]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/swap_state.c
mmap locking API: convert mmap_sem comments
[thirdparty/linux.git] / mm / swap_state.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
1da177e4 10#include <linux/mm.h>
5a0e3ad6 11#include <linux/gfp.h>
1da177e4
LT
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
46017e95 14#include <linux/swapops.h>
1da177e4
LT
15#include <linux/init.h>
16#include <linux/pagemap.h>
1da177e4 17#include <linux/backing-dev.h>
3fb5c298 18#include <linux/blkdev.h>
c484d410 19#include <linux/pagevec.h>
b20a3503 20#include <linux/migrate.h>
4b3ef9da 21#include <linux/vmalloc.h>
67afa38e 22#include <linux/swap_slots.h>
38d8b4e6 23#include <linux/huge_mm.h>
1da177e4 24
1da177e4
LT
25
26/*
27 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 28 * vmscan's shrink_page_list.
1da177e4 29 */
f5e54d6e 30static const struct address_space_operations swap_aops = {
1da177e4 31 .writepage = swap_writepage,
62c230bc 32 .set_page_dirty = swap_set_page_dirty,
1c93923c 33#ifdef CONFIG_MIGRATION
e965f963 34 .migratepage = migrate_page,
1c93923c 35#endif
1da177e4
LT
36};
37
783cb68e
CD
38struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
39static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
f5c754d6 40static bool enable_vma_readahead __read_mostly = true;
ec560175 41
ec560175
HY
42#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
43#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
44#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
45#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
46
47#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
48#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
49#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
50
51#define SWAP_RA_VAL(addr, win, hits) \
52 (((addr) & PAGE_MASK) | \
53 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
54 ((hits) & SWAP_RA_HITS_MASK))
55
56/* Initial readahead hits is 4 to start up with a small window */
57#define GET_SWAP_RA_VAL(vma) \
58 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
1da177e4
LT
59
60#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
38d8b4e6 61#define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
1da177e4
LT
62
63static struct {
64 unsigned long add_total;
65 unsigned long del_total;
66 unsigned long find_success;
67 unsigned long find_total;
1da177e4
LT
68} swap_cache_info;
69
33806f06
SL
70unsigned long total_swapcache_pages(void)
71{
4b3ef9da 72 unsigned int i, j, nr;
33806f06 73 unsigned long ret = 0;
4b3ef9da 74 struct address_space *spaces;
054f1d1f 75 struct swap_info_struct *si;
33806f06 76
4b3ef9da 77 for (i = 0; i < MAX_SWAPFILES; i++) {
054f1d1f
HY
78 swp_entry_t entry = swp_entry(i, 1);
79
80 /* Avoid get_swap_device() to warn for bad swap entry */
81 if (!swp_swap_info(entry))
82 continue;
83 /* Prevent swapoff to free swapper_spaces */
84 si = get_swap_device(entry);
85 if (!si)
4b3ef9da 86 continue;
054f1d1f
HY
87 nr = nr_swapper_spaces[i];
88 spaces = swapper_spaces[i];
4b3ef9da
HY
89 for (j = 0; j < nr; j++)
90 ret += spaces[j].nrpages;
054f1d1f 91 put_swap_device(si);
4b3ef9da 92 }
33806f06
SL
93 return ret;
94}
95
579f8290
SL
96static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
97
1da177e4
LT
98void show_swap_cache_info(void)
99{
33806f06 100 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 101 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 102 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 103 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
104 printk("Free swap = %ldkB\n",
105 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
106 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
107}
108
109/*
8d93b41c 110 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
111 * but sets SwapCache flag and private instead of mapping and index.
112 */
8d93b41c 113int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp)
1da177e4 114{
8d93b41c 115 struct address_space *address_space = swap_address_space(entry);
38d8b4e6 116 pgoff_t idx = swp_offset(entry);
8d93b41c 117 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
cb774451 118 unsigned long i, nr = hpage_nr_pages(page);
1da177e4 119
309381fe
SL
120 VM_BUG_ON_PAGE(!PageLocked(page), page);
121 VM_BUG_ON_PAGE(PageSwapCache(page), page);
122 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 123
38d8b4e6 124 page_ref_add(page, nr);
31a56396 125 SetPageSwapCache(page);
31a56396 126
8d93b41c
MW
127 do {
128 xas_lock_irq(&xas);
129 xas_create_range(&xas);
130 if (xas_error(&xas))
131 goto unlock;
132 for (i = 0; i < nr; i++) {
133 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
134 set_page_private(page + i, entry.val + i);
4101196b 135 xas_store(&xas, page);
8d93b41c
MW
136 xas_next(&xas);
137 }
38d8b4e6
HY
138 address_space->nrpages += nr;
139 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
140 ADD_CACHE_INFO(add_total, nr);
8d93b41c
MW
141unlock:
142 xas_unlock_irq(&xas);
143 } while (xas_nomem(&xas, gfp));
31a56396 144
8d93b41c
MW
145 if (!xas_error(&xas))
146 return 0;
31a56396 147
8d93b41c
MW
148 ClearPageSwapCache(page);
149 page_ref_sub(page, nr);
150 return xas_error(&xas);
1da177e4
LT
151}
152
1da177e4
LT
153/*
154 * This must be called only on pages that have
155 * been verified to be in the swap cache.
156 */
4e17ec25 157void __delete_from_swap_cache(struct page *page, swp_entry_t entry)
1da177e4 158{
4e17ec25 159 struct address_space *address_space = swap_address_space(entry);
38d8b4e6 160 int i, nr = hpage_nr_pages(page);
4e17ec25
MW
161 pgoff_t idx = swp_offset(entry);
162 XA_STATE(xas, &address_space->i_pages, idx);
33806f06 163
309381fe
SL
164 VM_BUG_ON_PAGE(!PageLocked(page), page);
165 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
166 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 167
38d8b4e6 168 for (i = 0; i < nr; i++) {
4e17ec25 169 void *entry = xas_store(&xas, NULL);
4101196b 170 VM_BUG_ON_PAGE(entry != page, entry);
38d8b4e6 171 set_page_private(page + i, 0);
4e17ec25 172 xas_next(&xas);
38d8b4e6 173 }
1da177e4 174 ClearPageSwapCache(page);
38d8b4e6
HY
175 address_space->nrpages -= nr;
176 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
177 ADD_CACHE_INFO(del_total, nr);
1da177e4
LT
178}
179
180/**
181 * add_to_swap - allocate swap space for a page
182 * @page: page we want to move to swap
183 *
184 * Allocate swap space for the page and add the page to the
185 * swap cache. Caller needs to hold the page lock.
186 */
0f074658 187int add_to_swap(struct page *page)
1da177e4
LT
188{
189 swp_entry_t entry;
1da177e4
LT
190 int err;
191
309381fe
SL
192 VM_BUG_ON_PAGE(!PageLocked(page), page);
193 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1da177e4 194
38d8b4e6 195 entry = get_swap_page(page);
2ca4532a 196 if (!entry.val)
0f074658
MK
197 return 0;
198
2ca4532a 199 /*
8d93b41c 200 * XArray node allocations from PF_MEMALLOC contexts could
2ca4532a
DN
201 * completely exhaust the page allocator. __GFP_NOMEMALLOC
202 * stops emergency reserves from being allocated.
203 *
204 * TODO: this could cause a theoretical memory reclaim
205 * deadlock in the swap out path.
206 */
207 /*
854e9ed0 208 * Add it to the swap cache.
2ca4532a
DN
209 */
210 err = add_to_swap_cache(page, entry,
211 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
38d8b4e6 212 if (err)
bd53b714 213 /*
2ca4532a
DN
214 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
215 * clear SWAP_HAS_CACHE flag.
1da177e4 216 */
0f074658 217 goto fail;
9625456c
SL
218 /*
219 * Normally the page will be dirtied in unmap because its pte should be
220 * dirty. A special case is MADV_FREE page. The page'e pte could have
221 * dirty bit cleared but the page's SwapBacked bit is still set because
222 * clearing the dirty bit and SwapBacked bit has no lock protected. For
223 * such page, unmap will not set dirty bit for it, so page reclaim will
224 * not write the page out. This can cause data corruption when the page
225 * is swap in later. Always setting the dirty bit for the page solves
226 * the problem.
227 */
228 set_page_dirty(page);
38d8b4e6
HY
229
230 return 1;
231
38d8b4e6 232fail:
0f074658 233 put_swap_page(page, entry);
38d8b4e6 234 return 0;
1da177e4
LT
235}
236
237/*
238 * This must be called only on pages that have
239 * been verified to be in the swap cache and locked.
240 * It will never put the page into the free list,
241 * the caller has a reference on the page.
242 */
243void delete_from_swap_cache(struct page *page)
244{
4e17ec25
MW
245 swp_entry_t entry = { .val = page_private(page) };
246 struct address_space *address_space = swap_address_space(entry);
1da177e4 247
b93b0163 248 xa_lock_irq(&address_space->i_pages);
4e17ec25 249 __delete_from_swap_cache(page, entry);
b93b0163 250 xa_unlock_irq(&address_space->i_pages);
1da177e4 251
75f6d6d2 252 put_swap_page(page, entry);
38d8b4e6 253 page_ref_sub(page, hpage_nr_pages(page));
1da177e4
LT
254}
255
1da177e4
LT
256/*
257 * If we are the only user, then try to free up the swap cache.
258 *
259 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
260 * here because we are going to recheck again inside
261 * try_to_free_swap() _with_ the lock.
1da177e4
LT
262 * - Marcelo
263 */
264static inline void free_swap_cache(struct page *page)
265{
a2c43eed
HD
266 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
267 try_to_free_swap(page);
1da177e4
LT
268 unlock_page(page);
269 }
270}
271
272/*
273 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 274 * this page if it is the last user of the page.
1da177e4
LT
275 */
276void free_page_and_swap_cache(struct page *page)
277{
278 free_swap_cache(page);
6fcb52a5 279 if (!is_huge_zero_page(page))
770a5370 280 put_page(page);
1da177e4
LT
281}
282
283/*
284 * Passed an array of pages, drop them all from swapcache and then release
285 * them. They are removed from the LRU and freed if this is their last use.
286 */
287void free_pages_and_swap_cache(struct page **pages, int nr)
288{
1da177e4 289 struct page **pagep = pages;
aabfb572 290 int i;
1da177e4
LT
291
292 lru_add_drain();
aabfb572
MH
293 for (i = 0; i < nr; i++)
294 free_swap_cache(pagep[i]);
c6f92f9f 295 release_pages(pagep, nr);
1da177e4
LT
296}
297
e9e9b7ec
MK
298static inline bool swap_use_vma_readahead(void)
299{
300 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
301}
302
1da177e4
LT
303/*
304 * Lookup a swap entry in the swap cache. A found page will be returned
305 * unlocked and with its refcount incremented - we rely on the kernel
306 * lock getting page table operations atomic even if we drop the page
307 * lock before returning.
308 */
ec560175
HY
309struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
310 unsigned long addr)
1da177e4
LT
311{
312 struct page *page;
eb085574 313 struct swap_info_struct *si;
1da177e4 314
eb085574
HY
315 si = get_swap_device(entry);
316 if (!si)
317 return NULL;
f6ab1f7f 318 page = find_get_page(swap_address_space(entry), swp_offset(entry));
eb085574 319 put_swap_device(si);
1da177e4 320
ec560175
HY
321 INC_CACHE_INFO(find_total);
322 if (page) {
eaf649eb
MK
323 bool vma_ra = swap_use_vma_readahead();
324 bool readahead;
325
1da177e4 326 INC_CACHE_INFO(find_success);
eaf649eb
MK
327 /*
328 * At the moment, we don't support PG_readahead for anon THP
329 * so let's bail out rather than confusing the readahead stat.
330 */
ec560175
HY
331 if (unlikely(PageTransCompound(page)))
332 return page;
eaf649eb 333
ec560175 334 readahead = TestClearPageReadahead(page);
eaf649eb
MK
335 if (vma && vma_ra) {
336 unsigned long ra_val;
337 int win, hits;
338
339 ra_val = GET_SWAP_RA_VAL(vma);
340 win = SWAP_RA_WIN(ra_val);
341 hits = SWAP_RA_HITS(ra_val);
ec560175
HY
342 if (readahead)
343 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
344 atomic_long_set(&vma->swap_readahead_info,
345 SWAP_RA_VAL(addr, win, hits));
346 }
eaf649eb 347
ec560175 348 if (readahead) {
cbc65df2 349 count_vm_event(SWAP_RA_HIT);
eaf649eb 350 if (!vma || !vma_ra)
ec560175 351 atomic_inc(&swapin_readahead_hits);
cbc65df2 352 }
579f8290 353 }
eaf649eb 354
1da177e4
LT
355 return page;
356}
357
5b999aad
DS
358struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
359 struct vm_area_struct *vma, unsigned long addr,
360 bool *new_page_allocated)
1da177e4 361{
eb085574 362 struct swap_info_struct *si;
4c6355b2
JW
363 struct page *page;
364
5b999aad 365 *new_page_allocated = false;
1da177e4 366
4c6355b2
JW
367 for (;;) {
368 int err;
1da177e4
LT
369 /*
370 * First check the swap cache. Since this is normally
371 * called after lookup_swap_cache() failed, re-calling
372 * that would confuse statistics.
373 */
eb085574
HY
374 si = get_swap_device(entry);
375 if (!si)
4c6355b2
JW
376 return NULL;
377 page = find_get_page(swap_address_space(entry),
378 swp_offset(entry));
eb085574 379 put_swap_device(si);
4c6355b2
JW
380 if (page)
381 return page;
1da177e4 382
ba81f838
HY
383 /*
384 * Just skip read ahead for unused swap slot.
385 * During swap_off when swap_slot_cache is disabled,
386 * we have to handle the race between putting
387 * swap entry in swap cache and marking swap slot
388 * as SWAP_HAS_CACHE. That's done in later part of code or
389 * else swap_off will be aborted if we return NULL.
390 */
391 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
4c6355b2 392 return NULL;
e8c26ab6 393
1da177e4 394 /*
4c6355b2
JW
395 * Get a new page to read into from swap. Allocate it now,
396 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
397 * cause any racers to loop around until we add it to cache.
1da177e4 398 */
4c6355b2
JW
399 page = alloc_page_vma(gfp_mask, vma, addr);
400 if (!page)
401 return NULL;
1da177e4 402
f000944d
HD
403 /*
404 * Swap entry may have been freed since our caller observed it.
405 */
355cfa73 406 err = swapcache_prepare(entry);
4c6355b2 407 if (!err)
f000944d
HD
408 break;
409
4c6355b2
JW
410 put_page(page);
411 if (err != -EEXIST)
412 return NULL;
413
2ca4532a 414 /*
4c6355b2
JW
415 * We might race against __delete_from_swap_cache(), and
416 * stumble across a swap_map entry whose SWAP_HAS_CACHE
417 * has not yet been cleared. Or race against another
418 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
419 * in swap_map, but not yet added its page to swap cache.
2ca4532a 420 */
4c6355b2
JW
421 cond_resched();
422 }
423
424 /*
425 * The swap entry is ours to swap in. Prepare the new page.
426 */
427
428 __SetPageLocked(page);
429 __SetPageSwapBacked(page);
430
431 /* May fail (-ENOMEM) if XArray node allocation failed. */
432 if (add_to_swap_cache(page, entry, gfp_mask & GFP_KERNEL)) {
433 put_swap_page(page, entry);
434 goto fail_unlock;
435 }
436
d9eb1ea2 437 if (mem_cgroup_charge(page, NULL, gfp_mask)) {
4c6355b2
JW
438 delete_from_swap_cache(page);
439 goto fail_unlock;
440 }
441
314b57fb
JW
442 /* XXX: Move to lru_cache_add() when it supports new vs putback */
443 spin_lock_irq(&page_pgdat(page)->lru_lock);
96f8bf4f 444 lru_note_cost_page(page);
314b57fb
JW
445 spin_unlock_irq(&page_pgdat(page)->lru_lock);
446
4c6355b2
JW
447 /* Caller will initiate read into locked page */
448 SetPageWorkingset(page);
6058eaec 449 lru_cache_add(page);
4c6355b2
JW
450 *new_page_allocated = true;
451 return page;
1da177e4 452
4c6355b2
JW
453fail_unlock:
454 unlock_page(page);
455 put_page(page);
456 return NULL;
1da177e4 457}
46017e95 458
5b999aad
DS
459/*
460 * Locate a page of swap in physical memory, reserving swap cache space
461 * and reading the disk if it is not already cached.
462 * A failure return means that either the page allocation failed or that
463 * the swap entry is no longer in use.
464 */
465struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
23955622 466 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
5b999aad
DS
467{
468 bool page_was_allocated;
469 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
470 vma, addr, &page_was_allocated);
471
472 if (page_was_allocated)
23955622 473 swap_readpage(retpage, do_poll);
5b999aad
DS
474
475 return retpage;
476}
477
ec560175
HY
478static unsigned int __swapin_nr_pages(unsigned long prev_offset,
479 unsigned long offset,
480 int hits,
481 int max_pages,
482 int prev_win)
579f8290 483{
ec560175 484 unsigned int pages, last_ra;
579f8290
SL
485
486 /*
487 * This heuristic has been found to work well on both sequential and
488 * random loads, swapping to hard disk or to SSD: please don't ask
489 * what the "+ 2" means, it just happens to work well, that's all.
490 */
ec560175 491 pages = hits + 2;
579f8290
SL
492 if (pages == 2) {
493 /*
494 * We can have no readahead hits to judge by: but must not get
495 * stuck here forever, so check for an adjacent offset instead
496 * (and don't even bother to check whether swap type is same).
497 */
498 if (offset != prev_offset + 1 && offset != prev_offset - 1)
499 pages = 1;
579f8290
SL
500 } else {
501 unsigned int roundup = 4;
502 while (roundup < pages)
503 roundup <<= 1;
504 pages = roundup;
505 }
506
507 if (pages > max_pages)
508 pages = max_pages;
509
510 /* Don't shrink readahead too fast */
ec560175 511 last_ra = prev_win / 2;
579f8290
SL
512 if (pages < last_ra)
513 pages = last_ra;
ec560175
HY
514
515 return pages;
516}
517
518static unsigned long swapin_nr_pages(unsigned long offset)
519{
520 static unsigned long prev_offset;
521 unsigned int hits, pages, max_pages;
522 static atomic_t last_readahead_pages;
523
524 max_pages = 1 << READ_ONCE(page_cluster);
525 if (max_pages <= 1)
526 return 1;
527
528 hits = atomic_xchg(&swapin_readahead_hits, 0);
d6c1f098
QC
529 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
530 max_pages,
ec560175
HY
531 atomic_read(&last_readahead_pages));
532 if (!hits)
d6c1f098 533 WRITE_ONCE(prev_offset, offset);
579f8290
SL
534 atomic_set(&last_readahead_pages, pages);
535
536 return pages;
537}
538
46017e95 539/**
e9e9b7ec 540 * swap_cluster_readahead - swap in pages in hope we need them soon
46017e95 541 * @entry: swap entry of this memory
7682486b 542 * @gfp_mask: memory allocation flags
e9e9b7ec 543 * @vmf: fault information
46017e95
HD
544 *
545 * Returns the struct page for entry and addr, after queueing swapin.
546 *
547 * Primitive swap readahead code. We simply read an aligned block of
548 * (1 << page_cluster) entries in the swap area. This method is chosen
549 * because it doesn't cost us any seek time. We also make sure to queue
550 * the 'original' request together with the readahead ones...
551 *
552 * This has been extended to use the NUMA policies from the mm triggering
553 * the readahead.
554 *
c1e8d7c6 555 * Caller must hold read mmap_lock if vmf->vma is not NULL.
46017e95 556 */
e9e9b7ec
MK
557struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
558 struct vm_fault *vmf)
46017e95 559{
46017e95 560 struct page *page;
579f8290
SL
561 unsigned long entry_offset = swp_offset(entry);
562 unsigned long offset = entry_offset;
67f96aa2 563 unsigned long start_offset, end_offset;
579f8290 564 unsigned long mask;
e9a6effa 565 struct swap_info_struct *si = swp_swap_info(entry);
3fb5c298 566 struct blk_plug plug;
c4fa6309 567 bool do_poll = true, page_allocated;
e9e9b7ec
MK
568 struct vm_area_struct *vma = vmf->vma;
569 unsigned long addr = vmf->address;
46017e95 570
579f8290
SL
571 mask = swapin_nr_pages(offset) - 1;
572 if (!mask)
573 goto skip;
574
8fd2e0b5
YS
575 /* Test swap type to make sure the dereference is safe */
576 if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) {
577 struct inode *inode = si->swap_file->f_mapping->host;
578 if (inode_read_congested(inode))
579 goto skip;
580 }
581
23955622 582 do_poll = false;
67f96aa2
RR
583 /* Read a page_cluster sized and aligned cluster around offset. */
584 start_offset = offset & ~mask;
585 end_offset = offset | mask;
586 if (!start_offset) /* First page is swap header. */
587 start_offset++;
e9a6effa
HY
588 if (end_offset >= si->max)
589 end_offset = si->max - 1;
67f96aa2 590
3fb5c298 591 blk_start_plug(&plug);
67f96aa2 592 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95 593 /* Ok, do the async read-ahead now */
c4fa6309
HY
594 page = __read_swap_cache_async(
595 swp_entry(swp_type(entry), offset),
596 gfp_mask, vma, addr, &page_allocated);
46017e95 597 if (!page)
67f96aa2 598 continue;
c4fa6309
HY
599 if (page_allocated) {
600 swap_readpage(page, false);
eaf649eb 601 if (offset != entry_offset) {
c4fa6309
HY
602 SetPageReadahead(page);
603 count_vm_event(SWAP_RA);
604 }
cbc65df2 605 }
09cbfeaf 606 put_page(page);
46017e95 607 }
3fb5c298
CE
608 blk_finish_plug(&plug);
609
46017e95 610 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 611skip:
23955622 612 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
46017e95 613}
4b3ef9da
HY
614
615int init_swap_address_space(unsigned int type, unsigned long nr_pages)
616{
617 struct address_space *spaces, *space;
618 unsigned int i, nr;
619
620 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
778e1cdd 621 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
4b3ef9da
HY
622 if (!spaces)
623 return -ENOMEM;
624 for (i = 0; i < nr; i++) {
625 space = spaces + i;
a2833486 626 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
4b3ef9da
HY
627 atomic_set(&space->i_mmap_writable, 0);
628 space->a_ops = &swap_aops;
629 /* swap cache doesn't use writeback related tags */
630 mapping_set_no_writeback_tags(space);
4b3ef9da
HY
631 }
632 nr_swapper_spaces[type] = nr;
054f1d1f 633 swapper_spaces[type] = spaces;
4b3ef9da
HY
634
635 return 0;
636}
637
638void exit_swap_address_space(unsigned int type)
639{
054f1d1f 640 kvfree(swapper_spaces[type]);
4b3ef9da 641 nr_swapper_spaces[type] = 0;
054f1d1f 642 swapper_spaces[type] = NULL;
4b3ef9da 643}
ec560175
HY
644
645static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
646 unsigned long faddr,
647 unsigned long lpfn,
648 unsigned long rpfn,
649 unsigned long *start,
650 unsigned long *end)
651{
652 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
653 PFN_DOWN(faddr & PMD_MASK));
654 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
655 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
656}
657
eaf649eb
MK
658static void swap_ra_info(struct vm_fault *vmf,
659 struct vma_swap_readahead *ra_info)
ec560175
HY
660{
661 struct vm_area_struct *vma = vmf->vma;
eaf649eb 662 unsigned long ra_val;
ec560175
HY
663 swp_entry_t entry;
664 unsigned long faddr, pfn, fpfn;
665 unsigned long start, end;
eaf649eb 666 pte_t *pte, *orig_pte;
ec560175
HY
667 unsigned int max_win, hits, prev_win, win, left;
668#ifndef CONFIG_64BIT
669 pte_t *tpte;
670#endif
671
61b63972
HY
672 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
673 SWAP_RA_ORDER_CEILING);
674 if (max_win == 1) {
eaf649eb
MK
675 ra_info->win = 1;
676 return;
61b63972
HY
677 }
678
ec560175 679 faddr = vmf->address;
eaf649eb
MK
680 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
681 entry = pte_to_swp_entry(*pte);
682 if ((unlikely(non_swap_entry(entry)))) {
683 pte_unmap(orig_pte);
684 return;
685 }
ec560175 686
ec560175 687 fpfn = PFN_DOWN(faddr);
eaf649eb
MK
688 ra_val = GET_SWAP_RA_VAL(vma);
689 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
690 prev_win = SWAP_RA_WIN(ra_val);
691 hits = SWAP_RA_HITS(ra_val);
692 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
ec560175
HY
693 max_win, prev_win);
694 atomic_long_set(&vma->swap_readahead_info,
695 SWAP_RA_VAL(faddr, win, 0));
696
eaf649eb
MK
697 if (win == 1) {
698 pte_unmap(orig_pte);
699 return;
700 }
ec560175
HY
701
702 /* Copy the PTEs because the page table may be unmapped */
703 if (fpfn == pfn + 1)
704 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
705 else if (pfn == fpfn + 1)
706 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
707 &start, &end);
708 else {
709 left = (win - 1) / 2;
710 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
711 &start, &end);
712 }
eaf649eb
MK
713 ra_info->nr_pte = end - start;
714 ra_info->offset = fpfn - start;
715 pte -= ra_info->offset;
ec560175 716#ifdef CONFIG_64BIT
eaf649eb 717 ra_info->ptes = pte;
ec560175 718#else
eaf649eb 719 tpte = ra_info->ptes;
ec560175
HY
720 for (pfn = start; pfn != end; pfn++)
721 *tpte++ = *pte++;
722#endif
eaf649eb 723 pte_unmap(orig_pte);
ec560175
HY
724}
725
e9f59873
YS
726/**
727 * swap_vma_readahead - swap in pages in hope we need them soon
728 * @entry: swap entry of this memory
729 * @gfp_mask: memory allocation flags
730 * @vmf: fault information
731 *
732 * Returns the struct page for entry and addr, after queueing swapin.
733 *
734 * Primitive swap readahead code. We simply read in a few pages whoes
735 * virtual addresses are around the fault address in the same vma.
736 *
c1e8d7c6 737 * Caller must hold read mmap_lock if vmf->vma is not NULL.
e9f59873
YS
738 *
739 */
f5c754d6
CIK
740static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
741 struct vm_fault *vmf)
ec560175
HY
742{
743 struct blk_plug plug;
744 struct vm_area_struct *vma = vmf->vma;
745 struct page *page;
746 pte_t *pte, pentry;
747 swp_entry_t entry;
748 unsigned int i;
749 bool page_allocated;
eaf649eb 750 struct vma_swap_readahead ra_info = {0,};
ec560175 751
eaf649eb
MK
752 swap_ra_info(vmf, &ra_info);
753 if (ra_info.win == 1)
ec560175
HY
754 goto skip;
755
756 blk_start_plug(&plug);
eaf649eb 757 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
ec560175
HY
758 i++, pte++) {
759 pentry = *pte;
760 if (pte_none(pentry))
761 continue;
762 if (pte_present(pentry))
763 continue;
764 entry = pte_to_swp_entry(pentry);
765 if (unlikely(non_swap_entry(entry)))
766 continue;
767 page = __read_swap_cache_async(entry, gfp_mask, vma,
768 vmf->address, &page_allocated);
769 if (!page)
770 continue;
771 if (page_allocated) {
772 swap_readpage(page, false);
eaf649eb 773 if (i != ra_info.offset) {
ec560175
HY
774 SetPageReadahead(page);
775 count_vm_event(SWAP_RA);
776 }
777 }
778 put_page(page);
779 }
780 blk_finish_plug(&plug);
781 lru_add_drain();
782skip:
783 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
eaf649eb 784 ra_info.win == 1);
ec560175 785}
d9bfcfdc 786
e9e9b7ec
MK
787/**
788 * swapin_readahead - swap in pages in hope we need them soon
789 * @entry: swap entry of this memory
790 * @gfp_mask: memory allocation flags
791 * @vmf: fault information
792 *
793 * Returns the struct page for entry and addr, after queueing swapin.
794 *
795 * It's a main entry function for swap readahead. By the configuration,
796 * it will read ahead blocks by cluster-based(ie, physical disk based)
797 * or vma-based(ie, virtual address based on faulty address) readahead.
798 */
799struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
800 struct vm_fault *vmf)
801{
802 return swap_use_vma_readahead() ?
803 swap_vma_readahead(entry, gfp_mask, vmf) :
804 swap_cluster_readahead(entry, gfp_mask, vmf);
805}
806
d9bfcfdc
HY
807#ifdef CONFIG_SYSFS
808static ssize_t vma_ra_enabled_show(struct kobject *kobj,
809 struct kobj_attribute *attr, char *buf)
810{
e9e9b7ec 811 return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
d9bfcfdc
HY
812}
813static ssize_t vma_ra_enabled_store(struct kobject *kobj,
814 struct kobj_attribute *attr,
815 const char *buf, size_t count)
816{
817 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
e9e9b7ec 818 enable_vma_readahead = true;
d9bfcfdc 819 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
e9e9b7ec 820 enable_vma_readahead = false;
d9bfcfdc
HY
821 else
822 return -EINVAL;
823
824 return count;
825}
826static struct kobj_attribute vma_ra_enabled_attr =
827 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
828 vma_ra_enabled_store);
829
d9bfcfdc
HY
830static struct attribute *swap_attrs[] = {
831 &vma_ra_enabled_attr.attr,
d9bfcfdc
HY
832 NULL,
833};
834
835static struct attribute_group swap_attr_group = {
836 .attrs = swap_attrs,
837};
838
839static int __init swap_init_sysfs(void)
840{
841 int err;
842 struct kobject *swap_kobj;
843
844 swap_kobj = kobject_create_and_add("swap", mm_kobj);
845 if (!swap_kobj) {
846 pr_err("failed to create swap kobject\n");
847 return -ENOMEM;
848 }
849 err = sysfs_create_group(swap_kobj, &swap_attr_group);
850 if (err) {
851 pr_err("failed to register swap group\n");
852 goto delete_obj;
853 }
854 return 0;
855
856delete_obj:
857 kobject_put(swap_kobj);
858 return err;
859}
860subsys_initcall(swap_init_sysfs);
861#endif