]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/swapfile.c
arm64: Silence gcc warnings about arch ABI drift
[thirdparty/kernel/stable.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4 8#include <linux/mm.h>
6e84f315 9#include <linux/sched/mm.h>
29930025 10#include <linux/sched/task.h>
1da177e4
LT
11#include <linux/hugetlb.h>
12#include <linux/mman.h>
13#include <linux/slab.h>
14#include <linux/kernel_stat.h>
15#include <linux/swap.h>
16#include <linux/vmalloc.h>
17#include <linux/pagemap.h>
18#include <linux/namei.h>
072441e2 19#include <linux/shmem_fs.h>
1da177e4 20#include <linux/blkdev.h>
20137a49 21#include <linux/random.h>
1da177e4
LT
22#include <linux/writeback.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/init.h>
5ad64688 26#include <linux/ksm.h>
1da177e4
LT
27#include <linux/rmap.h>
28#include <linux/security.h>
29#include <linux/backing-dev.h>
fc0abb14 30#include <linux/mutex.h>
c59ede7b 31#include <linux/capability.h>
1da177e4 32#include <linux/syscalls.h>
8a9f3ccd 33#include <linux/memcontrol.h>
66d7dd51 34#include <linux/poll.h>
72788c38 35#include <linux/oom.h>
38b5faf4
DM
36#include <linux/frontswap.h>
37#include <linux/swapfile.h>
f981c595 38#include <linux/export.h>
67afa38e 39#include <linux/swap_slots.h>
155b5f88 40#include <linux/sort.h>
1da177e4
LT
41
42#include <asm/pgtable.h>
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
5d1ea48b 45#include <linux/swap_cgroup.h>
1da177e4 46
570a335b
HD
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
a2468cc9 63static int least_priority = -1;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
bfc6b1ca 88static struct plist_head *swap_avail_heads;
18ab4d4c 89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
81a0298b
HY
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
ed3345a6
DJ
101static struct swap_info_struct *swap_type_to_swap_info(int type)
102{
103 if (type >= READ_ONCE(nr_swapfiles))
104 return NULL;
105
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info[type]);
108}
109
8d69aaee 110static inline unsigned char swap_count(unsigned char ent)
355cfa73 111{
955c97f0 112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
113}
114
efa90a98 115/* returns 1 if swap entry is freed */
c9e44410
KH
116static int
117__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
118{
efa90a98 119 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
120 struct page *page;
121 int ret = 0;
122
f6ab1f7f 123 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
124 if (!page)
125 return 0;
126 /*
127 * This function is called from scan_swap_map() and it's called
128 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
129 * We have to use trylock for avoiding deadlock. This is a special
130 * case and you should use try_to_free_swap() with explicit lock_page()
131 * in usual operations.
132 */
133 if (trylock_page(page)) {
134 ret = try_to_free_swap(page);
135 unlock_page(page);
136 }
09cbfeaf 137 put_page(page);
c9e44410
KH
138 return ret;
139}
355cfa73 140
6a6ba831
HD
141/*
142 * swapon tell device that all the old swap contents can be discarded,
143 * to allow the swap device to optimize its wear-levelling.
144 */
145static int discard_swap(struct swap_info_struct *si)
146{
147 struct swap_extent *se;
9625a5f2
HD
148 sector_t start_block;
149 sector_t nr_blocks;
6a6ba831
HD
150 int err = 0;
151
9625a5f2
HD
152 /* Do not discard the swap header page! */
153 se = &si->first_swap_extent;
154 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
155 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
156 if (nr_blocks) {
157 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 158 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
159 if (err)
160 return err;
161 cond_resched();
162 }
6a6ba831 163
9625a5f2
HD
164 list_for_each_entry(se, &si->first_swap_extent.list, list) {
165 start_block = se->start_block << (PAGE_SHIFT - 9);
166 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
167
168 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 169 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
170 if (err)
171 break;
172
173 cond_resched();
174 }
175 return err; /* That will often be -EOPNOTSUPP */
176}
177
7992fde7
HD
178/*
179 * swap allocation tell device that a cluster of swap can now be discarded,
180 * to allow the swap device to optimize its wear-levelling.
181 */
182static void discard_swap_cluster(struct swap_info_struct *si,
183 pgoff_t start_page, pgoff_t nr_pages)
184{
185 struct swap_extent *se = si->curr_swap_extent;
186 int found_extent = 0;
187
188 while (nr_pages) {
7992fde7
HD
189 if (se->start_page <= start_page &&
190 start_page < se->start_page + se->nr_pages) {
191 pgoff_t offset = start_page - se->start_page;
192 sector_t start_block = se->start_block + offset;
858a2990 193 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
194
195 if (nr_blocks > nr_pages)
196 nr_blocks = nr_pages;
197 start_page += nr_blocks;
198 nr_pages -= nr_blocks;
199
200 if (!found_extent++)
201 si->curr_swap_extent = se;
202
203 start_block <<= PAGE_SHIFT - 9;
204 nr_blocks <<= PAGE_SHIFT - 9;
205 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 206 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
207 break;
208 }
209
a8ae4991 210 se = list_next_entry(se, list);
7992fde7
HD
211 }
212}
213
38d8b4e6
HY
214#ifdef CONFIG_THP_SWAP
215#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
216
217#define swap_entry_size(size) (size)
38d8b4e6 218#else
048c27fd 219#define SWAPFILE_CLUSTER 256
a448f2d0
HY
220
221/*
222 * Define swap_entry_size() as constant to let compiler to optimize
223 * out some code if !CONFIG_THP_SWAP
224 */
225#define swap_entry_size(size) 1
38d8b4e6 226#endif
048c27fd
HD
227#define LATENCY_LIMIT 256
228
2a8f9449
SL
229static inline void cluster_set_flag(struct swap_cluster_info *info,
230 unsigned int flag)
231{
232 info->flags = flag;
233}
234
235static inline unsigned int cluster_count(struct swap_cluster_info *info)
236{
237 return info->data;
238}
239
240static inline void cluster_set_count(struct swap_cluster_info *info,
241 unsigned int c)
242{
243 info->data = c;
244}
245
246static inline void cluster_set_count_flag(struct swap_cluster_info *info,
247 unsigned int c, unsigned int f)
248{
249 info->flags = f;
250 info->data = c;
251}
252
253static inline unsigned int cluster_next(struct swap_cluster_info *info)
254{
255 return info->data;
256}
257
258static inline void cluster_set_next(struct swap_cluster_info *info,
259 unsigned int n)
260{
261 info->data = n;
262}
263
264static inline void cluster_set_next_flag(struct swap_cluster_info *info,
265 unsigned int n, unsigned int f)
266{
267 info->flags = f;
268 info->data = n;
269}
270
271static inline bool cluster_is_free(struct swap_cluster_info *info)
272{
273 return info->flags & CLUSTER_FLAG_FREE;
274}
275
276static inline bool cluster_is_null(struct swap_cluster_info *info)
277{
278 return info->flags & CLUSTER_FLAG_NEXT_NULL;
279}
280
281static inline void cluster_set_null(struct swap_cluster_info *info)
282{
283 info->flags = CLUSTER_FLAG_NEXT_NULL;
284 info->data = 0;
285}
286
e0709829
HY
287static inline bool cluster_is_huge(struct swap_cluster_info *info)
288{
33ee011e
HY
289 if (IS_ENABLED(CONFIG_THP_SWAP))
290 return info->flags & CLUSTER_FLAG_HUGE;
291 return false;
e0709829
HY
292}
293
294static inline void cluster_clear_huge(struct swap_cluster_info *info)
295{
296 info->flags &= ~CLUSTER_FLAG_HUGE;
297}
298
235b6217
HY
299static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
300 unsigned long offset)
301{
302 struct swap_cluster_info *ci;
303
304 ci = si->cluster_info;
305 if (ci) {
306 ci += offset / SWAPFILE_CLUSTER;
307 spin_lock(&ci->lock);
308 }
309 return ci;
310}
311
312static inline void unlock_cluster(struct swap_cluster_info *ci)
313{
314 if (ci)
315 spin_unlock(&ci->lock);
316}
317
59d98bf3
HY
318/*
319 * Determine the locking method in use for this device. Return
320 * swap_cluster_info if SSD-style cluster-based locking is in place.
321 */
235b6217 322static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 323 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
324{
325 struct swap_cluster_info *ci;
326
59d98bf3 327 /* Try to use fine-grained SSD-style locking if available: */
235b6217 328 ci = lock_cluster(si, offset);
59d98bf3 329 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
330 if (!ci)
331 spin_lock(&si->lock);
332
333 return ci;
334}
335
336static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
337 struct swap_cluster_info *ci)
338{
339 if (ci)
340 unlock_cluster(ci);
341 else
342 spin_unlock(&si->lock);
343}
344
6b534915
HY
345static inline bool cluster_list_empty(struct swap_cluster_list *list)
346{
347 return cluster_is_null(&list->head);
348}
349
350static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
351{
352 return cluster_next(&list->head);
353}
354
355static void cluster_list_init(struct swap_cluster_list *list)
356{
357 cluster_set_null(&list->head);
358 cluster_set_null(&list->tail);
359}
360
361static void cluster_list_add_tail(struct swap_cluster_list *list,
362 struct swap_cluster_info *ci,
363 unsigned int idx)
364{
365 if (cluster_list_empty(list)) {
366 cluster_set_next_flag(&list->head, idx, 0);
367 cluster_set_next_flag(&list->tail, idx, 0);
368 } else {
235b6217 369 struct swap_cluster_info *ci_tail;
6b534915
HY
370 unsigned int tail = cluster_next(&list->tail);
371
235b6217
HY
372 /*
373 * Nested cluster lock, but both cluster locks are
374 * only acquired when we held swap_info_struct->lock
375 */
376 ci_tail = ci + tail;
377 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
378 cluster_set_next(ci_tail, idx);
0ef017d1 379 spin_unlock(&ci_tail->lock);
6b534915
HY
380 cluster_set_next_flag(&list->tail, idx, 0);
381 }
382}
383
384static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
385 struct swap_cluster_info *ci)
386{
387 unsigned int idx;
388
389 idx = cluster_next(&list->head);
390 if (cluster_next(&list->tail) == idx) {
391 cluster_set_null(&list->head);
392 cluster_set_null(&list->tail);
393 } else
394 cluster_set_next_flag(&list->head,
395 cluster_next(&ci[idx]), 0);
396
397 return idx;
398}
399
815c2c54
SL
400/* Add a cluster to discard list and schedule it to do discard */
401static void swap_cluster_schedule_discard(struct swap_info_struct *si,
402 unsigned int idx)
403{
404 /*
405 * If scan_swap_map() can't find a free cluster, it will check
406 * si->swap_map directly. To make sure the discarding cluster isn't
407 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
408 * will be cleared after discard
409 */
410 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
411 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
412
6b534915 413 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
414
415 schedule_work(&si->discard_work);
416}
417
38d8b4e6
HY
418static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
419{
420 struct swap_cluster_info *ci = si->cluster_info;
421
422 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
423 cluster_list_add_tail(&si->free_clusters, ci, idx);
424}
425
815c2c54
SL
426/*
427 * Doing discard actually. After a cluster discard is finished, the cluster
428 * will be added to free cluster list. caller should hold si->lock.
429*/
430static void swap_do_scheduled_discard(struct swap_info_struct *si)
431{
235b6217 432 struct swap_cluster_info *info, *ci;
815c2c54
SL
433 unsigned int idx;
434
435 info = si->cluster_info;
436
6b534915
HY
437 while (!cluster_list_empty(&si->discard_clusters)) {
438 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
439 spin_unlock(&si->lock);
440
441 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
442 SWAPFILE_CLUSTER);
443
444 spin_lock(&si->lock);
235b6217 445 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 446 __free_cluster(si, idx);
815c2c54
SL
447 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
448 0, SWAPFILE_CLUSTER);
235b6217 449 unlock_cluster(ci);
815c2c54
SL
450 }
451}
452
453static void swap_discard_work(struct work_struct *work)
454{
455 struct swap_info_struct *si;
456
457 si = container_of(work, struct swap_info_struct, discard_work);
458
459 spin_lock(&si->lock);
460 swap_do_scheduled_discard(si);
461 spin_unlock(&si->lock);
462}
463
38d8b4e6
HY
464static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
465{
466 struct swap_cluster_info *ci = si->cluster_info;
467
468 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
469 cluster_list_del_first(&si->free_clusters, ci);
470 cluster_set_count_flag(ci + idx, 0, 0);
471}
472
473static void free_cluster(struct swap_info_struct *si, unsigned long idx)
474{
475 struct swap_cluster_info *ci = si->cluster_info + idx;
476
477 VM_BUG_ON(cluster_count(ci) != 0);
478 /*
479 * If the swap is discardable, prepare discard the cluster
480 * instead of free it immediately. The cluster will be freed
481 * after discard.
482 */
483 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
484 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
485 swap_cluster_schedule_discard(si, idx);
486 return;
487 }
488
489 __free_cluster(si, idx);
490}
491
2a8f9449
SL
492/*
493 * The cluster corresponding to page_nr will be used. The cluster will be
494 * removed from free cluster list and its usage counter will be increased.
495 */
496static void inc_cluster_info_page(struct swap_info_struct *p,
497 struct swap_cluster_info *cluster_info, unsigned long page_nr)
498{
499 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
500
501 if (!cluster_info)
502 return;
38d8b4e6
HY
503 if (cluster_is_free(&cluster_info[idx]))
504 alloc_cluster(p, idx);
2a8f9449
SL
505
506 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
507 cluster_set_count(&cluster_info[idx],
508 cluster_count(&cluster_info[idx]) + 1);
509}
510
511/*
512 * The cluster corresponding to page_nr decreases one usage. If the usage
513 * counter becomes 0, which means no page in the cluster is in using, we can
514 * optionally discard the cluster and add it to free cluster list.
515 */
516static void dec_cluster_info_page(struct swap_info_struct *p,
517 struct swap_cluster_info *cluster_info, unsigned long page_nr)
518{
519 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
520
521 if (!cluster_info)
522 return;
523
524 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
525 cluster_set_count(&cluster_info[idx],
526 cluster_count(&cluster_info[idx]) - 1);
527
38d8b4e6
HY
528 if (cluster_count(&cluster_info[idx]) == 0)
529 free_cluster(p, idx);
2a8f9449
SL
530}
531
532/*
533 * It's possible scan_swap_map() uses a free cluster in the middle of free
534 * cluster list. Avoiding such abuse to avoid list corruption.
535 */
ebc2a1a6
SL
536static bool
537scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
538 unsigned long offset)
539{
ebc2a1a6
SL
540 struct percpu_cluster *percpu_cluster;
541 bool conflict;
542
2a8f9449 543 offset /= SWAPFILE_CLUSTER;
6b534915
HY
544 conflict = !cluster_list_empty(&si->free_clusters) &&
545 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 546 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
547
548 if (!conflict)
549 return false;
550
551 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
552 cluster_set_null(&percpu_cluster->index);
553 return true;
554}
555
556/*
557 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
558 * might involve allocating a new cluster for current CPU too.
559 */
36005bae 560static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
561 unsigned long *offset, unsigned long *scan_base)
562{
563 struct percpu_cluster *cluster;
235b6217 564 struct swap_cluster_info *ci;
ebc2a1a6 565 bool found_free;
235b6217 566 unsigned long tmp, max;
ebc2a1a6
SL
567
568new_cluster:
569 cluster = this_cpu_ptr(si->percpu_cluster);
570 if (cluster_is_null(&cluster->index)) {
6b534915
HY
571 if (!cluster_list_empty(&si->free_clusters)) {
572 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
573 cluster->next = cluster_next(&cluster->index) *
574 SWAPFILE_CLUSTER;
6b534915 575 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
576 /*
577 * we don't have free cluster but have some clusters in
578 * discarding, do discard now and reclaim them
579 */
580 swap_do_scheduled_discard(si);
581 *scan_base = *offset = si->cluster_next;
582 goto new_cluster;
583 } else
36005bae 584 return false;
ebc2a1a6
SL
585 }
586
587 found_free = false;
588
589 /*
590 * Other CPUs can use our cluster if they can't find a free cluster,
591 * check if there is still free entry in the cluster
592 */
593 tmp = cluster->next;
235b6217
HY
594 max = min_t(unsigned long, si->max,
595 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
596 if (tmp >= max) {
597 cluster_set_null(&cluster->index);
598 goto new_cluster;
599 }
600 ci = lock_cluster(si, tmp);
601 while (tmp < max) {
ebc2a1a6
SL
602 if (!si->swap_map[tmp]) {
603 found_free = true;
604 break;
605 }
606 tmp++;
607 }
235b6217 608 unlock_cluster(ci);
ebc2a1a6
SL
609 if (!found_free) {
610 cluster_set_null(&cluster->index);
611 goto new_cluster;
612 }
613 cluster->next = tmp + 1;
614 *offset = tmp;
615 *scan_base = tmp;
36005bae 616 return found_free;
2a8f9449
SL
617}
618
a2468cc9
AL
619static void __del_from_avail_list(struct swap_info_struct *p)
620{
621 int nid;
622
623 for_each_node(nid)
624 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
625}
626
627static void del_from_avail_list(struct swap_info_struct *p)
628{
629 spin_lock(&swap_avail_lock);
630 __del_from_avail_list(p);
631 spin_unlock(&swap_avail_lock);
632}
633
38d8b4e6
HY
634static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
635 unsigned int nr_entries)
636{
637 unsigned int end = offset + nr_entries - 1;
638
639 if (offset == si->lowest_bit)
640 si->lowest_bit += nr_entries;
641 if (end == si->highest_bit)
642 si->highest_bit -= nr_entries;
643 si->inuse_pages += nr_entries;
644 if (si->inuse_pages == si->pages) {
645 si->lowest_bit = si->max;
646 si->highest_bit = 0;
a2468cc9 647 del_from_avail_list(si);
38d8b4e6
HY
648 }
649}
650
a2468cc9
AL
651static void add_to_avail_list(struct swap_info_struct *p)
652{
653 int nid;
654
655 spin_lock(&swap_avail_lock);
656 for_each_node(nid) {
657 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
658 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
659 }
660 spin_unlock(&swap_avail_lock);
661}
662
38d8b4e6
HY
663static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
664 unsigned int nr_entries)
665{
666 unsigned long end = offset + nr_entries - 1;
667 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
668
669 if (offset < si->lowest_bit)
670 si->lowest_bit = offset;
671 if (end > si->highest_bit) {
672 bool was_full = !si->highest_bit;
673
674 si->highest_bit = end;
a2468cc9
AL
675 if (was_full && (si->flags & SWP_WRITEOK))
676 add_to_avail_list(si);
38d8b4e6
HY
677 }
678 atomic_long_add(nr_entries, &nr_swap_pages);
679 si->inuse_pages -= nr_entries;
680 if (si->flags & SWP_BLKDEV)
681 swap_slot_free_notify =
682 si->bdev->bd_disk->fops->swap_slot_free_notify;
683 else
684 swap_slot_free_notify = NULL;
685 while (offset <= end) {
686 frontswap_invalidate_page(si->type, offset);
687 if (swap_slot_free_notify)
688 swap_slot_free_notify(si->bdev, offset);
689 offset++;
690 }
691}
692
36005bae
TC
693static int scan_swap_map_slots(struct swap_info_struct *si,
694 unsigned char usage, int nr,
695 swp_entry_t slots[])
1da177e4 696{
235b6217 697 struct swap_cluster_info *ci;
ebebbbe9 698 unsigned long offset;
c60aa176 699 unsigned long scan_base;
7992fde7 700 unsigned long last_in_cluster = 0;
048c27fd 701 int latency_ration = LATENCY_LIMIT;
36005bae
TC
702 int n_ret = 0;
703
704 if (nr > SWAP_BATCH)
705 nr = SWAP_BATCH;
7dfad418 706
886bb7e9 707 /*
7dfad418
HD
708 * We try to cluster swap pages by allocating them sequentially
709 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
710 * way, however, we resort to first-free allocation, starting
711 * a new cluster. This prevents us from scattering swap pages
712 * all over the entire swap partition, so that we reduce
713 * overall disk seek times between swap pages. -- sct
714 * But we do now try to find an empty cluster. -Andrea
c60aa176 715 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
716 */
717
52b7efdb 718 si->flags += SWP_SCANNING;
c60aa176 719 scan_base = offset = si->cluster_next;
ebebbbe9 720
ebc2a1a6
SL
721 /* SSD algorithm */
722 if (si->cluster_info) {
36005bae
TC
723 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
724 goto checks;
725 else
726 goto scan;
ebc2a1a6
SL
727 }
728
ebebbbe9
HD
729 if (unlikely(!si->cluster_nr--)) {
730 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
731 si->cluster_nr = SWAPFILE_CLUSTER - 1;
732 goto checks;
733 }
2a8f9449 734
ec8acf20 735 spin_unlock(&si->lock);
7dfad418 736
c60aa176
HD
737 /*
738 * If seek is expensive, start searching for new cluster from
739 * start of partition, to minimize the span of allocated swap.
50088c44
CY
740 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
741 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 742 */
50088c44 743 scan_base = offset = si->lowest_bit;
7dfad418
HD
744 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
745
746 /* Locate the first empty (unaligned) cluster */
747 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 748 if (si->swap_map[offset])
7dfad418
HD
749 last_in_cluster = offset + SWAPFILE_CLUSTER;
750 else if (offset == last_in_cluster) {
ec8acf20 751 spin_lock(&si->lock);
ebebbbe9
HD
752 offset -= SWAPFILE_CLUSTER - 1;
753 si->cluster_next = offset;
754 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
755 goto checks;
756 }
757 if (unlikely(--latency_ration < 0)) {
758 cond_resched();
759 latency_ration = LATENCY_LIMIT;
760 }
761 }
762
763 offset = scan_base;
ec8acf20 764 spin_lock(&si->lock);
ebebbbe9 765 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 766 }
7dfad418 767
ebebbbe9 768checks:
ebc2a1a6 769 if (si->cluster_info) {
36005bae
TC
770 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
771 /* take a break if we already got some slots */
772 if (n_ret)
773 goto done;
774 if (!scan_swap_map_try_ssd_cluster(si, &offset,
775 &scan_base))
776 goto scan;
777 }
ebc2a1a6 778 }
ebebbbe9 779 if (!(si->flags & SWP_WRITEOK))
52b7efdb 780 goto no_page;
7dfad418
HD
781 if (!si->highest_bit)
782 goto no_page;
ebebbbe9 783 if (offset > si->highest_bit)
c60aa176 784 scan_base = offset = si->lowest_bit;
c9e44410 785
235b6217 786 ci = lock_cluster(si, offset);
b73d7fce
HD
787 /* reuse swap entry of cache-only swap if not busy. */
788 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 789 int swap_was_freed;
235b6217 790 unlock_cluster(ci);
ec8acf20 791 spin_unlock(&si->lock);
c9e44410 792 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 793 spin_lock(&si->lock);
c9e44410
KH
794 /* entry was freed successfully, try to use this again */
795 if (swap_was_freed)
796 goto checks;
797 goto scan; /* check next one */
798 }
799
235b6217
HY
800 if (si->swap_map[offset]) {
801 unlock_cluster(ci);
36005bae
TC
802 if (!n_ret)
803 goto scan;
804 else
805 goto done;
235b6217 806 }
2872bb2d
HY
807 si->swap_map[offset] = usage;
808 inc_cluster_info_page(si, si->cluster_info, offset);
809 unlock_cluster(ci);
ebebbbe9 810
38d8b4e6 811 swap_range_alloc(si, offset, 1);
ebebbbe9 812 si->cluster_next = offset + 1;
36005bae
TC
813 slots[n_ret++] = swp_entry(si->type, offset);
814
815 /* got enough slots or reach max slots? */
816 if ((n_ret == nr) || (offset >= si->highest_bit))
817 goto done;
818
819 /* search for next available slot */
820
821 /* time to take a break? */
822 if (unlikely(--latency_ration < 0)) {
823 if (n_ret)
824 goto done;
825 spin_unlock(&si->lock);
826 cond_resched();
827 spin_lock(&si->lock);
828 latency_ration = LATENCY_LIMIT;
829 }
830
831 /* try to get more slots in cluster */
832 if (si->cluster_info) {
833 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
834 goto checks;
835 else
836 goto done;
837 }
838 /* non-ssd case */
839 ++offset;
840
841 /* non-ssd case, still more slots in cluster? */
842 if (si->cluster_nr && !si->swap_map[offset]) {
843 --si->cluster_nr;
844 goto checks;
845 }
7992fde7 846
36005bae
TC
847done:
848 si->flags -= SWP_SCANNING;
849 return n_ret;
7dfad418 850
ebebbbe9 851scan:
ec8acf20 852 spin_unlock(&si->lock);
7dfad418 853 while (++offset <= si->highest_bit) {
52b7efdb 854 if (!si->swap_map[offset]) {
ec8acf20 855 spin_lock(&si->lock);
52b7efdb
HD
856 goto checks;
857 }
c9e44410 858 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 859 spin_lock(&si->lock);
c9e44410
KH
860 goto checks;
861 }
048c27fd
HD
862 if (unlikely(--latency_ration < 0)) {
863 cond_resched();
864 latency_ration = LATENCY_LIMIT;
865 }
7dfad418 866 }
c60aa176 867 offset = si->lowest_bit;
a5998061 868 while (offset < scan_base) {
c60aa176 869 if (!si->swap_map[offset]) {
ec8acf20 870 spin_lock(&si->lock);
c60aa176
HD
871 goto checks;
872 }
c9e44410 873 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 874 spin_lock(&si->lock);
c9e44410
KH
875 goto checks;
876 }
c60aa176
HD
877 if (unlikely(--latency_ration < 0)) {
878 cond_resched();
879 latency_ration = LATENCY_LIMIT;
880 }
a5998061 881 offset++;
c60aa176 882 }
ec8acf20 883 spin_lock(&si->lock);
7dfad418
HD
884
885no_page:
52b7efdb 886 si->flags -= SWP_SCANNING;
36005bae 887 return n_ret;
1da177e4
LT
888}
889
38d8b4e6
HY
890static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
891{
892 unsigned long idx;
893 struct swap_cluster_info *ci;
894 unsigned long offset, i;
895 unsigned char *map;
896
fe5266d5
HY
897 /*
898 * Should not even be attempting cluster allocations when huge
899 * page swap is disabled. Warn and fail the allocation.
900 */
901 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
902 VM_WARN_ON_ONCE(1);
903 return 0;
904 }
905
38d8b4e6
HY
906 if (cluster_list_empty(&si->free_clusters))
907 return 0;
908
909 idx = cluster_list_first(&si->free_clusters);
910 offset = idx * SWAPFILE_CLUSTER;
911 ci = lock_cluster(si, offset);
912 alloc_cluster(si, idx);
e0709829 913 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
914
915 map = si->swap_map + offset;
916 for (i = 0; i < SWAPFILE_CLUSTER; i++)
917 map[i] = SWAP_HAS_CACHE;
918 unlock_cluster(ci);
919 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
920 *slot = swp_entry(si->type, offset);
921
922 return 1;
923}
924
925static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
926{
927 unsigned long offset = idx * SWAPFILE_CLUSTER;
928 struct swap_cluster_info *ci;
929
930 ci = lock_cluster(si, offset);
931 cluster_set_count_flag(ci, 0, 0);
932 free_cluster(si, idx);
933 unlock_cluster(ci);
934 swap_range_free(si, offset, SWAPFILE_CLUSTER);
935}
38d8b4e6 936
36005bae
TC
937static unsigned long scan_swap_map(struct swap_info_struct *si,
938 unsigned char usage)
939{
940 swp_entry_t entry;
941 int n_ret;
942
943 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
944
945 if (n_ret)
946 return swp_offset(entry);
947 else
948 return 0;
949
950}
951
5d5e8f19 952int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 953{
5d5e8f19 954 unsigned long size = swap_entry_size(entry_size);
adfab836 955 struct swap_info_struct *si, *next;
36005bae
TC
956 long avail_pgs;
957 int n_ret = 0;
a2468cc9 958 int node;
1da177e4 959
38d8b4e6 960 /* Only single cluster request supported */
5d5e8f19 961 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 962
5d5e8f19 963 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
36005bae 964 if (avail_pgs <= 0)
fb4f88dc 965 goto noswap;
36005bae
TC
966
967 if (n_goal > SWAP_BATCH)
968 n_goal = SWAP_BATCH;
969
970 if (n_goal > avail_pgs)
971 n_goal = avail_pgs;
972
5d5e8f19 973 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 974
18ab4d4c
DS
975 spin_lock(&swap_avail_lock);
976
977start_over:
a2468cc9
AL
978 node = numa_node_id();
979 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 980 /* requeue si to after same-priority siblings */
a2468cc9 981 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 982 spin_unlock(&swap_avail_lock);
ec8acf20 983 spin_lock(&si->lock);
adfab836 984 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 985 spin_lock(&swap_avail_lock);
a2468cc9 986 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
987 spin_unlock(&si->lock);
988 goto nextsi;
989 }
990 WARN(!si->highest_bit,
991 "swap_info %d in list but !highest_bit\n",
992 si->type);
993 WARN(!(si->flags & SWP_WRITEOK),
994 "swap_info %d in list but !SWP_WRITEOK\n",
995 si->type);
a2468cc9 996 __del_from_avail_list(si);
ec8acf20 997 spin_unlock(&si->lock);
18ab4d4c 998 goto nextsi;
ec8acf20 999 }
5d5e8f19 1000 if (size == SWAPFILE_CLUSTER) {
f0eea189
HY
1001 if (!(si->flags & SWP_FILE))
1002 n_ret = swap_alloc_cluster(si, swp_entries);
1003 } else
38d8b4e6
HY
1004 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1005 n_goal, swp_entries);
ec8acf20 1006 spin_unlock(&si->lock);
5d5e8f19 1007 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1008 goto check_out;
18ab4d4c 1009 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1010 si->type);
1011
18ab4d4c
DS
1012 spin_lock(&swap_avail_lock);
1013nextsi:
adfab836
DS
1014 /*
1015 * if we got here, it's likely that si was almost full before,
1016 * and since scan_swap_map() can drop the si->lock, multiple
1017 * callers probably all tried to get a page from the same si
18ab4d4c
DS
1018 * and it filled up before we could get one; or, the si filled
1019 * up between us dropping swap_avail_lock and taking si->lock.
1020 * Since we dropped the swap_avail_lock, the swap_avail_head
1021 * list may have been modified; so if next is still in the
36005bae
TC
1022 * swap_avail_head list then try it, otherwise start over
1023 * if we have not gotten any slots.
adfab836 1024 */
a2468cc9 1025 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1026 goto start_over;
1da177e4 1027 }
fb4f88dc 1028
18ab4d4c
DS
1029 spin_unlock(&swap_avail_lock);
1030
36005bae
TC
1031check_out:
1032 if (n_ret < n_goal)
5d5e8f19 1033 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1034 &nr_swap_pages);
fb4f88dc 1035noswap:
36005bae
TC
1036 return n_ret;
1037}
1038
2de1a7e4 1039/* The only caller of this function is now suspend routine */
910321ea
HD
1040swp_entry_t get_swap_page_of_type(int type)
1041{
ed3345a6 1042 struct swap_info_struct *si = swap_type_to_swap_info(type);
910321ea
HD
1043 pgoff_t offset;
1044
ed3345a6
DJ
1045 if (!si)
1046 goto fail;
1047
ec8acf20 1048 spin_lock(&si->lock);
ed3345a6 1049 if (si->flags & SWP_WRITEOK) {
ec8acf20 1050 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1051 /* This is called for allocating swap entry, not cache */
1052 offset = scan_swap_map(si, 1);
1053 if (offset) {
ec8acf20 1054 spin_unlock(&si->lock);
910321ea
HD
1055 return swp_entry(type, offset);
1056 }
ec8acf20 1057 atomic_long_inc(&nr_swap_pages);
910321ea 1058 }
ec8acf20 1059 spin_unlock(&si->lock);
ed3345a6 1060fail:
910321ea
HD
1061 return (swp_entry_t) {0};
1062}
1063
e8c26ab6 1064static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1065{
73c34b6a 1066 struct swap_info_struct *p;
1da177e4
LT
1067 unsigned long offset, type;
1068
1069 if (!entry.val)
1070 goto out;
1071 type = swp_type(entry);
ed3345a6
DJ
1072 p = swap_type_to_swap_info(type);
1073 if (!p)
1da177e4 1074 goto bad_nofile;
1da177e4
LT
1075 if (!(p->flags & SWP_USED))
1076 goto bad_device;
1077 offset = swp_offset(entry);
1078 if (offset >= p->max)
1079 goto bad_offset;
1da177e4
LT
1080 return p;
1081
1da177e4 1082bad_offset:
6a991fc7 1083 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1084 goto out;
1085bad_device:
6a991fc7 1086 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1087 goto out;
1088bad_nofile:
6a991fc7 1089 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1090out:
1091 return NULL;
886bb7e9 1092}
1da177e4 1093
e8c26ab6
TC
1094static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1095{
1096 struct swap_info_struct *p;
1097
1098 p = __swap_info_get(entry);
1099 if (!p)
1100 goto out;
1101 if (!p->swap_map[swp_offset(entry)])
1102 goto bad_free;
1103 return p;
1104
1105bad_free:
1106 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1107 goto out;
1108out:
1109 return NULL;
1110}
1111
235b6217
HY
1112static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1113{
1114 struct swap_info_struct *p;
1115
1116 p = _swap_info_get(entry);
1117 if (p)
1118 spin_lock(&p->lock);
1119 return p;
1120}
1121
7c00bafe
TC
1122static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1123 struct swap_info_struct *q)
1124{
1125 struct swap_info_struct *p;
1126
1127 p = _swap_info_get(entry);
1128
1129 if (p != q) {
1130 if (q != NULL)
1131 spin_unlock(&q->lock);
1132 if (p != NULL)
1133 spin_lock(&p->lock);
1134 }
1135 return p;
1136}
1137
b32d5f32
HY
1138static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1139 unsigned long offset,
1140 unsigned char usage)
1da177e4 1141{
8d69aaee
HD
1142 unsigned char count;
1143 unsigned char has_cache;
235b6217 1144
253d553b 1145 count = p->swap_map[offset];
235b6217 1146
253d553b
HD
1147 has_cache = count & SWAP_HAS_CACHE;
1148 count &= ~SWAP_HAS_CACHE;
355cfa73 1149
253d553b 1150 if (usage == SWAP_HAS_CACHE) {
355cfa73 1151 VM_BUG_ON(!has_cache);
253d553b 1152 has_cache = 0;
aaa46865
HD
1153 } else if (count == SWAP_MAP_SHMEM) {
1154 /*
1155 * Or we could insist on shmem.c using a special
1156 * swap_shmem_free() and free_shmem_swap_and_cache()...
1157 */
1158 count = 0;
570a335b
HD
1159 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1160 if (count == COUNT_CONTINUED) {
1161 if (swap_count_continued(p, offset, count))
1162 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1163 else
1164 count = SWAP_MAP_MAX;
1165 } else
1166 count--;
1167 }
253d553b 1168
253d553b 1169 usage = count | has_cache;
7c00bafe
TC
1170 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1171
b32d5f32
HY
1172 return usage;
1173}
1174
1175static unsigned char __swap_entry_free(struct swap_info_struct *p,
1176 swp_entry_t entry, unsigned char usage)
1177{
1178 struct swap_cluster_info *ci;
1179 unsigned long offset = swp_offset(entry);
1180
1181 ci = lock_cluster_or_swap_info(p, offset);
1182 usage = __swap_entry_free_locked(p, offset, usage);
7c00bafe
TC
1183 unlock_cluster_or_swap_info(p, ci);
1184
1185 return usage;
1186}
355cfa73 1187
7c00bafe
TC
1188static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1189{
1190 struct swap_cluster_info *ci;
1191 unsigned long offset = swp_offset(entry);
1192 unsigned char count;
1193
1194 ci = lock_cluster(p, offset);
1195 count = p->swap_map[offset];
1196 VM_BUG_ON(count != SWAP_HAS_CACHE);
1197 p->swap_map[offset] = 0;
1198 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1199 unlock_cluster(ci);
1200
38d8b4e6
HY
1201 mem_cgroup_uncharge_swap(entry, 1);
1202 swap_range_free(p, offset, 1);
1da177e4
LT
1203}
1204
1205/*
2de1a7e4 1206 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1207 * is still around or has not been recycled.
1208 */
1209void swap_free(swp_entry_t entry)
1210{
73c34b6a 1211 struct swap_info_struct *p;
1da177e4 1212
235b6217 1213 p = _swap_info_get(entry);
7c00bafe
TC
1214 if (p) {
1215 if (!__swap_entry_free(p, entry, 1))
67afa38e 1216 free_swap_slot(entry);
7c00bafe 1217 }
1da177e4
LT
1218}
1219
cb4b86ba
KH
1220/*
1221 * Called after dropping swapcache to decrease refcnt to swap entries.
1222 */
a448f2d0 1223void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1224{
1225 unsigned long offset = swp_offset(entry);
1226 unsigned long idx = offset / SWAPFILE_CLUSTER;
1227 struct swap_cluster_info *ci;
1228 struct swap_info_struct *si;
1229 unsigned char *map;
a3aea839
HY
1230 unsigned int i, free_entries = 0;
1231 unsigned char val;
a448f2d0 1232 int size = swap_entry_size(hpage_nr_pages(page));
fe5266d5 1233
a3aea839 1234 si = _swap_info_get(entry);
38d8b4e6
HY
1235 if (!si)
1236 return;
1237
c2343d27 1238 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1239 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1240 VM_BUG_ON(!cluster_is_huge(ci));
1241 map = si->swap_map + offset;
1242 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1243 val = map[i];
1244 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1245 if (val == SWAP_HAS_CACHE)
1246 free_entries++;
1247 }
a448f2d0 1248 cluster_clear_huge(ci);
a448f2d0 1249 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1250 unlock_cluster_or_swap_info(si, ci);
a448f2d0
HY
1251 spin_lock(&si->lock);
1252 ci = lock_cluster(si, offset);
1253 memset(map, 0, SWAPFILE_CLUSTER);
1254 unlock_cluster(ci);
1255 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1256 swap_free_cluster(si, idx);
1257 spin_unlock(&si->lock);
1258 return;
1259 }
1260 }
c2343d27
HY
1261 for (i = 0; i < size; i++, entry.val++) {
1262 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1263 unlock_cluster_or_swap_info(si, ci);
1264 free_swap_slot(entry);
1265 if (i == size - 1)
1266 return;
1267 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1268 }
1269 }
c2343d27 1270 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1271}
59807685 1272
fe5266d5 1273#ifdef CONFIG_THP_SWAP
59807685
HY
1274int split_swap_cluster(swp_entry_t entry)
1275{
1276 struct swap_info_struct *si;
1277 struct swap_cluster_info *ci;
1278 unsigned long offset = swp_offset(entry);
1279
1280 si = _swap_info_get(entry);
1281 if (!si)
1282 return -EBUSY;
1283 ci = lock_cluster(si, offset);
1284 cluster_clear_huge(ci);
1285 unlock_cluster(ci);
1286 return 0;
1287}
fe5266d5 1288#endif
38d8b4e6 1289
155b5f88
HY
1290static int swp_entry_cmp(const void *ent1, const void *ent2)
1291{
1292 const swp_entry_t *e1 = ent1, *e2 = ent2;
1293
1294 return (int)swp_type(*e1) - (int)swp_type(*e2);
1295}
1296
7c00bafe
TC
1297void swapcache_free_entries(swp_entry_t *entries, int n)
1298{
1299 struct swap_info_struct *p, *prev;
1300 int i;
1301
1302 if (n <= 0)
1303 return;
1304
1305 prev = NULL;
1306 p = NULL;
155b5f88
HY
1307
1308 /*
1309 * Sort swap entries by swap device, so each lock is only taken once.
1310 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1311 * so low that it isn't necessary to optimize further.
1312 */
1313 if (nr_swapfiles > 1)
1314 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1315 for (i = 0; i < n; ++i) {
1316 p = swap_info_get_cont(entries[i], prev);
1317 if (p)
1318 swap_entry_free(p, entries[i]);
7c00bafe
TC
1319 prev = p;
1320 }
235b6217 1321 if (p)
7c00bafe 1322 spin_unlock(&p->lock);
cb4b86ba
KH
1323}
1324
1da177e4 1325/*
c475a8ab 1326 * How many references to page are currently swapped out?
570a335b
HD
1327 * This does not give an exact answer when swap count is continued,
1328 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1329 */
bde05d1c 1330int page_swapcount(struct page *page)
1da177e4 1331{
c475a8ab
HD
1332 int count = 0;
1333 struct swap_info_struct *p;
235b6217 1334 struct swap_cluster_info *ci;
1da177e4 1335 swp_entry_t entry;
235b6217 1336 unsigned long offset;
1da177e4 1337
4c21e2f2 1338 entry.val = page_private(page);
235b6217 1339 p = _swap_info_get(entry);
1da177e4 1340 if (p) {
235b6217
HY
1341 offset = swp_offset(entry);
1342 ci = lock_cluster_or_swap_info(p, offset);
1343 count = swap_count(p->swap_map[offset]);
1344 unlock_cluster_or_swap_info(p, ci);
1da177e4 1345 }
c475a8ab 1346 return count;
1da177e4
LT
1347}
1348
aa8d22a1
MK
1349int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1350{
1351 pgoff_t offset = swp_offset(entry);
1352
1353 return swap_count(si->swap_map[offset]);
1354}
1355
322b8afe
HY
1356static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1357{
1358 int count = 0;
1359 pgoff_t offset = swp_offset(entry);
1360 struct swap_cluster_info *ci;
1361
1362 ci = lock_cluster_or_swap_info(si, offset);
1363 count = swap_count(si->swap_map[offset]);
1364 unlock_cluster_or_swap_info(si, ci);
1365 return count;
1366}
1367
e8c26ab6
TC
1368/*
1369 * How many references to @entry are currently swapped out?
1370 * This does not give an exact answer when swap count is continued,
1371 * but does include the high COUNT_CONTINUED flag to allow for that.
1372 */
1373int __swp_swapcount(swp_entry_t entry)
1374{
1375 int count = 0;
e8c26ab6 1376 struct swap_info_struct *si;
e8c26ab6
TC
1377
1378 si = __swap_info_get(entry);
322b8afe
HY
1379 if (si)
1380 count = swap_swapcount(si, entry);
e8c26ab6
TC
1381 return count;
1382}
1383
8334b962
MK
1384/*
1385 * How many references to @entry are currently swapped out?
1386 * This considers COUNT_CONTINUED so it returns exact answer.
1387 */
1388int swp_swapcount(swp_entry_t entry)
1389{
1390 int count, tmp_count, n;
1391 struct swap_info_struct *p;
235b6217 1392 struct swap_cluster_info *ci;
8334b962
MK
1393 struct page *page;
1394 pgoff_t offset;
1395 unsigned char *map;
1396
235b6217 1397 p = _swap_info_get(entry);
8334b962
MK
1398 if (!p)
1399 return 0;
1400
235b6217
HY
1401 offset = swp_offset(entry);
1402
1403 ci = lock_cluster_or_swap_info(p, offset);
1404
1405 count = swap_count(p->swap_map[offset]);
8334b962
MK
1406 if (!(count & COUNT_CONTINUED))
1407 goto out;
1408
1409 count &= ~COUNT_CONTINUED;
1410 n = SWAP_MAP_MAX + 1;
1411
8334b962
MK
1412 page = vmalloc_to_page(p->swap_map + offset);
1413 offset &= ~PAGE_MASK;
1414 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1415
1416 do {
a8ae4991 1417 page = list_next_entry(page, lru);
8334b962
MK
1418 map = kmap_atomic(page);
1419 tmp_count = map[offset];
1420 kunmap_atomic(map);
1421
1422 count += (tmp_count & ~COUNT_CONTINUED) * n;
1423 n *= (SWAP_CONT_MAX + 1);
1424 } while (tmp_count & COUNT_CONTINUED);
1425out:
235b6217 1426 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1427 return count;
1428}
1429
e0709829
HY
1430static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1431 swp_entry_t entry)
1432{
1433 struct swap_cluster_info *ci;
1434 unsigned char *map = si->swap_map;
1435 unsigned long roffset = swp_offset(entry);
1436 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1437 int i;
1438 bool ret = false;
1439
1440 ci = lock_cluster_or_swap_info(si, offset);
1441 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1442 if (swap_count(map[roffset]))
e0709829
HY
1443 ret = true;
1444 goto unlock_out;
1445 }
1446 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1447 if (swap_count(map[offset + i])) {
e0709829
HY
1448 ret = true;
1449 break;
1450 }
1451 }
1452unlock_out:
1453 unlock_cluster_or_swap_info(si, ci);
1454 return ret;
1455}
1456
1457static bool page_swapped(struct page *page)
1458{
1459 swp_entry_t entry;
1460 struct swap_info_struct *si;
1461
fe5266d5 1462 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1463 return page_swapcount(page) != 0;
1464
1465 page = compound_head(page);
1466 entry.val = page_private(page);
1467 si = _swap_info_get(entry);
1468 if (si)
1469 return swap_page_trans_huge_swapped(si, entry);
1470 return false;
1471}
ba3c4ce6
HY
1472
1473static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1474 int *total_swapcount)
1475{
1476 int i, map_swapcount, _total_mapcount, _total_swapcount;
1477 unsigned long offset = 0;
1478 struct swap_info_struct *si;
1479 struct swap_cluster_info *ci = NULL;
1480 unsigned char *map = NULL;
1481 int mapcount, swapcount = 0;
1482
1483 /* hugetlbfs shouldn't call it */
1484 VM_BUG_ON_PAGE(PageHuge(page), page);
1485
fe5266d5
HY
1486 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1487 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1488 if (PageSwapCache(page))
1489 swapcount = page_swapcount(page);
1490 if (total_swapcount)
1491 *total_swapcount = swapcount;
1492 return mapcount + swapcount;
1493 }
1494
1495 page = compound_head(page);
1496
1497 _total_mapcount = _total_swapcount = map_swapcount = 0;
1498 if (PageSwapCache(page)) {
1499 swp_entry_t entry;
1500
1501 entry.val = page_private(page);
1502 si = _swap_info_get(entry);
1503 if (si) {
1504 map = si->swap_map;
1505 offset = swp_offset(entry);
1506 }
1507 }
1508 if (map)
1509 ci = lock_cluster(si, offset);
1510 for (i = 0; i < HPAGE_PMD_NR; i++) {
1511 mapcount = atomic_read(&page[i]._mapcount) + 1;
1512 _total_mapcount += mapcount;
1513 if (map) {
1514 swapcount = swap_count(map[offset + i]);
1515 _total_swapcount += swapcount;
1516 }
1517 map_swapcount = max(map_swapcount, mapcount + swapcount);
1518 }
1519 unlock_cluster(ci);
1520 if (PageDoubleMap(page)) {
1521 map_swapcount -= 1;
1522 _total_mapcount -= HPAGE_PMD_NR;
1523 }
1524 mapcount = compound_mapcount(page);
1525 map_swapcount += mapcount;
1526 _total_mapcount += mapcount;
1527 if (total_mapcount)
1528 *total_mapcount = _total_mapcount;
1529 if (total_swapcount)
1530 *total_swapcount = _total_swapcount;
1531
1532 return map_swapcount;
1533}
e0709829 1534
1da177e4 1535/*
7b1fe597
HD
1536 * We can write to an anon page without COW if there are no other references
1537 * to it. And as a side-effect, free up its swap: because the old content
1538 * on disk will never be read, and seeking back there to write new content
1539 * later would only waste time away from clustering.
6d0a07ed 1540 *
ba3c4ce6 1541 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1542 * reuse_swap_page() returns false, but it may be always overwritten
1543 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1544 */
ba3c4ce6 1545bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1546{
ba3c4ce6 1547 int count, total_mapcount, total_swapcount;
c475a8ab 1548
309381fe 1549 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1550 if (unlikely(PageKsm(page)))
6d0a07ed 1551 return false;
ba3c4ce6
HY
1552 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1553 &total_swapcount);
1554 if (total_map_swapcount)
1555 *total_map_swapcount = total_mapcount + total_swapcount;
1556 if (count == 1 && PageSwapCache(page) &&
1557 (likely(!PageTransCompound(page)) ||
1558 /* The remaining swap count will be freed soon */
1559 total_swapcount == page_swapcount(page))) {
f0571429 1560 if (!PageWriteback(page)) {
ba3c4ce6 1561 page = compound_head(page);
7b1fe597
HD
1562 delete_from_swap_cache(page);
1563 SetPageDirty(page);
f0571429
MK
1564 } else {
1565 swp_entry_t entry;
1566 struct swap_info_struct *p;
1567
1568 entry.val = page_private(page);
1569 p = swap_info_get(entry);
1570 if (p->flags & SWP_STABLE_WRITES) {
1571 spin_unlock(&p->lock);
1572 return false;
1573 }
1574 spin_unlock(&p->lock);
7b1fe597
HD
1575 }
1576 }
ba3c4ce6 1577
5ad64688 1578 return count <= 1;
1da177e4
LT
1579}
1580
1581/*
a2c43eed
HD
1582 * If swap is getting full, or if there are no more mappings of this page,
1583 * then try_to_free_swap is called to free its swap space.
1da177e4 1584 */
a2c43eed 1585int try_to_free_swap(struct page *page)
1da177e4 1586{
309381fe 1587 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1588
1589 if (!PageSwapCache(page))
1590 return 0;
1591 if (PageWriteback(page))
1592 return 0;
e0709829 1593 if (page_swapped(page))
1da177e4
LT
1594 return 0;
1595
b73d7fce
HD
1596 /*
1597 * Once hibernation has begun to create its image of memory,
1598 * there's a danger that one of the calls to try_to_free_swap()
1599 * - most probably a call from __try_to_reclaim_swap() while
1600 * hibernation is allocating its own swap pages for the image,
1601 * but conceivably even a call from memory reclaim - will free
1602 * the swap from a page which has already been recorded in the
1603 * image as a clean swapcache page, and then reuse its swap for
1604 * another page of the image. On waking from hibernation, the
1605 * original page might be freed under memory pressure, then
1606 * later read back in from swap, now with the wrong data.
1607 *
2de1a7e4 1608 * Hibernation suspends storage while it is writing the image
f90ac398 1609 * to disk so check that here.
b73d7fce 1610 */
f90ac398 1611 if (pm_suspended_storage())
b73d7fce
HD
1612 return 0;
1613
e0709829 1614 page = compound_head(page);
a2c43eed
HD
1615 delete_from_swap_cache(page);
1616 SetPageDirty(page);
1617 return 1;
68a22394
RR
1618}
1619
1da177e4
LT
1620/*
1621 * Free the swap entry like above, but also try to
1622 * free the page cache entry if it is the last user.
1623 */
2509ef26 1624int free_swap_and_cache(swp_entry_t entry)
1da177e4 1625{
2509ef26 1626 struct swap_info_struct *p;
1da177e4 1627 struct page *page = NULL;
7c00bafe 1628 unsigned char count;
1da177e4 1629
a7420aa5 1630 if (non_swap_entry(entry))
2509ef26 1631 return 1;
0697212a 1632
7c00bafe 1633 p = _swap_info_get(entry);
1da177e4 1634 if (p) {
7c00bafe 1635 count = __swap_entry_free(p, entry, 1);
e0709829
HY
1636 if (count == SWAP_HAS_CACHE &&
1637 !swap_page_trans_huge_swapped(p, entry)) {
33806f06 1638 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1639 swp_offset(entry));
8413ac9d 1640 if (page && !trylock_page(page)) {
09cbfeaf 1641 put_page(page);
93fac704
NP
1642 page = NULL;
1643 }
7c00bafe 1644 } else if (!count)
67afa38e 1645 free_swap_slot(entry);
1da177e4
LT
1646 }
1647 if (page) {
a2c43eed
HD
1648 /*
1649 * Not mapped elsewhere, or swap space full? Free it!
1650 * Also recheck PageSwapCache now page is locked (above).
1651 */
93fac704 1652 if (PageSwapCache(page) && !PageWriteback(page) &&
322b8afe 1653 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
e0709829
HY
1654 !swap_page_trans_huge_swapped(p, entry)) {
1655 page = compound_head(page);
1da177e4
LT
1656 delete_from_swap_cache(page);
1657 SetPageDirty(page);
1658 }
1659 unlock_page(page);
09cbfeaf 1660 put_page(page);
1da177e4 1661 }
2509ef26 1662 return p != NULL;
1da177e4
LT
1663}
1664
b0cb1a19 1665#ifdef CONFIG_HIBERNATION
f577eb30 1666/*
915bae9e 1667 * Find the swap type that corresponds to given device (if any).
f577eb30 1668 *
915bae9e
RW
1669 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1670 * from 0, in which the swap header is expected to be located.
1671 *
1672 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1673 */
7bf23687 1674int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1675{
915bae9e 1676 struct block_device *bdev = NULL;
efa90a98 1677 int type;
f577eb30 1678
915bae9e
RW
1679 if (device)
1680 bdev = bdget(device);
1681
f577eb30 1682 spin_lock(&swap_lock);
efa90a98
HD
1683 for (type = 0; type < nr_swapfiles; type++) {
1684 struct swap_info_struct *sis = swap_info[type];
f577eb30 1685
915bae9e 1686 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1687 continue;
b6b5bce3 1688
915bae9e 1689 if (!bdev) {
7bf23687 1690 if (bdev_p)
dddac6a7 1691 *bdev_p = bdgrab(sis->bdev);
7bf23687 1692
6e1819d6 1693 spin_unlock(&swap_lock);
efa90a98 1694 return type;
6e1819d6 1695 }
915bae9e 1696 if (bdev == sis->bdev) {
9625a5f2 1697 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1698
915bae9e 1699 if (se->start_block == offset) {
7bf23687 1700 if (bdev_p)
dddac6a7 1701 *bdev_p = bdgrab(sis->bdev);
7bf23687 1702
915bae9e
RW
1703 spin_unlock(&swap_lock);
1704 bdput(bdev);
efa90a98 1705 return type;
915bae9e 1706 }
f577eb30
RW
1707 }
1708 }
1709 spin_unlock(&swap_lock);
915bae9e
RW
1710 if (bdev)
1711 bdput(bdev);
1712
f577eb30
RW
1713 return -ENODEV;
1714}
1715
73c34b6a
HD
1716/*
1717 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1718 * corresponding to given index in swap_info (swap type).
1719 */
1720sector_t swapdev_block(int type, pgoff_t offset)
1721{
1722 struct block_device *bdev;
ed3345a6 1723 struct swap_info_struct *si = swap_type_to_swap_info(type);
73c34b6a 1724
ed3345a6 1725 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1726 return 0;
d4906e1a 1727 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1728}
1729
f577eb30
RW
1730/*
1731 * Return either the total number of swap pages of given type, or the number
1732 * of free pages of that type (depending on @free)
1733 *
1734 * This is needed for software suspend
1735 */
1736unsigned int count_swap_pages(int type, int free)
1737{
1738 unsigned int n = 0;
1739
efa90a98
HD
1740 spin_lock(&swap_lock);
1741 if ((unsigned int)type < nr_swapfiles) {
1742 struct swap_info_struct *sis = swap_info[type];
1743
ec8acf20 1744 spin_lock(&sis->lock);
efa90a98
HD
1745 if (sis->flags & SWP_WRITEOK) {
1746 n = sis->pages;
f577eb30 1747 if (free)
efa90a98 1748 n -= sis->inuse_pages;
f577eb30 1749 }
ec8acf20 1750 spin_unlock(&sis->lock);
f577eb30 1751 }
efa90a98 1752 spin_unlock(&swap_lock);
f577eb30
RW
1753 return n;
1754}
73c34b6a 1755#endif /* CONFIG_HIBERNATION */
f577eb30 1756
9f8bdb3f 1757static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1758{
9f8bdb3f 1759 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1760}
1761
1da177e4 1762/*
72866f6f
HD
1763 * No need to decide whether this PTE shares the swap entry with others,
1764 * just let do_wp_page work it out if a write is requested later - to
1765 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1766 */
044d66c1 1767static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1768 unsigned long addr, swp_entry_t entry, struct page *page)
1769{
9e16b7fb 1770 struct page *swapcache;
72835c86 1771 struct mem_cgroup *memcg;
044d66c1
HD
1772 spinlock_t *ptl;
1773 pte_t *pte;
1774 int ret = 1;
1775
9e16b7fb
HD
1776 swapcache = page;
1777 page = ksm_might_need_to_copy(page, vma, addr);
1778 if (unlikely(!page))
1779 return -ENOMEM;
1780
f627c2f5
KS
1781 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1782 &memcg, false)) {
044d66c1 1783 ret = -ENOMEM;
85d9fc89
KH
1784 goto out_nolock;
1785 }
044d66c1
HD
1786
1787 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1788 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1789 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1790 ret = 0;
1791 goto out;
1792 }
8a9f3ccd 1793
b084d435 1794 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1795 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1796 get_page(page);
1797 set_pte_at(vma->vm_mm, addr, pte,
1798 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1799 if (page == swapcache) {
d281ee61 1800 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1801 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1802 } else { /* ksm created a completely new copy */
d281ee61 1803 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1804 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1805 lru_cache_add_active_or_unevictable(page, vma);
1806 }
1da177e4
LT
1807 swap_free(entry);
1808 /*
1809 * Move the page to the active list so it is not
1810 * immediately swapped out again after swapon.
1811 */
1812 activate_page(page);
044d66c1
HD
1813out:
1814 pte_unmap_unlock(pte, ptl);
85d9fc89 1815out_nolock:
9e16b7fb
HD
1816 if (page != swapcache) {
1817 unlock_page(page);
1818 put_page(page);
1819 }
044d66c1 1820 return ret;
1da177e4
LT
1821}
1822
1823static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1824 unsigned long addr, unsigned long end,
1825 swp_entry_t entry, struct page *page)
1826{
1da177e4 1827 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1828 pte_t *pte;
8a9f3ccd 1829 int ret = 0;
1da177e4 1830
044d66c1
HD
1831 /*
1832 * We don't actually need pte lock while scanning for swp_pte: since
1833 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1834 * page table while we're scanning; though it could get zapped, and on
1835 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1836 * of unmatched parts which look like swp_pte, so unuse_pte must
1837 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1838 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1839 */
1840 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1841 do {
1842 /*
1843 * swapoff spends a _lot_ of time in this loop!
1844 * Test inline before going to call unuse_pte.
1845 */
9f8bdb3f 1846 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1847 pte_unmap(pte);
1848 ret = unuse_pte(vma, pmd, addr, entry, page);
1849 if (ret)
1850 goto out;
1851 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1852 }
1853 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1854 pte_unmap(pte - 1);
1855out:
8a9f3ccd 1856 return ret;
1da177e4
LT
1857}
1858
1859static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1860 unsigned long addr, unsigned long end,
1861 swp_entry_t entry, struct page *page)
1862{
1863 pmd_t *pmd;
1864 unsigned long next;
8a9f3ccd 1865 int ret;
1da177e4
LT
1866
1867 pmd = pmd_offset(pud, addr);
1868 do {
dc644a07 1869 cond_resched();
1da177e4 1870 next = pmd_addr_end(addr, end);
1a5a9906 1871 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1872 continue;
8a9f3ccd
BS
1873 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1874 if (ret)
1875 return ret;
1da177e4
LT
1876 } while (pmd++, addr = next, addr != end);
1877 return 0;
1878}
1879
c2febafc 1880static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4
LT
1881 unsigned long addr, unsigned long end,
1882 swp_entry_t entry, struct page *page)
1883{
1884 pud_t *pud;
1885 unsigned long next;
8a9f3ccd 1886 int ret;
1da177e4 1887
c2febafc 1888 pud = pud_offset(p4d, addr);
1da177e4
LT
1889 do {
1890 next = pud_addr_end(addr, end);
1891 if (pud_none_or_clear_bad(pud))
1892 continue;
8a9f3ccd
BS
1893 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1894 if (ret)
1895 return ret;
1da177e4
LT
1896 } while (pud++, addr = next, addr != end);
1897 return 0;
1898}
1899
c2febafc
KS
1900static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1901 unsigned long addr, unsigned long end,
1902 swp_entry_t entry, struct page *page)
1903{
1904 p4d_t *p4d;
1905 unsigned long next;
1906 int ret;
1907
1908 p4d = p4d_offset(pgd, addr);
1909 do {
1910 next = p4d_addr_end(addr, end);
1911 if (p4d_none_or_clear_bad(p4d))
1912 continue;
1913 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1914 if (ret)
1915 return ret;
1916 } while (p4d++, addr = next, addr != end);
1917 return 0;
1918}
1919
1da177e4
LT
1920static int unuse_vma(struct vm_area_struct *vma,
1921 swp_entry_t entry, struct page *page)
1922{
1923 pgd_t *pgd;
1924 unsigned long addr, end, next;
8a9f3ccd 1925 int ret;
1da177e4 1926
3ca7b3c5 1927 if (page_anon_vma(page)) {
1da177e4
LT
1928 addr = page_address_in_vma(page, vma);
1929 if (addr == -EFAULT)
1930 return 0;
1931 else
1932 end = addr + PAGE_SIZE;
1933 } else {
1934 addr = vma->vm_start;
1935 end = vma->vm_end;
1936 }
1937
1938 pgd = pgd_offset(vma->vm_mm, addr);
1939 do {
1940 next = pgd_addr_end(addr, end);
1941 if (pgd_none_or_clear_bad(pgd))
1942 continue;
c2febafc 1943 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
8a9f3ccd
BS
1944 if (ret)
1945 return ret;
1da177e4
LT
1946 } while (pgd++, addr = next, addr != end);
1947 return 0;
1948}
1949
1950static int unuse_mm(struct mm_struct *mm,
1951 swp_entry_t entry, struct page *page)
1952{
1953 struct vm_area_struct *vma;
8a9f3ccd 1954 int ret = 0;
1da177e4
LT
1955
1956 if (!down_read_trylock(&mm->mmap_sem)) {
1957 /*
7d03431c
FLVC
1958 * Activate page so shrink_inactive_list is unlikely to unmap
1959 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1960 */
c475a8ab 1961 activate_page(page);
1da177e4
LT
1962 unlock_page(page);
1963 down_read(&mm->mmap_sem);
1964 lock_page(page);
1965 }
1da177e4 1966 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1967 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1968 break;
dc644a07 1969 cond_resched();
1da177e4 1970 }
1da177e4 1971 up_read(&mm->mmap_sem);
8a9f3ccd 1972 return (ret < 0)? ret: 0;
1da177e4
LT
1973}
1974
1975/*
38b5faf4
DM
1976 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1977 * from current position to next entry still in use.
1da177e4
LT
1978 * Recycle to start on reaching the end, returning 0 when empty.
1979 */
6eb396dc 1980static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1981 unsigned int prev, bool frontswap)
1da177e4 1982{
6eb396dc
HD
1983 unsigned int max = si->max;
1984 unsigned int i = prev;
8d69aaee 1985 unsigned char count;
1da177e4
LT
1986
1987 /*
5d337b91 1988 * No need for swap_lock here: we're just looking
1da177e4
LT
1989 * for whether an entry is in use, not modifying it; false
1990 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1991 * allocations from this area (while holding swap_lock).
1da177e4
LT
1992 */
1993 for (;;) {
1994 if (++i >= max) {
1995 if (!prev) {
1996 i = 0;
1997 break;
1998 }
1999 /*
2000 * No entries in use at top of swap_map,
2001 * loop back to start and recheck there.
2002 */
2003 max = prev + 1;
2004 prev = 0;
2005 i = 1;
2006 }
4db0c3c2 2007 count = READ_ONCE(si->swap_map[i]);
355cfa73 2008 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2009 if (!frontswap || frontswap_test(si, i))
2010 break;
2011 if ((i % LATENCY_LIMIT) == 0)
2012 cond_resched();
1da177e4
LT
2013 }
2014 return i;
2015}
2016
2017/*
2018 * We completely avoid races by reading each swap page in advance,
2019 * and then search for the process using it. All the necessary
2020 * page table adjustments can then be made atomically.
38b5faf4
DM
2021 *
2022 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2023 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2024 */
38b5faf4
DM
2025int try_to_unuse(unsigned int type, bool frontswap,
2026 unsigned long pages_to_unuse)
1da177e4 2027{
efa90a98 2028 struct swap_info_struct *si = swap_info[type];
1da177e4 2029 struct mm_struct *start_mm;
edfe23da
SL
2030 volatile unsigned char *swap_map; /* swap_map is accessed without
2031 * locking. Mark it as volatile
2032 * to prevent compiler doing
2033 * something odd.
2034 */
8d69aaee 2035 unsigned char swcount;
1da177e4
LT
2036 struct page *page;
2037 swp_entry_t entry;
6eb396dc 2038 unsigned int i = 0;
1da177e4 2039 int retval = 0;
1da177e4
LT
2040
2041 /*
2042 * When searching mms for an entry, a good strategy is to
2043 * start at the first mm we freed the previous entry from
2044 * (though actually we don't notice whether we or coincidence
2045 * freed the entry). Initialize this start_mm with a hold.
2046 *
2047 * A simpler strategy would be to start at the last mm we
2048 * freed the previous entry from; but that would take less
2049 * advantage of mmlist ordering, which clusters forked mms
2050 * together, child after parent. If we race with dup_mmap(), we
2051 * prefer to resolve parent before child, lest we miss entries
2052 * duplicated after we scanned child: using last mm would invert
570a335b 2053 * that.
1da177e4
LT
2054 */
2055 start_mm = &init_mm;
3fce371b 2056 mmget(&init_mm);
1da177e4
LT
2057
2058 /*
2059 * Keep on scanning until all entries have gone. Usually,
2060 * one pass through swap_map is enough, but not necessarily:
2061 * there are races when an instance of an entry might be missed.
2062 */
38b5faf4 2063 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
2064 if (signal_pending(current)) {
2065 retval = -EINTR;
2066 break;
2067 }
2068
886bb7e9 2069 /*
1da177e4
LT
2070 * Get a page for the entry, using the existing swap
2071 * cache page if there is one. Otherwise, get a clean
886bb7e9 2072 * page and read the swap into it.
1da177e4
LT
2073 */
2074 swap_map = &si->swap_map[i];
2075 entry = swp_entry(type, i);
02098fea 2076 page = read_swap_cache_async(entry,
23955622 2077 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
1da177e4
LT
2078 if (!page) {
2079 /*
2080 * Either swap_duplicate() failed because entry
2081 * has been freed independently, and will not be
2082 * reused since sys_swapoff() already disabled
2083 * allocation from here, or alloc_page() failed.
2084 */
edfe23da
SL
2085 swcount = *swap_map;
2086 /*
2087 * We don't hold lock here, so the swap entry could be
2088 * SWAP_MAP_BAD (when the cluster is discarding).
2089 * Instead of fail out, We can just skip the swap
2090 * entry because swapoff will wait for discarding
2091 * finish anyway.
2092 */
2093 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
2094 continue;
2095 retval = -ENOMEM;
2096 break;
2097 }
2098
2099 /*
2100 * Don't hold on to start_mm if it looks like exiting.
2101 */
2102 if (atomic_read(&start_mm->mm_users) == 1) {
2103 mmput(start_mm);
2104 start_mm = &init_mm;
3fce371b 2105 mmget(&init_mm);
1da177e4
LT
2106 }
2107
2108 /*
2109 * Wait for and lock page. When do_swap_page races with
2110 * try_to_unuse, do_swap_page can handle the fault much
2111 * faster than try_to_unuse can locate the entry. This
2112 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2113 * defer to do_swap_page in such a case - in some tests,
2114 * do_swap_page and try_to_unuse repeatedly compete.
2115 */
2116 wait_on_page_locked(page);
2117 wait_on_page_writeback(page);
2118 lock_page(page);
2119 wait_on_page_writeback(page);
2120
2121 /*
2122 * Remove all references to entry.
1da177e4 2123 */
1da177e4 2124 swcount = *swap_map;
aaa46865
HD
2125 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2126 retval = shmem_unuse(entry, page);
2127 /* page has already been unlocked and released */
2128 if (retval < 0)
2129 break;
2130 continue;
1da177e4 2131 }
aaa46865
HD
2132 if (swap_count(swcount) && start_mm != &init_mm)
2133 retval = unuse_mm(start_mm, entry, page);
2134
355cfa73 2135 if (swap_count(*swap_map)) {
1da177e4
LT
2136 int set_start_mm = (*swap_map >= swcount);
2137 struct list_head *p = &start_mm->mmlist;
2138 struct mm_struct *new_start_mm = start_mm;
2139 struct mm_struct *prev_mm = start_mm;
2140 struct mm_struct *mm;
2141
3fce371b
VN
2142 mmget(new_start_mm);
2143 mmget(prev_mm);
1da177e4 2144 spin_lock(&mmlist_lock);
aaa46865 2145 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
2146 (p = p->next) != &start_mm->mmlist) {
2147 mm = list_entry(p, struct mm_struct, mmlist);
388f7934 2148 if (!mmget_not_zero(mm))
1da177e4 2149 continue;
1da177e4
LT
2150 spin_unlock(&mmlist_lock);
2151 mmput(prev_mm);
2152 prev_mm = mm;
2153
2154 cond_resched();
2155
2156 swcount = *swap_map;
355cfa73 2157 if (!swap_count(swcount)) /* any usage ? */
1da177e4 2158 ;
aaa46865 2159 else if (mm == &init_mm)
1da177e4 2160 set_start_mm = 1;
aaa46865 2161 else
1da177e4 2162 retval = unuse_mm(mm, entry, page);
355cfa73 2163
32c5fc10 2164 if (set_start_mm && *swap_map < swcount) {
1da177e4 2165 mmput(new_start_mm);
3fce371b 2166 mmget(mm);
1da177e4
LT
2167 new_start_mm = mm;
2168 set_start_mm = 0;
2169 }
2170 spin_lock(&mmlist_lock);
2171 }
2172 spin_unlock(&mmlist_lock);
2173 mmput(prev_mm);
2174 mmput(start_mm);
2175 start_mm = new_start_mm;
2176 }
2177 if (retval) {
2178 unlock_page(page);
09cbfeaf 2179 put_page(page);
1da177e4
LT
2180 break;
2181 }
2182
1da177e4
LT
2183 /*
2184 * If a reference remains (rare), we would like to leave
2185 * the page in the swap cache; but try_to_unmap could
2186 * then re-duplicate the entry once we drop page lock,
2187 * so we might loop indefinitely; also, that page could
2188 * not be swapped out to other storage meanwhile. So:
2189 * delete from cache even if there's another reference,
2190 * after ensuring that the data has been saved to disk -
2191 * since if the reference remains (rarer), it will be
2192 * read from disk into another page. Splitting into two
2193 * pages would be incorrect if swap supported "shared
2194 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
2195 *
2196 * Given how unuse_vma() targets one particular offset
2197 * in an anon_vma, once the anon_vma has been determined,
2198 * this splitting happens to be just what is needed to
2199 * handle where KSM pages have been swapped out: re-reading
2200 * is unnecessarily slow, but we can fix that later on.
1da177e4 2201 */
355cfa73
KH
2202 if (swap_count(*swap_map) &&
2203 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
2204 struct writeback_control wbc = {
2205 .sync_mode = WB_SYNC_NONE,
2206 };
2207
e0709829 2208 swap_writepage(compound_head(page), &wbc);
1da177e4
LT
2209 lock_page(page);
2210 wait_on_page_writeback(page);
2211 }
68bdc8d6
HD
2212
2213 /*
2214 * It is conceivable that a racing task removed this page from
2215 * swap cache just before we acquired the page lock at the top,
2216 * or while we dropped it in unuse_mm(). The page might even
2217 * be back in swap cache on another swap area: that we must not
2218 * delete, since it may not have been written out to swap yet.
2219 */
2220 if (PageSwapCache(page) &&
e0709829 2221 likely(page_private(page) == entry.val) &&
8da70752
HY
2222 (!PageTransCompound(page) ||
2223 !swap_page_trans_huge_swapped(si, entry)))
e0709829 2224 delete_from_swap_cache(compound_head(page));
1da177e4
LT
2225
2226 /*
2227 * So we could skip searching mms once swap count went
2228 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 2229 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
2230 */
2231 SetPageDirty(page);
2232 unlock_page(page);
09cbfeaf 2233 put_page(page);
1da177e4
LT
2234
2235 /*
2236 * Make sure that we aren't completely killing
2237 * interactive performance.
2238 */
2239 cond_resched();
38b5faf4
DM
2240 if (frontswap && pages_to_unuse > 0) {
2241 if (!--pages_to_unuse)
2242 break;
2243 }
1da177e4
LT
2244 }
2245
2246 mmput(start_mm);
1da177e4
LT
2247 return retval;
2248}
2249
2250/*
5d337b91
HD
2251 * After a successful try_to_unuse, if no swap is now in use, we know
2252 * we can empty the mmlist. swap_lock must be held on entry and exit.
2253 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2254 * added to the mmlist just after page_duplicate - before would be racy.
2255 */
2256static void drain_mmlist(void)
2257{
2258 struct list_head *p, *next;
efa90a98 2259 unsigned int type;
1da177e4 2260
efa90a98
HD
2261 for (type = 0; type < nr_swapfiles; type++)
2262 if (swap_info[type]->inuse_pages)
1da177e4
LT
2263 return;
2264 spin_lock(&mmlist_lock);
2265 list_for_each_safe(p, next, &init_mm.mmlist)
2266 list_del_init(p);
2267 spin_unlock(&mmlist_lock);
2268}
2269
2270/*
2271 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2272 * corresponds to page offset for the specified swap entry.
2273 * Note that the type of this function is sector_t, but it returns page offset
2274 * into the bdev, not sector offset.
1da177e4 2275 */
d4906e1a 2276static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2277{
f29ad6a9
HD
2278 struct swap_info_struct *sis;
2279 struct swap_extent *start_se;
2280 struct swap_extent *se;
2281 pgoff_t offset;
2282
ed3345a6 2283 sis = swp_swap_info(entry);
f29ad6a9
HD
2284 *bdev = sis->bdev;
2285
2286 offset = swp_offset(entry);
2287 start_se = sis->curr_swap_extent;
2288 se = start_se;
1da177e4
LT
2289
2290 for ( ; ; ) {
1da177e4
LT
2291 if (se->start_page <= offset &&
2292 offset < (se->start_page + se->nr_pages)) {
2293 return se->start_block + (offset - se->start_page);
2294 }
a8ae4991 2295 se = list_next_entry(se, list);
1da177e4
LT
2296 sis->curr_swap_extent = se;
2297 BUG_ON(se == start_se); /* It *must* be present */
2298 }
2299}
2300
d4906e1a
LS
2301/*
2302 * Returns the page offset into bdev for the specified page's swap entry.
2303 */
2304sector_t map_swap_page(struct page *page, struct block_device **bdev)
2305{
2306 swp_entry_t entry;
2307 entry.val = page_private(page);
2308 return map_swap_entry(entry, bdev);
2309}
2310
1da177e4
LT
2311/*
2312 * Free all of a swapdev's extent information
2313 */
2314static void destroy_swap_extents(struct swap_info_struct *sis)
2315{
9625a5f2 2316 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
2317 struct swap_extent *se;
2318
a8ae4991 2319 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
2320 struct swap_extent, list);
2321 list_del(&se->list);
2322 kfree(se);
2323 }
62c230bc
MG
2324
2325 if (sis->flags & SWP_FILE) {
2326 struct file *swap_file = sis->swap_file;
2327 struct address_space *mapping = swap_file->f_mapping;
2328
2329 sis->flags &= ~SWP_FILE;
2330 mapping->a_ops->swap_deactivate(swap_file);
2331 }
1da177e4
LT
2332}
2333
2334/*
2335 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 2336 * extent list. The extent list is kept sorted in page order.
1da177e4 2337 *
11d31886 2338 * This function rather assumes that it is called in ascending page order.
1da177e4 2339 */
a509bc1a 2340int
1da177e4
LT
2341add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2342 unsigned long nr_pages, sector_t start_block)
2343{
2344 struct swap_extent *se;
2345 struct swap_extent *new_se;
2346 struct list_head *lh;
2347
9625a5f2
HD
2348 if (start_page == 0) {
2349 se = &sis->first_swap_extent;
2350 sis->curr_swap_extent = se;
2351 se->start_page = 0;
2352 se->nr_pages = nr_pages;
2353 se->start_block = start_block;
2354 return 1;
2355 } else {
2356 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 2357 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
2358 BUG_ON(se->start_page + se->nr_pages != start_page);
2359 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2360 /* Merge it */
2361 se->nr_pages += nr_pages;
2362 return 0;
2363 }
1da177e4
LT
2364 }
2365
2366 /*
2367 * No merge. Insert a new extent, preserving ordering.
2368 */
2369 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2370 if (new_se == NULL)
2371 return -ENOMEM;
2372 new_se->start_page = start_page;
2373 new_se->nr_pages = nr_pages;
2374 new_se->start_block = start_block;
2375
9625a5f2 2376 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 2377 return 1;
1da177e4
LT
2378}
2379
2380/*
2381 * A `swap extent' is a simple thing which maps a contiguous range of pages
2382 * onto a contiguous range of disk blocks. An ordered list of swap extents
2383 * is built at swapon time and is then used at swap_writepage/swap_readpage
2384 * time for locating where on disk a page belongs.
2385 *
2386 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2387 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2388 * swap files identically.
2389 *
2390 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2391 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2392 * swapfiles are handled *identically* after swapon time.
2393 *
2394 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2395 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2396 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2397 * requirements, they are simply tossed out - we will never use those blocks
2398 * for swapping.
2399 *
b0d9bcd4 2400 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
2401 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2402 * which will scribble on the fs.
2403 *
2404 * The amount of disk space which a single swap extent represents varies.
2405 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2406 * extents in the list. To avoid much list walking, we cache the previous
2407 * search location in `curr_swap_extent', and start new searches from there.
2408 * This is extremely effective. The average number of iterations in
2409 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2410 */
53092a74 2411static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2412{
62c230bc
MG
2413 struct file *swap_file = sis->swap_file;
2414 struct address_space *mapping = swap_file->f_mapping;
2415 struct inode *inode = mapping->host;
1da177e4
LT
2416 int ret;
2417
1da177e4
LT
2418 if (S_ISBLK(inode->i_mode)) {
2419 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2420 *span = sis->pages;
a509bc1a 2421 return ret;
1da177e4
LT
2422 }
2423
62c230bc 2424 if (mapping->a_ops->swap_activate) {
a509bc1a 2425 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
2426 if (!ret) {
2427 sis->flags |= SWP_FILE;
2428 ret = add_swap_extent(sis, 0, sis->max, 0);
2429 *span = sis->pages;
2430 }
a509bc1a 2431 return ret;
62c230bc
MG
2432 }
2433
a509bc1a 2434 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2435}
2436
a2468cc9
AL
2437static int swap_node(struct swap_info_struct *p)
2438{
2439 struct block_device *bdev;
2440
2441 if (p->bdev)
2442 bdev = p->bdev;
2443 else
2444 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2445
2446 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2447}
2448
cf0cac0a 2449static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
2450 unsigned char *swap_map,
2451 struct swap_cluster_info *cluster_info)
40531542 2452{
a2468cc9
AL
2453 int i;
2454
40531542
CEB
2455 if (prio >= 0)
2456 p->prio = prio;
2457 else
2458 p->prio = --least_priority;
18ab4d4c
DS
2459 /*
2460 * the plist prio is negated because plist ordering is
2461 * low-to-high, while swap ordering is high-to-low
2462 */
2463 p->list.prio = -p->prio;
a2468cc9
AL
2464 for_each_node(i) {
2465 if (p->prio >= 0)
2466 p->avail_lists[i].prio = -p->prio;
2467 else {
2468 if (swap_node(p) == i)
2469 p->avail_lists[i].prio = 1;
2470 else
2471 p->avail_lists[i].prio = -p->prio;
2472 }
2473 }
40531542 2474 p->swap_map = swap_map;
2a8f9449 2475 p->cluster_info = cluster_info;
40531542 2476 p->flags |= SWP_WRITEOK;
ec8acf20 2477 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2478 total_swap_pages += p->pages;
2479
adfab836 2480 assert_spin_locked(&swap_lock);
adfab836 2481 /*
18ab4d4c
DS
2482 * both lists are plists, and thus priority ordered.
2483 * swap_active_head needs to be priority ordered for swapoff(),
2484 * which on removal of any swap_info_struct with an auto-assigned
2485 * (i.e. negative) priority increments the auto-assigned priority
2486 * of any lower-priority swap_info_structs.
2487 * swap_avail_head needs to be priority ordered for get_swap_page(),
2488 * which allocates swap pages from the highest available priority
2489 * swap_info_struct.
adfab836 2490 */
18ab4d4c 2491 plist_add(&p->list, &swap_active_head);
a2468cc9 2492 add_to_avail_list(p);
cf0cac0a
CEB
2493}
2494
2495static void enable_swap_info(struct swap_info_struct *p, int prio,
2496 unsigned char *swap_map,
2a8f9449 2497 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2498 unsigned long *frontswap_map)
2499{
4f89849d 2500 frontswap_init(p->type, frontswap_map);
cf0cac0a 2501 spin_lock(&swap_lock);
ec8acf20 2502 spin_lock(&p->lock);
2a8f9449 2503 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 2504 spin_unlock(&p->lock);
cf0cac0a
CEB
2505 spin_unlock(&swap_lock);
2506}
2507
2508static void reinsert_swap_info(struct swap_info_struct *p)
2509{
2510 spin_lock(&swap_lock);
ec8acf20 2511 spin_lock(&p->lock);
2a8f9449 2512 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 2513 spin_unlock(&p->lock);
40531542
CEB
2514 spin_unlock(&swap_lock);
2515}
2516
67afa38e
TC
2517bool has_usable_swap(void)
2518{
2519 bool ret = true;
2520
2521 spin_lock(&swap_lock);
2522 if (plist_head_empty(&swap_active_head))
2523 ret = false;
2524 spin_unlock(&swap_lock);
2525 return ret;
2526}
2527
c4ea37c2 2528SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2529{
73c34b6a 2530 struct swap_info_struct *p = NULL;
8d69aaee 2531 unsigned char *swap_map;
2a8f9449 2532 struct swap_cluster_info *cluster_info;
4f89849d 2533 unsigned long *frontswap_map;
1da177e4
LT
2534 struct file *swap_file, *victim;
2535 struct address_space *mapping;
2536 struct inode *inode;
91a27b2a 2537 struct filename *pathname;
adfab836 2538 int err, found = 0;
5b808a23 2539 unsigned int old_block_size;
886bb7e9 2540
1da177e4
LT
2541 if (!capable(CAP_SYS_ADMIN))
2542 return -EPERM;
2543
191c5424
AV
2544 BUG_ON(!current->mm);
2545
1da177e4 2546 pathname = getname(specialfile);
1da177e4 2547 if (IS_ERR(pathname))
f58b59c1 2548 return PTR_ERR(pathname);
1da177e4 2549
669abf4e 2550 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2551 err = PTR_ERR(victim);
2552 if (IS_ERR(victim))
2553 goto out;
2554
2555 mapping = victim->f_mapping;
5d337b91 2556 spin_lock(&swap_lock);
18ab4d4c 2557 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2558 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2559 if (p->swap_file->f_mapping == mapping) {
2560 found = 1;
1da177e4 2561 break;
adfab836 2562 }
1da177e4 2563 }
1da177e4 2564 }
adfab836 2565 if (!found) {
1da177e4 2566 err = -EINVAL;
5d337b91 2567 spin_unlock(&swap_lock);
1da177e4
LT
2568 goto out_dput;
2569 }
191c5424 2570 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2571 vm_unacct_memory(p->pages);
2572 else {
2573 err = -ENOMEM;
5d337b91 2574 spin_unlock(&swap_lock);
1da177e4
LT
2575 goto out_dput;
2576 }
a2468cc9 2577 del_from_avail_list(p);
ec8acf20 2578 spin_lock(&p->lock);
78ecba08 2579 if (p->prio < 0) {
adfab836 2580 struct swap_info_struct *si = p;
a2468cc9 2581 int nid;
adfab836 2582
18ab4d4c 2583 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2584 si->prio++;
18ab4d4c 2585 si->list.prio--;
a2468cc9
AL
2586 for_each_node(nid) {
2587 if (si->avail_lists[nid].prio != 1)
2588 si->avail_lists[nid].prio--;
2589 }
adfab836 2590 }
78ecba08
HD
2591 least_priority++;
2592 }
18ab4d4c 2593 plist_del(&p->list, &swap_active_head);
ec8acf20 2594 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2595 total_swap_pages -= p->pages;
2596 p->flags &= ~SWP_WRITEOK;
ec8acf20 2597 spin_unlock(&p->lock);
5d337b91 2598 spin_unlock(&swap_lock);
fb4f88dc 2599
039939a6
TC
2600 disable_swap_slots_cache_lock();
2601
e1e12d2f 2602 set_current_oom_origin();
adfab836 2603 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2604 clear_current_oom_origin();
1da177e4 2605
1da177e4
LT
2606 if (err) {
2607 /* re-insert swap space back into swap_list */
cf0cac0a 2608 reinsert_swap_info(p);
039939a6 2609 reenable_swap_slots_cache_unlock();
1da177e4
LT
2610 goto out_dput;
2611 }
52b7efdb 2612
039939a6
TC
2613 reenable_swap_slots_cache_unlock();
2614
815c2c54
SL
2615 flush_work(&p->discard_work);
2616
5d337b91 2617 destroy_swap_extents(p);
570a335b
HD
2618 if (p->flags & SWP_CONTINUED)
2619 free_swap_count_continuations(p);
2620
81a0298b
HY
2621 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2622 atomic_dec(&nr_rotate_swap);
2623
fc0abb14 2624 mutex_lock(&swapon_mutex);
5d337b91 2625 spin_lock(&swap_lock);
ec8acf20 2626 spin_lock(&p->lock);
5d337b91
HD
2627 drain_mmlist();
2628
52b7efdb 2629 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2630 p->highest_bit = 0; /* cuts scans short */
2631 while (p->flags >= SWP_SCANNING) {
ec8acf20 2632 spin_unlock(&p->lock);
5d337b91 2633 spin_unlock(&swap_lock);
13e4b57f 2634 schedule_timeout_uninterruptible(1);
5d337b91 2635 spin_lock(&swap_lock);
ec8acf20 2636 spin_lock(&p->lock);
52b7efdb 2637 }
52b7efdb 2638
1da177e4 2639 swap_file = p->swap_file;
5b808a23 2640 old_block_size = p->old_block_size;
1da177e4
LT
2641 p->swap_file = NULL;
2642 p->max = 0;
2643 swap_map = p->swap_map;
2644 p->swap_map = NULL;
2a8f9449
SL
2645 cluster_info = p->cluster_info;
2646 p->cluster_info = NULL;
4f89849d 2647 frontswap_map = frontswap_map_get(p);
ec8acf20 2648 spin_unlock(&p->lock);
5d337b91 2649 spin_unlock(&swap_lock);
adfab836 2650 frontswap_invalidate_area(p->type);
58e97ba6 2651 frontswap_map_set(p, NULL);
fc0abb14 2652 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2653 free_percpu(p->percpu_cluster);
2654 p->percpu_cluster = NULL;
1da177e4 2655 vfree(swap_map);
54f180d3
HY
2656 kvfree(cluster_info);
2657 kvfree(frontswap_map);
2de1a7e4 2658 /* Destroy swap account information */
adfab836 2659 swap_cgroup_swapoff(p->type);
4b3ef9da 2660 exit_swap_address_space(p->type);
27a7faa0 2661
1da177e4
LT
2662 inode = mapping->host;
2663 if (S_ISBLK(inode->i_mode)) {
2664 struct block_device *bdev = I_BDEV(inode);
5b808a23 2665 set_blocksize(bdev, old_block_size);
e525fd89 2666 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2667 } else {
5955102c 2668 inode_lock(inode);
1da177e4 2669 inode->i_flags &= ~S_SWAPFILE;
5955102c 2670 inode_unlock(inode);
1da177e4
LT
2671 }
2672 filp_close(swap_file, NULL);
f893ab41
WY
2673
2674 /*
2675 * Clear the SWP_USED flag after all resources are freed so that swapon
2676 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2677 * not hold p->lock after we cleared its SWP_WRITEOK.
2678 */
2679 spin_lock(&swap_lock);
2680 p->flags = 0;
2681 spin_unlock(&swap_lock);
2682
1da177e4 2683 err = 0;
66d7dd51
KS
2684 atomic_inc(&proc_poll_event);
2685 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2686
2687out_dput:
2688 filp_close(victim, NULL);
2689out:
f58b59c1 2690 putname(pathname);
1da177e4
LT
2691 return err;
2692}
2693
2694#ifdef CONFIG_PROC_FS
9dd95748 2695static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2696{
f1514638 2697 struct seq_file *seq = file->private_data;
66d7dd51
KS
2698
2699 poll_wait(file, &proc_poll_wait, wait);
2700
f1514638
KS
2701 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2702 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2703 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2704 }
2705
a9a08845 2706 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2707}
2708
1da177e4
LT
2709/* iterator */
2710static void *swap_start(struct seq_file *swap, loff_t *pos)
2711{
efa90a98
HD
2712 struct swap_info_struct *si;
2713 int type;
1da177e4
LT
2714 loff_t l = *pos;
2715
fc0abb14 2716 mutex_lock(&swapon_mutex);
1da177e4 2717
881e4aab
SS
2718 if (!l)
2719 return SEQ_START_TOKEN;
2720
ed3345a6 2721 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2722 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2723 continue;
881e4aab 2724 if (!--l)
efa90a98 2725 return si;
1da177e4
LT
2726 }
2727
2728 return NULL;
2729}
2730
2731static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2732{
efa90a98
HD
2733 struct swap_info_struct *si = v;
2734 int type;
1da177e4 2735
881e4aab 2736 if (v == SEQ_START_TOKEN)
efa90a98
HD
2737 type = 0;
2738 else
2739 type = si->type + 1;
881e4aab 2740
ed3345a6 2741 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2742 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2743 continue;
2744 ++*pos;
efa90a98 2745 return si;
1da177e4
LT
2746 }
2747
2748 return NULL;
2749}
2750
2751static void swap_stop(struct seq_file *swap, void *v)
2752{
fc0abb14 2753 mutex_unlock(&swapon_mutex);
1da177e4
LT
2754}
2755
2756static int swap_show(struct seq_file *swap, void *v)
2757{
efa90a98 2758 struct swap_info_struct *si = v;
1da177e4
LT
2759 struct file *file;
2760 int len;
2761
efa90a98 2762 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2763 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2764 return 0;
2765 }
1da177e4 2766
efa90a98 2767 file = si->swap_file;
2726d566 2768 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2769 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2770 len < 40 ? 40 - len : 1, " ",
496ad9aa 2771 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2772 "partition" : "file\t",
efa90a98
HD
2773 si->pages << (PAGE_SHIFT - 10),
2774 si->inuse_pages << (PAGE_SHIFT - 10),
2775 si->prio);
1da177e4
LT
2776 return 0;
2777}
2778
15ad7cdc 2779static const struct seq_operations swaps_op = {
1da177e4
LT
2780 .start = swap_start,
2781 .next = swap_next,
2782 .stop = swap_stop,
2783 .show = swap_show
2784};
2785
2786static int swaps_open(struct inode *inode, struct file *file)
2787{
f1514638 2788 struct seq_file *seq;
66d7dd51
KS
2789 int ret;
2790
66d7dd51 2791 ret = seq_open(file, &swaps_op);
f1514638 2792 if (ret)
66d7dd51 2793 return ret;
66d7dd51 2794
f1514638
KS
2795 seq = file->private_data;
2796 seq->poll_event = atomic_read(&proc_poll_event);
2797 return 0;
1da177e4
LT
2798}
2799
15ad7cdc 2800static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2801 .open = swaps_open,
2802 .read = seq_read,
2803 .llseek = seq_lseek,
2804 .release = seq_release,
66d7dd51 2805 .poll = swaps_poll,
1da177e4
LT
2806};
2807
2808static int __init procswaps_init(void)
2809{
3d71f86f 2810 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2811 return 0;
2812}
2813__initcall(procswaps_init);
2814#endif /* CONFIG_PROC_FS */
2815
1796316a
JB
2816#ifdef MAX_SWAPFILES_CHECK
2817static int __init max_swapfiles_check(void)
2818{
2819 MAX_SWAPFILES_CHECK();
2820 return 0;
2821}
2822late_initcall(max_swapfiles_check);
2823#endif
2824
53cbb243 2825static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2826{
73c34b6a 2827 struct swap_info_struct *p;
1da177e4 2828 unsigned int type;
a2468cc9 2829 int i;
b0cd52e6 2830 int size = sizeof(*p) + nr_node_ids * sizeof(struct plist_node);
efa90a98 2831
b0cd52e6 2832 p = kvzalloc(size, GFP_KERNEL);
efa90a98 2833 if (!p)
53cbb243 2834 return ERR_PTR(-ENOMEM);
efa90a98 2835
5d337b91 2836 spin_lock(&swap_lock);
efa90a98
HD
2837 for (type = 0; type < nr_swapfiles; type++) {
2838 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2839 break;
efa90a98 2840 }
0697212a 2841 if (type >= MAX_SWAPFILES) {
5d337b91 2842 spin_unlock(&swap_lock);
113737cc 2843 kvfree(p);
730c0581 2844 return ERR_PTR(-EPERM);
1da177e4 2845 }
efa90a98
HD
2846 if (type >= nr_swapfiles) {
2847 p->type = type;
ed3345a6 2848 WRITE_ONCE(swap_info[type], p);
efa90a98
HD
2849 /*
2850 * Write swap_info[type] before nr_swapfiles, in case a
2851 * racing procfs swap_start() or swap_next() is reading them.
2852 * (We never shrink nr_swapfiles, we never free this entry.)
2853 */
2854 smp_wmb();
ed3345a6 2855 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
efa90a98 2856 } else {
113737cc 2857 kvfree(p);
efa90a98
HD
2858 p = swap_info[type];
2859 /*
2860 * Do not memset this entry: a racing procfs swap_next()
2861 * would be relying on p->type to remain valid.
2862 */
2863 }
9625a5f2 2864 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c 2865 plist_node_init(&p->list, 0);
a2468cc9
AL
2866 for_each_node(i)
2867 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2868 p->flags = SWP_USED;
5d337b91 2869 spin_unlock(&swap_lock);
ec8acf20 2870 spin_lock_init(&p->lock);
2628bd6f 2871 spin_lock_init(&p->cont_lock);
efa90a98 2872
53cbb243 2873 return p;
53cbb243
CEB
2874}
2875
4d0e1e10
CEB
2876static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2877{
2878 int error;
2879
2880 if (S_ISBLK(inode->i_mode)) {
2881 p->bdev = bdgrab(I_BDEV(inode));
2882 error = blkdev_get(p->bdev,
6f179af8 2883 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2884 if (error < 0) {
2885 p->bdev = NULL;
6f179af8 2886 return error;
4d0e1e10
CEB
2887 }
2888 p->old_block_size = block_size(p->bdev);
2889 error = set_blocksize(p->bdev, PAGE_SIZE);
2890 if (error < 0)
87ade72a 2891 return error;
4d0e1e10
CEB
2892 p->flags |= SWP_BLKDEV;
2893 } else if (S_ISREG(inode->i_mode)) {
2894 p->bdev = inode->i_sb->s_bdev;
5955102c 2895 inode_lock(inode);
87ade72a
CEB
2896 if (IS_SWAPFILE(inode))
2897 return -EBUSY;
2898 } else
2899 return -EINVAL;
4d0e1e10
CEB
2900
2901 return 0;
4d0e1e10
CEB
2902}
2903
377eeaa8
AK
2904
2905/*
2906 * Find out how many pages are allowed for a single swap device. There
2907 * are two limiting factors:
2908 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2909 * 2) the number of bits in the swap pte, as defined by the different
2910 * architectures.
2911 *
2912 * In order to find the largest possible bit mask, a swap entry with
2913 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2914 * decoded to a swp_entry_t again, and finally the swap offset is
2915 * extracted.
2916 *
2917 * This will mask all the bits from the initial ~0UL mask that can't
2918 * be encoded in either the swp_entry_t or the architecture definition
2919 * of a swap pte.
2920 */
2921unsigned long generic_max_swapfile_size(void)
2922{
2923 return swp_offset(pte_to_swp_entry(
2924 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2925}
2926
2927/* Can be overridden by an architecture for additional checks. */
2928__weak unsigned long max_swapfile_size(void)
2929{
2930 return generic_max_swapfile_size();
2931}
2932
ca8bd38b
CEB
2933static unsigned long read_swap_header(struct swap_info_struct *p,
2934 union swap_header *swap_header,
2935 struct inode *inode)
2936{
2937 int i;
2938 unsigned long maxpages;
2939 unsigned long swapfilepages;
d6bbbd29 2940 unsigned long last_page;
ca8bd38b
CEB
2941
2942 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2943 pr_err("Unable to find swap-space signature\n");
38719025 2944 return 0;
ca8bd38b
CEB
2945 }
2946
2947 /* swap partition endianess hack... */
2948 if (swab32(swap_header->info.version) == 1) {
2949 swab32s(&swap_header->info.version);
2950 swab32s(&swap_header->info.last_page);
2951 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2952 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2953 return 0;
ca8bd38b
CEB
2954 for (i = 0; i < swap_header->info.nr_badpages; i++)
2955 swab32s(&swap_header->info.badpages[i]);
2956 }
2957 /* Check the swap header's sub-version */
2958 if (swap_header->info.version != 1) {
465c47fd
AM
2959 pr_warn("Unable to handle swap header version %d\n",
2960 swap_header->info.version);
38719025 2961 return 0;
ca8bd38b
CEB
2962 }
2963
2964 p->lowest_bit = 1;
2965 p->cluster_next = 1;
2966 p->cluster_nr = 0;
2967
377eeaa8 2968 maxpages = max_swapfile_size();
d6bbbd29 2969 last_page = swap_header->info.last_page;
a06ad633
TA
2970 if (!last_page) {
2971 pr_warn("Empty swap-file\n");
2972 return 0;
2973 }
d6bbbd29 2974 if (last_page > maxpages) {
465c47fd 2975 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2976 maxpages << (PAGE_SHIFT - 10),
2977 last_page << (PAGE_SHIFT - 10));
2978 }
2979 if (maxpages > last_page) {
2980 maxpages = last_page + 1;
ca8bd38b
CEB
2981 /* p->max is an unsigned int: don't overflow it */
2982 if ((unsigned int)maxpages == 0)
2983 maxpages = UINT_MAX;
2984 }
2985 p->highest_bit = maxpages - 1;
2986
2987 if (!maxpages)
38719025 2988 return 0;
ca8bd38b
CEB
2989 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2990 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2991 pr_warn("Swap area shorter than signature indicates\n");
38719025 2992 return 0;
ca8bd38b
CEB
2993 }
2994 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2995 return 0;
ca8bd38b 2996 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2997 return 0;
ca8bd38b
CEB
2998
2999 return maxpages;
ca8bd38b
CEB
3000}
3001
4b3ef9da 3002#define SWAP_CLUSTER_INFO_COLS \
235b6217 3003 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
3004#define SWAP_CLUSTER_SPACE_COLS \
3005 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3006#define SWAP_CLUSTER_COLS \
3007 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3008
915d4d7b
CEB
3009static int setup_swap_map_and_extents(struct swap_info_struct *p,
3010 union swap_header *swap_header,
3011 unsigned char *swap_map,
2a8f9449 3012 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3013 unsigned long maxpages,
3014 sector_t *span)
3015{
235b6217 3016 unsigned int j, k;
915d4d7b
CEB
3017 unsigned int nr_good_pages;
3018 int nr_extents;
2a8f9449 3019 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3020 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3021 unsigned long i, idx;
915d4d7b
CEB
3022
3023 nr_good_pages = maxpages - 1; /* omit header page */
3024
6b534915
HY
3025 cluster_list_init(&p->free_clusters);
3026 cluster_list_init(&p->discard_clusters);
2a8f9449 3027
915d4d7b
CEB
3028 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3029 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3030 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3031 return -EINVAL;
915d4d7b
CEB
3032 if (page_nr < maxpages) {
3033 swap_map[page_nr] = SWAP_MAP_BAD;
3034 nr_good_pages--;
2a8f9449
SL
3035 /*
3036 * Haven't marked the cluster free yet, no list
3037 * operation involved
3038 */
3039 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3040 }
3041 }
3042
2a8f9449
SL
3043 /* Haven't marked the cluster free yet, no list operation involved */
3044 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3045 inc_cluster_info_page(p, cluster_info, i);
3046
915d4d7b
CEB
3047 if (nr_good_pages) {
3048 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3049 /*
3050 * Not mark the cluster free yet, no list
3051 * operation involved
3052 */
3053 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3054 p->max = maxpages;
3055 p->pages = nr_good_pages;
3056 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3057 if (nr_extents < 0)
3058 return nr_extents;
915d4d7b
CEB
3059 nr_good_pages = p->pages;
3060 }
3061 if (!nr_good_pages) {
465c47fd 3062 pr_warn("Empty swap-file\n");
bdb8e3f6 3063 return -EINVAL;
915d4d7b
CEB
3064 }
3065
2a8f9449
SL
3066 if (!cluster_info)
3067 return nr_extents;
3068
235b6217 3069
4b3ef9da
HY
3070 /*
3071 * Reduce false cache line sharing between cluster_info and
3072 * sharing same address space.
3073 */
235b6217
HY
3074 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3075 j = (k + col) % SWAP_CLUSTER_COLS;
3076 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3077 idx = i * SWAP_CLUSTER_COLS + j;
3078 if (idx >= nr_clusters)
3079 continue;
3080 if (cluster_count(&cluster_info[idx]))
3081 continue;
2a8f9449 3082 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3083 cluster_list_add_tail(&p->free_clusters, cluster_info,
3084 idx);
2a8f9449 3085 }
2a8f9449 3086 }
915d4d7b 3087 return nr_extents;
915d4d7b
CEB
3088}
3089
dcf6b7dd
RA
3090/*
3091 * Helper to sys_swapon determining if a given swap
3092 * backing device queue supports DISCARD operations.
3093 */
3094static bool swap_discardable(struct swap_info_struct *si)
3095{
3096 struct request_queue *q = bdev_get_queue(si->bdev);
3097
3098 if (!q || !blk_queue_discard(q))
3099 return false;
3100
3101 return true;
3102}
3103
53cbb243
CEB
3104SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3105{
3106 struct swap_info_struct *p;
91a27b2a 3107 struct filename *name;
53cbb243
CEB
3108 struct file *swap_file = NULL;
3109 struct address_space *mapping;
40531542 3110 int prio;
53cbb243
CEB
3111 int error;
3112 union swap_header *swap_header;
915d4d7b 3113 int nr_extents;
53cbb243
CEB
3114 sector_t span;
3115 unsigned long maxpages;
53cbb243 3116 unsigned char *swap_map = NULL;
2a8f9449 3117 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3118 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3119 struct page *page = NULL;
3120 struct inode *inode = NULL;
7cbf3192 3121 bool inced_nr_rotate_swap = false;
53cbb243 3122
d15cab97
HD
3123 if (swap_flags & ~SWAP_FLAGS_VALID)
3124 return -EINVAL;
3125
53cbb243
CEB
3126 if (!capable(CAP_SYS_ADMIN))
3127 return -EPERM;
3128
a2468cc9
AL
3129 if (!swap_avail_heads)
3130 return -ENOMEM;
3131
53cbb243 3132 p = alloc_swap_info();
2542e513
CEB
3133 if (IS_ERR(p))
3134 return PTR_ERR(p);
53cbb243 3135
815c2c54
SL
3136 INIT_WORK(&p->discard_work, swap_discard_work);
3137
1da177e4 3138 name = getname(specialfile);
1da177e4 3139 if (IS_ERR(name)) {
7de7fb6b 3140 error = PTR_ERR(name);
1da177e4 3141 name = NULL;
bd69010b 3142 goto bad_swap;
1da177e4 3143 }
669abf4e 3144 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3145 if (IS_ERR(swap_file)) {
7de7fb6b 3146 error = PTR_ERR(swap_file);
1da177e4 3147 swap_file = NULL;
bd69010b 3148 goto bad_swap;
1da177e4
LT
3149 }
3150
3151 p->swap_file = swap_file;
3152 mapping = swap_file->f_mapping;
2130781e 3153 inode = mapping->host;
6f179af8 3154
5955102c 3155 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
3156 error = claim_swapfile(p, inode);
3157 if (unlikely(error))
1da177e4 3158 goto bad_swap;
1da177e4 3159
1da177e4
LT
3160 /*
3161 * Read the swap header.
3162 */
3163 if (!mapping->a_ops->readpage) {
3164 error = -EINVAL;
3165 goto bad_swap;
3166 }
090d2b18 3167 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3168 if (IS_ERR(page)) {
3169 error = PTR_ERR(page);
3170 goto bad_swap;
3171 }
81e33971 3172 swap_header = kmap(page);
1da177e4 3173
ca8bd38b
CEB
3174 maxpages = read_swap_header(p, swap_header, inode);
3175 if (unlikely(!maxpages)) {
1da177e4
LT
3176 error = -EINVAL;
3177 goto bad_swap;
3178 }
886bb7e9 3179
81e33971 3180 /* OK, set up the swap map and apply the bad block list */
803d0c83 3181 swap_map = vzalloc(maxpages);
81e33971
HD
3182 if (!swap_map) {
3183 error = -ENOMEM;
3184 goto bad_swap;
3185 }
f0571429
MK
3186
3187 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3188 p->flags |= SWP_STABLE_WRITES;
3189
539a6fea
MK
3190 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3191 p->flags |= SWP_SYNCHRONOUS_IO;
3192
2a8f9449 3193 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3194 int cpu;
235b6217 3195 unsigned long ci, nr_cluster;
6f179af8 3196
2a8f9449
SL
3197 p->flags |= SWP_SOLIDSTATE;
3198 /*
3199 * select a random position to start with to help wear leveling
3200 * SSD
3201 */
3202 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3203 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3204
778e1cdd 3205 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3206 GFP_KERNEL);
2a8f9449
SL
3207 if (!cluster_info) {
3208 error = -ENOMEM;
3209 goto bad_swap;
3210 }
235b6217
HY
3211
3212 for (ci = 0; ci < nr_cluster; ci++)
3213 spin_lock_init(&((cluster_info + ci)->lock));
3214
ebc2a1a6
SL
3215 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3216 if (!p->percpu_cluster) {
3217 error = -ENOMEM;
3218 goto bad_swap;
3219 }
6f179af8 3220 for_each_possible_cpu(cpu) {
ebc2a1a6 3221 struct percpu_cluster *cluster;
6f179af8 3222 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3223 cluster_set_null(&cluster->index);
3224 }
7cbf3192 3225 } else {
81a0298b 3226 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3227 inced_nr_rotate_swap = true;
3228 }
1da177e4 3229
1421ef3c
CEB
3230 error = swap_cgroup_swapon(p->type, maxpages);
3231 if (error)
3232 goto bad_swap;
3233
915d4d7b 3234 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3235 cluster_info, maxpages, &span);
915d4d7b
CEB
3236 if (unlikely(nr_extents < 0)) {
3237 error = nr_extents;
1da177e4
LT
3238 goto bad_swap;
3239 }
38b5faf4 3240 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3241 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3242 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3243 sizeof(long),
54f180d3 3244 GFP_KERNEL);
1da177e4 3245
2a8f9449
SL
3246 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3247 /*
3248 * When discard is enabled for swap with no particular
3249 * policy flagged, we set all swap discard flags here in
3250 * order to sustain backward compatibility with older
3251 * swapon(8) releases.
3252 */
3253 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3254 SWP_PAGE_DISCARD);
dcf6b7dd 3255
2a8f9449
SL
3256 /*
3257 * By flagging sys_swapon, a sysadmin can tell us to
3258 * either do single-time area discards only, or to just
3259 * perform discards for released swap page-clusters.
3260 * Now it's time to adjust the p->flags accordingly.
3261 */
3262 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3263 p->flags &= ~SWP_PAGE_DISCARD;
3264 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3265 p->flags &= ~SWP_AREA_DISCARD;
3266
3267 /* issue a swapon-time discard if it's still required */
3268 if (p->flags & SWP_AREA_DISCARD) {
3269 int err = discard_swap(p);
3270 if (unlikely(err))
3271 pr_err("swapon: discard_swap(%p): %d\n",
3272 p, err);
dcf6b7dd 3273 }
20137a49 3274 }
6a6ba831 3275
4b3ef9da
HY
3276 error = init_swap_address_space(p->type, maxpages);
3277 if (error)
3278 goto bad_swap;
3279
fc0abb14 3280 mutex_lock(&swapon_mutex);
40531542 3281 prio = -1;
78ecba08 3282 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3283 prio =
78ecba08 3284 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3285 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3286
756a025f 3287 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3288 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3289 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3290 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3291 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3292 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3293 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3294 (frontswap_map) ? "FS" : "");
c69dbfb8 3295
fc0abb14 3296 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3297 atomic_inc(&proc_poll_event);
3298 wake_up_interruptible(&proc_poll_wait);
3299
9b01c350
CEB
3300 if (S_ISREG(inode->i_mode))
3301 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
3302 error = 0;
3303 goto out;
3304bad_swap:
ebc2a1a6
SL
3305 free_percpu(p->percpu_cluster);
3306 p->percpu_cluster = NULL;
bd69010b 3307 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3308 set_blocksize(p->bdev, p->old_block_size);
3309 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3310 }
4cd3bb10 3311 destroy_swap_extents(p);
e8e6c2ec 3312 swap_cgroup_swapoff(p->type);
5d337b91 3313 spin_lock(&swap_lock);
1da177e4 3314 p->swap_file = NULL;
1da177e4 3315 p->flags = 0;
5d337b91 3316 spin_unlock(&swap_lock);
1da177e4 3317 vfree(swap_map);
8606a1a9 3318 kvfree(cluster_info);
b6b1fd2a 3319 kvfree(frontswap_map);
7cbf3192
OS
3320 if (inced_nr_rotate_swap)
3321 atomic_dec(&nr_rotate_swap);
52c50567 3322 if (swap_file) {
2130781e 3323 if (inode && S_ISREG(inode->i_mode)) {
5955102c 3324 inode_unlock(inode);
2130781e
CEB
3325 inode = NULL;
3326 }
1da177e4 3327 filp_close(swap_file, NULL);
52c50567 3328 }
1da177e4
LT
3329out:
3330 if (page && !IS_ERR(page)) {
3331 kunmap(page);
09cbfeaf 3332 put_page(page);
1da177e4
LT
3333 }
3334 if (name)
3335 putname(name);
9b01c350 3336 if (inode && S_ISREG(inode->i_mode))
5955102c 3337 inode_unlock(inode);
039939a6
TC
3338 if (!error)
3339 enable_swap_slots_cache();
1da177e4
LT
3340 return error;
3341}
3342
3343void si_swapinfo(struct sysinfo *val)
3344{
efa90a98 3345 unsigned int type;
1da177e4
LT
3346 unsigned long nr_to_be_unused = 0;
3347
5d337b91 3348 spin_lock(&swap_lock);
efa90a98
HD
3349 for (type = 0; type < nr_swapfiles; type++) {
3350 struct swap_info_struct *si = swap_info[type];
3351
3352 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3353 nr_to_be_unused += si->inuse_pages;
1da177e4 3354 }
ec8acf20 3355 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3356 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3357 spin_unlock(&swap_lock);
1da177e4
LT
3358}
3359
3360/*
3361 * Verify that a swap entry is valid and increment its swap map count.
3362 *
355cfa73
KH
3363 * Returns error code in following case.
3364 * - success -> 0
3365 * - swp_entry is invalid -> EINVAL
3366 * - swp_entry is migration entry -> EINVAL
3367 * - swap-cache reference is requested but there is already one. -> EEXIST
3368 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3369 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3370 */
8d69aaee 3371static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3372{
73c34b6a 3373 struct swap_info_struct *p;
235b6217 3374 struct swap_cluster_info *ci;
ed3345a6 3375 unsigned long offset;
8d69aaee
HD
3376 unsigned char count;
3377 unsigned char has_cache;
253d553b 3378 int err = -EINVAL;
1da177e4 3379
a7420aa5 3380 if (non_swap_entry(entry))
253d553b 3381 goto out;
0697212a 3382
ed3345a6
DJ
3383 p = swp_swap_info(entry);
3384 if (!p)
1da177e4 3385 goto bad_file;
ed3345a6 3386
1da177e4 3387 offset = swp_offset(entry);
355cfa73 3388 if (unlikely(offset >= p->max))
235b6217
HY
3389 goto out;
3390
3391 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3392
253d553b 3393 count = p->swap_map[offset];
edfe23da
SL
3394
3395 /*
3396 * swapin_readahead() doesn't check if a swap entry is valid, so the
3397 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3398 */
3399 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3400 err = -ENOENT;
3401 goto unlock_out;
3402 }
3403
253d553b
HD
3404 has_cache = count & SWAP_HAS_CACHE;
3405 count &= ~SWAP_HAS_CACHE;
3406 err = 0;
355cfa73 3407
253d553b 3408 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3409
3410 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3411 if (!has_cache && count)
3412 has_cache = SWAP_HAS_CACHE;
3413 else if (has_cache) /* someone else added cache */
3414 err = -EEXIST;
3415 else /* no users remaining */
3416 err = -ENOENT;
355cfa73
KH
3417
3418 } else if (count || has_cache) {
253d553b 3419
570a335b
HD
3420 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3421 count += usage;
3422 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3423 err = -EINVAL;
570a335b
HD
3424 else if (swap_count_continued(p, offset, count))
3425 count = COUNT_CONTINUED;
3426 else
3427 err = -ENOMEM;
355cfa73 3428 } else
253d553b
HD
3429 err = -ENOENT; /* unused swap entry */
3430
3431 p->swap_map[offset] = count | has_cache;
3432
355cfa73 3433unlock_out:
235b6217 3434 unlock_cluster_or_swap_info(p, ci);
1da177e4 3435out:
253d553b 3436 return err;
1da177e4
LT
3437
3438bad_file:
465c47fd 3439 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
3440 goto out;
3441}
253d553b 3442
aaa46865
HD
3443/*
3444 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3445 * (in which case its reference count is never incremented).
3446 */
3447void swap_shmem_alloc(swp_entry_t entry)
3448{
3449 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3450}
3451
355cfa73 3452/*
08259d58
HD
3453 * Increase reference count of swap entry by 1.
3454 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3455 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3456 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3457 * might occur if a page table entry has got corrupted.
355cfa73 3458 */
570a335b 3459int swap_duplicate(swp_entry_t entry)
355cfa73 3460{
570a335b
HD
3461 int err = 0;
3462
3463 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3464 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3465 return err;
355cfa73 3466}
1da177e4 3467
cb4b86ba 3468/*
355cfa73
KH
3469 * @entry: swap entry for which we allocate swap cache.
3470 *
73c34b6a 3471 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
3472 * This can return error codes. Returns 0 at success.
3473 * -EBUSY means there is a swap cache.
3474 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3475 */
3476int swapcache_prepare(swp_entry_t entry)
3477{
253d553b 3478 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3479}
3480
0bcac06f
MK
3481struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3482{
ed3345a6 3483 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3484}
3485
f981c595
MG
3486struct swap_info_struct *page_swap_info(struct page *page)
3487{
0bcac06f
MK
3488 swp_entry_t entry = { .val = page_private(page) };
3489 return swp_swap_info(entry);
f981c595
MG
3490}
3491
3492/*
3493 * out-of-line __page_file_ methods to avoid include hell.
3494 */
3495struct address_space *__page_file_mapping(struct page *page)
3496{
f981c595
MG
3497 return page_swap_info(page)->swap_file->f_mapping;
3498}
3499EXPORT_SYMBOL_GPL(__page_file_mapping);
3500
3501pgoff_t __page_file_index(struct page *page)
3502{
3503 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3504 return swp_offset(swap);
3505}
3506EXPORT_SYMBOL_GPL(__page_file_index);
3507
570a335b
HD
3508/*
3509 * add_swap_count_continuation - called when a swap count is duplicated
3510 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3511 * page of the original vmalloc'ed swap_map, to hold the continuation count
3512 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3513 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3514 *
3515 * These continuation pages are seldom referenced: the common paths all work
3516 * on the original swap_map, only referring to a continuation page when the
3517 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3518 *
3519 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3520 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3521 * can be called after dropping locks.
3522 */
3523int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3524{
3525 struct swap_info_struct *si;
235b6217 3526 struct swap_cluster_info *ci;
570a335b
HD
3527 struct page *head;
3528 struct page *page;
3529 struct page *list_page;
3530 pgoff_t offset;
3531 unsigned char count;
3532
3533 /*
3534 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3535 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3536 */
3537 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3538
3539 si = swap_info_get(entry);
3540 if (!si) {
3541 /*
3542 * An acceptable race has occurred since the failing
3543 * __swap_duplicate(): the swap entry has been freed,
3544 * perhaps even the whole swap_map cleared for swapoff.
3545 */
3546 goto outer;
3547 }
3548
3549 offset = swp_offset(entry);
235b6217
HY
3550
3551 ci = lock_cluster(si, offset);
3552
570a335b
HD
3553 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3554
3555 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3556 /*
3557 * The higher the swap count, the more likely it is that tasks
3558 * will race to add swap count continuation: we need to avoid
3559 * over-provisioning.
3560 */
3561 goto out;
3562 }
3563
3564 if (!page) {
235b6217 3565 unlock_cluster(ci);
ec8acf20 3566 spin_unlock(&si->lock);
570a335b
HD
3567 return -ENOMEM;
3568 }
3569
3570 /*
3571 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3572 * no architecture is using highmem pages for kernel page tables: so it
3573 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3574 */
3575 head = vmalloc_to_page(si->swap_map + offset);
3576 offset &= ~PAGE_MASK;
3577
2628bd6f 3578 spin_lock(&si->cont_lock);
570a335b
HD
3579 /*
3580 * Page allocation does not initialize the page's lru field,
3581 * but it does always reset its private field.
3582 */
3583 if (!page_private(head)) {
3584 BUG_ON(count & COUNT_CONTINUED);
3585 INIT_LIST_HEAD(&head->lru);
3586 set_page_private(head, SWP_CONTINUED);
3587 si->flags |= SWP_CONTINUED;
3588 }
3589
3590 list_for_each_entry(list_page, &head->lru, lru) {
3591 unsigned char *map;
3592
3593 /*
3594 * If the previous map said no continuation, but we've found
3595 * a continuation page, free our allocation and use this one.
3596 */
3597 if (!(count & COUNT_CONTINUED))
2628bd6f 3598 goto out_unlock_cont;
570a335b 3599
9b04c5fe 3600 map = kmap_atomic(list_page) + offset;
570a335b 3601 count = *map;
9b04c5fe 3602 kunmap_atomic(map);
570a335b
HD
3603
3604 /*
3605 * If this continuation count now has some space in it,
3606 * free our allocation and use this one.
3607 */
3608 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3609 goto out_unlock_cont;
570a335b
HD
3610 }
3611
3612 list_add_tail(&page->lru, &head->lru);
3613 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3614out_unlock_cont:
3615 spin_unlock(&si->cont_lock);
570a335b 3616out:
235b6217 3617 unlock_cluster(ci);
ec8acf20 3618 spin_unlock(&si->lock);
570a335b
HD
3619outer:
3620 if (page)
3621 __free_page(page);
3622 return 0;
3623}
3624
3625/*
3626 * swap_count_continued - when the original swap_map count is incremented
3627 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3628 * into, carry if so, or else fail until a new continuation page is allocated;
3629 * when the original swap_map count is decremented from 0 with continuation,
3630 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3631 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3632 * lock.
570a335b
HD
3633 */
3634static bool swap_count_continued(struct swap_info_struct *si,
3635 pgoff_t offset, unsigned char count)
3636{
3637 struct page *head;
3638 struct page *page;
3639 unsigned char *map;
2628bd6f 3640 bool ret;
570a335b
HD
3641
3642 head = vmalloc_to_page(si->swap_map + offset);
3643 if (page_private(head) != SWP_CONTINUED) {
3644 BUG_ON(count & COUNT_CONTINUED);
3645 return false; /* need to add count continuation */
3646 }
3647
2628bd6f 3648 spin_lock(&si->cont_lock);
570a335b
HD
3649 offset &= ~PAGE_MASK;
3650 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3651 map = kmap_atomic(page) + offset;
570a335b
HD
3652
3653 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3654 goto init_map; /* jump over SWAP_CONT_MAX checks */
3655
3656 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3657 /*
3658 * Think of how you add 1 to 999
3659 */
3660 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3661 kunmap_atomic(map);
570a335b
HD
3662 page = list_entry(page->lru.next, struct page, lru);
3663 BUG_ON(page == head);
9b04c5fe 3664 map = kmap_atomic(page) + offset;
570a335b
HD
3665 }
3666 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3667 kunmap_atomic(map);
570a335b 3668 page = list_entry(page->lru.next, struct page, lru);
2628bd6f
HY
3669 if (page == head) {
3670 ret = false; /* add count continuation */
3671 goto out;
3672 }
9b04c5fe 3673 map = kmap_atomic(page) + offset;
570a335b
HD
3674init_map: *map = 0; /* we didn't zero the page */
3675 }
3676 *map += 1;
9b04c5fe 3677 kunmap_atomic(map);
570a335b
HD
3678 page = list_entry(page->lru.prev, struct page, lru);
3679 while (page != head) {
9b04c5fe 3680 map = kmap_atomic(page) + offset;
570a335b 3681 *map = COUNT_CONTINUED;
9b04c5fe 3682 kunmap_atomic(map);
570a335b
HD
3683 page = list_entry(page->lru.prev, struct page, lru);
3684 }
2628bd6f 3685 ret = true; /* incremented */
570a335b
HD
3686
3687 } else { /* decrementing */
3688 /*
3689 * Think of how you subtract 1 from 1000
3690 */
3691 BUG_ON(count != COUNT_CONTINUED);
3692 while (*map == COUNT_CONTINUED) {
9b04c5fe 3693 kunmap_atomic(map);
570a335b
HD
3694 page = list_entry(page->lru.next, struct page, lru);
3695 BUG_ON(page == head);
9b04c5fe 3696 map = kmap_atomic(page) + offset;
570a335b
HD
3697 }
3698 BUG_ON(*map == 0);
3699 *map -= 1;
3700 if (*map == 0)
3701 count = 0;
9b04c5fe 3702 kunmap_atomic(map);
570a335b
HD
3703 page = list_entry(page->lru.prev, struct page, lru);
3704 while (page != head) {
9b04c5fe 3705 map = kmap_atomic(page) + offset;
570a335b
HD
3706 *map = SWAP_CONT_MAX | count;
3707 count = COUNT_CONTINUED;
9b04c5fe 3708 kunmap_atomic(map);
570a335b
HD
3709 page = list_entry(page->lru.prev, struct page, lru);
3710 }
2628bd6f 3711 ret = count == COUNT_CONTINUED;
570a335b 3712 }
2628bd6f
HY
3713out:
3714 spin_unlock(&si->cont_lock);
3715 return ret;
570a335b
HD
3716}
3717
3718/*
3719 * free_swap_count_continuations - swapoff free all the continuation pages
3720 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3721 */
3722static void free_swap_count_continuations(struct swap_info_struct *si)
3723{
3724 pgoff_t offset;
3725
3726 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3727 struct page *head;
3728 head = vmalloc_to_page(si->swap_map + offset);
3729 if (page_private(head)) {
0d576d20
GT
3730 struct page *page, *next;
3731
3732 list_for_each_entry_safe(page, next, &head->lru, lru) {
3733 list_del(&page->lru);
570a335b
HD
3734 __free_page(page);
3735 }
3736 }
3737 }
3738}
a2468cc9 3739
2cf85583
TH
3740#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3741void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3742 gfp_t gfp_mask)
3743{
3744 struct swap_info_struct *si, *next;
3745 if (!(gfp_mask & __GFP_IO) || !memcg)
3746 return;
3747
3748 if (!blk_cgroup_congested())
3749 return;
3750
3751 /*
3752 * We've already scheduled a throttle, avoid taking the global swap
3753 * lock.
3754 */
3755 if (current->throttle_queue)
3756 return;
3757
3758 spin_lock(&swap_avail_lock);
3759 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3760 avail_lists[node]) {
3761 if (si->bdev) {
3762 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3763 true);
3764 break;
3765 }
3766 }
3767 spin_unlock(&swap_avail_lock);
3768}
3769#endif
3770
a2468cc9
AL
3771static int __init swapfile_init(void)
3772{
3773 int nid;
3774
3775 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3776 GFP_KERNEL);
3777 if (!swap_avail_heads) {
3778 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3779 return -ENOMEM;
3780 }
3781
3782 for_each_node(nid)
3783 plist_head_init(&swap_avail_heads[nid]);
3784
3785 return 0;
3786}
3787subsys_initcall(swapfile_init);