]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/slub.c
mm: vmalloc: avoid racy handling of debugobjects in vunmap
[people/arne_f/kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
3ac38faa 22#include <linux/notifier.h>
81819f0f 23#include <linux/seq_file.h>
a79316c6 24#include <linux/kasan.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
2482ddec 37#include <linux/random.h>
81819f0f 38
4a92379b
RK
39#include <trace/events/kmem.h>
40
072bb0aa
MG
41#include "internal.h"
42
81819f0f
CL
43/*
44 * Lock order:
18004c5d 45 * 1. slab_mutex (Global Mutex)
881db7fb
CL
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 48 *
18004c5d 49 * slab_mutex
881db7fb 50 *
18004c5d 51 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
4b6f0750
CL
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
dfb4f096 110 * freelist that allows lockless access to
894b8788
CL
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
81819f0f
CL
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
894b8788 116 * the fast path and disables lockless freelists.
81819f0f
CL
117 */
118
af537b0a
CL
119static inline int kmem_cache_debug(struct kmem_cache *s)
120{
5577bd8a 121#ifdef CONFIG_SLUB_DEBUG
af537b0a 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 123#else
af537b0a 124 return 0;
5577bd8a 125#endif
af537b0a 126}
5577bd8a 127
117d54df 128void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
129{
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134}
135
345c905d
JK
136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137{
138#ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140#else
141 return false;
142#endif
143}
144
81819f0f
CL
145/*
146 * Issues still to be resolved:
147 *
81819f0f
CL
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
81819f0f
CL
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
b789ef51
CL
156/* Enable to log cmpxchg failures */
157#undef SLUB_DEBUG_CMPXCHG
158
2086d26a
CL
159/*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
76be8950 163#define MIN_PARTIAL 5
e95eed57 164
2086d26a
CL
165/*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 168 * sort the partial list by the number of objects in use.
2086d26a
CL
169 */
170#define MAX_PARTIAL 10
171
becfda68 172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 173 SLAB_POISON | SLAB_STORE_USER)
672bba3a 174
149daaf3
LA
175/*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
fa5ec8a1 183/*
3de47213
DR
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
fa5ec8a1 187 */
3de47213 188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 189
210b5c06
CG
190#define OO_SHIFT 16
191#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 192#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 193
81819f0f 194/* Internal SLUB flags */
f90ec390 195#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 196#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 197
02cbc874
CL
198/*
199 * Tracking user of a slab.
200 */
d6543e39 201#define TRACK_ADDRS_COUNT 16
02cbc874 202struct track {
ce71e27c 203 unsigned long addr; /* Called from address */
d6543e39
BG
204#ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206#endif
02cbc874
CL
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
210};
211
212enum track_item { TRACK_ALLOC, TRACK_FREE };
213
ab4d5ed5 214#ifdef CONFIG_SYSFS
81819f0f
CL
215static int sysfs_slab_add(struct kmem_cache *);
216static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 217static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 218static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 219#else
0c710013
CL
220static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
107dab5c 223static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 224static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
225#endif
226
4fdccdfb 227static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
228{
229#ifdef CONFIG_SLUB_STATS
88da03a6
CL
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
235#endif
236}
237
81819f0f
CL
238/********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
2482ddec
KC
242/*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249{
250#ifdef CONFIG_SLAB_FREELIST_HARDENED
251 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
252#else
253 return ptr;
254#endif
255}
256
257/* Returns the freelist pointer recorded at location ptr_addr. */
258static inline void *freelist_dereference(const struct kmem_cache *s,
259 void *ptr_addr)
260{
261 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
262 (unsigned long)ptr_addr);
263}
264
7656c72b
CL
265static inline void *get_freepointer(struct kmem_cache *s, void *object)
266{
2482ddec 267 return freelist_dereference(s, object + s->offset);
7656c72b
CL
268}
269
0ad9500e
ED
270static void prefetch_freepointer(const struct kmem_cache *s, void *object)
271{
2482ddec
KC
272 if (object)
273 prefetch(freelist_dereference(s, object + s->offset));
0ad9500e
ED
274}
275
1393d9a1
CL
276static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
277{
2482ddec 278 unsigned long freepointer_addr;
1393d9a1
CL
279 void *p;
280
922d566c
JK
281 if (!debug_pagealloc_enabled())
282 return get_freepointer(s, object);
283
2482ddec
KC
284 freepointer_addr = (unsigned long)object + s->offset;
285 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
286 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
287}
288
7656c72b
CL
289static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
290{
2482ddec
KC
291 unsigned long freeptr_addr = (unsigned long)object + s->offset;
292
ce6fa91b
AP
293#ifdef CONFIG_SLAB_FREELIST_HARDENED
294 BUG_ON(object == fp); /* naive detection of double free or corruption */
295#endif
296
2482ddec 297 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
298}
299
300/* Loop over all objects in a slab */
224a88be 301#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
302 for (__p = fixup_red_left(__s, __addr); \
303 __p < (__addr) + (__objects) * (__s)->size; \
304 __p += (__s)->size)
7656c72b 305
54266640 306#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
307 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
308 __idx <= __objects; \
309 __p += (__s)->size, __idx++)
54266640 310
7656c72b
CL
311/* Determine object index from a given position */
312static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
313{
314 return (p - addr) / s->size;
315}
316
ab9a0f19
LJ
317static inline int order_objects(int order, unsigned long size, int reserved)
318{
319 return ((PAGE_SIZE << order) - reserved) / size;
320}
321
834f3d11 322static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 323 unsigned long size, int reserved)
834f3d11
CL
324{
325 struct kmem_cache_order_objects x = {
ab9a0f19 326 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
327 };
328
329 return x;
330}
331
332static inline int oo_order(struct kmem_cache_order_objects x)
333{
210b5c06 334 return x.x >> OO_SHIFT;
834f3d11
CL
335}
336
337static inline int oo_objects(struct kmem_cache_order_objects x)
338{
210b5c06 339 return x.x & OO_MASK;
834f3d11
CL
340}
341
881db7fb
CL
342/*
343 * Per slab locking using the pagelock
344 */
345static __always_inline void slab_lock(struct page *page)
346{
48c935ad 347 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
348 bit_spin_lock(PG_locked, &page->flags);
349}
350
351static __always_inline void slab_unlock(struct page *page)
352{
48c935ad 353 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
354 __bit_spin_unlock(PG_locked, &page->flags);
355}
356
a0320865
DH
357static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
358{
359 struct page tmp;
360 tmp.counters = counters_new;
361 /*
362 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
363 * as page->_refcount. If we assign to ->counters directly
364 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
365 * be careful and only assign to the fields we need.
366 */
367 page->frozen = tmp.frozen;
368 page->inuse = tmp.inuse;
369 page->objects = tmp.objects;
370}
371
1d07171c
CL
372/* Interrupts must be disabled (for the fallback code to work right) */
373static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
374 void *freelist_old, unsigned long counters_old,
375 void *freelist_new, unsigned long counters_new,
376 const char *n)
377{
378 VM_BUG_ON(!irqs_disabled());
2565409f
HC
379#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
380 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 381 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 382 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
383 freelist_old, counters_old,
384 freelist_new, counters_new))
6f6528a1 385 return true;
1d07171c
CL
386 } else
387#endif
388 {
389 slab_lock(page);
d0e0ac97
CG
390 if (page->freelist == freelist_old &&
391 page->counters == counters_old) {
1d07171c 392 page->freelist = freelist_new;
a0320865 393 set_page_slub_counters(page, counters_new);
1d07171c 394 slab_unlock(page);
6f6528a1 395 return true;
1d07171c
CL
396 }
397 slab_unlock(page);
398 }
399
400 cpu_relax();
401 stat(s, CMPXCHG_DOUBLE_FAIL);
402
403#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 404 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
405#endif
406
6f6528a1 407 return false;
1d07171c
CL
408}
409
b789ef51
CL
410static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
411 void *freelist_old, unsigned long counters_old,
412 void *freelist_new, unsigned long counters_new,
413 const char *n)
414{
2565409f
HC
415#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
416 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 417 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 418 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
419 freelist_old, counters_old,
420 freelist_new, counters_new))
6f6528a1 421 return true;
b789ef51
CL
422 } else
423#endif
424 {
1d07171c
CL
425 unsigned long flags;
426
427 local_irq_save(flags);
881db7fb 428 slab_lock(page);
d0e0ac97
CG
429 if (page->freelist == freelist_old &&
430 page->counters == counters_old) {
b789ef51 431 page->freelist = freelist_new;
a0320865 432 set_page_slub_counters(page, counters_new);
881db7fb 433 slab_unlock(page);
1d07171c 434 local_irq_restore(flags);
6f6528a1 435 return true;
b789ef51 436 }
881db7fb 437 slab_unlock(page);
1d07171c 438 local_irq_restore(flags);
b789ef51
CL
439 }
440
441 cpu_relax();
442 stat(s, CMPXCHG_DOUBLE_FAIL);
443
444#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 445 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
446#endif
447
6f6528a1 448 return false;
b789ef51
CL
449}
450
41ecc55b 451#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
452/*
453 * Determine a map of object in use on a page.
454 *
881db7fb 455 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
456 * not vanish from under us.
457 */
458static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
459{
460 void *p;
461 void *addr = page_address(page);
462
463 for (p = page->freelist; p; p = get_freepointer(s, p))
464 set_bit(slab_index(p, s, addr), map);
465}
466
d86bd1be
JK
467static inline int size_from_object(struct kmem_cache *s)
468{
469 if (s->flags & SLAB_RED_ZONE)
470 return s->size - s->red_left_pad;
471
472 return s->size;
473}
474
475static inline void *restore_red_left(struct kmem_cache *s, void *p)
476{
477 if (s->flags & SLAB_RED_ZONE)
478 p -= s->red_left_pad;
479
480 return p;
481}
482
41ecc55b
CL
483/*
484 * Debug settings:
485 */
89d3c87e 486#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff
CL
487static int slub_debug = DEBUG_DEFAULT_FLAGS;
488#else
41ecc55b 489static int slub_debug;
f0630fff 490#endif
41ecc55b
CL
491
492static char *slub_debug_slabs;
fa5ec8a1 493static int disable_higher_order_debug;
41ecc55b 494
a79316c6
AR
495/*
496 * slub is about to manipulate internal object metadata. This memory lies
497 * outside the range of the allocated object, so accessing it would normally
498 * be reported by kasan as a bounds error. metadata_access_enable() is used
499 * to tell kasan that these accesses are OK.
500 */
501static inline void metadata_access_enable(void)
502{
503 kasan_disable_current();
504}
505
506static inline void metadata_access_disable(void)
507{
508 kasan_enable_current();
509}
510
81819f0f
CL
511/*
512 * Object debugging
513 */
d86bd1be
JK
514
515/* Verify that a pointer has an address that is valid within a slab page */
516static inline int check_valid_pointer(struct kmem_cache *s,
517 struct page *page, void *object)
518{
519 void *base;
520
521 if (!object)
522 return 1;
523
524 base = page_address(page);
525 object = restore_red_left(s, object);
526 if (object < base || object >= base + page->objects * s->size ||
527 (object - base) % s->size) {
528 return 0;
529 }
530
531 return 1;
532}
533
aa2efd5e
DT
534static void print_section(char *level, char *text, u8 *addr,
535 unsigned int length)
81819f0f 536{
a79316c6 537 metadata_access_enable();
aa2efd5e 538 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 539 length, 1);
a79316c6 540 metadata_access_disable();
81819f0f
CL
541}
542
81819f0f
CL
543static struct track *get_track(struct kmem_cache *s, void *object,
544 enum track_item alloc)
545{
546 struct track *p;
547
548 if (s->offset)
549 p = object + s->offset + sizeof(void *);
550 else
551 p = object + s->inuse;
552
553 return p + alloc;
554}
555
556static void set_track(struct kmem_cache *s, void *object,
ce71e27c 557 enum track_item alloc, unsigned long addr)
81819f0f 558{
1a00df4a 559 struct track *p = get_track(s, object, alloc);
81819f0f 560
81819f0f 561 if (addr) {
d6543e39
BG
562#ifdef CONFIG_STACKTRACE
563 struct stack_trace trace;
564 int i;
565
566 trace.nr_entries = 0;
567 trace.max_entries = TRACK_ADDRS_COUNT;
568 trace.entries = p->addrs;
569 trace.skip = 3;
a79316c6 570 metadata_access_enable();
d6543e39 571 save_stack_trace(&trace);
a79316c6 572 metadata_access_disable();
d6543e39
BG
573
574 /* See rant in lockdep.c */
575 if (trace.nr_entries != 0 &&
576 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
577 trace.nr_entries--;
578
579 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
580 p->addrs[i] = 0;
581#endif
81819f0f
CL
582 p->addr = addr;
583 p->cpu = smp_processor_id();
88e4ccf2 584 p->pid = current->pid;
81819f0f
CL
585 p->when = jiffies;
586 } else
587 memset(p, 0, sizeof(struct track));
588}
589
81819f0f
CL
590static void init_tracking(struct kmem_cache *s, void *object)
591{
24922684
CL
592 if (!(s->flags & SLAB_STORE_USER))
593 return;
594
ce71e27c
EGM
595 set_track(s, object, TRACK_FREE, 0UL);
596 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
597}
598
599static void print_track(const char *s, struct track *t)
600{
601 if (!t->addr)
602 return;
603
f9f58285
FF
604 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
605 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
606#ifdef CONFIG_STACKTRACE
607 {
608 int i;
609 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
610 if (t->addrs[i])
f9f58285 611 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
612 else
613 break;
614 }
615#endif
24922684
CL
616}
617
618static void print_tracking(struct kmem_cache *s, void *object)
619{
620 if (!(s->flags & SLAB_STORE_USER))
621 return;
622
623 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
624 print_track("Freed", get_track(s, object, TRACK_FREE));
625}
626
627static void print_page_info(struct page *page)
628{
f9f58285 629 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 630 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
631
632}
633
634static void slab_bug(struct kmem_cache *s, char *fmt, ...)
635{
ecc42fbe 636 struct va_format vaf;
24922684 637 va_list args;
24922684
CL
638
639 va_start(args, fmt);
ecc42fbe
FF
640 vaf.fmt = fmt;
641 vaf.va = &args;
f9f58285 642 pr_err("=============================================================================\n");
ecc42fbe 643 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 644 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 645
373d4d09 646 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 647 va_end(args);
81819f0f
CL
648}
649
24922684
CL
650static void slab_fix(struct kmem_cache *s, char *fmt, ...)
651{
ecc42fbe 652 struct va_format vaf;
24922684 653 va_list args;
24922684
CL
654
655 va_start(args, fmt);
ecc42fbe
FF
656 vaf.fmt = fmt;
657 vaf.va = &args;
658 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 659 va_end(args);
24922684
CL
660}
661
662static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
663{
664 unsigned int off; /* Offset of last byte */
a973e9dd 665 u8 *addr = page_address(page);
24922684
CL
666
667 print_tracking(s, p);
668
669 print_page_info(page);
670
f9f58285
FF
671 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
672 p, p - addr, get_freepointer(s, p));
24922684 673
d86bd1be 674 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
675 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
676 s->red_left_pad);
d86bd1be 677 else if (p > addr + 16)
aa2efd5e 678 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 679
aa2efd5e
DT
680 print_section(KERN_ERR, "Object ", p,
681 min_t(unsigned long, s->object_size, PAGE_SIZE));
81819f0f 682 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 683 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 684 s->inuse - s->object_size);
81819f0f 685
81819f0f
CL
686 if (s->offset)
687 off = s->offset + sizeof(void *);
688 else
689 off = s->inuse;
690
24922684 691 if (s->flags & SLAB_STORE_USER)
81819f0f 692 off += 2 * sizeof(struct track);
81819f0f 693
80a9201a
AP
694 off += kasan_metadata_size(s);
695
d86bd1be 696 if (off != size_from_object(s))
81819f0f 697 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
698 print_section(KERN_ERR, "Padding ", p + off,
699 size_from_object(s) - off);
24922684
CL
700
701 dump_stack();
81819f0f
CL
702}
703
75c66def 704void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
705 u8 *object, char *reason)
706{
3dc50637 707 slab_bug(s, "%s", reason);
24922684 708 print_trailer(s, page, object);
81819f0f
CL
709}
710
d0e0ac97
CG
711static void slab_err(struct kmem_cache *s, struct page *page,
712 const char *fmt, ...)
81819f0f
CL
713{
714 va_list args;
715 char buf[100];
716
24922684
CL
717 va_start(args, fmt);
718 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 719 va_end(args);
3dc50637 720 slab_bug(s, "%s", buf);
24922684 721 print_page_info(page);
81819f0f
CL
722 dump_stack();
723}
724
f7cb1933 725static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
726{
727 u8 *p = object;
728
d86bd1be
JK
729 if (s->flags & SLAB_RED_ZONE)
730 memset(p - s->red_left_pad, val, s->red_left_pad);
731
81819f0f 732 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
733 memset(p, POISON_FREE, s->object_size - 1);
734 p[s->object_size - 1] = POISON_END;
81819f0f
CL
735 }
736
737 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 738 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
739}
740
24922684
CL
741static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
742 void *from, void *to)
743{
744 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
745 memset(from, data, to - from);
746}
747
748static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
749 u8 *object, char *what,
06428780 750 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
751{
752 u8 *fault;
753 u8 *end;
754
a79316c6 755 metadata_access_enable();
79824820 756 fault = memchr_inv(start, value, bytes);
a79316c6 757 metadata_access_disable();
24922684
CL
758 if (!fault)
759 return 1;
760
761 end = start + bytes;
762 while (end > fault && end[-1] == value)
763 end--;
764
765 slab_bug(s, "%s overwritten", what);
f9f58285 766 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
767 fault, end - 1, fault[0], value);
768 print_trailer(s, page, object);
769
770 restore_bytes(s, what, value, fault, end);
771 return 0;
81819f0f
CL
772}
773
81819f0f
CL
774/*
775 * Object layout:
776 *
777 * object address
778 * Bytes of the object to be managed.
779 * If the freepointer may overlay the object then the free
780 * pointer is the first word of the object.
672bba3a 781 *
81819f0f
CL
782 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
783 * 0xa5 (POISON_END)
784 *
3b0efdfa 785 * object + s->object_size
81819f0f 786 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 787 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 788 * object_size == inuse.
672bba3a 789 *
81819f0f
CL
790 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
791 * 0xcc (RED_ACTIVE) for objects in use.
792 *
793 * object + s->inuse
672bba3a
CL
794 * Meta data starts here.
795 *
81819f0f
CL
796 * A. Free pointer (if we cannot overwrite object on free)
797 * B. Tracking data for SLAB_STORE_USER
672bba3a 798 * C. Padding to reach required alignment boundary or at mininum
6446faa2 799 * one word if debugging is on to be able to detect writes
672bba3a
CL
800 * before the word boundary.
801 *
802 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
803 *
804 * object + s->size
672bba3a 805 * Nothing is used beyond s->size.
81819f0f 806 *
3b0efdfa 807 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 808 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
809 * may be used with merged slabcaches.
810 */
811
81819f0f
CL
812static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
813{
814 unsigned long off = s->inuse; /* The end of info */
815
816 if (s->offset)
817 /* Freepointer is placed after the object. */
818 off += sizeof(void *);
819
820 if (s->flags & SLAB_STORE_USER)
821 /* We also have user information there */
822 off += 2 * sizeof(struct track);
823
80a9201a
AP
824 off += kasan_metadata_size(s);
825
d86bd1be 826 if (size_from_object(s) == off)
81819f0f
CL
827 return 1;
828
24922684 829 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 830 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
831}
832
39b26464 833/* Check the pad bytes at the end of a slab page */
81819f0f
CL
834static int slab_pad_check(struct kmem_cache *s, struct page *page)
835{
24922684
CL
836 u8 *start;
837 u8 *fault;
838 u8 *end;
839 int length;
840 int remainder;
81819f0f
CL
841
842 if (!(s->flags & SLAB_POISON))
843 return 1;
844
a973e9dd 845 start = page_address(page);
ab9a0f19 846 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
847 end = start + length;
848 remainder = length % s->size;
81819f0f
CL
849 if (!remainder)
850 return 1;
851
a79316c6 852 metadata_access_enable();
79824820 853 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 854 metadata_access_disable();
24922684
CL
855 if (!fault)
856 return 1;
857 while (end > fault && end[-1] == POISON_INUSE)
858 end--;
859
860 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
aa2efd5e 861 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
24922684 862
8a3d271d 863 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 864 return 0;
81819f0f
CL
865}
866
867static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 868 void *object, u8 val)
81819f0f
CL
869{
870 u8 *p = object;
3b0efdfa 871 u8 *endobject = object + s->object_size;
81819f0f
CL
872
873 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
874 if (!check_bytes_and_report(s, page, object, "Redzone",
875 object - s->red_left_pad, val, s->red_left_pad))
876 return 0;
877
24922684 878 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 879 endobject, val, s->inuse - s->object_size))
81819f0f 880 return 0;
81819f0f 881 } else {
3b0efdfa 882 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 883 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
884 endobject, POISON_INUSE,
885 s->inuse - s->object_size);
3adbefee 886 }
81819f0f
CL
887 }
888
889 if (s->flags & SLAB_POISON) {
f7cb1933 890 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 891 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 892 POISON_FREE, s->object_size - 1) ||
24922684 893 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 894 p + s->object_size - 1, POISON_END, 1)))
81819f0f 895 return 0;
81819f0f
CL
896 /*
897 * check_pad_bytes cleans up on its own.
898 */
899 check_pad_bytes(s, page, p);
900 }
901
f7cb1933 902 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
903 /*
904 * Object and freepointer overlap. Cannot check
905 * freepointer while object is allocated.
906 */
907 return 1;
908
909 /* Check free pointer validity */
910 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
911 object_err(s, page, p, "Freepointer corrupt");
912 /*
9f6c708e 913 * No choice but to zap it and thus lose the remainder
81819f0f 914 * of the free objects in this slab. May cause
672bba3a 915 * another error because the object count is now wrong.
81819f0f 916 */
a973e9dd 917 set_freepointer(s, p, NULL);
81819f0f
CL
918 return 0;
919 }
920 return 1;
921}
922
923static int check_slab(struct kmem_cache *s, struct page *page)
924{
39b26464
CL
925 int maxobj;
926
81819f0f
CL
927 VM_BUG_ON(!irqs_disabled());
928
929 if (!PageSlab(page)) {
24922684 930 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
931 return 0;
932 }
39b26464 933
ab9a0f19 934 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
935 if (page->objects > maxobj) {
936 slab_err(s, page, "objects %u > max %u",
f6edde9c 937 page->objects, maxobj);
39b26464
CL
938 return 0;
939 }
940 if (page->inuse > page->objects) {
24922684 941 slab_err(s, page, "inuse %u > max %u",
f6edde9c 942 page->inuse, page->objects);
81819f0f
CL
943 return 0;
944 }
945 /* Slab_pad_check fixes things up after itself */
946 slab_pad_check(s, page);
947 return 1;
948}
949
950/*
672bba3a
CL
951 * Determine if a certain object on a page is on the freelist. Must hold the
952 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
953 */
954static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
955{
956 int nr = 0;
881db7fb 957 void *fp;
81819f0f 958 void *object = NULL;
f6edde9c 959 int max_objects;
81819f0f 960
881db7fb 961 fp = page->freelist;
39b26464 962 while (fp && nr <= page->objects) {
81819f0f
CL
963 if (fp == search)
964 return 1;
965 if (!check_valid_pointer(s, page, fp)) {
966 if (object) {
967 object_err(s, page, object,
968 "Freechain corrupt");
a973e9dd 969 set_freepointer(s, object, NULL);
81819f0f 970 } else {
24922684 971 slab_err(s, page, "Freepointer corrupt");
a973e9dd 972 page->freelist = NULL;
39b26464 973 page->inuse = page->objects;
24922684 974 slab_fix(s, "Freelist cleared");
81819f0f
CL
975 return 0;
976 }
977 break;
978 }
979 object = fp;
980 fp = get_freepointer(s, object);
981 nr++;
982 }
983
ab9a0f19 984 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
985 if (max_objects > MAX_OBJS_PER_PAGE)
986 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
987
988 if (page->objects != max_objects) {
756a025f
JP
989 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
990 page->objects, max_objects);
224a88be
CL
991 page->objects = max_objects;
992 slab_fix(s, "Number of objects adjusted.");
993 }
39b26464 994 if (page->inuse != page->objects - nr) {
756a025f
JP
995 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
996 page->inuse, page->objects - nr);
39b26464 997 page->inuse = page->objects - nr;
24922684 998 slab_fix(s, "Object count adjusted.");
81819f0f
CL
999 }
1000 return search == NULL;
1001}
1002
0121c619
CL
1003static void trace(struct kmem_cache *s, struct page *page, void *object,
1004 int alloc)
3ec09742
CL
1005{
1006 if (s->flags & SLAB_TRACE) {
f9f58285 1007 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1008 s->name,
1009 alloc ? "alloc" : "free",
1010 object, page->inuse,
1011 page->freelist);
1012
1013 if (!alloc)
aa2efd5e 1014 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1015 s->object_size);
3ec09742
CL
1016
1017 dump_stack();
1018 }
1019}
1020
643b1138 1021/*
672bba3a 1022 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1023 */
5cc6eee8
CL
1024static void add_full(struct kmem_cache *s,
1025 struct kmem_cache_node *n, struct page *page)
643b1138 1026{
5cc6eee8
CL
1027 if (!(s->flags & SLAB_STORE_USER))
1028 return;
1029
255d0884 1030 lockdep_assert_held(&n->list_lock);
643b1138 1031 list_add(&page->lru, &n->full);
643b1138
CL
1032}
1033
c65c1877 1034static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1035{
643b1138
CL
1036 if (!(s->flags & SLAB_STORE_USER))
1037 return;
1038
255d0884 1039 lockdep_assert_held(&n->list_lock);
643b1138 1040 list_del(&page->lru);
643b1138
CL
1041}
1042
0f389ec6
CL
1043/* Tracking of the number of slabs for debugging purposes */
1044static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1045{
1046 struct kmem_cache_node *n = get_node(s, node);
1047
1048 return atomic_long_read(&n->nr_slabs);
1049}
1050
26c02cf0
AB
1051static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1052{
1053 return atomic_long_read(&n->nr_slabs);
1054}
1055
205ab99d 1056static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1057{
1058 struct kmem_cache_node *n = get_node(s, node);
1059
1060 /*
1061 * May be called early in order to allocate a slab for the
1062 * kmem_cache_node structure. Solve the chicken-egg
1063 * dilemma by deferring the increment of the count during
1064 * bootstrap (see early_kmem_cache_node_alloc).
1065 */
338b2642 1066 if (likely(n)) {
0f389ec6 1067 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1068 atomic_long_add(objects, &n->total_objects);
1069 }
0f389ec6 1070}
205ab99d 1071static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1072{
1073 struct kmem_cache_node *n = get_node(s, node);
1074
1075 atomic_long_dec(&n->nr_slabs);
205ab99d 1076 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1077}
1078
1079/* Object debug checks for alloc/free paths */
3ec09742
CL
1080static void setup_object_debug(struct kmem_cache *s, struct page *page,
1081 void *object)
1082{
1083 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1084 return;
1085
f7cb1933 1086 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1087 init_tracking(s, object);
1088}
1089
becfda68 1090static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1091 struct page *page,
ce71e27c 1092 void *object, unsigned long addr)
81819f0f
CL
1093{
1094 if (!check_slab(s, page))
becfda68 1095 return 0;
81819f0f 1096
81819f0f
CL
1097 if (!check_valid_pointer(s, page, object)) {
1098 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1099 return 0;
81819f0f
CL
1100 }
1101
f7cb1933 1102 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1103 return 0;
1104
1105 return 1;
1106}
1107
1108static noinline int alloc_debug_processing(struct kmem_cache *s,
1109 struct page *page,
1110 void *object, unsigned long addr)
1111{
1112 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1113 if (!alloc_consistency_checks(s, page, object, addr))
1114 goto bad;
1115 }
81819f0f 1116
3ec09742
CL
1117 /* Success perform special debug activities for allocs */
1118 if (s->flags & SLAB_STORE_USER)
1119 set_track(s, object, TRACK_ALLOC, addr);
1120 trace(s, page, object, 1);
f7cb1933 1121 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1122 return 1;
3ec09742 1123
81819f0f
CL
1124bad:
1125 if (PageSlab(page)) {
1126 /*
1127 * If this is a slab page then lets do the best we can
1128 * to avoid issues in the future. Marking all objects
672bba3a 1129 * as used avoids touching the remaining objects.
81819f0f 1130 */
24922684 1131 slab_fix(s, "Marking all objects used");
39b26464 1132 page->inuse = page->objects;
a973e9dd 1133 page->freelist = NULL;
81819f0f
CL
1134 }
1135 return 0;
1136}
1137
becfda68
LA
1138static inline int free_consistency_checks(struct kmem_cache *s,
1139 struct page *page, void *object, unsigned long addr)
81819f0f 1140{
81819f0f 1141 if (!check_valid_pointer(s, page, object)) {
70d71228 1142 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1143 return 0;
81819f0f
CL
1144 }
1145
1146 if (on_freelist(s, page, object)) {
24922684 1147 object_err(s, page, object, "Object already free");
becfda68 1148 return 0;
81819f0f
CL
1149 }
1150
f7cb1933 1151 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1152 return 0;
81819f0f 1153
1b4f59e3 1154 if (unlikely(s != page->slab_cache)) {
3adbefee 1155 if (!PageSlab(page)) {
756a025f
JP
1156 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1157 object);
1b4f59e3 1158 } else if (!page->slab_cache) {
f9f58285
FF
1159 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1160 object);
70d71228 1161 dump_stack();
06428780 1162 } else
24922684
CL
1163 object_err(s, page, object,
1164 "page slab pointer corrupt.");
becfda68
LA
1165 return 0;
1166 }
1167 return 1;
1168}
1169
1170/* Supports checking bulk free of a constructed freelist */
1171static noinline int free_debug_processing(
1172 struct kmem_cache *s, struct page *page,
1173 void *head, void *tail, int bulk_cnt,
1174 unsigned long addr)
1175{
1176 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1177 void *object = head;
1178 int cnt = 0;
1179 unsigned long uninitialized_var(flags);
1180 int ret = 0;
1181
1182 spin_lock_irqsave(&n->list_lock, flags);
1183 slab_lock(page);
1184
1185 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1186 if (!check_slab(s, page))
1187 goto out;
1188 }
1189
1190next_object:
1191 cnt++;
1192
1193 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1194 if (!free_consistency_checks(s, page, object, addr))
1195 goto out;
81819f0f 1196 }
3ec09742 1197
3ec09742
CL
1198 if (s->flags & SLAB_STORE_USER)
1199 set_track(s, object, TRACK_FREE, addr);
1200 trace(s, page, object, 0);
81084651 1201 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1202 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1203
1204 /* Reached end of constructed freelist yet? */
1205 if (object != tail) {
1206 object = get_freepointer(s, object);
1207 goto next_object;
1208 }
804aa132
LA
1209 ret = 1;
1210
5c2e4bbb 1211out:
81084651
JDB
1212 if (cnt != bulk_cnt)
1213 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1214 bulk_cnt, cnt);
1215
881db7fb 1216 slab_unlock(page);
282acb43 1217 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1218 if (!ret)
1219 slab_fix(s, "Object at 0x%p not freed", object);
1220 return ret;
81819f0f
CL
1221}
1222
41ecc55b
CL
1223static int __init setup_slub_debug(char *str)
1224{
f0630fff
CL
1225 slub_debug = DEBUG_DEFAULT_FLAGS;
1226 if (*str++ != '=' || !*str)
1227 /*
1228 * No options specified. Switch on full debugging.
1229 */
1230 goto out;
1231
1232 if (*str == ',')
1233 /*
1234 * No options but restriction on slabs. This means full
1235 * debugging for slabs matching a pattern.
1236 */
1237 goto check_slabs;
1238
1239 slub_debug = 0;
1240 if (*str == '-')
1241 /*
1242 * Switch off all debugging measures.
1243 */
1244 goto out;
1245
1246 /*
1247 * Determine which debug features should be switched on
1248 */
06428780 1249 for (; *str && *str != ','; str++) {
f0630fff
CL
1250 switch (tolower(*str)) {
1251 case 'f':
becfda68 1252 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1253 break;
1254 case 'z':
1255 slub_debug |= SLAB_RED_ZONE;
1256 break;
1257 case 'p':
1258 slub_debug |= SLAB_POISON;
1259 break;
1260 case 'u':
1261 slub_debug |= SLAB_STORE_USER;
1262 break;
1263 case 't':
1264 slub_debug |= SLAB_TRACE;
1265 break;
4c13dd3b
DM
1266 case 'a':
1267 slub_debug |= SLAB_FAILSLAB;
1268 break;
08303a73
CA
1269 case 'o':
1270 /*
1271 * Avoid enabling debugging on caches if its minimum
1272 * order would increase as a result.
1273 */
1274 disable_higher_order_debug = 1;
1275 break;
f0630fff 1276 default:
f9f58285
FF
1277 pr_err("slub_debug option '%c' unknown. skipped\n",
1278 *str);
f0630fff 1279 }
41ecc55b
CL
1280 }
1281
f0630fff 1282check_slabs:
41ecc55b
CL
1283 if (*str == ',')
1284 slub_debug_slabs = str + 1;
f0630fff 1285out:
41ecc55b
CL
1286 return 1;
1287}
1288
1289__setup("slub_debug", setup_slub_debug);
1290
423c929c 1291unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1292 unsigned long flags, const char *name,
51cc5068 1293 void (*ctor)(void *))
41ecc55b
CL
1294{
1295 /*
e153362a 1296 * Enable debugging if selected on the kernel commandline.
41ecc55b 1297 */
c6f58d9b
CL
1298 if (slub_debug && (!slub_debug_slabs || (name &&
1299 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1300 flags |= slub_debug;
ba0268a8
CL
1301
1302 return flags;
41ecc55b 1303}
b4a64718 1304#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1305static inline void setup_object_debug(struct kmem_cache *s,
1306 struct page *page, void *object) {}
41ecc55b 1307
3ec09742 1308static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1309 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1310
282acb43 1311static inline int free_debug_processing(
81084651
JDB
1312 struct kmem_cache *s, struct page *page,
1313 void *head, void *tail, int bulk_cnt,
282acb43 1314 unsigned long addr) { return 0; }
41ecc55b 1315
41ecc55b
CL
1316static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1317 { return 1; }
1318static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1319 void *object, u8 val) { return 1; }
5cc6eee8
CL
1320static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1321 struct page *page) {}
c65c1877
PZ
1322static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1323 struct page *page) {}
423c929c 1324unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1325 unsigned long flags, const char *name,
51cc5068 1326 void (*ctor)(void *))
ba0268a8
CL
1327{
1328 return flags;
1329}
41ecc55b 1330#define slub_debug 0
0f389ec6 1331
fdaa45e9
IM
1332#define disable_higher_order_debug 0
1333
0f389ec6
CL
1334static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1335 { return 0; }
26c02cf0
AB
1336static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1337 { return 0; }
205ab99d
CL
1338static inline void inc_slabs_node(struct kmem_cache *s, int node,
1339 int objects) {}
1340static inline void dec_slabs_node(struct kmem_cache *s, int node,
1341 int objects) {}
7d550c56 1342
02e72cc6
AR
1343#endif /* CONFIG_SLUB_DEBUG */
1344
1345/*
1346 * Hooks for other subsystems that check memory allocations. In a typical
1347 * production configuration these hooks all should produce no code at all.
1348 */
d56791b3
RB
1349static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1350{
1351 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1352 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1353}
1354
1355static inline void kfree_hook(const void *x)
1356{
1357 kmemleak_free(x);
0316bec2 1358 kasan_kfree_large(x);
d56791b3
RB
1359}
1360
80a9201a 1361static inline void *slab_free_hook(struct kmem_cache *s, void *x)
d56791b3 1362{
80a9201a
AP
1363 void *freeptr;
1364
d56791b3 1365 kmemleak_free_recursive(x, s->flags);
7d550c56 1366
02e72cc6
AR
1367 /*
1368 * Trouble is that we may no longer disable interrupts in the fast path
1369 * So in order to make the debug calls that expect irqs to be
1370 * disabled we need to disable interrupts temporarily.
1371 */
f369f148 1372#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1373 {
1374 unsigned long flags;
1375
1376 local_irq_save(flags);
02e72cc6
AR
1377 debug_check_no_locks_freed(x, s->object_size);
1378 local_irq_restore(flags);
1379 }
1380#endif
1381 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1382 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1383
80a9201a
AP
1384 freeptr = get_freepointer(s, x);
1385 /*
1386 * kasan_slab_free() may put x into memory quarantine, delaying its
1387 * reuse. In this case the object's freelist pointer is changed.
1388 */
0316bec2 1389 kasan_slab_free(s, x);
80a9201a 1390 return freeptr;
02e72cc6 1391}
205ab99d 1392
81084651
JDB
1393static inline void slab_free_freelist_hook(struct kmem_cache *s,
1394 void *head, void *tail)
1395{
1396/*
1397 * Compiler cannot detect this function can be removed if slab_free_hook()
1398 * evaluates to nothing. Thus, catch all relevant config debug options here.
1399 */
f369f148 1400#if defined(CONFIG_LOCKDEP) || \
81084651
JDB
1401 defined(CONFIG_DEBUG_KMEMLEAK) || \
1402 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1403 defined(CONFIG_KASAN)
1404
1405 void *object = head;
1406 void *tail_obj = tail ? : head;
80a9201a 1407 void *freeptr;
81084651
JDB
1408
1409 do {
80a9201a
AP
1410 freeptr = slab_free_hook(s, object);
1411 } while ((object != tail_obj) && (object = freeptr));
81084651
JDB
1412#endif
1413}
1414
588f8ba9
TG
1415static void setup_object(struct kmem_cache *s, struct page *page,
1416 void *object)
1417{
1418 setup_object_debug(s, page, object);
b3cbd9bf 1419 kasan_init_slab_obj(s, object);
588f8ba9
TG
1420 if (unlikely(s->ctor)) {
1421 kasan_unpoison_object_data(s, object);
1422 s->ctor(object);
1423 kasan_poison_object_data(s, object);
1424 }
1425}
1426
81819f0f
CL
1427/*
1428 * Slab allocation and freeing
1429 */
5dfb4175
VD
1430static inline struct page *alloc_slab_page(struct kmem_cache *s,
1431 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1432{
5dfb4175 1433 struct page *page;
65c3376a
CL
1434 int order = oo_order(oo);
1435
2154a336 1436 if (node == NUMA_NO_NODE)
5dfb4175 1437 page = alloc_pages(flags, order);
65c3376a 1438 else
96db800f 1439 page = __alloc_pages_node(node, flags, order);
5dfb4175 1440
f3ccb2c4
VD
1441 if (page && memcg_charge_slab(page, flags, order, s)) {
1442 __free_pages(page, order);
1443 page = NULL;
1444 }
5dfb4175
VD
1445
1446 return page;
65c3376a
CL
1447}
1448
210e7a43
TG
1449#ifdef CONFIG_SLAB_FREELIST_RANDOM
1450/* Pre-initialize the random sequence cache */
1451static int init_cache_random_seq(struct kmem_cache *s)
1452{
1453 int err;
1454 unsigned long i, count = oo_objects(s->oo);
1455
a810007a
SR
1456 /* Bailout if already initialised */
1457 if (s->random_seq)
1458 return 0;
1459
210e7a43
TG
1460 err = cache_random_seq_create(s, count, GFP_KERNEL);
1461 if (err) {
1462 pr_err("SLUB: Unable to initialize free list for %s\n",
1463 s->name);
1464 return err;
1465 }
1466
1467 /* Transform to an offset on the set of pages */
1468 if (s->random_seq) {
1469 for (i = 0; i < count; i++)
1470 s->random_seq[i] *= s->size;
1471 }
1472 return 0;
1473}
1474
1475/* Initialize each random sequence freelist per cache */
1476static void __init init_freelist_randomization(void)
1477{
1478 struct kmem_cache *s;
1479
1480 mutex_lock(&slab_mutex);
1481
1482 list_for_each_entry(s, &slab_caches, list)
1483 init_cache_random_seq(s);
1484
1485 mutex_unlock(&slab_mutex);
1486}
1487
1488/* Get the next entry on the pre-computed freelist randomized */
1489static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1490 unsigned long *pos, void *start,
1491 unsigned long page_limit,
1492 unsigned long freelist_count)
1493{
1494 unsigned int idx;
1495
1496 /*
1497 * If the target page allocation failed, the number of objects on the
1498 * page might be smaller than the usual size defined by the cache.
1499 */
1500 do {
1501 idx = s->random_seq[*pos];
1502 *pos += 1;
1503 if (*pos >= freelist_count)
1504 *pos = 0;
1505 } while (unlikely(idx >= page_limit));
1506
1507 return (char *)start + idx;
1508}
1509
1510/* Shuffle the single linked freelist based on a random pre-computed sequence */
1511static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1512{
1513 void *start;
1514 void *cur;
1515 void *next;
1516 unsigned long idx, pos, page_limit, freelist_count;
1517
1518 if (page->objects < 2 || !s->random_seq)
1519 return false;
1520
1521 freelist_count = oo_objects(s->oo);
1522 pos = get_random_int() % freelist_count;
1523
1524 page_limit = page->objects * s->size;
1525 start = fixup_red_left(s, page_address(page));
1526
1527 /* First entry is used as the base of the freelist */
1528 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1529 freelist_count);
1530 page->freelist = cur;
1531
1532 for (idx = 1; idx < page->objects; idx++) {
1533 setup_object(s, page, cur);
1534 next = next_freelist_entry(s, page, &pos, start, page_limit,
1535 freelist_count);
1536 set_freepointer(s, cur, next);
1537 cur = next;
1538 }
1539 setup_object(s, page, cur);
1540 set_freepointer(s, cur, NULL);
1541
1542 return true;
1543}
1544#else
1545static inline int init_cache_random_seq(struct kmem_cache *s)
1546{
1547 return 0;
1548}
1549static inline void init_freelist_randomization(void) { }
1550static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1551{
1552 return false;
1553}
1554#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1555
81819f0f
CL
1556static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1557{
06428780 1558 struct page *page;
834f3d11 1559 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1560 gfp_t alloc_gfp;
588f8ba9
TG
1561 void *start, *p;
1562 int idx, order;
210e7a43 1563 bool shuffle;
81819f0f 1564
7e0528da
CL
1565 flags &= gfp_allowed_mask;
1566
d0164adc 1567 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1568 local_irq_enable();
1569
b7a49f0d 1570 flags |= s->allocflags;
e12ba74d 1571
ba52270d
PE
1572 /*
1573 * Let the initial higher-order allocation fail under memory pressure
1574 * so we fall-back to the minimum order allocation.
1575 */
1576 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1577 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1578 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1579
5dfb4175 1580 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1581 if (unlikely(!page)) {
1582 oo = s->min;
80c3a998 1583 alloc_gfp = flags;
65c3376a
CL
1584 /*
1585 * Allocation may have failed due to fragmentation.
1586 * Try a lower order alloc if possible
1587 */
5dfb4175 1588 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1589 if (unlikely(!page))
1590 goto out;
1591 stat(s, ORDER_FALLBACK);
65c3376a 1592 }
5a896d9e 1593
834f3d11 1594 page->objects = oo_objects(oo);
81819f0f 1595
1f458cbf 1596 order = compound_order(page);
1b4f59e3 1597 page->slab_cache = s;
c03f94cc 1598 __SetPageSlab(page);
2f064f34 1599 if (page_is_pfmemalloc(page))
072bb0aa 1600 SetPageSlabPfmemalloc(page);
81819f0f
CL
1601
1602 start = page_address(page);
81819f0f
CL
1603
1604 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1605 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1606
0316bec2
AR
1607 kasan_poison_slab(page);
1608
210e7a43
TG
1609 shuffle = shuffle_freelist(s, page);
1610
1611 if (!shuffle) {
1612 for_each_object_idx(p, idx, s, start, page->objects) {
1613 setup_object(s, page, p);
1614 if (likely(idx < page->objects))
1615 set_freepointer(s, p, p + s->size);
1616 else
1617 set_freepointer(s, p, NULL);
1618 }
1619 page->freelist = fixup_red_left(s, start);
81819f0f 1620 }
81819f0f 1621
e6e82ea1 1622 page->inuse = page->objects;
8cb0a506 1623 page->frozen = 1;
588f8ba9 1624
81819f0f 1625out:
d0164adc 1626 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1627 local_irq_disable();
1628 if (!page)
1629 return NULL;
1630
7779f212 1631 mod_lruvec_page_state(page,
588f8ba9
TG
1632 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1633 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1634 1 << oo_order(oo));
1635
1636 inc_slabs_node(s, page_to_nid(page), page->objects);
1637
81819f0f
CL
1638 return page;
1639}
1640
588f8ba9
TG
1641static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1642{
1643 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1644 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1645 flags &= ~GFP_SLAB_BUG_MASK;
1646 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1647 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1648 dump_stack();
588f8ba9
TG
1649 }
1650
1651 return allocate_slab(s,
1652 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1653}
1654
81819f0f
CL
1655static void __free_slab(struct kmem_cache *s, struct page *page)
1656{
834f3d11
CL
1657 int order = compound_order(page);
1658 int pages = 1 << order;
81819f0f 1659
becfda68 1660 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1661 void *p;
1662
1663 slab_pad_check(s, page);
224a88be
CL
1664 for_each_object(p, s, page_address(page),
1665 page->objects)
f7cb1933 1666 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1667 }
1668
7779f212 1669 mod_lruvec_page_state(page,
81819f0f
CL
1670 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1671 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1672 -pages);
81819f0f 1673
072bb0aa 1674 __ClearPageSlabPfmemalloc(page);
49bd5221 1675 __ClearPageSlab(page);
1f458cbf 1676
22b751c3 1677 page_mapcount_reset(page);
1eb5ac64
NP
1678 if (current->reclaim_state)
1679 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1680 memcg_uncharge_slab(page, order, s);
1681 __free_pages(page, order);
81819f0f
CL
1682}
1683
da9a638c
LJ
1684#define need_reserve_slab_rcu \
1685 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1686
81819f0f
CL
1687static void rcu_free_slab(struct rcu_head *h)
1688{
1689 struct page *page;
1690
da9a638c
LJ
1691 if (need_reserve_slab_rcu)
1692 page = virt_to_head_page(h);
1693 else
1694 page = container_of((struct list_head *)h, struct page, lru);
1695
1b4f59e3 1696 __free_slab(page->slab_cache, page);
81819f0f
CL
1697}
1698
1699static void free_slab(struct kmem_cache *s, struct page *page)
1700{
5f0d5a3a 1701 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
da9a638c
LJ
1702 struct rcu_head *head;
1703
1704 if (need_reserve_slab_rcu) {
1705 int order = compound_order(page);
1706 int offset = (PAGE_SIZE << order) - s->reserved;
1707
1708 VM_BUG_ON(s->reserved != sizeof(*head));
1709 head = page_address(page) + offset;
1710 } else {
bc4f610d 1711 head = &page->rcu_head;
da9a638c 1712 }
81819f0f
CL
1713
1714 call_rcu(head, rcu_free_slab);
1715 } else
1716 __free_slab(s, page);
1717}
1718
1719static void discard_slab(struct kmem_cache *s, struct page *page)
1720{
205ab99d 1721 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1722 free_slab(s, page);
1723}
1724
1725/*
5cc6eee8 1726 * Management of partially allocated slabs.
81819f0f 1727 */
1e4dd946
SR
1728static inline void
1729__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1730{
e95eed57 1731 n->nr_partial++;
136333d1 1732 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1733 list_add_tail(&page->lru, &n->partial);
1734 else
1735 list_add(&page->lru, &n->partial);
81819f0f
CL
1736}
1737
1e4dd946
SR
1738static inline void add_partial(struct kmem_cache_node *n,
1739 struct page *page, int tail)
62e346a8 1740{
c65c1877 1741 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1742 __add_partial(n, page, tail);
1743}
c65c1877 1744
1e4dd946
SR
1745static inline void remove_partial(struct kmem_cache_node *n,
1746 struct page *page)
1747{
1748 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1749 list_del(&page->lru);
1750 n->nr_partial--;
1e4dd946
SR
1751}
1752
81819f0f 1753/*
7ced3719
CL
1754 * Remove slab from the partial list, freeze it and
1755 * return the pointer to the freelist.
81819f0f 1756 *
497b66f2 1757 * Returns a list of objects or NULL if it fails.
81819f0f 1758 */
497b66f2 1759static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1760 struct kmem_cache_node *n, struct page *page,
633b0764 1761 int mode, int *objects)
81819f0f 1762{
2cfb7455
CL
1763 void *freelist;
1764 unsigned long counters;
1765 struct page new;
1766
c65c1877
PZ
1767 lockdep_assert_held(&n->list_lock);
1768
2cfb7455
CL
1769 /*
1770 * Zap the freelist and set the frozen bit.
1771 * The old freelist is the list of objects for the
1772 * per cpu allocation list.
1773 */
7ced3719
CL
1774 freelist = page->freelist;
1775 counters = page->counters;
1776 new.counters = counters;
633b0764 1777 *objects = new.objects - new.inuse;
23910c50 1778 if (mode) {
7ced3719 1779 new.inuse = page->objects;
23910c50
PE
1780 new.freelist = NULL;
1781 } else {
1782 new.freelist = freelist;
1783 }
2cfb7455 1784
a0132ac0 1785 VM_BUG_ON(new.frozen);
7ced3719 1786 new.frozen = 1;
2cfb7455 1787
7ced3719 1788 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1789 freelist, counters,
02d7633f 1790 new.freelist, new.counters,
7ced3719 1791 "acquire_slab"))
7ced3719 1792 return NULL;
2cfb7455
CL
1793
1794 remove_partial(n, page);
7ced3719 1795 WARN_ON(!freelist);
49e22585 1796 return freelist;
81819f0f
CL
1797}
1798
633b0764 1799static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1800static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1801
81819f0f 1802/*
672bba3a 1803 * Try to allocate a partial slab from a specific node.
81819f0f 1804 */
8ba00bb6
JK
1805static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1806 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1807{
49e22585
CL
1808 struct page *page, *page2;
1809 void *object = NULL;
633b0764
JK
1810 int available = 0;
1811 int objects;
81819f0f
CL
1812
1813 /*
1814 * Racy check. If we mistakenly see no partial slabs then we
1815 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1816 * partial slab and there is none available then get_partials()
1817 * will return NULL.
81819f0f
CL
1818 */
1819 if (!n || !n->nr_partial)
1820 return NULL;
1821
1822 spin_lock(&n->list_lock);
49e22585 1823 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1824 void *t;
49e22585 1825
8ba00bb6
JK
1826 if (!pfmemalloc_match(page, flags))
1827 continue;
1828
633b0764 1829 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1830 if (!t)
1831 break;
1832
633b0764 1833 available += objects;
12d79634 1834 if (!object) {
49e22585 1835 c->page = page;
49e22585 1836 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1837 object = t;
49e22585 1838 } else {
633b0764 1839 put_cpu_partial(s, page, 0);
8028dcea 1840 stat(s, CPU_PARTIAL_NODE);
49e22585 1841 }
345c905d 1842 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1843 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1844 break;
1845
497b66f2 1846 }
81819f0f 1847 spin_unlock(&n->list_lock);
497b66f2 1848 return object;
81819f0f
CL
1849}
1850
1851/*
672bba3a 1852 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1853 */
de3ec035 1854static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1855 struct kmem_cache_cpu *c)
81819f0f
CL
1856{
1857#ifdef CONFIG_NUMA
1858 struct zonelist *zonelist;
dd1a239f 1859 struct zoneref *z;
54a6eb5c
MG
1860 struct zone *zone;
1861 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1862 void *object;
cc9a6c87 1863 unsigned int cpuset_mems_cookie;
81819f0f
CL
1864
1865 /*
672bba3a
CL
1866 * The defrag ratio allows a configuration of the tradeoffs between
1867 * inter node defragmentation and node local allocations. A lower
1868 * defrag_ratio increases the tendency to do local allocations
1869 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1870 *
672bba3a
CL
1871 * If the defrag_ratio is set to 0 then kmalloc() always
1872 * returns node local objects. If the ratio is higher then kmalloc()
1873 * may return off node objects because partial slabs are obtained
1874 * from other nodes and filled up.
81819f0f 1875 *
43efd3ea
LP
1876 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1877 * (which makes defrag_ratio = 1000) then every (well almost)
1878 * allocation will first attempt to defrag slab caches on other nodes.
1879 * This means scanning over all nodes to look for partial slabs which
1880 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1881 * with available objects.
81819f0f 1882 */
9824601e
CL
1883 if (!s->remote_node_defrag_ratio ||
1884 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1885 return NULL;
1886
cc9a6c87 1887 do {
d26914d1 1888 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1889 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1890 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1891 struct kmem_cache_node *n;
1892
1893 n = get_node(s, zone_to_nid(zone));
1894
dee2f8aa 1895 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1896 n->nr_partial > s->min_partial) {
8ba00bb6 1897 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1898 if (object) {
1899 /*
d26914d1
MG
1900 * Don't check read_mems_allowed_retry()
1901 * here - if mems_allowed was updated in
1902 * parallel, that was a harmless race
1903 * between allocation and the cpuset
1904 * update
cc9a6c87 1905 */
cc9a6c87
MG
1906 return object;
1907 }
c0ff7453 1908 }
81819f0f 1909 }
d26914d1 1910 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1911#endif
1912 return NULL;
1913}
1914
1915/*
1916 * Get a partial page, lock it and return it.
1917 */
497b66f2 1918static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1919 struct kmem_cache_cpu *c)
81819f0f 1920{
497b66f2 1921 void *object;
a561ce00
JK
1922 int searchnode = node;
1923
1924 if (node == NUMA_NO_NODE)
1925 searchnode = numa_mem_id();
1926 else if (!node_present_pages(node))
1927 searchnode = node_to_mem_node(node);
81819f0f 1928
8ba00bb6 1929 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1930 if (object || node != NUMA_NO_NODE)
1931 return object;
81819f0f 1932
acd19fd1 1933 return get_any_partial(s, flags, c);
81819f0f
CL
1934}
1935
8a5ec0ba
CL
1936#ifdef CONFIG_PREEMPT
1937/*
1938 * Calculate the next globally unique transaction for disambiguiation
1939 * during cmpxchg. The transactions start with the cpu number and are then
1940 * incremented by CONFIG_NR_CPUS.
1941 */
1942#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1943#else
1944/*
1945 * No preemption supported therefore also no need to check for
1946 * different cpus.
1947 */
1948#define TID_STEP 1
1949#endif
1950
1951static inline unsigned long next_tid(unsigned long tid)
1952{
1953 return tid + TID_STEP;
1954}
1955
1956static inline unsigned int tid_to_cpu(unsigned long tid)
1957{
1958 return tid % TID_STEP;
1959}
1960
1961static inline unsigned long tid_to_event(unsigned long tid)
1962{
1963 return tid / TID_STEP;
1964}
1965
1966static inline unsigned int init_tid(int cpu)
1967{
1968 return cpu;
1969}
1970
1971static inline void note_cmpxchg_failure(const char *n,
1972 const struct kmem_cache *s, unsigned long tid)
1973{
1974#ifdef SLUB_DEBUG_CMPXCHG
1975 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1976
f9f58285 1977 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1978
1979#ifdef CONFIG_PREEMPT
1980 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1981 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1982 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1983 else
1984#endif
1985 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1986 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1987 tid_to_event(tid), tid_to_event(actual_tid));
1988 else
f9f58285 1989 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1990 actual_tid, tid, next_tid(tid));
1991#endif
4fdccdfb 1992 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1993}
1994
788e1aad 1995static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1996{
8a5ec0ba
CL
1997 int cpu;
1998
1999 for_each_possible_cpu(cpu)
2000 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2001}
2cfb7455 2002
81819f0f
CL
2003/*
2004 * Remove the cpu slab
2005 */
d0e0ac97 2006static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2007 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2008{
2cfb7455 2009 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2010 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2011 int lock = 0;
2012 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2013 void *nextfree;
136333d1 2014 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2015 struct page new;
2016 struct page old;
2017
2018 if (page->freelist) {
84e554e6 2019 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2020 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2021 }
2022
894b8788 2023 /*
2cfb7455
CL
2024 * Stage one: Free all available per cpu objects back
2025 * to the page freelist while it is still frozen. Leave the
2026 * last one.
2027 *
2028 * There is no need to take the list->lock because the page
2029 * is still frozen.
2030 */
2031 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2032 void *prior;
2033 unsigned long counters;
2034
2035 do {
2036 prior = page->freelist;
2037 counters = page->counters;
2038 set_freepointer(s, freelist, prior);
2039 new.counters = counters;
2040 new.inuse--;
a0132ac0 2041 VM_BUG_ON(!new.frozen);
2cfb7455 2042
1d07171c 2043 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2044 prior, counters,
2045 freelist, new.counters,
2046 "drain percpu freelist"));
2047
2048 freelist = nextfree;
2049 }
2050
894b8788 2051 /*
2cfb7455
CL
2052 * Stage two: Ensure that the page is unfrozen while the
2053 * list presence reflects the actual number of objects
2054 * during unfreeze.
2055 *
2056 * We setup the list membership and then perform a cmpxchg
2057 * with the count. If there is a mismatch then the page
2058 * is not unfrozen but the page is on the wrong list.
2059 *
2060 * Then we restart the process which may have to remove
2061 * the page from the list that we just put it on again
2062 * because the number of objects in the slab may have
2063 * changed.
894b8788 2064 */
2cfb7455 2065redo:
894b8788 2066
2cfb7455
CL
2067 old.freelist = page->freelist;
2068 old.counters = page->counters;
a0132ac0 2069 VM_BUG_ON(!old.frozen);
7c2e132c 2070
2cfb7455
CL
2071 /* Determine target state of the slab */
2072 new.counters = old.counters;
2073 if (freelist) {
2074 new.inuse--;
2075 set_freepointer(s, freelist, old.freelist);
2076 new.freelist = freelist;
2077 } else
2078 new.freelist = old.freelist;
2079
2080 new.frozen = 0;
2081
8a5b20ae 2082 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2083 m = M_FREE;
2084 else if (new.freelist) {
2085 m = M_PARTIAL;
2086 if (!lock) {
2087 lock = 1;
2088 /*
2089 * Taking the spinlock removes the possiblity
2090 * that acquire_slab() will see a slab page that
2091 * is frozen
2092 */
2093 spin_lock(&n->list_lock);
2094 }
2095 } else {
2096 m = M_FULL;
2097 if (kmem_cache_debug(s) && !lock) {
2098 lock = 1;
2099 /*
2100 * This also ensures that the scanning of full
2101 * slabs from diagnostic functions will not see
2102 * any frozen slabs.
2103 */
2104 spin_lock(&n->list_lock);
2105 }
2106 }
2107
2108 if (l != m) {
2109
2110 if (l == M_PARTIAL)
2111
2112 remove_partial(n, page);
2113
2114 else if (l == M_FULL)
894b8788 2115
c65c1877 2116 remove_full(s, n, page);
2cfb7455
CL
2117
2118 if (m == M_PARTIAL) {
2119
2120 add_partial(n, page, tail);
136333d1 2121 stat(s, tail);
2cfb7455
CL
2122
2123 } else if (m == M_FULL) {
894b8788 2124
2cfb7455
CL
2125 stat(s, DEACTIVATE_FULL);
2126 add_full(s, n, page);
2127
2128 }
2129 }
2130
2131 l = m;
1d07171c 2132 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2133 old.freelist, old.counters,
2134 new.freelist, new.counters,
2135 "unfreezing slab"))
2136 goto redo;
2137
2cfb7455
CL
2138 if (lock)
2139 spin_unlock(&n->list_lock);
2140
2141 if (m == M_FREE) {
2142 stat(s, DEACTIVATE_EMPTY);
2143 discard_slab(s, page);
2144 stat(s, FREE_SLAB);
894b8788 2145 }
d4ff6d35
WY
2146
2147 c->page = NULL;
2148 c->freelist = NULL;
81819f0f
CL
2149}
2150
d24ac77f
JK
2151/*
2152 * Unfreeze all the cpu partial slabs.
2153 *
59a09917
CL
2154 * This function must be called with interrupts disabled
2155 * for the cpu using c (or some other guarantee must be there
2156 * to guarantee no concurrent accesses).
d24ac77f 2157 */
59a09917
CL
2158static void unfreeze_partials(struct kmem_cache *s,
2159 struct kmem_cache_cpu *c)
49e22585 2160{
345c905d 2161#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2162 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2163 struct page *page, *discard_page = NULL;
49e22585
CL
2164
2165 while ((page = c->partial)) {
49e22585
CL
2166 struct page new;
2167 struct page old;
2168
2169 c->partial = page->next;
43d77867
JK
2170
2171 n2 = get_node(s, page_to_nid(page));
2172 if (n != n2) {
2173 if (n)
2174 spin_unlock(&n->list_lock);
2175
2176 n = n2;
2177 spin_lock(&n->list_lock);
2178 }
49e22585
CL
2179
2180 do {
2181
2182 old.freelist = page->freelist;
2183 old.counters = page->counters;
a0132ac0 2184 VM_BUG_ON(!old.frozen);
49e22585
CL
2185
2186 new.counters = old.counters;
2187 new.freelist = old.freelist;
2188
2189 new.frozen = 0;
2190
d24ac77f 2191 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2192 old.freelist, old.counters,
2193 new.freelist, new.counters,
2194 "unfreezing slab"));
2195
8a5b20ae 2196 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2197 page->next = discard_page;
2198 discard_page = page;
43d77867
JK
2199 } else {
2200 add_partial(n, page, DEACTIVATE_TO_TAIL);
2201 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2202 }
2203 }
2204
2205 if (n)
2206 spin_unlock(&n->list_lock);
9ada1934
SL
2207
2208 while (discard_page) {
2209 page = discard_page;
2210 discard_page = discard_page->next;
2211
2212 stat(s, DEACTIVATE_EMPTY);
2213 discard_slab(s, page);
2214 stat(s, FREE_SLAB);
2215 }
345c905d 2216#endif
49e22585
CL
2217}
2218
2219/*
2220 * Put a page that was just frozen (in __slab_free) into a partial page
2221 * slot if available. This is done without interrupts disabled and without
2222 * preemption disabled. The cmpxchg is racy and may put the partial page
2223 * onto a random cpus partial slot.
2224 *
2225 * If we did not find a slot then simply move all the partials to the
2226 * per node partial list.
2227 */
633b0764 2228static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2229{
345c905d 2230#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2231 struct page *oldpage;
2232 int pages;
2233 int pobjects;
2234
d6e0b7fa 2235 preempt_disable();
49e22585
CL
2236 do {
2237 pages = 0;
2238 pobjects = 0;
2239 oldpage = this_cpu_read(s->cpu_slab->partial);
2240
2241 if (oldpage) {
2242 pobjects = oldpage->pobjects;
2243 pages = oldpage->pages;
2244 if (drain && pobjects > s->cpu_partial) {
2245 unsigned long flags;
2246 /*
2247 * partial array is full. Move the existing
2248 * set to the per node partial list.
2249 */
2250 local_irq_save(flags);
59a09917 2251 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2252 local_irq_restore(flags);
e24fc410 2253 oldpage = NULL;
49e22585
CL
2254 pobjects = 0;
2255 pages = 0;
8028dcea 2256 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2257 }
2258 }
2259
2260 pages++;
2261 pobjects += page->objects - page->inuse;
2262
2263 page->pages = pages;
2264 page->pobjects = pobjects;
2265 page->next = oldpage;
2266
d0e0ac97
CG
2267 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2268 != oldpage);
d6e0b7fa
VD
2269 if (unlikely(!s->cpu_partial)) {
2270 unsigned long flags;
2271
2272 local_irq_save(flags);
2273 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2274 local_irq_restore(flags);
2275 }
2276 preempt_enable();
345c905d 2277#endif
49e22585
CL
2278}
2279
dfb4f096 2280static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2281{
84e554e6 2282 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2283 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2284
2285 c->tid = next_tid(c->tid);
81819f0f
CL
2286}
2287
2288/*
2289 * Flush cpu slab.
6446faa2 2290 *
81819f0f
CL
2291 * Called from IPI handler with interrupts disabled.
2292 */
0c710013 2293static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2294{
9dfc6e68 2295 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2296
49e22585
CL
2297 if (likely(c)) {
2298 if (c->page)
2299 flush_slab(s, c);
2300
59a09917 2301 unfreeze_partials(s, c);
49e22585 2302 }
81819f0f
CL
2303}
2304
2305static void flush_cpu_slab(void *d)
2306{
2307 struct kmem_cache *s = d;
81819f0f 2308
dfb4f096 2309 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2310}
2311
a8364d55
GBY
2312static bool has_cpu_slab(int cpu, void *info)
2313{
2314 struct kmem_cache *s = info;
2315 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2316
a93cf07b 2317 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2318}
2319
81819f0f
CL
2320static void flush_all(struct kmem_cache *s)
2321{
a8364d55 2322 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2323}
2324
a96a87bf
SAS
2325/*
2326 * Use the cpu notifier to insure that the cpu slabs are flushed when
2327 * necessary.
2328 */
2329static int slub_cpu_dead(unsigned int cpu)
2330{
2331 struct kmem_cache *s;
2332 unsigned long flags;
2333
2334 mutex_lock(&slab_mutex);
2335 list_for_each_entry(s, &slab_caches, list) {
2336 local_irq_save(flags);
2337 __flush_cpu_slab(s, cpu);
2338 local_irq_restore(flags);
2339 }
2340 mutex_unlock(&slab_mutex);
2341 return 0;
2342}
2343
dfb4f096
CL
2344/*
2345 * Check if the objects in a per cpu structure fit numa
2346 * locality expectations.
2347 */
57d437d2 2348static inline int node_match(struct page *page, int node)
dfb4f096
CL
2349{
2350#ifdef CONFIG_NUMA
4d7868e6 2351 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2352 return 0;
2353#endif
2354 return 1;
2355}
2356
9a02d699 2357#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2358static int count_free(struct page *page)
2359{
2360 return page->objects - page->inuse;
2361}
2362
9a02d699
DR
2363static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2364{
2365 return atomic_long_read(&n->total_objects);
2366}
2367#endif /* CONFIG_SLUB_DEBUG */
2368
2369#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2370static unsigned long count_partial(struct kmem_cache_node *n,
2371 int (*get_count)(struct page *))
2372{
2373 unsigned long flags;
2374 unsigned long x = 0;
2375 struct page *page;
2376
2377 spin_lock_irqsave(&n->list_lock, flags);
2378 list_for_each_entry(page, &n->partial, lru)
2379 x += get_count(page);
2380 spin_unlock_irqrestore(&n->list_lock, flags);
2381 return x;
2382}
9a02d699 2383#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2384
781b2ba6
PE
2385static noinline void
2386slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2387{
9a02d699
DR
2388#ifdef CONFIG_SLUB_DEBUG
2389 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2390 DEFAULT_RATELIMIT_BURST);
781b2ba6 2391 int node;
fa45dc25 2392 struct kmem_cache_node *n;
781b2ba6 2393
9a02d699
DR
2394 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2395 return;
2396
5b3810e5
VB
2397 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2398 nid, gfpflags, &gfpflags);
f9f58285
FF
2399 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2400 s->name, s->object_size, s->size, oo_order(s->oo),
2401 oo_order(s->min));
781b2ba6 2402
3b0efdfa 2403 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2404 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2405 s->name);
fa5ec8a1 2406
fa45dc25 2407 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2408 unsigned long nr_slabs;
2409 unsigned long nr_objs;
2410 unsigned long nr_free;
2411
26c02cf0
AB
2412 nr_free = count_partial(n, count_free);
2413 nr_slabs = node_nr_slabs(n);
2414 nr_objs = node_nr_objs(n);
781b2ba6 2415
f9f58285 2416 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2417 node, nr_slabs, nr_objs, nr_free);
2418 }
9a02d699 2419#endif
781b2ba6
PE
2420}
2421
497b66f2
CL
2422static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2423 int node, struct kmem_cache_cpu **pc)
2424{
6faa6833 2425 void *freelist;
188fd063
CL
2426 struct kmem_cache_cpu *c = *pc;
2427 struct page *page;
497b66f2 2428
188fd063 2429 freelist = get_partial(s, flags, node, c);
497b66f2 2430
188fd063
CL
2431 if (freelist)
2432 return freelist;
2433
2434 page = new_slab(s, flags, node);
497b66f2 2435 if (page) {
7c8e0181 2436 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2437 if (c->page)
2438 flush_slab(s, c);
2439
2440 /*
2441 * No other reference to the page yet so we can
2442 * muck around with it freely without cmpxchg
2443 */
6faa6833 2444 freelist = page->freelist;
497b66f2
CL
2445 page->freelist = NULL;
2446
2447 stat(s, ALLOC_SLAB);
497b66f2
CL
2448 c->page = page;
2449 *pc = c;
2450 } else
6faa6833 2451 freelist = NULL;
497b66f2 2452
6faa6833 2453 return freelist;
497b66f2
CL
2454}
2455
072bb0aa
MG
2456static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2457{
2458 if (unlikely(PageSlabPfmemalloc(page)))
2459 return gfp_pfmemalloc_allowed(gfpflags);
2460
2461 return true;
2462}
2463
213eeb9f 2464/*
d0e0ac97
CG
2465 * Check the page->freelist of a page and either transfer the freelist to the
2466 * per cpu freelist or deactivate the page.
213eeb9f
CL
2467 *
2468 * The page is still frozen if the return value is not NULL.
2469 *
2470 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2471 *
2472 * This function must be called with interrupt disabled.
213eeb9f
CL
2473 */
2474static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2475{
2476 struct page new;
2477 unsigned long counters;
2478 void *freelist;
2479
2480 do {
2481 freelist = page->freelist;
2482 counters = page->counters;
6faa6833 2483
213eeb9f 2484 new.counters = counters;
a0132ac0 2485 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2486
2487 new.inuse = page->objects;
2488 new.frozen = freelist != NULL;
2489
d24ac77f 2490 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2491 freelist, counters,
2492 NULL, new.counters,
2493 "get_freelist"));
2494
2495 return freelist;
2496}
2497
81819f0f 2498/*
894b8788
CL
2499 * Slow path. The lockless freelist is empty or we need to perform
2500 * debugging duties.
2501 *
894b8788
CL
2502 * Processing is still very fast if new objects have been freed to the
2503 * regular freelist. In that case we simply take over the regular freelist
2504 * as the lockless freelist and zap the regular freelist.
81819f0f 2505 *
894b8788
CL
2506 * If that is not working then we fall back to the partial lists. We take the
2507 * first element of the freelist as the object to allocate now and move the
2508 * rest of the freelist to the lockless freelist.
81819f0f 2509 *
894b8788 2510 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2511 * we need to allocate a new slab. This is the slowest path since it involves
2512 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2513 *
2514 * Version of __slab_alloc to use when we know that interrupts are
2515 * already disabled (which is the case for bulk allocation).
81819f0f 2516 */
a380a3c7 2517static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2518 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2519{
6faa6833 2520 void *freelist;
f6e7def7 2521 struct page *page;
81819f0f 2522
f6e7def7
CL
2523 page = c->page;
2524 if (!page)
81819f0f 2525 goto new_slab;
49e22585 2526redo:
6faa6833 2527
57d437d2 2528 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2529 int searchnode = node;
2530
2531 if (node != NUMA_NO_NODE && !node_present_pages(node))
2532 searchnode = node_to_mem_node(node);
2533
2534 if (unlikely(!node_match(page, searchnode))) {
2535 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2536 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2537 goto new_slab;
2538 }
fc59c053 2539 }
6446faa2 2540
072bb0aa
MG
2541 /*
2542 * By rights, we should be searching for a slab page that was
2543 * PFMEMALLOC but right now, we are losing the pfmemalloc
2544 * information when the page leaves the per-cpu allocator
2545 */
2546 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2547 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2548 goto new_slab;
2549 }
2550
73736e03 2551 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2552 freelist = c->freelist;
2553 if (freelist)
73736e03 2554 goto load_freelist;
03e404af 2555
f6e7def7 2556 freelist = get_freelist(s, page);
6446faa2 2557
6faa6833 2558 if (!freelist) {
03e404af
CL
2559 c->page = NULL;
2560 stat(s, DEACTIVATE_BYPASS);
fc59c053 2561 goto new_slab;
03e404af 2562 }
6446faa2 2563
84e554e6 2564 stat(s, ALLOC_REFILL);
6446faa2 2565
894b8788 2566load_freelist:
507effea
CL
2567 /*
2568 * freelist is pointing to the list of objects to be used.
2569 * page is pointing to the page from which the objects are obtained.
2570 * That page must be frozen for per cpu allocations to work.
2571 */
a0132ac0 2572 VM_BUG_ON(!c->page->frozen);
6faa6833 2573 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2574 c->tid = next_tid(c->tid);
6faa6833 2575 return freelist;
81819f0f 2576
81819f0f 2577new_slab:
2cfb7455 2578
a93cf07b
WY
2579 if (slub_percpu_partial(c)) {
2580 page = c->page = slub_percpu_partial(c);
2581 slub_set_percpu_partial(c, page);
49e22585 2582 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2583 goto redo;
81819f0f
CL
2584 }
2585
188fd063 2586 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2587
f4697436 2588 if (unlikely(!freelist)) {
9a02d699 2589 slab_out_of_memory(s, gfpflags, node);
f4697436 2590 return NULL;
81819f0f 2591 }
2cfb7455 2592
f6e7def7 2593 page = c->page;
5091b74a 2594 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2595 goto load_freelist;
2cfb7455 2596
497b66f2 2597 /* Only entered in the debug case */
d0e0ac97
CG
2598 if (kmem_cache_debug(s) &&
2599 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2600 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2601
d4ff6d35 2602 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2603 return freelist;
894b8788
CL
2604}
2605
a380a3c7
CL
2606/*
2607 * Another one that disabled interrupt and compensates for possible
2608 * cpu changes by refetching the per cpu area pointer.
2609 */
2610static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2611 unsigned long addr, struct kmem_cache_cpu *c)
2612{
2613 void *p;
2614 unsigned long flags;
2615
2616 local_irq_save(flags);
2617#ifdef CONFIG_PREEMPT
2618 /*
2619 * We may have been preempted and rescheduled on a different
2620 * cpu before disabling interrupts. Need to reload cpu area
2621 * pointer.
2622 */
2623 c = this_cpu_ptr(s->cpu_slab);
2624#endif
2625
2626 p = ___slab_alloc(s, gfpflags, node, addr, c);
2627 local_irq_restore(flags);
2628 return p;
2629}
2630
894b8788
CL
2631/*
2632 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2633 * have the fastpath folded into their functions. So no function call
2634 * overhead for requests that can be satisfied on the fastpath.
2635 *
2636 * The fastpath works by first checking if the lockless freelist can be used.
2637 * If not then __slab_alloc is called for slow processing.
2638 *
2639 * Otherwise we can simply pick the next object from the lockless free list.
2640 */
2b847c3c 2641static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2642 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2643{
03ec0ed5 2644 void *object;
dfb4f096 2645 struct kmem_cache_cpu *c;
57d437d2 2646 struct page *page;
8a5ec0ba 2647 unsigned long tid;
1f84260c 2648
8135be5a
VD
2649 s = slab_pre_alloc_hook(s, gfpflags);
2650 if (!s)
773ff60e 2651 return NULL;
8a5ec0ba 2652redo:
8a5ec0ba
CL
2653 /*
2654 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2655 * enabled. We may switch back and forth between cpus while
2656 * reading from one cpu area. That does not matter as long
2657 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2658 *
9aabf810
JK
2659 * We should guarantee that tid and kmem_cache are retrieved on
2660 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2661 * to check if it is matched or not.
8a5ec0ba 2662 */
9aabf810
JK
2663 do {
2664 tid = this_cpu_read(s->cpu_slab->tid);
2665 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2666 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2667 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2668
2669 /*
2670 * Irqless object alloc/free algorithm used here depends on sequence
2671 * of fetching cpu_slab's data. tid should be fetched before anything
2672 * on c to guarantee that object and page associated with previous tid
2673 * won't be used with current tid. If we fetch tid first, object and
2674 * page could be one associated with next tid and our alloc/free
2675 * request will be failed. In this case, we will retry. So, no problem.
2676 */
2677 barrier();
8a5ec0ba 2678
8a5ec0ba
CL
2679 /*
2680 * The transaction ids are globally unique per cpu and per operation on
2681 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2682 * occurs on the right processor and that there was no operation on the
2683 * linked list in between.
2684 */
8a5ec0ba 2685
9dfc6e68 2686 object = c->freelist;
57d437d2 2687 page = c->page;
8eae1492 2688 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2689 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2690 stat(s, ALLOC_SLOWPATH);
2691 } else {
0ad9500e
ED
2692 void *next_object = get_freepointer_safe(s, object);
2693
8a5ec0ba 2694 /*
25985edc 2695 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2696 * operation and if we are on the right processor.
2697 *
d0e0ac97
CG
2698 * The cmpxchg does the following atomically (without lock
2699 * semantics!)
8a5ec0ba
CL
2700 * 1. Relocate first pointer to the current per cpu area.
2701 * 2. Verify that tid and freelist have not been changed
2702 * 3. If they were not changed replace tid and freelist
2703 *
d0e0ac97
CG
2704 * Since this is without lock semantics the protection is only
2705 * against code executing on this cpu *not* from access by
2706 * other cpus.
8a5ec0ba 2707 */
933393f5 2708 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2709 s->cpu_slab->freelist, s->cpu_slab->tid,
2710 object, tid,
0ad9500e 2711 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2712
2713 note_cmpxchg_failure("slab_alloc", s, tid);
2714 goto redo;
2715 }
0ad9500e 2716 prefetch_freepointer(s, next_object);
84e554e6 2717 stat(s, ALLOC_FASTPATH);
894b8788 2718 }
8a5ec0ba 2719
74e2134f 2720 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2721 memset(object, 0, s->object_size);
d07dbea4 2722
03ec0ed5 2723 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2724
894b8788 2725 return object;
81819f0f
CL
2726}
2727
2b847c3c
EG
2728static __always_inline void *slab_alloc(struct kmem_cache *s,
2729 gfp_t gfpflags, unsigned long addr)
2730{
2731 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2732}
2733
81819f0f
CL
2734void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2735{
2b847c3c 2736 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2737
d0e0ac97
CG
2738 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2739 s->size, gfpflags);
5b882be4
EGM
2740
2741 return ret;
81819f0f
CL
2742}
2743EXPORT_SYMBOL(kmem_cache_alloc);
2744
0f24f128 2745#ifdef CONFIG_TRACING
4a92379b
RK
2746void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2747{
2b847c3c 2748 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2749 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2750 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2751 return ret;
2752}
2753EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2754#endif
2755
81819f0f
CL
2756#ifdef CONFIG_NUMA
2757void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2758{
2b847c3c 2759 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2760
ca2b84cb 2761 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2762 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2763
2764 return ret;
81819f0f
CL
2765}
2766EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2767
0f24f128 2768#ifdef CONFIG_TRACING
4a92379b 2769void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2770 gfp_t gfpflags,
4a92379b 2771 int node, size_t size)
5b882be4 2772{
2b847c3c 2773 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2774
2775 trace_kmalloc_node(_RET_IP_, ret,
2776 size, s->size, gfpflags, node);
0316bec2 2777
505f5dcb 2778 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2779 return ret;
5b882be4 2780}
4a92379b 2781EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2782#endif
5d1f57e4 2783#endif
5b882be4 2784
81819f0f 2785/*
94e4d712 2786 * Slow path handling. This may still be called frequently since objects
894b8788 2787 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2788 *
894b8788
CL
2789 * So we still attempt to reduce cache line usage. Just take the slab
2790 * lock and free the item. If there is no additional partial page
2791 * handling required then we can return immediately.
81819f0f 2792 */
894b8788 2793static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2794 void *head, void *tail, int cnt,
2795 unsigned long addr)
2796
81819f0f
CL
2797{
2798 void *prior;
2cfb7455 2799 int was_frozen;
2cfb7455
CL
2800 struct page new;
2801 unsigned long counters;
2802 struct kmem_cache_node *n = NULL;
61728d1e 2803 unsigned long uninitialized_var(flags);
81819f0f 2804
8a5ec0ba 2805 stat(s, FREE_SLOWPATH);
81819f0f 2806
19c7ff9e 2807 if (kmem_cache_debug(s) &&
282acb43 2808 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2809 return;
6446faa2 2810
2cfb7455 2811 do {
837d678d
JK
2812 if (unlikely(n)) {
2813 spin_unlock_irqrestore(&n->list_lock, flags);
2814 n = NULL;
2815 }
2cfb7455
CL
2816 prior = page->freelist;
2817 counters = page->counters;
81084651 2818 set_freepointer(s, tail, prior);
2cfb7455
CL
2819 new.counters = counters;
2820 was_frozen = new.frozen;
81084651 2821 new.inuse -= cnt;
837d678d 2822 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2823
c65c1877 2824 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2825
2826 /*
d0e0ac97
CG
2827 * Slab was on no list before and will be
2828 * partially empty
2829 * We can defer the list move and instead
2830 * freeze it.
49e22585
CL
2831 */
2832 new.frozen = 1;
2833
c65c1877 2834 } else { /* Needs to be taken off a list */
49e22585 2835
b455def2 2836 n = get_node(s, page_to_nid(page));
49e22585
CL
2837 /*
2838 * Speculatively acquire the list_lock.
2839 * If the cmpxchg does not succeed then we may
2840 * drop the list_lock without any processing.
2841 *
2842 * Otherwise the list_lock will synchronize with
2843 * other processors updating the list of slabs.
2844 */
2845 spin_lock_irqsave(&n->list_lock, flags);
2846
2847 }
2cfb7455 2848 }
81819f0f 2849
2cfb7455
CL
2850 } while (!cmpxchg_double_slab(s, page,
2851 prior, counters,
81084651 2852 head, new.counters,
2cfb7455 2853 "__slab_free"));
81819f0f 2854
2cfb7455 2855 if (likely(!n)) {
49e22585
CL
2856
2857 /*
2858 * If we just froze the page then put it onto the
2859 * per cpu partial list.
2860 */
8028dcea 2861 if (new.frozen && !was_frozen) {
49e22585 2862 put_cpu_partial(s, page, 1);
8028dcea
AS
2863 stat(s, CPU_PARTIAL_FREE);
2864 }
49e22585 2865 /*
2cfb7455
CL
2866 * The list lock was not taken therefore no list
2867 * activity can be necessary.
2868 */
b455def2
L
2869 if (was_frozen)
2870 stat(s, FREE_FROZEN);
2871 return;
2872 }
81819f0f 2873
8a5b20ae 2874 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2875 goto slab_empty;
2876
81819f0f 2877 /*
837d678d
JK
2878 * Objects left in the slab. If it was not on the partial list before
2879 * then add it.
81819f0f 2880 */
345c905d
JK
2881 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2882 if (kmem_cache_debug(s))
c65c1877 2883 remove_full(s, n, page);
837d678d
JK
2884 add_partial(n, page, DEACTIVATE_TO_TAIL);
2885 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2886 }
80f08c19 2887 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2888 return;
2889
2890slab_empty:
a973e9dd 2891 if (prior) {
81819f0f 2892 /*
6fbabb20 2893 * Slab on the partial list.
81819f0f 2894 */
5cc6eee8 2895 remove_partial(n, page);
84e554e6 2896 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2897 } else {
6fbabb20 2898 /* Slab must be on the full list */
c65c1877
PZ
2899 remove_full(s, n, page);
2900 }
2cfb7455 2901
80f08c19 2902 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2903 stat(s, FREE_SLAB);
81819f0f 2904 discard_slab(s, page);
81819f0f
CL
2905}
2906
894b8788
CL
2907/*
2908 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2909 * can perform fastpath freeing without additional function calls.
2910 *
2911 * The fastpath is only possible if we are freeing to the current cpu slab
2912 * of this processor. This typically the case if we have just allocated
2913 * the item before.
2914 *
2915 * If fastpath is not possible then fall back to __slab_free where we deal
2916 * with all sorts of special processing.
81084651
JDB
2917 *
2918 * Bulk free of a freelist with several objects (all pointing to the
2919 * same page) possible by specifying head and tail ptr, plus objects
2920 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2921 */
80a9201a
AP
2922static __always_inline void do_slab_free(struct kmem_cache *s,
2923 struct page *page, void *head, void *tail,
2924 int cnt, unsigned long addr)
894b8788 2925{
81084651 2926 void *tail_obj = tail ? : head;
dfb4f096 2927 struct kmem_cache_cpu *c;
8a5ec0ba 2928 unsigned long tid;
8a5ec0ba
CL
2929redo:
2930 /*
2931 * Determine the currently cpus per cpu slab.
2932 * The cpu may change afterward. However that does not matter since
2933 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2934 * during the cmpxchg then the free will succeed.
8a5ec0ba 2935 */
9aabf810
JK
2936 do {
2937 tid = this_cpu_read(s->cpu_slab->tid);
2938 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2939 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2940 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2941
9aabf810
JK
2942 /* Same with comment on barrier() in slab_alloc_node() */
2943 barrier();
c016b0bd 2944
442b06bc 2945 if (likely(page == c->page)) {
81084651 2946 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2947
933393f5 2948 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2949 s->cpu_slab->freelist, s->cpu_slab->tid,
2950 c->freelist, tid,
81084651 2951 head, next_tid(tid)))) {
8a5ec0ba
CL
2952
2953 note_cmpxchg_failure("slab_free", s, tid);
2954 goto redo;
2955 }
84e554e6 2956 stat(s, FREE_FASTPATH);
894b8788 2957 } else
81084651 2958 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2959
894b8788
CL
2960}
2961
80a9201a
AP
2962static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2963 void *head, void *tail, int cnt,
2964 unsigned long addr)
2965{
2966 slab_free_freelist_hook(s, head, tail);
2967 /*
2968 * slab_free_freelist_hook() could have put the items into quarantine.
2969 * If so, no need to free them.
2970 */
5f0d5a3a 2971 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
80a9201a
AP
2972 return;
2973 do_slab_free(s, page, head, tail, cnt, addr);
2974}
2975
2976#ifdef CONFIG_KASAN
2977void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2978{
2979 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2980}
2981#endif
2982
81819f0f
CL
2983void kmem_cache_free(struct kmem_cache *s, void *x)
2984{
b9ce5ef4
GC
2985 s = cache_from_obj(s, x);
2986 if (!s)
79576102 2987 return;
81084651 2988 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2989 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2990}
2991EXPORT_SYMBOL(kmem_cache_free);
2992
d0ecd894 2993struct detached_freelist {
fbd02630 2994 struct page *page;
d0ecd894
JDB
2995 void *tail;
2996 void *freelist;
2997 int cnt;
376bf125 2998 struct kmem_cache *s;
d0ecd894 2999};
fbd02630 3000
d0ecd894
JDB
3001/*
3002 * This function progressively scans the array with free objects (with
3003 * a limited look ahead) and extract objects belonging to the same
3004 * page. It builds a detached freelist directly within the given
3005 * page/objects. This can happen without any need for
3006 * synchronization, because the objects are owned by running process.
3007 * The freelist is build up as a single linked list in the objects.
3008 * The idea is, that this detached freelist can then be bulk
3009 * transferred to the real freelist(s), but only requiring a single
3010 * synchronization primitive. Look ahead in the array is limited due
3011 * to performance reasons.
3012 */
376bf125
JDB
3013static inline
3014int build_detached_freelist(struct kmem_cache *s, size_t size,
3015 void **p, struct detached_freelist *df)
d0ecd894
JDB
3016{
3017 size_t first_skipped_index = 0;
3018 int lookahead = 3;
3019 void *object;
ca257195 3020 struct page *page;
fbd02630 3021
d0ecd894
JDB
3022 /* Always re-init detached_freelist */
3023 df->page = NULL;
fbd02630 3024
d0ecd894
JDB
3025 do {
3026 object = p[--size];
ca257195 3027 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3028 } while (!object && size);
3eed034d 3029
d0ecd894
JDB
3030 if (!object)
3031 return 0;
fbd02630 3032
ca257195
JDB
3033 page = virt_to_head_page(object);
3034 if (!s) {
3035 /* Handle kalloc'ed objects */
3036 if (unlikely(!PageSlab(page))) {
3037 BUG_ON(!PageCompound(page));
3038 kfree_hook(object);
4949148a 3039 __free_pages(page, compound_order(page));
ca257195
JDB
3040 p[size] = NULL; /* mark object processed */
3041 return size;
3042 }
3043 /* Derive kmem_cache from object */
3044 df->s = page->slab_cache;
3045 } else {
3046 df->s = cache_from_obj(s, object); /* Support for memcg */
3047 }
376bf125 3048
d0ecd894 3049 /* Start new detached freelist */
ca257195 3050 df->page = page;
376bf125 3051 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3052 df->tail = object;
3053 df->freelist = object;
3054 p[size] = NULL; /* mark object processed */
3055 df->cnt = 1;
3056
3057 while (size) {
3058 object = p[--size];
3059 if (!object)
3060 continue; /* Skip processed objects */
3061
3062 /* df->page is always set at this point */
3063 if (df->page == virt_to_head_page(object)) {
3064 /* Opportunity build freelist */
376bf125 3065 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3066 df->freelist = object;
3067 df->cnt++;
3068 p[size] = NULL; /* mark object processed */
3069
3070 continue;
fbd02630 3071 }
d0ecd894
JDB
3072
3073 /* Limit look ahead search */
3074 if (!--lookahead)
3075 break;
3076
3077 if (!first_skipped_index)
3078 first_skipped_index = size + 1;
fbd02630 3079 }
d0ecd894
JDB
3080
3081 return first_skipped_index;
3082}
3083
d0ecd894 3084/* Note that interrupts must be enabled when calling this function. */
376bf125 3085void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3086{
3087 if (WARN_ON(!size))
3088 return;
3089
3090 do {
3091 struct detached_freelist df;
3092
3093 size = build_detached_freelist(s, size, p, &df);
84582c8a 3094 if (!df.page)
d0ecd894
JDB
3095 continue;
3096
376bf125 3097 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3098 } while (likely(size));
484748f0
CL
3099}
3100EXPORT_SYMBOL(kmem_cache_free_bulk);
3101
994eb764 3102/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3103int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3104 void **p)
484748f0 3105{
994eb764
JDB
3106 struct kmem_cache_cpu *c;
3107 int i;
3108
03ec0ed5
JDB
3109 /* memcg and kmem_cache debug support */
3110 s = slab_pre_alloc_hook(s, flags);
3111 if (unlikely(!s))
3112 return false;
994eb764
JDB
3113 /*
3114 * Drain objects in the per cpu slab, while disabling local
3115 * IRQs, which protects against PREEMPT and interrupts
3116 * handlers invoking normal fastpath.
3117 */
3118 local_irq_disable();
3119 c = this_cpu_ptr(s->cpu_slab);
3120
3121 for (i = 0; i < size; i++) {
3122 void *object = c->freelist;
3123
ebe909e0 3124 if (unlikely(!object)) {
ebe909e0
JDB
3125 /*
3126 * Invoking slow path likely have side-effect
3127 * of re-populating per CPU c->freelist
3128 */
87098373 3129 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3130 _RET_IP_, c);
87098373
CL
3131 if (unlikely(!p[i]))
3132 goto error;
3133
ebe909e0
JDB
3134 c = this_cpu_ptr(s->cpu_slab);
3135 continue; /* goto for-loop */
3136 }
994eb764
JDB
3137 c->freelist = get_freepointer(s, object);
3138 p[i] = object;
3139 }
3140 c->tid = next_tid(c->tid);
3141 local_irq_enable();
3142
3143 /* Clear memory outside IRQ disabled fastpath loop */
3144 if (unlikely(flags & __GFP_ZERO)) {
3145 int j;
3146
3147 for (j = 0; j < i; j++)
3148 memset(p[j], 0, s->object_size);
3149 }
3150
03ec0ed5
JDB
3151 /* memcg and kmem_cache debug support */
3152 slab_post_alloc_hook(s, flags, size, p);
865762a8 3153 return i;
87098373 3154error:
87098373 3155 local_irq_enable();
03ec0ed5
JDB
3156 slab_post_alloc_hook(s, flags, i, p);
3157 __kmem_cache_free_bulk(s, i, p);
865762a8 3158 return 0;
484748f0
CL
3159}
3160EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3161
3162
81819f0f 3163/*
672bba3a
CL
3164 * Object placement in a slab is made very easy because we always start at
3165 * offset 0. If we tune the size of the object to the alignment then we can
3166 * get the required alignment by putting one properly sized object after
3167 * another.
81819f0f
CL
3168 *
3169 * Notice that the allocation order determines the sizes of the per cpu
3170 * caches. Each processor has always one slab available for allocations.
3171 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3172 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3173 * locking overhead.
81819f0f
CL
3174 */
3175
3176/*
3177 * Mininum / Maximum order of slab pages. This influences locking overhead
3178 * and slab fragmentation. A higher order reduces the number of partial slabs
3179 * and increases the number of allocations possible without having to
3180 * take the list_lock.
3181 */
3182static int slub_min_order;
114e9e89 3183static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 3184static int slub_min_objects;
81819f0f 3185
81819f0f
CL
3186/*
3187 * Calculate the order of allocation given an slab object size.
3188 *
672bba3a
CL
3189 * The order of allocation has significant impact on performance and other
3190 * system components. Generally order 0 allocations should be preferred since
3191 * order 0 does not cause fragmentation in the page allocator. Larger objects
3192 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3193 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3194 * would be wasted.
3195 *
3196 * In order to reach satisfactory performance we must ensure that a minimum
3197 * number of objects is in one slab. Otherwise we may generate too much
3198 * activity on the partial lists which requires taking the list_lock. This is
3199 * less a concern for large slabs though which are rarely used.
81819f0f 3200 *
672bba3a
CL
3201 * slub_max_order specifies the order where we begin to stop considering the
3202 * number of objects in a slab as critical. If we reach slub_max_order then
3203 * we try to keep the page order as low as possible. So we accept more waste
3204 * of space in favor of a small page order.
81819f0f 3205 *
672bba3a
CL
3206 * Higher order allocations also allow the placement of more objects in a
3207 * slab and thereby reduce object handling overhead. If the user has
3208 * requested a higher mininum order then we start with that one instead of
3209 * the smallest order which will fit the object.
81819f0f 3210 */
5e6d444e 3211static inline int slab_order(int size, int min_objects,
ab9a0f19 3212 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3213{
3214 int order;
3215 int rem;
6300ea75 3216 int min_order = slub_min_order;
81819f0f 3217
ab9a0f19 3218 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3219 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3220
9f835703 3221 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3222 order <= max_order; order++) {
81819f0f 3223
5e6d444e 3224 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3225
ab9a0f19 3226 rem = (slab_size - reserved) % size;
81819f0f 3227
5e6d444e 3228 if (rem <= slab_size / fract_leftover)
81819f0f 3229 break;
81819f0f 3230 }
672bba3a 3231
81819f0f
CL
3232 return order;
3233}
3234
ab9a0f19 3235static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3236{
3237 int order;
3238 int min_objects;
3239 int fraction;
e8120ff1 3240 int max_objects;
5e6d444e
CL
3241
3242 /*
3243 * Attempt to find best configuration for a slab. This
3244 * works by first attempting to generate a layout with
3245 * the best configuration and backing off gradually.
3246 *
422ff4d7 3247 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3248 * we reduce the minimum objects required in a slab.
3249 */
3250 min_objects = slub_min_objects;
9b2cd506
CL
3251 if (!min_objects)
3252 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3253 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3254 min_objects = min(min_objects, max_objects);
3255
5e6d444e 3256 while (min_objects > 1) {
c124f5b5 3257 fraction = 16;
5e6d444e
CL
3258 while (fraction >= 4) {
3259 order = slab_order(size, min_objects,
ab9a0f19 3260 slub_max_order, fraction, reserved);
5e6d444e
CL
3261 if (order <= slub_max_order)
3262 return order;
3263 fraction /= 2;
3264 }
5086c389 3265 min_objects--;
5e6d444e
CL
3266 }
3267
3268 /*
3269 * We were unable to place multiple objects in a slab. Now
3270 * lets see if we can place a single object there.
3271 */
ab9a0f19 3272 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3273 if (order <= slub_max_order)
3274 return order;
3275
3276 /*
3277 * Doh this slab cannot be placed using slub_max_order.
3278 */
ab9a0f19 3279 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3280 if (order < MAX_ORDER)
5e6d444e
CL
3281 return order;
3282 return -ENOSYS;
3283}
3284
5595cffc 3285static void
4053497d 3286init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3287{
3288 n->nr_partial = 0;
81819f0f
CL
3289 spin_lock_init(&n->list_lock);
3290 INIT_LIST_HEAD(&n->partial);
8ab1372f 3291#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3292 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3293 atomic_long_set(&n->total_objects, 0);
643b1138 3294 INIT_LIST_HEAD(&n->full);
8ab1372f 3295#endif
81819f0f
CL
3296}
3297
55136592 3298static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3299{
6c182dc0 3300 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3301 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3302
8a5ec0ba 3303 /*
d4d84fef
CM
3304 * Must align to double word boundary for the double cmpxchg
3305 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3306 */
d4d84fef
CM
3307 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3308 2 * sizeof(void *));
8a5ec0ba
CL
3309
3310 if (!s->cpu_slab)
3311 return 0;
3312
3313 init_kmem_cache_cpus(s);
4c93c355 3314
8a5ec0ba 3315 return 1;
4c93c355 3316}
4c93c355 3317
51df1142
CL
3318static struct kmem_cache *kmem_cache_node;
3319
81819f0f
CL
3320/*
3321 * No kmalloc_node yet so do it by hand. We know that this is the first
3322 * slab on the node for this slabcache. There are no concurrent accesses
3323 * possible.
3324 *
721ae22a
ZYW
3325 * Note that this function only works on the kmem_cache_node
3326 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3327 * memory on a fresh node that has no slab structures yet.
81819f0f 3328 */
55136592 3329static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3330{
3331 struct page *page;
3332 struct kmem_cache_node *n;
3333
51df1142 3334 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3335
51df1142 3336 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3337
3338 BUG_ON(!page);
a2f92ee7 3339 if (page_to_nid(page) != node) {
f9f58285
FF
3340 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3341 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3342 }
3343
81819f0f
CL
3344 n = page->freelist;
3345 BUG_ON(!n);
51df1142 3346 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3347 page->inuse = 1;
8cb0a506 3348 page->frozen = 0;
51df1142 3349 kmem_cache_node->node[node] = n;
8ab1372f 3350#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3351 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3352 init_tracking(kmem_cache_node, n);
8ab1372f 3353#endif
505f5dcb
AP
3354 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3355 GFP_KERNEL);
4053497d 3356 init_kmem_cache_node(n);
51df1142 3357 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3358
67b6c900 3359 /*
1e4dd946
SR
3360 * No locks need to be taken here as it has just been
3361 * initialized and there is no concurrent access.
67b6c900 3362 */
1e4dd946 3363 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3364}
3365
3366static void free_kmem_cache_nodes(struct kmem_cache *s)
3367{
3368 int node;
fa45dc25 3369 struct kmem_cache_node *n;
81819f0f 3370
fa45dc25 3371 for_each_kmem_cache_node(s, node, n) {
81819f0f 3372 s->node[node] = NULL;
ea37df54 3373 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3374 }
3375}
3376
52b4b950
DS
3377void __kmem_cache_release(struct kmem_cache *s)
3378{
210e7a43 3379 cache_random_seq_destroy(s);
52b4b950
DS
3380 free_percpu(s->cpu_slab);
3381 free_kmem_cache_nodes(s);
3382}
3383
55136592 3384static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3385{
3386 int node;
81819f0f 3387
f64dc58c 3388 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3389 struct kmem_cache_node *n;
3390
73367bd8 3391 if (slab_state == DOWN) {
55136592 3392 early_kmem_cache_node_alloc(node);
73367bd8
AD
3393 continue;
3394 }
51df1142 3395 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3396 GFP_KERNEL, node);
81819f0f 3397
73367bd8
AD
3398 if (!n) {
3399 free_kmem_cache_nodes(s);
3400 return 0;
81819f0f 3401 }
73367bd8 3402
4053497d 3403 init_kmem_cache_node(n);
ea37df54 3404 s->node[node] = n;
81819f0f
CL
3405 }
3406 return 1;
3407}
81819f0f 3408
c0bdb232 3409static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3410{
3411 if (min < MIN_PARTIAL)
3412 min = MIN_PARTIAL;
3413 else if (min > MAX_PARTIAL)
3414 min = MAX_PARTIAL;
3415 s->min_partial = min;
3416}
3417
e6d0e1dc
WY
3418static void set_cpu_partial(struct kmem_cache *s)
3419{
3420#ifdef CONFIG_SLUB_CPU_PARTIAL
3421 /*
3422 * cpu_partial determined the maximum number of objects kept in the
3423 * per cpu partial lists of a processor.
3424 *
3425 * Per cpu partial lists mainly contain slabs that just have one
3426 * object freed. If they are used for allocation then they can be
3427 * filled up again with minimal effort. The slab will never hit the
3428 * per node partial lists and therefore no locking will be required.
3429 *
3430 * This setting also determines
3431 *
3432 * A) The number of objects from per cpu partial slabs dumped to the
3433 * per node list when we reach the limit.
3434 * B) The number of objects in cpu partial slabs to extract from the
3435 * per node list when we run out of per cpu objects. We only fetch
3436 * 50% to keep some capacity around for frees.
3437 */
3438 if (!kmem_cache_has_cpu_partial(s))
3439 s->cpu_partial = 0;
3440 else if (s->size >= PAGE_SIZE)
3441 s->cpu_partial = 2;
3442 else if (s->size >= 1024)
3443 s->cpu_partial = 6;
3444 else if (s->size >= 256)
3445 s->cpu_partial = 13;
3446 else
3447 s->cpu_partial = 30;
3448#endif
3449}
3450
81819f0f
CL
3451/*
3452 * calculate_sizes() determines the order and the distribution of data within
3453 * a slab object.
3454 */
06b285dc 3455static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3456{
3457 unsigned long flags = s->flags;
80a9201a 3458 size_t size = s->object_size;
834f3d11 3459 int order;
81819f0f 3460
d8b42bf5
CL
3461 /*
3462 * Round up object size to the next word boundary. We can only
3463 * place the free pointer at word boundaries and this determines
3464 * the possible location of the free pointer.
3465 */
3466 size = ALIGN(size, sizeof(void *));
3467
3468#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3469 /*
3470 * Determine if we can poison the object itself. If the user of
3471 * the slab may touch the object after free or before allocation
3472 * then we should never poison the object itself.
3473 */
5f0d5a3a 3474 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3475 !s->ctor)
81819f0f
CL
3476 s->flags |= __OBJECT_POISON;
3477 else
3478 s->flags &= ~__OBJECT_POISON;
3479
81819f0f
CL
3480
3481 /*
672bba3a 3482 * If we are Redzoning then check if there is some space between the
81819f0f 3483 * end of the object and the free pointer. If not then add an
672bba3a 3484 * additional word to have some bytes to store Redzone information.
81819f0f 3485 */
3b0efdfa 3486 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3487 size += sizeof(void *);
41ecc55b 3488#endif
81819f0f
CL
3489
3490 /*
672bba3a
CL
3491 * With that we have determined the number of bytes in actual use
3492 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3493 */
3494 s->inuse = size;
3495
5f0d5a3a 3496 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3497 s->ctor)) {
81819f0f
CL
3498 /*
3499 * Relocate free pointer after the object if it is not
3500 * permitted to overwrite the first word of the object on
3501 * kmem_cache_free.
3502 *
3503 * This is the case if we do RCU, have a constructor or
3504 * destructor or are poisoning the objects.
3505 */
3506 s->offset = size;
3507 size += sizeof(void *);
3508 }
3509
c12b3c62 3510#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3511 if (flags & SLAB_STORE_USER)
3512 /*
3513 * Need to store information about allocs and frees after
3514 * the object.
3515 */
3516 size += 2 * sizeof(struct track);
80a9201a 3517#endif
81819f0f 3518
80a9201a
AP
3519 kasan_cache_create(s, &size, &s->flags);
3520#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3521 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3522 /*
3523 * Add some empty padding so that we can catch
3524 * overwrites from earlier objects rather than let
3525 * tracking information or the free pointer be
0211a9c8 3526 * corrupted if a user writes before the start
81819f0f
CL
3527 * of the object.
3528 */
3529 size += sizeof(void *);
d86bd1be
JK
3530
3531 s->red_left_pad = sizeof(void *);
3532 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3533 size += s->red_left_pad;
3534 }
41ecc55b 3535#endif
672bba3a 3536
81819f0f
CL
3537 /*
3538 * SLUB stores one object immediately after another beginning from
3539 * offset 0. In order to align the objects we have to simply size
3540 * each object to conform to the alignment.
3541 */
45906855 3542 size = ALIGN(size, s->align);
81819f0f 3543 s->size = size;
06b285dc
CL
3544 if (forced_order >= 0)
3545 order = forced_order;
3546 else
ab9a0f19 3547 order = calculate_order(size, s->reserved);
81819f0f 3548
834f3d11 3549 if (order < 0)
81819f0f
CL
3550 return 0;
3551
b7a49f0d 3552 s->allocflags = 0;
834f3d11 3553 if (order)
b7a49f0d
CL
3554 s->allocflags |= __GFP_COMP;
3555
3556 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3557 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3558
3559 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3560 s->allocflags |= __GFP_RECLAIMABLE;
3561
81819f0f
CL
3562 /*
3563 * Determine the number of objects per slab
3564 */
ab9a0f19
LJ
3565 s->oo = oo_make(order, size, s->reserved);
3566 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3567 if (oo_objects(s->oo) > oo_objects(s->max))
3568 s->max = s->oo;
81819f0f 3569
834f3d11 3570 return !!oo_objects(s->oo);
81819f0f
CL
3571}
3572
8a13a4cc 3573static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3574{
8a13a4cc 3575 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3576 s->reserved = 0;
2482ddec
KC
3577#ifdef CONFIG_SLAB_FREELIST_HARDENED
3578 s->random = get_random_long();
3579#endif
81819f0f 3580
5f0d5a3a 3581 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
da9a638c 3582 s->reserved = sizeof(struct rcu_head);
81819f0f 3583
06b285dc 3584 if (!calculate_sizes(s, -1))
81819f0f 3585 goto error;
3de47213
DR
3586 if (disable_higher_order_debug) {
3587 /*
3588 * Disable debugging flags that store metadata if the min slab
3589 * order increased.
3590 */
3b0efdfa 3591 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3592 s->flags &= ~DEBUG_METADATA_FLAGS;
3593 s->offset = 0;
3594 if (!calculate_sizes(s, -1))
3595 goto error;
3596 }
3597 }
81819f0f 3598
2565409f
HC
3599#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3600 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3601 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3602 /* Enable fast mode */
3603 s->flags |= __CMPXCHG_DOUBLE;
3604#endif
3605
3b89d7d8
DR
3606 /*
3607 * The larger the object size is, the more pages we want on the partial
3608 * list to avoid pounding the page allocator excessively.
3609 */
49e22585
CL
3610 set_min_partial(s, ilog2(s->size) / 2);
3611
e6d0e1dc 3612 set_cpu_partial(s);
49e22585 3613
81819f0f 3614#ifdef CONFIG_NUMA
e2cb96b7 3615 s->remote_node_defrag_ratio = 1000;
81819f0f 3616#endif
210e7a43
TG
3617
3618 /* Initialize the pre-computed randomized freelist if slab is up */
3619 if (slab_state >= UP) {
3620 if (init_cache_random_seq(s))
3621 goto error;
3622 }
3623
55136592 3624 if (!init_kmem_cache_nodes(s))
dfb4f096 3625 goto error;
81819f0f 3626
55136592 3627 if (alloc_kmem_cache_cpus(s))
278b1bb1 3628 return 0;
ff12059e 3629
4c93c355 3630 free_kmem_cache_nodes(s);
81819f0f
CL
3631error:
3632 if (flags & SLAB_PANIC)
756a025f
JP
3633 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3634 s->name, (unsigned long)s->size, s->size,
3635 oo_order(s->oo), s->offset, flags);
278b1bb1 3636 return -EINVAL;
81819f0f 3637}
81819f0f 3638
33b12c38
CL
3639static void list_slab_objects(struct kmem_cache *s, struct page *page,
3640 const char *text)
3641{
3642#ifdef CONFIG_SLUB_DEBUG
3643 void *addr = page_address(page);
3644 void *p;
a5dd5c11
NK
3645 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3646 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3647 if (!map)
3648 return;
945cf2b6 3649 slab_err(s, page, text, s->name);
33b12c38 3650 slab_lock(page);
33b12c38 3651
5f80b13a 3652 get_map(s, page, map);
33b12c38
CL
3653 for_each_object(p, s, addr, page->objects) {
3654
3655 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3656 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3657 print_tracking(s, p);
3658 }
3659 }
3660 slab_unlock(page);
bbd7d57b 3661 kfree(map);
33b12c38
CL
3662#endif
3663}
3664
81819f0f 3665/*
599870b1 3666 * Attempt to free all partial slabs on a node.
52b4b950
DS
3667 * This is called from __kmem_cache_shutdown(). We must take list_lock
3668 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3669 */
599870b1 3670static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3671{
60398923 3672 LIST_HEAD(discard);
81819f0f
CL
3673 struct page *page, *h;
3674
52b4b950
DS
3675 BUG_ON(irqs_disabled());
3676 spin_lock_irq(&n->list_lock);
33b12c38 3677 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3678 if (!page->inuse) {
52b4b950 3679 remove_partial(n, page);
60398923 3680 list_add(&page->lru, &discard);
33b12c38
CL
3681 } else {
3682 list_slab_objects(s, page,
52b4b950 3683 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3684 }
33b12c38 3685 }
52b4b950 3686 spin_unlock_irq(&n->list_lock);
60398923
CW
3687
3688 list_for_each_entry_safe(page, h, &discard, lru)
3689 discard_slab(s, page);
81819f0f
CL
3690}
3691
3692/*
672bba3a 3693 * Release all resources used by a slab cache.
81819f0f 3694 */
52b4b950 3695int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3696{
3697 int node;
fa45dc25 3698 struct kmem_cache_node *n;
81819f0f
CL
3699
3700 flush_all(s);
81819f0f 3701 /* Attempt to free all objects */
fa45dc25 3702 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3703 free_partial(s, n);
3704 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3705 return 1;
3706 }
bf5eb3de 3707 sysfs_slab_remove(s);
81819f0f
CL
3708 return 0;
3709}
3710
81819f0f
CL
3711/********************************************************************
3712 * Kmalloc subsystem
3713 *******************************************************************/
3714
81819f0f
CL
3715static int __init setup_slub_min_order(char *str)
3716{
06428780 3717 get_option(&str, &slub_min_order);
81819f0f
CL
3718
3719 return 1;
3720}
3721
3722__setup("slub_min_order=", setup_slub_min_order);
3723
3724static int __init setup_slub_max_order(char *str)
3725{
06428780 3726 get_option(&str, &slub_max_order);
818cf590 3727 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3728
3729 return 1;
3730}
3731
3732__setup("slub_max_order=", setup_slub_max_order);
3733
3734static int __init setup_slub_min_objects(char *str)
3735{
06428780 3736 get_option(&str, &slub_min_objects);
81819f0f
CL
3737
3738 return 1;
3739}
3740
3741__setup("slub_min_objects=", setup_slub_min_objects);
3742
81819f0f
CL
3743void *__kmalloc(size_t size, gfp_t flags)
3744{
aadb4bc4 3745 struct kmem_cache *s;
5b882be4 3746 void *ret;
81819f0f 3747
95a05b42 3748 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3749 return kmalloc_large(size, flags);
aadb4bc4 3750
2c59dd65 3751 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3752
3753 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3754 return s;
3755
2b847c3c 3756 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3757
ca2b84cb 3758 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3759
505f5dcb 3760 kasan_kmalloc(s, ret, size, flags);
0316bec2 3761
5b882be4 3762 return ret;
81819f0f
CL
3763}
3764EXPORT_SYMBOL(__kmalloc);
3765
5d1f57e4 3766#ifdef CONFIG_NUMA
f619cfe1
CL
3767static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3768{
b1eeab67 3769 struct page *page;
e4f7c0b4 3770 void *ptr = NULL;
f619cfe1 3771
ae63fd26 3772 flags |= __GFP_COMP;
4949148a 3773 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3774 if (page)
e4f7c0b4
CM
3775 ptr = page_address(page);
3776
d56791b3 3777 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3778 return ptr;
f619cfe1
CL
3779}
3780
81819f0f
CL
3781void *__kmalloc_node(size_t size, gfp_t flags, int node)
3782{
aadb4bc4 3783 struct kmem_cache *s;
5b882be4 3784 void *ret;
81819f0f 3785
95a05b42 3786 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3787 ret = kmalloc_large_node(size, flags, node);
3788
ca2b84cb
EGM
3789 trace_kmalloc_node(_RET_IP_, ret,
3790 size, PAGE_SIZE << get_order(size),
3791 flags, node);
5b882be4
EGM
3792
3793 return ret;
3794 }
aadb4bc4 3795
2c59dd65 3796 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3797
3798 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3799 return s;
3800
2b847c3c 3801 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3802
ca2b84cb 3803 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3804
505f5dcb 3805 kasan_kmalloc(s, ret, size, flags);
0316bec2 3806
5b882be4 3807 return ret;
81819f0f
CL
3808}
3809EXPORT_SYMBOL(__kmalloc_node);
3810#endif
3811
ed18adc1
KC
3812#ifdef CONFIG_HARDENED_USERCOPY
3813/*
3814 * Rejects objects that are incorrectly sized.
3815 *
3816 * Returns NULL if check passes, otherwise const char * to name of cache
3817 * to indicate an error.
3818 */
3819const char *__check_heap_object(const void *ptr, unsigned long n,
3820 struct page *page)
3821{
3822 struct kmem_cache *s;
3823 unsigned long offset;
3824 size_t object_size;
3825
3826 /* Find object and usable object size. */
3827 s = page->slab_cache;
3828 object_size = slab_ksize(s);
3829
3830 /* Reject impossible pointers. */
3831 if (ptr < page_address(page))
3832 return s->name;
3833
3834 /* Find offset within object. */
3835 offset = (ptr - page_address(page)) % s->size;
3836
3837 /* Adjust for redzone and reject if within the redzone. */
3838 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3839 if (offset < s->red_left_pad)
3840 return s->name;
3841 offset -= s->red_left_pad;
3842 }
3843
3844 /* Allow address range falling entirely within object size. */
3845 if (offset <= object_size && n <= object_size - offset)
3846 return NULL;
3847
3848 return s->name;
3849}
3850#endif /* CONFIG_HARDENED_USERCOPY */
3851
0316bec2 3852static size_t __ksize(const void *object)
81819f0f 3853{
272c1d21 3854 struct page *page;
81819f0f 3855
ef8b4520 3856 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3857 return 0;
3858
294a80a8 3859 page = virt_to_head_page(object);
294a80a8 3860
76994412
PE
3861 if (unlikely(!PageSlab(page))) {
3862 WARN_ON(!PageCompound(page));
294a80a8 3863 return PAGE_SIZE << compound_order(page);
76994412 3864 }
81819f0f 3865
1b4f59e3 3866 return slab_ksize(page->slab_cache);
81819f0f 3867}
0316bec2
AR
3868
3869size_t ksize(const void *object)
3870{
3871 size_t size = __ksize(object);
3872 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3873 * so we need to unpoison this area.
3874 */
3875 kasan_unpoison_shadow(object, size);
0316bec2
AR
3876 return size;
3877}
b1aabecd 3878EXPORT_SYMBOL(ksize);
81819f0f
CL
3879
3880void kfree(const void *x)
3881{
81819f0f 3882 struct page *page;
5bb983b0 3883 void *object = (void *)x;
81819f0f 3884
2121db74
PE
3885 trace_kfree(_RET_IP_, x);
3886
2408c550 3887 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3888 return;
3889
b49af68f 3890 page = virt_to_head_page(x);
aadb4bc4 3891 if (unlikely(!PageSlab(page))) {
0937502a 3892 BUG_ON(!PageCompound(page));
d56791b3 3893 kfree_hook(x);
4949148a 3894 __free_pages(page, compound_order(page));
aadb4bc4
CL
3895 return;
3896 }
81084651 3897 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3898}
3899EXPORT_SYMBOL(kfree);
3900
832f37f5
VD
3901#define SHRINK_PROMOTE_MAX 32
3902
2086d26a 3903/*
832f37f5
VD
3904 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3905 * up most to the head of the partial lists. New allocations will then
3906 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3907 *
3908 * The slabs with the least items are placed last. This results in them
3909 * being allocated from last increasing the chance that the last objects
3910 * are freed in them.
2086d26a 3911 */
c9fc5864 3912int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3913{
3914 int node;
3915 int i;
3916 struct kmem_cache_node *n;
3917 struct page *page;
3918 struct page *t;
832f37f5
VD
3919 struct list_head discard;
3920 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3921 unsigned long flags;
ce3712d7 3922 int ret = 0;
2086d26a 3923
2086d26a 3924 flush_all(s);
fa45dc25 3925 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3926 INIT_LIST_HEAD(&discard);
3927 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3928 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3929
3930 spin_lock_irqsave(&n->list_lock, flags);
3931
3932 /*
832f37f5 3933 * Build lists of slabs to discard or promote.
2086d26a 3934 *
672bba3a
CL
3935 * Note that concurrent frees may occur while we hold the
3936 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3937 */
3938 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3939 int free = page->objects - page->inuse;
3940
3941 /* Do not reread page->inuse */
3942 barrier();
3943
3944 /* We do not keep full slabs on the list */
3945 BUG_ON(free <= 0);
3946
3947 if (free == page->objects) {
3948 list_move(&page->lru, &discard);
69cb8e6b 3949 n->nr_partial--;
832f37f5
VD
3950 } else if (free <= SHRINK_PROMOTE_MAX)
3951 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3952 }
3953
2086d26a 3954 /*
832f37f5
VD
3955 * Promote the slabs filled up most to the head of the
3956 * partial list.
2086d26a 3957 */
832f37f5
VD
3958 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3959 list_splice(promote + i, &n->partial);
2086d26a 3960
2086d26a 3961 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3962
3963 /* Release empty slabs */
832f37f5 3964 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3965 discard_slab(s, page);
ce3712d7
VD
3966
3967 if (slabs_node(s, node))
3968 ret = 1;
2086d26a
CL
3969 }
3970
ce3712d7 3971 return ret;
2086d26a 3972}
2086d26a 3973
c9fc5864 3974#ifdef CONFIG_MEMCG
01fb58bc
TH
3975static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3976{
50862ce7
TH
3977 /*
3978 * Called with all the locks held after a sched RCU grace period.
3979 * Even if @s becomes empty after shrinking, we can't know that @s
3980 * doesn't have allocations already in-flight and thus can't
3981 * destroy @s until the associated memcg is released.
3982 *
3983 * However, let's remove the sysfs files for empty caches here.
3984 * Each cache has a lot of interface files which aren't
3985 * particularly useful for empty draining caches; otherwise, we can
3986 * easily end up with millions of unnecessary sysfs files on
3987 * systems which have a lot of memory and transient cgroups.
3988 */
3989 if (!__kmem_cache_shrink(s))
3990 sysfs_slab_remove(s);
01fb58bc
TH
3991}
3992
c9fc5864
TH
3993void __kmemcg_cache_deactivate(struct kmem_cache *s)
3994{
3995 /*
3996 * Disable empty slabs caching. Used to avoid pinning offline
3997 * memory cgroups by kmem pages that can be freed.
3998 */
e6d0e1dc 3999 slub_set_cpu_partial(s, 0);
c9fc5864
TH
4000 s->min_partial = 0;
4001
4002 /*
4003 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 4004 * we have to make sure the change is visible before shrinking.
c9fc5864 4005 */
01fb58bc 4006 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864
TH
4007}
4008#endif
4009
b9049e23
YG
4010static int slab_mem_going_offline_callback(void *arg)
4011{
4012 struct kmem_cache *s;
4013
18004c5d 4014 mutex_lock(&slab_mutex);
b9049e23 4015 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4016 __kmem_cache_shrink(s);
18004c5d 4017 mutex_unlock(&slab_mutex);
b9049e23
YG
4018
4019 return 0;
4020}
4021
4022static void slab_mem_offline_callback(void *arg)
4023{
4024 struct kmem_cache_node *n;
4025 struct kmem_cache *s;
4026 struct memory_notify *marg = arg;
4027 int offline_node;
4028
b9d5ab25 4029 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4030
4031 /*
4032 * If the node still has available memory. we need kmem_cache_node
4033 * for it yet.
4034 */
4035 if (offline_node < 0)
4036 return;
4037
18004c5d 4038 mutex_lock(&slab_mutex);
b9049e23
YG
4039 list_for_each_entry(s, &slab_caches, list) {
4040 n = get_node(s, offline_node);
4041 if (n) {
4042 /*
4043 * if n->nr_slabs > 0, slabs still exist on the node
4044 * that is going down. We were unable to free them,
c9404c9c 4045 * and offline_pages() function shouldn't call this
b9049e23
YG
4046 * callback. So, we must fail.
4047 */
0f389ec6 4048 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4049
4050 s->node[offline_node] = NULL;
8de66a0c 4051 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4052 }
4053 }
18004c5d 4054 mutex_unlock(&slab_mutex);
b9049e23
YG
4055}
4056
4057static int slab_mem_going_online_callback(void *arg)
4058{
4059 struct kmem_cache_node *n;
4060 struct kmem_cache *s;
4061 struct memory_notify *marg = arg;
b9d5ab25 4062 int nid = marg->status_change_nid_normal;
b9049e23
YG
4063 int ret = 0;
4064
4065 /*
4066 * If the node's memory is already available, then kmem_cache_node is
4067 * already created. Nothing to do.
4068 */
4069 if (nid < 0)
4070 return 0;
4071
4072 /*
0121c619 4073 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4074 * allocate a kmem_cache_node structure in order to bring the node
4075 * online.
4076 */
18004c5d 4077 mutex_lock(&slab_mutex);
b9049e23
YG
4078 list_for_each_entry(s, &slab_caches, list) {
4079 /*
4080 * XXX: kmem_cache_alloc_node will fallback to other nodes
4081 * since memory is not yet available from the node that
4082 * is brought up.
4083 */
8de66a0c 4084 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4085 if (!n) {
4086 ret = -ENOMEM;
4087 goto out;
4088 }
4053497d 4089 init_kmem_cache_node(n);
b9049e23
YG
4090 s->node[nid] = n;
4091 }
4092out:
18004c5d 4093 mutex_unlock(&slab_mutex);
b9049e23
YG
4094 return ret;
4095}
4096
4097static int slab_memory_callback(struct notifier_block *self,
4098 unsigned long action, void *arg)
4099{
4100 int ret = 0;
4101
4102 switch (action) {
4103 case MEM_GOING_ONLINE:
4104 ret = slab_mem_going_online_callback(arg);
4105 break;
4106 case MEM_GOING_OFFLINE:
4107 ret = slab_mem_going_offline_callback(arg);
4108 break;
4109 case MEM_OFFLINE:
4110 case MEM_CANCEL_ONLINE:
4111 slab_mem_offline_callback(arg);
4112 break;
4113 case MEM_ONLINE:
4114 case MEM_CANCEL_OFFLINE:
4115 break;
4116 }
dc19f9db
KH
4117 if (ret)
4118 ret = notifier_from_errno(ret);
4119 else
4120 ret = NOTIFY_OK;
b9049e23
YG
4121 return ret;
4122}
4123
3ac38faa
AM
4124static struct notifier_block slab_memory_callback_nb = {
4125 .notifier_call = slab_memory_callback,
4126 .priority = SLAB_CALLBACK_PRI,
4127};
b9049e23 4128
81819f0f
CL
4129/********************************************************************
4130 * Basic setup of slabs
4131 *******************************************************************/
4132
51df1142
CL
4133/*
4134 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4135 * the page allocator. Allocate them properly then fix up the pointers
4136 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4137 */
4138
dffb4d60 4139static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4140{
4141 int node;
dffb4d60 4142 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4143 struct kmem_cache_node *n;
51df1142 4144
dffb4d60 4145 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4146
7d557b3c
GC
4147 /*
4148 * This runs very early, and only the boot processor is supposed to be
4149 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4150 * IPIs around.
4151 */
4152 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4153 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4154 struct page *p;
4155
fa45dc25
CL
4156 list_for_each_entry(p, &n->partial, lru)
4157 p->slab_cache = s;
51df1142 4158
607bf324 4159#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4160 list_for_each_entry(p, &n->full, lru)
4161 p->slab_cache = s;
51df1142 4162#endif
51df1142 4163 }
f7ce3190 4164 slab_init_memcg_params(s);
dffb4d60 4165 list_add(&s->list, &slab_caches);
510ded33 4166 memcg_link_cache(s);
dffb4d60 4167 return s;
51df1142
CL
4168}
4169
81819f0f
CL
4170void __init kmem_cache_init(void)
4171{
dffb4d60
CL
4172 static __initdata struct kmem_cache boot_kmem_cache,
4173 boot_kmem_cache_node;
51df1142 4174
fc8d8620
SG
4175 if (debug_guardpage_minorder())
4176 slub_max_order = 0;
4177
dffb4d60
CL
4178 kmem_cache_node = &boot_kmem_cache_node;
4179 kmem_cache = &boot_kmem_cache;
51df1142 4180
dffb4d60
CL
4181 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4182 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 4183
3ac38faa 4184 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4185
4186 /* Able to allocate the per node structures */
4187 slab_state = PARTIAL;
4188
dffb4d60
CL
4189 create_boot_cache(kmem_cache, "kmem_cache",
4190 offsetof(struct kmem_cache, node) +
4191 nr_node_ids * sizeof(struct kmem_cache_node *),
4192 SLAB_HWCACHE_ALIGN);
8a13a4cc 4193
dffb4d60 4194 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 4195
51df1142
CL
4196 /*
4197 * Allocate kmem_cache_node properly from the kmem_cache slab.
4198 * kmem_cache_node is separately allocated so no need to
4199 * update any list pointers.
4200 */
dffb4d60 4201 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4202
4203 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4204 setup_kmalloc_cache_index_table();
f97d5f63 4205 create_kmalloc_caches(0);
81819f0f 4206
210e7a43
TG
4207 /* Setup random freelists for each cache */
4208 init_freelist_randomization();
4209
a96a87bf
SAS
4210 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4211 slub_cpu_dead);
81819f0f 4212
9b130ad5 4213 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
f97d5f63 4214 cache_line_size(),
81819f0f
CL
4215 slub_min_order, slub_max_order, slub_min_objects,
4216 nr_cpu_ids, nr_node_ids);
4217}
4218
7e85ee0c
PE
4219void __init kmem_cache_init_late(void)
4220{
7e85ee0c
PE
4221}
4222
2633d7a0 4223struct kmem_cache *
a44cb944
VD
4224__kmem_cache_alias(const char *name, size_t size, size_t align,
4225 unsigned long flags, void (*ctor)(void *))
81819f0f 4226{
426589f5 4227 struct kmem_cache *s, *c;
81819f0f 4228
a44cb944 4229 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4230 if (s) {
4231 s->refcount++;
84d0ddd6 4232
81819f0f
CL
4233 /*
4234 * Adjust the object sizes so that we clear
4235 * the complete object on kzalloc.
4236 */
3b0efdfa 4237 s->object_size = max(s->object_size, (int)size);
81819f0f 4238 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4239
426589f5 4240 for_each_memcg_cache(c, s) {
84d0ddd6
VD
4241 c->object_size = s->object_size;
4242 c->inuse = max_t(int, c->inuse,
4243 ALIGN(size, sizeof(void *)));
4244 }
4245
7b8f3b66 4246 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4247 s->refcount--;
cbb79694 4248 s = NULL;
7b8f3b66 4249 }
a0e1d1be 4250 }
6446faa2 4251
cbb79694
CL
4252 return s;
4253}
84c1cf62 4254
8a13a4cc 4255int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 4256{
aac3a166
PE
4257 int err;
4258
4259 err = kmem_cache_open(s, flags);
4260 if (err)
4261 return err;
20cea968 4262
45530c44
CL
4263 /* Mutex is not taken during early boot */
4264 if (slab_state <= UP)
4265 return 0;
4266
107dab5c 4267 memcg_propagate_slab_attrs(s);
aac3a166 4268 err = sysfs_slab_add(s);
aac3a166 4269 if (err)
52b4b950 4270 __kmem_cache_release(s);
20cea968 4271
aac3a166 4272 return err;
81819f0f 4273}
81819f0f 4274
ce71e27c 4275void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4276{
aadb4bc4 4277 struct kmem_cache *s;
94b528d0 4278 void *ret;
aadb4bc4 4279
95a05b42 4280 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4281 return kmalloc_large(size, gfpflags);
4282
2c59dd65 4283 s = kmalloc_slab(size, gfpflags);
81819f0f 4284
2408c550 4285 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4286 return s;
81819f0f 4287
2b847c3c 4288 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4289
25985edc 4290 /* Honor the call site pointer we received. */
ca2b84cb 4291 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4292
4293 return ret;
81819f0f
CL
4294}
4295
5d1f57e4 4296#ifdef CONFIG_NUMA
81819f0f 4297void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4298 int node, unsigned long caller)
81819f0f 4299{
aadb4bc4 4300 struct kmem_cache *s;
94b528d0 4301 void *ret;
aadb4bc4 4302
95a05b42 4303 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4304 ret = kmalloc_large_node(size, gfpflags, node);
4305
4306 trace_kmalloc_node(caller, ret,
4307 size, PAGE_SIZE << get_order(size),
4308 gfpflags, node);
4309
4310 return ret;
4311 }
eada35ef 4312
2c59dd65 4313 s = kmalloc_slab(size, gfpflags);
81819f0f 4314
2408c550 4315 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4316 return s;
81819f0f 4317
2b847c3c 4318 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4319
25985edc 4320 /* Honor the call site pointer we received. */
ca2b84cb 4321 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4322
4323 return ret;
81819f0f 4324}
5d1f57e4 4325#endif
81819f0f 4326
ab4d5ed5 4327#ifdef CONFIG_SYSFS
205ab99d
CL
4328static int count_inuse(struct page *page)
4329{
4330 return page->inuse;
4331}
4332
4333static int count_total(struct page *page)
4334{
4335 return page->objects;
4336}
ab4d5ed5 4337#endif
205ab99d 4338
ab4d5ed5 4339#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4340static int validate_slab(struct kmem_cache *s, struct page *page,
4341 unsigned long *map)
53e15af0
CL
4342{
4343 void *p;
a973e9dd 4344 void *addr = page_address(page);
53e15af0
CL
4345
4346 if (!check_slab(s, page) ||
4347 !on_freelist(s, page, NULL))
4348 return 0;
4349
4350 /* Now we know that a valid freelist exists */
39b26464 4351 bitmap_zero(map, page->objects);
53e15af0 4352
5f80b13a
CL
4353 get_map(s, page, map);
4354 for_each_object(p, s, addr, page->objects) {
4355 if (test_bit(slab_index(p, s, addr), map))
4356 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4357 return 0;
53e15af0
CL
4358 }
4359
224a88be 4360 for_each_object(p, s, addr, page->objects)
7656c72b 4361 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4362 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4363 return 0;
4364 return 1;
4365}
4366
434e245d
CL
4367static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4368 unsigned long *map)
53e15af0 4369{
881db7fb
CL
4370 slab_lock(page);
4371 validate_slab(s, page, map);
4372 slab_unlock(page);
53e15af0
CL
4373}
4374
434e245d
CL
4375static int validate_slab_node(struct kmem_cache *s,
4376 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4377{
4378 unsigned long count = 0;
4379 struct page *page;
4380 unsigned long flags;
4381
4382 spin_lock_irqsave(&n->list_lock, flags);
4383
4384 list_for_each_entry(page, &n->partial, lru) {
434e245d 4385 validate_slab_slab(s, page, map);
53e15af0
CL
4386 count++;
4387 }
4388 if (count != n->nr_partial)
f9f58285
FF
4389 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4390 s->name, count, n->nr_partial);
53e15af0
CL
4391
4392 if (!(s->flags & SLAB_STORE_USER))
4393 goto out;
4394
4395 list_for_each_entry(page, &n->full, lru) {
434e245d 4396 validate_slab_slab(s, page, map);
53e15af0
CL
4397 count++;
4398 }
4399 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4400 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4401 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4402
4403out:
4404 spin_unlock_irqrestore(&n->list_lock, flags);
4405 return count;
4406}
4407
434e245d 4408static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4409{
4410 int node;
4411 unsigned long count = 0;
205ab99d 4412 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4413 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4414 struct kmem_cache_node *n;
434e245d
CL
4415
4416 if (!map)
4417 return -ENOMEM;
53e15af0
CL
4418
4419 flush_all(s);
fa45dc25 4420 for_each_kmem_cache_node(s, node, n)
434e245d 4421 count += validate_slab_node(s, n, map);
434e245d 4422 kfree(map);
53e15af0
CL
4423 return count;
4424}
88a420e4 4425/*
672bba3a 4426 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4427 * and freed.
4428 */
4429
4430struct location {
4431 unsigned long count;
ce71e27c 4432 unsigned long addr;
45edfa58
CL
4433 long long sum_time;
4434 long min_time;
4435 long max_time;
4436 long min_pid;
4437 long max_pid;
174596a0 4438 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4439 nodemask_t nodes;
88a420e4
CL
4440};
4441
4442struct loc_track {
4443 unsigned long max;
4444 unsigned long count;
4445 struct location *loc;
4446};
4447
4448static void free_loc_track(struct loc_track *t)
4449{
4450 if (t->max)
4451 free_pages((unsigned long)t->loc,
4452 get_order(sizeof(struct location) * t->max));
4453}
4454
68dff6a9 4455static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4456{
4457 struct location *l;
4458 int order;
4459
88a420e4
CL
4460 order = get_order(sizeof(struct location) * max);
4461
68dff6a9 4462 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4463 if (!l)
4464 return 0;
4465
4466 if (t->count) {
4467 memcpy(l, t->loc, sizeof(struct location) * t->count);
4468 free_loc_track(t);
4469 }
4470 t->max = max;
4471 t->loc = l;
4472 return 1;
4473}
4474
4475static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4476 const struct track *track)
88a420e4
CL
4477{
4478 long start, end, pos;
4479 struct location *l;
ce71e27c 4480 unsigned long caddr;
45edfa58 4481 unsigned long age = jiffies - track->when;
88a420e4
CL
4482
4483 start = -1;
4484 end = t->count;
4485
4486 for ( ; ; ) {
4487 pos = start + (end - start + 1) / 2;
4488
4489 /*
4490 * There is nothing at "end". If we end up there
4491 * we need to add something to before end.
4492 */
4493 if (pos == end)
4494 break;
4495
4496 caddr = t->loc[pos].addr;
45edfa58
CL
4497 if (track->addr == caddr) {
4498
4499 l = &t->loc[pos];
4500 l->count++;
4501 if (track->when) {
4502 l->sum_time += age;
4503 if (age < l->min_time)
4504 l->min_time = age;
4505 if (age > l->max_time)
4506 l->max_time = age;
4507
4508 if (track->pid < l->min_pid)
4509 l->min_pid = track->pid;
4510 if (track->pid > l->max_pid)
4511 l->max_pid = track->pid;
4512
174596a0
RR
4513 cpumask_set_cpu(track->cpu,
4514 to_cpumask(l->cpus));
45edfa58
CL
4515 }
4516 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4517 return 1;
4518 }
4519
45edfa58 4520 if (track->addr < caddr)
88a420e4
CL
4521 end = pos;
4522 else
4523 start = pos;
4524 }
4525
4526 /*
672bba3a 4527 * Not found. Insert new tracking element.
88a420e4 4528 */
68dff6a9 4529 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4530 return 0;
4531
4532 l = t->loc + pos;
4533 if (pos < t->count)
4534 memmove(l + 1, l,
4535 (t->count - pos) * sizeof(struct location));
4536 t->count++;
4537 l->count = 1;
45edfa58
CL
4538 l->addr = track->addr;
4539 l->sum_time = age;
4540 l->min_time = age;
4541 l->max_time = age;
4542 l->min_pid = track->pid;
4543 l->max_pid = track->pid;
174596a0
RR
4544 cpumask_clear(to_cpumask(l->cpus));
4545 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4546 nodes_clear(l->nodes);
4547 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4548 return 1;
4549}
4550
4551static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4552 struct page *page, enum track_item alloc,
a5dd5c11 4553 unsigned long *map)
88a420e4 4554{
a973e9dd 4555 void *addr = page_address(page);
88a420e4
CL
4556 void *p;
4557
39b26464 4558 bitmap_zero(map, page->objects);
5f80b13a 4559 get_map(s, page, map);
88a420e4 4560
224a88be 4561 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4562 if (!test_bit(slab_index(p, s, addr), map))
4563 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4564}
4565
4566static int list_locations(struct kmem_cache *s, char *buf,
4567 enum track_item alloc)
4568{
e374d483 4569 int len = 0;
88a420e4 4570 unsigned long i;
68dff6a9 4571 struct loc_track t = { 0, 0, NULL };
88a420e4 4572 int node;
bbd7d57b
ED
4573 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4574 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4575 struct kmem_cache_node *n;
88a420e4 4576
bbd7d57b 4577 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4578 GFP_KERNEL)) {
bbd7d57b 4579 kfree(map);
68dff6a9 4580 return sprintf(buf, "Out of memory\n");
bbd7d57b 4581 }
88a420e4
CL
4582 /* Push back cpu slabs */
4583 flush_all(s);
4584
fa45dc25 4585 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4586 unsigned long flags;
4587 struct page *page;
4588
9e86943b 4589 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4590 continue;
4591
4592 spin_lock_irqsave(&n->list_lock, flags);
4593 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4594 process_slab(&t, s, page, alloc, map);
88a420e4 4595 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4596 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4597 spin_unlock_irqrestore(&n->list_lock, flags);
4598 }
4599
4600 for (i = 0; i < t.count; i++) {
45edfa58 4601 struct location *l = &t.loc[i];
88a420e4 4602
9c246247 4603 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4604 break;
e374d483 4605 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4606
4607 if (l->addr)
62c70bce 4608 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4609 else
e374d483 4610 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4611
4612 if (l->sum_time != l->min_time) {
e374d483 4613 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4614 l->min_time,
4615 (long)div_u64(l->sum_time, l->count),
4616 l->max_time);
45edfa58 4617 } else
e374d483 4618 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4619 l->min_time);
4620
4621 if (l->min_pid != l->max_pid)
e374d483 4622 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4623 l->min_pid, l->max_pid);
4624 else
e374d483 4625 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4626 l->min_pid);
4627
174596a0
RR
4628 if (num_online_cpus() > 1 &&
4629 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4630 len < PAGE_SIZE - 60)
4631 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4632 " cpus=%*pbl",
4633 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4634
62bc62a8 4635 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4636 len < PAGE_SIZE - 60)
4637 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4638 " nodes=%*pbl",
4639 nodemask_pr_args(&l->nodes));
45edfa58 4640
e374d483 4641 len += sprintf(buf + len, "\n");
88a420e4
CL
4642 }
4643
4644 free_loc_track(&t);
bbd7d57b 4645 kfree(map);
88a420e4 4646 if (!t.count)
e374d483
HH
4647 len += sprintf(buf, "No data\n");
4648 return len;
88a420e4 4649}
ab4d5ed5 4650#endif
88a420e4 4651
a5a84755 4652#ifdef SLUB_RESILIENCY_TEST
c07b8183 4653static void __init resiliency_test(void)
a5a84755
CL
4654{
4655 u8 *p;
4656
95a05b42 4657 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4658
f9f58285
FF
4659 pr_err("SLUB resiliency testing\n");
4660 pr_err("-----------------------\n");
4661 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4662
4663 p = kzalloc(16, GFP_KERNEL);
4664 p[16] = 0x12;
f9f58285
FF
4665 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4666 p + 16);
a5a84755
CL
4667
4668 validate_slab_cache(kmalloc_caches[4]);
4669
4670 /* Hmmm... The next two are dangerous */
4671 p = kzalloc(32, GFP_KERNEL);
4672 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4673 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4674 p);
4675 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4676
4677 validate_slab_cache(kmalloc_caches[5]);
4678 p = kzalloc(64, GFP_KERNEL);
4679 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4680 *p = 0x56;
f9f58285
FF
4681 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4682 p);
4683 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4684 validate_slab_cache(kmalloc_caches[6]);
4685
f9f58285 4686 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4687 p = kzalloc(128, GFP_KERNEL);
4688 kfree(p);
4689 *p = 0x78;
f9f58285 4690 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4691 validate_slab_cache(kmalloc_caches[7]);
4692
4693 p = kzalloc(256, GFP_KERNEL);
4694 kfree(p);
4695 p[50] = 0x9a;
f9f58285 4696 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4697 validate_slab_cache(kmalloc_caches[8]);
4698
4699 p = kzalloc(512, GFP_KERNEL);
4700 kfree(p);
4701 p[512] = 0xab;
f9f58285 4702 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4703 validate_slab_cache(kmalloc_caches[9]);
4704}
4705#else
4706#ifdef CONFIG_SYSFS
4707static void resiliency_test(void) {};
4708#endif
4709#endif
4710
ab4d5ed5 4711#ifdef CONFIG_SYSFS
81819f0f 4712enum slab_stat_type {
205ab99d
CL
4713 SL_ALL, /* All slabs */
4714 SL_PARTIAL, /* Only partially allocated slabs */
4715 SL_CPU, /* Only slabs used for cpu caches */
4716 SL_OBJECTS, /* Determine allocated objects not slabs */
4717 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4718};
4719
205ab99d 4720#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4721#define SO_PARTIAL (1 << SL_PARTIAL)
4722#define SO_CPU (1 << SL_CPU)
4723#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4724#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4725
1663f26d
TH
4726#ifdef CONFIG_MEMCG
4727static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4728
4729static int __init setup_slub_memcg_sysfs(char *str)
4730{
4731 int v;
4732
4733 if (get_option(&str, &v) > 0)
4734 memcg_sysfs_enabled = v;
4735
4736 return 1;
4737}
4738
4739__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4740#endif
4741
62e5c4b4
CG
4742static ssize_t show_slab_objects(struct kmem_cache *s,
4743 char *buf, unsigned long flags)
81819f0f
CL
4744{
4745 unsigned long total = 0;
81819f0f
CL
4746 int node;
4747 int x;
4748 unsigned long *nodes;
81819f0f 4749
e35e1a97 4750 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4751 if (!nodes)
4752 return -ENOMEM;
81819f0f 4753
205ab99d
CL
4754 if (flags & SO_CPU) {
4755 int cpu;
81819f0f 4756
205ab99d 4757 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4758 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4759 cpu);
ec3ab083 4760 int node;
49e22585 4761 struct page *page;
dfb4f096 4762
4db0c3c2 4763 page = READ_ONCE(c->page);
ec3ab083
CL
4764 if (!page)
4765 continue;
205ab99d 4766
ec3ab083
CL
4767 node = page_to_nid(page);
4768 if (flags & SO_TOTAL)
4769 x = page->objects;
4770 else if (flags & SO_OBJECTS)
4771 x = page->inuse;
4772 else
4773 x = 1;
49e22585 4774
ec3ab083
CL
4775 total += x;
4776 nodes[node] += x;
4777
a93cf07b 4778 page = slub_percpu_partial_read_once(c);
49e22585 4779 if (page) {
8afb1474
LZ
4780 node = page_to_nid(page);
4781 if (flags & SO_TOTAL)
4782 WARN_ON_ONCE(1);
4783 else if (flags & SO_OBJECTS)
4784 WARN_ON_ONCE(1);
4785 else
4786 x = page->pages;
bc6697d8
ED
4787 total += x;
4788 nodes[node] += x;
49e22585 4789 }
81819f0f
CL
4790 }
4791 }
4792
bfc8c901 4793 get_online_mems();
ab4d5ed5 4794#ifdef CONFIG_SLUB_DEBUG
205ab99d 4795 if (flags & SO_ALL) {
fa45dc25
CL
4796 struct kmem_cache_node *n;
4797
4798 for_each_kmem_cache_node(s, node, n) {
205ab99d 4799
d0e0ac97
CG
4800 if (flags & SO_TOTAL)
4801 x = atomic_long_read(&n->total_objects);
4802 else if (flags & SO_OBJECTS)
4803 x = atomic_long_read(&n->total_objects) -
4804 count_partial(n, count_free);
81819f0f 4805 else
205ab99d 4806 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4807 total += x;
4808 nodes[node] += x;
4809 }
4810
ab4d5ed5
CL
4811 } else
4812#endif
4813 if (flags & SO_PARTIAL) {
fa45dc25 4814 struct kmem_cache_node *n;
81819f0f 4815
fa45dc25 4816 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4817 if (flags & SO_TOTAL)
4818 x = count_partial(n, count_total);
4819 else if (flags & SO_OBJECTS)
4820 x = count_partial(n, count_inuse);
81819f0f 4821 else
205ab99d 4822 x = n->nr_partial;
81819f0f
CL
4823 total += x;
4824 nodes[node] += x;
4825 }
4826 }
81819f0f
CL
4827 x = sprintf(buf, "%lu", total);
4828#ifdef CONFIG_NUMA
fa45dc25 4829 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4830 if (nodes[node])
4831 x += sprintf(buf + x, " N%d=%lu",
4832 node, nodes[node]);
4833#endif
bfc8c901 4834 put_online_mems();
81819f0f
CL
4835 kfree(nodes);
4836 return x + sprintf(buf + x, "\n");
4837}
4838
ab4d5ed5 4839#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4840static int any_slab_objects(struct kmem_cache *s)
4841{
4842 int node;
fa45dc25 4843 struct kmem_cache_node *n;
81819f0f 4844
fa45dc25 4845 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4846 if (atomic_long_read(&n->total_objects))
81819f0f 4847 return 1;
fa45dc25 4848
81819f0f
CL
4849 return 0;
4850}
ab4d5ed5 4851#endif
81819f0f
CL
4852
4853#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4854#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4855
4856struct slab_attribute {
4857 struct attribute attr;
4858 ssize_t (*show)(struct kmem_cache *s, char *buf);
4859 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4860};
4861
4862#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4863 static struct slab_attribute _name##_attr = \
4864 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4865
4866#define SLAB_ATTR(_name) \
4867 static struct slab_attribute _name##_attr = \
ab067e99 4868 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4869
81819f0f
CL
4870static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4871{
4872 return sprintf(buf, "%d\n", s->size);
4873}
4874SLAB_ATTR_RO(slab_size);
4875
4876static ssize_t align_show(struct kmem_cache *s, char *buf)
4877{
4878 return sprintf(buf, "%d\n", s->align);
4879}
4880SLAB_ATTR_RO(align);
4881
4882static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4883{
3b0efdfa 4884 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4885}
4886SLAB_ATTR_RO(object_size);
4887
4888static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4889{
834f3d11 4890 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4891}
4892SLAB_ATTR_RO(objs_per_slab);
4893
06b285dc
CL
4894static ssize_t order_store(struct kmem_cache *s,
4895 const char *buf, size_t length)
4896{
0121c619
CL
4897 unsigned long order;
4898 int err;
4899
3dbb95f7 4900 err = kstrtoul(buf, 10, &order);
0121c619
CL
4901 if (err)
4902 return err;
06b285dc
CL
4903
4904 if (order > slub_max_order || order < slub_min_order)
4905 return -EINVAL;
4906
4907 calculate_sizes(s, order);
4908 return length;
4909}
4910
81819f0f
CL
4911static ssize_t order_show(struct kmem_cache *s, char *buf)
4912{
834f3d11 4913 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4914}
06b285dc 4915SLAB_ATTR(order);
81819f0f 4916
73d342b1
DR
4917static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4918{
4919 return sprintf(buf, "%lu\n", s->min_partial);
4920}
4921
4922static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4923 size_t length)
4924{
4925 unsigned long min;
4926 int err;
4927
3dbb95f7 4928 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4929 if (err)
4930 return err;
4931
c0bdb232 4932 set_min_partial(s, min);
73d342b1
DR
4933 return length;
4934}
4935SLAB_ATTR(min_partial);
4936
49e22585
CL
4937static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4938{
e6d0e1dc 4939 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4940}
4941
4942static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4943 size_t length)
4944{
4945 unsigned long objects;
4946 int err;
4947
3dbb95f7 4948 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4949 if (err)
4950 return err;
345c905d 4951 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4952 return -EINVAL;
49e22585 4953
e6d0e1dc 4954 slub_set_cpu_partial(s, objects);
49e22585
CL
4955 flush_all(s);
4956 return length;
4957}
4958SLAB_ATTR(cpu_partial);
4959
81819f0f
CL
4960static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4961{
62c70bce
JP
4962 if (!s->ctor)
4963 return 0;
4964 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4965}
4966SLAB_ATTR_RO(ctor);
4967
81819f0f
CL
4968static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4969{
4307c14f 4970 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4971}
4972SLAB_ATTR_RO(aliases);
4973
81819f0f
CL
4974static ssize_t partial_show(struct kmem_cache *s, char *buf)
4975{
d9acf4b7 4976 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4977}
4978SLAB_ATTR_RO(partial);
4979
4980static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4981{
d9acf4b7 4982 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4983}
4984SLAB_ATTR_RO(cpu_slabs);
4985
4986static ssize_t objects_show(struct kmem_cache *s, char *buf)
4987{
205ab99d 4988 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4989}
4990SLAB_ATTR_RO(objects);
4991
205ab99d
CL
4992static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4993{
4994 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4995}
4996SLAB_ATTR_RO(objects_partial);
4997
49e22585
CL
4998static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4999{
5000 int objects = 0;
5001 int pages = 0;
5002 int cpu;
5003 int len;
5004
5005 for_each_online_cpu(cpu) {
a93cf07b
WY
5006 struct page *page;
5007
5008 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5009
5010 if (page) {
5011 pages += page->pages;
5012 objects += page->pobjects;
5013 }
5014 }
5015
5016 len = sprintf(buf, "%d(%d)", objects, pages);
5017
5018#ifdef CONFIG_SMP
5019 for_each_online_cpu(cpu) {
a93cf07b
WY
5020 struct page *page;
5021
5022 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5023
5024 if (page && len < PAGE_SIZE - 20)
5025 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5026 page->pobjects, page->pages);
5027 }
5028#endif
5029 return len + sprintf(buf + len, "\n");
5030}
5031SLAB_ATTR_RO(slabs_cpu_partial);
5032
a5a84755
CL
5033static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5034{
5035 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5036}
5037
5038static ssize_t reclaim_account_store(struct kmem_cache *s,
5039 const char *buf, size_t length)
5040{
5041 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5042 if (buf[0] == '1')
5043 s->flags |= SLAB_RECLAIM_ACCOUNT;
5044 return length;
5045}
5046SLAB_ATTR(reclaim_account);
5047
5048static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5049{
5050 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5051}
5052SLAB_ATTR_RO(hwcache_align);
5053
5054#ifdef CONFIG_ZONE_DMA
5055static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5056{
5057 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5058}
5059SLAB_ATTR_RO(cache_dma);
5060#endif
5061
5062static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5063{
5f0d5a3a 5064 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5065}
5066SLAB_ATTR_RO(destroy_by_rcu);
5067
ab9a0f19
LJ
5068static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5069{
5070 return sprintf(buf, "%d\n", s->reserved);
5071}
5072SLAB_ATTR_RO(reserved);
5073
ab4d5ed5 5074#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5075static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5076{
5077 return show_slab_objects(s, buf, SO_ALL);
5078}
5079SLAB_ATTR_RO(slabs);
5080
205ab99d
CL
5081static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5082{
5083 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5084}
5085SLAB_ATTR_RO(total_objects);
5086
81819f0f
CL
5087static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5088{
becfda68 5089 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5090}
5091
5092static ssize_t sanity_checks_store(struct kmem_cache *s,
5093 const char *buf, size_t length)
5094{
becfda68 5095 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5096 if (buf[0] == '1') {
5097 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5098 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5099 }
81819f0f
CL
5100 return length;
5101}
5102SLAB_ATTR(sanity_checks);
5103
5104static ssize_t trace_show(struct kmem_cache *s, char *buf)
5105{
5106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5107}
5108
5109static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5110 size_t length)
5111{
c9e16131
CL
5112 /*
5113 * Tracing a merged cache is going to give confusing results
5114 * as well as cause other issues like converting a mergeable
5115 * cache into an umergeable one.
5116 */
5117 if (s->refcount > 1)
5118 return -EINVAL;
5119
81819f0f 5120 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5121 if (buf[0] == '1') {
5122 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5123 s->flags |= SLAB_TRACE;
b789ef51 5124 }
81819f0f
CL
5125 return length;
5126}
5127SLAB_ATTR(trace);
5128
81819f0f
CL
5129static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5130{
5131 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5132}
5133
5134static ssize_t red_zone_store(struct kmem_cache *s,
5135 const char *buf, size_t length)
5136{
5137 if (any_slab_objects(s))
5138 return -EBUSY;
5139
5140 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5141 if (buf[0] == '1') {
81819f0f 5142 s->flags |= SLAB_RED_ZONE;
b789ef51 5143 }
06b285dc 5144 calculate_sizes(s, -1);
81819f0f
CL
5145 return length;
5146}
5147SLAB_ATTR(red_zone);
5148
5149static ssize_t poison_show(struct kmem_cache *s, char *buf)
5150{
5151 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5152}
5153
5154static ssize_t poison_store(struct kmem_cache *s,
5155 const char *buf, size_t length)
5156{
5157 if (any_slab_objects(s))
5158 return -EBUSY;
5159
5160 s->flags &= ~SLAB_POISON;
b789ef51 5161 if (buf[0] == '1') {
81819f0f 5162 s->flags |= SLAB_POISON;
b789ef51 5163 }
06b285dc 5164 calculate_sizes(s, -1);
81819f0f
CL
5165 return length;
5166}
5167SLAB_ATTR(poison);
5168
5169static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5170{
5171 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5172}
5173
5174static ssize_t store_user_store(struct kmem_cache *s,
5175 const char *buf, size_t length)
5176{
5177 if (any_slab_objects(s))
5178 return -EBUSY;
5179
5180 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5181 if (buf[0] == '1') {
5182 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5183 s->flags |= SLAB_STORE_USER;
b789ef51 5184 }
06b285dc 5185 calculate_sizes(s, -1);
81819f0f
CL
5186 return length;
5187}
5188SLAB_ATTR(store_user);
5189
53e15af0
CL
5190static ssize_t validate_show(struct kmem_cache *s, char *buf)
5191{
5192 return 0;
5193}
5194
5195static ssize_t validate_store(struct kmem_cache *s,
5196 const char *buf, size_t length)
5197{
434e245d
CL
5198 int ret = -EINVAL;
5199
5200 if (buf[0] == '1') {
5201 ret = validate_slab_cache(s);
5202 if (ret >= 0)
5203 ret = length;
5204 }
5205 return ret;
53e15af0
CL
5206}
5207SLAB_ATTR(validate);
a5a84755
CL
5208
5209static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5210{
5211 if (!(s->flags & SLAB_STORE_USER))
5212 return -ENOSYS;
5213 return list_locations(s, buf, TRACK_ALLOC);
5214}
5215SLAB_ATTR_RO(alloc_calls);
5216
5217static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5218{
5219 if (!(s->flags & SLAB_STORE_USER))
5220 return -ENOSYS;
5221 return list_locations(s, buf, TRACK_FREE);
5222}
5223SLAB_ATTR_RO(free_calls);
5224#endif /* CONFIG_SLUB_DEBUG */
5225
5226#ifdef CONFIG_FAILSLAB
5227static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5228{
5229 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5230}
5231
5232static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5233 size_t length)
5234{
c9e16131
CL
5235 if (s->refcount > 1)
5236 return -EINVAL;
5237
a5a84755
CL
5238 s->flags &= ~SLAB_FAILSLAB;
5239 if (buf[0] == '1')
5240 s->flags |= SLAB_FAILSLAB;
5241 return length;
5242}
5243SLAB_ATTR(failslab);
ab4d5ed5 5244#endif
53e15af0 5245
2086d26a
CL
5246static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5247{
5248 return 0;
5249}
5250
5251static ssize_t shrink_store(struct kmem_cache *s,
5252 const char *buf, size_t length)
5253{
832f37f5
VD
5254 if (buf[0] == '1')
5255 kmem_cache_shrink(s);
5256 else
2086d26a
CL
5257 return -EINVAL;
5258 return length;
5259}
5260SLAB_ATTR(shrink);
5261
81819f0f 5262#ifdef CONFIG_NUMA
9824601e 5263static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5264{
9824601e 5265 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5266}
5267
9824601e 5268static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5269 const char *buf, size_t length)
5270{
0121c619
CL
5271 unsigned long ratio;
5272 int err;
5273
3dbb95f7 5274 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5275 if (err)
5276 return err;
5277
e2cb96b7 5278 if (ratio <= 100)
0121c619 5279 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5280
81819f0f
CL
5281 return length;
5282}
9824601e 5283SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5284#endif
5285
8ff12cfc 5286#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5287static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5288{
5289 unsigned long sum = 0;
5290 int cpu;
5291 int len;
5292 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5293
5294 if (!data)
5295 return -ENOMEM;
5296
5297 for_each_online_cpu(cpu) {
9dfc6e68 5298 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5299
5300 data[cpu] = x;
5301 sum += x;
5302 }
5303
5304 len = sprintf(buf, "%lu", sum);
5305
50ef37b9 5306#ifdef CONFIG_SMP
8ff12cfc
CL
5307 for_each_online_cpu(cpu) {
5308 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5309 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5310 }
50ef37b9 5311#endif
8ff12cfc
CL
5312 kfree(data);
5313 return len + sprintf(buf + len, "\n");
5314}
5315
78eb00cc
DR
5316static void clear_stat(struct kmem_cache *s, enum stat_item si)
5317{
5318 int cpu;
5319
5320 for_each_online_cpu(cpu)
9dfc6e68 5321 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5322}
5323
8ff12cfc
CL
5324#define STAT_ATTR(si, text) \
5325static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5326{ \
5327 return show_stat(s, buf, si); \
5328} \
78eb00cc
DR
5329static ssize_t text##_store(struct kmem_cache *s, \
5330 const char *buf, size_t length) \
5331{ \
5332 if (buf[0] != '0') \
5333 return -EINVAL; \
5334 clear_stat(s, si); \
5335 return length; \
5336} \
5337SLAB_ATTR(text); \
8ff12cfc
CL
5338
5339STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5340STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5341STAT_ATTR(FREE_FASTPATH, free_fastpath);
5342STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5343STAT_ATTR(FREE_FROZEN, free_frozen);
5344STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5345STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5346STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5347STAT_ATTR(ALLOC_SLAB, alloc_slab);
5348STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5349STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5350STAT_ATTR(FREE_SLAB, free_slab);
5351STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5352STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5353STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5354STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5355STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5356STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5357STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5358STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5359STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5360STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5361STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5362STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5363STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5364STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5365#endif
5366
06428780 5367static struct attribute *slab_attrs[] = {
81819f0f
CL
5368 &slab_size_attr.attr,
5369 &object_size_attr.attr,
5370 &objs_per_slab_attr.attr,
5371 &order_attr.attr,
73d342b1 5372 &min_partial_attr.attr,
49e22585 5373 &cpu_partial_attr.attr,
81819f0f 5374 &objects_attr.attr,
205ab99d 5375 &objects_partial_attr.attr,
81819f0f
CL
5376 &partial_attr.attr,
5377 &cpu_slabs_attr.attr,
5378 &ctor_attr.attr,
81819f0f
CL
5379 &aliases_attr.attr,
5380 &align_attr.attr,
81819f0f
CL
5381 &hwcache_align_attr.attr,
5382 &reclaim_account_attr.attr,
5383 &destroy_by_rcu_attr.attr,
a5a84755 5384 &shrink_attr.attr,
ab9a0f19 5385 &reserved_attr.attr,
49e22585 5386 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5387#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5388 &total_objects_attr.attr,
5389 &slabs_attr.attr,
5390 &sanity_checks_attr.attr,
5391 &trace_attr.attr,
81819f0f
CL
5392 &red_zone_attr.attr,
5393 &poison_attr.attr,
5394 &store_user_attr.attr,
53e15af0 5395 &validate_attr.attr,
88a420e4
CL
5396 &alloc_calls_attr.attr,
5397 &free_calls_attr.attr,
ab4d5ed5 5398#endif
81819f0f
CL
5399#ifdef CONFIG_ZONE_DMA
5400 &cache_dma_attr.attr,
5401#endif
5402#ifdef CONFIG_NUMA
9824601e 5403 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5404#endif
5405#ifdef CONFIG_SLUB_STATS
5406 &alloc_fastpath_attr.attr,
5407 &alloc_slowpath_attr.attr,
5408 &free_fastpath_attr.attr,
5409 &free_slowpath_attr.attr,
5410 &free_frozen_attr.attr,
5411 &free_add_partial_attr.attr,
5412 &free_remove_partial_attr.attr,
5413 &alloc_from_partial_attr.attr,
5414 &alloc_slab_attr.attr,
5415 &alloc_refill_attr.attr,
e36a2652 5416 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5417 &free_slab_attr.attr,
5418 &cpuslab_flush_attr.attr,
5419 &deactivate_full_attr.attr,
5420 &deactivate_empty_attr.attr,
5421 &deactivate_to_head_attr.attr,
5422 &deactivate_to_tail_attr.attr,
5423 &deactivate_remote_frees_attr.attr,
03e404af 5424 &deactivate_bypass_attr.attr,
65c3376a 5425 &order_fallback_attr.attr,
b789ef51
CL
5426 &cmpxchg_double_fail_attr.attr,
5427 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5428 &cpu_partial_alloc_attr.attr,
5429 &cpu_partial_free_attr.attr,
8028dcea
AS
5430 &cpu_partial_node_attr.attr,
5431 &cpu_partial_drain_attr.attr,
81819f0f 5432#endif
4c13dd3b
DM
5433#ifdef CONFIG_FAILSLAB
5434 &failslab_attr.attr,
5435#endif
5436
81819f0f
CL
5437 NULL
5438};
5439
1fdaaa23 5440static const struct attribute_group slab_attr_group = {
81819f0f
CL
5441 .attrs = slab_attrs,
5442};
5443
5444static ssize_t slab_attr_show(struct kobject *kobj,
5445 struct attribute *attr,
5446 char *buf)
5447{
5448 struct slab_attribute *attribute;
5449 struct kmem_cache *s;
5450 int err;
5451
5452 attribute = to_slab_attr(attr);
5453 s = to_slab(kobj);
5454
5455 if (!attribute->show)
5456 return -EIO;
5457
5458 err = attribute->show(s, buf);
5459
5460 return err;
5461}
5462
5463static ssize_t slab_attr_store(struct kobject *kobj,
5464 struct attribute *attr,
5465 const char *buf, size_t len)
5466{
5467 struct slab_attribute *attribute;
5468 struct kmem_cache *s;
5469 int err;
5470
5471 attribute = to_slab_attr(attr);
5472 s = to_slab(kobj);
5473
5474 if (!attribute->store)
5475 return -EIO;
5476
5477 err = attribute->store(s, buf, len);
127424c8 5478#ifdef CONFIG_MEMCG
107dab5c 5479 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5480 struct kmem_cache *c;
81819f0f 5481
107dab5c
GC
5482 mutex_lock(&slab_mutex);
5483 if (s->max_attr_size < len)
5484 s->max_attr_size = len;
5485
ebe945c2
GC
5486 /*
5487 * This is a best effort propagation, so this function's return
5488 * value will be determined by the parent cache only. This is
5489 * basically because not all attributes will have a well
5490 * defined semantics for rollbacks - most of the actions will
5491 * have permanent effects.
5492 *
5493 * Returning the error value of any of the children that fail
5494 * is not 100 % defined, in the sense that users seeing the
5495 * error code won't be able to know anything about the state of
5496 * the cache.
5497 *
5498 * Only returning the error code for the parent cache at least
5499 * has well defined semantics. The cache being written to
5500 * directly either failed or succeeded, in which case we loop
5501 * through the descendants with best-effort propagation.
5502 */
426589f5
VD
5503 for_each_memcg_cache(c, s)
5504 attribute->store(c, buf, len);
107dab5c
GC
5505 mutex_unlock(&slab_mutex);
5506 }
5507#endif
81819f0f
CL
5508 return err;
5509}
5510
107dab5c
GC
5511static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5512{
127424c8 5513#ifdef CONFIG_MEMCG
107dab5c
GC
5514 int i;
5515 char *buffer = NULL;
93030d83 5516 struct kmem_cache *root_cache;
107dab5c 5517
93030d83 5518 if (is_root_cache(s))
107dab5c
GC
5519 return;
5520
f7ce3190 5521 root_cache = s->memcg_params.root_cache;
93030d83 5522
107dab5c
GC
5523 /*
5524 * This mean this cache had no attribute written. Therefore, no point
5525 * in copying default values around
5526 */
93030d83 5527 if (!root_cache->max_attr_size)
107dab5c
GC
5528 return;
5529
5530 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5531 char mbuf[64];
5532 char *buf;
5533 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5534 ssize_t len;
107dab5c
GC
5535
5536 if (!attr || !attr->store || !attr->show)
5537 continue;
5538
5539 /*
5540 * It is really bad that we have to allocate here, so we will
5541 * do it only as a fallback. If we actually allocate, though,
5542 * we can just use the allocated buffer until the end.
5543 *
5544 * Most of the slub attributes will tend to be very small in
5545 * size, but sysfs allows buffers up to a page, so they can
5546 * theoretically happen.
5547 */
5548 if (buffer)
5549 buf = buffer;
93030d83 5550 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5551 buf = mbuf;
5552 else {
5553 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5554 if (WARN_ON(!buffer))
5555 continue;
5556 buf = buffer;
5557 }
5558
478fe303
TG
5559 len = attr->show(root_cache, buf);
5560 if (len > 0)
5561 attr->store(s, buf, len);
107dab5c
GC
5562 }
5563
5564 if (buffer)
5565 free_page((unsigned long)buffer);
5566#endif
5567}
5568
41a21285
CL
5569static void kmem_cache_release(struct kobject *k)
5570{
5571 slab_kmem_cache_release(to_slab(k));
5572}
5573
52cf25d0 5574static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5575 .show = slab_attr_show,
5576 .store = slab_attr_store,
5577};
5578
5579static struct kobj_type slab_ktype = {
5580 .sysfs_ops = &slab_sysfs_ops,
41a21285 5581 .release = kmem_cache_release,
81819f0f
CL
5582};
5583
5584static int uevent_filter(struct kset *kset, struct kobject *kobj)
5585{
5586 struct kobj_type *ktype = get_ktype(kobj);
5587
5588 if (ktype == &slab_ktype)
5589 return 1;
5590 return 0;
5591}
5592
9cd43611 5593static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5594 .filter = uevent_filter,
5595};
5596
27c3a314 5597static struct kset *slab_kset;
81819f0f 5598
9a41707b
VD
5599static inline struct kset *cache_kset(struct kmem_cache *s)
5600{
127424c8 5601#ifdef CONFIG_MEMCG
9a41707b 5602 if (!is_root_cache(s))
f7ce3190 5603 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5604#endif
5605 return slab_kset;
5606}
5607
81819f0f
CL
5608#define ID_STR_LENGTH 64
5609
5610/* Create a unique string id for a slab cache:
6446faa2
CL
5611 *
5612 * Format :[flags-]size
81819f0f
CL
5613 */
5614static char *create_unique_id(struct kmem_cache *s)
5615{
5616 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5617 char *p = name;
5618
5619 BUG_ON(!name);
5620
5621 *p++ = ':';
5622 /*
5623 * First flags affecting slabcache operations. We will only
5624 * get here for aliasable slabs so we do not need to support
5625 * too many flags. The flags here must cover all flags that
5626 * are matched during merging to guarantee that the id is
5627 * unique.
5628 */
5629 if (s->flags & SLAB_CACHE_DMA)
5630 *p++ = 'd';
5631 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5632 *p++ = 'a';
becfda68 5633 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5634 *p++ = 'F';
230e9fc2
VD
5635 if (s->flags & SLAB_ACCOUNT)
5636 *p++ = 'A';
81819f0f
CL
5637 if (p != name + 1)
5638 *p++ = '-';
5639 p += sprintf(p, "%07d", s->size);
2633d7a0 5640
81819f0f
CL
5641 BUG_ON(p > name + ID_STR_LENGTH - 1);
5642 return name;
5643}
5644
3b7b3140
TH
5645static void sysfs_slab_remove_workfn(struct work_struct *work)
5646{
5647 struct kmem_cache *s =
5648 container_of(work, struct kmem_cache, kobj_remove_work);
5649
5650 if (!s->kobj.state_in_sysfs)
5651 /*
5652 * For a memcg cache, this may be called during
5653 * deactivation and again on shutdown. Remove only once.
5654 * A cache is never shut down before deactivation is
5655 * complete, so no need to worry about synchronization.
5656 */
f6ba4880 5657 goto out;
3b7b3140
TH
5658
5659#ifdef CONFIG_MEMCG
5660 kset_unregister(s->memcg_kset);
5661#endif
5662 kobject_uevent(&s->kobj, KOBJ_REMOVE);
f6ba4880 5663out:
3b7b3140
TH
5664 kobject_put(&s->kobj);
5665}
5666
81819f0f
CL
5667static int sysfs_slab_add(struct kmem_cache *s)
5668{
5669 int err;
5670 const char *name;
1663f26d 5671 struct kset *kset = cache_kset(s);
45530c44 5672 int unmergeable = slab_unmergeable(s);
81819f0f 5673
3b7b3140
TH
5674 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5675
1663f26d
TH
5676 if (!kset) {
5677 kobject_init(&s->kobj, &slab_ktype);
5678 return 0;
5679 }
5680
5ca94e03
MC
5681 if (!unmergeable && disable_higher_order_debug &&
5682 (slub_debug & DEBUG_METADATA_FLAGS))
5683 unmergeable = 1;
5684
81819f0f
CL
5685 if (unmergeable) {
5686 /*
5687 * Slabcache can never be merged so we can use the name proper.
5688 * This is typically the case for debug situations. In that
5689 * case we can catch duplicate names easily.
5690 */
27c3a314 5691 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5692 name = s->name;
5693 } else {
5694 /*
5695 * Create a unique name for the slab as a target
5696 * for the symlinks.
5697 */
5698 name = create_unique_id(s);
5699 }
5700
1663f26d 5701 s->kobj.kset = kset;
26e4f205 5702 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5703 if (err)
80da026a 5704 goto out;
81819f0f
CL
5705
5706 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5707 if (err)
5708 goto out_del_kobj;
9a41707b 5709
127424c8 5710#ifdef CONFIG_MEMCG
1663f26d 5711 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5712 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5713 if (!s->memcg_kset) {
54b6a731
DJ
5714 err = -ENOMEM;
5715 goto out_del_kobj;
9a41707b
VD
5716 }
5717 }
5718#endif
5719
81819f0f
CL
5720 kobject_uevent(&s->kobj, KOBJ_ADD);
5721 if (!unmergeable) {
5722 /* Setup first alias */
5723 sysfs_slab_alias(s, s->name);
81819f0f 5724 }
54b6a731
DJ
5725out:
5726 if (!unmergeable)
5727 kfree(name);
5728 return err;
5729out_del_kobj:
5730 kobject_del(&s->kobj);
54b6a731 5731 goto out;
81819f0f
CL
5732}
5733
bf5eb3de 5734static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5735{
97d06609 5736 if (slab_state < FULL)
2bce6485
CL
5737 /*
5738 * Sysfs has not been setup yet so no need to remove the
5739 * cache from sysfs.
5740 */
5741 return;
5742
3b7b3140
TH
5743 kobject_get(&s->kobj);
5744 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5745}
5746
804a0db7
MP
5747void sysfs_slab_unlink(struct kmem_cache *s)
5748{
5749 if (slab_state >= FULL)
5750 kobject_del(&s->kobj);
5751}
5752
bf5eb3de
TH
5753void sysfs_slab_release(struct kmem_cache *s)
5754{
5755 if (slab_state >= FULL)
5756 kobject_put(&s->kobj);
81819f0f
CL
5757}
5758
5759/*
5760 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5761 * available lest we lose that information.
81819f0f
CL
5762 */
5763struct saved_alias {
5764 struct kmem_cache *s;
5765 const char *name;
5766 struct saved_alias *next;
5767};
5768
5af328a5 5769static struct saved_alias *alias_list;
81819f0f
CL
5770
5771static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5772{
5773 struct saved_alias *al;
5774
97d06609 5775 if (slab_state == FULL) {
81819f0f
CL
5776 /*
5777 * If we have a leftover link then remove it.
5778 */
27c3a314
GKH
5779 sysfs_remove_link(&slab_kset->kobj, name);
5780 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5781 }
5782
5783 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5784 if (!al)
5785 return -ENOMEM;
5786
5787 al->s = s;
5788 al->name = name;
5789 al->next = alias_list;
5790 alias_list = al;
5791 return 0;
5792}
5793
5794static int __init slab_sysfs_init(void)
5795{
5b95a4ac 5796 struct kmem_cache *s;
81819f0f
CL
5797 int err;
5798
18004c5d 5799 mutex_lock(&slab_mutex);
2bce6485 5800
0ff21e46 5801 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5802 if (!slab_kset) {
18004c5d 5803 mutex_unlock(&slab_mutex);
f9f58285 5804 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5805 return -ENOSYS;
5806 }
5807
97d06609 5808 slab_state = FULL;
26a7bd03 5809
5b95a4ac 5810 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5811 err = sysfs_slab_add(s);
5d540fb7 5812 if (err)
f9f58285
FF
5813 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5814 s->name);
26a7bd03 5815 }
81819f0f
CL
5816
5817 while (alias_list) {
5818 struct saved_alias *al = alias_list;
5819
5820 alias_list = alias_list->next;
5821 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5822 if (err)
f9f58285
FF
5823 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5824 al->name);
81819f0f
CL
5825 kfree(al);
5826 }
5827
18004c5d 5828 mutex_unlock(&slab_mutex);
81819f0f
CL
5829 resiliency_test();
5830 return 0;
5831}
5832
5833__initcall(slab_sysfs_init);
ab4d5ed5 5834#endif /* CONFIG_SYSFS */
57ed3eda
PE
5835
5836/*
5837 * The /proc/slabinfo ABI
5838 */
158a9624 5839#ifdef CONFIG_SLABINFO
0d7561c6 5840void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5841{
57ed3eda 5842 unsigned long nr_slabs = 0;
205ab99d
CL
5843 unsigned long nr_objs = 0;
5844 unsigned long nr_free = 0;
57ed3eda 5845 int node;
fa45dc25 5846 struct kmem_cache_node *n;
57ed3eda 5847
fa45dc25 5848 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5849 nr_slabs += node_nr_slabs(n);
5850 nr_objs += node_nr_objs(n);
205ab99d 5851 nr_free += count_partial(n, count_free);
57ed3eda
PE
5852 }
5853
0d7561c6
GC
5854 sinfo->active_objs = nr_objs - nr_free;
5855 sinfo->num_objs = nr_objs;
5856 sinfo->active_slabs = nr_slabs;
5857 sinfo->num_slabs = nr_slabs;
5858 sinfo->objects_per_slab = oo_objects(s->oo);
5859 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5860}
5861
0d7561c6 5862void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5863{
7b3c3a50
AD
5864}
5865
b7454ad3
GC
5866ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5867 size_t count, loff_t *ppos)
7b3c3a50 5868{
b7454ad3 5869 return -EIO;
7b3c3a50 5870}
158a9624 5871#endif /* CONFIG_SLABINFO */