]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/swap_state.c
mm: mmap: register suitable readonly file vmas for khugepaged
[thirdparty/linux.git] / mm / swap_state.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
1da177e4 10#include <linux/mm.h>
5a0e3ad6 11#include <linux/gfp.h>
1da177e4
LT
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
46017e95 14#include <linux/swapops.h>
1da177e4
LT
15#include <linux/init.h>
16#include <linux/pagemap.h>
1da177e4 17#include <linux/backing-dev.h>
3fb5c298 18#include <linux/blkdev.h>
c484d410 19#include <linux/pagevec.h>
b20a3503 20#include <linux/migrate.h>
4b3ef9da 21#include <linux/vmalloc.h>
67afa38e 22#include <linux/swap_slots.h>
38d8b4e6 23#include <linux/huge_mm.h>
61ef1865 24#include <linux/shmem_fs.h>
243bce09 25#include "internal.h"
014bb1de 26#include "swap.h"
1da177e4
LT
27
28/*
29 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 30 * vmscan's shrink_page_list.
1da177e4 31 */
f5e54d6e 32static const struct address_space_operations swap_aops = {
1da177e4 33 .writepage = swap_writepage,
4c4a7634 34 .dirty_folio = noop_dirty_folio,
1c93923c 35#ifdef CONFIG_MIGRATION
e965f963 36 .migratepage = migrate_page,
1c93923c 37#endif
1da177e4
LT
38};
39
783cb68e
CD
40struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
f5c754d6 42static bool enable_vma_readahead __read_mostly = true;
ec560175 43
ec560175
HY
44#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
45#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
46#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
47#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48
49#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
50#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
52
53#define SWAP_RA_VAL(addr, win, hits) \
54 (((addr) & PAGE_MASK) | \
55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
56 ((hits) & SWAP_RA_HITS_MASK))
57
58/* Initial readahead hits is 4 to start up with a small window */
59#define GET_SWAP_RA_VAL(vma) \
60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
1da177e4 61
b96a3db2
QC
62#define INC_CACHE_INFO(x) data_race(swap_cache_info.x++)
63#define ADD_CACHE_INFO(x, nr) data_race(swap_cache_info.x += (nr))
1da177e4
LT
64
65static struct {
66 unsigned long add_total;
67 unsigned long del_total;
68 unsigned long find_success;
69 unsigned long find_total;
1da177e4
LT
70} swap_cache_info;
71
579f8290
SL
72static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
73
1da177e4
LT
74void show_swap_cache_info(void)
75{
33806f06 76 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 77 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 78 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 79 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
80 printk("Free swap = %ldkB\n",
81 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
82 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
83}
84
aae466b0
JK
85void *get_shadow_from_swap_cache(swp_entry_t entry)
86{
87 struct address_space *address_space = swap_address_space(entry);
88 pgoff_t idx = swp_offset(entry);
89 struct page *page;
90
8c647dd1 91 page = xa_load(&address_space->i_pages, idx);
aae466b0
JK
92 if (xa_is_value(page))
93 return page;
aae466b0
JK
94 return NULL;
95}
96
1da177e4 97/*
8d93b41c 98 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
99 * but sets SwapCache flag and private instead of mapping and index.
100 */
3852f676
JK
101int add_to_swap_cache(struct page *page, swp_entry_t entry,
102 gfp_t gfp, void **shadowp)
1da177e4 103{
8d93b41c 104 struct address_space *address_space = swap_address_space(entry);
38d8b4e6 105 pgoff_t idx = swp_offset(entry);
8d93b41c 106 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
6c357848 107 unsigned long i, nr = thp_nr_pages(page);
3852f676 108 void *old;
1da177e4 109
309381fe
SL
110 VM_BUG_ON_PAGE(!PageLocked(page), page);
111 VM_BUG_ON_PAGE(PageSwapCache(page), page);
112 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 113
38d8b4e6 114 page_ref_add(page, nr);
31a56396 115 SetPageSwapCache(page);
31a56396 116
8d93b41c
MW
117 do {
118 xas_lock_irq(&xas);
119 xas_create_range(&xas);
120 if (xas_error(&xas))
121 goto unlock;
122 for (i = 0; i < nr; i++) {
123 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
3852f676
JK
124 old = xas_load(&xas);
125 if (xa_is_value(old)) {
3852f676
JK
126 if (shadowp)
127 *shadowp = old;
128 }
8d93b41c 129 set_page_private(page + i, entry.val + i);
4101196b 130 xas_store(&xas, page);
8d93b41c
MW
131 xas_next(&xas);
132 }
38d8b4e6
HY
133 address_space->nrpages += nr;
134 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
b6038942 135 __mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
38d8b4e6 136 ADD_CACHE_INFO(add_total, nr);
8d93b41c
MW
137unlock:
138 xas_unlock_irq(&xas);
139 } while (xas_nomem(&xas, gfp));
31a56396 140
8d93b41c
MW
141 if (!xas_error(&xas))
142 return 0;
31a56396 143
8d93b41c
MW
144 ClearPageSwapCache(page);
145 page_ref_sub(page, nr);
146 return xas_error(&xas);
1da177e4
LT
147}
148
1da177e4
LT
149/*
150 * This must be called only on pages that have
151 * been verified to be in the swap cache.
152 */
3852f676
JK
153void __delete_from_swap_cache(struct page *page,
154 swp_entry_t entry, void *shadow)
1da177e4 155{
4e17ec25 156 struct address_space *address_space = swap_address_space(entry);
6c357848 157 int i, nr = thp_nr_pages(page);
4e17ec25
MW
158 pgoff_t idx = swp_offset(entry);
159 XA_STATE(xas, &address_space->i_pages, idx);
33806f06 160
309381fe
SL
161 VM_BUG_ON_PAGE(!PageLocked(page), page);
162 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
163 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 164
38d8b4e6 165 for (i = 0; i < nr; i++) {
3852f676 166 void *entry = xas_store(&xas, shadow);
4101196b 167 VM_BUG_ON_PAGE(entry != page, entry);
38d8b4e6 168 set_page_private(page + i, 0);
4e17ec25 169 xas_next(&xas);
38d8b4e6 170 }
1da177e4 171 ClearPageSwapCache(page);
38d8b4e6
HY
172 address_space->nrpages -= nr;
173 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
b6038942 174 __mod_lruvec_page_state(page, NR_SWAPCACHE, -nr);
38d8b4e6 175 ADD_CACHE_INFO(del_total, nr);
1da177e4
LT
176}
177
178/**
09c02e56
MWO
179 * add_to_swap - allocate swap space for a folio
180 * @folio: folio we want to move to swap
1da177e4 181 *
09c02e56
MWO
182 * Allocate swap space for the folio and add the folio to the
183 * swap cache.
184 *
185 * Context: Caller needs to hold the folio lock.
186 * Return: Whether the folio was added to the swap cache.
1da177e4 187 */
09c02e56 188bool add_to_swap(struct folio *folio)
1da177e4
LT
189{
190 swp_entry_t entry;
1da177e4
LT
191 int err;
192
09c02e56
MWO
193 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
194 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
1da177e4 195
e2e3fdc7 196 entry = folio_alloc_swap(folio);
2ca4532a 197 if (!entry.val)
09c02e56 198 return false;
0f074658 199
2ca4532a 200 /*
8d93b41c 201 * XArray node allocations from PF_MEMALLOC contexts could
2ca4532a
DN
202 * completely exhaust the page allocator. __GFP_NOMEMALLOC
203 * stops emergency reserves from being allocated.
204 *
205 * TODO: this could cause a theoretical memory reclaim
206 * deadlock in the swap out path.
207 */
208 /*
854e9ed0 209 * Add it to the swap cache.
2ca4532a 210 */
09c02e56 211 err = add_to_swap_cache(&folio->page, entry,
3852f676 212 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
38d8b4e6 213 if (err)
bd53b714 214 /*
2ca4532a
DN
215 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
216 * clear SWAP_HAS_CACHE flag.
1da177e4 217 */
0f074658 218 goto fail;
9625456c 219 /*
09c02e56
MWO
220 * Normally the folio will be dirtied in unmap because its
221 * pte should be dirty. A special case is MADV_FREE page. The
222 * page's pte could have dirty bit cleared but the folio's
223 * SwapBacked flag is still set because clearing the dirty bit
224 * and SwapBacked flag has no lock protected. For such folio,
225 * unmap will not set dirty bit for it, so folio reclaim will
226 * not write the folio out. This can cause data corruption when
227 * the folio is swapped in later. Always setting the dirty flag
228 * for the folio solves the problem.
9625456c 229 */
09c02e56 230 folio_mark_dirty(folio);
38d8b4e6 231
09c02e56 232 return true;
38d8b4e6 233
38d8b4e6 234fail:
09c02e56
MWO
235 put_swap_page(&folio->page, entry);
236 return false;
1da177e4
LT
237}
238
239/*
240 * This must be called only on pages that have
241 * been verified to be in the swap cache and locked.
242 * It will never put the page into the free list,
243 * the caller has a reference on the page.
244 */
245void delete_from_swap_cache(struct page *page)
246{
4e17ec25
MW
247 swp_entry_t entry = { .val = page_private(page) };
248 struct address_space *address_space = swap_address_space(entry);
1da177e4 249
b93b0163 250 xa_lock_irq(&address_space->i_pages);
3852f676 251 __delete_from_swap_cache(page, entry, NULL);
b93b0163 252 xa_unlock_irq(&address_space->i_pages);
1da177e4 253
75f6d6d2 254 put_swap_page(page, entry);
6c357848 255 page_ref_sub(page, thp_nr_pages(page));
1da177e4
LT
256}
257
3852f676
JK
258void clear_shadow_from_swap_cache(int type, unsigned long begin,
259 unsigned long end)
260{
261 unsigned long curr = begin;
262 void *old;
263
264 for (;;) {
3852f676
JK
265 swp_entry_t entry = swp_entry(type, curr);
266 struct address_space *address_space = swap_address_space(entry);
267 XA_STATE(xas, &address_space->i_pages, curr);
268
269 xa_lock_irq(&address_space->i_pages);
270 xas_for_each(&xas, old, end) {
271 if (!xa_is_value(old))
272 continue;
273 xas_store(&xas, NULL);
3852f676 274 }
3852f676
JK
275 xa_unlock_irq(&address_space->i_pages);
276
277 /* search the next swapcache until we meet end */
278 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
279 curr++;
280 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
281 if (curr > end)
282 break;
283 }
284}
285
1da177e4
LT
286/*
287 * If we are the only user, then try to free up the swap cache.
288 *
289 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
290 * here because we are going to recheck again inside
291 * try_to_free_swap() _with_ the lock.
1da177e4
LT
292 * - Marcelo
293 */
f4c4a3f4 294void free_swap_cache(struct page *page)
1da177e4 295{
a2c43eed
HD
296 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
297 try_to_free_swap(page);
1da177e4
LT
298 unlock_page(page);
299 }
300}
301
302/*
303 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 304 * this page if it is the last user of the page.
1da177e4
LT
305 */
306void free_page_and_swap_cache(struct page *page)
307{
308 free_swap_cache(page);
6fcb52a5 309 if (!is_huge_zero_page(page))
770a5370 310 put_page(page);
1da177e4
LT
311}
312
313/*
314 * Passed an array of pages, drop them all from swapcache and then release
315 * them. They are removed from the LRU and freed if this is their last use.
316 */
317void free_pages_and_swap_cache(struct page **pages, int nr)
318{
1da177e4 319 struct page **pagep = pages;
aabfb572 320 int i;
1da177e4
LT
321
322 lru_add_drain();
aabfb572
MH
323 for (i = 0; i < nr; i++)
324 free_swap_cache(pagep[i]);
c6f92f9f 325 release_pages(pagep, nr);
1da177e4
LT
326}
327
e9e9b7ec
MK
328static inline bool swap_use_vma_readahead(void)
329{
330 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
331}
332
1da177e4
LT
333/*
334 * Lookup a swap entry in the swap cache. A found page will be returned
335 * unlocked and with its refcount incremented - we rely on the kernel
336 * lock getting page table operations atomic even if we drop the page
337 * lock before returning.
338 */
ec560175
HY
339struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
340 unsigned long addr)
1da177e4
LT
341{
342 struct page *page;
eb085574 343 struct swap_info_struct *si;
1da177e4 344
eb085574
HY
345 si = get_swap_device(entry);
346 if (!si)
347 return NULL;
f6ab1f7f 348 page = find_get_page(swap_address_space(entry), swp_offset(entry));
eb085574 349 put_swap_device(si);
1da177e4 350
ec560175
HY
351 INC_CACHE_INFO(find_total);
352 if (page) {
eaf649eb
MK
353 bool vma_ra = swap_use_vma_readahead();
354 bool readahead;
355
1da177e4 356 INC_CACHE_INFO(find_success);
eaf649eb
MK
357 /*
358 * At the moment, we don't support PG_readahead for anon THP
359 * so let's bail out rather than confusing the readahead stat.
360 */
ec560175
HY
361 if (unlikely(PageTransCompound(page)))
362 return page;
eaf649eb 363
ec560175 364 readahead = TestClearPageReadahead(page);
eaf649eb
MK
365 if (vma && vma_ra) {
366 unsigned long ra_val;
367 int win, hits;
368
369 ra_val = GET_SWAP_RA_VAL(vma);
370 win = SWAP_RA_WIN(ra_val);
371 hits = SWAP_RA_HITS(ra_val);
ec560175
HY
372 if (readahead)
373 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
374 atomic_long_set(&vma->swap_readahead_info,
375 SWAP_RA_VAL(addr, win, hits));
376 }
eaf649eb 377
ec560175 378 if (readahead) {
cbc65df2 379 count_vm_event(SWAP_RA_HIT);
eaf649eb 380 if (!vma || !vma_ra)
ec560175 381 atomic_inc(&swapin_readahead_hits);
cbc65df2 382 }
579f8290 383 }
eaf649eb 384
1da177e4
LT
385 return page;
386}
387
61ef1865
MWO
388/**
389 * find_get_incore_page - Find and get a page from the page or swap caches.
390 * @mapping: The address_space to search.
391 * @index: The page cache index.
392 *
393 * This differs from find_get_page() in that it will also look for the
394 * page in the swap cache.
395 *
396 * Return: The found page or %NULL.
397 */
398struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
399{
400 swp_entry_t swp;
401 struct swap_info_struct *si;
44835d20
MWO
402 struct page *page = pagecache_get_page(mapping, index,
403 FGP_ENTRY | FGP_HEAD, 0);
61ef1865 404
a6de4b48 405 if (!page)
61ef1865 406 return page;
a6de4b48
MWO
407 if (!xa_is_value(page))
408 return find_subpage(page, index);
61ef1865
MWO
409 if (!shmem_mapping(mapping))
410 return NULL;
411
412 swp = radix_to_swp_entry(page);
413 /* Prevent swapoff from happening to us */
414 si = get_swap_device(swp);
415 if (!si)
416 return NULL;
417 page = find_get_page(swap_address_space(swp), swp_offset(swp));
418 put_swap_device(si);
419 return page;
420}
421
5b999aad
DS
422struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
423 struct vm_area_struct *vma, unsigned long addr,
424 bool *new_page_allocated)
1da177e4 425{
eb085574 426 struct swap_info_struct *si;
4c6355b2 427 struct page *page;
aae466b0 428 void *shadow = NULL;
4c6355b2 429
5b999aad 430 *new_page_allocated = false;
1da177e4 431
4c6355b2
JW
432 for (;;) {
433 int err;
1da177e4
LT
434 /*
435 * First check the swap cache. Since this is normally
436 * called after lookup_swap_cache() failed, re-calling
437 * that would confuse statistics.
438 */
eb085574
HY
439 si = get_swap_device(entry);
440 if (!si)
4c6355b2
JW
441 return NULL;
442 page = find_get_page(swap_address_space(entry),
443 swp_offset(entry));
eb085574 444 put_swap_device(si);
4c6355b2
JW
445 if (page)
446 return page;
1da177e4 447
ba81f838
HY
448 /*
449 * Just skip read ahead for unused swap slot.
450 * During swap_off when swap_slot_cache is disabled,
451 * we have to handle the race between putting
452 * swap entry in swap cache and marking swap slot
453 * as SWAP_HAS_CACHE. That's done in later part of code or
454 * else swap_off will be aborted if we return NULL.
455 */
456 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
4c6355b2 457 return NULL;
e8c26ab6 458
1da177e4 459 /*
4c6355b2
JW
460 * Get a new page to read into from swap. Allocate it now,
461 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
462 * cause any racers to loop around until we add it to cache.
1da177e4 463 */
4c6355b2
JW
464 page = alloc_page_vma(gfp_mask, vma, addr);
465 if (!page)
466 return NULL;
1da177e4 467
f000944d
HD
468 /*
469 * Swap entry may have been freed since our caller observed it.
470 */
355cfa73 471 err = swapcache_prepare(entry);
4c6355b2 472 if (!err)
f000944d
HD
473 break;
474
4c6355b2
JW
475 put_page(page);
476 if (err != -EEXIST)
477 return NULL;
478
2ca4532a 479 /*
4c6355b2
JW
480 * We might race against __delete_from_swap_cache(), and
481 * stumble across a swap_map entry whose SWAP_HAS_CACHE
482 * has not yet been cleared. Or race against another
483 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
484 * in swap_map, but not yet added its page to swap cache.
2ca4532a 485 */
029c4628 486 schedule_timeout_uninterruptible(1);
4c6355b2
JW
487 }
488
489 /*
490 * The swap entry is ours to swap in. Prepare the new page.
491 */
492
493 __SetPageLocked(page);
494 __SetPageSwapBacked(page);
495
0add0c77 496 if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry))
4c6355b2 497 goto fail_unlock;
4c6355b2 498
0add0c77
SB
499 /* May fail (-ENOMEM) if XArray node allocation failed. */
500 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
4c6355b2 501 goto fail_unlock;
0add0c77
SB
502
503 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 504
aae466b0 505 if (shadow)
0995d7e5 506 workingset_refault(page_folio(page), shadow);
314b57fb 507
4c6355b2 508 /* Caller will initiate read into locked page */
6058eaec 509 lru_cache_add(page);
4c6355b2
JW
510 *new_page_allocated = true;
511 return page;
1da177e4 512
4c6355b2 513fail_unlock:
0add0c77 514 put_swap_page(page, entry);
4c6355b2
JW
515 unlock_page(page);
516 put_page(page);
517 return NULL;
1da177e4 518}
46017e95 519
5b999aad
DS
520/*
521 * Locate a page of swap in physical memory, reserving swap cache space
522 * and reading the disk if it is not already cached.
523 * A failure return means that either the page allocation failed or that
524 * the swap entry is no longer in use.
525 */
526struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
5169b844
N
527 struct vm_area_struct *vma,
528 unsigned long addr, bool do_poll,
529 struct swap_iocb **plug)
5b999aad
DS
530{
531 bool page_was_allocated;
532 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
533 vma, addr, &page_was_allocated);
534
535 if (page_was_allocated)
5169b844 536 swap_readpage(retpage, do_poll, plug);
5b999aad
DS
537
538 return retpage;
539}
540
ec560175
HY
541static unsigned int __swapin_nr_pages(unsigned long prev_offset,
542 unsigned long offset,
543 int hits,
544 int max_pages,
545 int prev_win)
579f8290 546{
ec560175 547 unsigned int pages, last_ra;
579f8290
SL
548
549 /*
550 * This heuristic has been found to work well on both sequential and
551 * random loads, swapping to hard disk or to SSD: please don't ask
552 * what the "+ 2" means, it just happens to work well, that's all.
553 */
ec560175 554 pages = hits + 2;
579f8290
SL
555 if (pages == 2) {
556 /*
557 * We can have no readahead hits to judge by: but must not get
558 * stuck here forever, so check for an adjacent offset instead
559 * (and don't even bother to check whether swap type is same).
560 */
561 if (offset != prev_offset + 1 && offset != prev_offset - 1)
562 pages = 1;
579f8290
SL
563 } else {
564 unsigned int roundup = 4;
565 while (roundup < pages)
566 roundup <<= 1;
567 pages = roundup;
568 }
569
570 if (pages > max_pages)
571 pages = max_pages;
572
573 /* Don't shrink readahead too fast */
ec560175 574 last_ra = prev_win / 2;
579f8290
SL
575 if (pages < last_ra)
576 pages = last_ra;
ec560175
HY
577
578 return pages;
579}
580
581static unsigned long swapin_nr_pages(unsigned long offset)
582{
583 static unsigned long prev_offset;
584 unsigned int hits, pages, max_pages;
585 static atomic_t last_readahead_pages;
586
587 max_pages = 1 << READ_ONCE(page_cluster);
588 if (max_pages <= 1)
589 return 1;
590
591 hits = atomic_xchg(&swapin_readahead_hits, 0);
d6c1f098
QC
592 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
593 max_pages,
ec560175
HY
594 atomic_read(&last_readahead_pages));
595 if (!hits)
d6c1f098 596 WRITE_ONCE(prev_offset, offset);
579f8290
SL
597 atomic_set(&last_readahead_pages, pages);
598
599 return pages;
600}
601
46017e95 602/**
e9e9b7ec 603 * swap_cluster_readahead - swap in pages in hope we need them soon
46017e95 604 * @entry: swap entry of this memory
7682486b 605 * @gfp_mask: memory allocation flags
e9e9b7ec 606 * @vmf: fault information
46017e95
HD
607 *
608 * Returns the struct page for entry and addr, after queueing swapin.
609 *
610 * Primitive swap readahead code. We simply read an aligned block of
611 * (1 << page_cluster) entries in the swap area. This method is chosen
612 * because it doesn't cost us any seek time. We also make sure to queue
613 * the 'original' request together with the readahead ones...
614 *
615 * This has been extended to use the NUMA policies from the mm triggering
616 * the readahead.
617 *
c1e8d7c6 618 * Caller must hold read mmap_lock if vmf->vma is not NULL.
46017e95 619 */
e9e9b7ec
MK
620struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
621 struct vm_fault *vmf)
46017e95 622{
46017e95 623 struct page *page;
579f8290
SL
624 unsigned long entry_offset = swp_offset(entry);
625 unsigned long offset = entry_offset;
67f96aa2 626 unsigned long start_offset, end_offset;
579f8290 627 unsigned long mask;
e9a6effa 628 struct swap_info_struct *si = swp_swap_info(entry);
3fb5c298 629 struct blk_plug plug;
5169b844 630 struct swap_iocb *splug = NULL;
c4fa6309 631 bool do_poll = true, page_allocated;
e9e9b7ec
MK
632 struct vm_area_struct *vma = vmf->vma;
633 unsigned long addr = vmf->address;
46017e95 634
579f8290
SL
635 mask = swapin_nr_pages(offset) - 1;
636 if (!mask)
637 goto skip;
638
23955622 639 do_poll = false;
67f96aa2
RR
640 /* Read a page_cluster sized and aligned cluster around offset. */
641 start_offset = offset & ~mask;
642 end_offset = offset | mask;
643 if (!start_offset) /* First page is swap header. */
644 start_offset++;
e9a6effa
HY
645 if (end_offset >= si->max)
646 end_offset = si->max - 1;
67f96aa2 647
3fb5c298 648 blk_start_plug(&plug);
67f96aa2 649 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95 650 /* Ok, do the async read-ahead now */
c4fa6309
HY
651 page = __read_swap_cache_async(
652 swp_entry(swp_type(entry), offset),
653 gfp_mask, vma, addr, &page_allocated);
46017e95 654 if (!page)
67f96aa2 655 continue;
c4fa6309 656 if (page_allocated) {
5169b844 657 swap_readpage(page, false, &splug);
eaf649eb 658 if (offset != entry_offset) {
c4fa6309
HY
659 SetPageReadahead(page);
660 count_vm_event(SWAP_RA);
661 }
cbc65df2 662 }
09cbfeaf 663 put_page(page);
46017e95 664 }
3fb5c298 665 blk_finish_plug(&plug);
5169b844 666 swap_read_unplug(splug);
3fb5c298 667
46017e95 668 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 669skip:
5169b844
N
670 /* The page was likely read above, so no need for plugging here */
671 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
46017e95 672}
4b3ef9da
HY
673
674int init_swap_address_space(unsigned int type, unsigned long nr_pages)
675{
676 struct address_space *spaces, *space;
677 unsigned int i, nr;
678
679 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
778e1cdd 680 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
4b3ef9da
HY
681 if (!spaces)
682 return -ENOMEM;
683 for (i = 0; i < nr; i++) {
684 space = spaces + i;
a2833486 685 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
4b3ef9da
HY
686 atomic_set(&space->i_mmap_writable, 0);
687 space->a_ops = &swap_aops;
688 /* swap cache doesn't use writeback related tags */
689 mapping_set_no_writeback_tags(space);
4b3ef9da
HY
690 }
691 nr_swapper_spaces[type] = nr;
054f1d1f 692 swapper_spaces[type] = spaces;
4b3ef9da
HY
693
694 return 0;
695}
696
697void exit_swap_address_space(unsigned int type)
698{
eea4a501
HY
699 int i;
700 struct address_space *spaces = swapper_spaces[type];
701
702 for (i = 0; i < nr_swapper_spaces[type]; i++)
703 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
704 kvfree(spaces);
4b3ef9da 705 nr_swapper_spaces[type] = 0;
054f1d1f 706 swapper_spaces[type] = NULL;
4b3ef9da 707}
ec560175
HY
708
709static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
710 unsigned long faddr,
711 unsigned long lpfn,
712 unsigned long rpfn,
713 unsigned long *start,
714 unsigned long *end)
715{
716 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
717 PFN_DOWN(faddr & PMD_MASK));
718 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
719 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
720}
721
eaf649eb
MK
722static void swap_ra_info(struct vm_fault *vmf,
723 struct vma_swap_readahead *ra_info)
ec560175
HY
724{
725 struct vm_area_struct *vma = vmf->vma;
eaf649eb 726 unsigned long ra_val;
ec560175
HY
727 unsigned long faddr, pfn, fpfn;
728 unsigned long start, end;
eaf649eb 729 pte_t *pte, *orig_pte;
ec560175
HY
730 unsigned int max_win, hits, prev_win, win, left;
731#ifndef CONFIG_64BIT
732 pte_t *tpte;
733#endif
734
61b63972
HY
735 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
736 SWAP_RA_ORDER_CEILING);
737 if (max_win == 1) {
eaf649eb
MK
738 ra_info->win = 1;
739 return;
61b63972
HY
740 }
741
ec560175 742 faddr = vmf->address;
eaf649eb 743 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
ec560175 744
ec560175 745 fpfn = PFN_DOWN(faddr);
eaf649eb
MK
746 ra_val = GET_SWAP_RA_VAL(vma);
747 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
748 prev_win = SWAP_RA_WIN(ra_val);
749 hits = SWAP_RA_HITS(ra_val);
750 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
ec560175
HY
751 max_win, prev_win);
752 atomic_long_set(&vma->swap_readahead_info,
753 SWAP_RA_VAL(faddr, win, 0));
754
eaf649eb
MK
755 if (win == 1) {
756 pte_unmap(orig_pte);
757 return;
758 }
ec560175
HY
759
760 /* Copy the PTEs because the page table may be unmapped */
761 if (fpfn == pfn + 1)
762 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
763 else if (pfn == fpfn + 1)
764 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
765 &start, &end);
766 else {
767 left = (win - 1) / 2;
768 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
769 &start, &end);
770 }
eaf649eb
MK
771 ra_info->nr_pte = end - start;
772 ra_info->offset = fpfn - start;
773 pte -= ra_info->offset;
ec560175 774#ifdef CONFIG_64BIT
eaf649eb 775 ra_info->ptes = pte;
ec560175 776#else
eaf649eb 777 tpte = ra_info->ptes;
ec560175
HY
778 for (pfn = start; pfn != end; pfn++)
779 *tpte++ = *pte++;
780#endif
eaf649eb 781 pte_unmap(orig_pte);
ec560175
HY
782}
783
e9f59873
YS
784/**
785 * swap_vma_readahead - swap in pages in hope we need them soon
27ec4878 786 * @fentry: swap entry of this memory
e9f59873
YS
787 * @gfp_mask: memory allocation flags
788 * @vmf: fault information
789 *
790 * Returns the struct page for entry and addr, after queueing swapin.
791 *
cb152a1a 792 * Primitive swap readahead code. We simply read in a few pages whose
e9f59873
YS
793 * virtual addresses are around the fault address in the same vma.
794 *
c1e8d7c6 795 * Caller must hold read mmap_lock if vmf->vma is not NULL.
e9f59873
YS
796 *
797 */
f5c754d6
CIK
798static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
799 struct vm_fault *vmf)
ec560175
HY
800{
801 struct blk_plug plug;
5169b844 802 struct swap_iocb *splug = NULL;
ec560175
HY
803 struct vm_area_struct *vma = vmf->vma;
804 struct page *page;
805 pte_t *pte, pentry;
806 swp_entry_t entry;
807 unsigned int i;
808 bool page_allocated;
e97af699
ML
809 struct vma_swap_readahead ra_info = {
810 .win = 1,
811 };
ec560175 812
eaf649eb
MK
813 swap_ra_info(vmf, &ra_info);
814 if (ra_info.win == 1)
ec560175
HY
815 goto skip;
816
817 blk_start_plug(&plug);
eaf649eb 818 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
ec560175
HY
819 i++, pte++) {
820 pentry = *pte;
821 if (pte_none(pentry))
822 continue;
823 if (pte_present(pentry))
824 continue;
825 entry = pte_to_swp_entry(pentry);
826 if (unlikely(non_swap_entry(entry)))
827 continue;
828 page = __read_swap_cache_async(entry, gfp_mask, vma,
829 vmf->address, &page_allocated);
830 if (!page)
831 continue;
832 if (page_allocated) {
5169b844 833 swap_readpage(page, false, &splug);
eaf649eb 834 if (i != ra_info.offset) {
ec560175
HY
835 SetPageReadahead(page);
836 count_vm_event(SWAP_RA);
837 }
838 }
839 put_page(page);
840 }
841 blk_finish_plug(&plug);
5169b844 842 swap_read_unplug(splug);
ec560175
HY
843 lru_add_drain();
844skip:
5169b844 845 /* The page was likely read above, so no need for plugging here */
ec560175 846 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
5169b844 847 ra_info.win == 1, NULL);
ec560175 848}
d9bfcfdc 849
e9e9b7ec
MK
850/**
851 * swapin_readahead - swap in pages in hope we need them soon
852 * @entry: swap entry of this memory
853 * @gfp_mask: memory allocation flags
854 * @vmf: fault information
855 *
856 * Returns the struct page for entry and addr, after queueing swapin.
857 *
858 * It's a main entry function for swap readahead. By the configuration,
859 * it will read ahead blocks by cluster-based(ie, physical disk based)
860 * or vma-based(ie, virtual address based on faulty address) readahead.
861 */
862struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
863 struct vm_fault *vmf)
864{
865 return swap_use_vma_readahead() ?
866 swap_vma_readahead(entry, gfp_mask, vmf) :
867 swap_cluster_readahead(entry, gfp_mask, vmf);
868}
869
d9bfcfdc
HY
870#ifdef CONFIG_SYSFS
871static ssize_t vma_ra_enabled_show(struct kobject *kobj,
872 struct kobj_attribute *attr, char *buf)
873{
ae7a927d
JP
874 return sysfs_emit(buf, "%s\n",
875 enable_vma_readahead ? "true" : "false");
d9bfcfdc
HY
876}
877static ssize_t vma_ra_enabled_store(struct kobject *kobj,
878 struct kobj_attribute *attr,
879 const char *buf, size_t count)
880{
717aeab4
JG
881 ssize_t ret;
882
883 ret = kstrtobool(buf, &enable_vma_readahead);
884 if (ret)
885 return ret;
d9bfcfdc
HY
886
887 return count;
888}
889static struct kobj_attribute vma_ra_enabled_attr =
890 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
891 vma_ra_enabled_store);
892
d9bfcfdc
HY
893static struct attribute *swap_attrs[] = {
894 &vma_ra_enabled_attr.attr,
d9bfcfdc
HY
895 NULL,
896};
897
e48333b6 898static const struct attribute_group swap_attr_group = {
d9bfcfdc
HY
899 .attrs = swap_attrs,
900};
901
902static int __init swap_init_sysfs(void)
903{
904 int err;
905 struct kobject *swap_kobj;
906
907 swap_kobj = kobject_create_and_add("swap", mm_kobj);
908 if (!swap_kobj) {
909 pr_err("failed to create swap kobject\n");
910 return -ENOMEM;
911 }
912 err = sysfs_create_group(swap_kobj, &swap_attr_group);
913 if (err) {
914 pr_err("failed to register swap group\n");
915 goto delete_obj;
916 }
917 return 0;
918
919delete_obj:
920 kobject_put(swap_kobj);
921 return err;
922}
923subsys_initcall(swap_init_sysfs);
924#endif