
1818 * Let the initial higher-order allocation fail under memory pressure
1819 * so we fall-back to the minimum order allocation.
1820 */
1821 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1822 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1823 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1824
5dfb4175 1825 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1826 if (unlikely(!page)) {
1827 oo = s->min;
80c3a998 1828 alloc_gfp = flags;
65c3376a
CL
1829 /*
1830 * Allocation may have failed due to fragmentation.
1831 * Try a lower order alloc if possible
1832 */
5dfb4175 1833 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1834 if (unlikely(!page))
1835 goto out;
1836 stat(s, ORDER_FALLBACK);
65c3376a 1837 }
5a896d9e 1838
834f3d11 1839 page->objects = oo_objects(oo);
81819f0f 1840
2e9bd483 1841 account_slab_page(page, oo_order(oo), s, flags);
1f3147b4 1842
1b4f59e3 1843 page->slab_cache = s;
c03f94cc 1844 __SetPageSlab(page);
2f064f34 1845 if (page_is_pfmemalloc(page))
072bb0aa 1846 SetPageSlabPfmemalloc(page);
81819f0f 1847
a7101224 1848 kasan_poison_slab(page);
81819f0f 1849
a7101224 1850 start = page_address(page);
81819f0f 1851
a50b854e 1852 setup_page_debug(s, page, start);
0316bec2 1853
210e7a43
TG
1854 shuffle = shuffle_freelist(s, page);
1855
1856 if (!shuffle) {
4d176711
AK
1857 start = fixup_red_left(s, start);
1858 start = setup_object(s, page, start);
1859 page->freelist = start;
18e50661
AK
1860 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1861 next = p + s->size;
1862 next = setup_object(s, page, next);
1863 set_freepointer(s, p, next);
1864 p = next;
1865 }
1866 set_freepointer(s, p, NULL);
81819f0f 1867 }
81819f0f 1868
e6e82ea1 1869 page->inuse = page->objects;
8cb0a506 1870 page->frozen = 1;
588f8ba9 1871
81819f0f 1872out:
d0164adc 1873 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1874 local_irq_disable();
1875 if (!page)
1876 return NULL;
1877
588f8ba9
TG
1878 inc_slabs_node(s, page_to_nid(page), page->objects);
1879
81819f0f
CL
1880 return page;
1881}
1882
588f8ba9
TG
1883static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1884{
44405099
LL
1885 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1886 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1887
1888 return allocate_slab(s,
1889 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1890}
1891
81819f0f
CL
1892static void __free_slab(struct kmem_cache *s, struct page *page)
1893{
834f3d11
CL
1894 int order = compound_order(page);
1895 int pages = 1 << order;
81819f0f 1896
8fc8d666 1897 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1898 void *p;
1899
1900 slab_pad_check(s, page);
224a88be
CL
1901 for_each_object(p, s, page_address(page),
1902 page->objects)
f7cb1933 1903 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1904 }
1905
072bb0aa 1906 __ClearPageSlabPfmemalloc(page);
49bd5221 1907 __ClearPageSlab(page);
0c06dd75
VB
1908 /* In union with page->mapping where page allocator expects NULL */
1909 page->slab_cache = NULL;
1eb5ac64
NP
1910 if (current->reclaim_state)
1911 current->reclaim_state->reclaimed_slab += pages;
74d555be 1912 unaccount_slab_page(page, order, s);
27ee57c9 1913 __free_pages(page, order);
81819f0f
CL
1914}
1915
1916static void rcu_free_slab(struct rcu_head *h)
1917{
bf68c214 1918 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1919
1b4f59e3 1920 __free_slab(page->slab_cache, page);
81819f0f
CL
1921}
1922
1923static void free_slab(struct kmem_cache *s, struct page *page)
1924{
5f0d5a3a 1925 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1926 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1927 } else
1928 __free_slab(s, page);
1929}
1930
1931static void discard_slab(struct kmem_cache *s, struct page *page)
1932{
205ab99d 1933 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1934 free_slab(s, page);
1935}
1936
1937/*
5cc6eee8 1938 * Management of partially allocated slabs.
81819f0f 1939 */
1e4dd946
SR
1940static inline void
1941__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1942{
e95eed57 1943 n->nr_partial++;
136333d1 1944 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1945 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1946 else
916ac052 1947 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1948}
1949
1e4dd946
SR
1950static inline void add_partial(struct kmem_cache_node *n,
1951 struct page *page, int tail)
62e346a8 1952{
c65c1877 1953 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1954 __add_partial(n, page, tail);
1955}
c65c1877 1956
1e4dd946
SR
1957static inline void remove_partial(struct kmem_cache_node *n,
1958 struct page *page)
1959{
1960 lockdep_assert_held(&n->list_lock);
916ac052 1961 list_del(&page->slab_list);
52b4b950 1962 n->nr_partial--;
1e4dd946
SR
1963}
1964
81819f0f 1965/*
7ced3719
CL
1966 * Remove slab from the partial list, freeze it and
1967 * return the pointer to the freelist.
81819f0f 1968 *
497b66f2 1969 * Returns a list of objects or NULL if it fails.
81819f0f 1970 */
497b66f2 1971static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1972 struct kmem_cache_node *n, struct page *page,
633b0764 1973 int mode, int *objects)
81819f0f 1974{
2cfb7455
CL
1975 void *freelist;
1976 unsigned long counters;
1977 struct page new;
1978
c65c1877
PZ
1979 lockdep_assert_held(&n->list_lock);
1980
2cfb7455
CL
1981 /*
1982 * Zap the freelist and set the frozen bit.
1983 * The old freelist is the list of objects for the
1984 * per cpu allocation list.
1985 */
7ced3719
CL
1986 freelist = page->freelist;
1987 counters = page->counters;
1988 new.counters = counters;
633b0764 1989 *objects = new.objects - new.inuse;
23910c50 1990 if (mode) {
7ced3719 1991 new.inuse = page->objects;
23910c50
PE
1992 new.freelist = NULL;
1993 } else {
1994 new.freelist = freelist;
1995 }
2cfb7455 1996
a0132ac0 1997 VM_BUG_ON(new.frozen);
7ced3719 1998 new.frozen = 1;
2cfb7455 1999
7ced3719 2000 if (!__cmpxchg_double_slab(s, page,
2cfb7455 2001 freelist, counters,
02d7633f 2002 new.freelist, new.counters,
7ced3719 2003 "acquire_slab"))
7ced3719 2004 return NULL;
2cfb7455
CL
2005
2006 remove_partial(n, page);
7ced3719 2007 WARN_ON(!freelist);
49e22585 2008 return freelist;
81819f0f
CL
2009}
2010
633b0764 2011static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 2012static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 2013
81819f0f 2014/*
672bba3a 2015 * Try to allocate a partial slab from a specific node.
81819f0f 2016 */
8ba00bb6
JK
2017static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2018 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 2019{
49e22585
CL
2020 struct page *page, *page2;
2021 void *object = NULL;
e5d9998f 2022 unsigned int available = 0;
633b0764 2023 int objects;
81819f0f
CL
2024
2025 /*
2026 * Racy check. If we mistakenly see no partial slabs then we
2027 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 2028 * partial slab and there is none available then get_partial()
672bba3a 2029 * will return NULL.
81819f0f
CL
2030 */
2031 if (!n || !n->nr_partial)
2032 return NULL;
2033
2034 spin_lock(&n->list_lock);
916ac052 2035 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 2036 void *t;
49e22585 2037
8ba00bb6
JK
2038 if (!pfmemalloc_match(page, flags))
2039 continue;
2040
633b0764 2041 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 2042 if (!t)
9b1ea29b 2043 break;
49e22585 2044
633b0764 2045 available += objects;
12d79634 2046 if (!object) {
49e22585 2047 c->page = page;
49e22585 2048 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2049 object = t;
49e22585 2050 } else {
633b0764 2051 put_cpu_partial(s, page, 0);
8028dcea 2052 stat(s, CPU_PARTIAL_NODE);
49e22585 2053 }
345c905d 2054 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 2055 || available > slub_cpu_partial(s) / 2)
49e22585
CL
2056 break;
2057
497b66f2 2058 }
81819f0f 2059 spin_unlock(&n->list_lock);
497b66f2 2060 return object;
81819f0f
CL
2061}
2062
2063/*
672bba3a 2064 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2065 */
de3ec035 2066static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2067 struct kmem_cache_cpu *c)
81819f0f
CL
2068{
2069#ifdef CONFIG_NUMA
2070 struct zonelist *zonelist;
dd1a239f 2071 struct zoneref *z;
54a6eb5c 2072 struct zone *zone;
97a225e6 2073 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2074 void *object;
cc9a6c87 2075 unsigned int cpuset_mems_cookie;
81819f0f
CL
2076
2077 /*
672bba3a
CL
2078 * The defrag ratio allows a configuration of the tradeoffs between
2079 * inter node defragmentation and node local allocations. A lower
2080 * defrag_ratio increases the tendency to do local allocations
2081 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2082 *
672bba3a
CL
2083 * If the defrag_ratio is set to 0 then kmalloc() always
2084 * returns node local objects. If the ratio is higher then kmalloc()
2085 * may return off node objects because partial slabs are obtained
2086 * from other nodes and filled up.
81819f0f 2087 *
43efd3ea
LP
2088 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2089 * (which makes defrag_ratio = 1000) then every (well almost)
2090 * allocation will first attempt to defrag slab caches on other nodes.
2091 * This means scanning over all nodes to look for partial slabs which
2092 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2093 * with available objects.
81819f0f 2094 */
9824601e
CL
2095 if (!s->remote_node_defrag_ratio ||
2096 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2097 return NULL;
2098
cc9a6c87 2099 do {
d26914d1 2100 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2101 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2102 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2103 struct kmem_cache_node *n;
2104
2105 n = get_node(s, zone_to_nid(zone));
2106
dee2f8aa 2107 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2108 n->nr_partial > s->min_partial) {
8ba00bb6 2109 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2110 if (object) {
2111 /*
d26914d1
MG
2112 * Don't check read_mems_allowed_retry()
2113 * here - if mems_allowed was updated in
2114 * parallel, that was a harmless race
2115 * between allocation and the cpuset
2116 * update
cc9a6c87 2117 */
cc9a6c87
MG
2118 return object;
2119 }
c0ff7453 2120 }
81819f0f 2121 }
d26914d1 2122 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2123#endif /* CONFIG_NUMA */
81819f0f
CL
2124 return NULL;
2125}
2126
2127/*
2128 * Get a partial page, lock it and return it.
2129 */
497b66f2 2130static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2131 struct kmem_cache_cpu *c)
81819f0f 2132{
497b66f2 2133 void *object;
a561ce00
JK
2134 int searchnode = node;
2135
2136 if (node == NUMA_NO_NODE)
2137 searchnode = numa_mem_id();
81819f0f 2138
8ba00bb6 2139 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2140 if (object || node != NUMA_NO_NODE)
2141 return object;
81819f0f 2142
acd19fd1 2143 return get_any_partial(s, flags, c);
81819f0f
CL
2144}
2145
923717cb 2146#ifdef CONFIG_PREEMPTION
8a5ec0ba 2147/*
0d645ed1 2148 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2149 * during cmpxchg. The transactions start with the cpu number and are then
2150 * incremented by CONFIG_NR_CPUS.
2151 */
2152#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2153#else
2154/*
2155 * No preemption supported therefore also no need to check for
2156 * different cpus.
2157 */
2158#define TID_STEP 1
2159#endif
2160
2161static inline unsigned long next_tid(unsigned long tid)
2162{
2163 return tid + TID_STEP;
2164}
2165
9d5f0be0 2166#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2167static inline unsigned int tid_to_cpu(unsigned long tid)
2168{
2169 return tid % TID_STEP;
2170}
2171
2172static inline unsigned long tid_to_event(unsigned long tid)
2173{
2174 return tid / TID_STEP;
2175}
9d5f0be0 2176#endif
8a5ec0ba
CL
2177
2178static inline unsigned int init_tid(int cpu)
2179{
2180 return cpu;
2181}
2182
2183static inline void note_cmpxchg_failure(const char *n,
2184 const struct kmem_cache *s, unsigned long tid)
2185{
2186#ifdef SLUB_DEBUG_CMPXCHG
2187 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2188
f9f58285 2189 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2190
923717cb 2191#ifdef CONFIG_PREEMPTION
8a5ec0ba 2192 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2193 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2194 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2195 else
2196#endif
2197 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2198 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2199 tid_to_event(tid), tid_to_event(actual_tid));
2200 else
f9f58285 2201 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2202 actual_tid, tid, next_tid(tid));
2203#endif
4fdccdfb 2204 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2205}
2206
788e1aad 2207static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2208{
8a5ec0ba
CL
2209 int cpu;
2210
2211 for_each_possible_cpu(cpu)
2212 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2213}
2cfb7455 2214
81819f0f
CL
2215/*
2216 * Remove the cpu slab
2217 */
d0e0ac97 2218static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2219 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2220{
2cfb7455 2221 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455 2222 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
d930ff03 2223 int lock = 0, free_delta = 0;
2cfb7455 2224 enum slab_modes l = M_NONE, m = M_NONE;
d930ff03 2225 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2226 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2227 struct page new;
2228 struct page old;
2229
2230 if (page->freelist) {
84e554e6 2231 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2232 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2233 }
2234
894b8788 2235 /*
d930ff03
VB
2236 * Stage one: Count the objects on cpu's freelist as free_delta and
2237 * remember the last object in freelist_tail for later splicing.
2cfb7455 2238 */
d930ff03
VB
2239 freelist_tail = NULL;
2240 freelist_iter = freelist;
2241 while (freelist_iter) {
2242 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2243
52f23478
DZ
2244 /*
2245 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2246 * 'freelist_iter' is already corrupted. So isolate all objects
2247 * starting at 'freelist_iter' by skipping them.
52f23478 2248 */
d930ff03 2249 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
52f23478
DZ
2250 break;
2251
d930ff03
VB
2252 freelist_tail = freelist_iter;
2253 free_delta++;
2cfb7455 2254
d930ff03 2255 freelist_iter = nextfree;
2cfb7455
CL
2256 }
2257
894b8788 2258 /*
d930ff03
VB
2259 * Stage two: Unfreeze the page while splicing the per-cpu
2260 * freelist to the head of page's freelist.
2261 *
2262 * Ensure that the page is unfrozen while the list presence
2263 * reflects the actual number of objects during unfreeze.
2cfb7455
CL
2264 *
2265 * We setup the list membership and then perform a cmpxchg
2266 * with the count. If there is a mismatch then the page
2267 * is not unfrozen but the page is on the wrong list.
2268 *
2269 * Then we restart the process which may have to remove
2270 * the page from the list that we just put it on again
2271 * because the number of objects in the slab may have
2272 * changed.
894b8788 2273 */
2cfb7455 2274redo:
894b8788 2275
d930ff03
VB
2276 old.freelist = READ_ONCE(page->freelist);
2277 old.counters = READ_ONCE(page->counters);
a0132ac0 2278 VM_BUG_ON(!old.frozen);
7c2e132c 2279
2cfb7455
CL
2280 /* Determine target state of the slab */
2281 new.counters = old.counters;
d930ff03
VB
2282 if (freelist_tail) {
2283 new.inuse -= free_delta;
2284 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2285 new.freelist = freelist;
2286 } else
2287 new.freelist = old.freelist;
2288
2289 new.frozen = 0;
2290
8a5b20ae 2291 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2292 m = M_FREE;
2293 else if (new.freelist) {
2294 m = M_PARTIAL;
2295 if (!lock) {
2296 lock = 1;
2297 /*
8bb4e7a2 2298 * Taking the spinlock removes the possibility
2cfb7455
CL
2299 * that acquire_slab() will see a slab page that
2300 * is frozen
2301 */
2302 spin_lock(&n->list_lock);
2303 }
2304 } else {
2305 m = M_FULL;
965c4848 2306 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2307 lock = 1;
2308 /*
2309 * This also ensures that the scanning of full
2310 * slabs from diagnostic functions will not see
2311 * any frozen slabs.
2312 */
2313 spin_lock(&n->list_lock);
2314 }
2315 }
2316
2317 if (l != m) {
2cfb7455 2318 if (l == M_PARTIAL)
2cfb7455 2319 remove_partial(n, page);
2cfb7455 2320 else if (l == M_FULL)
c65c1877 2321 remove_full(s, n, page);
2cfb7455 2322
88349a28 2323 if (m == M_PARTIAL)
2cfb7455 2324 add_partial(n, page, tail);
88349a28 2325 else if (m == M_FULL)
2cfb7455 2326 add_full(s, n, page);
2cfb7455
CL
2327 }
2328
2329 l = m;
1d07171c 2330 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2331 old.freelist, old.counters,
2332 new.freelist, new.counters,
2333 "unfreezing slab"))
2334 goto redo;
2335
2cfb7455
CL
2336 if (lock)
2337 spin_unlock(&n->list_lock);
2338
88349a28
WY
2339 if (m == M_PARTIAL)
2340 stat(s, tail);
2341 else if (m == M_FULL)
2342 stat(s, DEACTIVATE_FULL);
2343 else if (m == M_FREE) {
2cfb7455
CL
2344 stat(s, DEACTIVATE_EMPTY);
2345 discard_slab(s, page);
2346 stat(s, FREE_SLAB);
894b8788 2347 }
d4ff6d35
WY
2348
2349 c->page = NULL;
2350 c->freelist = NULL;
81819f0f
CL
2351}
2352
d24ac77f
JK
2353/*
2354 * Unfreeze all the cpu partial slabs.
2355 *
59a09917
CL
2356 * This function must be called with interrupts disabled
2357 * for the cpu using c (or some other guarantee must be there
2358 * to guarantee no concurrent accesses).
d24ac77f 2359 */
59a09917
CL
2360static void unfreeze_partials(struct kmem_cache *s,
2361 struct kmem_cache_cpu *c)
49e22585 2362{
345c905d 2363#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2364 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2365 struct page *page, *discard_page = NULL;
49e22585 2366
4c7ba22e 2367 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2368 struct page new;
2369 struct page old;
2370
4c7ba22e 2371 slub_set_percpu_partial(c, page);
43d77867
JK
2372
2373 n2 = get_node(s, page_to_nid(page));
2374 if (n != n2) {
2375 if (n)
2376 spin_unlock(&n->list_lock);
2377
2378 n = n2;
2379 spin_lock(&n->list_lock);
2380 }
49e22585
CL
2381
2382 do {
2383
2384 old.freelist = page->freelist;
2385 old.counters = page->counters;
a0132ac0 2386 VM_BUG_ON(!old.frozen);
49e22585
CL
2387
2388 new.counters = old.counters;
2389 new.freelist = old.freelist;
2390
2391 new.frozen = 0;
2392
d24ac77f 2393 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2394 old.freelist, old.counters,
2395 new.freelist, new.counters,
2396 "unfreezing slab"));
2397
8a5b20ae 2398 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2399 page->next = discard_page;
2400 discard_page = page;
43d77867
JK
2401 } else {
2402 add_partial(n, page, DEACTIVATE_TO_TAIL);
2403 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2404 }
2405 }
2406
2407 if (n)
2408 spin_unlock(&n->list_lock);
9ada1934
SL
2409
2410 while (discard_page) {
2411 page = discard_page;
2412 discard_page = discard_page->next;
2413
2414 stat(s, DEACTIVATE_EMPTY);
2415 discard_slab(s, page);
2416 stat(s, FREE_SLAB);
2417 }
6dfd1b65 2418#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2419}
2420
2421/*
9234bae9
WY
2422 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2423 * partial page slot if available.
49e22585
CL
2424 *
2425 * If we did not find a slot then simply move all the partials to the
2426 * per node partial list.
2427 */
633b0764 2428static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2429{
345c905d 2430#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2431 struct page *oldpage;
2432 int pages;
2433 int pobjects;
2434
d6e0b7fa 2435 preempt_disable();
49e22585
CL
2436 do {
2437 pages = 0;
2438 pobjects = 0;
2439 oldpage = this_cpu_read(s->cpu_slab->partial);
2440
2441 if (oldpage) {
2442 pobjects = oldpage->pobjects;
2443 pages = oldpage->pages;
bbd4e305 2444 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2445 unsigned long flags;
2446 /*
2447 * partial array is full. Move the existing
2448 * set to the per node partial list.
2449 */
2450 local_irq_save(flags);
59a09917 2451 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2452 local_irq_restore(flags);
e24fc410 2453 oldpage = NULL;
49e22585
CL
2454 pobjects = 0;
2455 pages = 0;
8028dcea 2456 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2457 }
2458 }
2459
2460 pages++;
2461 pobjects += page->objects - page->inuse;
2462
2463 page->pages = pages;
2464 page->pobjects = pobjects;
2465 page->next = oldpage;
2466
d0e0ac97
CG
2467 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2468 != oldpage);
d6e0b7fa 2469 preempt_enable();
6dfd1b65 2470#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2471}
2472
dfb4f096 2473static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2474{
84e554e6 2475 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2476 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2477
2478 c->tid = next_tid(c->tid);
81819f0f
CL
2479}
2480
2481/*
2482 * Flush cpu slab.
6446faa2 2483 *
81819f0f
CL
2484 * Called from IPI handler with interrupts disabled.
2485 */
0c710013 2486static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2487{
9dfc6e68 2488 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2489
1265ef2d
WY
2490 if (c->page)
2491 flush_slab(s, c);
49e22585 2492
1265ef2d 2493 unfreeze_partials(s, c);
81819f0f
CL
2494}
2495
2496static void flush_cpu_slab(void *d)
2497{
2498 struct kmem_cache *s = d;
81819f0f 2499
dfb4f096 2500 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2501}
2502
a8364d55
GBY
2503static bool has_cpu_slab(int cpu, void *info)
2504{
2505 struct kmem_cache *s = info;
2506 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2507
a93cf07b 2508 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2509}
2510
81819f0f
CL
2511static void flush_all(struct kmem_cache *s)
2512{
cb923159 2513 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2514}
2515
a96a87bf
SAS
2516/*
2517 * Use the cpu notifier to insure that the cpu slabs are flushed when
2518 * necessary.
2519 */
2520static int slub_cpu_dead(unsigned int cpu)
2521{
2522 struct kmem_cache *s;
2523 unsigned long flags;
2524
2525 mutex_lock(&slab_mutex);
2526 list_for_each_entry(s, &slab_caches, list) {
2527 local_irq_save(flags);
2528 __flush_cpu_slab(s, cpu);
2529 local_irq_restore(flags);
2530 }
2531 mutex_unlock(&slab_mutex);
2532 return 0;
2533}
2534
dfb4f096
CL
2535/*
2536 * Check if the objects in a per cpu structure fit numa
2537 * locality expectations.
2538 */
57d437d2 2539static inline int node_match(struct page *page, int node)
dfb4f096
CL
2540{
2541#ifdef CONFIG_NUMA
6159d0f5 2542 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2543 return 0;
2544#endif
2545 return 1;
2546}
2547
9a02d699 2548#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2549static int count_free(struct page *page)
2550{
2551 return page->objects - page->inuse;
2552}
2553
9a02d699
DR
2554static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2555{
2556 return atomic_long_read(&n->total_objects);
2557}
2558#endif /* CONFIG_SLUB_DEBUG */
2559
2560#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2561static unsigned long count_partial(struct kmem_cache_node *n,
2562 int (*get_count)(struct page *))
2563{
2564 unsigned long flags;
2565 unsigned long x = 0;
2566 struct page *page;
2567
2568 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2569 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2570 x += get_count(page);
2571 spin_unlock_irqrestore(&n->list_lock, flags);
2572 return x;
2573}
9a02d699 2574#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2575
781b2ba6
PE
2576static noinline void
2577slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2578{
9a02d699
DR
2579#ifdef CONFIG_SLUB_DEBUG
2580 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2581 DEFAULT_RATELIMIT_BURST);
781b2ba6 2582 int node;
fa45dc25 2583 struct kmem_cache_node *n;
781b2ba6 2584
9a02d699
DR
2585 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2586 return;
2587
5b3810e5
VB
2588 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2589 nid, gfpflags, &gfpflags);
19af27af 2590 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2591 s->name, s->object_size, s->size, oo_order(s->oo),
2592 oo_order(s->min));
781b2ba6 2593
3b0efdfa 2594 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2595 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2596 s->name);
fa5ec8a1 2597
fa45dc25 2598 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2599 unsigned long nr_slabs;
2600 unsigned long nr_objs;
2601 unsigned long nr_free;
2602
26c02cf0
AB
2603 nr_free = count_partial(n, count_free);
2604 nr_slabs = node_nr_slabs(n);
2605 nr_objs = node_nr_objs(n);
781b2ba6 2606
f9f58285 2607 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2608 node, nr_slabs, nr_objs, nr_free);
2609 }
9a02d699 2610#endif
781b2ba6
PE
2611}
2612
497b66f2
CL
2613static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2614 int node, struct kmem_cache_cpu **pc)
2615{
6faa6833 2616 void *freelist;
188fd063
CL
2617 struct kmem_cache_cpu *c = *pc;
2618 struct page *page;
497b66f2 2619
128227e7
MW
2620 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2621
188fd063 2622 freelist = get_partial(s, flags, node, c);
497b66f2 2623
188fd063
CL
2624 if (freelist)
2625 return freelist;
2626
2627 page = new_slab(s, flags, node);
497b66f2 2628 if (page) {
7c8e0181 2629 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2630 if (c->page)
2631 flush_slab(s, c);
2632
2633 /*
2634 * No other reference to the page yet so we can
2635 * muck around with it freely without cmpxchg
2636 */
6faa6833 2637 freelist = page->freelist;
497b66f2
CL
2638 page->freelist = NULL;
2639
2640 stat(s, ALLOC_SLAB);
497b66f2
CL
2641 c->page = page;
2642 *pc = c;
edde82b6 2643 }
497b66f2 2644
6faa6833 2645 return freelist;
497b66f2
CL
2646}
2647
072bb0aa
MG
2648static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2649{
2650 if (unlikely(PageSlabPfmemalloc(page)))
2651 return gfp_pfmemalloc_allowed(gfpflags);
2652
2653 return true;
2654}
2655
213eeb9f 2656/*
d0e0ac97
CG
2657 * Check the page->freelist of a page and either transfer the freelist to the
2658 * per cpu freelist or deactivate the page.
213eeb9f
CL
2659 *
2660 * The page is still frozen if the return value is not NULL.
2661 *
2662 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2663 *
2664 * This function must be called with interrupt disabled.
213eeb9f
CL
2665 */
2666static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2667{
2668 struct page new;
2669 unsigned long counters;
2670 void *freelist;
2671
2672 do {
2673 freelist = page->freelist;
2674 counters = page->counters;
6faa6833 2675
213eeb9f 2676 new.counters = counters;
a0132ac0 2677 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2678
2679 new.inuse = page->objects;
2680 new.frozen = freelist != NULL;
2681
d24ac77f 2682 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2683 freelist, counters,
2684 NULL, new.counters,
2685 "get_freelist"));
2686
2687 return freelist;
2688}
2689
81819f0f 2690/*
894b8788
CL
2691 * Slow path. The lockless freelist is empty or we need to perform
2692 * debugging duties.
2693 *
894b8788
CL
2694 * Processing is still very fast if new objects have been freed to the
2695 * regular freelist. In that case we simply take over the regular freelist
2696 * as the lockless freelist and zap the regular freelist.
81819f0f 2697 *
894b8788
CL
2698 * If that is not working then we fall back to the partial lists. We take the
2699 * first element of the freelist as the object to allocate now and move the
2700 * rest of the freelist to the lockless freelist.
81819f0f 2701 *
894b8788 2702 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2703 * we need to allocate a new slab. This is the slowest path since it involves
2704 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2705 *
2706 * Version of __slab_alloc to use when we know that interrupts are
2707 * already disabled (which is the case for bulk allocation).
81819f0f 2708 */
a380a3c7 2709static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2710 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2711{
6faa6833 2712 void *freelist;
f6e7def7 2713 struct page *page;
81819f0f 2714
9f986d99
AW
2715 stat(s, ALLOC_SLOWPATH);
2716
f6e7def7 2717 page = c->page;
0715e6c5
VB
2718 if (!page) {
2719 /*
2720 * if the node is not online or has no normal memory, just
2721 * ignore the node constraint
2722 */
2723 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2724 !node_isset(node, slab_nodes)))
0715e6c5 2725 node = NUMA_NO_NODE;
81819f0f 2726 goto new_slab;
0715e6c5 2727 }
49e22585 2728redo:
6faa6833 2729
57d437d2 2730 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2731 /*
2732 * same as above but node_match() being false already
2733 * implies node != NUMA_NO_NODE
2734 */
7e1fa93d 2735 if (!node_isset(node, slab_nodes)) {
0715e6c5
VB
2736 node = NUMA_NO_NODE;
2737 goto redo;
2738 } else {
a561ce00 2739 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2740 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2741 goto new_slab;
2742 }
fc59c053 2743 }
6446faa2 2744
072bb0aa
MG
2745 /*
2746 * By rights, we should be searching for a slab page that was
2747 * PFMEMALLOC but right now, we are losing the pfmemalloc
2748 * information when the page leaves the per-cpu allocator
2749 */
2750 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2751 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2752 goto new_slab;
2753 }
2754
73736e03 2755 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2756 freelist = c->freelist;
2757 if (freelist)
73736e03 2758 goto load_freelist;
03e404af 2759
f6e7def7 2760 freelist = get_freelist(s, page);
6446faa2 2761
6faa6833 2762 if (!freelist) {
03e404af
CL
2763 c->page = NULL;
2764 stat(s, DEACTIVATE_BYPASS);
fc59c053 2765 goto new_slab;
03e404af 2766 }
6446faa2 2767
84e554e6 2768 stat(s, ALLOC_REFILL);
6446faa2 2769
894b8788 2770load_freelist:
507effea
CL
2771 /*
2772 * freelist is pointing to the list of objects to be used.
2773 * page is pointing to the page from which the objects are obtained.
2774 * That page must be frozen for per cpu allocations to work.
2775 */
a0132ac0 2776 VM_BUG_ON(!c->page->frozen);
6faa6833 2777 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2778 c->tid = next_tid(c->tid);
6faa6833 2779 return freelist;
81819f0f 2780
81819f0f 2781new_slab:
2cfb7455 2782
a93cf07b
WY
2783 if (slub_percpu_partial(c)) {
2784 page = c->page = slub_percpu_partial(c);
2785 slub_set_percpu_partial(c, page);
49e22585 2786 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2787 goto redo;
81819f0f
CL
2788 }
2789
188fd063 2790 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2791
f4697436 2792 if (unlikely(!freelist)) {
9a02d699 2793 slab_out_of_memory(s, gfpflags, node);
f4697436 2794 return NULL;
81819f0f 2795 }
2cfb7455 2796
f6e7def7 2797 page = c->page;
5091b74a 2798 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2799 goto load_freelist;
2cfb7455 2800
497b66f2 2801 /* Only entered in the debug case */
d0e0ac97
CG
2802 if (kmem_cache_debug(s) &&
2803 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2804 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2805
d4ff6d35 2806 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2807 return freelist;
894b8788
CL
2808}
2809
a380a3c7
CL
2810/*
2811 * Another one that disabled interrupt and compensates for possible
2812 * cpu changes by refetching the per cpu area pointer.
2813 */
2814static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2815 unsigned long addr, struct kmem_cache_cpu *c)
2816{
2817 void *p;
2818 unsigned long flags;
2819
2820 local_irq_save(flags);
923717cb 2821#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2822 /*
2823 * We may have been preempted and rescheduled on a different
2824 * cpu before disabling interrupts. Need to reload cpu area
2825 * pointer.
2826 */
2827 c = this_cpu_ptr(s->cpu_slab);
2828#endif
2829
2830 p = ___slab_alloc(s, gfpflags, node, addr, c);
2831 local_irq_restore(flags);
2832 return p;
2833}
2834
0f181f9f
AP
2835/*
2836 * If the object has been wiped upon free, make sure it's fully initialized by
2837 * zeroing out freelist pointer.
2838 */
2839static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2840 void *obj)
2841{
2842 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
2843 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2844 0, sizeof(void *));
0f181f9f
AP
2845}
2846
894b8788
CL
2847/*
2848 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2849 * have the fastpath folded into their functions. So no function call
2850 * overhead for requests that can be satisfied on the fastpath.
2851 *
2852 * The fastpath works by first checking if the lockless freelist can be used.
2853 * If not then __slab_alloc is called for slow processing.
2854 *
2855 * Otherwise we can simply pick the next object from the lockless free list.
2856 */
2b847c3c 2857static __always_inline void *slab_alloc_node(struct kmem_cache *s,
b89fb5ef 2858 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 2859{
03ec0ed5 2860 void *object;
dfb4f096 2861 struct kmem_cache_cpu *c;
57d437d2 2862 struct page *page;
8a5ec0ba 2863 unsigned long tid;
964d4bd3 2864 struct obj_cgroup *objcg = NULL;
da844b78 2865 bool init = false;
1f84260c 2866
964d4bd3 2867 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2868 if (!s)
773ff60e 2869 return NULL;
b89fb5ef
AP
2870
2871 object = kfence_alloc(s, orig_size, gfpflags);
2872 if (unlikely(object))
2873 goto out;
2874
8a5ec0ba 2875redo:
8a5ec0ba
CL
2876 /*
2877 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2878 * enabled. We may switch back and forth between cpus while
2879 * reading from one cpu area. That does not matter as long
2880 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2881 *
9aabf810 2882 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2883 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2884 * to check if it is matched or not.
8a5ec0ba 2885 */
9aabf810
JK
2886 do {
2887 tid = this_cpu_read(s->cpu_slab->tid);
2888 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2889 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2890 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2891
2892 /*
2893 * Irqless object alloc/free algorithm used here depends on sequence
2894 * of fetching cpu_slab's data. tid should be fetched before anything
2895 * on c to guarantee that object and page associated with previous tid
2896 * won't be used with current tid. If we fetch tid first, object and
2897 * page could be one associated with next tid and our alloc/free
2898 * request will be failed. In this case, we will retry. So, no problem.
2899 */
2900 barrier();
8a5ec0ba 2901
8a5ec0ba
CL
2902 /*
2903 * The transaction ids are globally unique per cpu and per operation on
2904 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2905 * occurs on the right processor and that there was no operation on the
2906 * linked list in between.
2907 */
8a5ec0ba 2908
9dfc6e68 2909 object = c->freelist;
57d437d2 2910 page = c->page;
22e4663e 2911 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2912 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2913 } else {
0ad9500e
ED
2914 void *next_object = get_freepointer_safe(s, object);
2915
8a5ec0ba 2916 /*
25985edc 2917 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2918 * operation and if we are on the right processor.
2919 *
d0e0ac97
CG
2920 * The cmpxchg does the following atomically (without lock
2921 * semantics!)
8a5ec0ba
CL
2922 * 1. Relocate first pointer to the current per cpu area.
2923 * 2. Verify that tid and freelist have not been changed
2924 * 3. If they were not changed replace tid and freelist
2925 *
d0e0ac97
CG
2926 * Since this is without lock semantics the protection is only
2927 * against code executing on this cpu *not* from access by
2928 * other cpus.
8a5ec0ba 2929 */
933393f5 2930 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2931 s->cpu_slab->freelist, s->cpu_slab->tid,
2932 object, tid,
0ad9500e 2933 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2934
2935 note_cmpxchg_failure("slab_alloc", s, tid);
2936 goto redo;
2937 }
0ad9500e 2938 prefetch_freepointer(s, next_object);
84e554e6 2939 stat(s, ALLOC_FASTPATH);
894b8788 2940 }
0f181f9f 2941
ce5716c6 2942 maybe_wipe_obj_freeptr(s, object);
da844b78 2943 init = slab_want_init_on_alloc(gfpflags, s);
d07dbea4 2944
b89fb5ef 2945out:
da844b78 2946 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
5a896d9e 2947
894b8788 2948 return object;
81819f0f
CL
2949}
2950
2b847c3c 2951static __always_inline void *slab_alloc(struct kmem_cache *s,
b89fb5ef 2952 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 2953{
b89fb5ef 2954 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
2955}
2956
81819f0f
CL
2957void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2958{
b89fb5ef 2959 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
5b882be4 2960
d0e0ac97
CG
2961 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2962 s->size, gfpflags);
5b882be4
EGM
2963
2964 return ret;
81819f0f
CL
2965}
2966EXPORT_SYMBOL(kmem_cache_alloc);
2967
0f24f128 2968#ifdef CONFIG_TRACING
4a92379b
RK
2969void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2970{
b89fb5ef 2971 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
4a92379b 2972 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2973 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2974 return ret;
2975}
2976EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2977#endif
2978
81819f0f
CL
2979#ifdef CONFIG_NUMA
2980void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2981{
b89fb5ef 2982 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 2983
ca2b84cb 2984 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2985 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2986
2987 return ret;
81819f0f
CL
2988}
2989EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2990
0f24f128 2991#ifdef CONFIG_TRACING
4a92379b 2992void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2993 gfp_t gfpflags,
4a92379b 2994 int node, size_t size)
5b882be4 2995{
b89fb5ef 2996 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
4a92379b
RK
2997
2998 trace_kmalloc_node(_RET_IP_, ret,
2999 size, s->size, gfpflags, node);
0316bec2 3000
0116523c 3001 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 3002 return ret;
5b882be4 3003}
4a92379b 3004EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 3005#endif
6dfd1b65 3006#endif /* CONFIG_NUMA */
5b882be4 3007
81819f0f 3008/*
94e4d712 3009 * Slow path handling. This may still be called frequently since objects
894b8788 3010 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 3011 *
894b8788
CL
3012 * So we still attempt to reduce cache line usage. Just take the slab
3013 * lock and free the item. If there is no additional partial page
3014 * handling required then we can return immediately.
81819f0f 3015 */
894b8788 3016static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
3017 void *head, void *tail, int cnt,
3018 unsigned long addr)
3019
81819f0f
CL
3020{
3021 void *prior;
2cfb7455 3022 int was_frozen;
2cfb7455
CL
3023 struct page new;
3024 unsigned long counters;
3025 struct kmem_cache_node *n = NULL;
3f649ab7 3026 unsigned long flags;
81819f0f 3027
8a5ec0ba 3028 stat(s, FREE_SLOWPATH);
81819f0f 3029
b89fb5ef
AP
3030 if (kfence_free(head))
3031 return;
3032
19c7ff9e 3033 if (kmem_cache_debug(s) &&
282acb43 3034 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 3035 return;
6446faa2 3036
2cfb7455 3037 do {
837d678d
JK
3038 if (unlikely(n)) {
3039 spin_unlock_irqrestore(&n->list_lock, flags);
3040 n = NULL;
3041 }
2cfb7455
CL
3042 prior = page->freelist;
3043 counters = page->counters;
81084651 3044 set_freepointer(s, tail, prior);
2cfb7455
CL
3045 new.counters = counters;
3046 was_frozen = new.frozen;
81084651 3047 new.inuse -= cnt;
837d678d 3048 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3049
c65c1877 3050 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3051
3052 /*
d0e0ac97
CG
3053 * Slab was on no list before and will be
3054 * partially empty
3055 * We can defer the list move and instead
3056 * freeze it.
49e22585
CL
3057 */
3058 new.frozen = 1;
3059
c65c1877 3060 } else { /* Needs to be taken off a list */
49e22585 3061
b455def2 3062 n = get_node(s, page_to_nid(page));
49e22585
CL
3063 /*
3064 * Speculatively acquire the list_lock.
3065 * If the cmpxchg does not succeed then we may
3066 * drop the list_lock without any processing.
3067 *
3068 * Otherwise the list_lock will synchronize with
3069 * other processors updating the list of slabs.
3070 */
3071 spin_lock_irqsave(&n->list_lock, flags);
3072
3073 }
2cfb7455 3074 }
81819f0f 3075
2cfb7455
CL
3076 } while (!cmpxchg_double_slab(s, page,
3077 prior, counters,
81084651 3078 head, new.counters,
2cfb7455 3079 "__slab_free"));
81819f0f 3080
2cfb7455 3081 if (likely(!n)) {
49e22585 3082
c270cf30
AW
3083 if (likely(was_frozen)) {
3084 /*
3085 * The list lock was not taken therefore no list
3086 * activity can be necessary.
3087 */
3088 stat(s, FREE_FROZEN);
3089 } else if (new.frozen) {
3090 /*
3091 * If we just froze the page then put it onto the
3092 * per cpu partial list.
3093 */
49e22585 3094 put_cpu_partial(s, page, 1);
8028dcea
AS
3095 stat(s, CPU_PARTIAL_FREE);
3096 }
c270cf30 3097
b455def2
L
3098 return;
3099 }
81819f0f 3100
8a5b20ae 3101 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3102 goto slab_empty;
3103
81819f0f 3104 /*
837d678d
JK
3105 * Objects left in the slab. If it was not on the partial list before
3106 * then add it.
81819f0f 3107 */
345c905d 3108 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3109 remove_full(s, n, page);
837d678d
JK
3110 add_partial(n, page, DEACTIVATE_TO_TAIL);
3111 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3112 }
80f08c19 3113 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3114 return;
3115
3116slab_empty:
a973e9dd 3117 if (prior) {
81819f0f 3118 /*
6fbabb20 3119 * Slab on the partial list.
81819f0f 3120 */
5cc6eee8 3121 remove_partial(n, page);
84e554e6 3122 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3123 } else {
6fbabb20 3124 /* Slab must be on the full list */
c65c1877
PZ
3125 remove_full(s, n, page);
3126 }
2cfb7455 3127
80f08c19 3128 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3129 stat(s, FREE_SLAB);
81819f0f 3130 discard_slab(s, page);
81819f0f
CL
3131}
3132
894b8788
CL
3133/*
3134 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3135 * can perform fastpath freeing without additional function calls.
3136 *
3137 * The fastpath is only possible if we are freeing to the current cpu slab
3138 * of this processor. This typically the case if we have just allocated
3139 * the item before.
3140 *
3141 * If fastpath is not possible then fall back to __slab_free where we deal
3142 * with all sorts of special processing.
81084651
JDB
3143 *
3144 * Bulk free of a freelist with several objects (all pointing to the
3145 * same page) possible by specifying head and tail ptr, plus objects
3146 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3147 */
80a9201a
AP
3148static __always_inline void do_slab_free(struct kmem_cache *s,
3149 struct page *page, void *head, void *tail,
3150 int cnt, unsigned long addr)
894b8788 3151{
81084651 3152 void *tail_obj = tail ? : head;
dfb4f096 3153 struct kmem_cache_cpu *c;
8a5ec0ba 3154 unsigned long tid;
964d4bd3 3155
d1b2cf6c 3156 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3157redo:
3158 /*
3159 * Determine the currently cpus per cpu slab.
3160 * The cpu may change afterward. However that does not matter since
3161 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3162 * during the cmpxchg then the free will succeed.
8a5ec0ba 3163 */
9aabf810
JK
3164 do {
3165 tid = this_cpu_read(s->cpu_slab->tid);
3166 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3167 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3168 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3169
9aabf810
JK
3170 /* Same with comment on barrier() in slab_alloc_node() */
3171 barrier();
c016b0bd 3172
442b06bc 3173 if (likely(page == c->page)) {
5076190d
LT
3174 void **freelist = READ_ONCE(c->freelist);
3175
3176 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3177
933393f5 3178 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3179 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3180 freelist, tid,
81084651 3181 head, next_tid(tid)))) {
8a5ec0ba
CL
3182
3183 note_cmpxchg_failure("slab_free", s, tid);
3184 goto redo;
3185 }
84e554e6 3186 stat(s, FREE_FASTPATH);
894b8788 3187 } else
81084651 3188 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3189
894b8788
CL
3190}
3191
80a9201a
AP
3192static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3193 void *head, void *tail, int cnt,
3194 unsigned long addr)
3195{
80a9201a 3196 /*
c3895391
AK
3197 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3198 * to remove objects, whose reuse must be delayed.
80a9201a 3199 */
c3895391
AK
3200 if (slab_free_freelist_hook(s, &head, &tail))
3201 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3202}
3203
2bd926b4 3204#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3205void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3206{
3207 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3208}
3209#endif
3210
81819f0f
CL
3211void kmem_cache_free(struct kmem_cache *s, void *x)
3212{
b9ce5ef4
GC
3213 s = cache_from_obj(s, x);
3214 if (!s)
79576102 3215 return;
81084651 3216 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3544de8e 3217 trace_kmem_cache_free(_RET_IP_, x, s->name);
81819f0f
CL
3218}
3219EXPORT_SYMBOL(kmem_cache_free);
3220
d0ecd894 3221struct detached_freelist {
fbd02630 3222 struct page *page;
d0ecd894
JDB
3223 void *tail;
3224 void *freelist;
3225 int cnt;
376bf125 3226 struct kmem_cache *s;
d0ecd894 3227};
fbd02630 3228
1ed7ce57 3229static inline void free_nonslab_page(struct page *page, void *object)
f227f0fa
SB
3230{
3231 unsigned int order = compound_order(page);
3232
3233 VM_BUG_ON_PAGE(!PageCompound(page), page);
1ed7ce57 3234 kfree_hook(object);
f227f0fa
SB
3235 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3236 __free_pages(page, order);
3237}
3238
d0ecd894
JDB
3239/*
3240 * This function progressively scans the array with free objects (with
3241 * a limited look ahead) and extract objects belonging to the same
3242 * page. It builds a detached freelist directly within the given
3243 * page/objects. This can happen without any need for
3244 * synchronization, because the objects are owned by running process.
3245 * The freelist is build up as a single linked list in the objects.
3246 * The idea is, that this detached freelist can then be bulk
3247 * transferred to the real freelist(s), but only requiring a single
3248 * synchronization primitive. Look ahead in the array is limited due
3249 * to performance reasons.
3250 */
376bf125
JDB
3251static inline
3252int build_detached_freelist(struct kmem_cache *s, size_t size,
3253 void **p, struct detached_freelist *df)
d0ecd894
JDB
3254{
3255 size_t first_skipped_index = 0;
3256 int lookahead = 3;
3257 void *object;
ca257195 3258 struct page *page;
fbd02630 3259
d0ecd894
JDB
3260 /* Always re-init detached_freelist */
3261 df->page = NULL;
fbd02630 3262
d0ecd894
JDB
3263 do {
3264 object = p[--size];
ca257195 3265 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3266 } while (!object && size);
3eed034d 3267
d0ecd894
JDB
3268 if (!object)
3269 return 0;
fbd02630 3270
ca257195
JDB
3271 page = virt_to_head_page(object);
3272 if (!s) {
3273 /* Handle kalloc'ed objects */
3274 if (unlikely(!PageSlab(page))) {
1ed7ce57 3275 free_nonslab_page(page, object);
ca257195
JDB
3276 p[size] = NULL; /* mark object processed */
3277 return size;
3278 }
3279 /* Derive kmem_cache from object */
3280 df->s = page->slab_cache;
3281 } else {
3282 df->s = cache_from_obj(s, object); /* Support for memcg */
3283 }
376bf125 3284
b89fb5ef 3285 if (is_kfence_address(object)) {
d57a964e 3286 slab_free_hook(df->s, object, false);
b89fb5ef
AP
3287 __kfence_free(object);
3288 p[size] = NULL; /* mark object processed */
3289 return size;
3290 }
3291
d0ecd894 3292 /* Start new detached freelist */
ca257195 3293 df->page = page;
376bf125 3294 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3295 df->tail = object;
3296 df->freelist = object;
3297 p[size] = NULL; /* mark object processed */
3298 df->cnt = 1;
3299
3300 while (size) {
3301 object = p[--size];
3302 if (!object)
3303 continue; /* Skip processed objects */
3304
3305 /* df->page is always set at this point */
3306 if (df->page == virt_to_head_page(object)) {
3307 /* Opportunity build freelist */
376bf125 3308 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3309 df->freelist = object;
3310 df->cnt++;
3311 p[size] = NULL; /* mark object processed */
3312
3313 continue;
fbd02630 3314 }
d0ecd894
JDB
3315
3316 /* Limit look ahead search */
3317 if (!--lookahead)
3318 break;
3319
3320 if (!first_skipped_index)
3321 first_skipped_index = size + 1;
fbd02630 3322 }
d0ecd894
JDB
3323
3324 return first_skipped_index;
3325}
3326
d0ecd894 3327/* Note that interrupts must be enabled when calling this function. */
376bf125 3328void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3329{
3330 if (WARN_ON(!size))
3331 return;
3332
d1b2cf6c 3333 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3334 do {
3335 struct detached_freelist df;
3336
3337 size = build_detached_freelist(s, size, p, &df);
84582c8a 3338 if (!df.page)
d0ecd894
JDB
3339 continue;
3340
457c82c3 3341 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
d0ecd894 3342 } while (likely(size));
484748f0
CL
3343}
3344EXPORT_SYMBOL(kmem_cache_free_bulk);
3345
994eb764 3346/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3347int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3348 void **p)
484748f0 3349{
994eb764
JDB
3350 struct kmem_cache_cpu *c;
3351 int i;
964d4bd3 3352 struct obj_cgroup *objcg = NULL;
994eb764 3353
03ec0ed5 3354 /* memcg and kmem_cache debug support */
964d4bd3 3355 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3356 if (unlikely(!s))
3357 return false;
994eb764
JDB
3358 /*
3359 * Drain objects in the per cpu slab, while disabling local
3360 * IRQs, which protects against PREEMPT and interrupts
3361 * handlers invoking normal fastpath.
3362 */
3363 local_irq_disable();
3364 c = this_cpu_ptr(s->cpu_slab);
3365
3366 for (i = 0; i < size; i++) {
b89fb5ef 3367 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3368
b89fb5ef
AP
3369 if (unlikely(object)) {
3370 p[i] = object;
3371 continue;
3372 }
3373
3374 object = c->freelist;
ebe909e0 3375 if (unlikely(!object)) {
fd4d9c7d
JH
3376 /*
3377 * We may have removed an object from c->freelist using
3378 * the fastpath in the previous iteration; in that case,
3379 * c->tid has not been bumped yet.
3380 * Since ___slab_alloc() may reenable interrupts while
3381 * allocating memory, we should bump c->tid now.
3382 */
3383 c->tid = next_tid(c->tid);
3384
ebe909e0
JDB
3385 /*
3386 * Invoking slow path likely have side-effect
3387 * of re-populating per CPU c->freelist
3388 */
87098373 3389 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3390 _RET_IP_, c);
87098373
CL
3391 if (unlikely(!p[i]))
3392 goto error;
3393
ebe909e0 3394 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3395 maybe_wipe_obj_freeptr(s, p[i]);
3396
ebe909e0
JDB
3397 continue; /* goto for-loop */
3398 }
994eb764
JDB
3399 c->freelist = get_freepointer(s, object);
3400 p[i] = object;
0f181f9f 3401 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3402 }
3403 c->tid = next_tid(c->tid);
3404 local_irq_enable();
3405
da844b78
AK
3406 /*
3407 * memcg and kmem_cache debug support and memory initialization.
3408 * Done outside of the IRQ disabled fastpath loop.
3409 */
3410 slab_post_alloc_hook(s, objcg, flags, size, p,
3411 slab_want_init_on_alloc(flags, s));
865762a8 3412 return i;
87098373 3413error:
87098373 3414 local_irq_enable();
da844b78 3415 slab_post_alloc_hook(s, objcg, flags, i, p, false);
03ec0ed5 3416 __kmem_cache_free_bulk(s, i, p);
865762a8 3417 return 0;
484748f0
CL
3418}
3419EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3420
3421
81819f0f 3422/*
672bba3a
CL
3423 * Object placement in a slab is made very easy because we always start at
3424 * offset 0. If we tune the size of the object to the alignment then we can
3425 * get the required alignment by putting one properly sized object after
3426 * another.
81819f0f
CL
3427 *
3428 * Notice that the allocation order determines the sizes of the per cpu
3429 * caches. Each processor has always one slab available for allocations.
3430 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3431 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3432 * locking overhead.
81819f0f
CL
3433 */
3434
3435/*
f0953a1b 3436 * Minimum / Maximum order of slab pages. This influences locking overhead
81819f0f
CL
3437 * and slab fragmentation. A higher order reduces the number of partial slabs
3438 * and increases the number of allocations possible without having to
3439 * take the list_lock.
3440 */
19af27af
AD
3441static unsigned int slub_min_order;
3442static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3443static unsigned int slub_min_objects;
81819f0f 3444
81819f0f
CL
3445/*
3446 * Calculate the order of allocation given an slab object size.
3447 *
672bba3a
CL
3448 * The order of allocation has significant impact on performance and other
3449 * system components. Generally order 0 allocations should be preferred since
3450 * order 0 does not cause fragmentation in the page allocator. Larger objects
3451 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3452 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3453 * would be wasted.
3454 *
3455 * In order to reach satisfactory performance we must ensure that a minimum
3456 * number of objects is in one slab. Otherwise we may generate too much
3457 * activity on the partial lists which requires taking the list_lock. This is
3458 * less a concern for large slabs though which are rarely used.
81819f0f 3459 *
672bba3a
CL
3460 * slub_max_order specifies the order where we begin to stop considering the
3461 * number of objects in a slab as critical. If we reach slub_max_order then
3462 * we try to keep the page order as low as possible. So we accept more waste
3463 * of space in favor of a small page order.
81819f0f 3464 *
672bba3a
CL
3465 * Higher order allocations also allow the placement of more objects in a
3466 * slab and thereby reduce object handling overhead. If the user has
dc84207d 3467 * requested a higher minimum order then we start with that one instead of
672bba3a 3468 * the smallest order which will fit the object.
81819f0f 3469 */
19af27af
AD
3470static inline unsigned int slab_order(unsigned int size,
3471 unsigned int min_objects, unsigned int max_order,
9736d2a9 3472 unsigned int fract_leftover)
81819f0f 3473{
19af27af
AD
3474 unsigned int min_order = slub_min_order;
3475 unsigned int order;
81819f0f 3476
9736d2a9 3477 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3478 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3479
9736d2a9 3480 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3481 order <= max_order; order++) {
81819f0f 3482
19af27af
AD
3483 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3484 unsigned int rem;
81819f0f 3485
9736d2a9 3486 rem = slab_size % size;
81819f0f 3487
5e6d444e 3488 if (rem <= slab_size / fract_leftover)
81819f0f 3489 break;
81819f0f 3490 }
672bba3a 3491
81819f0f
CL
3492 return order;
3493}
3494
9736d2a9 3495static inline int calculate_order(unsigned int size)
5e6d444e 3496{
19af27af
AD
3497 unsigned int order;
3498 unsigned int min_objects;
3499 unsigned int max_objects;
3286222f 3500 unsigned int nr_cpus;
5e6d444e
CL
3501
3502 /*
3503 * Attempt to find best configuration for a slab. This
3504 * works by first attempting to generate a layout with
3505 * the best configuration and backing off gradually.
3506 *
422ff4d7 3507 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3508 * we reduce the minimum objects required in a slab.
3509 */
3510 min_objects = slub_min_objects;
3286222f
VB
3511 if (!min_objects) {
3512 /*
3513 * Some architectures will only update present cpus when
3514 * onlining them, so don't trust the number if it's just 1. But
3515 * we also don't want to use nr_cpu_ids always, as on some other
3516 * architectures, there can be many possible cpus, but never
3517 * onlined. Here we compromise between trying to avoid too high
3518 * order on systems that appear larger than they are, and too
3519 * low order on systems that appear smaller than they are.
3520 */
3521 nr_cpus = num_present_cpus();
3522 if (nr_cpus <= 1)
3523 nr_cpus = nr_cpu_ids;
3524 min_objects = 4 * (fls(nr_cpus) + 1);
3525 }
9736d2a9 3526 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3527 min_objects = min(min_objects, max_objects);
3528
5e6d444e 3529 while (min_objects > 1) {
19af27af
AD
3530 unsigned int fraction;
3531
c124f5b5 3532 fraction = 16;
5e6d444e
CL
3533 while (fraction >= 4) {
3534 order = slab_order(size, min_objects,
9736d2a9 3535 slub_max_order, fraction);
5e6d444e
CL
3536 if (order <= slub_max_order)
3537 return order;
3538 fraction /= 2;
3539 }
5086c389 3540 min_objects--;
5e6d444e
CL
3541 }
3542
3543 /*
3544 * We were unable to place multiple objects in a slab. Now
3545 * lets see if we can place a single object there.
3546 */
9736d2a9 3547 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3548 if (order <= slub_max_order)
3549 return order;
3550
3551 /*
3552 * Doh this slab cannot be placed using slub_max_order.
3553 */
9736d2a9 3554 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3555 if (order < MAX_ORDER)
5e6d444e
CL
3556 return order;
3557 return -ENOSYS;
3558}
3559
5595cffc 3560static void
4053497d 3561init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3562{
3563 n->nr_partial = 0;
81819f0f
CL
3564 spin_lock_init(&n->list_lock);
3565 INIT_LIST_HEAD(&n->partial);
8ab1372f 3566#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3567 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3568 atomic_long_set(&n->total_objects, 0);
643b1138 3569 INIT_LIST_HEAD(&n->full);
8ab1372f 3570#endif
81819f0f
CL
3571}
3572
55136592 3573static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3574{
6c182dc0 3575 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3576 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3577
8a5ec0ba 3578 /*
d4d84fef
CM
3579 * Must align to double word boundary for the double cmpxchg
3580 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3581 */
d4d84fef
CM
3582 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3583 2 * sizeof(void *));
8a5ec0ba
CL
3584
3585 if (!s->cpu_slab)
3586 return 0;
3587
3588 init_kmem_cache_cpus(s);
4c93c355 3589
8a5ec0ba 3590 return 1;
4c93c355 3591}
4c93c355 3592
51df1142
CL
3593static struct kmem_cache *kmem_cache_node;
3594
81819f0f
CL
3595/*
3596 * No kmalloc_node yet so do it by hand. We know that this is the first
3597 * slab on the node for this slabcache. There are no concurrent accesses
3598 * possible.
3599 *
721ae22a
ZYW
3600 * Note that this function only works on the kmem_cache_node
3601 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3602 * memory on a fresh node that has no slab structures yet.
81819f0f 3603 */
55136592 3604static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3605{
3606 struct page *page;
3607 struct kmem_cache_node *n;
3608
51df1142 3609 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3610
51df1142 3611 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3612
3613 BUG_ON(!page);
a2f92ee7 3614 if (page_to_nid(page) != node) {
f9f58285
FF
3615 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3616 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3617 }
3618
81819f0f
CL
3619 n = page->freelist;
3620 BUG_ON(!n);
8ab1372f 3621#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3622 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3623 init_tracking(kmem_cache_node, n);
8ab1372f 3624#endif
da844b78 3625 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
12b22386
AK
3626 page->freelist = get_freepointer(kmem_cache_node, n);
3627 page->inuse = 1;
3628 page->frozen = 0;
3629 kmem_cache_node->node[node] = n;
4053497d 3630 init_kmem_cache_node(n);
51df1142 3631 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3632
67b6c900 3633 /*
1e4dd946
SR
3634 * No locks need to be taken here as it has just been
3635 * initialized and there is no concurrent access.
67b6c900 3636 */
1e4dd946 3637 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3638}
3639
3640static void free_kmem_cache_nodes(struct kmem_cache *s)
3641{
3642 int node;
fa45dc25 3643 struct kmem_cache_node *n;
81819f0f 3644
fa45dc25 3645 for_each_kmem_cache_node(s, node, n) {
81819f0f 3646 s->node[node] = NULL;
ea37df54 3647 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3648 }
3649}
3650
52b4b950
DS
3651void __kmem_cache_release(struct kmem_cache *s)
3652{
210e7a43 3653 cache_random_seq_destroy(s);
52b4b950
DS
3654 free_percpu(s->cpu_slab);
3655 free_kmem_cache_nodes(s);
3656}
3657
55136592 3658static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3659{
3660 int node;
81819f0f 3661
7e1fa93d 3662 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3663 struct kmem_cache_node *n;
3664
73367bd8 3665 if (slab_state == DOWN) {
55136592 3666 early_kmem_cache_node_alloc(node);
73367bd8
AD
3667 continue;
3668 }
51df1142 3669 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3670 GFP_KERNEL, node);
81819f0f 3671
73367bd8
AD
3672 if (!n) {
3673 free_kmem_cache_nodes(s);
3674 return 0;
81819f0f 3675 }
73367bd8 3676
4053497d 3677 init_kmem_cache_node(n);
ea37df54 3678 s->node[node] = n;
81819f0f
CL
3679 }
3680 return 1;
3681}
81819f0f 3682
c0bdb232 3683static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3684{
3685 if (min < MIN_PARTIAL)
3686 min = MIN_PARTIAL;
3687 else if (min > MAX_PARTIAL)
3688 min = MAX_PARTIAL;
3689 s->min_partial = min;
3690}
3691
e6d0e1dc
WY
3692static void set_cpu_partial(struct kmem_cache *s)
3693{
3694#ifdef CONFIG_SLUB_CPU_PARTIAL
3695 /*
3696 * cpu_partial determined the maximum number of objects kept in the
3697 * per cpu partial lists of a processor.
3698 *
3699 * Per cpu partial lists mainly contain slabs that just have one
3700 * object freed. If they are used for allocation then they can be
3701 * filled up again with minimal effort. The slab will never hit the
3702 * per node partial lists and therefore no locking will be required.
3703 *
3704 * This setting also determines
3705 *
3706 * A) The number of objects from per cpu partial slabs dumped to the
3707 * per node list when we reach the limit.
3708 * B) The number of objects in cpu partial slabs to extract from the
3709 * per node list when we run out of per cpu objects. We only fetch
3710 * 50% to keep some capacity around for frees.
3711 */
3712 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3713 slub_set_cpu_partial(s, 0);
e6d0e1dc 3714 else if (s->size >= PAGE_SIZE)
bbd4e305 3715 slub_set_cpu_partial(s, 2);
e6d0e1dc 3716 else if (s->size >= 1024)
bbd4e305 3717 slub_set_cpu_partial(s, 6);
e6d0e1dc 3718 else if (s->size >= 256)
bbd4e305 3719 slub_set_cpu_partial(s, 13);
e6d0e1dc 3720 else
bbd4e305 3721 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3722#endif
3723}
3724
81819f0f
CL
3725/*
3726 * calculate_sizes() determines the order and the distribution of data within
3727 * a slab object.
3728 */
06b285dc 3729static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3730{
d50112ed 3731 slab_flags_t flags = s->flags;
be4a7988 3732 unsigned int size = s->object_size;
19af27af 3733 unsigned int order;
81819f0f 3734
d8b42bf5
CL
3735 /*
3736 * Round up object size to the next word boundary. We can only
3737 * place the free pointer at word boundaries and this determines
3738 * the possible location of the free pointer.
3739 */
3740 size = ALIGN(size, sizeof(void *));
3741
3742#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3743 /*
3744 * Determine if we can poison the object itself. If the user of
3745 * the slab may touch the object after free or before allocation
3746 * then we should never poison the object itself.
3747 */
5f0d5a3a 3748 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3749 !s->ctor)
81819f0f
CL
3750 s->flags |= __OBJECT_POISON;
3751 else
3752 s->flags &= ~__OBJECT_POISON;
3753
81819f0f
CL
3754
3755 /*
672bba3a 3756 * If we are Redzoning then check if there is some space between the
81819f0f 3757 * end of the object and the free pointer. If not then add an
672bba3a 3758 * additional word to have some bytes to store Redzone information.
81819f0f 3759 */
3b0efdfa 3760 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3761 size += sizeof(void *);
41ecc55b 3762#endif
81819f0f
CL
3763
3764 /*
672bba3a 3765 * With that we have determined the number of bytes in actual use
e41a49fa 3766 * by the object and redzoning.
81819f0f
CL
3767 */
3768 s->inuse = size;
3769
74c1d3e0
KC
3770 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3771 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3772 s->ctor) {
81819f0f
CL
3773 /*
3774 * Relocate free pointer after the object if it is not
3775 * permitted to overwrite the first word of the object on
3776 * kmem_cache_free.
3777 *
3778 * This is the case if we do RCU, have a constructor or
74c1d3e0
KC
3779 * destructor, are poisoning the objects, or are
3780 * redzoning an object smaller than sizeof(void *).
cbfc35a4
WL
3781 *
3782 * The assumption that s->offset >= s->inuse means free
3783 * pointer is outside of the object is used in the
3784 * freeptr_outside_object() function. If that is no
3785 * longer true, the function needs to be modified.
81819f0f
CL
3786 */
3787 s->offset = size;
3788 size += sizeof(void *);
e41a49fa 3789 } else {
3202fa62
KC
3790 /*
3791 * Store freelist pointer near middle of object to keep
3792 * it away from the edges of the object to avoid small
3793 * sized over/underflows from neighboring allocations.
3794 */
e41a49fa 3795 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
81819f0f
CL
3796 }
3797
c12b3c62 3798#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3799 if (flags & SLAB_STORE_USER)
3800 /*
3801 * Need to store information about allocs and frees after
3802 * the object.
3803 */
3804 size += 2 * sizeof(struct track);
80a9201a 3805#endif
81819f0f 3806
80a9201a
AP
3807 kasan_cache_create(s, &size, &s->flags);
3808#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3809 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3810 /*
3811 * Add some empty padding so that we can catch
3812 * overwrites from earlier objects rather than let
3813 * tracking information or the free pointer be
0211a9c8 3814 * corrupted if a user writes before the start
81819f0f
CL
3815 * of the object.
3816 */
3817 size += sizeof(void *);
d86bd1be
JK
3818
3819 s->red_left_pad = sizeof(void *);
3820 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3821 size += s->red_left_pad;
3822 }
41ecc55b 3823#endif
672bba3a 3824
81819f0f
CL
3825 /*
3826 * SLUB stores one object immediately after another beginning from
3827 * offset 0. In order to align the objects we have to simply size
3828 * each object to conform to the alignment.
3829 */
45906855 3830 size = ALIGN(size, s->align);
81819f0f 3831 s->size = size;
4138fdfc 3832 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3833 if (forced_order >= 0)
3834 order = forced_order;
3835 else
9736d2a9 3836 order = calculate_order(size);
81819f0f 3837
19af27af 3838 if ((int)order < 0)
81819f0f
CL
3839 return 0;
3840
b7a49f0d 3841 s->allocflags = 0;
834f3d11 3842 if (order)
b7a49f0d
CL
3843 s->allocflags |= __GFP_COMP;
3844
3845 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3846 s->allocflags |= GFP_DMA;
b7a49f0d 3847
6d6ea1e9
NB
3848 if (s->flags & SLAB_CACHE_DMA32)
3849 s->allocflags |= GFP_DMA32;
3850
b7a49f0d
CL
3851 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3852 s->allocflags |= __GFP_RECLAIMABLE;
3853
81819f0f
CL
3854 /*
3855 * Determine the number of objects per slab
3856 */
9736d2a9
MW
3857 s->oo = oo_make(order, size);
3858 s->min = oo_make(get_order(size), size);
205ab99d
CL
3859 if (oo_objects(s->oo) > oo_objects(s->max))
3860 s->max = s->oo;
81819f0f 3861
834f3d11 3862 return !!oo_objects(s->oo);
81819f0f
CL
3863}
3864
d50112ed 3865static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3866{
37540008 3867 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
3868#ifdef CONFIG_SLAB_FREELIST_HARDENED
3869 s->random = get_random_long();
3870#endif
81819f0f 3871
06b285dc 3872 if (!calculate_sizes(s, -1))
81819f0f 3873 goto error;
3de47213
DR
3874 if (disable_higher_order_debug) {
3875 /*
3876 * Disable debugging flags that store metadata if the min slab
3877 * order increased.
3878 */
3b0efdfa 3879 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3880 s->flags &= ~DEBUG_METADATA_FLAGS;
3881 s->offset = 0;
3882 if (!calculate_sizes(s, -1))
3883 goto error;
3884 }
3885 }
81819f0f 3886
2565409f
HC
3887#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3888 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3889 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3890 /* Enable fast mode */
3891 s->flags |= __CMPXCHG_DOUBLE;
3892#endif
3893
3b89d7d8
DR
3894 /*
3895 * The larger the object size is, the more pages we want on the partial
3896 * list to avoid pounding the page allocator excessively.
3897 */
49e22585
CL
3898 set_min_partial(s, ilog2(s->size) / 2);
3899
e6d0e1dc 3900 set_cpu_partial(s);
49e22585 3901
81819f0f 3902#ifdef CONFIG_NUMA
e2cb96b7 3903 s->remote_node_defrag_ratio = 1000;
81819f0f 3904#endif
210e7a43
TG
3905
3906 /* Initialize the pre-computed randomized freelist if slab is up */
3907 if (slab_state >= UP) {
3908 if (init_cache_random_seq(s))
3909 goto error;
3910 }
3911
55136592 3912 if (!init_kmem_cache_nodes(s))
dfb4f096 3913 goto error;
81819f0f 3914
55136592 3915 if (alloc_kmem_cache_cpus(s))
278b1bb1 3916 return 0;
ff12059e 3917
4c93c355 3918 free_kmem_cache_nodes(s);
81819f0f 3919error:
278b1bb1 3920 return -EINVAL;
81819f0f 3921}
81819f0f 3922
33b12c38 3923static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3924 const char *text)
33b12c38
CL
3925{
3926#ifdef CONFIG_SLUB_DEBUG
3927 void *addr = page_address(page);
55860d96 3928 unsigned long *map;
33b12c38 3929 void *p;
aa456c7a 3930
945cf2b6 3931 slab_err(s, page, text, s->name);
33b12c38 3932 slab_lock(page);
33b12c38 3933
90e9f6a6 3934 map = get_map(s, page);
33b12c38
CL
3935 for_each_object(p, s, addr, page->objects) {
3936
4138fdfc 3937 if (!test_bit(__obj_to_index(s, addr, p), map)) {
96b94abc 3938 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3939 print_tracking(s, p);
3940 }
3941 }
55860d96 3942 put_map(map);
33b12c38
CL
3943 slab_unlock(page);
3944#endif
3945}
3946
81819f0f 3947/*
599870b1 3948 * Attempt to free all partial slabs on a node.
52b4b950
DS
3949 * This is called from __kmem_cache_shutdown(). We must take list_lock
3950 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3951 */
599870b1 3952static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3953{
60398923 3954 LIST_HEAD(discard);
81819f0f
CL
3955 struct page *page, *h;
3956
52b4b950
DS
3957 BUG_ON(irqs_disabled());
3958 spin_lock_irq(&n->list_lock);
916ac052 3959 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3960 if (!page->inuse) {
52b4b950 3961 remove_partial(n, page);
916ac052 3962 list_add(&page->slab_list, &discard);
33b12c38
CL
3963 } else {
3964 list_slab_objects(s, page,
55860d96 3965 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3966 }
33b12c38 3967 }
52b4b950 3968 spin_unlock_irq(&n->list_lock);
60398923 3969
916ac052 3970 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3971 discard_slab(s, page);
81819f0f
CL
3972}
3973
f9e13c0a
SB
3974bool __kmem_cache_empty(struct kmem_cache *s)
3975{
3976 int node;
3977 struct kmem_cache_node *n;
3978
3979 for_each_kmem_cache_node(s, node, n)
3980 if (n->nr_partial || slabs_node(s, node))
3981 return false;
3982 return true;
3983}
3984
81819f0f 3985/*
672bba3a 3986 * Release all resources used by a slab cache.
81819f0f 3987 */
52b4b950 3988int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3989{
3990 int node;
fa45dc25 3991 struct kmem_cache_node *n;
81819f0f
CL
3992
3993 flush_all(s);
81819f0f 3994 /* Attempt to free all objects */
fa45dc25 3995 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3996 free_partial(s, n);
3997 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3998 return 1;
3999 }
81819f0f
CL
4000 return 0;
4001}
4002
5bb1bb35 4003#ifdef CONFIG_PRINTK
8e7f37f2
PM
4004void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4005{
4006 void *base;
4007 int __maybe_unused i;
4008 unsigned int objnr;
4009 void *objp;
4010 void *objp0;
4011 struct kmem_cache *s = page->slab_cache;
4012 struct track __maybe_unused *trackp;
4013
4014 kpp->kp_ptr = object;
4015 kpp->kp_page = page;
4016 kpp->kp_slab_cache = s;
4017 base = page_address(page);
4018 objp0 = kasan_reset_tag(object);
4019#ifdef CONFIG_SLUB_DEBUG
4020 objp = restore_red_left(s, objp0);
4021#else
4022 objp = objp0;
4023#endif
4024 objnr = obj_to_index(s, page, objp);
4025 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4026 objp = base + s->size * objnr;
4027 kpp->kp_objp = objp;
4028 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4029 !(s->flags & SLAB_STORE_USER))
4030 return;
4031#ifdef CONFIG_SLUB_DEBUG
0cbc124b 4032 objp = fixup_red_left(s, objp);
8e7f37f2
PM
4033 trackp = get_track(s, objp, TRACK_ALLOC);
4034 kpp->kp_ret = (void *)trackp->addr;
ae14c63a
LT
4035#ifdef CONFIG_STACKTRACE
4036 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4037 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4038 if (!kpp->kp_stack[i])
4039 break;
4040 }
78869146 4041
ae14c63a
LT
4042 trackp = get_track(s, objp, TRACK_FREE);
4043 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4044 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4045 if (!kpp->kp_free_stack[i])
4046 break;
e548eaa1 4047 }
8e7f37f2
PM
4048#endif
4049#endif
4050}
5bb1bb35 4051#endif
8e7f37f2 4052
81819f0f
CL
4053/********************************************************************
4054 * Kmalloc subsystem
4055 *******************************************************************/
4056
81819f0f
CL
4057static int __init setup_slub_min_order(char *str)
4058{
19af27af 4059 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4060
4061 return 1;
4062}
4063
4064__setup("slub_min_order=", setup_slub_min_order);
4065
4066static int __init setup_slub_max_order(char *str)
4067{
19af27af
AD
4068 get_option(&str, (int *)&slub_max_order);
4069 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4070
4071 return 1;
4072}
4073
4074__setup("slub_max_order=", setup_slub_max_order);
4075
4076static int __init setup_slub_min_objects(char *str)
4077{
19af27af 4078 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4079
4080 return 1;
4081}
4082
4083__setup("slub_min_objects=", setup_slub_min_objects);
4084
81819f0f
CL
4085void *__kmalloc(size_t size, gfp_t flags)
4086{
aadb4bc4 4087 struct kmem_cache *s;
5b882be4 4088 void *ret;
81819f0f 4089
95a05b42 4090 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4091 return kmalloc_large(size, flags);
aadb4bc4 4092
2c59dd65 4093 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4094
4095 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4096 return s;
4097
b89fb5ef 4098 ret = slab_alloc(s, flags, _RET_IP_, size);
5b882be4 4099
ca2b84cb 4100 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4101
0116523c 4102 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4103
5b882be4 4104 return ret;
81819f0f
CL
4105}
4106EXPORT_SYMBOL(__kmalloc);
4107
5d1f57e4 4108#ifdef CONFIG_NUMA
f619cfe1
CL
4109static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4110{
b1eeab67 4111 struct page *page;
e4f7c0b4 4112 void *ptr = NULL;
6a486c0a 4113 unsigned int order = get_order(size);
f619cfe1 4114
75f296d9 4115 flags |= __GFP_COMP;
6a486c0a
VB
4116 page = alloc_pages_node(node, flags, order);
4117 if (page) {
e4f7c0b4 4118 ptr = page_address(page);
96403bfe
MS
4119 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4120 PAGE_SIZE << order);
6a486c0a 4121 }
e4f7c0b4 4122
0116523c 4123 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4124}
4125
81819f0f
CL
4126void *__kmalloc_node(size_t size, gfp_t flags, int node)
4127{
aadb4bc4 4128 struct kmem_cache *s;
5b882be4 4129 void *ret;
81819f0f 4130
95a05b42 4131 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4132 ret = kmalloc_large_node(size, flags, node);
4133
ca2b84cb
EGM
4134 trace_kmalloc_node(_RET_IP_, ret,
4135 size, PAGE_SIZE << get_order(size),
4136 flags, node);
5b882be4
EGM
4137
4138 return ret;
4139 }
aadb4bc4 4140
2c59dd65 4141 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4142
4143 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4144 return s;
4145
b89fb5ef 4146 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
5b882be4 4147
ca2b84cb 4148 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4149
0116523c 4150 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4151
5b882be4 4152 return ret;
81819f0f
CL
4153}
4154EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4155#endif /* CONFIG_NUMA */
81819f0f 4156
ed18adc1
KC
4157#ifdef CONFIG_HARDENED_USERCOPY
4158/*
afcc90f8
KC
4159 * Rejects incorrectly sized objects and objects that are to be copied
4160 * to/from userspace but do not fall entirely within the containing slab
4161 * cache's usercopy region.
ed18adc1
KC
4162 *
4163 * Returns NULL if check passes, otherwise const char * to name of cache
4164 * to indicate an error.
4165 */
f4e6e289
KC
4166void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4167 bool to_user)
ed18adc1
KC
4168{
4169 struct kmem_cache *s;
44065b2e 4170 unsigned int offset;
ed18adc1 4171 size_t object_size;
b89fb5ef 4172 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4173
96fedce2
AK
4174 ptr = kasan_reset_tag(ptr);
4175
ed18adc1
KC
4176 /* Find object and usable object size. */
4177 s = page->slab_cache;
ed18adc1
KC
4178
4179 /* Reject impossible pointers. */
4180 if (ptr < page_address(page))
f4e6e289
KC
4181 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4182 to_user, 0, n);
ed18adc1
KC
4183
4184 /* Find offset within object. */
b89fb5ef
AP
4185 if (is_kfence)
4186 offset = ptr - kfence_object_start(ptr);
4187 else
4188 offset = (ptr - page_address(page)) % s->size;
ed18adc1
KC
4189
4190 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4191 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4192 if (offset < s->red_left_pad)
f4e6e289
KC
4193 usercopy_abort("SLUB object in left red zone",
4194 s->name, to_user, offset, n);
ed18adc1
KC
4195 offset -= s->red_left_pad;
4196 }
4197
afcc90f8
KC
4198 /* Allow address range falling entirely within usercopy region. */
4199 if (offset >= s->useroffset &&
4200 offset - s->useroffset <= s->usersize &&
4201 n <= s->useroffset - offset + s->usersize)
f4e6e289 4202 return;
ed18adc1 4203
afcc90f8
KC
4204 /*
4205 * If the copy is still within the allocated object, produce
4206 * a warning instead of rejecting the copy. This is intended
4207 * to be a temporary method to find any missing usercopy
4208 * whitelists.
4209 */
4210 object_size = slab_ksize(s);
2d891fbc
KC
4211 if (usercopy_fallback &&
4212 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4213 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4214 return;
4215 }
ed18adc1 4216
f4e6e289 4217 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4218}
4219#endif /* CONFIG_HARDENED_USERCOPY */
4220
10d1f8cb 4221size_t __ksize(const void *object)
81819f0f 4222{
272c1d21 4223 struct page *page;
81819f0f 4224
ef8b4520 4225 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4226 return 0;
4227
294a80a8 4228 page = virt_to_head_page(object);
294a80a8 4229
76994412
PE
4230 if (unlikely(!PageSlab(page))) {
4231 WARN_ON(!PageCompound(page));
a50b854e 4232 return page_size(page);
76994412 4233 }
81819f0f 4234
1b4f59e3 4235 return slab_ksize(page->slab_cache);
81819f0f 4236}
10d1f8cb 4237EXPORT_SYMBOL(__ksize);
81819f0f
CL
4238
4239void kfree(const void *x)
4240{
81819f0f 4241 struct page *page;
5bb983b0 4242 void *object = (void *)x;
81819f0f 4243
2121db74
PE
4244 trace_kfree(_RET_IP_, x);
4245
2408c550 4246 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4247 return;
4248
b49af68f 4249 page = virt_to_head_page(x);
aadb4bc4 4250 if (unlikely(!PageSlab(page))) {
1ed7ce57 4251 free_nonslab_page(page, object);
aadb4bc4
CL
4252 return;
4253 }
81084651 4254 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4255}
4256EXPORT_SYMBOL(kfree);
4257
832f37f5
VD
4258#define SHRINK_PROMOTE_MAX 32
4259
2086d26a 4260/*
832f37f5
VD
4261 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4262 * up most to the head of the partial lists. New allocations will then
4263 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4264 *
4265 * The slabs with the least items are placed last. This results in them
4266 * being allocated from last increasing the chance that the last objects
4267 * are freed in them.
2086d26a 4268 */
c9fc5864 4269int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4270{
4271 int node;
4272 int i;
4273 struct kmem_cache_node *n;
4274 struct page *page;
4275 struct page *t;
832f37f5
VD
4276 struct list_head discard;
4277 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4278 unsigned long flags;
ce3712d7 4279 int ret = 0;
2086d26a 4280
2086d26a 4281 flush_all(s);
fa45dc25 4282 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4283 INIT_LIST_HEAD(&discard);
4284 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4285 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4286
4287 spin_lock_irqsave(&n->list_lock, flags);
4288
4289 /*
832f37f5 4290 * Build lists of slabs to discard or promote.
2086d26a 4291 *
672bba3a
CL
4292 * Note that concurrent frees may occur while we hold the
4293 * list_lock. page->inuse here is the upper limit.
2086d26a 4294 */
916ac052 4295 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4296 int free = page->objects - page->inuse;
4297
4298 /* Do not reread page->inuse */
4299 barrier();
4300
4301 /* We do not keep full slabs on the list */
4302 BUG_ON(free <= 0);
4303
4304 if (free == page->objects) {
916ac052 4305 list_move(&page->slab_list, &discard);
69cb8e6b 4306 n->nr_partial--;
832f37f5 4307 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4308 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4309 }
4310
2086d26a 4311 /*
832f37f5
VD
4312 * Promote the slabs filled up most to the head of the
4313 * partial list.
2086d26a 4314 */
832f37f5
VD
4315 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4316 list_splice(promote + i, &n->partial);
2086d26a 4317
2086d26a 4318 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4319
4320 /* Release empty slabs */
916ac052 4321 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4322 discard_slab(s, page);
ce3712d7
VD
4323
4324 if (slabs_node(s, node))
4325 ret = 1;
2086d26a
CL
4326 }
4327
ce3712d7 4328 return ret;
2086d26a 4329}
2086d26a 4330
b9049e23
YG
4331static int slab_mem_going_offline_callback(void *arg)
4332{
4333 struct kmem_cache *s;
4334
18004c5d 4335 mutex_lock(&slab_mutex);
b9049e23 4336 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4337 __kmem_cache_shrink(s);
18004c5d 4338 mutex_unlock(&slab_mutex);
b9049e23
YG
4339
4340 return 0;
4341}
4342
4343static void slab_mem_offline_callback(void *arg)
4344{
b9049e23
YG
4345 struct memory_notify *marg = arg;
4346 int offline_node;
4347
b9d5ab25 4348 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4349
4350 /*
4351 * If the node still has available memory. we need kmem_cache_node
4352 * for it yet.
4353 */
4354 if (offline_node < 0)
4355 return;
4356
18004c5d 4357 mutex_lock(&slab_mutex);
7e1fa93d 4358 node_clear(offline_node, slab_nodes);
666716fd
VB
4359 /*
4360 * We no longer free kmem_cache_node structures here, as it would be
4361 * racy with all get_node() users, and infeasible to protect them with
4362 * slab_mutex.
4363 */
18004c5d 4364 mutex_unlock(&slab_mutex);
b9049e23
YG
4365}
4366
4367static int slab_mem_going_online_callback(void *arg)
4368{
4369 struct kmem_cache_node *n;
4370 struct kmem_cache *s;
4371 struct memory_notify *marg = arg;
b9d5ab25 4372 int nid = marg->status_change_nid_normal;
b9049e23
YG
4373 int ret = 0;
4374
4375 /*
4376 * If the node's memory is already available, then kmem_cache_node is
4377 * already created. Nothing to do.
4378 */
4379 if (nid < 0)
4380 return 0;
4381
4382 /*
0121c619 4383 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4384 * allocate a kmem_cache_node structure in order to bring the node
4385 * online.
4386 */
18004c5d 4387 mutex_lock(&slab_mutex);
b9049e23 4388 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4389 /*
4390 * The structure may already exist if the node was previously
4391 * onlined and offlined.
4392 */
4393 if (get_node(s, nid))
4394 continue;
b9049e23
YG
4395 /*
4396 * XXX: kmem_cache_alloc_node will fallback to other nodes
4397 * since memory is not yet available from the node that
4398 * is brought up.
4399 */
8de66a0c 4400 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4401 if (!n) {
4402 ret = -ENOMEM;
4403 goto out;
4404 }
4053497d 4405 init_kmem_cache_node(n);
b9049e23
YG
4406 s->node[nid] = n;
4407 }
7e1fa93d
VB
4408 /*
4409 * Any cache created after this point will also have kmem_cache_node
4410 * initialized for the new node.
4411 */
4412 node_set(nid, slab_nodes);
b9049e23 4413out:
18004c5d 4414 mutex_unlock(&slab_mutex);
b9049e23
YG
4415 return ret;
4416}
4417
4418static int slab_memory_callback(struct notifier_block *self,
4419 unsigned long action, void *arg)
4420{
4421 int ret = 0;
4422
4423 switch (action) {
4424 case MEM_GOING_ONLINE:
4425 ret = slab_mem_going_online_callback(arg);
4426 break;
4427 case MEM_GOING_OFFLINE:
4428 ret = slab_mem_going_offline_callback(arg);
4429 break;
4430 case MEM_OFFLINE:
4431 case MEM_CANCEL_ONLINE:
4432 slab_mem_offline_callback(arg);
4433 break;
4434 case MEM_ONLINE:
4435 case MEM_CANCEL_OFFLINE:
4436 break;
4437 }
dc19f9db
KH
4438 if (ret)
4439 ret = notifier_from_errno(ret);
4440 else
4441 ret = NOTIFY_OK;
b9049e23
YG
4442 return ret;
4443}
4444
3ac38faa
AM
4445static struct notifier_block slab_memory_callback_nb = {
4446 .notifier_call = slab_memory_callback,
4447 .priority = SLAB_CALLBACK_PRI,
4448};
b9049e23 4449
81819f0f
CL
4450/********************************************************************
4451 * Basic setup of slabs
4452 *******************************************************************/
4453
51df1142
CL
4454/*
4455 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4456 * the page allocator. Allocate them properly then fix up the pointers
4457 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4458 */
4459
dffb4d60 4460static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4461{
4462 int node;
dffb4d60 4463 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4464 struct kmem_cache_node *n;
51df1142 4465
dffb4d60 4466 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4467
7d557b3c
GC
4468 /*
4469 * This runs very early, and only the boot processor is supposed to be
4470 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4471 * IPIs around.
4472 */
4473 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4474 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4475 struct page *p;
4476
916ac052 4477 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4478 p->slab_cache = s;
51df1142 4479
607bf324 4480#ifdef CONFIG_SLUB_DEBUG
916ac052 4481 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4482 p->slab_cache = s;
51df1142 4483#endif
51df1142 4484 }
dffb4d60
CL
4485 list_add(&s->list, &slab_caches);
4486 return s;
51df1142
CL
4487}
4488
81819f0f
CL
4489void __init kmem_cache_init(void)
4490{
dffb4d60
CL
4491 static __initdata struct kmem_cache boot_kmem_cache,
4492 boot_kmem_cache_node;
7e1fa93d 4493 int node;
51df1142 4494
fc8d8620
SG
4495 if (debug_guardpage_minorder())
4496 slub_max_order = 0;
4497
79270291
SB
4498 /* Print slub debugging pointers without hashing */
4499 if (__slub_debug_enabled())
4500 no_hash_pointers_enable(NULL);
4501
dffb4d60
CL
4502 kmem_cache_node = &boot_kmem_cache_node;
4503 kmem_cache = &boot_kmem_cache;
51df1142 4504
7e1fa93d
VB
4505 /*
4506 * Initialize the nodemask for which we will allocate per node
4507 * structures. Here we don't need taking slab_mutex yet.
4508 */
4509 for_each_node_state(node, N_NORMAL_MEMORY)
4510 node_set(node, slab_nodes);
4511
dffb4d60 4512 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4513 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4514
3ac38faa 4515 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4516
4517 /* Able to allocate the per node structures */
4518 slab_state = PARTIAL;
4519
dffb4d60
CL
4520 create_boot_cache(kmem_cache, "kmem_cache",
4521 offsetof(struct kmem_cache, node) +
4522 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4523 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4524
dffb4d60 4525 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4526 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4527
4528 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4529 setup_kmalloc_cache_index_table();
f97d5f63 4530 create_kmalloc_caches(0);
81819f0f 4531
210e7a43
TG
4532 /* Setup random freelists for each cache */
4533 init_freelist_randomization();
4534
a96a87bf
SAS
4535 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4536 slub_cpu_dead);
81819f0f 4537
b9726c26 4538 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4539 cache_line_size(),
81819f0f
CL
4540 slub_min_order, slub_max_order, slub_min_objects,
4541 nr_cpu_ids, nr_node_ids);
4542}
4543
7e85ee0c
PE
4544void __init kmem_cache_init_late(void)
4545{
7e85ee0c
PE
4546}
4547
2633d7a0 4548struct kmem_cache *
f4957d5b 4549__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4550 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4551{
10befea9 4552 struct kmem_cache *s;
81819f0f 4553
a44cb944 4554 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4555 if (s) {
4556 s->refcount++;
84d0ddd6 4557
81819f0f
CL
4558 /*
4559 * Adjust the object sizes so that we clear
4560 * the complete object on kzalloc.
4561 */
1b473f29 4562 s->object_size = max(s->object_size, size);
52ee6d74 4563 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4564
7b8f3b66 4565 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4566 s->refcount--;
cbb79694 4567 s = NULL;
7b8f3b66 4568 }
a0e1d1be 4569 }
6446faa2 4570
cbb79694
CL
4571 return s;
4572}
84c1cf62 4573
d50112ed 4574int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4575{
aac3a166
PE
4576 int err;
4577
4578 err = kmem_cache_open(s, flags);
4579 if (err)
4580 return err;
20cea968 4581
45530c44
CL
4582 /* Mutex is not taken during early boot */
4583 if (slab_state <= UP)
4584 return 0;
4585
aac3a166 4586 err = sysfs_slab_add(s);
aac3a166 4587 if (err)
52b4b950 4588 __kmem_cache_release(s);
20cea968 4589
64dd6849
FM
4590 if (s->flags & SLAB_STORE_USER)
4591 debugfs_slab_add(s);
4592
aac3a166 4593 return err;
81819f0f 4594}
81819f0f 4595
ce71e27c 4596void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4597{
aadb4bc4 4598 struct kmem_cache *s;
94b528d0 4599 void *ret;
aadb4bc4 4600
95a05b42 4601 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4602 return kmalloc_large(size, gfpflags);
4603
2c59dd65 4604 s = kmalloc_slab(size, gfpflags);
81819f0f 4605
2408c550 4606 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4607 return s;
81819f0f 4608
b89fb5ef 4609 ret = slab_alloc(s, gfpflags, caller, size);
94b528d0 4610
25985edc 4611 /* Honor the call site pointer we received. */
ca2b84cb 4612 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4613
4614 return ret;
81819f0f 4615}
fd7cb575 4616EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4617
5d1f57e4 4618#ifdef CONFIG_NUMA
81819f0f 4619void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4620 int node, unsigned long caller)
81819f0f 4621{
aadb4bc4 4622 struct kmem_cache *s;
94b528d0 4623 void *ret;
aadb4bc4 4624
95a05b42 4625 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4626 ret = kmalloc_large_node(size, gfpflags, node);
4627
4628 trace_kmalloc_node(caller, ret,
4629 size, PAGE_SIZE << get_order(size),
4630 gfpflags, node);
4631
4632 return ret;
4633 }
eada35ef 4634
2c59dd65 4635 s = kmalloc_slab(size, gfpflags);
81819f0f 4636
2408c550 4637 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4638 return s;
81819f0f 4639
b89fb5ef 4640 ret = slab_alloc_node(s, gfpflags, node, caller, size);
94b528d0 4641
25985edc 4642 /* Honor the call site pointer we received. */
ca2b84cb 4643 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4644
4645 return ret;
81819f0f 4646}
fd7cb575 4647EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4648#endif
81819f0f 4649
ab4d5ed5 4650#ifdef CONFIG_SYSFS
205ab99d
CL
4651static int count_inuse(struct page *page)
4652{
4653 return page->inuse;
4654}
4655
4656static int count_total(struct page *page)
4657{
4658 return page->objects;
4659}
ab4d5ed5 4660#endif
205ab99d 4661
ab4d5ed5 4662#ifdef CONFIG_SLUB_DEBUG
0a19e7dd
VB
4663static void validate_slab(struct kmem_cache *s, struct page *page,
4664 unsigned long *obj_map)
53e15af0
CL
4665{
4666 void *p;
a973e9dd 4667 void *addr = page_address(page);
90e9f6a6
YZ
4668
4669 slab_lock(page);
53e15af0 4670
dd98afd4 4671 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4672 goto unlock;
53e15af0
CL
4673
4674 /* Now we know that a valid freelist exists */
0a19e7dd 4675 __fill_map(obj_map, s, page);
5f80b13a 4676 for_each_object(p, s, addr, page->objects) {
0a19e7dd 4677 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
dd98afd4 4678 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4679
dd98afd4
YZ
4680 if (!check_object(s, page, p, val))
4681 break;
4682 }
90e9f6a6 4683unlock:
881db7fb 4684 slab_unlock(page);
53e15af0
CL
4685}
4686
434e245d 4687static int validate_slab_node(struct kmem_cache *s,
0a19e7dd 4688 struct kmem_cache_node *n, unsigned long *obj_map)
53e15af0
CL
4689{
4690 unsigned long count = 0;
4691 struct page *page;
4692 unsigned long flags;
4693
4694 spin_lock_irqsave(&n->list_lock, flags);
4695
916ac052 4696 list_for_each_entry(page, &n->partial, slab_list) {
0a19e7dd 4697 validate_slab(s, page, obj_map);
53e15af0
CL
4698 count++;
4699 }
1f9f78b1 4700 if (count != n->nr_partial) {
f9f58285
FF
4701 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4702 s->name, count, n->nr_partial);
1f9f78b1
OG
4703 slab_add_kunit_errors();
4704 }
53e15af0
CL
4705
4706 if (!(s->flags & SLAB_STORE_USER))
4707 goto out;
4708
916ac052 4709 list_for_each_entry(page, &n->full, slab_list) {
0a19e7dd 4710 validate_slab(s, page, obj_map);
53e15af0
CL
4711 count++;
4712 }
1f9f78b1 4713 if (count != atomic_long_read(&n->nr_slabs)) {
f9f58285
FF
4714 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4715 s->name, count, atomic_long_read(&n->nr_slabs));
1f9f78b1
OG
4716 slab_add_kunit_errors();
4717 }
53e15af0
CL
4718
4719out:
4720 spin_unlock_irqrestore(&n->list_lock, flags);
4721 return count;
4722}
4723
1f9f78b1 4724long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4725{
4726 int node;
4727 unsigned long count = 0;
fa45dc25 4728 struct kmem_cache_node *n;
0a19e7dd
VB
4729 unsigned long *obj_map;
4730
4731 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
4732 if (!obj_map)
4733 return -ENOMEM;
53e15af0
CL
4734
4735 flush_all(s);
fa45dc25 4736 for_each_kmem_cache_node(s, node, n)
0a19e7dd
VB
4737 count += validate_slab_node(s, n, obj_map);
4738
4739 bitmap_free(obj_map);
90e9f6a6 4740
53e15af0
CL
4741 return count;
4742}
1f9f78b1
OG
4743EXPORT_SYMBOL(validate_slab_cache);
4744
64dd6849 4745#ifdef CONFIG_DEBUG_FS
88a420e4 4746/*
672bba3a 4747 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4748 * and freed.
4749 */
4750
4751struct location {
4752 unsigned long count;
ce71e27c 4753 unsigned long addr;
45edfa58
CL
4754 long long sum_time;
4755 long min_time;
4756 long max_time;
4757 long min_pid;
4758 long max_pid;
174596a0 4759 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4760 nodemask_t nodes;
88a420e4
CL
4761};
4762
4763struct loc_track {
4764 unsigned long max;
4765 unsigned long count;
4766 struct location *loc;
4767};
4768
64dd6849
FM
4769static struct dentry *slab_debugfs_root;
4770
88a420e4
CL
4771static void free_loc_track(struct loc_track *t)
4772{
4773 if (t->max)
4774 free_pages((unsigned long)t->loc,
4775 get_order(sizeof(struct location) * t->max));
4776}
4777
68dff6a9 4778static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4779{
4780 struct location *l;
4781 int order;
4782
88a420e4
CL
4783 order = get_order(sizeof(struct location) * max);
4784
68dff6a9 4785 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4786 if (!l)
4787 return 0;
4788
4789 if (t->count) {
4790 memcpy(l, t->loc, sizeof(struct location) * t->count);
4791 free_loc_track(t);
4792 }
4793 t->max = max;
4794 t->loc = l;
4795 return 1;
4796}
4797
4798static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4799 const struct track *track)
88a420e4
CL
4800{
4801 long start, end, pos;
4802 struct location *l;
ce71e27c 4803 unsigned long caddr;
45edfa58 4804 unsigned long age = jiffies - track->when;
88a420e4
CL
4805
4806 start = -1;
4807 end = t->count;
4808
4809 for ( ; ; ) {
4810 pos = start + (end - start + 1) / 2;
4811
4812 /*
4813 * There is nothing at "end". If we end up there
4814 * we need to add something to before end.
4815 */
4816 if (pos == end)
4817 break;
4818
4819 caddr = t->loc[pos].addr;
45edfa58
CL
4820 if (track->addr == caddr) {
4821
4822 l = &t->loc[pos];
4823 l->count++;
4824 if (track->when) {
4825 l->sum_time += age;
4826 if (age < l->min_time)
4827 l->min_time = age;
4828 if (age > l->max_time)
4829 l->max_time = age;
4830
4831 if (track->pid < l->min_pid)
4832 l->min_pid = track->pid;
4833 if (track->pid > l->max_pid)
4834 l->max_pid = track->pid;
4835
174596a0
RR
4836 cpumask_set_cpu(track->cpu,
4837 to_cpumask(l->cpus));
45edfa58
CL
4838 }
4839 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4840 return 1;
4841 }
4842
45edfa58 4843 if (track->addr < caddr)
88a420e4
CL
4844 end = pos;
4845 else
4846 start = pos;
4847 }
4848
4849 /*
672bba3a 4850 * Not found. Insert new tracking element.
88a420e4 4851 */
68dff6a9 4852 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4853 return 0;
4854
4855 l = t->loc + pos;
4856 if (pos < t->count)
4857 memmove(l + 1, l,
4858 (t->count - pos) * sizeof(struct location));
4859 t->count++;
4860 l->count = 1;
45edfa58
CL
4861 l->addr = track->addr;
4862 l->sum_time = age;
4863 l->min_time = age;
4864 l->max_time = age;
4865 l->min_pid = track->pid;
4866 l->max_pid = track->pid;
174596a0
RR
4867 cpumask_clear(to_cpumask(l->cpus));
4868 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4869 nodes_clear(l->nodes);
4870 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4871 return 1;
4872}
4873
4874static void process_slab(struct loc_track *t, struct kmem_cache *s,
b3fd64e1
VB
4875 struct page *page, enum track_item alloc,
4876 unsigned long *obj_map)
88a420e4 4877{
a973e9dd 4878 void *addr = page_address(page);
88a420e4
CL
4879 void *p;
4880
b3fd64e1
VB
4881 __fill_map(obj_map, s, page);
4882
224a88be 4883 for_each_object(p, s, addr, page->objects)
b3fd64e1 4884 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
45edfa58 4885 add_location(t, s, get_track(s, p, alloc));
88a420e4 4886}
64dd6849 4887#endif /* CONFIG_DEBUG_FS */
6dfd1b65 4888#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4889
ab4d5ed5 4890#ifdef CONFIG_SYSFS
81819f0f 4891enum slab_stat_type {
205ab99d
CL
4892 SL_ALL, /* All slabs */
4893 SL_PARTIAL, /* Only partially allocated slabs */
4894 SL_CPU, /* Only slabs used for cpu caches */
4895 SL_OBJECTS, /* Determine allocated objects not slabs */
4896 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4897};
4898
205ab99d 4899#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4900#define SO_PARTIAL (1 << SL_PARTIAL)
4901#define SO_CPU (1 << SL_CPU)
4902#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4903#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4904
62e5c4b4 4905static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 4906 char *buf, unsigned long flags)
81819f0f
CL
4907{
4908 unsigned long total = 0;
81819f0f
CL
4909 int node;
4910 int x;
4911 unsigned long *nodes;
bf16d19a 4912 int len = 0;
81819f0f 4913
6396bb22 4914 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4915 if (!nodes)
4916 return -ENOMEM;
81819f0f 4917
205ab99d
CL
4918 if (flags & SO_CPU) {
4919 int cpu;
81819f0f 4920
205ab99d 4921 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4922 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4923 cpu);
ec3ab083 4924 int node;
49e22585 4925 struct page *page;
dfb4f096 4926
4db0c3c2 4927 page = READ_ONCE(c->page);
ec3ab083
CL
4928 if (!page)
4929 continue;
205ab99d 4930
ec3ab083
CL
4931 node = page_to_nid(page);
4932 if (flags & SO_TOTAL)
4933 x = page->objects;
4934 else if (flags & SO_OBJECTS)
4935 x = page->inuse;
4936 else
4937 x = 1;
49e22585 4938
ec3ab083
CL
4939 total += x;
4940 nodes[node] += x;
4941
a93cf07b 4942 page = slub_percpu_partial_read_once(c);
49e22585 4943 if (page) {
8afb1474
LZ
4944 node = page_to_nid(page);
4945 if (flags & SO_TOTAL)
4946 WARN_ON_ONCE(1);
4947 else if (flags & SO_OBJECTS)
4948 WARN_ON_ONCE(1);
4949 else
4950 x = page->pages;
bc6697d8
ED
4951 total += x;
4952 nodes[node] += x;
49e22585 4953 }
81819f0f
CL
4954 }
4955 }
4956
e4f8e513
QC
4957 /*
4958 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4959 * already held which will conflict with an existing lock order:
4960 *
4961 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4962 *
4963 * We don't really need mem_hotplug_lock (to hold off
4964 * slab_mem_going_offline_callback) here because slab's memory hot
4965 * unplug code doesn't destroy the kmem_cache->node[] data.
4966 */
4967
ab4d5ed5 4968#ifdef CONFIG_SLUB_DEBUG
205ab99d 4969 if (flags & SO_ALL) {
fa45dc25
CL
4970 struct kmem_cache_node *n;
4971
4972 for_each_kmem_cache_node(s, node, n) {
205ab99d 4973
d0e0ac97
CG
4974 if (flags & SO_TOTAL)
4975 x = atomic_long_read(&n->total_objects);
4976 else if (flags & SO_OBJECTS)
4977 x = atomic_long_read(&n->total_objects) -
4978 count_partial(n, count_free);
81819f0f 4979 else
205ab99d 4980 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4981 total += x;
4982 nodes[node] += x;
4983 }
4984
ab4d5ed5
CL
4985 } else
4986#endif
4987 if (flags & SO_PARTIAL) {
fa45dc25 4988 struct kmem_cache_node *n;
81819f0f 4989
fa45dc25 4990 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4991 if (flags & SO_TOTAL)
4992 x = count_partial(n, count_total);
4993 else if (flags & SO_OBJECTS)
4994 x = count_partial(n, count_inuse);
81819f0f 4995 else
205ab99d 4996 x = n->nr_partial;
81819f0f
CL
4997 total += x;
4998 nodes[node] += x;
4999 }
5000 }
bf16d19a
JP
5001
5002 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5003#ifdef CONFIG_NUMA
bf16d19a 5004 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5005 if (nodes[node])
bf16d19a
JP
5006 len += sysfs_emit_at(buf, len, " N%d=%lu",
5007 node, nodes[node]);
5008 }
81819f0f 5009#endif
bf16d19a 5010 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5011 kfree(nodes);
bf16d19a
JP
5012
5013 return len;
81819f0f
CL
5014}
5015
81819f0f 5016#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5017#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5018
5019struct slab_attribute {
5020 struct attribute attr;
5021 ssize_t (*show)(struct kmem_cache *s, char *buf);
5022 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5023};
5024
5025#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5026 static struct slab_attribute _name##_attr = \
5027 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5028
5029#define SLAB_ATTR(_name) \
5030 static struct slab_attribute _name##_attr = \
ab067e99 5031 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5032
81819f0f
CL
5033static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5034{
bf16d19a 5035 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5036}
5037SLAB_ATTR_RO(slab_size);
5038
5039static ssize_t align_show(struct kmem_cache *s, char *buf)
5040{
bf16d19a 5041 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5042}
5043SLAB_ATTR_RO(align);
5044
5045static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5046{
bf16d19a 5047 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5048}
5049SLAB_ATTR_RO(object_size);
5050
5051static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5052{
bf16d19a 5053 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5054}
5055SLAB_ATTR_RO(objs_per_slab);
5056
5057static ssize_t order_show(struct kmem_cache *s, char *buf)
5058{
bf16d19a 5059 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5060}
32a6f409 5061SLAB_ATTR_RO(order);
81819f0f 5062
73d342b1
DR
5063static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5064{
bf16d19a 5065 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5066}
5067
5068static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5069 size_t length)
5070{
5071 unsigned long min;
5072 int err;
5073
3dbb95f7 5074 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5075 if (err)
5076 return err;
5077
c0bdb232 5078 set_min_partial(s, min);
73d342b1
DR
5079 return length;
5080}
5081SLAB_ATTR(min_partial);
5082
49e22585
CL
5083static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5084{
bf16d19a 5085 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5086}
5087
5088static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5089 size_t length)
5090{
e5d9998f 5091 unsigned int objects;
49e22585
CL
5092 int err;
5093
e5d9998f 5094 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5095 if (err)
5096 return err;
345c905d 5097 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5098 return -EINVAL;
49e22585 5099
e6d0e1dc 5100 slub_set_cpu_partial(s, objects);
49e22585
CL
5101 flush_all(s);
5102 return length;
5103}
5104SLAB_ATTR(cpu_partial);
5105
81819f0f
CL
5106static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5107{
62c70bce
JP
5108 if (!s->ctor)
5109 return 0;
bf16d19a 5110 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5111}
5112SLAB_ATTR_RO(ctor);
5113
81819f0f
CL
5114static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5115{
bf16d19a 5116 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5117}
5118SLAB_ATTR_RO(aliases);
5119
81819f0f
CL
5120static ssize_t partial_show(struct kmem_cache *s, char *buf)
5121{
d9acf4b7 5122 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5123}
5124SLAB_ATTR_RO(partial);
5125
5126static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5127{
d9acf4b7 5128 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5129}
5130SLAB_ATTR_RO(cpu_slabs);
5131
5132static ssize_t objects_show(struct kmem_cache *s, char *buf)
5133{
205ab99d 5134 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5135}
5136SLAB_ATTR_RO(objects);
5137
205ab99d
CL
5138static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5139{
5140 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5141}
5142SLAB_ATTR_RO(objects_partial);
5143
49e22585
CL
5144static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5145{
5146 int objects = 0;
5147 int pages = 0;
5148 int cpu;
bf16d19a 5149 int len = 0;
49e22585
CL
5150
5151 for_each_online_cpu(cpu) {
a93cf07b
WY
5152 struct page *page;
5153
5154 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5155
5156 if (page) {
5157 pages += page->pages;
5158 objects += page->pobjects;
5159 }
5160 }
5161
bf16d19a 5162 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5163
5164#ifdef CONFIG_SMP
5165 for_each_online_cpu(cpu) {
a93cf07b
WY
5166 struct page *page;
5167
5168 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5169 if (page)
5170 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5171 cpu, page->pobjects, page->pages);
49e22585
CL
5172 }
5173#endif
bf16d19a
JP
5174 len += sysfs_emit_at(buf, len, "\n");
5175
5176 return len;
49e22585
CL
5177}
5178SLAB_ATTR_RO(slabs_cpu_partial);
5179
a5a84755
CL
5180static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5181{
bf16d19a 5182 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5183}
8f58119a 5184SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5185
5186static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5187{
bf16d19a 5188 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5189}
5190SLAB_ATTR_RO(hwcache_align);
5191
5192#ifdef CONFIG_ZONE_DMA
5193static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5194{
bf16d19a 5195 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5196}
5197SLAB_ATTR_RO(cache_dma);
5198#endif
5199
8eb8284b
DW
5200static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5201{
bf16d19a 5202 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5203}
5204SLAB_ATTR_RO(usersize);
5205
a5a84755
CL
5206static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5207{
bf16d19a 5208 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5209}
5210SLAB_ATTR_RO(destroy_by_rcu);
5211
ab4d5ed5 5212#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5213static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5214{
5215 return show_slab_objects(s, buf, SO_ALL);
5216}
5217SLAB_ATTR_RO(slabs);
5218
205ab99d
CL
5219static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5220{
5221 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5222}
5223SLAB_ATTR_RO(total_objects);
5224
81819f0f
CL
5225static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5226{
bf16d19a 5227 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5228}
060807f8 5229SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5230
5231static ssize_t trace_show(struct kmem_cache *s, char *buf)
5232{
bf16d19a 5233 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5234}
060807f8 5235SLAB_ATTR_RO(trace);
81819f0f 5236
81819f0f
CL
5237static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5238{
bf16d19a 5239 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5240}
5241
ad38b5b1 5242SLAB_ATTR_RO(red_zone);
81819f0f
CL
5243
5244static ssize_t poison_show(struct kmem_cache *s, char *buf)
5245{
bf16d19a 5246 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5247}
5248
ad38b5b1 5249SLAB_ATTR_RO(poison);
81819f0f
CL
5250
5251static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5252{
bf16d19a 5253 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5254}
5255
ad38b5b1 5256SLAB_ATTR_RO(store_user);
81819f0f 5257
53e15af0
CL
5258static ssize_t validate_show(struct kmem_cache *s, char *buf)
5259{
5260 return 0;
5261}
5262
5263static ssize_t validate_store(struct kmem_cache *s,
5264 const char *buf, size_t length)
5265{
434e245d
CL
5266 int ret = -EINVAL;
5267
5268 if (buf[0] == '1') {
5269 ret = validate_slab_cache(s);
5270 if (ret >= 0)
5271 ret = length;
5272 }
5273 return ret;
53e15af0
CL
5274}
5275SLAB_ATTR(validate);
a5a84755 5276
a5a84755
CL
5277#endif /* CONFIG_SLUB_DEBUG */
5278
5279#ifdef CONFIG_FAILSLAB
5280static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5281{
bf16d19a 5282 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5283}
060807f8 5284SLAB_ATTR_RO(failslab);
ab4d5ed5 5285#endif
53e15af0 5286
2086d26a
CL
5287static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5288{
5289 return 0;
5290}
5291
5292static ssize_t shrink_store(struct kmem_cache *s,
5293 const char *buf, size_t length)
5294{
832f37f5 5295 if (buf[0] == '1')
10befea9 5296 kmem_cache_shrink(s);
832f37f5 5297 else
2086d26a
CL
5298 return -EINVAL;
5299 return length;
5300}
5301SLAB_ATTR(shrink);
5302
81819f0f 5303#ifdef CONFIG_NUMA
9824601e 5304static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5305{
bf16d19a 5306 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5307}
5308
9824601e 5309static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5310 const char *buf, size_t length)
5311{
eb7235eb 5312 unsigned int ratio;
0121c619
CL
5313 int err;
5314
eb7235eb 5315 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5316 if (err)
5317 return err;
eb7235eb
AD
5318 if (ratio > 100)
5319 return -ERANGE;
0121c619 5320
eb7235eb 5321 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5322
81819f0f
CL
5323 return length;
5324}
9824601e 5325SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5326#endif
5327
8ff12cfc 5328#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5329static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5330{
5331 unsigned long sum = 0;
5332 int cpu;
bf16d19a 5333 int len = 0;
6da2ec56 5334 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5335
5336 if (!data)
5337 return -ENOMEM;
5338
5339 for_each_online_cpu(cpu) {
9dfc6e68 5340 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5341
5342 data[cpu] = x;
5343 sum += x;
5344 }
5345
bf16d19a 5346 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5347
50ef37b9 5348#ifdef CONFIG_SMP
8ff12cfc 5349 for_each_online_cpu(cpu) {
bf16d19a
JP
5350 if (data[cpu])
5351 len += sysfs_emit_at(buf, len, " C%d=%u",
5352 cpu, data[cpu]);
8ff12cfc 5353 }
50ef37b9 5354#endif
8ff12cfc 5355 kfree(data);
bf16d19a
JP
5356 len += sysfs_emit_at(buf, len, "\n");
5357
5358 return len;
8ff12cfc
CL
5359}
5360
78eb00cc
DR
5361static void clear_stat(struct kmem_cache *s, enum stat_item si)
5362{
5363 int cpu;
5364
5365 for_each_online_cpu(cpu)
9dfc6e68 5366 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5367}
5368
8ff12cfc
CL
5369#define STAT_ATTR(si, text) \
5370static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5371{ \
5372 return show_stat(s, buf, si); \
5373} \
78eb00cc
DR
5374static ssize_t text##_store(struct kmem_cache *s, \
5375 const char *buf, size_t length) \
5376{ \
5377 if (buf[0] != '0') \
5378 return -EINVAL; \
5379 clear_stat(s, si); \
5380 return length; \
5381} \
5382SLAB_ATTR(text); \
8ff12cfc
CL
5383
5384STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5385STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5386STAT_ATTR(FREE_FASTPATH, free_fastpath);
5387STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5388STAT_ATTR(FREE_FROZEN, free_frozen);
5389STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5390STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5391STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5392STAT_ATTR(ALLOC_SLAB, alloc_slab);
5393STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5394STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5395STAT_ATTR(FREE_SLAB, free_slab);
5396STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5397STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5398STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5399STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5400STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5401STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5402STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5403STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5404STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5405STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5406STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5407STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5408STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5409STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5410#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5411
06428780 5412static struct attribute *slab_attrs[] = {
81819f0f
CL
5413 &slab_size_attr.attr,
5414 &object_size_attr.attr,
5415 &objs_per_slab_attr.attr,
5416 &order_attr.attr,
73d342b1 5417 &min_partial_attr.attr,
49e22585 5418 &cpu_partial_attr.attr,
81819f0f 5419 &objects_attr.attr,
205ab99d 5420 &objects_partial_attr.attr,
81819f0f
CL
5421 &partial_attr.attr,
5422 &cpu_slabs_attr.attr,
5423 &ctor_attr.attr,
81819f0f
CL
5424 &aliases_attr.attr,
5425 &align_attr.attr,
81819f0f
CL
5426 &hwcache_align_attr.attr,
5427 &reclaim_account_attr.attr,
5428 &destroy_by_rcu_attr.attr,
a5a84755 5429 &shrink_attr.attr,
49e22585 5430 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5431#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5432 &total_objects_attr.attr,
5433 &slabs_attr.attr,
5434 &sanity_checks_attr.attr,
5435 &trace_attr.attr,
81819f0f
CL
5436 &red_zone_attr.attr,
5437 &poison_attr.attr,
5438 &store_user_attr.attr,
53e15af0 5439 &validate_attr.attr,
ab4d5ed5 5440#endif
81819f0f
CL
5441#ifdef CONFIG_ZONE_DMA
5442 &cache_dma_attr.attr,
5443#endif
5444#ifdef CONFIG_NUMA
9824601e 5445 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5446#endif
5447#ifdef CONFIG_SLUB_STATS
5448 &alloc_fastpath_attr.attr,
5449 &alloc_slowpath_attr.attr,
5450 &free_fastpath_attr.attr,
5451 &free_slowpath_attr.attr,
5452 &free_frozen_attr.attr,
5453 &free_add_partial_attr.attr,
5454 &free_remove_partial_attr.attr,
5455 &alloc_from_partial_attr.attr,
5456 &alloc_slab_attr.attr,
5457 &alloc_refill_attr.attr,
e36a2652 5458 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5459 &free_slab_attr.attr,
5460 &cpuslab_flush_attr.attr,
5461 &deactivate_full_attr.attr,
5462 &deactivate_empty_attr.attr,
5463 &deactivate_to_head_attr.attr,
5464 &deactivate_to_tail_attr.attr,
5465 &deactivate_remote_frees_attr.attr,
03e404af 5466 &deactivate_bypass_attr.attr,
65c3376a 5467 &order_fallback_attr.attr,
b789ef51
CL
5468 &cmpxchg_double_fail_attr.attr,
5469 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5470 &cpu_partial_alloc_attr.attr,
5471 &cpu_partial_free_attr.attr,
8028dcea
AS
5472 &cpu_partial_node_attr.attr,
5473 &cpu_partial_drain_attr.attr,
81819f0f 5474#endif
4c13dd3b
DM
5475#ifdef CONFIG_FAILSLAB
5476 &failslab_attr.attr,
5477#endif
8eb8284b 5478 &usersize_attr.attr,
4c13dd3b 5479
81819f0f
CL
5480 NULL
5481};
5482
1fdaaa23 5483static const struct attribute_group slab_attr_group = {
81819f0f
CL
5484 .attrs = slab_attrs,
5485};
5486
5487static ssize_t slab_attr_show(struct kobject *kobj,
5488 struct attribute *attr,
5489 char *buf)
5490{
5491 struct slab_attribute *attribute;
5492 struct kmem_cache *s;
5493 int err;
5494
5495 attribute = to_slab_attr(attr);
5496 s = to_slab(kobj);
5497
5498 if (!attribute->show)
5499 return -EIO;
5500
5501 err = attribute->show(s, buf);
5502
5503 return err;
5504}
5505
5506static ssize_t slab_attr_store(struct kobject *kobj,
5507 struct attribute *attr,
5508 const char *buf, size_t len)
5509{
5510 struct slab_attribute *attribute;
5511 struct kmem_cache *s;
5512 int err;
5513
5514 attribute = to_slab_attr(attr);
5515 s = to_slab(kobj);
5516
5517 if (!attribute->store)
5518 return -EIO;
5519
5520 err = attribute->store(s, buf, len);
81819f0f
CL
5521 return err;
5522}
5523
41a21285
CL
5524static void kmem_cache_release(struct kobject *k)
5525{
5526 slab_kmem_cache_release(to_slab(k));
5527}
5528
52cf25d0 5529static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5530 .show = slab_attr_show,
5531 .store = slab_attr_store,
5532};
5533
5534static struct kobj_type slab_ktype = {
5535 .sysfs_ops = &slab_sysfs_ops,
41a21285 5536 .release = kmem_cache_release,
81819f0f
CL
5537};
5538
27c3a314 5539static struct kset *slab_kset;
81819f0f 5540
9a41707b
VD
5541static inline struct kset *cache_kset(struct kmem_cache *s)
5542{
9a41707b
VD
5543 return slab_kset;
5544}
5545
81819f0f
CL
5546#define ID_STR_LENGTH 64
5547
5548/* Create a unique string id for a slab cache:
6446faa2
CL
5549 *
5550 * Format :[flags-]size
81819f0f
CL
5551 */
5552static char *create_unique_id(struct kmem_cache *s)
5553{
5554 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5555 char *p = name;
5556
5557 BUG_ON(!name);
5558
5559 *p++ = ':';
5560 /*
5561 * First flags affecting slabcache operations. We will only
5562 * get here for aliasable slabs so we do not need to support
5563 * too many flags. The flags here must cover all flags that
5564 * are matched during merging to guarantee that the id is
5565 * unique.
5566 */
5567 if (s->flags & SLAB_CACHE_DMA)
5568 *p++ = 'd';
6d6ea1e9
NB
5569 if (s->flags & SLAB_CACHE_DMA32)
5570 *p++ = 'D';
81819f0f
CL
5571 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5572 *p++ = 'a';
becfda68 5573 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5574 *p++ = 'F';
230e9fc2
VD
5575 if (s->flags & SLAB_ACCOUNT)
5576 *p++ = 'A';
81819f0f
CL
5577 if (p != name + 1)
5578 *p++ = '-';
44065b2e 5579 p += sprintf(p, "%07u", s->size);
2633d7a0 5580
81819f0f
CL
5581 BUG_ON(p > name + ID_STR_LENGTH - 1);
5582 return name;
5583}
5584
5585static int sysfs_slab_add(struct kmem_cache *s)
5586{
5587 int err;
5588 const char *name;
1663f26d 5589 struct kset *kset = cache_kset(s);
45530c44 5590 int unmergeable = slab_unmergeable(s);
81819f0f 5591
1663f26d
TH
5592 if (!kset) {
5593 kobject_init(&s->kobj, &slab_ktype);
5594 return 0;
5595 }
5596
11066386
MC
5597 if (!unmergeable && disable_higher_order_debug &&
5598 (slub_debug & DEBUG_METADATA_FLAGS))
5599 unmergeable = 1;
5600
81819f0f
CL
5601 if (unmergeable) {
5602 /*
5603 * Slabcache can never be merged so we can use the name proper.
5604 * This is typically the case for debug situations. In that
5605 * case we can catch duplicate names easily.
5606 */
27c3a314 5607 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5608 name = s->name;
5609 } else {
5610 /*
5611 * Create a unique name for the slab as a target
5612 * for the symlinks.
5613 */
5614 name = create_unique_id(s);
5615 }
5616
1663f26d 5617 s->kobj.kset = kset;
26e4f205 5618 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5619 if (err)
80da026a 5620 goto out;
81819f0f
CL
5621
5622 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5623 if (err)
5624 goto out_del_kobj;
9a41707b 5625
81819f0f
CL
5626 if (!unmergeable) {
5627 /* Setup first alias */
5628 sysfs_slab_alias(s, s->name);
81819f0f 5629 }
54b6a731
DJ
5630out:
5631 if (!unmergeable)
5632 kfree(name);
5633 return err;
5634out_del_kobj:
5635 kobject_del(&s->kobj);
54b6a731 5636 goto out;
81819f0f
CL
5637}
5638
d50d82fa
MP
5639void sysfs_slab_unlink(struct kmem_cache *s)
5640{
5641 if (slab_state >= FULL)
5642 kobject_del(&s->kobj);
5643}
5644
bf5eb3de
TH
5645void sysfs_slab_release(struct kmem_cache *s)
5646{
5647 if (slab_state >= FULL)
5648 kobject_put(&s->kobj);
81819f0f
CL
5649}
5650
5651/*
5652 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5653 * available lest we lose that information.
81819f0f
CL
5654 */
5655struct saved_alias {
5656 struct kmem_cache *s;
5657 const char *name;
5658 struct saved_alias *next;
5659};
5660
5af328a5 5661static struct saved_alias *alias_list;
81819f0f
CL
5662
5663static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5664{
5665 struct saved_alias *al;
5666
97d06609 5667 if (slab_state == FULL) {
81819f0f
CL
5668 /*
5669 * If we have a leftover link then remove it.
5670 */
27c3a314
GKH
5671 sysfs_remove_link(&slab_kset->kobj, name);
5672 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5673 }
5674
5675 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5676 if (!al)
5677 return -ENOMEM;
5678
5679 al->s = s;
5680 al->name = name;
5681 al->next = alias_list;
5682 alias_list = al;
5683 return 0;
5684}
5685
5686static int __init slab_sysfs_init(void)
5687{
5b95a4ac 5688 struct kmem_cache *s;
81819f0f
CL
5689 int err;
5690
18004c5d 5691 mutex_lock(&slab_mutex);
2bce6485 5692
d7660ce5 5693 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5694 if (!slab_kset) {
18004c5d 5695 mutex_unlock(&slab_mutex);
f9f58285 5696 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5697 return -ENOSYS;
5698 }
5699
97d06609 5700 slab_state = FULL;
26a7bd03 5701
5b95a4ac 5702 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5703 err = sysfs_slab_add(s);
5d540fb7 5704 if (err)
f9f58285
FF
5705 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5706 s->name);
26a7bd03 5707 }
81819f0f
CL
5708
5709 while (alias_list) {
5710 struct saved_alias *al = alias_list;
5711
5712 alias_list = alias_list->next;
5713 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5714 if (err)
f9f58285
FF
5715 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5716 al->name);
81819f0f
CL
5717 kfree(al);
5718 }
5719
18004c5d 5720 mutex_unlock(&slab_mutex);
81819f0f
CL
5721 return 0;
5722}
5723
5724__initcall(slab_sysfs_init);
ab4d5ed5 5725#endif /* CONFIG_SYSFS */
57ed3eda 5726
64dd6849
FM
5727#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5728static int slab_debugfs_show(struct seq_file *seq, void *v)
5729{
5730
5731 struct location *l;
5732 unsigned int idx = *(unsigned int *)v;
5733 struct loc_track *t = seq->private;
5734
5735 if (idx < t->count) {
5736 l = &t->loc[idx];
5737
5738 seq_printf(seq, "%7ld ", l->count);
5739
5740 if (l->addr)
5741 seq_printf(seq, "%pS", (void *)l->addr);
5742 else
5743 seq_puts(seq, "<not-available>");
5744
5745 if (l->sum_time != l->min_time) {
5746 seq_printf(seq, " age=%ld/%llu/%ld",
5747 l->min_time, div_u64(l->sum_time, l->count),
5748 l->max_time);
5749 } else
5750 seq_printf(seq, " age=%ld", l->min_time);
5751
5752 if (l->min_pid != l->max_pid)
5753 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5754 else
5755 seq_printf(seq, " pid=%ld",
5756 l->min_pid);
5757
5758 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5759 seq_printf(seq, " cpus=%*pbl",
5760 cpumask_pr_args(to_cpumask(l->cpus)));
5761
5762 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5763 seq_printf(seq, " nodes=%*pbl",
5764 nodemask_pr_args(&l->nodes));
5765
5766 seq_puts(seq, "\n");
5767 }
5768
5769 if (!idx && !t->count)
5770 seq_puts(seq, "No data\n");
5771
5772 return 0;
5773}
5774
5775static void slab_debugfs_stop(struct seq_file *seq, void *v)
5776{
5777}
5778
5779static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5780{
5781 struct loc_track *t = seq->private;
5782
5783 v = ppos;
5784 ++*ppos;
5785 if (*ppos <= t->count)
5786 return v;
5787
5788 return NULL;
5789}
5790
5791static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5792{
5793 return ppos;
5794}
5795
5796static const struct seq_operations slab_debugfs_sops = {
5797 .start = slab_debugfs_start,
5798 .next = slab_debugfs_next,
5799 .stop = slab_debugfs_stop,
5800 .show = slab_debugfs_show,
5801};
5802
5803static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5804{
5805
5806 struct kmem_cache_node *n;
5807 enum track_item alloc;
5808 int node;
5809 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5810 sizeof(struct loc_track));
5811 struct kmem_cache *s = file_inode(filep)->i_private;
b3fd64e1
VB
5812 unsigned long *obj_map;
5813
5814 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5815 if (!obj_map)
5816 return -ENOMEM;
64dd6849
FM
5817
5818 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5819 alloc = TRACK_ALLOC;
5820 else
5821 alloc = TRACK_FREE;
5822
b3fd64e1
VB
5823 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
5824 bitmap_free(obj_map);
64dd6849 5825 return -ENOMEM;
b3fd64e1 5826 }
64dd6849 5827
64dd6849
FM
5828 for_each_kmem_cache_node(s, node, n) {
5829 unsigned long flags;
5830 struct page *page;
5831
5832 if (!atomic_long_read(&n->nr_slabs))
5833 continue;
5834
5835 spin_lock_irqsave(&n->list_lock, flags);
5836 list_for_each_entry(page, &n->partial, slab_list)
b3fd64e1 5837 process_slab(t, s, page, alloc, obj_map);
64dd6849 5838 list_for_each_entry(page, &n->full, slab_list)
b3fd64e1 5839 process_slab(t, s, page, alloc, obj_map);
64dd6849
FM
5840 spin_unlock_irqrestore(&n->list_lock, flags);
5841 }
5842
b3fd64e1 5843 bitmap_free(obj_map);
64dd6849
FM
5844 return 0;
5845}
5846
5847static int slab_debug_trace_release(struct inode *inode, struct file *file)
5848{
5849 struct seq_file *seq = file->private_data;
5850 struct loc_track *t = seq->private;
5851
5852 free_loc_track(t);
5853 return seq_release_private(inode, file);
5854}
5855
5856static const struct file_operations slab_debugfs_fops = {
5857 .open = slab_debug_trace_open,
5858 .read = seq_read,
5859 .llseek = seq_lseek,
5860 .release = slab_debug_trace_release,
5861};
5862
5863static void debugfs_slab_add(struct kmem_cache *s)
5864{
5865 struct dentry *slab_cache_dir;
5866
5867 if (unlikely(!slab_debugfs_root))
5868 return;
5869
5870 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
5871
5872 debugfs_create_file("alloc_traces", 0400,
5873 slab_cache_dir, s, &slab_debugfs_fops);
5874
5875 debugfs_create_file("free_traces", 0400,
5876 slab_cache_dir, s, &slab_debugfs_fops);
5877}
5878
5879void debugfs_slab_release(struct kmem_cache *s)
5880{
5881 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
5882}
5883
5884static int __init slab_debugfs_init(void)
5885{
5886 struct kmem_cache *s;
5887
5888 slab_debugfs_root = debugfs_create_dir("slab", NULL);
5889
5890 list_for_each_entry(s, &slab_caches, list)
5891 if (s->flags & SLAB_STORE_USER)
5892 debugfs_slab_add(s);
5893
5894 return 0;
5895
5896}
5897__initcall(slab_debugfs_init);
5898#endif
57ed3eda
PE
5899/*
5900 * The /proc/slabinfo ABI
5901 */
5b365771 5902#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5903void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5904{
57ed3eda 5905 unsigned long nr_slabs = 0;
205ab99d
CL
5906 unsigned long nr_objs = 0;
5907 unsigned long nr_free = 0;
57ed3eda 5908 int node;
fa45dc25 5909 struct kmem_cache_node *n;
57ed3eda 5910
fa45dc25 5911 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5912 nr_slabs += node_nr_slabs(n);
5913 nr_objs += node_nr_objs(n);
205ab99d 5914 nr_free += count_partial(n, count_free);
57ed3eda
PE
5915 }
5916
0d7561c6
GC
5917 sinfo->active_objs = nr_objs - nr_free;
5918 sinfo->num_objs = nr_objs;
5919 sinfo->active_slabs = nr_slabs;
5920 sinfo->num_slabs = nr_slabs;
5921 sinfo->objects_per_slab = oo_objects(s->oo);
5922 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5923}
5924
0d7561c6 5925void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5926{
7b3c3a50
AD
5927}
5928
b7454ad3
GC
5929ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5930 size_t count, loff_t *ppos)
7b3c3a50 5931{
b7454ad3 5932 return -EIO;
7b3c3a50 5933}
5b365771 5934#endif /* CONFIG_SLUB_DEBUG */