]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/slub.c
slub: update slabinfo tools to report per cpu partial list statistics
[people/arne_f/kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
81819f0f 32
4a92379b
RK
33#include <trace/events/kmem.h>
34
81819f0f
CL
35/*
36 * Lock order:
881db7fb
CL
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 40 *
881db7fb
CL
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
81819f0f
CL
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
b789ef51
CL
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
2086d26a
CL
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
76be8950 141#define MIN_PARTIAL 5
e95eed57 142
2086d26a
CL
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
81819f0f
CL
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
672bba3a 152
fa5ec8a1 153/*
3de47213
DR
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
fa5ec8a1 157 */
3de47213 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 159
81819f0f
CL
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
81819f0f
CL
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 168 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 169
210b5c06
CG
170#define OO_SHIFT 16
171#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 172#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 173
81819f0f 174/* Internal SLUB flags */
f90ec390 175#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 176#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185 DOWN, /* No slab functionality available */
51df1142 186 PARTIAL, /* Kmem_cache_node works */
672bba3a 187 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
188 SYSFS /* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
5af328a5 193static LIST_HEAD(slab_caches);
81819f0f 194
02cbc874
CL
195/*
196 * Tracking user of a slab.
197 */
d6543e39 198#define TRACK_ADDRS_COUNT 16
02cbc874 199struct track {
ce71e27c 200 unsigned long addr; /* Called from address */
d6543e39
BG
201#ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203#endif
02cbc874
CL
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207};
208
209enum track_item { TRACK_ALLOC, TRACK_FREE };
210
ab4d5ed5 211#ifdef CONFIG_SYSFS
81819f0f
CL
212static int sysfs_slab_add(struct kmem_cache *);
213static int sysfs_slab_alias(struct kmem_cache *, const char *);
214static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 215
81819f0f 216#else
0c710013
CL
217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
151c602f
CL
220static inline void sysfs_slab_remove(struct kmem_cache *s)
221{
84c1cf62 222 kfree(s->name);
151c602f
CL
223 kfree(s);
224}
8ff12cfc 225
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
84e554e6 231 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
232#endif
233}
234
81819f0f
CL
235/********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239int slab_is_available(void)
240{
241 return slab_state >= UP;
242}
243
244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245{
81819f0f 246 return s->node[node];
81819f0f
CL
247}
248
6446faa2 249/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
250static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252{
253 void *base;
254
a973e9dd 255 if (!object)
02cbc874
CL
256 return 1;
257
a973e9dd 258 base = page_address(page);
39b26464 259 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
269 return *(void **)(object + s->offset);
270}
271
1393d9a1
CL
272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273{
274 void *p;
275
276#ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278#else
279 p = get_freepointer(s, object);
280#endif
281 return p;
282}
283
7656c72b
CL
284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285{
286 *(void **)(object + s->offset) = fp;
287}
288
289/* Loop over all objects in a slab */
224a88be
CL
290#define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
292 __p += (__s)->size)
293
7656c72b
CL
294/* Determine object index from a given position */
295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296{
297 return (p - addr) / s->size;
298}
299
d71f606f
MK
300static inline size_t slab_ksize(const struct kmem_cache *s)
301{
302#ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310#endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322}
323
ab9a0f19
LJ
324static inline int order_objects(int order, unsigned long size, int reserved)
325{
326 return ((PAGE_SIZE << order) - reserved) / size;
327}
328
834f3d11 329static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 330 unsigned long size, int reserved)
834f3d11
CL
331{
332 struct kmem_cache_order_objects x = {
ab9a0f19 333 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
334 };
335
336 return x;
337}
338
339static inline int oo_order(struct kmem_cache_order_objects x)
340{
210b5c06 341 return x.x >> OO_SHIFT;
834f3d11
CL
342}
343
344static inline int oo_objects(struct kmem_cache_order_objects x)
345{
210b5c06 346 return x.x & OO_MASK;
834f3d11
CL
347}
348
881db7fb
CL
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
354 bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
369#ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s->flags & __CMPXCHG_DOUBLE) {
371 if (cmpxchg_double(&page->freelist,
372 freelist_old, counters_old,
373 freelist_new, counters_new))
374 return 1;
375 } else
376#endif
377 {
378 slab_lock(page);
379 if (page->freelist == freelist_old && page->counters == counters_old) {
380 page->freelist = freelist_new;
381 page->counters = counters_new;
382 slab_unlock(page);
383 return 1;
384 }
385 slab_unlock(page);
386 }
387
388 cpu_relax();
389 stat(s, CMPXCHG_DOUBLE_FAIL);
390
391#ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393#endif
394
395 return 0;
396}
397
b789ef51
CL
398static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 void *freelist_old, unsigned long counters_old,
400 void *freelist_new, unsigned long counters_new,
401 const char *n)
402{
403#ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s->flags & __CMPXCHG_DOUBLE) {
405 if (cmpxchg_double(&page->freelist,
406 freelist_old, counters_old,
407 freelist_new, counters_new))
408 return 1;
409 } else
410#endif
411 {
1d07171c
CL
412 unsigned long flags;
413
414 local_irq_save(flags);
881db7fb 415 slab_lock(page);
b789ef51
CL
416 if (page->freelist == freelist_old && page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
881db7fb 419 slab_unlock(page);
1d07171c 420 local_irq_restore(flags);
b789ef51
CL
421 return 1;
422 }
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
b789ef51
CL
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430#ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432#endif
433
434 return 0;
435}
436
41ecc55b 437#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
438/*
439 * Determine a map of object in use on a page.
440 *
881db7fb 441 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
442 * not vanish from under us.
443 */
444static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445{
446 void *p;
447 void *addr = page_address(page);
448
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
451}
452
41ecc55b
CL
453/*
454 * Debug settings:
455 */
f0630fff
CL
456#ifdef CONFIG_SLUB_DEBUG_ON
457static int slub_debug = DEBUG_DEFAULT_FLAGS;
458#else
41ecc55b 459static int slub_debug;
f0630fff 460#endif
41ecc55b
CL
461
462static char *slub_debug_slabs;
fa5ec8a1 463static int disable_higher_order_debug;
41ecc55b 464
81819f0f
CL
465/*
466 * Object debugging
467 */
468static void print_section(char *text, u8 *addr, unsigned int length)
469{
470 int i, offset;
471 int newline = 1;
472 char ascii[17];
473
474 ascii[16] = 0;
475
476 for (i = 0; i < length; i++) {
477 if (newline) {
24922684 478 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
479 newline = 0;
480 }
06428780 481 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
482 offset = i % 16;
483 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
484 if (offset == 15) {
06428780 485 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
486 newline = 1;
487 }
488 }
489 if (!newline) {
490 i %= 16;
491 while (i < 16) {
06428780 492 printk(KERN_CONT " ");
81819f0f
CL
493 ascii[i] = ' ';
494 i++;
495 }
06428780 496 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
497 }
498}
499
81819f0f
CL
500static struct track *get_track(struct kmem_cache *s, void *object,
501 enum track_item alloc)
502{
503 struct track *p;
504
505 if (s->offset)
506 p = object + s->offset + sizeof(void *);
507 else
508 p = object + s->inuse;
509
510 return p + alloc;
511}
512
513static void set_track(struct kmem_cache *s, void *object,
ce71e27c 514 enum track_item alloc, unsigned long addr)
81819f0f 515{
1a00df4a 516 struct track *p = get_track(s, object, alloc);
81819f0f 517
81819f0f 518 if (addr) {
d6543e39
BG
519#ifdef CONFIG_STACKTRACE
520 struct stack_trace trace;
521 int i;
522
523 trace.nr_entries = 0;
524 trace.max_entries = TRACK_ADDRS_COUNT;
525 trace.entries = p->addrs;
526 trace.skip = 3;
527 save_stack_trace(&trace);
528
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
533
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536#endif
81819f0f
CL
537 p->addr = addr;
538 p->cpu = smp_processor_id();
88e4ccf2 539 p->pid = current->pid;
81819f0f
CL
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
543}
544
81819f0f
CL
545static void init_tracking(struct kmem_cache *s, void *object)
546{
24922684
CL
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
ce71e27c
EGM
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
552}
553
554static void print_track(const char *s, struct track *t)
555{
556 if (!t->addr)
557 return;
558
7daf705f 559 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
561#ifdef CONFIG_STACKTRACE
562 {
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
566 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
567 else
568 break;
569 }
570#endif
24922684
CL
571}
572
573static void print_tracking(struct kmem_cache *s, void *object)
574{
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
580}
581
582static void print_page_info(struct page *page)
583{
39b26464
CL
584 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
586
587}
588
589static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590{
591 va_list args;
592 char buf[100];
593
594 va_start(args, fmt);
595 vsnprintf(buf, sizeof(buf), fmt, args);
596 va_end(args);
597 printk(KERN_ERR "========================================"
598 "=====================================\n");
599 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
600 printk(KERN_ERR "----------------------------------------"
601 "-------------------------------------\n\n");
81819f0f
CL
602}
603
24922684
CL
604static void slab_fix(struct kmem_cache *s, char *fmt, ...)
605{
606 va_list args;
607 char buf[100];
608
609 va_start(args, fmt);
610 vsnprintf(buf, sizeof(buf), fmt, args);
611 va_end(args);
612 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
613}
614
615static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
616{
617 unsigned int off; /* Offset of last byte */
a973e9dd 618 u8 *addr = page_address(page);
24922684
CL
619
620 print_tracking(s, p);
621
622 print_page_info(page);
623
624 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
625 p, p - addr, get_freepointer(s, p));
626
627 if (p > addr + 16)
628 print_section("Bytes b4", p - 16, 16);
629
0ebd652b 630 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
631
632 if (s->flags & SLAB_RED_ZONE)
633 print_section("Redzone", p + s->objsize,
634 s->inuse - s->objsize);
635
81819f0f
CL
636 if (s->offset)
637 off = s->offset + sizeof(void *);
638 else
639 off = s->inuse;
640
24922684 641 if (s->flags & SLAB_STORE_USER)
81819f0f 642 off += 2 * sizeof(struct track);
81819f0f
CL
643
644 if (off != s->size)
645 /* Beginning of the filler is the free pointer */
24922684
CL
646 print_section("Padding", p + off, s->size - off);
647
648 dump_stack();
81819f0f
CL
649}
650
651static void object_err(struct kmem_cache *s, struct page *page,
652 u8 *object, char *reason)
653{
3dc50637 654 slab_bug(s, "%s", reason);
24922684 655 print_trailer(s, page, object);
81819f0f
CL
656}
657
24922684 658static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
659{
660 va_list args;
661 char buf[100];
662
24922684
CL
663 va_start(args, fmt);
664 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 665 va_end(args);
3dc50637 666 slab_bug(s, "%s", buf);
24922684 667 print_page_info(page);
81819f0f
CL
668 dump_stack();
669}
670
f7cb1933 671static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
672{
673 u8 *p = object;
674
675 if (s->flags & __OBJECT_POISON) {
676 memset(p, POISON_FREE, s->objsize - 1);
06428780 677 p[s->objsize - 1] = POISON_END;
81819f0f
CL
678 }
679
680 if (s->flags & SLAB_RED_ZONE)
f7cb1933 681 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
682}
683
c4089f98 684static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
81819f0f
CL
685{
686 while (bytes) {
c4089f98 687 if (*start != value)
24922684 688 return start;
81819f0f
CL
689 start++;
690 bytes--;
691 }
24922684
CL
692 return NULL;
693}
694
c4089f98
MS
695static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
696{
697 u64 value64;
698 unsigned int words, prefix;
699
700 if (bytes <= 16)
701 return check_bytes8(start, value, bytes);
702
703 value64 = value | value << 8 | value << 16 | value << 24;
ef62fb32 704 value64 = (value64 & 0xffffffff) | value64 << 32;
c4089f98
MS
705 prefix = 8 - ((unsigned long)start) % 8;
706
707 if (prefix) {
708 u8 *r = check_bytes8(start, value, prefix);
709 if (r)
710 return r;
711 start += prefix;
712 bytes -= prefix;
713 }
714
715 words = bytes / 8;
716
717 while (words) {
718 if (*(u64 *)start != value64)
719 return check_bytes8(start, value, 8);
720 start += 8;
721 words--;
722 }
723
724 return check_bytes8(start, value, bytes % 8);
725}
726
24922684
CL
727static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
728 void *from, void *to)
729{
730 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
731 memset(from, data, to - from);
732}
733
734static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
735 u8 *object, char *what,
06428780 736 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
737{
738 u8 *fault;
739 u8 *end;
740
741 fault = check_bytes(start, value, bytes);
742 if (!fault)
743 return 1;
744
745 end = start + bytes;
746 while (end > fault && end[-1] == value)
747 end--;
748
749 slab_bug(s, "%s overwritten", what);
750 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
751 fault, end - 1, fault[0], value);
752 print_trailer(s, page, object);
753
754 restore_bytes(s, what, value, fault, end);
755 return 0;
81819f0f
CL
756}
757
81819f0f
CL
758/*
759 * Object layout:
760 *
761 * object address
762 * Bytes of the object to be managed.
763 * If the freepointer may overlay the object then the free
764 * pointer is the first word of the object.
672bba3a 765 *
81819f0f
CL
766 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
767 * 0xa5 (POISON_END)
768 *
769 * object + s->objsize
770 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
771 * Padding is extended by another word if Redzoning is enabled and
772 * objsize == inuse.
773 *
81819f0f
CL
774 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
775 * 0xcc (RED_ACTIVE) for objects in use.
776 *
777 * object + s->inuse
672bba3a
CL
778 * Meta data starts here.
779 *
81819f0f
CL
780 * A. Free pointer (if we cannot overwrite object on free)
781 * B. Tracking data for SLAB_STORE_USER
672bba3a 782 * C. Padding to reach required alignment boundary or at mininum
6446faa2 783 * one word if debugging is on to be able to detect writes
672bba3a
CL
784 * before the word boundary.
785 *
786 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
787 *
788 * object + s->size
672bba3a 789 * Nothing is used beyond s->size.
81819f0f 790 *
672bba3a
CL
791 * If slabcaches are merged then the objsize and inuse boundaries are mostly
792 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
793 * may be used with merged slabcaches.
794 */
795
81819f0f
CL
796static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
797{
798 unsigned long off = s->inuse; /* The end of info */
799
800 if (s->offset)
801 /* Freepointer is placed after the object. */
802 off += sizeof(void *);
803
804 if (s->flags & SLAB_STORE_USER)
805 /* We also have user information there */
806 off += 2 * sizeof(struct track);
807
808 if (s->size == off)
809 return 1;
810
24922684
CL
811 return check_bytes_and_report(s, page, p, "Object padding",
812 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
813}
814
39b26464 815/* Check the pad bytes at the end of a slab page */
81819f0f
CL
816static int slab_pad_check(struct kmem_cache *s, struct page *page)
817{
24922684
CL
818 u8 *start;
819 u8 *fault;
820 u8 *end;
821 int length;
822 int remainder;
81819f0f
CL
823
824 if (!(s->flags & SLAB_POISON))
825 return 1;
826
a973e9dd 827 start = page_address(page);
ab9a0f19 828 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
829 end = start + length;
830 remainder = length % s->size;
81819f0f
CL
831 if (!remainder)
832 return 1;
833
39b26464 834 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
835 if (!fault)
836 return 1;
837 while (end > fault && end[-1] == POISON_INUSE)
838 end--;
839
840 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 841 print_section("Padding", end - remainder, remainder);
24922684 842
8a3d271d 843 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 844 return 0;
81819f0f
CL
845}
846
847static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 848 void *object, u8 val)
81819f0f
CL
849{
850 u8 *p = object;
851 u8 *endobject = object + s->objsize;
852
853 if (s->flags & SLAB_RED_ZONE) {
24922684 854 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 855 endobject, val, s->inuse - s->objsize))
81819f0f 856 return 0;
81819f0f 857 } else {
3adbefee
IM
858 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
859 check_bytes_and_report(s, page, p, "Alignment padding",
860 endobject, POISON_INUSE, s->inuse - s->objsize);
861 }
81819f0f
CL
862 }
863
864 if (s->flags & SLAB_POISON) {
f7cb1933 865 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
866 (!check_bytes_and_report(s, page, p, "Poison", p,
867 POISON_FREE, s->objsize - 1) ||
868 !check_bytes_and_report(s, page, p, "Poison",
06428780 869 p + s->objsize - 1, POISON_END, 1)))
81819f0f 870 return 0;
81819f0f
CL
871 /*
872 * check_pad_bytes cleans up on its own.
873 */
874 check_pad_bytes(s, page, p);
875 }
876
f7cb1933 877 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
878 /*
879 * Object and freepointer overlap. Cannot check
880 * freepointer while object is allocated.
881 */
882 return 1;
883
884 /* Check free pointer validity */
885 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
886 object_err(s, page, p, "Freepointer corrupt");
887 /*
9f6c708e 888 * No choice but to zap it and thus lose the remainder
81819f0f 889 * of the free objects in this slab. May cause
672bba3a 890 * another error because the object count is now wrong.
81819f0f 891 */
a973e9dd 892 set_freepointer(s, p, NULL);
81819f0f
CL
893 return 0;
894 }
895 return 1;
896}
897
898static int check_slab(struct kmem_cache *s, struct page *page)
899{
39b26464
CL
900 int maxobj;
901
81819f0f
CL
902 VM_BUG_ON(!irqs_disabled());
903
904 if (!PageSlab(page)) {
24922684 905 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
906 return 0;
907 }
39b26464 908
ab9a0f19 909 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
910 if (page->objects > maxobj) {
911 slab_err(s, page, "objects %u > max %u",
912 s->name, page->objects, maxobj);
913 return 0;
914 }
915 if (page->inuse > page->objects) {
24922684 916 slab_err(s, page, "inuse %u > max %u",
39b26464 917 s->name, page->inuse, page->objects);
81819f0f
CL
918 return 0;
919 }
920 /* Slab_pad_check fixes things up after itself */
921 slab_pad_check(s, page);
922 return 1;
923}
924
925/*
672bba3a
CL
926 * Determine if a certain object on a page is on the freelist. Must hold the
927 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
928 */
929static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
930{
931 int nr = 0;
881db7fb 932 void *fp;
81819f0f 933 void *object = NULL;
224a88be 934 unsigned long max_objects;
81819f0f 935
881db7fb 936 fp = page->freelist;
39b26464 937 while (fp && nr <= page->objects) {
81819f0f
CL
938 if (fp == search)
939 return 1;
940 if (!check_valid_pointer(s, page, fp)) {
941 if (object) {
942 object_err(s, page, object,
943 "Freechain corrupt");
a973e9dd 944 set_freepointer(s, object, NULL);
81819f0f
CL
945 break;
946 } else {
24922684 947 slab_err(s, page, "Freepointer corrupt");
a973e9dd 948 page->freelist = NULL;
39b26464 949 page->inuse = page->objects;
24922684 950 slab_fix(s, "Freelist cleared");
81819f0f
CL
951 return 0;
952 }
953 break;
954 }
955 object = fp;
956 fp = get_freepointer(s, object);
957 nr++;
958 }
959
ab9a0f19 960 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
961 if (max_objects > MAX_OBJS_PER_PAGE)
962 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
963
964 if (page->objects != max_objects) {
965 slab_err(s, page, "Wrong number of objects. Found %d but "
966 "should be %d", page->objects, max_objects);
967 page->objects = max_objects;
968 slab_fix(s, "Number of objects adjusted.");
969 }
39b26464 970 if (page->inuse != page->objects - nr) {
70d71228 971 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
972 "counted were %d", page->inuse, page->objects - nr);
973 page->inuse = page->objects - nr;
24922684 974 slab_fix(s, "Object count adjusted.");
81819f0f
CL
975 }
976 return search == NULL;
977}
978
0121c619
CL
979static void trace(struct kmem_cache *s, struct page *page, void *object,
980 int alloc)
3ec09742
CL
981{
982 if (s->flags & SLAB_TRACE) {
983 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
984 s->name,
985 alloc ? "alloc" : "free",
986 object, page->inuse,
987 page->freelist);
988
989 if (!alloc)
990 print_section("Object", (void *)object, s->objsize);
991
992 dump_stack();
993 }
994}
995
c016b0bd
CL
996/*
997 * Hooks for other subsystems that check memory allocations. In a typical
998 * production configuration these hooks all should produce no code at all.
999 */
1000static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1001{
c1d50836 1002 flags &= gfp_allowed_mask;
c016b0bd
CL
1003 lockdep_trace_alloc(flags);
1004 might_sleep_if(flags & __GFP_WAIT);
1005
1006 return should_failslab(s->objsize, flags, s->flags);
1007}
1008
1009static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
1010{
c1d50836 1011 flags &= gfp_allowed_mask;
b3d41885 1012 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
1013 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
1014}
1015
1016static inline void slab_free_hook(struct kmem_cache *s, void *x)
1017{
1018 kmemleak_free_recursive(x, s->flags);
c016b0bd 1019
d3f661d6
CL
1020 /*
1021 * Trouble is that we may no longer disable interupts in the fast path
1022 * So in order to make the debug calls that expect irqs to be
1023 * disabled we need to disable interrupts temporarily.
1024 */
1025#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1026 {
1027 unsigned long flags;
1028
1029 local_irq_save(flags);
1030 kmemcheck_slab_free(s, x, s->objsize);
1031 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
1032 local_irq_restore(flags);
1033 }
1034#endif
f9b615de
TG
1035 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1036 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
1037}
1038
643b1138 1039/*
672bba3a 1040 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
1041 *
1042 * list_lock must be held.
643b1138 1043 */
5cc6eee8
CL
1044static void add_full(struct kmem_cache *s,
1045 struct kmem_cache_node *n, struct page *page)
643b1138 1046{
5cc6eee8
CL
1047 if (!(s->flags & SLAB_STORE_USER))
1048 return;
1049
643b1138 1050 list_add(&page->lru, &n->full);
643b1138
CL
1051}
1052
5cc6eee8
CL
1053/*
1054 * list_lock must be held.
1055 */
643b1138
CL
1056static void remove_full(struct kmem_cache *s, struct page *page)
1057{
643b1138
CL
1058 if (!(s->flags & SLAB_STORE_USER))
1059 return;
1060
643b1138 1061 list_del(&page->lru);
643b1138
CL
1062}
1063
0f389ec6
CL
1064/* Tracking of the number of slabs for debugging purposes */
1065static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1066{
1067 struct kmem_cache_node *n = get_node(s, node);
1068
1069 return atomic_long_read(&n->nr_slabs);
1070}
1071
26c02cf0
AB
1072static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1073{
1074 return atomic_long_read(&n->nr_slabs);
1075}
1076
205ab99d 1077static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1078{
1079 struct kmem_cache_node *n = get_node(s, node);
1080
1081 /*
1082 * May be called early in order to allocate a slab for the
1083 * kmem_cache_node structure. Solve the chicken-egg
1084 * dilemma by deferring the increment of the count during
1085 * bootstrap (see early_kmem_cache_node_alloc).
1086 */
7340cc84 1087 if (n) {
0f389ec6 1088 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1089 atomic_long_add(objects, &n->total_objects);
1090 }
0f389ec6 1091}
205ab99d 1092static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1093{
1094 struct kmem_cache_node *n = get_node(s, node);
1095
1096 atomic_long_dec(&n->nr_slabs);
205ab99d 1097 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1098}
1099
1100/* Object debug checks for alloc/free paths */
3ec09742
CL
1101static void setup_object_debug(struct kmem_cache *s, struct page *page,
1102 void *object)
1103{
1104 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1105 return;
1106
f7cb1933 1107 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1108 init_tracking(s, object);
1109}
1110
1537066c 1111static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1112 void *object, unsigned long addr)
81819f0f
CL
1113{
1114 if (!check_slab(s, page))
1115 goto bad;
1116
81819f0f
CL
1117 if (!check_valid_pointer(s, page, object)) {
1118 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1119 goto bad;
81819f0f
CL
1120 }
1121
f7cb1933 1122 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1123 goto bad;
81819f0f 1124
3ec09742
CL
1125 /* Success perform special debug activities for allocs */
1126 if (s->flags & SLAB_STORE_USER)
1127 set_track(s, object, TRACK_ALLOC, addr);
1128 trace(s, page, object, 1);
f7cb1933 1129 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1130 return 1;
3ec09742 1131
81819f0f
CL
1132bad:
1133 if (PageSlab(page)) {
1134 /*
1135 * If this is a slab page then lets do the best we can
1136 * to avoid issues in the future. Marking all objects
672bba3a 1137 * as used avoids touching the remaining objects.
81819f0f 1138 */
24922684 1139 slab_fix(s, "Marking all objects used");
39b26464 1140 page->inuse = page->objects;
a973e9dd 1141 page->freelist = NULL;
81819f0f
CL
1142 }
1143 return 0;
1144}
1145
1537066c
CL
1146static noinline int free_debug_processing(struct kmem_cache *s,
1147 struct page *page, void *object, unsigned long addr)
81819f0f 1148{
5c2e4bbb
CL
1149 unsigned long flags;
1150 int rc = 0;
1151
1152 local_irq_save(flags);
881db7fb
CL
1153 slab_lock(page);
1154
81819f0f
CL
1155 if (!check_slab(s, page))
1156 goto fail;
1157
1158 if (!check_valid_pointer(s, page, object)) {
70d71228 1159 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1160 goto fail;
1161 }
1162
1163 if (on_freelist(s, page, object)) {
24922684 1164 object_err(s, page, object, "Object already free");
81819f0f
CL
1165 goto fail;
1166 }
1167
f7cb1933 1168 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1169 goto out;
81819f0f
CL
1170
1171 if (unlikely(s != page->slab)) {
3adbefee 1172 if (!PageSlab(page)) {
70d71228
CL
1173 slab_err(s, page, "Attempt to free object(0x%p) "
1174 "outside of slab", object);
3adbefee 1175 } else if (!page->slab) {
81819f0f 1176 printk(KERN_ERR
70d71228 1177 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1178 object);
70d71228 1179 dump_stack();
06428780 1180 } else
24922684
CL
1181 object_err(s, page, object,
1182 "page slab pointer corrupt.");
81819f0f
CL
1183 goto fail;
1184 }
3ec09742 1185
3ec09742
CL
1186 if (s->flags & SLAB_STORE_USER)
1187 set_track(s, object, TRACK_FREE, addr);
1188 trace(s, page, object, 0);
f7cb1933 1189 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1190 rc = 1;
1191out:
881db7fb 1192 slab_unlock(page);
5c2e4bbb
CL
1193 local_irq_restore(flags);
1194 return rc;
3ec09742 1195
81819f0f 1196fail:
24922684 1197 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1198 goto out;
81819f0f
CL
1199}
1200
41ecc55b
CL
1201static int __init setup_slub_debug(char *str)
1202{
f0630fff
CL
1203 slub_debug = DEBUG_DEFAULT_FLAGS;
1204 if (*str++ != '=' || !*str)
1205 /*
1206 * No options specified. Switch on full debugging.
1207 */
1208 goto out;
1209
1210 if (*str == ',')
1211 /*
1212 * No options but restriction on slabs. This means full
1213 * debugging for slabs matching a pattern.
1214 */
1215 goto check_slabs;
1216
fa5ec8a1
DR
1217 if (tolower(*str) == 'o') {
1218 /*
1219 * Avoid enabling debugging on caches if its minimum order
1220 * would increase as a result.
1221 */
1222 disable_higher_order_debug = 1;
1223 goto out;
1224 }
1225
f0630fff
CL
1226 slub_debug = 0;
1227 if (*str == '-')
1228 /*
1229 * Switch off all debugging measures.
1230 */
1231 goto out;
1232
1233 /*
1234 * Determine which debug features should be switched on
1235 */
06428780 1236 for (; *str && *str != ','; str++) {
f0630fff
CL
1237 switch (tolower(*str)) {
1238 case 'f':
1239 slub_debug |= SLAB_DEBUG_FREE;
1240 break;
1241 case 'z':
1242 slub_debug |= SLAB_RED_ZONE;
1243 break;
1244 case 'p':
1245 slub_debug |= SLAB_POISON;
1246 break;
1247 case 'u':
1248 slub_debug |= SLAB_STORE_USER;
1249 break;
1250 case 't':
1251 slub_debug |= SLAB_TRACE;
1252 break;
4c13dd3b
DM
1253 case 'a':
1254 slub_debug |= SLAB_FAILSLAB;
1255 break;
f0630fff
CL
1256 default:
1257 printk(KERN_ERR "slub_debug option '%c' "
06428780 1258 "unknown. skipped\n", *str);
f0630fff 1259 }
41ecc55b
CL
1260 }
1261
f0630fff 1262check_slabs:
41ecc55b
CL
1263 if (*str == ',')
1264 slub_debug_slabs = str + 1;
f0630fff 1265out:
41ecc55b
CL
1266 return 1;
1267}
1268
1269__setup("slub_debug", setup_slub_debug);
1270
ba0268a8
CL
1271static unsigned long kmem_cache_flags(unsigned long objsize,
1272 unsigned long flags, const char *name,
51cc5068 1273 void (*ctor)(void *))
41ecc55b
CL
1274{
1275 /*
e153362a 1276 * Enable debugging if selected on the kernel commandline.
41ecc55b 1277 */
e153362a 1278 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1279 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1280 flags |= slub_debug;
ba0268a8
CL
1281
1282 return flags;
41ecc55b
CL
1283}
1284#else
3ec09742
CL
1285static inline void setup_object_debug(struct kmem_cache *s,
1286 struct page *page, void *object) {}
41ecc55b 1287
3ec09742 1288static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1289 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1290
3ec09742 1291static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1292 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1293
41ecc55b
CL
1294static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1295 { return 1; }
1296static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1297 void *object, u8 val) { return 1; }
5cc6eee8
CL
1298static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1299 struct page *page) {}
2cfb7455 1300static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1301static inline unsigned long kmem_cache_flags(unsigned long objsize,
1302 unsigned long flags, const char *name,
51cc5068 1303 void (*ctor)(void *))
ba0268a8
CL
1304{
1305 return flags;
1306}
41ecc55b 1307#define slub_debug 0
0f389ec6 1308
fdaa45e9
IM
1309#define disable_higher_order_debug 0
1310
0f389ec6
CL
1311static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1312 { return 0; }
26c02cf0
AB
1313static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1314 { return 0; }
205ab99d
CL
1315static inline void inc_slabs_node(struct kmem_cache *s, int node,
1316 int objects) {}
1317static inline void dec_slabs_node(struct kmem_cache *s, int node,
1318 int objects) {}
7d550c56
CL
1319
1320static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1321 { return 0; }
1322
1323static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1324 void *object) {}
1325
1326static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1327
ab4d5ed5 1328#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1329
81819f0f
CL
1330/*
1331 * Slab allocation and freeing
1332 */
65c3376a
CL
1333static inline struct page *alloc_slab_page(gfp_t flags, int node,
1334 struct kmem_cache_order_objects oo)
1335{
1336 int order = oo_order(oo);
1337
b1eeab67
VN
1338 flags |= __GFP_NOTRACK;
1339
2154a336 1340 if (node == NUMA_NO_NODE)
65c3376a
CL
1341 return alloc_pages(flags, order);
1342 else
6b65aaf3 1343 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1344}
1345
81819f0f
CL
1346static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347{
06428780 1348 struct page *page;
834f3d11 1349 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1350 gfp_t alloc_gfp;
81819f0f 1351
7e0528da
CL
1352 flags &= gfp_allowed_mask;
1353
1354 if (flags & __GFP_WAIT)
1355 local_irq_enable();
1356
b7a49f0d 1357 flags |= s->allocflags;
e12ba74d 1358
ba52270d
PE
1359 /*
1360 * Let the initial higher-order allocation fail under memory pressure
1361 * so we fall-back to the minimum order allocation.
1362 */
1363 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1364
1365 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1366 if (unlikely(!page)) {
1367 oo = s->min;
1368 /*
1369 * Allocation may have failed due to fragmentation.
1370 * Try a lower order alloc if possible
1371 */
1372 page = alloc_slab_page(flags, node, oo);
81819f0f 1373
7e0528da
CL
1374 if (page)
1375 stat(s, ORDER_FALLBACK);
65c3376a 1376 }
5a896d9e 1377
7e0528da
CL
1378 if (flags & __GFP_WAIT)
1379 local_irq_disable();
1380
1381 if (!page)
1382 return NULL;
1383
5a896d9e 1384 if (kmemcheck_enabled
5086c389 1385 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1386 int pages = 1 << oo_order(oo);
1387
1388 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1389
1390 /*
1391 * Objects from caches that have a constructor don't get
1392 * cleared when they're allocated, so we need to do it here.
1393 */
1394 if (s->ctor)
1395 kmemcheck_mark_uninitialized_pages(page, pages);
1396 else
1397 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1398 }
1399
834f3d11 1400 page->objects = oo_objects(oo);
81819f0f
CL
1401 mod_zone_page_state(page_zone(page),
1402 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1403 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1404 1 << oo_order(oo));
81819f0f
CL
1405
1406 return page;
1407}
1408
1409static void setup_object(struct kmem_cache *s, struct page *page,
1410 void *object)
1411{
3ec09742 1412 setup_object_debug(s, page, object);
4f104934 1413 if (unlikely(s->ctor))
51cc5068 1414 s->ctor(object);
81819f0f
CL
1415}
1416
1417static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1418{
1419 struct page *page;
81819f0f 1420 void *start;
81819f0f
CL
1421 void *last;
1422 void *p;
1423
6cb06229 1424 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1425
6cb06229
CL
1426 page = allocate_slab(s,
1427 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1428 if (!page)
1429 goto out;
1430
205ab99d 1431 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1432 page->slab = s;
1433 page->flags |= 1 << PG_slab;
81819f0f
CL
1434
1435 start = page_address(page);
81819f0f
CL
1436
1437 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1438 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1439
1440 last = start;
224a88be 1441 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1442 setup_object(s, page, last);
1443 set_freepointer(s, last, p);
1444 last = p;
1445 }
1446 setup_object(s, page, last);
a973e9dd 1447 set_freepointer(s, last, NULL);
81819f0f
CL
1448
1449 page->freelist = start;
e6e82ea1 1450 page->inuse = page->objects;
8cb0a506 1451 page->frozen = 1;
81819f0f 1452out:
81819f0f
CL
1453 return page;
1454}
1455
1456static void __free_slab(struct kmem_cache *s, struct page *page)
1457{
834f3d11
CL
1458 int order = compound_order(page);
1459 int pages = 1 << order;
81819f0f 1460
af537b0a 1461 if (kmem_cache_debug(s)) {
81819f0f
CL
1462 void *p;
1463
1464 slab_pad_check(s, page);
224a88be
CL
1465 for_each_object(p, s, page_address(page),
1466 page->objects)
f7cb1933 1467 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1468 }
1469
b1eeab67 1470 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1471
81819f0f
CL
1472 mod_zone_page_state(page_zone(page),
1473 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1474 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1475 -pages);
81819f0f 1476
49bd5221
CL
1477 __ClearPageSlab(page);
1478 reset_page_mapcount(page);
1eb5ac64
NP
1479 if (current->reclaim_state)
1480 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1481 __free_pages(page, order);
81819f0f
CL
1482}
1483
da9a638c
LJ
1484#define need_reserve_slab_rcu \
1485 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1486
81819f0f
CL
1487static void rcu_free_slab(struct rcu_head *h)
1488{
1489 struct page *page;
1490
da9a638c
LJ
1491 if (need_reserve_slab_rcu)
1492 page = virt_to_head_page(h);
1493 else
1494 page = container_of((struct list_head *)h, struct page, lru);
1495
81819f0f
CL
1496 __free_slab(page->slab, page);
1497}
1498
1499static void free_slab(struct kmem_cache *s, struct page *page)
1500{
1501 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1502 struct rcu_head *head;
1503
1504 if (need_reserve_slab_rcu) {
1505 int order = compound_order(page);
1506 int offset = (PAGE_SIZE << order) - s->reserved;
1507
1508 VM_BUG_ON(s->reserved != sizeof(*head));
1509 head = page_address(page) + offset;
1510 } else {
1511 /*
1512 * RCU free overloads the RCU head over the LRU
1513 */
1514 head = (void *)&page->lru;
1515 }
81819f0f
CL
1516
1517 call_rcu(head, rcu_free_slab);
1518 } else
1519 __free_slab(s, page);
1520}
1521
1522static void discard_slab(struct kmem_cache *s, struct page *page)
1523{
205ab99d 1524 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1525 free_slab(s, page);
1526}
1527
1528/*
5cc6eee8
CL
1529 * Management of partially allocated slabs.
1530 *
1531 * list_lock must be held.
81819f0f 1532 */
5cc6eee8 1533static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1534 struct page *page, int tail)
81819f0f 1535{
e95eed57 1536 n->nr_partial++;
7c2e132c
CL
1537 if (tail)
1538 list_add_tail(&page->lru, &n->partial);
1539 else
1540 list_add(&page->lru, &n->partial);
81819f0f
CL
1541}
1542
5cc6eee8
CL
1543/*
1544 * list_lock must be held.
1545 */
1546static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1547 struct page *page)
1548{
1549 list_del(&page->lru);
1550 n->nr_partial--;
1551}
1552
81819f0f 1553/*
5cc6eee8
CL
1554 * Lock slab, remove from the partial list and put the object into the
1555 * per cpu freelist.
81819f0f 1556 *
497b66f2
CL
1557 * Returns a list of objects or NULL if it fails.
1558 *
672bba3a 1559 * Must hold list_lock.
81819f0f 1560 */
497b66f2 1561static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1562 struct kmem_cache_node *n, struct page *page,
49e22585 1563 int mode)
81819f0f 1564{
2cfb7455
CL
1565 void *freelist;
1566 unsigned long counters;
1567 struct page new;
1568
2cfb7455
CL
1569 /*
1570 * Zap the freelist and set the frozen bit.
1571 * The old freelist is the list of objects for the
1572 * per cpu allocation list.
1573 */
1574 do {
1575 freelist = page->freelist;
1576 counters = page->counters;
1577 new.counters = counters;
49e22585
CL
1578 if (mode)
1579 new.inuse = page->objects;
2cfb7455
CL
1580
1581 VM_BUG_ON(new.frozen);
1582 new.frozen = 1;
1583
1d07171c 1584 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1585 freelist, counters,
1586 NULL, new.counters,
1587 "lock and freeze"));
1588
1589 remove_partial(n, page);
49e22585 1590 return freelist;
81819f0f
CL
1591}
1592
49e22585
CL
1593static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1594
81819f0f 1595/*
672bba3a 1596 * Try to allocate a partial slab from a specific node.
81819f0f 1597 */
497b66f2 1598static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1599 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1600{
49e22585
CL
1601 struct page *page, *page2;
1602 void *object = NULL;
1603 int count = 0;
81819f0f
CL
1604
1605 /*
1606 * Racy check. If we mistakenly see no partial slabs then we
1607 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1608 * partial slab and there is none available then get_partials()
1609 * will return NULL.
81819f0f
CL
1610 */
1611 if (!n || !n->nr_partial)
1612 return NULL;
1613
1614 spin_lock(&n->list_lock);
49e22585
CL
1615 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1616 void *t = acquire_slab(s, n, page, count == 0);
1617 int available;
1618
1619 if (!t)
1620 break;
1621
1622 if (!count) {
1623 c->page = page;
1624 c->node = page_to_nid(page);
1625 stat(s, ALLOC_FROM_PARTIAL);
1626 count++;
1627 object = t;
1628 available = page->objects - page->inuse;
1629 } else {
1630 page->freelist = t;
1631 available = put_cpu_partial(s, page, 0);
1632 }
1633 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1634 break;
1635
497b66f2 1636 }
81819f0f 1637 spin_unlock(&n->list_lock);
497b66f2 1638 return object;
81819f0f
CL
1639}
1640
1641/*
672bba3a 1642 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1643 */
acd19fd1
CL
1644static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1645 struct kmem_cache_cpu *c)
81819f0f
CL
1646{
1647#ifdef CONFIG_NUMA
1648 struct zonelist *zonelist;
dd1a239f 1649 struct zoneref *z;
54a6eb5c
MG
1650 struct zone *zone;
1651 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1652 void *object;
81819f0f
CL
1653
1654 /*
672bba3a
CL
1655 * The defrag ratio allows a configuration of the tradeoffs between
1656 * inter node defragmentation and node local allocations. A lower
1657 * defrag_ratio increases the tendency to do local allocations
1658 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1659 *
672bba3a
CL
1660 * If the defrag_ratio is set to 0 then kmalloc() always
1661 * returns node local objects. If the ratio is higher then kmalloc()
1662 * may return off node objects because partial slabs are obtained
1663 * from other nodes and filled up.
81819f0f 1664 *
6446faa2 1665 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1666 * defrag_ratio = 1000) then every (well almost) allocation will
1667 * first attempt to defrag slab caches on other nodes. This means
1668 * scanning over all nodes to look for partial slabs which may be
1669 * expensive if we do it every time we are trying to find a slab
1670 * with available objects.
81819f0f 1671 */
9824601e
CL
1672 if (!s->remote_node_defrag_ratio ||
1673 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1674 return NULL;
1675
c0ff7453 1676 get_mems_allowed();
0e88460d 1677 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1678 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1679 struct kmem_cache_node *n;
1680
54a6eb5c 1681 n = get_node(s, zone_to_nid(zone));
81819f0f 1682
54a6eb5c 1683 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1684 n->nr_partial > s->min_partial) {
497b66f2
CL
1685 object = get_partial_node(s, n, c);
1686 if (object) {
c0ff7453 1687 put_mems_allowed();
497b66f2 1688 return object;
c0ff7453 1689 }
81819f0f
CL
1690 }
1691 }
c0ff7453 1692 put_mems_allowed();
81819f0f
CL
1693#endif
1694 return NULL;
1695}
1696
1697/*
1698 * Get a partial page, lock it and return it.
1699 */
497b66f2 1700static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1701 struct kmem_cache_cpu *c)
81819f0f 1702{
497b66f2 1703 void *object;
2154a336 1704 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1705
497b66f2
CL
1706 object = get_partial_node(s, get_node(s, searchnode), c);
1707 if (object || node != NUMA_NO_NODE)
1708 return object;
81819f0f 1709
acd19fd1 1710 return get_any_partial(s, flags, c);
81819f0f
CL
1711}
1712
8a5ec0ba
CL
1713#ifdef CONFIG_PREEMPT
1714/*
1715 * Calculate the next globally unique transaction for disambiguiation
1716 * during cmpxchg. The transactions start with the cpu number and are then
1717 * incremented by CONFIG_NR_CPUS.
1718 */
1719#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1720#else
1721/*
1722 * No preemption supported therefore also no need to check for
1723 * different cpus.
1724 */
1725#define TID_STEP 1
1726#endif
1727
1728static inline unsigned long next_tid(unsigned long tid)
1729{
1730 return tid + TID_STEP;
1731}
1732
1733static inline unsigned int tid_to_cpu(unsigned long tid)
1734{
1735 return tid % TID_STEP;
1736}
1737
1738static inline unsigned long tid_to_event(unsigned long tid)
1739{
1740 return tid / TID_STEP;
1741}
1742
1743static inline unsigned int init_tid(int cpu)
1744{
1745 return cpu;
1746}
1747
1748static inline void note_cmpxchg_failure(const char *n,
1749 const struct kmem_cache *s, unsigned long tid)
1750{
1751#ifdef SLUB_DEBUG_CMPXCHG
1752 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1753
1754 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1755
1756#ifdef CONFIG_PREEMPT
1757 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1758 printk("due to cpu change %d -> %d\n",
1759 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1760 else
1761#endif
1762 if (tid_to_event(tid) != tid_to_event(actual_tid))
1763 printk("due to cpu running other code. Event %ld->%ld\n",
1764 tid_to_event(tid), tid_to_event(actual_tid));
1765 else
1766 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1767 actual_tid, tid, next_tid(tid));
1768#endif
4fdccdfb 1769 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1770}
1771
8a5ec0ba
CL
1772void init_kmem_cache_cpus(struct kmem_cache *s)
1773{
8a5ec0ba
CL
1774 int cpu;
1775
1776 for_each_possible_cpu(cpu)
1777 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1778}
2cfb7455 1779
81819f0f
CL
1780/*
1781 * Remove the cpu slab
1782 */
dfb4f096 1783static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1784{
2cfb7455 1785 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1786 struct page *page = c->page;
2cfb7455
CL
1787 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1788 int lock = 0;
1789 enum slab_modes l = M_NONE, m = M_NONE;
1790 void *freelist;
1791 void *nextfree;
1792 int tail = 0;
1793 struct page new;
1794 struct page old;
1795
1796 if (page->freelist) {
84e554e6 1797 stat(s, DEACTIVATE_REMOTE_FREES);
2cfb7455
CL
1798 tail = 1;
1799 }
1800
1801 c->tid = next_tid(c->tid);
1802 c->page = NULL;
1803 freelist = c->freelist;
1804 c->freelist = NULL;
1805
894b8788 1806 /*
2cfb7455
CL
1807 * Stage one: Free all available per cpu objects back
1808 * to the page freelist while it is still frozen. Leave the
1809 * last one.
1810 *
1811 * There is no need to take the list->lock because the page
1812 * is still frozen.
1813 */
1814 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1815 void *prior;
1816 unsigned long counters;
1817
1818 do {
1819 prior = page->freelist;
1820 counters = page->counters;
1821 set_freepointer(s, freelist, prior);
1822 new.counters = counters;
1823 new.inuse--;
1824 VM_BUG_ON(!new.frozen);
1825
1d07171c 1826 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1827 prior, counters,
1828 freelist, new.counters,
1829 "drain percpu freelist"));
1830
1831 freelist = nextfree;
1832 }
1833
894b8788 1834 /*
2cfb7455
CL
1835 * Stage two: Ensure that the page is unfrozen while the
1836 * list presence reflects the actual number of objects
1837 * during unfreeze.
1838 *
1839 * We setup the list membership and then perform a cmpxchg
1840 * with the count. If there is a mismatch then the page
1841 * is not unfrozen but the page is on the wrong list.
1842 *
1843 * Then we restart the process which may have to remove
1844 * the page from the list that we just put it on again
1845 * because the number of objects in the slab may have
1846 * changed.
894b8788 1847 */
2cfb7455 1848redo:
894b8788 1849
2cfb7455
CL
1850 old.freelist = page->freelist;
1851 old.counters = page->counters;
1852 VM_BUG_ON(!old.frozen);
7c2e132c 1853
2cfb7455
CL
1854 /* Determine target state of the slab */
1855 new.counters = old.counters;
1856 if (freelist) {
1857 new.inuse--;
1858 set_freepointer(s, freelist, old.freelist);
1859 new.freelist = freelist;
1860 } else
1861 new.freelist = old.freelist;
1862
1863 new.frozen = 0;
1864
81107188 1865 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1866 m = M_FREE;
1867 else if (new.freelist) {
1868 m = M_PARTIAL;
1869 if (!lock) {
1870 lock = 1;
1871 /*
1872 * Taking the spinlock removes the possiblity
1873 * that acquire_slab() will see a slab page that
1874 * is frozen
1875 */
1876 spin_lock(&n->list_lock);
1877 }
1878 } else {
1879 m = M_FULL;
1880 if (kmem_cache_debug(s) && !lock) {
1881 lock = 1;
1882 /*
1883 * This also ensures that the scanning of full
1884 * slabs from diagnostic functions will not see
1885 * any frozen slabs.
1886 */
1887 spin_lock(&n->list_lock);
1888 }
1889 }
1890
1891 if (l != m) {
1892
1893 if (l == M_PARTIAL)
1894
1895 remove_partial(n, page);
1896
1897 else if (l == M_FULL)
894b8788 1898
2cfb7455
CL
1899 remove_full(s, page);
1900
1901 if (m == M_PARTIAL) {
1902
1903 add_partial(n, page, tail);
1904 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1905
1906 } else if (m == M_FULL) {
894b8788 1907
2cfb7455
CL
1908 stat(s, DEACTIVATE_FULL);
1909 add_full(s, n, page);
1910
1911 }
1912 }
1913
1914 l = m;
1d07171c 1915 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1916 old.freelist, old.counters,
1917 new.freelist, new.counters,
1918 "unfreezing slab"))
1919 goto redo;
1920
2cfb7455
CL
1921 if (lock)
1922 spin_unlock(&n->list_lock);
1923
1924 if (m == M_FREE) {
1925 stat(s, DEACTIVATE_EMPTY);
1926 discard_slab(s, page);
1927 stat(s, FREE_SLAB);
894b8788 1928 }
81819f0f
CL
1929}
1930
49e22585
CL
1931/* Unfreeze all the cpu partial slabs */
1932static void unfreeze_partials(struct kmem_cache *s)
1933{
1934 struct kmem_cache_node *n = NULL;
1935 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1936 struct page *page;
1937
1938 while ((page = c->partial)) {
1939 enum slab_modes { M_PARTIAL, M_FREE };
1940 enum slab_modes l, m;
1941 struct page new;
1942 struct page old;
1943
1944 c->partial = page->next;
1945 l = M_FREE;
1946
1947 do {
1948
1949 old.freelist = page->freelist;
1950 old.counters = page->counters;
1951 VM_BUG_ON(!old.frozen);
1952
1953 new.counters = old.counters;
1954 new.freelist = old.freelist;
1955
1956 new.frozen = 0;
1957
1958 if (!new.inuse && (!n || n->nr_partial < s->min_partial))
1959 m = M_FREE;
1960 else {
1961 struct kmem_cache_node *n2 = get_node(s,
1962 page_to_nid(page));
1963
1964 m = M_PARTIAL;
1965 if (n != n2) {
1966 if (n)
1967 spin_unlock(&n->list_lock);
1968
1969 n = n2;
1970 spin_lock(&n->list_lock);
1971 }
1972 }
1973
1974 if (l != m) {
1975 if (l == M_PARTIAL)
1976 remove_partial(n, page);
1977 else
1978 add_partial(n, page, 1);
1979
1980 l = m;
1981 }
1982
1983 } while (!cmpxchg_double_slab(s, page,
1984 old.freelist, old.counters,
1985 new.freelist, new.counters,
1986 "unfreezing slab"));
1987
1988 if (m == M_FREE) {
1989 stat(s, DEACTIVATE_EMPTY);
1990 discard_slab(s, page);
1991 stat(s, FREE_SLAB);
1992 }
1993 }
1994
1995 if (n)
1996 spin_unlock(&n->list_lock);
1997}
1998
1999/*
2000 * Put a page that was just frozen (in __slab_free) into a partial page
2001 * slot if available. This is done without interrupts disabled and without
2002 * preemption disabled. The cmpxchg is racy and may put the partial page
2003 * onto a random cpus partial slot.
2004 *
2005 * If we did not find a slot then simply move all the partials to the
2006 * per node partial list.
2007 */
2008int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2009{
2010 struct page *oldpage;
2011 int pages;
2012 int pobjects;
2013
2014 do {
2015 pages = 0;
2016 pobjects = 0;
2017 oldpage = this_cpu_read(s->cpu_slab->partial);
2018
2019 if (oldpage) {
2020 pobjects = oldpage->pobjects;
2021 pages = oldpage->pages;
2022 if (drain && pobjects > s->cpu_partial) {
2023 unsigned long flags;
2024 /*
2025 * partial array is full. Move the existing
2026 * set to the per node partial list.
2027 */
2028 local_irq_save(flags);
2029 unfreeze_partials(s);
2030 local_irq_restore(flags);
2031 pobjects = 0;
2032 pages = 0;
2033 }
2034 }
2035
2036 pages++;
2037 pobjects += page->objects - page->inuse;
2038
2039 page->pages = pages;
2040 page->pobjects = pobjects;
2041 page->next = oldpage;
2042
2043 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2044 stat(s, CPU_PARTIAL_FREE);
2045 return pobjects;
2046}
2047
dfb4f096 2048static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2049{
84e554e6 2050 stat(s, CPUSLAB_FLUSH);
dfb4f096 2051 deactivate_slab(s, c);
81819f0f
CL
2052}
2053
2054/*
2055 * Flush cpu slab.
6446faa2 2056 *
81819f0f
CL
2057 * Called from IPI handler with interrupts disabled.
2058 */
0c710013 2059static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2060{
9dfc6e68 2061 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2062
49e22585
CL
2063 if (likely(c)) {
2064 if (c->page)
2065 flush_slab(s, c);
2066
2067 unfreeze_partials(s);
2068 }
81819f0f
CL
2069}
2070
2071static void flush_cpu_slab(void *d)
2072{
2073 struct kmem_cache *s = d;
81819f0f 2074
dfb4f096 2075 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2076}
2077
2078static void flush_all(struct kmem_cache *s)
2079{
15c8b6c1 2080 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
2081}
2082
dfb4f096
CL
2083/*
2084 * Check if the objects in a per cpu structure fit numa
2085 * locality expectations.
2086 */
2087static inline int node_match(struct kmem_cache_cpu *c, int node)
2088{
2089#ifdef CONFIG_NUMA
2154a336 2090 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
2091 return 0;
2092#endif
2093 return 1;
2094}
2095
781b2ba6
PE
2096static int count_free(struct page *page)
2097{
2098 return page->objects - page->inuse;
2099}
2100
2101static unsigned long count_partial(struct kmem_cache_node *n,
2102 int (*get_count)(struct page *))
2103{
2104 unsigned long flags;
2105 unsigned long x = 0;
2106 struct page *page;
2107
2108 spin_lock_irqsave(&n->list_lock, flags);
2109 list_for_each_entry(page, &n->partial, lru)
2110 x += get_count(page);
2111 spin_unlock_irqrestore(&n->list_lock, flags);
2112 return x;
2113}
2114
26c02cf0
AB
2115static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2116{
2117#ifdef CONFIG_SLUB_DEBUG
2118 return atomic_long_read(&n->total_objects);
2119#else
2120 return 0;
2121#endif
2122}
2123
781b2ba6
PE
2124static noinline void
2125slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2126{
2127 int node;
2128
2129 printk(KERN_WARNING
2130 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2131 nid, gfpflags);
2132 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2133 "default order: %d, min order: %d\n", s->name, s->objsize,
2134 s->size, oo_order(s->oo), oo_order(s->min));
2135
fa5ec8a1
DR
2136 if (oo_order(s->min) > get_order(s->objsize))
2137 printk(KERN_WARNING " %s debugging increased min order, use "
2138 "slub_debug=O to disable.\n", s->name);
2139
781b2ba6
PE
2140 for_each_online_node(node) {
2141 struct kmem_cache_node *n = get_node(s, node);
2142 unsigned long nr_slabs;
2143 unsigned long nr_objs;
2144 unsigned long nr_free;
2145
2146 if (!n)
2147 continue;
2148
26c02cf0
AB
2149 nr_free = count_partial(n, count_free);
2150 nr_slabs = node_nr_slabs(n);
2151 nr_objs = node_nr_objs(n);
781b2ba6
PE
2152
2153 printk(KERN_WARNING
2154 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2155 node, nr_slabs, nr_objs, nr_free);
2156 }
2157}
2158
497b66f2
CL
2159static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2160 int node, struct kmem_cache_cpu **pc)
2161{
2162 void *object;
2163 struct kmem_cache_cpu *c;
2164 struct page *page = new_slab(s, flags, node);
2165
2166 if (page) {
2167 c = __this_cpu_ptr(s->cpu_slab);
2168 if (c->page)
2169 flush_slab(s, c);
2170
2171 /*
2172 * No other reference to the page yet so we can
2173 * muck around with it freely without cmpxchg
2174 */
2175 object = page->freelist;
2176 page->freelist = NULL;
2177
2178 stat(s, ALLOC_SLAB);
2179 c->node = page_to_nid(page);
2180 c->page = page;
2181 *pc = c;
2182 } else
2183 object = NULL;
2184
2185 return object;
2186}
2187
81819f0f 2188/*
894b8788
CL
2189 * Slow path. The lockless freelist is empty or we need to perform
2190 * debugging duties.
2191 *
894b8788
CL
2192 * Processing is still very fast if new objects have been freed to the
2193 * regular freelist. In that case we simply take over the regular freelist
2194 * as the lockless freelist and zap the regular freelist.
81819f0f 2195 *
894b8788
CL
2196 * If that is not working then we fall back to the partial lists. We take the
2197 * first element of the freelist as the object to allocate now and move the
2198 * rest of the freelist to the lockless freelist.
81819f0f 2199 *
894b8788 2200 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2201 * we need to allocate a new slab. This is the slowest path since it involves
2202 * a call to the page allocator and the setup of a new slab.
81819f0f 2203 */
ce71e27c
EGM
2204static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2205 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2206{
81819f0f 2207 void **object;
8a5ec0ba 2208 unsigned long flags;
2cfb7455
CL
2209 struct page new;
2210 unsigned long counters;
8a5ec0ba
CL
2211
2212 local_irq_save(flags);
2213#ifdef CONFIG_PREEMPT
2214 /*
2215 * We may have been preempted and rescheduled on a different
2216 * cpu before disabling interrupts. Need to reload cpu area
2217 * pointer.
2218 */
2219 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2220#endif
81819f0f 2221
497b66f2 2222 if (!c->page)
81819f0f 2223 goto new_slab;
49e22585 2224redo:
fc59c053 2225 if (unlikely(!node_match(c, node))) {
e36a2652 2226 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2227 deactivate_slab(s, c);
2228 goto new_slab;
2229 }
6446faa2 2230
2cfb7455
CL
2231 stat(s, ALLOC_SLOWPATH);
2232
2233 do {
497b66f2
CL
2234 object = c->page->freelist;
2235 counters = c->page->counters;
2cfb7455 2236 new.counters = counters;
2cfb7455
CL
2237 VM_BUG_ON(!new.frozen);
2238
03e404af
CL
2239 /*
2240 * If there is no object left then we use this loop to
2241 * deactivate the slab which is simple since no objects
2242 * are left in the slab and therefore we do not need to
2243 * put the page back onto the partial list.
2244 *
2245 * If there are objects left then we retrieve them
2246 * and use them to refill the per cpu queue.
497b66f2 2247 */
03e404af 2248
497b66f2 2249 new.inuse = c->page->objects;
03e404af
CL
2250 new.frozen = object != NULL;
2251
497b66f2 2252 } while (!__cmpxchg_double_slab(s, c->page,
2cfb7455
CL
2253 object, counters,
2254 NULL, new.counters,
2255 "__slab_alloc"));
6446faa2 2256
49e22585 2257 if (!object) {
03e404af
CL
2258 c->page = NULL;
2259 stat(s, DEACTIVATE_BYPASS);
fc59c053 2260 goto new_slab;
03e404af 2261 }
6446faa2 2262
84e554e6 2263 stat(s, ALLOC_REFILL);
6446faa2 2264
894b8788 2265load_freelist:
ff12059e 2266 c->freelist = get_freepointer(s, object);
8a5ec0ba
CL
2267 c->tid = next_tid(c->tid);
2268 local_irq_restore(flags);
81819f0f
CL
2269 return object;
2270
81819f0f 2271new_slab:
49e22585
CL
2272
2273 if (c->partial) {
2274 c->page = c->partial;
2275 c->partial = c->page->next;
2276 c->node = page_to_nid(c->page);
2277 stat(s, CPU_PARTIAL_ALLOC);
2278 c->freelist = NULL;
2279 goto redo;
2280 }
2281
2282 /* Then do expensive stuff like retrieving pages from the partial lists */
497b66f2 2283 object = get_partial(s, gfpflags, node, c);
81819f0f 2284
497b66f2 2285 if (unlikely(!object)) {
b811c202 2286
497b66f2 2287 object = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2288
497b66f2
CL
2289 if (unlikely(!object)) {
2290 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2291 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2292
497b66f2
CL
2293 local_irq_restore(flags);
2294 return NULL;
2295 }
2296 }
9e577e8b 2297
497b66f2 2298 if (likely(!kmem_cache_debug(s)))
4b6f0750 2299 goto load_freelist;
2cfb7455 2300
497b66f2
CL
2301 /* Only entered in the debug case */
2302 if (!alloc_debug_processing(s, c->page, object, addr))
2303 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2304
2cfb7455 2305 c->freelist = get_freepointer(s, object);
442b06bc 2306 deactivate_slab(s, c);
15b7c514 2307 c->node = NUMA_NO_NODE;
a71ae47a
CL
2308 local_irq_restore(flags);
2309 return object;
894b8788
CL
2310}
2311
2312/*
2313 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2314 * have the fastpath folded into their functions. So no function call
2315 * overhead for requests that can be satisfied on the fastpath.
2316 *
2317 * The fastpath works by first checking if the lockless freelist can be used.
2318 * If not then __slab_alloc is called for slow processing.
2319 *
2320 * Otherwise we can simply pick the next object from the lockless free list.
2321 */
06428780 2322static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2323 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2324{
894b8788 2325 void **object;
dfb4f096 2326 struct kmem_cache_cpu *c;
8a5ec0ba 2327 unsigned long tid;
1f84260c 2328
c016b0bd 2329 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2330 return NULL;
1f84260c 2331
8a5ec0ba 2332redo:
8a5ec0ba
CL
2333
2334 /*
2335 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2336 * enabled. We may switch back and forth between cpus while
2337 * reading from one cpu area. That does not matter as long
2338 * as we end up on the original cpu again when doing the cmpxchg.
2339 */
9dfc6e68 2340 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2341
8a5ec0ba
CL
2342 /*
2343 * The transaction ids are globally unique per cpu and per operation on
2344 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2345 * occurs on the right processor and that there was no operation on the
2346 * linked list in between.
2347 */
2348 tid = c->tid;
2349 barrier();
8a5ec0ba 2350
9dfc6e68 2351 object = c->freelist;
9dfc6e68 2352 if (unlikely(!object || !node_match(c, node)))
894b8788 2353
dfb4f096 2354 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2355
2356 else {
8a5ec0ba 2357 /*
25985edc 2358 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2359 * operation and if we are on the right processor.
2360 *
2361 * The cmpxchg does the following atomically (without lock semantics!)
2362 * 1. Relocate first pointer to the current per cpu area.
2363 * 2. Verify that tid and freelist have not been changed
2364 * 3. If they were not changed replace tid and freelist
2365 *
2366 * Since this is without lock semantics the protection is only against
2367 * code executing on this cpu *not* from access by other cpus.
2368 */
30106b8c 2369 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2370 s->cpu_slab->freelist, s->cpu_slab->tid,
2371 object, tid,
1393d9a1 2372 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2373
2374 note_cmpxchg_failure("slab_alloc", s, tid);
2375 goto redo;
2376 }
84e554e6 2377 stat(s, ALLOC_FASTPATH);
894b8788 2378 }
8a5ec0ba 2379
74e2134f 2380 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2381 memset(object, 0, s->objsize);
d07dbea4 2382
c016b0bd 2383 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2384
894b8788 2385 return object;
81819f0f
CL
2386}
2387
2388void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2389{
2154a336 2390 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2391
ca2b84cb 2392 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2393
2394 return ret;
81819f0f
CL
2395}
2396EXPORT_SYMBOL(kmem_cache_alloc);
2397
0f24f128 2398#ifdef CONFIG_TRACING
4a92379b
RK
2399void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2400{
2401 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2402 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2403 return ret;
2404}
2405EXPORT_SYMBOL(kmem_cache_alloc_trace);
2406
2407void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2408{
4a92379b
RK
2409 void *ret = kmalloc_order(size, flags, order);
2410 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2411 return ret;
5b882be4 2412}
4a92379b 2413EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2414#endif
2415
81819f0f
CL
2416#ifdef CONFIG_NUMA
2417void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2418{
5b882be4
EGM
2419 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2420
ca2b84cb
EGM
2421 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2422 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2423
2424 return ret;
81819f0f
CL
2425}
2426EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2427
0f24f128 2428#ifdef CONFIG_TRACING
4a92379b 2429void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2430 gfp_t gfpflags,
4a92379b 2431 int node, size_t size)
5b882be4 2432{
4a92379b
RK
2433 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2434
2435 trace_kmalloc_node(_RET_IP_, ret,
2436 size, s->size, gfpflags, node);
2437 return ret;
5b882be4 2438}
4a92379b 2439EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2440#endif
5d1f57e4 2441#endif
5b882be4 2442
81819f0f 2443/*
894b8788
CL
2444 * Slow patch handling. This may still be called frequently since objects
2445 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2446 *
894b8788
CL
2447 * So we still attempt to reduce cache line usage. Just take the slab
2448 * lock and free the item. If there is no additional partial page
2449 * handling required then we can return immediately.
81819f0f 2450 */
894b8788 2451static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2452 void *x, unsigned long addr)
81819f0f
CL
2453{
2454 void *prior;
2455 void **object = (void *)x;
2cfb7455
CL
2456 int was_frozen;
2457 int inuse;
2458 struct page new;
2459 unsigned long counters;
2460 struct kmem_cache_node *n = NULL;
61728d1e 2461 unsigned long uninitialized_var(flags);
81819f0f 2462
8a5ec0ba 2463 stat(s, FREE_SLOWPATH);
81819f0f 2464
8dc16c6c 2465 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2466 return;
6446faa2 2467
2cfb7455
CL
2468 do {
2469 prior = page->freelist;
2470 counters = page->counters;
2471 set_freepointer(s, object, prior);
2472 new.counters = counters;
2473 was_frozen = new.frozen;
2474 new.inuse--;
2475 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2476
2477 if (!kmem_cache_debug(s) && !prior)
2478
2479 /*
2480 * Slab was on no list before and will be partially empty
2481 * We can defer the list move and instead freeze it.
2482 */
2483 new.frozen = 1;
2484
2485 else { /* Needs to be taken off a list */
2486
2487 n = get_node(s, page_to_nid(page));
2488 /*
2489 * Speculatively acquire the list_lock.
2490 * If the cmpxchg does not succeed then we may
2491 * drop the list_lock without any processing.
2492 *
2493 * Otherwise the list_lock will synchronize with
2494 * other processors updating the list of slabs.
2495 */
2496 spin_lock_irqsave(&n->list_lock, flags);
2497
2498 }
2cfb7455
CL
2499 }
2500 inuse = new.inuse;
81819f0f 2501
2cfb7455
CL
2502 } while (!cmpxchg_double_slab(s, page,
2503 prior, counters,
2504 object, new.counters,
2505 "__slab_free"));
81819f0f 2506
2cfb7455 2507 if (likely(!n)) {
49e22585
CL
2508
2509 /*
2510 * If we just froze the page then put it onto the
2511 * per cpu partial list.
2512 */
2513 if (new.frozen && !was_frozen)
2514 put_cpu_partial(s, page, 1);
2515
2516 /*
2cfb7455
CL
2517 * The list lock was not taken therefore no list
2518 * activity can be necessary.
2519 */
2520 if (was_frozen)
2521 stat(s, FREE_FROZEN);
80f08c19 2522 return;
2cfb7455 2523 }
81819f0f
CL
2524
2525 /*
2cfb7455
CL
2526 * was_frozen may have been set after we acquired the list_lock in
2527 * an earlier loop. So we need to check it here again.
81819f0f 2528 */
2cfb7455
CL
2529 if (was_frozen)
2530 stat(s, FREE_FROZEN);
2531 else {
2532 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2533 goto slab_empty;
81819f0f 2534
2cfb7455
CL
2535 /*
2536 * Objects left in the slab. If it was not on the partial list before
2537 * then add it.
2538 */
2539 if (unlikely(!prior)) {
2540 remove_full(s, page);
2541 add_partial(n, page, 0);
2542 stat(s, FREE_ADD_PARTIAL);
2543 }
8ff12cfc 2544 }
80f08c19 2545 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2546 return;
2547
2548slab_empty:
a973e9dd 2549 if (prior) {
81819f0f 2550 /*
6fbabb20 2551 * Slab on the partial list.
81819f0f 2552 */
5cc6eee8 2553 remove_partial(n, page);
84e554e6 2554 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2555 } else
2556 /* Slab must be on the full list */
2557 remove_full(s, page);
2cfb7455 2558
80f08c19 2559 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2560 stat(s, FREE_SLAB);
81819f0f 2561 discard_slab(s, page);
81819f0f
CL
2562}
2563
894b8788
CL
2564/*
2565 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2566 * can perform fastpath freeing without additional function calls.
2567 *
2568 * The fastpath is only possible if we are freeing to the current cpu slab
2569 * of this processor. This typically the case if we have just allocated
2570 * the item before.
2571 *
2572 * If fastpath is not possible then fall back to __slab_free where we deal
2573 * with all sorts of special processing.
2574 */
06428780 2575static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2576 struct page *page, void *x, unsigned long addr)
894b8788
CL
2577{
2578 void **object = (void *)x;
dfb4f096 2579 struct kmem_cache_cpu *c;
8a5ec0ba 2580 unsigned long tid;
1f84260c 2581
c016b0bd
CL
2582 slab_free_hook(s, x);
2583
8a5ec0ba
CL
2584redo:
2585 /*
2586 * Determine the currently cpus per cpu slab.
2587 * The cpu may change afterward. However that does not matter since
2588 * data is retrieved via this pointer. If we are on the same cpu
2589 * during the cmpxchg then the free will succedd.
2590 */
9dfc6e68 2591 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2592
8a5ec0ba
CL
2593 tid = c->tid;
2594 barrier();
c016b0bd 2595
442b06bc 2596 if (likely(page == c->page)) {
ff12059e 2597 set_freepointer(s, object, c->freelist);
8a5ec0ba 2598
30106b8c 2599 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2600 s->cpu_slab->freelist, s->cpu_slab->tid,
2601 c->freelist, tid,
2602 object, next_tid(tid)))) {
2603
2604 note_cmpxchg_failure("slab_free", s, tid);
2605 goto redo;
2606 }
84e554e6 2607 stat(s, FREE_FASTPATH);
894b8788 2608 } else
ff12059e 2609 __slab_free(s, page, x, addr);
894b8788 2610
894b8788
CL
2611}
2612
81819f0f
CL
2613void kmem_cache_free(struct kmem_cache *s, void *x)
2614{
77c5e2d0 2615 struct page *page;
81819f0f 2616
b49af68f 2617 page = virt_to_head_page(x);
81819f0f 2618
ce71e27c 2619 slab_free(s, page, x, _RET_IP_);
5b882be4 2620
ca2b84cb 2621 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2622}
2623EXPORT_SYMBOL(kmem_cache_free);
2624
81819f0f 2625/*
672bba3a
CL
2626 * Object placement in a slab is made very easy because we always start at
2627 * offset 0. If we tune the size of the object to the alignment then we can
2628 * get the required alignment by putting one properly sized object after
2629 * another.
81819f0f
CL
2630 *
2631 * Notice that the allocation order determines the sizes of the per cpu
2632 * caches. Each processor has always one slab available for allocations.
2633 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2634 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2635 * locking overhead.
81819f0f
CL
2636 */
2637
2638/*
2639 * Mininum / Maximum order of slab pages. This influences locking overhead
2640 * and slab fragmentation. A higher order reduces the number of partial slabs
2641 * and increases the number of allocations possible without having to
2642 * take the list_lock.
2643 */
2644static int slub_min_order;
114e9e89 2645static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2646static int slub_min_objects;
81819f0f
CL
2647
2648/*
2649 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2650 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2651 */
2652static int slub_nomerge;
2653
81819f0f
CL
2654/*
2655 * Calculate the order of allocation given an slab object size.
2656 *
672bba3a
CL
2657 * The order of allocation has significant impact on performance and other
2658 * system components. Generally order 0 allocations should be preferred since
2659 * order 0 does not cause fragmentation in the page allocator. Larger objects
2660 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2661 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2662 * would be wasted.
2663 *
2664 * In order to reach satisfactory performance we must ensure that a minimum
2665 * number of objects is in one slab. Otherwise we may generate too much
2666 * activity on the partial lists which requires taking the list_lock. This is
2667 * less a concern for large slabs though which are rarely used.
81819f0f 2668 *
672bba3a
CL
2669 * slub_max_order specifies the order where we begin to stop considering the
2670 * number of objects in a slab as critical. If we reach slub_max_order then
2671 * we try to keep the page order as low as possible. So we accept more waste
2672 * of space in favor of a small page order.
81819f0f 2673 *
672bba3a
CL
2674 * Higher order allocations also allow the placement of more objects in a
2675 * slab and thereby reduce object handling overhead. If the user has
2676 * requested a higher mininum order then we start with that one instead of
2677 * the smallest order which will fit the object.
81819f0f 2678 */
5e6d444e 2679static inline int slab_order(int size, int min_objects,
ab9a0f19 2680 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2681{
2682 int order;
2683 int rem;
6300ea75 2684 int min_order = slub_min_order;
81819f0f 2685
ab9a0f19 2686 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2687 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2688
6300ea75 2689 for (order = max(min_order,
5e6d444e
CL
2690 fls(min_objects * size - 1) - PAGE_SHIFT);
2691 order <= max_order; order++) {
81819f0f 2692
5e6d444e 2693 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2694
ab9a0f19 2695 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2696 continue;
2697
ab9a0f19 2698 rem = (slab_size - reserved) % size;
81819f0f 2699
5e6d444e 2700 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2701 break;
2702
2703 }
672bba3a 2704
81819f0f
CL
2705 return order;
2706}
2707
ab9a0f19 2708static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2709{
2710 int order;
2711 int min_objects;
2712 int fraction;
e8120ff1 2713 int max_objects;
5e6d444e
CL
2714
2715 /*
2716 * Attempt to find best configuration for a slab. This
2717 * works by first attempting to generate a layout with
2718 * the best configuration and backing off gradually.
2719 *
2720 * First we reduce the acceptable waste in a slab. Then
2721 * we reduce the minimum objects required in a slab.
2722 */
2723 min_objects = slub_min_objects;
9b2cd506
CL
2724 if (!min_objects)
2725 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2726 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2727 min_objects = min(min_objects, max_objects);
2728
5e6d444e 2729 while (min_objects > 1) {
c124f5b5 2730 fraction = 16;
5e6d444e
CL
2731 while (fraction >= 4) {
2732 order = slab_order(size, min_objects,
ab9a0f19 2733 slub_max_order, fraction, reserved);
5e6d444e
CL
2734 if (order <= slub_max_order)
2735 return order;
2736 fraction /= 2;
2737 }
5086c389 2738 min_objects--;
5e6d444e
CL
2739 }
2740
2741 /*
2742 * We were unable to place multiple objects in a slab. Now
2743 * lets see if we can place a single object there.
2744 */
ab9a0f19 2745 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2746 if (order <= slub_max_order)
2747 return order;
2748
2749 /*
2750 * Doh this slab cannot be placed using slub_max_order.
2751 */
ab9a0f19 2752 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2753 if (order < MAX_ORDER)
5e6d444e
CL
2754 return order;
2755 return -ENOSYS;
2756}
2757
81819f0f 2758/*
672bba3a 2759 * Figure out what the alignment of the objects will be.
81819f0f
CL
2760 */
2761static unsigned long calculate_alignment(unsigned long flags,
2762 unsigned long align, unsigned long size)
2763{
2764 /*
6446faa2
CL
2765 * If the user wants hardware cache aligned objects then follow that
2766 * suggestion if the object is sufficiently large.
81819f0f 2767 *
6446faa2
CL
2768 * The hardware cache alignment cannot override the specified
2769 * alignment though. If that is greater then use it.
81819f0f 2770 */
b6210386
NP
2771 if (flags & SLAB_HWCACHE_ALIGN) {
2772 unsigned long ralign = cache_line_size();
2773 while (size <= ralign / 2)
2774 ralign /= 2;
2775 align = max(align, ralign);
2776 }
81819f0f
CL
2777
2778 if (align < ARCH_SLAB_MINALIGN)
b6210386 2779 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2780
2781 return ALIGN(align, sizeof(void *));
2782}
2783
5595cffc
PE
2784static void
2785init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2786{
2787 n->nr_partial = 0;
81819f0f
CL
2788 spin_lock_init(&n->list_lock);
2789 INIT_LIST_HEAD(&n->partial);
8ab1372f 2790#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2791 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2792 atomic_long_set(&n->total_objects, 0);
643b1138 2793 INIT_LIST_HEAD(&n->full);
8ab1372f 2794#endif
81819f0f
CL
2795}
2796
55136592 2797static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2798{
6c182dc0
CL
2799 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2800 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2801
8a5ec0ba 2802 /*
d4d84fef
CM
2803 * Must align to double word boundary for the double cmpxchg
2804 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2805 */
d4d84fef
CM
2806 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2807 2 * sizeof(void *));
8a5ec0ba
CL
2808
2809 if (!s->cpu_slab)
2810 return 0;
2811
2812 init_kmem_cache_cpus(s);
4c93c355 2813
8a5ec0ba 2814 return 1;
4c93c355 2815}
4c93c355 2816
51df1142
CL
2817static struct kmem_cache *kmem_cache_node;
2818
81819f0f
CL
2819/*
2820 * No kmalloc_node yet so do it by hand. We know that this is the first
2821 * slab on the node for this slabcache. There are no concurrent accesses
2822 * possible.
2823 *
2824 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2825 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2826 * memory on a fresh node that has no slab structures yet.
81819f0f 2827 */
55136592 2828static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2829{
2830 struct page *page;
2831 struct kmem_cache_node *n;
2832
51df1142 2833 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2834
51df1142 2835 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2836
2837 BUG_ON(!page);
a2f92ee7
CL
2838 if (page_to_nid(page) != node) {
2839 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2840 "node %d\n", node);
2841 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2842 "in order to be able to continue\n");
2843 }
2844
81819f0f
CL
2845 n = page->freelist;
2846 BUG_ON(!n);
51df1142 2847 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2848 page->inuse = 1;
8cb0a506 2849 page->frozen = 0;
51df1142 2850 kmem_cache_node->node[node] = n;
8ab1372f 2851#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2852 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2853 init_tracking(kmem_cache_node, n);
8ab1372f 2854#endif
51df1142
CL
2855 init_kmem_cache_node(n, kmem_cache_node);
2856 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2857
7c2e132c 2858 add_partial(n, page, 0);
81819f0f
CL
2859}
2860
2861static void free_kmem_cache_nodes(struct kmem_cache *s)
2862{
2863 int node;
2864
f64dc58c 2865 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2866 struct kmem_cache_node *n = s->node[node];
51df1142 2867
73367bd8 2868 if (n)
51df1142
CL
2869 kmem_cache_free(kmem_cache_node, n);
2870
81819f0f
CL
2871 s->node[node] = NULL;
2872 }
2873}
2874
55136592 2875static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2876{
2877 int node;
81819f0f 2878
f64dc58c 2879 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2880 struct kmem_cache_node *n;
2881
73367bd8 2882 if (slab_state == DOWN) {
55136592 2883 early_kmem_cache_node_alloc(node);
73367bd8
AD
2884 continue;
2885 }
51df1142 2886 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2887 GFP_KERNEL, node);
81819f0f 2888
73367bd8
AD
2889 if (!n) {
2890 free_kmem_cache_nodes(s);
2891 return 0;
81819f0f 2892 }
73367bd8 2893
81819f0f 2894 s->node[node] = n;
5595cffc 2895 init_kmem_cache_node(n, s);
81819f0f
CL
2896 }
2897 return 1;
2898}
81819f0f 2899
c0bdb232 2900static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2901{
2902 if (min < MIN_PARTIAL)
2903 min = MIN_PARTIAL;
2904 else if (min > MAX_PARTIAL)
2905 min = MAX_PARTIAL;
2906 s->min_partial = min;
2907}
2908
81819f0f
CL
2909/*
2910 * calculate_sizes() determines the order and the distribution of data within
2911 * a slab object.
2912 */
06b285dc 2913static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2914{
2915 unsigned long flags = s->flags;
2916 unsigned long size = s->objsize;
2917 unsigned long align = s->align;
834f3d11 2918 int order;
81819f0f 2919
d8b42bf5
CL
2920 /*
2921 * Round up object size to the next word boundary. We can only
2922 * place the free pointer at word boundaries and this determines
2923 * the possible location of the free pointer.
2924 */
2925 size = ALIGN(size, sizeof(void *));
2926
2927#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2928 /*
2929 * Determine if we can poison the object itself. If the user of
2930 * the slab may touch the object after free or before allocation
2931 * then we should never poison the object itself.
2932 */
2933 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2934 !s->ctor)
81819f0f
CL
2935 s->flags |= __OBJECT_POISON;
2936 else
2937 s->flags &= ~__OBJECT_POISON;
2938
81819f0f
CL
2939
2940 /*
672bba3a 2941 * If we are Redzoning then check if there is some space between the
81819f0f 2942 * end of the object and the free pointer. If not then add an
672bba3a 2943 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2944 */
2945 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2946 size += sizeof(void *);
41ecc55b 2947#endif
81819f0f
CL
2948
2949 /*
672bba3a
CL
2950 * With that we have determined the number of bytes in actual use
2951 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2952 */
2953 s->inuse = size;
2954
2955 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2956 s->ctor)) {
81819f0f
CL
2957 /*
2958 * Relocate free pointer after the object if it is not
2959 * permitted to overwrite the first word of the object on
2960 * kmem_cache_free.
2961 *
2962 * This is the case if we do RCU, have a constructor or
2963 * destructor or are poisoning the objects.
2964 */
2965 s->offset = size;
2966 size += sizeof(void *);
2967 }
2968
c12b3c62 2969#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2970 if (flags & SLAB_STORE_USER)
2971 /*
2972 * Need to store information about allocs and frees after
2973 * the object.
2974 */
2975 size += 2 * sizeof(struct track);
2976
be7b3fbc 2977 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2978 /*
2979 * Add some empty padding so that we can catch
2980 * overwrites from earlier objects rather than let
2981 * tracking information or the free pointer be
0211a9c8 2982 * corrupted if a user writes before the start
81819f0f
CL
2983 * of the object.
2984 */
2985 size += sizeof(void *);
41ecc55b 2986#endif
672bba3a 2987
81819f0f
CL
2988 /*
2989 * Determine the alignment based on various parameters that the
65c02d4c
CL
2990 * user specified and the dynamic determination of cache line size
2991 * on bootup.
81819f0f
CL
2992 */
2993 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2994 s->align = align;
81819f0f
CL
2995
2996 /*
2997 * SLUB stores one object immediately after another beginning from
2998 * offset 0. In order to align the objects we have to simply size
2999 * each object to conform to the alignment.
3000 */
3001 size = ALIGN(size, align);
3002 s->size = size;
06b285dc
CL
3003 if (forced_order >= 0)
3004 order = forced_order;
3005 else
ab9a0f19 3006 order = calculate_order(size, s->reserved);
81819f0f 3007
834f3d11 3008 if (order < 0)
81819f0f
CL
3009 return 0;
3010
b7a49f0d 3011 s->allocflags = 0;
834f3d11 3012 if (order)
b7a49f0d
CL
3013 s->allocflags |= __GFP_COMP;
3014
3015 if (s->flags & SLAB_CACHE_DMA)
3016 s->allocflags |= SLUB_DMA;
3017
3018 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3019 s->allocflags |= __GFP_RECLAIMABLE;
3020
81819f0f
CL
3021 /*
3022 * Determine the number of objects per slab
3023 */
ab9a0f19
LJ
3024 s->oo = oo_make(order, size, s->reserved);
3025 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3026 if (oo_objects(s->oo) > oo_objects(s->max))
3027 s->max = s->oo;
81819f0f 3028
834f3d11 3029 return !!oo_objects(s->oo);
81819f0f
CL
3030
3031}
3032
55136592 3033static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3034 const char *name, size_t size,
3035 size_t align, unsigned long flags,
51cc5068 3036 void (*ctor)(void *))
81819f0f
CL
3037{
3038 memset(s, 0, kmem_size);
3039 s->name = name;
3040 s->ctor = ctor;
81819f0f 3041 s->objsize = size;
81819f0f 3042 s->align = align;
ba0268a8 3043 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3044 s->reserved = 0;
81819f0f 3045
da9a638c
LJ
3046 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3047 s->reserved = sizeof(struct rcu_head);
81819f0f 3048
06b285dc 3049 if (!calculate_sizes(s, -1))
81819f0f 3050 goto error;
3de47213
DR
3051 if (disable_higher_order_debug) {
3052 /*
3053 * Disable debugging flags that store metadata if the min slab
3054 * order increased.
3055 */
3056 if (get_order(s->size) > get_order(s->objsize)) {
3057 s->flags &= ~DEBUG_METADATA_FLAGS;
3058 s->offset = 0;
3059 if (!calculate_sizes(s, -1))
3060 goto error;
3061 }
3062 }
81819f0f 3063
b789ef51
CL
3064#ifdef CONFIG_CMPXCHG_DOUBLE
3065 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3066 /* Enable fast mode */
3067 s->flags |= __CMPXCHG_DOUBLE;
3068#endif
3069
3b89d7d8
DR
3070 /*
3071 * The larger the object size is, the more pages we want on the partial
3072 * list to avoid pounding the page allocator excessively.
3073 */
49e22585
CL
3074 set_min_partial(s, ilog2(s->size) / 2);
3075
3076 /*
3077 * cpu_partial determined the maximum number of objects kept in the
3078 * per cpu partial lists of a processor.
3079 *
3080 * Per cpu partial lists mainly contain slabs that just have one
3081 * object freed. If they are used for allocation then they can be
3082 * filled up again with minimal effort. The slab will never hit the
3083 * per node partial lists and therefore no locking will be required.
3084 *
3085 * This setting also determines
3086 *
3087 * A) The number of objects from per cpu partial slabs dumped to the
3088 * per node list when we reach the limit.
3089 * B) The number of objects in partial partial slabs to extract from the
3090 * per node list when we run out of per cpu objects. We only fetch 50%
3091 * to keep some capacity around for frees.
3092 */
3093 if (s->size >= PAGE_SIZE)
3094 s->cpu_partial = 2;
3095 else if (s->size >= 1024)
3096 s->cpu_partial = 6;
3097 else if (s->size >= 256)
3098 s->cpu_partial = 13;
3099 else
3100 s->cpu_partial = 30;
3101
81819f0f
CL
3102 s->refcount = 1;
3103#ifdef CONFIG_NUMA
e2cb96b7 3104 s->remote_node_defrag_ratio = 1000;
81819f0f 3105#endif
55136592 3106 if (!init_kmem_cache_nodes(s))
dfb4f096 3107 goto error;
81819f0f 3108
55136592 3109 if (alloc_kmem_cache_cpus(s))
81819f0f 3110 return 1;
ff12059e 3111
4c93c355 3112 free_kmem_cache_nodes(s);
81819f0f
CL
3113error:
3114 if (flags & SLAB_PANIC)
3115 panic("Cannot create slab %s size=%lu realsize=%u "
3116 "order=%u offset=%u flags=%lx\n",
834f3d11 3117 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3118 s->offset, flags);
3119 return 0;
3120}
81819f0f 3121
81819f0f
CL
3122/*
3123 * Determine the size of a slab object
3124 */
3125unsigned int kmem_cache_size(struct kmem_cache *s)
3126{
3127 return s->objsize;
3128}
3129EXPORT_SYMBOL(kmem_cache_size);
3130
33b12c38
CL
3131static void list_slab_objects(struct kmem_cache *s, struct page *page,
3132 const char *text)
3133{
3134#ifdef CONFIG_SLUB_DEBUG
3135 void *addr = page_address(page);
3136 void *p;
a5dd5c11
NK
3137 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3138 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3139 if (!map)
3140 return;
33b12c38
CL
3141 slab_err(s, page, "%s", text);
3142 slab_lock(page);
33b12c38 3143
5f80b13a 3144 get_map(s, page, map);
33b12c38
CL
3145 for_each_object(p, s, addr, page->objects) {
3146
3147 if (!test_bit(slab_index(p, s, addr), map)) {
3148 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3149 p, p - addr);
3150 print_tracking(s, p);
3151 }
3152 }
3153 slab_unlock(page);
bbd7d57b 3154 kfree(map);
33b12c38
CL
3155#endif
3156}
3157
81819f0f 3158/*
599870b1 3159 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3160 * This is called from kmem_cache_close(). We must be the last thread
3161 * using the cache and therefore we do not need to lock anymore.
81819f0f 3162 */
599870b1 3163static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3164{
81819f0f
CL
3165 struct page *page, *h;
3166
33b12c38 3167 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3168 if (!page->inuse) {
5cc6eee8 3169 remove_partial(n, page);
81819f0f 3170 discard_slab(s, page);
33b12c38
CL
3171 } else {
3172 list_slab_objects(s, page,
3173 "Objects remaining on kmem_cache_close()");
599870b1 3174 }
33b12c38 3175 }
81819f0f
CL
3176}
3177
3178/*
672bba3a 3179 * Release all resources used by a slab cache.
81819f0f 3180 */
0c710013 3181static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3182{
3183 int node;
3184
3185 flush_all(s);
9dfc6e68 3186 free_percpu(s->cpu_slab);
81819f0f 3187 /* Attempt to free all objects */
f64dc58c 3188 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3189 struct kmem_cache_node *n = get_node(s, node);
3190
599870b1
CL
3191 free_partial(s, n);
3192 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3193 return 1;
3194 }
3195 free_kmem_cache_nodes(s);
3196 return 0;
3197}
3198
3199/*
3200 * Close a cache and release the kmem_cache structure
3201 * (must be used for caches created using kmem_cache_create)
3202 */
3203void kmem_cache_destroy(struct kmem_cache *s)
3204{
3205 down_write(&slub_lock);
3206 s->refcount--;
3207 if (!s->refcount) {
3208 list_del(&s->list);
69cb8e6b 3209 up_write(&slub_lock);
d629d819
PE
3210 if (kmem_cache_close(s)) {
3211 printk(KERN_ERR "SLUB %s: %s called for cache that "
3212 "still has objects.\n", s->name, __func__);
3213 dump_stack();
3214 }
d76b1590
ED
3215 if (s->flags & SLAB_DESTROY_BY_RCU)
3216 rcu_barrier();
81819f0f 3217 sysfs_slab_remove(s);
69cb8e6b
CL
3218 } else
3219 up_write(&slub_lock);
81819f0f
CL
3220}
3221EXPORT_SYMBOL(kmem_cache_destroy);
3222
3223/********************************************************************
3224 * Kmalloc subsystem
3225 *******************************************************************/
3226
51df1142 3227struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3228EXPORT_SYMBOL(kmalloc_caches);
3229
51df1142
CL
3230static struct kmem_cache *kmem_cache;
3231
55136592 3232#ifdef CONFIG_ZONE_DMA
51df1142 3233static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3234#endif
3235
81819f0f
CL
3236static int __init setup_slub_min_order(char *str)
3237{
06428780 3238 get_option(&str, &slub_min_order);
81819f0f
CL
3239
3240 return 1;
3241}
3242
3243__setup("slub_min_order=", setup_slub_min_order);
3244
3245static int __init setup_slub_max_order(char *str)
3246{
06428780 3247 get_option(&str, &slub_max_order);
818cf590 3248 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3249
3250 return 1;
3251}
3252
3253__setup("slub_max_order=", setup_slub_max_order);
3254
3255static int __init setup_slub_min_objects(char *str)
3256{
06428780 3257 get_option(&str, &slub_min_objects);
81819f0f
CL
3258
3259 return 1;
3260}
3261
3262__setup("slub_min_objects=", setup_slub_min_objects);
3263
3264static int __init setup_slub_nomerge(char *str)
3265{
3266 slub_nomerge = 1;
3267 return 1;
3268}
3269
3270__setup("slub_nomerge", setup_slub_nomerge);
3271
51df1142
CL
3272static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3273 int size, unsigned int flags)
81819f0f 3274{
51df1142
CL
3275 struct kmem_cache *s;
3276
3277 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3278
83b519e8
PE
3279 /*
3280 * This function is called with IRQs disabled during early-boot on
3281 * single CPU so there's no need to take slub_lock here.
3282 */
55136592 3283 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3284 flags, NULL))
81819f0f
CL
3285 goto panic;
3286
3287 list_add(&s->list, &slab_caches);
51df1142 3288 return s;
81819f0f
CL
3289
3290panic:
3291 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3292 return NULL;
81819f0f
CL
3293}
3294
f1b26339
CL
3295/*
3296 * Conversion table for small slabs sizes / 8 to the index in the
3297 * kmalloc array. This is necessary for slabs < 192 since we have non power
3298 * of two cache sizes there. The size of larger slabs can be determined using
3299 * fls.
3300 */
3301static s8 size_index[24] = {
3302 3, /* 8 */
3303 4, /* 16 */
3304 5, /* 24 */
3305 5, /* 32 */
3306 6, /* 40 */
3307 6, /* 48 */
3308 6, /* 56 */
3309 6, /* 64 */
3310 1, /* 72 */
3311 1, /* 80 */
3312 1, /* 88 */
3313 1, /* 96 */
3314 7, /* 104 */
3315 7, /* 112 */
3316 7, /* 120 */
3317 7, /* 128 */
3318 2, /* 136 */
3319 2, /* 144 */
3320 2, /* 152 */
3321 2, /* 160 */
3322 2, /* 168 */
3323 2, /* 176 */
3324 2, /* 184 */
3325 2 /* 192 */
3326};
3327
acdfcd04
AK
3328static inline int size_index_elem(size_t bytes)
3329{
3330 return (bytes - 1) / 8;
3331}
3332
81819f0f
CL
3333static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3334{
f1b26339 3335 int index;
81819f0f 3336
f1b26339
CL
3337 if (size <= 192) {
3338 if (!size)
3339 return ZERO_SIZE_PTR;
81819f0f 3340
acdfcd04 3341 index = size_index[size_index_elem(size)];
aadb4bc4 3342 } else
f1b26339 3343 index = fls(size - 1);
81819f0f
CL
3344
3345#ifdef CONFIG_ZONE_DMA
f1b26339 3346 if (unlikely((flags & SLUB_DMA)))
51df1142 3347 return kmalloc_dma_caches[index];
f1b26339 3348
81819f0f 3349#endif
51df1142 3350 return kmalloc_caches[index];
81819f0f
CL
3351}
3352
3353void *__kmalloc(size_t size, gfp_t flags)
3354{
aadb4bc4 3355 struct kmem_cache *s;
5b882be4 3356 void *ret;
81819f0f 3357
ffadd4d0 3358 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3359 return kmalloc_large(size, flags);
aadb4bc4
CL
3360
3361 s = get_slab(size, flags);
3362
3363 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3364 return s;
3365
2154a336 3366 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3367
ca2b84cb 3368 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3369
3370 return ret;
81819f0f
CL
3371}
3372EXPORT_SYMBOL(__kmalloc);
3373
5d1f57e4 3374#ifdef CONFIG_NUMA
f619cfe1
CL
3375static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3376{
b1eeab67 3377 struct page *page;
e4f7c0b4 3378 void *ptr = NULL;
f619cfe1 3379
b1eeab67
VN
3380 flags |= __GFP_COMP | __GFP_NOTRACK;
3381 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3382 if (page)
e4f7c0b4
CM
3383 ptr = page_address(page);
3384
3385 kmemleak_alloc(ptr, size, 1, flags);
3386 return ptr;
f619cfe1
CL
3387}
3388
81819f0f
CL
3389void *__kmalloc_node(size_t size, gfp_t flags, int node)
3390{
aadb4bc4 3391 struct kmem_cache *s;
5b882be4 3392 void *ret;
81819f0f 3393
057685cf 3394 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3395 ret = kmalloc_large_node(size, flags, node);
3396
ca2b84cb
EGM
3397 trace_kmalloc_node(_RET_IP_, ret,
3398 size, PAGE_SIZE << get_order(size),
3399 flags, node);
5b882be4
EGM
3400
3401 return ret;
3402 }
aadb4bc4
CL
3403
3404 s = get_slab(size, flags);
3405
3406 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3407 return s;
3408
5b882be4
EGM
3409 ret = slab_alloc(s, flags, node, _RET_IP_);
3410
ca2b84cb 3411 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3412
3413 return ret;
81819f0f
CL
3414}
3415EXPORT_SYMBOL(__kmalloc_node);
3416#endif
3417
3418size_t ksize(const void *object)
3419{
272c1d21 3420 struct page *page;
81819f0f 3421
ef8b4520 3422 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3423 return 0;
3424
294a80a8 3425 page = virt_to_head_page(object);
294a80a8 3426
76994412
PE
3427 if (unlikely(!PageSlab(page))) {
3428 WARN_ON(!PageCompound(page));
294a80a8 3429 return PAGE_SIZE << compound_order(page);
76994412 3430 }
81819f0f 3431
b3d41885 3432 return slab_ksize(page->slab);
81819f0f 3433}
b1aabecd 3434EXPORT_SYMBOL(ksize);
81819f0f 3435
d18a90dd
BG
3436#ifdef CONFIG_SLUB_DEBUG
3437bool verify_mem_not_deleted(const void *x)
3438{
3439 struct page *page;
3440 void *object = (void *)x;
3441 unsigned long flags;
3442 bool rv;
3443
3444 if (unlikely(ZERO_OR_NULL_PTR(x)))
3445 return false;
3446
3447 local_irq_save(flags);
3448
3449 page = virt_to_head_page(x);
3450 if (unlikely(!PageSlab(page))) {
3451 /* maybe it was from stack? */
3452 rv = true;
3453 goto out_unlock;
3454 }
3455
3456 slab_lock(page);
3457 if (on_freelist(page->slab, page, object)) {
3458 object_err(page->slab, page, object, "Object is on free-list");
3459 rv = false;
3460 } else {
3461 rv = true;
3462 }
3463 slab_unlock(page);
3464
3465out_unlock:
3466 local_irq_restore(flags);
3467 return rv;
3468}
3469EXPORT_SYMBOL(verify_mem_not_deleted);
3470#endif
3471
81819f0f
CL
3472void kfree(const void *x)
3473{
81819f0f 3474 struct page *page;
5bb983b0 3475 void *object = (void *)x;
81819f0f 3476
2121db74
PE
3477 trace_kfree(_RET_IP_, x);
3478
2408c550 3479 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3480 return;
3481
b49af68f 3482 page = virt_to_head_page(x);
aadb4bc4 3483 if (unlikely(!PageSlab(page))) {
0937502a 3484 BUG_ON(!PageCompound(page));
e4f7c0b4 3485 kmemleak_free(x);
aadb4bc4
CL
3486 put_page(page);
3487 return;
3488 }
ce71e27c 3489 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3490}
3491EXPORT_SYMBOL(kfree);
3492
2086d26a 3493/*
672bba3a
CL
3494 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3495 * the remaining slabs by the number of items in use. The slabs with the
3496 * most items in use come first. New allocations will then fill those up
3497 * and thus they can be removed from the partial lists.
3498 *
3499 * The slabs with the least items are placed last. This results in them
3500 * being allocated from last increasing the chance that the last objects
3501 * are freed in them.
2086d26a
CL
3502 */
3503int kmem_cache_shrink(struct kmem_cache *s)
3504{
3505 int node;
3506 int i;
3507 struct kmem_cache_node *n;
3508 struct page *page;
3509 struct page *t;
205ab99d 3510 int objects = oo_objects(s->max);
2086d26a 3511 struct list_head *slabs_by_inuse =
834f3d11 3512 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3513 unsigned long flags;
3514
3515 if (!slabs_by_inuse)
3516 return -ENOMEM;
3517
3518 flush_all(s);
f64dc58c 3519 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3520 n = get_node(s, node);
3521
3522 if (!n->nr_partial)
3523 continue;
3524
834f3d11 3525 for (i = 0; i < objects; i++)
2086d26a
CL
3526 INIT_LIST_HEAD(slabs_by_inuse + i);
3527
3528 spin_lock_irqsave(&n->list_lock, flags);
3529
3530 /*
672bba3a 3531 * Build lists indexed by the items in use in each slab.
2086d26a 3532 *
672bba3a
CL
3533 * Note that concurrent frees may occur while we hold the
3534 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3535 */
3536 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3537 list_move(&page->lru, slabs_by_inuse + page->inuse);
3538 if (!page->inuse)
3539 n->nr_partial--;
2086d26a
CL
3540 }
3541
2086d26a 3542 /*
672bba3a
CL
3543 * Rebuild the partial list with the slabs filled up most
3544 * first and the least used slabs at the end.
2086d26a 3545 */
69cb8e6b 3546 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3547 list_splice(slabs_by_inuse + i, n->partial.prev);
3548
2086d26a 3549 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3550
3551 /* Release empty slabs */
3552 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3553 discard_slab(s, page);
2086d26a
CL
3554 }
3555
3556 kfree(slabs_by_inuse);
3557 return 0;
3558}
3559EXPORT_SYMBOL(kmem_cache_shrink);
3560
92a5bbc1 3561#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3562static int slab_mem_going_offline_callback(void *arg)
3563{
3564 struct kmem_cache *s;
3565
3566 down_read(&slub_lock);
3567 list_for_each_entry(s, &slab_caches, list)
3568 kmem_cache_shrink(s);
3569 up_read(&slub_lock);
3570
3571 return 0;
3572}
3573
3574static void slab_mem_offline_callback(void *arg)
3575{
3576 struct kmem_cache_node *n;
3577 struct kmem_cache *s;
3578 struct memory_notify *marg = arg;
3579 int offline_node;
3580
3581 offline_node = marg->status_change_nid;
3582
3583 /*
3584 * If the node still has available memory. we need kmem_cache_node
3585 * for it yet.
3586 */
3587 if (offline_node < 0)
3588 return;
3589
3590 down_read(&slub_lock);
3591 list_for_each_entry(s, &slab_caches, list) {
3592 n = get_node(s, offline_node);
3593 if (n) {
3594 /*
3595 * if n->nr_slabs > 0, slabs still exist on the node
3596 * that is going down. We were unable to free them,
c9404c9c 3597 * and offline_pages() function shouldn't call this
b9049e23
YG
3598 * callback. So, we must fail.
3599 */
0f389ec6 3600 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3601
3602 s->node[offline_node] = NULL;
8de66a0c 3603 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3604 }
3605 }
3606 up_read(&slub_lock);
3607}
3608
3609static int slab_mem_going_online_callback(void *arg)
3610{
3611 struct kmem_cache_node *n;
3612 struct kmem_cache *s;
3613 struct memory_notify *marg = arg;
3614 int nid = marg->status_change_nid;
3615 int ret = 0;
3616
3617 /*
3618 * If the node's memory is already available, then kmem_cache_node is
3619 * already created. Nothing to do.
3620 */
3621 if (nid < 0)
3622 return 0;
3623
3624 /*
0121c619 3625 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3626 * allocate a kmem_cache_node structure in order to bring the node
3627 * online.
3628 */
3629 down_read(&slub_lock);
3630 list_for_each_entry(s, &slab_caches, list) {
3631 /*
3632 * XXX: kmem_cache_alloc_node will fallback to other nodes
3633 * since memory is not yet available from the node that
3634 * is brought up.
3635 */
8de66a0c 3636 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3637 if (!n) {
3638 ret = -ENOMEM;
3639 goto out;
3640 }
5595cffc 3641 init_kmem_cache_node(n, s);
b9049e23
YG
3642 s->node[nid] = n;
3643 }
3644out:
3645 up_read(&slub_lock);
3646 return ret;
3647}
3648
3649static int slab_memory_callback(struct notifier_block *self,
3650 unsigned long action, void *arg)
3651{
3652 int ret = 0;
3653
3654 switch (action) {
3655 case MEM_GOING_ONLINE:
3656 ret = slab_mem_going_online_callback(arg);
3657 break;
3658 case MEM_GOING_OFFLINE:
3659 ret = slab_mem_going_offline_callback(arg);
3660 break;
3661 case MEM_OFFLINE:
3662 case MEM_CANCEL_ONLINE:
3663 slab_mem_offline_callback(arg);
3664 break;
3665 case MEM_ONLINE:
3666 case MEM_CANCEL_OFFLINE:
3667 break;
3668 }
dc19f9db
KH
3669 if (ret)
3670 ret = notifier_from_errno(ret);
3671 else
3672 ret = NOTIFY_OK;
b9049e23
YG
3673 return ret;
3674}
3675
3676#endif /* CONFIG_MEMORY_HOTPLUG */
3677
81819f0f
CL
3678/********************************************************************
3679 * Basic setup of slabs
3680 *******************************************************************/
3681
51df1142
CL
3682/*
3683 * Used for early kmem_cache structures that were allocated using
3684 * the page allocator
3685 */
3686
3687static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3688{
3689 int node;
3690
3691 list_add(&s->list, &slab_caches);
3692 s->refcount = -1;
3693
3694 for_each_node_state(node, N_NORMAL_MEMORY) {
3695 struct kmem_cache_node *n = get_node(s, node);
3696 struct page *p;
3697
3698 if (n) {
3699 list_for_each_entry(p, &n->partial, lru)
3700 p->slab = s;
3701
607bf324 3702#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3703 list_for_each_entry(p, &n->full, lru)
3704 p->slab = s;
3705#endif
3706 }
3707 }
3708}
3709
81819f0f
CL
3710void __init kmem_cache_init(void)
3711{
3712 int i;
4b356be0 3713 int caches = 0;
51df1142
CL
3714 struct kmem_cache *temp_kmem_cache;
3715 int order;
51df1142
CL
3716 struct kmem_cache *temp_kmem_cache_node;
3717 unsigned long kmalloc_size;
3718
3719 kmem_size = offsetof(struct kmem_cache, node) +
3720 nr_node_ids * sizeof(struct kmem_cache_node *);
3721
3722 /* Allocate two kmem_caches from the page allocator */
3723 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3724 order = get_order(2 * kmalloc_size);
3725 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3726
81819f0f
CL
3727 /*
3728 * Must first have the slab cache available for the allocations of the
672bba3a 3729 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3730 * kmem_cache_open for slab_state == DOWN.
3731 */
51df1142
CL
3732 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3733
3734 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3735 sizeof(struct kmem_cache_node),
3736 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3737
0c40ba4f 3738 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3739
3740 /* Able to allocate the per node structures */
3741 slab_state = PARTIAL;
3742
51df1142
CL
3743 temp_kmem_cache = kmem_cache;
3744 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3745 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3746 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3747 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3748
51df1142
CL
3749 /*
3750 * Allocate kmem_cache_node properly from the kmem_cache slab.
3751 * kmem_cache_node is separately allocated so no need to
3752 * update any list pointers.
3753 */
3754 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3755
51df1142
CL
3756 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3757 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3758
3759 kmem_cache_bootstrap_fixup(kmem_cache_node);
3760
3761 caches++;
51df1142
CL
3762 kmem_cache_bootstrap_fixup(kmem_cache);
3763 caches++;
3764 /* Free temporary boot structure */
3765 free_pages((unsigned long)temp_kmem_cache, order);
3766
3767 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3768
3769 /*
3770 * Patch up the size_index table if we have strange large alignment
3771 * requirements for the kmalloc array. This is only the case for
6446faa2 3772 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3773 *
3774 * Largest permitted alignment is 256 bytes due to the way we
3775 * handle the index determination for the smaller caches.
3776 *
3777 * Make sure that nothing crazy happens if someone starts tinkering
3778 * around with ARCH_KMALLOC_MINALIGN
3779 */
3780 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3781 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3782
acdfcd04
AK
3783 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3784 int elem = size_index_elem(i);
3785 if (elem >= ARRAY_SIZE(size_index))
3786 break;
3787 size_index[elem] = KMALLOC_SHIFT_LOW;
3788 }
f1b26339 3789
acdfcd04
AK
3790 if (KMALLOC_MIN_SIZE == 64) {
3791 /*
3792 * The 96 byte size cache is not used if the alignment
3793 * is 64 byte.
3794 */
3795 for (i = 64 + 8; i <= 96; i += 8)
3796 size_index[size_index_elem(i)] = 7;
3797 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3798 /*
3799 * The 192 byte sized cache is not used if the alignment
3800 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3801 * instead.
3802 */
3803 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3804 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3805 }
3806
51df1142
CL
3807 /* Caches that are not of the two-to-the-power-of size */
3808 if (KMALLOC_MIN_SIZE <= 32) {
3809 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3810 caches++;
3811 }
3812
3813 if (KMALLOC_MIN_SIZE <= 64) {
3814 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3815 caches++;
3816 }
3817
3818 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3819 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3820 caches++;
3821 }
3822
81819f0f
CL
3823 slab_state = UP;
3824
3825 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3826 if (KMALLOC_MIN_SIZE <= 32) {
3827 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3828 BUG_ON(!kmalloc_caches[1]->name);
3829 }
3830
3831 if (KMALLOC_MIN_SIZE <= 64) {
3832 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3833 BUG_ON(!kmalloc_caches[2]->name);
3834 }
3835
d7278bd7
CL
3836 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3837 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3838
3839 BUG_ON(!s);
51df1142 3840 kmalloc_caches[i]->name = s;
d7278bd7 3841 }
81819f0f
CL
3842
3843#ifdef CONFIG_SMP
3844 register_cpu_notifier(&slab_notifier);
9dfc6e68 3845#endif
81819f0f 3846
55136592 3847#ifdef CONFIG_ZONE_DMA
51df1142
CL
3848 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3849 struct kmem_cache *s = kmalloc_caches[i];
55136592 3850
51df1142 3851 if (s && s->size) {
55136592
CL
3852 char *name = kasprintf(GFP_NOWAIT,
3853 "dma-kmalloc-%d", s->objsize);
3854
3855 BUG_ON(!name);
51df1142
CL
3856 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3857 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3858 }
3859 }
3860#endif
3adbefee
IM
3861 printk(KERN_INFO
3862 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3863 " CPUs=%d, Nodes=%d\n",
3864 caches, cache_line_size(),
81819f0f
CL
3865 slub_min_order, slub_max_order, slub_min_objects,
3866 nr_cpu_ids, nr_node_ids);
3867}
3868
7e85ee0c
PE
3869void __init kmem_cache_init_late(void)
3870{
7e85ee0c
PE
3871}
3872
81819f0f
CL
3873/*
3874 * Find a mergeable slab cache
3875 */
3876static int slab_unmergeable(struct kmem_cache *s)
3877{
3878 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3879 return 1;
3880
c59def9f 3881 if (s->ctor)
81819f0f
CL
3882 return 1;
3883
8ffa6875
CL
3884 /*
3885 * We may have set a slab to be unmergeable during bootstrap.
3886 */
3887 if (s->refcount < 0)
3888 return 1;
3889
81819f0f
CL
3890 return 0;
3891}
3892
3893static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3894 size_t align, unsigned long flags, const char *name,
51cc5068 3895 void (*ctor)(void *))
81819f0f 3896{
5b95a4ac 3897 struct kmem_cache *s;
81819f0f
CL
3898
3899 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3900 return NULL;
3901
c59def9f 3902 if (ctor)
81819f0f
CL
3903 return NULL;
3904
3905 size = ALIGN(size, sizeof(void *));
3906 align = calculate_alignment(flags, align, size);
3907 size = ALIGN(size, align);
ba0268a8 3908 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3909
5b95a4ac 3910 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3911 if (slab_unmergeable(s))
3912 continue;
3913
3914 if (size > s->size)
3915 continue;
3916
ba0268a8 3917 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3918 continue;
3919 /*
3920 * Check if alignment is compatible.
3921 * Courtesy of Adrian Drzewiecki
3922 */
06428780 3923 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3924 continue;
3925
3926 if (s->size - size >= sizeof(void *))
3927 continue;
3928
3929 return s;
3930 }
3931 return NULL;
3932}
3933
3934struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3935 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3936{
3937 struct kmem_cache *s;
84c1cf62 3938 char *n;
81819f0f 3939
fe1ff49d
BH
3940 if (WARN_ON(!name))
3941 return NULL;
3942
81819f0f 3943 down_write(&slub_lock);
ba0268a8 3944 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3945 if (s) {
3946 s->refcount++;
3947 /*
3948 * Adjust the object sizes so that we clear
3949 * the complete object on kzalloc.
3950 */
3951 s->objsize = max(s->objsize, (int)size);
3952 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3953
7b8f3b66 3954 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3955 s->refcount--;
81819f0f 3956 goto err;
7b8f3b66 3957 }
2bce6485 3958 up_write(&slub_lock);
a0e1d1be
CL
3959 return s;
3960 }
6446faa2 3961
84c1cf62
PE
3962 n = kstrdup(name, GFP_KERNEL);
3963 if (!n)
3964 goto err;
3965
a0e1d1be
CL
3966 s = kmalloc(kmem_size, GFP_KERNEL);
3967 if (s) {
84c1cf62 3968 if (kmem_cache_open(s, n,
c59def9f 3969 size, align, flags, ctor)) {
81819f0f 3970 list_add(&s->list, &slab_caches);
7b8f3b66 3971 if (sysfs_slab_add(s)) {
7b8f3b66 3972 list_del(&s->list);
84c1cf62 3973 kfree(n);
7b8f3b66 3974 kfree(s);
a0e1d1be 3975 goto err;
7b8f3b66 3976 }
2bce6485 3977 up_write(&slub_lock);
a0e1d1be
CL
3978 return s;
3979 }
84c1cf62 3980 kfree(n);
a0e1d1be 3981 kfree(s);
81819f0f 3982 }
68cee4f1 3983err:
81819f0f 3984 up_write(&slub_lock);
81819f0f 3985
81819f0f
CL
3986 if (flags & SLAB_PANIC)
3987 panic("Cannot create slabcache %s\n", name);
3988 else
3989 s = NULL;
3990 return s;
3991}
3992EXPORT_SYMBOL(kmem_cache_create);
3993
81819f0f 3994#ifdef CONFIG_SMP
81819f0f 3995/*
672bba3a
CL
3996 * Use the cpu notifier to insure that the cpu slabs are flushed when
3997 * necessary.
81819f0f
CL
3998 */
3999static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
4000 unsigned long action, void *hcpu)
4001{
4002 long cpu = (long)hcpu;
5b95a4ac
CL
4003 struct kmem_cache *s;
4004 unsigned long flags;
81819f0f
CL
4005
4006 switch (action) {
4007 case CPU_UP_CANCELED:
8bb78442 4008 case CPU_UP_CANCELED_FROZEN:
81819f0f 4009 case CPU_DEAD:
8bb78442 4010 case CPU_DEAD_FROZEN:
5b95a4ac
CL
4011 down_read(&slub_lock);
4012 list_for_each_entry(s, &slab_caches, list) {
4013 local_irq_save(flags);
4014 __flush_cpu_slab(s, cpu);
4015 local_irq_restore(flags);
4016 }
4017 up_read(&slub_lock);
81819f0f
CL
4018 break;
4019 default:
4020 break;
4021 }
4022 return NOTIFY_OK;
4023}
4024
06428780 4025static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 4026 .notifier_call = slab_cpuup_callback
06428780 4027};
81819f0f
CL
4028
4029#endif
4030
ce71e27c 4031void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4032{
aadb4bc4 4033 struct kmem_cache *s;
94b528d0 4034 void *ret;
aadb4bc4 4035
ffadd4d0 4036 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4037 return kmalloc_large(size, gfpflags);
4038
aadb4bc4 4039 s = get_slab(size, gfpflags);
81819f0f 4040
2408c550 4041 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4042 return s;
81819f0f 4043
2154a336 4044 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4045
25985edc 4046 /* Honor the call site pointer we received. */
ca2b84cb 4047 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4048
4049 return ret;
81819f0f
CL
4050}
4051
5d1f57e4 4052#ifdef CONFIG_NUMA
81819f0f 4053void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4054 int node, unsigned long caller)
81819f0f 4055{
aadb4bc4 4056 struct kmem_cache *s;
94b528d0 4057 void *ret;
aadb4bc4 4058
d3e14aa3
XF
4059 if (unlikely(size > SLUB_MAX_SIZE)) {
4060 ret = kmalloc_large_node(size, gfpflags, node);
4061
4062 trace_kmalloc_node(caller, ret,
4063 size, PAGE_SIZE << get_order(size),
4064 gfpflags, node);
4065
4066 return ret;
4067 }
eada35ef 4068
aadb4bc4 4069 s = get_slab(size, gfpflags);
81819f0f 4070
2408c550 4071 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4072 return s;
81819f0f 4073
94b528d0
EGM
4074 ret = slab_alloc(s, gfpflags, node, caller);
4075
25985edc 4076 /* Honor the call site pointer we received. */
ca2b84cb 4077 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4078
4079 return ret;
81819f0f 4080}
5d1f57e4 4081#endif
81819f0f 4082
ab4d5ed5 4083#ifdef CONFIG_SYSFS
205ab99d
CL
4084static int count_inuse(struct page *page)
4085{
4086 return page->inuse;
4087}
4088
4089static int count_total(struct page *page)
4090{
4091 return page->objects;
4092}
ab4d5ed5 4093#endif
205ab99d 4094
ab4d5ed5 4095#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4096static int validate_slab(struct kmem_cache *s, struct page *page,
4097 unsigned long *map)
53e15af0
CL
4098{
4099 void *p;
a973e9dd 4100 void *addr = page_address(page);
53e15af0
CL
4101
4102 if (!check_slab(s, page) ||
4103 !on_freelist(s, page, NULL))
4104 return 0;
4105
4106 /* Now we know that a valid freelist exists */
39b26464 4107 bitmap_zero(map, page->objects);
53e15af0 4108
5f80b13a
CL
4109 get_map(s, page, map);
4110 for_each_object(p, s, addr, page->objects) {
4111 if (test_bit(slab_index(p, s, addr), map))
4112 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4113 return 0;
53e15af0
CL
4114 }
4115
224a88be 4116 for_each_object(p, s, addr, page->objects)
7656c72b 4117 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4118 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4119 return 0;
4120 return 1;
4121}
4122
434e245d
CL
4123static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4124 unsigned long *map)
53e15af0 4125{
881db7fb
CL
4126 slab_lock(page);
4127 validate_slab(s, page, map);
4128 slab_unlock(page);
53e15af0
CL
4129}
4130
434e245d
CL
4131static int validate_slab_node(struct kmem_cache *s,
4132 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4133{
4134 unsigned long count = 0;
4135 struct page *page;
4136 unsigned long flags;
4137
4138 spin_lock_irqsave(&n->list_lock, flags);
4139
4140 list_for_each_entry(page, &n->partial, lru) {
434e245d 4141 validate_slab_slab(s, page, map);
53e15af0
CL
4142 count++;
4143 }
4144 if (count != n->nr_partial)
4145 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4146 "counter=%ld\n", s->name, count, n->nr_partial);
4147
4148 if (!(s->flags & SLAB_STORE_USER))
4149 goto out;
4150
4151 list_for_each_entry(page, &n->full, lru) {
434e245d 4152 validate_slab_slab(s, page, map);
53e15af0
CL
4153 count++;
4154 }
4155 if (count != atomic_long_read(&n->nr_slabs))
4156 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4157 "counter=%ld\n", s->name, count,
4158 atomic_long_read(&n->nr_slabs));
4159
4160out:
4161 spin_unlock_irqrestore(&n->list_lock, flags);
4162 return count;
4163}
4164
434e245d 4165static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4166{
4167 int node;
4168 unsigned long count = 0;
205ab99d 4169 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4170 sizeof(unsigned long), GFP_KERNEL);
4171
4172 if (!map)
4173 return -ENOMEM;
53e15af0
CL
4174
4175 flush_all(s);
f64dc58c 4176 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4177 struct kmem_cache_node *n = get_node(s, node);
4178
434e245d 4179 count += validate_slab_node(s, n, map);
53e15af0 4180 }
434e245d 4181 kfree(map);
53e15af0
CL
4182 return count;
4183}
88a420e4 4184/*
672bba3a 4185 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4186 * and freed.
4187 */
4188
4189struct location {
4190 unsigned long count;
ce71e27c 4191 unsigned long addr;
45edfa58
CL
4192 long long sum_time;
4193 long min_time;
4194 long max_time;
4195 long min_pid;
4196 long max_pid;
174596a0 4197 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4198 nodemask_t nodes;
88a420e4
CL
4199};
4200
4201struct loc_track {
4202 unsigned long max;
4203 unsigned long count;
4204 struct location *loc;
4205};
4206
4207static void free_loc_track(struct loc_track *t)
4208{
4209 if (t->max)
4210 free_pages((unsigned long)t->loc,
4211 get_order(sizeof(struct location) * t->max));
4212}
4213
68dff6a9 4214static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4215{
4216 struct location *l;
4217 int order;
4218
88a420e4
CL
4219 order = get_order(sizeof(struct location) * max);
4220
68dff6a9 4221 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4222 if (!l)
4223 return 0;
4224
4225 if (t->count) {
4226 memcpy(l, t->loc, sizeof(struct location) * t->count);
4227 free_loc_track(t);
4228 }
4229 t->max = max;
4230 t->loc = l;
4231 return 1;
4232}
4233
4234static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4235 const struct track *track)
88a420e4
CL
4236{
4237 long start, end, pos;
4238 struct location *l;
ce71e27c 4239 unsigned long caddr;
45edfa58 4240 unsigned long age = jiffies - track->when;
88a420e4
CL
4241
4242 start = -1;
4243 end = t->count;
4244
4245 for ( ; ; ) {
4246 pos = start + (end - start + 1) / 2;
4247
4248 /*
4249 * There is nothing at "end". If we end up there
4250 * we need to add something to before end.
4251 */
4252 if (pos == end)
4253 break;
4254
4255 caddr = t->loc[pos].addr;
45edfa58
CL
4256 if (track->addr == caddr) {
4257
4258 l = &t->loc[pos];
4259 l->count++;
4260 if (track->when) {
4261 l->sum_time += age;
4262 if (age < l->min_time)
4263 l->min_time = age;
4264 if (age > l->max_time)
4265 l->max_time = age;
4266
4267 if (track->pid < l->min_pid)
4268 l->min_pid = track->pid;
4269 if (track->pid > l->max_pid)
4270 l->max_pid = track->pid;
4271
174596a0
RR
4272 cpumask_set_cpu(track->cpu,
4273 to_cpumask(l->cpus));
45edfa58
CL
4274 }
4275 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4276 return 1;
4277 }
4278
45edfa58 4279 if (track->addr < caddr)
88a420e4
CL
4280 end = pos;
4281 else
4282 start = pos;
4283 }
4284
4285 /*
672bba3a 4286 * Not found. Insert new tracking element.
88a420e4 4287 */
68dff6a9 4288 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4289 return 0;
4290
4291 l = t->loc + pos;
4292 if (pos < t->count)
4293 memmove(l + 1, l,
4294 (t->count - pos) * sizeof(struct location));
4295 t->count++;
4296 l->count = 1;
45edfa58
CL
4297 l->addr = track->addr;
4298 l->sum_time = age;
4299 l->min_time = age;
4300 l->max_time = age;
4301 l->min_pid = track->pid;
4302 l->max_pid = track->pid;
174596a0
RR
4303 cpumask_clear(to_cpumask(l->cpus));
4304 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4305 nodes_clear(l->nodes);
4306 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4307 return 1;
4308}
4309
4310static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4311 struct page *page, enum track_item alloc,
a5dd5c11 4312 unsigned long *map)
88a420e4 4313{
a973e9dd 4314 void *addr = page_address(page);
88a420e4
CL
4315 void *p;
4316
39b26464 4317 bitmap_zero(map, page->objects);
5f80b13a 4318 get_map(s, page, map);
88a420e4 4319
224a88be 4320 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4321 if (!test_bit(slab_index(p, s, addr), map))
4322 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4323}
4324
4325static int list_locations(struct kmem_cache *s, char *buf,
4326 enum track_item alloc)
4327{
e374d483 4328 int len = 0;
88a420e4 4329 unsigned long i;
68dff6a9 4330 struct loc_track t = { 0, 0, NULL };
88a420e4 4331 int node;
bbd7d57b
ED
4332 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4333 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4334
bbd7d57b
ED
4335 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4336 GFP_TEMPORARY)) {
4337 kfree(map);
68dff6a9 4338 return sprintf(buf, "Out of memory\n");
bbd7d57b 4339 }
88a420e4
CL
4340 /* Push back cpu slabs */
4341 flush_all(s);
4342
f64dc58c 4343 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4344 struct kmem_cache_node *n = get_node(s, node);
4345 unsigned long flags;
4346 struct page *page;
4347
9e86943b 4348 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4349 continue;
4350
4351 spin_lock_irqsave(&n->list_lock, flags);
4352 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4353 process_slab(&t, s, page, alloc, map);
88a420e4 4354 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4355 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4356 spin_unlock_irqrestore(&n->list_lock, flags);
4357 }
4358
4359 for (i = 0; i < t.count; i++) {
45edfa58 4360 struct location *l = &t.loc[i];
88a420e4 4361
9c246247 4362 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4363 break;
e374d483 4364 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4365
4366 if (l->addr)
62c70bce 4367 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4368 else
e374d483 4369 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4370
4371 if (l->sum_time != l->min_time) {
e374d483 4372 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4373 l->min_time,
4374 (long)div_u64(l->sum_time, l->count),
4375 l->max_time);
45edfa58 4376 } else
e374d483 4377 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4378 l->min_time);
4379
4380 if (l->min_pid != l->max_pid)
e374d483 4381 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4382 l->min_pid, l->max_pid);
4383 else
e374d483 4384 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4385 l->min_pid);
4386
174596a0
RR
4387 if (num_online_cpus() > 1 &&
4388 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4389 len < PAGE_SIZE - 60) {
4390 len += sprintf(buf + len, " cpus=");
4391 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4392 to_cpumask(l->cpus));
45edfa58
CL
4393 }
4394
62bc62a8 4395 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4396 len < PAGE_SIZE - 60) {
4397 len += sprintf(buf + len, " nodes=");
4398 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4399 l->nodes);
4400 }
4401
e374d483 4402 len += sprintf(buf + len, "\n");
88a420e4
CL
4403 }
4404
4405 free_loc_track(&t);
bbd7d57b 4406 kfree(map);
88a420e4 4407 if (!t.count)
e374d483
HH
4408 len += sprintf(buf, "No data\n");
4409 return len;
88a420e4 4410}
ab4d5ed5 4411#endif
88a420e4 4412
a5a84755
CL
4413#ifdef SLUB_RESILIENCY_TEST
4414static void resiliency_test(void)
4415{
4416 u8 *p;
4417
4418 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4419
4420 printk(KERN_ERR "SLUB resiliency testing\n");
4421 printk(KERN_ERR "-----------------------\n");
4422 printk(KERN_ERR "A. Corruption after allocation\n");
4423
4424 p = kzalloc(16, GFP_KERNEL);
4425 p[16] = 0x12;
4426 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4427 " 0x12->0x%p\n\n", p + 16);
4428
4429 validate_slab_cache(kmalloc_caches[4]);
4430
4431 /* Hmmm... The next two are dangerous */
4432 p = kzalloc(32, GFP_KERNEL);
4433 p[32 + sizeof(void *)] = 0x34;
4434 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4435 " 0x34 -> -0x%p\n", p);
4436 printk(KERN_ERR
4437 "If allocated object is overwritten then not detectable\n\n");
4438
4439 validate_slab_cache(kmalloc_caches[5]);
4440 p = kzalloc(64, GFP_KERNEL);
4441 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4442 *p = 0x56;
4443 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4444 p);
4445 printk(KERN_ERR
4446 "If allocated object is overwritten then not detectable\n\n");
4447 validate_slab_cache(kmalloc_caches[6]);
4448
4449 printk(KERN_ERR "\nB. Corruption after free\n");
4450 p = kzalloc(128, GFP_KERNEL);
4451 kfree(p);
4452 *p = 0x78;
4453 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4454 validate_slab_cache(kmalloc_caches[7]);
4455
4456 p = kzalloc(256, GFP_KERNEL);
4457 kfree(p);
4458 p[50] = 0x9a;
4459 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4460 p);
4461 validate_slab_cache(kmalloc_caches[8]);
4462
4463 p = kzalloc(512, GFP_KERNEL);
4464 kfree(p);
4465 p[512] = 0xab;
4466 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4467 validate_slab_cache(kmalloc_caches[9]);
4468}
4469#else
4470#ifdef CONFIG_SYSFS
4471static void resiliency_test(void) {};
4472#endif
4473#endif
4474
ab4d5ed5 4475#ifdef CONFIG_SYSFS
81819f0f 4476enum slab_stat_type {
205ab99d
CL
4477 SL_ALL, /* All slabs */
4478 SL_PARTIAL, /* Only partially allocated slabs */
4479 SL_CPU, /* Only slabs used for cpu caches */
4480 SL_OBJECTS, /* Determine allocated objects not slabs */
4481 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4482};
4483
205ab99d 4484#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4485#define SO_PARTIAL (1 << SL_PARTIAL)
4486#define SO_CPU (1 << SL_CPU)
4487#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4488#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4489
62e5c4b4
CG
4490static ssize_t show_slab_objects(struct kmem_cache *s,
4491 char *buf, unsigned long flags)
81819f0f
CL
4492{
4493 unsigned long total = 0;
81819f0f
CL
4494 int node;
4495 int x;
4496 unsigned long *nodes;
4497 unsigned long *per_cpu;
4498
4499 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4500 if (!nodes)
4501 return -ENOMEM;
81819f0f
CL
4502 per_cpu = nodes + nr_node_ids;
4503
205ab99d
CL
4504 if (flags & SO_CPU) {
4505 int cpu;
81819f0f 4506
205ab99d 4507 for_each_possible_cpu(cpu) {
9dfc6e68 4508 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
49e22585 4509 struct page *page;
dfb4f096 4510
205ab99d
CL
4511 if (!c || c->node < 0)
4512 continue;
4513
4514 if (c->page) {
4515 if (flags & SO_TOTAL)
4516 x = c->page->objects;
4517 else if (flags & SO_OBJECTS)
4518 x = c->page->inuse;
81819f0f
CL
4519 else
4520 x = 1;
205ab99d 4521
81819f0f 4522 total += x;
205ab99d 4523 nodes[c->node] += x;
81819f0f 4524 }
49e22585
CL
4525 page = c->partial;
4526
4527 if (page) {
4528 x = page->pobjects;
4529 total += x;
4530 nodes[c->node] += x;
4531 }
205ab99d 4532 per_cpu[c->node]++;
81819f0f
CL
4533 }
4534 }
4535
04d94879 4536 lock_memory_hotplug();
ab4d5ed5 4537#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4538 if (flags & SO_ALL) {
4539 for_each_node_state(node, N_NORMAL_MEMORY) {
4540 struct kmem_cache_node *n = get_node(s, node);
4541
4542 if (flags & SO_TOTAL)
4543 x = atomic_long_read(&n->total_objects);
4544 else if (flags & SO_OBJECTS)
4545 x = atomic_long_read(&n->total_objects) -
4546 count_partial(n, count_free);
81819f0f 4547
81819f0f 4548 else
205ab99d 4549 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4550 total += x;
4551 nodes[node] += x;
4552 }
4553
ab4d5ed5
CL
4554 } else
4555#endif
4556 if (flags & SO_PARTIAL) {
205ab99d
CL
4557 for_each_node_state(node, N_NORMAL_MEMORY) {
4558 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4559
205ab99d
CL
4560 if (flags & SO_TOTAL)
4561 x = count_partial(n, count_total);
4562 else if (flags & SO_OBJECTS)
4563 x = count_partial(n, count_inuse);
81819f0f 4564 else
205ab99d 4565 x = n->nr_partial;
81819f0f
CL
4566 total += x;
4567 nodes[node] += x;
4568 }
4569 }
81819f0f
CL
4570 x = sprintf(buf, "%lu", total);
4571#ifdef CONFIG_NUMA
f64dc58c 4572 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4573 if (nodes[node])
4574 x += sprintf(buf + x, " N%d=%lu",
4575 node, nodes[node]);
4576#endif
04d94879 4577 unlock_memory_hotplug();
81819f0f
CL
4578 kfree(nodes);
4579 return x + sprintf(buf + x, "\n");
4580}
4581
ab4d5ed5 4582#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4583static int any_slab_objects(struct kmem_cache *s)
4584{
4585 int node;
81819f0f 4586
dfb4f096 4587 for_each_online_node(node) {
81819f0f
CL
4588 struct kmem_cache_node *n = get_node(s, node);
4589
dfb4f096
CL
4590 if (!n)
4591 continue;
4592
4ea33e2d 4593 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4594 return 1;
4595 }
4596 return 0;
4597}
ab4d5ed5 4598#endif
81819f0f
CL
4599
4600#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4601#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4602
4603struct slab_attribute {
4604 struct attribute attr;
4605 ssize_t (*show)(struct kmem_cache *s, char *buf);
4606 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4607};
4608
4609#define SLAB_ATTR_RO(_name) \
4610 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4611
4612#define SLAB_ATTR(_name) \
4613 static struct slab_attribute _name##_attr = \
4614 __ATTR(_name, 0644, _name##_show, _name##_store)
4615
81819f0f
CL
4616static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4617{
4618 return sprintf(buf, "%d\n", s->size);
4619}
4620SLAB_ATTR_RO(slab_size);
4621
4622static ssize_t align_show(struct kmem_cache *s, char *buf)
4623{
4624 return sprintf(buf, "%d\n", s->align);
4625}
4626SLAB_ATTR_RO(align);
4627
4628static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4629{
4630 return sprintf(buf, "%d\n", s->objsize);
4631}
4632SLAB_ATTR_RO(object_size);
4633
4634static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4635{
834f3d11 4636 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4637}
4638SLAB_ATTR_RO(objs_per_slab);
4639
06b285dc
CL
4640static ssize_t order_store(struct kmem_cache *s,
4641 const char *buf, size_t length)
4642{
0121c619
CL
4643 unsigned long order;
4644 int err;
4645
4646 err = strict_strtoul(buf, 10, &order);
4647 if (err)
4648 return err;
06b285dc
CL
4649
4650 if (order > slub_max_order || order < slub_min_order)
4651 return -EINVAL;
4652
4653 calculate_sizes(s, order);
4654 return length;
4655}
4656
81819f0f
CL
4657static ssize_t order_show(struct kmem_cache *s, char *buf)
4658{
834f3d11 4659 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4660}
06b285dc 4661SLAB_ATTR(order);
81819f0f 4662
73d342b1
DR
4663static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4664{
4665 return sprintf(buf, "%lu\n", s->min_partial);
4666}
4667
4668static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4669 size_t length)
4670{
4671 unsigned long min;
4672 int err;
4673
4674 err = strict_strtoul(buf, 10, &min);
4675 if (err)
4676 return err;
4677
c0bdb232 4678 set_min_partial(s, min);
73d342b1
DR
4679 return length;
4680}
4681SLAB_ATTR(min_partial);
4682
49e22585
CL
4683static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4684{
4685 return sprintf(buf, "%u\n", s->cpu_partial);
4686}
4687
4688static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4689 size_t length)
4690{
4691 unsigned long objects;
4692 int err;
4693
4694 err = strict_strtoul(buf, 10, &objects);
4695 if (err)
4696 return err;
4697
4698 s->cpu_partial = objects;
4699 flush_all(s);
4700 return length;
4701}
4702SLAB_ATTR(cpu_partial);
4703
81819f0f
CL
4704static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4705{
62c70bce
JP
4706 if (!s->ctor)
4707 return 0;
4708 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4709}
4710SLAB_ATTR_RO(ctor);
4711
81819f0f
CL
4712static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4713{
4714 return sprintf(buf, "%d\n", s->refcount - 1);
4715}
4716SLAB_ATTR_RO(aliases);
4717
81819f0f
CL
4718static ssize_t partial_show(struct kmem_cache *s, char *buf)
4719{
d9acf4b7 4720 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4721}
4722SLAB_ATTR_RO(partial);
4723
4724static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4725{
d9acf4b7 4726 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4727}
4728SLAB_ATTR_RO(cpu_slabs);
4729
4730static ssize_t objects_show(struct kmem_cache *s, char *buf)
4731{
205ab99d 4732 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4733}
4734SLAB_ATTR_RO(objects);
4735
205ab99d
CL
4736static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4737{
4738 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4739}
4740SLAB_ATTR_RO(objects_partial);
4741
49e22585
CL
4742static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4743{
4744 int objects = 0;
4745 int pages = 0;
4746 int cpu;
4747 int len;
4748
4749 for_each_online_cpu(cpu) {
4750 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4751
4752 if (page) {
4753 pages += page->pages;
4754 objects += page->pobjects;
4755 }
4756 }
4757
4758 len = sprintf(buf, "%d(%d)", objects, pages);
4759
4760#ifdef CONFIG_SMP
4761 for_each_online_cpu(cpu) {
4762 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4763
4764 if (page && len < PAGE_SIZE - 20)
4765 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4766 page->pobjects, page->pages);
4767 }
4768#endif
4769 return len + sprintf(buf + len, "\n");
4770}
4771SLAB_ATTR_RO(slabs_cpu_partial);
4772
a5a84755
CL
4773static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4774{
4775 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4776}
4777
4778static ssize_t reclaim_account_store(struct kmem_cache *s,
4779 const char *buf, size_t length)
4780{
4781 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4782 if (buf[0] == '1')
4783 s->flags |= SLAB_RECLAIM_ACCOUNT;
4784 return length;
4785}
4786SLAB_ATTR(reclaim_account);
4787
4788static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4789{
4790 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4791}
4792SLAB_ATTR_RO(hwcache_align);
4793
4794#ifdef CONFIG_ZONE_DMA
4795static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4796{
4797 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4798}
4799SLAB_ATTR_RO(cache_dma);
4800#endif
4801
4802static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4803{
4804 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4805}
4806SLAB_ATTR_RO(destroy_by_rcu);
4807
ab9a0f19
LJ
4808static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4809{
4810 return sprintf(buf, "%d\n", s->reserved);
4811}
4812SLAB_ATTR_RO(reserved);
4813
ab4d5ed5 4814#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4815static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4816{
4817 return show_slab_objects(s, buf, SO_ALL);
4818}
4819SLAB_ATTR_RO(slabs);
4820
205ab99d
CL
4821static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4822{
4823 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4824}
4825SLAB_ATTR_RO(total_objects);
4826
81819f0f
CL
4827static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4828{
4829 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4830}
4831
4832static ssize_t sanity_checks_store(struct kmem_cache *s,
4833 const char *buf, size_t length)
4834{
4835 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4836 if (buf[0] == '1') {
4837 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4838 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4839 }
81819f0f
CL
4840 return length;
4841}
4842SLAB_ATTR(sanity_checks);
4843
4844static ssize_t trace_show(struct kmem_cache *s, char *buf)
4845{
4846 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4847}
4848
4849static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4850 size_t length)
4851{
4852 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4853 if (buf[0] == '1') {
4854 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4855 s->flags |= SLAB_TRACE;
b789ef51 4856 }
81819f0f
CL
4857 return length;
4858}
4859SLAB_ATTR(trace);
4860
81819f0f
CL
4861static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4862{
4863 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4864}
4865
4866static ssize_t red_zone_store(struct kmem_cache *s,
4867 const char *buf, size_t length)
4868{
4869 if (any_slab_objects(s))
4870 return -EBUSY;
4871
4872 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4873 if (buf[0] == '1') {
4874 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4875 s->flags |= SLAB_RED_ZONE;
b789ef51 4876 }
06b285dc 4877 calculate_sizes(s, -1);
81819f0f
CL
4878 return length;
4879}
4880SLAB_ATTR(red_zone);
4881
4882static ssize_t poison_show(struct kmem_cache *s, char *buf)
4883{
4884 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4885}
4886
4887static ssize_t poison_store(struct kmem_cache *s,
4888 const char *buf, size_t length)
4889{
4890 if (any_slab_objects(s))
4891 return -EBUSY;
4892
4893 s->flags &= ~SLAB_POISON;
b789ef51
CL
4894 if (buf[0] == '1') {
4895 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4896 s->flags |= SLAB_POISON;
b789ef51 4897 }
06b285dc 4898 calculate_sizes(s, -1);
81819f0f
CL
4899 return length;
4900}
4901SLAB_ATTR(poison);
4902
4903static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4904{
4905 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4906}
4907
4908static ssize_t store_user_store(struct kmem_cache *s,
4909 const char *buf, size_t length)
4910{
4911 if (any_slab_objects(s))
4912 return -EBUSY;
4913
4914 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4915 if (buf[0] == '1') {
4916 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4917 s->flags |= SLAB_STORE_USER;
b789ef51 4918 }
06b285dc 4919 calculate_sizes(s, -1);
81819f0f
CL
4920 return length;
4921}
4922SLAB_ATTR(store_user);
4923
53e15af0
CL
4924static ssize_t validate_show(struct kmem_cache *s, char *buf)
4925{
4926 return 0;
4927}
4928
4929static ssize_t validate_store(struct kmem_cache *s,
4930 const char *buf, size_t length)
4931{
434e245d
CL
4932 int ret = -EINVAL;
4933
4934 if (buf[0] == '1') {
4935 ret = validate_slab_cache(s);
4936 if (ret >= 0)
4937 ret = length;
4938 }
4939 return ret;
53e15af0
CL
4940}
4941SLAB_ATTR(validate);
a5a84755
CL
4942
4943static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4944{
4945 if (!(s->flags & SLAB_STORE_USER))
4946 return -ENOSYS;
4947 return list_locations(s, buf, TRACK_ALLOC);
4948}
4949SLAB_ATTR_RO(alloc_calls);
4950
4951static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4952{
4953 if (!(s->flags & SLAB_STORE_USER))
4954 return -ENOSYS;
4955 return list_locations(s, buf, TRACK_FREE);
4956}
4957SLAB_ATTR_RO(free_calls);
4958#endif /* CONFIG_SLUB_DEBUG */
4959
4960#ifdef CONFIG_FAILSLAB
4961static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4962{
4963 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4964}
4965
4966static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4967 size_t length)
4968{
4969 s->flags &= ~SLAB_FAILSLAB;
4970 if (buf[0] == '1')
4971 s->flags |= SLAB_FAILSLAB;
4972 return length;
4973}
4974SLAB_ATTR(failslab);
ab4d5ed5 4975#endif
53e15af0 4976
2086d26a
CL
4977static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4978{
4979 return 0;
4980}
4981
4982static ssize_t shrink_store(struct kmem_cache *s,
4983 const char *buf, size_t length)
4984{
4985 if (buf[0] == '1') {
4986 int rc = kmem_cache_shrink(s);
4987
4988 if (rc)
4989 return rc;
4990 } else
4991 return -EINVAL;
4992 return length;
4993}
4994SLAB_ATTR(shrink);
4995
81819f0f 4996#ifdef CONFIG_NUMA
9824601e 4997static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4998{
9824601e 4999 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5000}
5001
9824601e 5002static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5003 const char *buf, size_t length)
5004{
0121c619
CL
5005 unsigned long ratio;
5006 int err;
5007
5008 err = strict_strtoul(buf, 10, &ratio);
5009 if (err)
5010 return err;
5011
e2cb96b7 5012 if (ratio <= 100)
0121c619 5013 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5014
81819f0f
CL
5015 return length;
5016}
9824601e 5017SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5018#endif
5019
8ff12cfc 5020#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5021static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5022{
5023 unsigned long sum = 0;
5024 int cpu;
5025 int len;
5026 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5027
5028 if (!data)
5029 return -ENOMEM;
5030
5031 for_each_online_cpu(cpu) {
9dfc6e68 5032 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5033
5034 data[cpu] = x;
5035 sum += x;
5036 }
5037
5038 len = sprintf(buf, "%lu", sum);
5039
50ef37b9 5040#ifdef CONFIG_SMP
8ff12cfc
CL
5041 for_each_online_cpu(cpu) {
5042 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5043 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5044 }
50ef37b9 5045#endif
8ff12cfc
CL
5046 kfree(data);
5047 return len + sprintf(buf + len, "\n");
5048}
5049
78eb00cc
DR
5050static void clear_stat(struct kmem_cache *s, enum stat_item si)
5051{
5052 int cpu;
5053
5054 for_each_online_cpu(cpu)
9dfc6e68 5055 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5056}
5057
8ff12cfc
CL
5058#define STAT_ATTR(si, text) \
5059static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5060{ \
5061 return show_stat(s, buf, si); \
5062} \
78eb00cc
DR
5063static ssize_t text##_store(struct kmem_cache *s, \
5064 const char *buf, size_t length) \
5065{ \
5066 if (buf[0] != '0') \
5067 return -EINVAL; \
5068 clear_stat(s, si); \
5069 return length; \
5070} \
5071SLAB_ATTR(text); \
8ff12cfc
CL
5072
5073STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5074STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5075STAT_ATTR(FREE_FASTPATH, free_fastpath);
5076STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5077STAT_ATTR(FREE_FROZEN, free_frozen);
5078STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5079STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5080STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5081STAT_ATTR(ALLOC_SLAB, alloc_slab);
5082STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5083STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5084STAT_ATTR(FREE_SLAB, free_slab);
5085STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5086STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5087STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5088STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5089STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5090STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5091STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5092STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5093STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5094STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5095STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5096STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8ff12cfc
CL
5097#endif
5098
06428780 5099static struct attribute *slab_attrs[] = {
81819f0f
CL
5100 &slab_size_attr.attr,
5101 &object_size_attr.attr,
5102 &objs_per_slab_attr.attr,
5103 &order_attr.attr,
73d342b1 5104 &min_partial_attr.attr,
49e22585 5105 &cpu_partial_attr.attr,
81819f0f 5106 &objects_attr.attr,
205ab99d 5107 &objects_partial_attr.attr,
81819f0f
CL
5108 &partial_attr.attr,
5109 &cpu_slabs_attr.attr,
5110 &ctor_attr.attr,
81819f0f
CL
5111 &aliases_attr.attr,
5112 &align_attr.attr,
81819f0f
CL
5113 &hwcache_align_attr.attr,
5114 &reclaim_account_attr.attr,
5115 &destroy_by_rcu_attr.attr,
a5a84755 5116 &shrink_attr.attr,
ab9a0f19 5117 &reserved_attr.attr,
49e22585 5118 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5119#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5120 &total_objects_attr.attr,
5121 &slabs_attr.attr,
5122 &sanity_checks_attr.attr,
5123 &trace_attr.attr,
81819f0f
CL
5124 &red_zone_attr.attr,
5125 &poison_attr.attr,
5126 &store_user_attr.attr,
53e15af0 5127 &validate_attr.attr,
88a420e4
CL
5128 &alloc_calls_attr.attr,
5129 &free_calls_attr.attr,
ab4d5ed5 5130#endif
81819f0f
CL
5131#ifdef CONFIG_ZONE_DMA
5132 &cache_dma_attr.attr,
5133#endif
5134#ifdef CONFIG_NUMA
9824601e 5135 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5136#endif
5137#ifdef CONFIG_SLUB_STATS
5138 &alloc_fastpath_attr.attr,
5139 &alloc_slowpath_attr.attr,
5140 &free_fastpath_attr.attr,
5141 &free_slowpath_attr.attr,
5142 &free_frozen_attr.attr,
5143 &free_add_partial_attr.attr,
5144 &free_remove_partial_attr.attr,
5145 &alloc_from_partial_attr.attr,
5146 &alloc_slab_attr.attr,
5147 &alloc_refill_attr.attr,
e36a2652 5148 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5149 &free_slab_attr.attr,
5150 &cpuslab_flush_attr.attr,
5151 &deactivate_full_attr.attr,
5152 &deactivate_empty_attr.attr,
5153 &deactivate_to_head_attr.attr,
5154 &deactivate_to_tail_attr.attr,
5155 &deactivate_remote_frees_attr.attr,
03e404af 5156 &deactivate_bypass_attr.attr,
65c3376a 5157 &order_fallback_attr.attr,
b789ef51
CL
5158 &cmpxchg_double_fail_attr.attr,
5159 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5160 &cpu_partial_alloc_attr.attr,
5161 &cpu_partial_free_attr.attr,
81819f0f 5162#endif
4c13dd3b
DM
5163#ifdef CONFIG_FAILSLAB
5164 &failslab_attr.attr,
5165#endif
5166
81819f0f
CL
5167 NULL
5168};
5169
5170static struct attribute_group slab_attr_group = {
5171 .attrs = slab_attrs,
5172};
5173
5174static ssize_t slab_attr_show(struct kobject *kobj,
5175 struct attribute *attr,
5176 char *buf)
5177{
5178 struct slab_attribute *attribute;
5179 struct kmem_cache *s;
5180 int err;
5181
5182 attribute = to_slab_attr(attr);
5183 s = to_slab(kobj);
5184
5185 if (!attribute->show)
5186 return -EIO;
5187
5188 err = attribute->show(s, buf);
5189
5190 return err;
5191}
5192
5193static ssize_t slab_attr_store(struct kobject *kobj,
5194 struct attribute *attr,
5195 const char *buf, size_t len)
5196{
5197 struct slab_attribute *attribute;
5198 struct kmem_cache *s;
5199 int err;
5200
5201 attribute = to_slab_attr(attr);
5202 s = to_slab(kobj);
5203
5204 if (!attribute->store)
5205 return -EIO;
5206
5207 err = attribute->store(s, buf, len);
5208
5209 return err;
5210}
5211
151c602f
CL
5212static void kmem_cache_release(struct kobject *kobj)
5213{
5214 struct kmem_cache *s = to_slab(kobj);
5215
84c1cf62 5216 kfree(s->name);
151c602f
CL
5217 kfree(s);
5218}
5219
52cf25d0 5220static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5221 .show = slab_attr_show,
5222 .store = slab_attr_store,
5223};
5224
5225static struct kobj_type slab_ktype = {
5226 .sysfs_ops = &slab_sysfs_ops,
151c602f 5227 .release = kmem_cache_release
81819f0f
CL
5228};
5229
5230static int uevent_filter(struct kset *kset, struct kobject *kobj)
5231{
5232 struct kobj_type *ktype = get_ktype(kobj);
5233
5234 if (ktype == &slab_ktype)
5235 return 1;
5236 return 0;
5237}
5238
9cd43611 5239static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5240 .filter = uevent_filter,
5241};
5242
27c3a314 5243static struct kset *slab_kset;
81819f0f
CL
5244
5245#define ID_STR_LENGTH 64
5246
5247/* Create a unique string id for a slab cache:
6446faa2
CL
5248 *
5249 * Format :[flags-]size
81819f0f
CL
5250 */
5251static char *create_unique_id(struct kmem_cache *s)
5252{
5253 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5254 char *p = name;
5255
5256 BUG_ON(!name);
5257
5258 *p++ = ':';
5259 /*
5260 * First flags affecting slabcache operations. We will only
5261 * get here for aliasable slabs so we do not need to support
5262 * too many flags. The flags here must cover all flags that
5263 * are matched during merging to guarantee that the id is
5264 * unique.
5265 */
5266 if (s->flags & SLAB_CACHE_DMA)
5267 *p++ = 'd';
5268 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5269 *p++ = 'a';
5270 if (s->flags & SLAB_DEBUG_FREE)
5271 *p++ = 'F';
5a896d9e
VN
5272 if (!(s->flags & SLAB_NOTRACK))
5273 *p++ = 't';
81819f0f
CL
5274 if (p != name + 1)
5275 *p++ = '-';
5276 p += sprintf(p, "%07d", s->size);
5277 BUG_ON(p > name + ID_STR_LENGTH - 1);
5278 return name;
5279}
5280
5281static int sysfs_slab_add(struct kmem_cache *s)
5282{
5283 int err;
5284 const char *name;
5285 int unmergeable;
5286
5287 if (slab_state < SYSFS)
5288 /* Defer until later */
5289 return 0;
5290
5291 unmergeable = slab_unmergeable(s);
5292 if (unmergeable) {
5293 /*
5294 * Slabcache can never be merged so we can use the name proper.
5295 * This is typically the case for debug situations. In that
5296 * case we can catch duplicate names easily.
5297 */
27c3a314 5298 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5299 name = s->name;
5300 } else {
5301 /*
5302 * Create a unique name for the slab as a target
5303 * for the symlinks.
5304 */
5305 name = create_unique_id(s);
5306 }
5307
27c3a314 5308 s->kobj.kset = slab_kset;
1eada11c
GKH
5309 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5310 if (err) {
5311 kobject_put(&s->kobj);
81819f0f 5312 return err;
1eada11c 5313 }
81819f0f
CL
5314
5315 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5316 if (err) {
5317 kobject_del(&s->kobj);
5318 kobject_put(&s->kobj);
81819f0f 5319 return err;
5788d8ad 5320 }
81819f0f
CL
5321 kobject_uevent(&s->kobj, KOBJ_ADD);
5322 if (!unmergeable) {
5323 /* Setup first alias */
5324 sysfs_slab_alias(s, s->name);
5325 kfree(name);
5326 }
5327 return 0;
5328}
5329
5330static void sysfs_slab_remove(struct kmem_cache *s)
5331{
2bce6485
CL
5332 if (slab_state < SYSFS)
5333 /*
5334 * Sysfs has not been setup yet so no need to remove the
5335 * cache from sysfs.
5336 */
5337 return;
5338
81819f0f
CL
5339 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5340 kobject_del(&s->kobj);
151c602f 5341 kobject_put(&s->kobj);
81819f0f
CL
5342}
5343
5344/*
5345 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5346 * available lest we lose that information.
81819f0f
CL
5347 */
5348struct saved_alias {
5349 struct kmem_cache *s;
5350 const char *name;
5351 struct saved_alias *next;
5352};
5353
5af328a5 5354static struct saved_alias *alias_list;
81819f0f
CL
5355
5356static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5357{
5358 struct saved_alias *al;
5359
5360 if (slab_state == SYSFS) {
5361 /*
5362 * If we have a leftover link then remove it.
5363 */
27c3a314
GKH
5364 sysfs_remove_link(&slab_kset->kobj, name);
5365 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5366 }
5367
5368 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5369 if (!al)
5370 return -ENOMEM;
5371
5372 al->s = s;
5373 al->name = name;
5374 al->next = alias_list;
5375 alias_list = al;
5376 return 0;
5377}
5378
5379static int __init slab_sysfs_init(void)
5380{
5b95a4ac 5381 struct kmem_cache *s;
81819f0f
CL
5382 int err;
5383
2bce6485
CL
5384 down_write(&slub_lock);
5385
0ff21e46 5386 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5387 if (!slab_kset) {
2bce6485 5388 up_write(&slub_lock);
81819f0f
CL
5389 printk(KERN_ERR "Cannot register slab subsystem.\n");
5390 return -ENOSYS;
5391 }
5392
26a7bd03
CL
5393 slab_state = SYSFS;
5394
5b95a4ac 5395 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5396 err = sysfs_slab_add(s);
5d540fb7
CL
5397 if (err)
5398 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5399 " to sysfs\n", s->name);
26a7bd03 5400 }
81819f0f
CL
5401
5402 while (alias_list) {
5403 struct saved_alias *al = alias_list;
5404
5405 alias_list = alias_list->next;
5406 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5407 if (err)
5408 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5409 " %s to sysfs\n", s->name);
81819f0f
CL
5410 kfree(al);
5411 }
5412
2bce6485 5413 up_write(&slub_lock);
81819f0f
CL
5414 resiliency_test();
5415 return 0;
5416}
5417
5418__initcall(slab_sysfs_init);
ab4d5ed5 5419#endif /* CONFIG_SYSFS */
57ed3eda
PE
5420
5421/*
5422 * The /proc/slabinfo ABI
5423 */
158a9624 5424#ifdef CONFIG_SLABINFO
57ed3eda
PE
5425static void print_slabinfo_header(struct seq_file *m)
5426{
5427 seq_puts(m, "slabinfo - version: 2.1\n");
5428 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5429 "<objperslab> <pagesperslab>");
5430 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5431 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5432 seq_putc(m, '\n');
5433}
5434
5435static void *s_start(struct seq_file *m, loff_t *pos)
5436{
5437 loff_t n = *pos;
5438
5439 down_read(&slub_lock);
5440 if (!n)
5441 print_slabinfo_header(m);
5442
5443 return seq_list_start(&slab_caches, *pos);
5444}
5445
5446static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5447{
5448 return seq_list_next(p, &slab_caches, pos);
5449}
5450
5451static void s_stop(struct seq_file *m, void *p)
5452{
5453 up_read(&slub_lock);
5454}
5455
5456static int s_show(struct seq_file *m, void *p)
5457{
5458 unsigned long nr_partials = 0;
5459 unsigned long nr_slabs = 0;
5460 unsigned long nr_inuse = 0;
205ab99d
CL
5461 unsigned long nr_objs = 0;
5462 unsigned long nr_free = 0;
57ed3eda
PE
5463 struct kmem_cache *s;
5464 int node;
5465
5466 s = list_entry(p, struct kmem_cache, list);
5467
5468 for_each_online_node(node) {
5469 struct kmem_cache_node *n = get_node(s, node);
5470
5471 if (!n)
5472 continue;
5473
5474 nr_partials += n->nr_partial;
5475 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5476 nr_objs += atomic_long_read(&n->total_objects);
5477 nr_free += count_partial(n, count_free);
57ed3eda
PE
5478 }
5479
205ab99d 5480 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5481
5482 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5483 nr_objs, s->size, oo_objects(s->oo),
5484 (1 << oo_order(s->oo)));
57ed3eda
PE
5485 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5486 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5487 0UL);
5488 seq_putc(m, '\n');
5489 return 0;
5490}
5491
7b3c3a50 5492static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5493 .start = s_start,
5494 .next = s_next,
5495 .stop = s_stop,
5496 .show = s_show,
5497};
5498
7b3c3a50
AD
5499static int slabinfo_open(struct inode *inode, struct file *file)
5500{
5501 return seq_open(file, &slabinfo_op);
5502}
5503
5504static const struct file_operations proc_slabinfo_operations = {
5505 .open = slabinfo_open,
5506 .read = seq_read,
5507 .llseek = seq_lseek,
5508 .release = seq_release,
5509};
5510
5511static int __init slab_proc_init(void)
5512{
cf5d1131 5513 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5514 return 0;
5515}
5516module_init(slab_proc_init);
158a9624 5517#endif /* CONFIG_SLABINFO */