]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/swapfile.c
mm/swapfile.c: replace some #ifdef with IS_ENABLED()
[thirdparty/kernel/stable.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4 8#include <linux/mm.h>
6e84f315 9#include <linux/sched/mm.h>
29930025 10#include <linux/sched/task.h>
1da177e4
LT
11#include <linux/hugetlb.h>
12#include <linux/mman.h>
13#include <linux/slab.h>
14#include <linux/kernel_stat.h>
15#include <linux/swap.h>
16#include <linux/vmalloc.h>
17#include <linux/pagemap.h>
18#include <linux/namei.h>
072441e2 19#include <linux/shmem_fs.h>
1da177e4 20#include <linux/blkdev.h>
20137a49 21#include <linux/random.h>
1da177e4
LT
22#include <linux/writeback.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/init.h>
5ad64688 26#include <linux/ksm.h>
1da177e4
LT
27#include <linux/rmap.h>
28#include <linux/security.h>
29#include <linux/backing-dev.h>
fc0abb14 30#include <linux/mutex.h>
c59ede7b 31#include <linux/capability.h>
1da177e4 32#include <linux/syscalls.h>
8a9f3ccd 33#include <linux/memcontrol.h>
66d7dd51 34#include <linux/poll.h>
72788c38 35#include <linux/oom.h>
38b5faf4
DM
36#include <linux/frontswap.h>
37#include <linux/swapfile.h>
f981c595 38#include <linux/export.h>
67afa38e 39#include <linux/swap_slots.h>
155b5f88 40#include <linux/sort.h>
1da177e4
LT
41
42#include <asm/pgtable.h>
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
5d1ea48b 45#include <linux/swap_cgroup.h>
1da177e4 46
570a335b
HD
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
a2468cc9 63static int least_priority = -1;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
bfc6b1ca 88static struct plist_head *swap_avail_heads;
18ab4d4c 89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
81a0298b
HY
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
8d69aaee 101static inline unsigned char swap_count(unsigned char ent)
355cfa73 102{
955c97f0 103 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
104}
105
efa90a98 106/* returns 1 if swap entry is freed */
c9e44410
KH
107static int
108__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109{
efa90a98 110 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
111 struct page *page;
112 int ret = 0;
113
f6ab1f7f 114 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
115 if (!page)
116 return 0;
117 /*
118 * This function is called from scan_swap_map() and it's called
119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120 * We have to use trylock for avoiding deadlock. This is a special
121 * case and you should use try_to_free_swap() with explicit lock_page()
122 * in usual operations.
123 */
124 if (trylock_page(page)) {
125 ret = try_to_free_swap(page);
126 unlock_page(page);
127 }
09cbfeaf 128 put_page(page);
c9e44410
KH
129 return ret;
130}
355cfa73 131
6a6ba831
HD
132/*
133 * swapon tell device that all the old swap contents can be discarded,
134 * to allow the swap device to optimize its wear-levelling.
135 */
136static int discard_swap(struct swap_info_struct *si)
137{
138 struct swap_extent *se;
9625a5f2
HD
139 sector_t start_block;
140 sector_t nr_blocks;
6a6ba831
HD
141 int err = 0;
142
9625a5f2
HD
143 /* Do not discard the swap header page! */
144 se = &si->first_swap_extent;
145 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147 if (nr_blocks) {
148 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 149 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
150 if (err)
151 return err;
152 cond_resched();
153 }
6a6ba831 154
9625a5f2
HD
155 list_for_each_entry(se, &si->first_swap_extent.list, list) {
156 start_block = se->start_block << (PAGE_SHIFT - 9);
157 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
158
159 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 160 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
161 if (err)
162 break;
163
164 cond_resched();
165 }
166 return err; /* That will often be -EOPNOTSUPP */
167}
168
7992fde7
HD
169/*
170 * swap allocation tell device that a cluster of swap can now be discarded,
171 * to allow the swap device to optimize its wear-levelling.
172 */
173static void discard_swap_cluster(struct swap_info_struct *si,
174 pgoff_t start_page, pgoff_t nr_pages)
175{
176 struct swap_extent *se = si->curr_swap_extent;
177 int found_extent = 0;
178
179 while (nr_pages) {
7992fde7
HD
180 if (se->start_page <= start_page &&
181 start_page < se->start_page + se->nr_pages) {
182 pgoff_t offset = start_page - se->start_page;
183 sector_t start_block = se->start_block + offset;
858a2990 184 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
185
186 if (nr_blocks > nr_pages)
187 nr_blocks = nr_pages;
188 start_page += nr_blocks;
189 nr_pages -= nr_blocks;
190
191 if (!found_extent++)
192 si->curr_swap_extent = se;
193
194 start_block <<= PAGE_SHIFT - 9;
195 nr_blocks <<= PAGE_SHIFT - 9;
196 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 197 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
198 break;
199 }
200
a8ae4991 201 se = list_next_entry(se, list);
7992fde7
HD
202 }
203}
204
38d8b4e6
HY
205#ifdef CONFIG_THP_SWAP
206#define SWAPFILE_CLUSTER HPAGE_PMD_NR
207#else
048c27fd 208#define SWAPFILE_CLUSTER 256
38d8b4e6 209#endif
048c27fd
HD
210#define LATENCY_LIMIT 256
211
2a8f9449
SL
212static inline void cluster_set_flag(struct swap_cluster_info *info,
213 unsigned int flag)
214{
215 info->flags = flag;
216}
217
218static inline unsigned int cluster_count(struct swap_cluster_info *info)
219{
220 return info->data;
221}
222
223static inline void cluster_set_count(struct swap_cluster_info *info,
224 unsigned int c)
225{
226 info->data = c;
227}
228
229static inline void cluster_set_count_flag(struct swap_cluster_info *info,
230 unsigned int c, unsigned int f)
231{
232 info->flags = f;
233 info->data = c;
234}
235
236static inline unsigned int cluster_next(struct swap_cluster_info *info)
237{
238 return info->data;
239}
240
241static inline void cluster_set_next(struct swap_cluster_info *info,
242 unsigned int n)
243{
244 info->data = n;
245}
246
247static inline void cluster_set_next_flag(struct swap_cluster_info *info,
248 unsigned int n, unsigned int f)
249{
250 info->flags = f;
251 info->data = n;
252}
253
254static inline bool cluster_is_free(struct swap_cluster_info *info)
255{
256 return info->flags & CLUSTER_FLAG_FREE;
257}
258
259static inline bool cluster_is_null(struct swap_cluster_info *info)
260{
261 return info->flags & CLUSTER_FLAG_NEXT_NULL;
262}
263
264static inline void cluster_set_null(struct swap_cluster_info *info)
265{
266 info->flags = CLUSTER_FLAG_NEXT_NULL;
267 info->data = 0;
268}
269
e0709829
HY
270static inline bool cluster_is_huge(struct swap_cluster_info *info)
271{
272 return info->flags & CLUSTER_FLAG_HUGE;
273}
274
275static inline void cluster_clear_huge(struct swap_cluster_info *info)
276{
277 info->flags &= ~CLUSTER_FLAG_HUGE;
278}
279
235b6217
HY
280static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
281 unsigned long offset)
282{
283 struct swap_cluster_info *ci;
284
285 ci = si->cluster_info;
286 if (ci) {
287 ci += offset / SWAPFILE_CLUSTER;
288 spin_lock(&ci->lock);
289 }
290 return ci;
291}
292
293static inline void unlock_cluster(struct swap_cluster_info *ci)
294{
295 if (ci)
296 spin_unlock(&ci->lock);
297}
298
59d98bf3
HY
299/*
300 * Determine the locking method in use for this device. Return
301 * swap_cluster_info if SSD-style cluster-based locking is in place.
302 */
235b6217 303static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 304 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
305{
306 struct swap_cluster_info *ci;
307
59d98bf3 308 /* Try to use fine-grained SSD-style locking if available: */
235b6217 309 ci = lock_cluster(si, offset);
59d98bf3 310 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
311 if (!ci)
312 spin_lock(&si->lock);
313
314 return ci;
315}
316
317static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
318 struct swap_cluster_info *ci)
319{
320 if (ci)
321 unlock_cluster(ci);
322 else
323 spin_unlock(&si->lock);
324}
325
6b534915
HY
326static inline bool cluster_list_empty(struct swap_cluster_list *list)
327{
328 return cluster_is_null(&list->head);
329}
330
331static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
332{
333 return cluster_next(&list->head);
334}
335
336static void cluster_list_init(struct swap_cluster_list *list)
337{
338 cluster_set_null(&list->head);
339 cluster_set_null(&list->tail);
340}
341
342static void cluster_list_add_tail(struct swap_cluster_list *list,
343 struct swap_cluster_info *ci,
344 unsigned int idx)
345{
346 if (cluster_list_empty(list)) {
347 cluster_set_next_flag(&list->head, idx, 0);
348 cluster_set_next_flag(&list->tail, idx, 0);
349 } else {
235b6217 350 struct swap_cluster_info *ci_tail;
6b534915
HY
351 unsigned int tail = cluster_next(&list->tail);
352
235b6217
HY
353 /*
354 * Nested cluster lock, but both cluster locks are
355 * only acquired when we held swap_info_struct->lock
356 */
357 ci_tail = ci + tail;
358 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
359 cluster_set_next(ci_tail, idx);
0ef017d1 360 spin_unlock(&ci_tail->lock);
6b534915
HY
361 cluster_set_next_flag(&list->tail, idx, 0);
362 }
363}
364
365static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
366 struct swap_cluster_info *ci)
367{
368 unsigned int idx;
369
370 idx = cluster_next(&list->head);
371 if (cluster_next(&list->tail) == idx) {
372 cluster_set_null(&list->head);
373 cluster_set_null(&list->tail);
374 } else
375 cluster_set_next_flag(&list->head,
376 cluster_next(&ci[idx]), 0);
377
378 return idx;
379}
380
815c2c54
SL
381/* Add a cluster to discard list and schedule it to do discard */
382static void swap_cluster_schedule_discard(struct swap_info_struct *si,
383 unsigned int idx)
384{
385 /*
386 * If scan_swap_map() can't find a free cluster, it will check
387 * si->swap_map directly. To make sure the discarding cluster isn't
388 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
389 * will be cleared after discard
390 */
391 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
392 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
393
6b534915 394 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
395
396 schedule_work(&si->discard_work);
397}
398
38d8b4e6
HY
399static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
400{
401 struct swap_cluster_info *ci = si->cluster_info;
402
403 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
404 cluster_list_add_tail(&si->free_clusters, ci, idx);
405}
406
815c2c54
SL
407/*
408 * Doing discard actually. After a cluster discard is finished, the cluster
409 * will be added to free cluster list. caller should hold si->lock.
410*/
411static void swap_do_scheduled_discard(struct swap_info_struct *si)
412{
235b6217 413 struct swap_cluster_info *info, *ci;
815c2c54
SL
414 unsigned int idx;
415
416 info = si->cluster_info;
417
6b534915
HY
418 while (!cluster_list_empty(&si->discard_clusters)) {
419 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
420 spin_unlock(&si->lock);
421
422 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
423 SWAPFILE_CLUSTER);
424
425 spin_lock(&si->lock);
235b6217 426 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 427 __free_cluster(si, idx);
815c2c54
SL
428 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
429 0, SWAPFILE_CLUSTER);
235b6217 430 unlock_cluster(ci);
815c2c54
SL
431 }
432}
433
434static void swap_discard_work(struct work_struct *work)
435{
436 struct swap_info_struct *si;
437
438 si = container_of(work, struct swap_info_struct, discard_work);
439
440 spin_lock(&si->lock);
441 swap_do_scheduled_discard(si);
442 spin_unlock(&si->lock);
443}
444
38d8b4e6
HY
445static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
446{
447 struct swap_cluster_info *ci = si->cluster_info;
448
449 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
450 cluster_list_del_first(&si->free_clusters, ci);
451 cluster_set_count_flag(ci + idx, 0, 0);
452}
453
454static void free_cluster(struct swap_info_struct *si, unsigned long idx)
455{
456 struct swap_cluster_info *ci = si->cluster_info + idx;
457
458 VM_BUG_ON(cluster_count(ci) != 0);
459 /*
460 * If the swap is discardable, prepare discard the cluster
461 * instead of free it immediately. The cluster will be freed
462 * after discard.
463 */
464 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
465 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
466 swap_cluster_schedule_discard(si, idx);
467 return;
468 }
469
470 __free_cluster(si, idx);
471}
472
2a8f9449
SL
473/*
474 * The cluster corresponding to page_nr will be used. The cluster will be
475 * removed from free cluster list and its usage counter will be increased.
476 */
477static void inc_cluster_info_page(struct swap_info_struct *p,
478 struct swap_cluster_info *cluster_info, unsigned long page_nr)
479{
480 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
481
482 if (!cluster_info)
483 return;
38d8b4e6
HY
484 if (cluster_is_free(&cluster_info[idx]))
485 alloc_cluster(p, idx);
2a8f9449
SL
486
487 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
488 cluster_set_count(&cluster_info[idx],
489 cluster_count(&cluster_info[idx]) + 1);
490}
491
492/*
493 * The cluster corresponding to page_nr decreases one usage. If the usage
494 * counter becomes 0, which means no page in the cluster is in using, we can
495 * optionally discard the cluster and add it to free cluster list.
496 */
497static void dec_cluster_info_page(struct swap_info_struct *p,
498 struct swap_cluster_info *cluster_info, unsigned long page_nr)
499{
500 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
501
502 if (!cluster_info)
503 return;
504
505 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
506 cluster_set_count(&cluster_info[idx],
507 cluster_count(&cluster_info[idx]) - 1);
508
38d8b4e6
HY
509 if (cluster_count(&cluster_info[idx]) == 0)
510 free_cluster(p, idx);
2a8f9449
SL
511}
512
513/*
514 * It's possible scan_swap_map() uses a free cluster in the middle of free
515 * cluster list. Avoiding such abuse to avoid list corruption.
516 */
ebc2a1a6
SL
517static bool
518scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
519 unsigned long offset)
520{
ebc2a1a6
SL
521 struct percpu_cluster *percpu_cluster;
522 bool conflict;
523
2a8f9449 524 offset /= SWAPFILE_CLUSTER;
6b534915
HY
525 conflict = !cluster_list_empty(&si->free_clusters) &&
526 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 527 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
528
529 if (!conflict)
530 return false;
531
532 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
533 cluster_set_null(&percpu_cluster->index);
534 return true;
535}
536
537/*
538 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
539 * might involve allocating a new cluster for current CPU too.
540 */
36005bae 541static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
542 unsigned long *offset, unsigned long *scan_base)
543{
544 struct percpu_cluster *cluster;
235b6217 545 struct swap_cluster_info *ci;
ebc2a1a6 546 bool found_free;
235b6217 547 unsigned long tmp, max;
ebc2a1a6
SL
548
549new_cluster:
550 cluster = this_cpu_ptr(si->percpu_cluster);
551 if (cluster_is_null(&cluster->index)) {
6b534915
HY
552 if (!cluster_list_empty(&si->free_clusters)) {
553 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
554 cluster->next = cluster_next(&cluster->index) *
555 SWAPFILE_CLUSTER;
6b534915 556 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
557 /*
558 * we don't have free cluster but have some clusters in
559 * discarding, do discard now and reclaim them
560 */
561 swap_do_scheduled_discard(si);
562 *scan_base = *offset = si->cluster_next;
563 goto new_cluster;
564 } else
36005bae 565 return false;
ebc2a1a6
SL
566 }
567
568 found_free = false;
569
570 /*
571 * Other CPUs can use our cluster if they can't find a free cluster,
572 * check if there is still free entry in the cluster
573 */
574 tmp = cluster->next;
235b6217
HY
575 max = min_t(unsigned long, si->max,
576 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
577 if (tmp >= max) {
578 cluster_set_null(&cluster->index);
579 goto new_cluster;
580 }
581 ci = lock_cluster(si, tmp);
582 while (tmp < max) {
ebc2a1a6
SL
583 if (!si->swap_map[tmp]) {
584 found_free = true;
585 break;
586 }
587 tmp++;
588 }
235b6217 589 unlock_cluster(ci);
ebc2a1a6
SL
590 if (!found_free) {
591 cluster_set_null(&cluster->index);
592 goto new_cluster;
593 }
594 cluster->next = tmp + 1;
595 *offset = tmp;
596 *scan_base = tmp;
36005bae 597 return found_free;
2a8f9449
SL
598}
599
a2468cc9
AL
600static void __del_from_avail_list(struct swap_info_struct *p)
601{
602 int nid;
603
604 for_each_node(nid)
605 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
606}
607
608static void del_from_avail_list(struct swap_info_struct *p)
609{
610 spin_lock(&swap_avail_lock);
611 __del_from_avail_list(p);
612 spin_unlock(&swap_avail_lock);
613}
614
38d8b4e6
HY
615static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
616 unsigned int nr_entries)
617{
618 unsigned int end = offset + nr_entries - 1;
619
620 if (offset == si->lowest_bit)
621 si->lowest_bit += nr_entries;
622 if (end == si->highest_bit)
623 si->highest_bit -= nr_entries;
624 si->inuse_pages += nr_entries;
625 if (si->inuse_pages == si->pages) {
626 si->lowest_bit = si->max;
627 si->highest_bit = 0;
a2468cc9 628 del_from_avail_list(si);
38d8b4e6
HY
629 }
630}
631
a2468cc9
AL
632static void add_to_avail_list(struct swap_info_struct *p)
633{
634 int nid;
635
636 spin_lock(&swap_avail_lock);
637 for_each_node(nid) {
638 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
639 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
640 }
641 spin_unlock(&swap_avail_lock);
642}
643
38d8b4e6
HY
644static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
645 unsigned int nr_entries)
646{
647 unsigned long end = offset + nr_entries - 1;
648 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
649
650 if (offset < si->lowest_bit)
651 si->lowest_bit = offset;
652 if (end > si->highest_bit) {
653 bool was_full = !si->highest_bit;
654
655 si->highest_bit = end;
a2468cc9
AL
656 if (was_full && (si->flags & SWP_WRITEOK))
657 add_to_avail_list(si);
38d8b4e6
HY
658 }
659 atomic_long_add(nr_entries, &nr_swap_pages);
660 si->inuse_pages -= nr_entries;
661 if (si->flags & SWP_BLKDEV)
662 swap_slot_free_notify =
663 si->bdev->bd_disk->fops->swap_slot_free_notify;
664 else
665 swap_slot_free_notify = NULL;
666 while (offset <= end) {
667 frontswap_invalidate_page(si->type, offset);
668 if (swap_slot_free_notify)
669 swap_slot_free_notify(si->bdev, offset);
670 offset++;
671 }
672}
673
36005bae
TC
674static int scan_swap_map_slots(struct swap_info_struct *si,
675 unsigned char usage, int nr,
676 swp_entry_t slots[])
1da177e4 677{
235b6217 678 struct swap_cluster_info *ci;
ebebbbe9 679 unsigned long offset;
c60aa176 680 unsigned long scan_base;
7992fde7 681 unsigned long last_in_cluster = 0;
048c27fd 682 int latency_ration = LATENCY_LIMIT;
36005bae
TC
683 int n_ret = 0;
684
685 if (nr > SWAP_BATCH)
686 nr = SWAP_BATCH;
7dfad418 687
886bb7e9 688 /*
7dfad418
HD
689 * We try to cluster swap pages by allocating them sequentially
690 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
691 * way, however, we resort to first-free allocation, starting
692 * a new cluster. This prevents us from scattering swap pages
693 * all over the entire swap partition, so that we reduce
694 * overall disk seek times between swap pages. -- sct
695 * But we do now try to find an empty cluster. -Andrea
c60aa176 696 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
697 */
698
52b7efdb 699 si->flags += SWP_SCANNING;
c60aa176 700 scan_base = offset = si->cluster_next;
ebebbbe9 701
ebc2a1a6
SL
702 /* SSD algorithm */
703 if (si->cluster_info) {
36005bae
TC
704 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
705 goto checks;
706 else
707 goto scan;
ebc2a1a6
SL
708 }
709
ebebbbe9
HD
710 if (unlikely(!si->cluster_nr--)) {
711 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
712 si->cluster_nr = SWAPFILE_CLUSTER - 1;
713 goto checks;
714 }
2a8f9449 715
ec8acf20 716 spin_unlock(&si->lock);
7dfad418 717
c60aa176
HD
718 /*
719 * If seek is expensive, start searching for new cluster from
720 * start of partition, to minimize the span of allocated swap.
50088c44
CY
721 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
722 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 723 */
50088c44 724 scan_base = offset = si->lowest_bit;
7dfad418
HD
725 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
726
727 /* Locate the first empty (unaligned) cluster */
728 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 729 if (si->swap_map[offset])
7dfad418
HD
730 last_in_cluster = offset + SWAPFILE_CLUSTER;
731 else if (offset == last_in_cluster) {
ec8acf20 732 spin_lock(&si->lock);
ebebbbe9
HD
733 offset -= SWAPFILE_CLUSTER - 1;
734 si->cluster_next = offset;
735 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
736 goto checks;
737 }
738 if (unlikely(--latency_ration < 0)) {
739 cond_resched();
740 latency_ration = LATENCY_LIMIT;
741 }
742 }
743
744 offset = scan_base;
ec8acf20 745 spin_lock(&si->lock);
ebebbbe9 746 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 747 }
7dfad418 748
ebebbbe9 749checks:
ebc2a1a6 750 if (si->cluster_info) {
36005bae
TC
751 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
752 /* take a break if we already got some slots */
753 if (n_ret)
754 goto done;
755 if (!scan_swap_map_try_ssd_cluster(si, &offset,
756 &scan_base))
757 goto scan;
758 }
ebc2a1a6 759 }
ebebbbe9 760 if (!(si->flags & SWP_WRITEOK))
52b7efdb 761 goto no_page;
7dfad418
HD
762 if (!si->highest_bit)
763 goto no_page;
ebebbbe9 764 if (offset > si->highest_bit)
c60aa176 765 scan_base = offset = si->lowest_bit;
c9e44410 766
235b6217 767 ci = lock_cluster(si, offset);
b73d7fce
HD
768 /* reuse swap entry of cache-only swap if not busy. */
769 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 770 int swap_was_freed;
235b6217 771 unlock_cluster(ci);
ec8acf20 772 spin_unlock(&si->lock);
c9e44410 773 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 774 spin_lock(&si->lock);
c9e44410
KH
775 /* entry was freed successfully, try to use this again */
776 if (swap_was_freed)
777 goto checks;
778 goto scan; /* check next one */
779 }
780
235b6217
HY
781 if (si->swap_map[offset]) {
782 unlock_cluster(ci);
36005bae
TC
783 if (!n_ret)
784 goto scan;
785 else
786 goto done;
235b6217 787 }
2872bb2d
HY
788 si->swap_map[offset] = usage;
789 inc_cluster_info_page(si, si->cluster_info, offset);
790 unlock_cluster(ci);
ebebbbe9 791
38d8b4e6 792 swap_range_alloc(si, offset, 1);
ebebbbe9 793 si->cluster_next = offset + 1;
36005bae
TC
794 slots[n_ret++] = swp_entry(si->type, offset);
795
796 /* got enough slots or reach max slots? */
797 if ((n_ret == nr) || (offset >= si->highest_bit))
798 goto done;
799
800 /* search for next available slot */
801
802 /* time to take a break? */
803 if (unlikely(--latency_ration < 0)) {
804 if (n_ret)
805 goto done;
806 spin_unlock(&si->lock);
807 cond_resched();
808 spin_lock(&si->lock);
809 latency_ration = LATENCY_LIMIT;
810 }
811
812 /* try to get more slots in cluster */
813 if (si->cluster_info) {
814 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
815 goto checks;
816 else
817 goto done;
818 }
819 /* non-ssd case */
820 ++offset;
821
822 /* non-ssd case, still more slots in cluster? */
823 if (si->cluster_nr && !si->swap_map[offset]) {
824 --si->cluster_nr;
825 goto checks;
826 }
7992fde7 827
36005bae
TC
828done:
829 si->flags -= SWP_SCANNING;
830 return n_ret;
7dfad418 831
ebebbbe9 832scan:
ec8acf20 833 spin_unlock(&si->lock);
7dfad418 834 while (++offset <= si->highest_bit) {
52b7efdb 835 if (!si->swap_map[offset]) {
ec8acf20 836 spin_lock(&si->lock);
52b7efdb
HD
837 goto checks;
838 }
c9e44410 839 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 840 spin_lock(&si->lock);
c9e44410
KH
841 goto checks;
842 }
048c27fd
HD
843 if (unlikely(--latency_ration < 0)) {
844 cond_resched();
845 latency_ration = LATENCY_LIMIT;
846 }
7dfad418 847 }
c60aa176 848 offset = si->lowest_bit;
a5998061 849 while (offset < scan_base) {
c60aa176 850 if (!si->swap_map[offset]) {
ec8acf20 851 spin_lock(&si->lock);
c60aa176
HD
852 goto checks;
853 }
c9e44410 854 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 855 spin_lock(&si->lock);
c9e44410
KH
856 goto checks;
857 }
c60aa176
HD
858 if (unlikely(--latency_ration < 0)) {
859 cond_resched();
860 latency_ration = LATENCY_LIMIT;
861 }
a5998061 862 offset++;
c60aa176 863 }
ec8acf20 864 spin_lock(&si->lock);
7dfad418
HD
865
866no_page:
52b7efdb 867 si->flags -= SWP_SCANNING;
36005bae 868 return n_ret;
1da177e4
LT
869}
870
38d8b4e6
HY
871static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
872{
873 unsigned long idx;
874 struct swap_cluster_info *ci;
875 unsigned long offset, i;
876 unsigned char *map;
877
fe5266d5
HY
878 /*
879 * Should not even be attempting cluster allocations when huge
880 * page swap is disabled. Warn and fail the allocation.
881 */
882 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
883 VM_WARN_ON_ONCE(1);
884 return 0;
885 }
886
38d8b4e6
HY
887 if (cluster_list_empty(&si->free_clusters))
888 return 0;
889
890 idx = cluster_list_first(&si->free_clusters);
891 offset = idx * SWAPFILE_CLUSTER;
892 ci = lock_cluster(si, offset);
893 alloc_cluster(si, idx);
e0709829 894 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
895
896 map = si->swap_map + offset;
897 for (i = 0; i < SWAPFILE_CLUSTER; i++)
898 map[i] = SWAP_HAS_CACHE;
899 unlock_cluster(ci);
900 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
901 *slot = swp_entry(si->type, offset);
902
903 return 1;
904}
905
906static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
907{
908 unsigned long offset = idx * SWAPFILE_CLUSTER;
909 struct swap_cluster_info *ci;
910
911 ci = lock_cluster(si, offset);
912 cluster_set_count_flag(ci, 0, 0);
913 free_cluster(si, idx);
914 unlock_cluster(ci);
915 swap_range_free(si, offset, SWAPFILE_CLUSTER);
916}
38d8b4e6 917
36005bae
TC
918static unsigned long scan_swap_map(struct swap_info_struct *si,
919 unsigned char usage)
920{
921 swp_entry_t entry;
922 int n_ret;
923
924 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
925
926 if (n_ret)
927 return swp_offset(entry);
928 else
929 return 0;
930
931}
932
38d8b4e6 933int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
1da177e4 934{
38d8b4e6 935 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
adfab836 936 struct swap_info_struct *si, *next;
36005bae
TC
937 long avail_pgs;
938 int n_ret = 0;
a2468cc9 939 int node;
1da177e4 940
38d8b4e6
HY
941 /* Only single cluster request supported */
942 WARN_ON_ONCE(n_goal > 1 && cluster);
943
944 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
36005bae 945 if (avail_pgs <= 0)
fb4f88dc 946 goto noswap;
36005bae
TC
947
948 if (n_goal > SWAP_BATCH)
949 n_goal = SWAP_BATCH;
950
951 if (n_goal > avail_pgs)
952 n_goal = avail_pgs;
953
38d8b4e6 954 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
fb4f88dc 955
18ab4d4c
DS
956 spin_lock(&swap_avail_lock);
957
958start_over:
a2468cc9
AL
959 node = numa_node_id();
960 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 961 /* requeue si to after same-priority siblings */
a2468cc9 962 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 963 spin_unlock(&swap_avail_lock);
ec8acf20 964 spin_lock(&si->lock);
adfab836 965 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 966 spin_lock(&swap_avail_lock);
a2468cc9 967 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
968 spin_unlock(&si->lock);
969 goto nextsi;
970 }
971 WARN(!si->highest_bit,
972 "swap_info %d in list but !highest_bit\n",
973 si->type);
974 WARN(!(si->flags & SWP_WRITEOK),
975 "swap_info %d in list but !SWP_WRITEOK\n",
976 si->type);
a2468cc9 977 __del_from_avail_list(si);
ec8acf20 978 spin_unlock(&si->lock);
18ab4d4c 979 goto nextsi;
ec8acf20 980 }
f0eea189
HY
981 if (cluster) {
982 if (!(si->flags & SWP_FILE))
983 n_ret = swap_alloc_cluster(si, swp_entries);
984 } else
38d8b4e6
HY
985 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
986 n_goal, swp_entries);
ec8acf20 987 spin_unlock(&si->lock);
38d8b4e6 988 if (n_ret || cluster)
36005bae 989 goto check_out;
18ab4d4c 990 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
991 si->type);
992
18ab4d4c
DS
993 spin_lock(&swap_avail_lock);
994nextsi:
adfab836
DS
995 /*
996 * if we got here, it's likely that si was almost full before,
997 * and since scan_swap_map() can drop the si->lock, multiple
998 * callers probably all tried to get a page from the same si
18ab4d4c
DS
999 * and it filled up before we could get one; or, the si filled
1000 * up between us dropping swap_avail_lock and taking si->lock.
1001 * Since we dropped the swap_avail_lock, the swap_avail_head
1002 * list may have been modified; so if next is still in the
36005bae
TC
1003 * swap_avail_head list then try it, otherwise start over
1004 * if we have not gotten any slots.
adfab836 1005 */
a2468cc9 1006 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1007 goto start_over;
1da177e4 1008 }
fb4f88dc 1009
18ab4d4c
DS
1010 spin_unlock(&swap_avail_lock);
1011
36005bae
TC
1012check_out:
1013 if (n_ret < n_goal)
38d8b4e6
HY
1014 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1015 &nr_swap_pages);
fb4f88dc 1016noswap:
36005bae
TC
1017 return n_ret;
1018}
1019
2de1a7e4 1020/* The only caller of this function is now suspend routine */
910321ea
HD
1021swp_entry_t get_swap_page_of_type(int type)
1022{
1023 struct swap_info_struct *si;
1024 pgoff_t offset;
1025
910321ea 1026 si = swap_info[type];
ec8acf20 1027 spin_lock(&si->lock);
910321ea 1028 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 1029 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1030 /* This is called for allocating swap entry, not cache */
1031 offset = scan_swap_map(si, 1);
1032 if (offset) {
ec8acf20 1033 spin_unlock(&si->lock);
910321ea
HD
1034 return swp_entry(type, offset);
1035 }
ec8acf20 1036 atomic_long_inc(&nr_swap_pages);
910321ea 1037 }
ec8acf20 1038 spin_unlock(&si->lock);
910321ea
HD
1039 return (swp_entry_t) {0};
1040}
1041
e8c26ab6 1042static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1043{
73c34b6a 1044 struct swap_info_struct *p;
1da177e4
LT
1045 unsigned long offset, type;
1046
1047 if (!entry.val)
1048 goto out;
1049 type = swp_type(entry);
1050 if (type >= nr_swapfiles)
1051 goto bad_nofile;
efa90a98 1052 p = swap_info[type];
1da177e4
LT
1053 if (!(p->flags & SWP_USED))
1054 goto bad_device;
1055 offset = swp_offset(entry);
1056 if (offset >= p->max)
1057 goto bad_offset;
1da177e4
LT
1058 return p;
1059
1da177e4 1060bad_offset:
6a991fc7 1061 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1062 goto out;
1063bad_device:
6a991fc7 1064 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1065 goto out;
1066bad_nofile:
6a991fc7 1067 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1068out:
1069 return NULL;
886bb7e9 1070}
1da177e4 1071
e8c26ab6
TC
1072static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1073{
1074 struct swap_info_struct *p;
1075
1076 p = __swap_info_get(entry);
1077 if (!p)
1078 goto out;
1079 if (!p->swap_map[swp_offset(entry)])
1080 goto bad_free;
1081 return p;
1082
1083bad_free:
1084 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1085 goto out;
1086out:
1087 return NULL;
1088}
1089
235b6217
HY
1090static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1091{
1092 struct swap_info_struct *p;
1093
1094 p = _swap_info_get(entry);
1095 if (p)
1096 spin_lock(&p->lock);
1097 return p;
1098}
1099
7c00bafe
TC
1100static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1101 struct swap_info_struct *q)
1102{
1103 struct swap_info_struct *p;
1104
1105 p = _swap_info_get(entry);
1106
1107 if (p != q) {
1108 if (q != NULL)
1109 spin_unlock(&q->lock);
1110 if (p != NULL)
1111 spin_lock(&p->lock);
1112 }
1113 return p;
1114}
1115
1116static unsigned char __swap_entry_free(struct swap_info_struct *p,
1117 swp_entry_t entry, unsigned char usage)
1da177e4 1118{
235b6217 1119 struct swap_cluster_info *ci;
253d553b 1120 unsigned long offset = swp_offset(entry);
8d69aaee
HD
1121 unsigned char count;
1122 unsigned char has_cache;
235b6217 1123
7c00bafe 1124 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 1125
253d553b 1126 count = p->swap_map[offset];
235b6217 1127
253d553b
HD
1128 has_cache = count & SWAP_HAS_CACHE;
1129 count &= ~SWAP_HAS_CACHE;
355cfa73 1130
253d553b 1131 if (usage == SWAP_HAS_CACHE) {
355cfa73 1132 VM_BUG_ON(!has_cache);
253d553b 1133 has_cache = 0;
aaa46865
HD
1134 } else if (count == SWAP_MAP_SHMEM) {
1135 /*
1136 * Or we could insist on shmem.c using a special
1137 * swap_shmem_free() and free_shmem_swap_and_cache()...
1138 */
1139 count = 0;
570a335b
HD
1140 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1141 if (count == COUNT_CONTINUED) {
1142 if (swap_count_continued(p, offset, count))
1143 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1144 else
1145 count = SWAP_MAP_MAX;
1146 } else
1147 count--;
1148 }
253d553b 1149
253d553b 1150 usage = count | has_cache;
7c00bafe
TC
1151 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1152
1153 unlock_cluster_or_swap_info(p, ci);
1154
1155 return usage;
1156}
355cfa73 1157
7c00bafe
TC
1158static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1159{
1160 struct swap_cluster_info *ci;
1161 unsigned long offset = swp_offset(entry);
1162 unsigned char count;
1163
1164 ci = lock_cluster(p, offset);
1165 count = p->swap_map[offset];
1166 VM_BUG_ON(count != SWAP_HAS_CACHE);
1167 p->swap_map[offset] = 0;
1168 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1169 unlock_cluster(ci);
1170
38d8b4e6
HY
1171 mem_cgroup_uncharge_swap(entry, 1);
1172 swap_range_free(p, offset, 1);
1da177e4
LT
1173}
1174
1175/*
2de1a7e4 1176 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1177 * is still around or has not been recycled.
1178 */
1179void swap_free(swp_entry_t entry)
1180{
73c34b6a 1181 struct swap_info_struct *p;
1da177e4 1182
235b6217 1183 p = _swap_info_get(entry);
7c00bafe
TC
1184 if (p) {
1185 if (!__swap_entry_free(p, entry, 1))
67afa38e 1186 free_swap_slot(entry);
7c00bafe 1187 }
1da177e4
LT
1188}
1189
cb4b86ba
KH
1190/*
1191 * Called after dropping swapcache to decrease refcnt to swap entries.
1192 */
75f6d6d2 1193static void swapcache_free(swp_entry_t entry)
cb4b86ba 1194{
355cfa73
KH
1195 struct swap_info_struct *p;
1196
235b6217 1197 p = _swap_info_get(entry);
7c00bafe
TC
1198 if (p) {
1199 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
67afa38e 1200 free_swap_slot(entry);
7c00bafe
TC
1201 }
1202}
1203
75f6d6d2 1204static void swapcache_free_cluster(swp_entry_t entry)
38d8b4e6
HY
1205{
1206 unsigned long offset = swp_offset(entry);
1207 unsigned long idx = offset / SWAPFILE_CLUSTER;
1208 struct swap_cluster_info *ci;
1209 struct swap_info_struct *si;
1210 unsigned char *map;
a3aea839
HY
1211 unsigned int i, free_entries = 0;
1212 unsigned char val;
38d8b4e6 1213
fe5266d5
HY
1214 if (!IS_ENABLED(CONFIG_THP_SWAP))
1215 return;
1216
a3aea839 1217 si = _swap_info_get(entry);
38d8b4e6
HY
1218 if (!si)
1219 return;
1220
1221 ci = lock_cluster(si, offset);
e0709829 1222 VM_BUG_ON(!cluster_is_huge(ci));
38d8b4e6
HY
1223 map = si->swap_map + offset;
1224 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
a3aea839
HY
1225 val = map[i];
1226 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1227 if (val == SWAP_HAS_CACHE)
1228 free_entries++;
1229 }
1230 if (!free_entries) {
1231 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1232 map[i] &= ~SWAP_HAS_CACHE;
38d8b4e6 1233 }
e0709829 1234 cluster_clear_huge(ci);
38d8b4e6 1235 unlock_cluster(ci);
a3aea839
HY
1236 if (free_entries == SWAPFILE_CLUSTER) {
1237 spin_lock(&si->lock);
1238 ci = lock_cluster(si, offset);
1239 memset(map, 0, SWAPFILE_CLUSTER);
1240 unlock_cluster(ci);
1241 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1242 swap_free_cluster(si, idx);
1243 spin_unlock(&si->lock);
1244 } else if (free_entries) {
1245 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1246 if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1247 free_swap_slot(entry);
1248 }
1249 }
38d8b4e6 1250}
59807685 1251
fe5266d5 1252#ifdef CONFIG_THP_SWAP
59807685
HY
1253int split_swap_cluster(swp_entry_t entry)
1254{
1255 struct swap_info_struct *si;
1256 struct swap_cluster_info *ci;
1257 unsigned long offset = swp_offset(entry);
1258
1259 si = _swap_info_get(entry);
1260 if (!si)
1261 return -EBUSY;
1262 ci = lock_cluster(si, offset);
1263 cluster_clear_huge(ci);
1264 unlock_cluster(ci);
1265 return 0;
1266}
fe5266d5 1267#endif
38d8b4e6 1268
75f6d6d2
MK
1269void put_swap_page(struct page *page, swp_entry_t entry)
1270{
1271 if (!PageTransHuge(page))
1272 swapcache_free(entry);
1273 else
1274 swapcache_free_cluster(entry);
1275}
1276
155b5f88
HY
1277static int swp_entry_cmp(const void *ent1, const void *ent2)
1278{
1279 const swp_entry_t *e1 = ent1, *e2 = ent2;
1280
1281 return (int)swp_type(*e1) - (int)swp_type(*e2);
1282}
1283
7c00bafe
TC
1284void swapcache_free_entries(swp_entry_t *entries, int n)
1285{
1286 struct swap_info_struct *p, *prev;
1287 int i;
1288
1289 if (n <= 0)
1290 return;
1291
1292 prev = NULL;
1293 p = NULL;
155b5f88
HY
1294
1295 /*
1296 * Sort swap entries by swap device, so each lock is only taken once.
1297 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1298 * so low that it isn't necessary to optimize further.
1299 */
1300 if (nr_swapfiles > 1)
1301 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1302 for (i = 0; i < n; ++i) {
1303 p = swap_info_get_cont(entries[i], prev);
1304 if (p)
1305 swap_entry_free(p, entries[i]);
7c00bafe
TC
1306 prev = p;
1307 }
235b6217 1308 if (p)
7c00bafe 1309 spin_unlock(&p->lock);
cb4b86ba
KH
1310}
1311
1da177e4 1312/*
c475a8ab 1313 * How many references to page are currently swapped out?
570a335b
HD
1314 * This does not give an exact answer when swap count is continued,
1315 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1316 */
bde05d1c 1317int page_swapcount(struct page *page)
1da177e4 1318{
c475a8ab
HD
1319 int count = 0;
1320 struct swap_info_struct *p;
235b6217 1321 struct swap_cluster_info *ci;
1da177e4 1322 swp_entry_t entry;
235b6217 1323 unsigned long offset;
1da177e4 1324
4c21e2f2 1325 entry.val = page_private(page);
235b6217 1326 p = _swap_info_get(entry);
1da177e4 1327 if (p) {
235b6217
HY
1328 offset = swp_offset(entry);
1329 ci = lock_cluster_or_swap_info(p, offset);
1330 count = swap_count(p->swap_map[offset]);
1331 unlock_cluster_or_swap_info(p, ci);
1da177e4 1332 }
c475a8ab 1333 return count;
1da177e4
LT
1334}
1335
aa8d22a1
MK
1336int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1337{
1338 pgoff_t offset = swp_offset(entry);
1339
1340 return swap_count(si->swap_map[offset]);
1341}
1342
322b8afe
HY
1343static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1344{
1345 int count = 0;
1346 pgoff_t offset = swp_offset(entry);
1347 struct swap_cluster_info *ci;
1348
1349 ci = lock_cluster_or_swap_info(si, offset);
1350 count = swap_count(si->swap_map[offset]);
1351 unlock_cluster_or_swap_info(si, ci);
1352 return count;
1353}
1354
e8c26ab6
TC
1355/*
1356 * How many references to @entry are currently swapped out?
1357 * This does not give an exact answer when swap count is continued,
1358 * but does include the high COUNT_CONTINUED flag to allow for that.
1359 */
1360int __swp_swapcount(swp_entry_t entry)
1361{
1362 int count = 0;
e8c26ab6 1363 struct swap_info_struct *si;
e8c26ab6
TC
1364
1365 si = __swap_info_get(entry);
322b8afe
HY
1366 if (si)
1367 count = swap_swapcount(si, entry);
e8c26ab6
TC
1368 return count;
1369}
1370
8334b962
MK
1371/*
1372 * How many references to @entry are currently swapped out?
1373 * This considers COUNT_CONTINUED so it returns exact answer.
1374 */
1375int swp_swapcount(swp_entry_t entry)
1376{
1377 int count, tmp_count, n;
1378 struct swap_info_struct *p;
235b6217 1379 struct swap_cluster_info *ci;
8334b962
MK
1380 struct page *page;
1381 pgoff_t offset;
1382 unsigned char *map;
1383
235b6217 1384 p = _swap_info_get(entry);
8334b962
MK
1385 if (!p)
1386 return 0;
1387
235b6217
HY
1388 offset = swp_offset(entry);
1389
1390 ci = lock_cluster_or_swap_info(p, offset);
1391
1392 count = swap_count(p->swap_map[offset]);
8334b962
MK
1393 if (!(count & COUNT_CONTINUED))
1394 goto out;
1395
1396 count &= ~COUNT_CONTINUED;
1397 n = SWAP_MAP_MAX + 1;
1398
8334b962
MK
1399 page = vmalloc_to_page(p->swap_map + offset);
1400 offset &= ~PAGE_MASK;
1401 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1402
1403 do {
a8ae4991 1404 page = list_next_entry(page, lru);
8334b962
MK
1405 map = kmap_atomic(page);
1406 tmp_count = map[offset];
1407 kunmap_atomic(map);
1408
1409 count += (tmp_count & ~COUNT_CONTINUED) * n;
1410 n *= (SWAP_CONT_MAX + 1);
1411 } while (tmp_count & COUNT_CONTINUED);
1412out:
235b6217 1413 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1414 return count;
1415}
1416
e0709829
HY
1417static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1418 swp_entry_t entry)
1419{
1420 struct swap_cluster_info *ci;
1421 unsigned char *map = si->swap_map;
1422 unsigned long roffset = swp_offset(entry);
1423 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1424 int i;
1425 bool ret = false;
1426
fe5266d5
HY
1427 if (!IS_ENABLED(CONFIG_THP_SWAP))
1428 return swap_swapcount(si, entry) != 0;
1429
e0709829
HY
1430 ci = lock_cluster_or_swap_info(si, offset);
1431 if (!ci || !cluster_is_huge(ci)) {
1432 if (map[roffset] != SWAP_HAS_CACHE)
1433 ret = true;
1434 goto unlock_out;
1435 }
1436 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1437 if (map[offset + i] != SWAP_HAS_CACHE) {
1438 ret = true;
1439 break;
1440 }
1441 }
1442unlock_out:
1443 unlock_cluster_or_swap_info(si, ci);
1444 return ret;
1445}
1446
1447static bool page_swapped(struct page *page)
1448{
1449 swp_entry_t entry;
1450 struct swap_info_struct *si;
1451
fe5266d5 1452 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1453 return page_swapcount(page) != 0;
1454
1455 page = compound_head(page);
1456 entry.val = page_private(page);
1457 si = _swap_info_get(entry);
1458 if (si)
1459 return swap_page_trans_huge_swapped(si, entry);
1460 return false;
1461}
ba3c4ce6
HY
1462
1463static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1464 int *total_swapcount)
1465{
1466 int i, map_swapcount, _total_mapcount, _total_swapcount;
1467 unsigned long offset = 0;
1468 struct swap_info_struct *si;
1469 struct swap_cluster_info *ci = NULL;
1470 unsigned char *map = NULL;
1471 int mapcount, swapcount = 0;
1472
1473 /* hugetlbfs shouldn't call it */
1474 VM_BUG_ON_PAGE(PageHuge(page), page);
1475
fe5266d5
HY
1476 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1477 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1478 if (PageSwapCache(page))
1479 swapcount = page_swapcount(page);
1480 if (total_swapcount)
1481 *total_swapcount = swapcount;
1482 return mapcount + swapcount;
1483 }
1484
1485 page = compound_head(page);
1486
1487 _total_mapcount = _total_swapcount = map_swapcount = 0;
1488 if (PageSwapCache(page)) {
1489 swp_entry_t entry;
1490
1491 entry.val = page_private(page);
1492 si = _swap_info_get(entry);
1493 if (si) {
1494 map = si->swap_map;
1495 offset = swp_offset(entry);
1496 }
1497 }
1498 if (map)
1499 ci = lock_cluster(si, offset);
1500 for (i = 0; i < HPAGE_PMD_NR; i++) {
1501 mapcount = atomic_read(&page[i]._mapcount) + 1;
1502 _total_mapcount += mapcount;
1503 if (map) {
1504 swapcount = swap_count(map[offset + i]);
1505 _total_swapcount += swapcount;
1506 }
1507 map_swapcount = max(map_swapcount, mapcount + swapcount);
1508 }
1509 unlock_cluster(ci);
1510 if (PageDoubleMap(page)) {
1511 map_swapcount -= 1;
1512 _total_mapcount -= HPAGE_PMD_NR;
1513 }
1514 mapcount = compound_mapcount(page);
1515 map_swapcount += mapcount;
1516 _total_mapcount += mapcount;
1517 if (total_mapcount)
1518 *total_mapcount = _total_mapcount;
1519 if (total_swapcount)
1520 *total_swapcount = _total_swapcount;
1521
1522 return map_swapcount;
1523}
e0709829 1524
1da177e4 1525/*
7b1fe597
HD
1526 * We can write to an anon page without COW if there are no other references
1527 * to it. And as a side-effect, free up its swap: because the old content
1528 * on disk will never be read, and seeking back there to write new content
1529 * later would only waste time away from clustering.
6d0a07ed 1530 *
ba3c4ce6 1531 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1532 * reuse_swap_page() returns false, but it may be always overwritten
1533 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1534 */
ba3c4ce6 1535bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1536{
ba3c4ce6 1537 int count, total_mapcount, total_swapcount;
c475a8ab 1538
309381fe 1539 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1540 if (unlikely(PageKsm(page)))
6d0a07ed 1541 return false;
ba3c4ce6
HY
1542 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1543 &total_swapcount);
1544 if (total_map_swapcount)
1545 *total_map_swapcount = total_mapcount + total_swapcount;
1546 if (count == 1 && PageSwapCache(page) &&
1547 (likely(!PageTransCompound(page)) ||
1548 /* The remaining swap count will be freed soon */
1549 total_swapcount == page_swapcount(page))) {
f0571429 1550 if (!PageWriteback(page)) {
ba3c4ce6 1551 page = compound_head(page);
7b1fe597
HD
1552 delete_from_swap_cache(page);
1553 SetPageDirty(page);
f0571429
MK
1554 } else {
1555 swp_entry_t entry;
1556 struct swap_info_struct *p;
1557
1558 entry.val = page_private(page);
1559 p = swap_info_get(entry);
1560 if (p->flags & SWP_STABLE_WRITES) {
1561 spin_unlock(&p->lock);
1562 return false;
1563 }
1564 spin_unlock(&p->lock);
7b1fe597
HD
1565 }
1566 }
ba3c4ce6 1567
5ad64688 1568 return count <= 1;
1da177e4
LT
1569}
1570
1571/*
a2c43eed
HD
1572 * If swap is getting full, or if there are no more mappings of this page,
1573 * then try_to_free_swap is called to free its swap space.
1da177e4 1574 */
a2c43eed 1575int try_to_free_swap(struct page *page)
1da177e4 1576{
309381fe 1577 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1578
1579 if (!PageSwapCache(page))
1580 return 0;
1581 if (PageWriteback(page))
1582 return 0;
e0709829 1583 if (page_swapped(page))
1da177e4
LT
1584 return 0;
1585
b73d7fce
HD
1586 /*
1587 * Once hibernation has begun to create its image of memory,
1588 * there's a danger that one of the calls to try_to_free_swap()
1589 * - most probably a call from __try_to_reclaim_swap() while
1590 * hibernation is allocating its own swap pages for the image,
1591 * but conceivably even a call from memory reclaim - will free
1592 * the swap from a page which has already been recorded in the
1593 * image as a clean swapcache page, and then reuse its swap for
1594 * another page of the image. On waking from hibernation, the
1595 * original page might be freed under memory pressure, then
1596 * later read back in from swap, now with the wrong data.
1597 *
2de1a7e4 1598 * Hibernation suspends storage while it is writing the image
f90ac398 1599 * to disk so check that here.
b73d7fce 1600 */
f90ac398 1601 if (pm_suspended_storage())
b73d7fce
HD
1602 return 0;
1603
e0709829 1604 page = compound_head(page);
a2c43eed
HD
1605 delete_from_swap_cache(page);
1606 SetPageDirty(page);
1607 return 1;
68a22394
RR
1608}
1609
1da177e4
LT
1610/*
1611 * Free the swap entry like above, but also try to
1612 * free the page cache entry if it is the last user.
1613 */
2509ef26 1614int free_swap_and_cache(swp_entry_t entry)
1da177e4 1615{
2509ef26 1616 struct swap_info_struct *p;
1da177e4 1617 struct page *page = NULL;
7c00bafe 1618 unsigned char count;
1da177e4 1619
a7420aa5 1620 if (non_swap_entry(entry))
2509ef26 1621 return 1;
0697212a 1622
7c00bafe 1623 p = _swap_info_get(entry);
1da177e4 1624 if (p) {
7c00bafe 1625 count = __swap_entry_free(p, entry, 1);
e0709829
HY
1626 if (count == SWAP_HAS_CACHE &&
1627 !swap_page_trans_huge_swapped(p, entry)) {
33806f06 1628 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1629 swp_offset(entry));
8413ac9d 1630 if (page && !trylock_page(page)) {
09cbfeaf 1631 put_page(page);
93fac704
NP
1632 page = NULL;
1633 }
7c00bafe 1634 } else if (!count)
67afa38e 1635 free_swap_slot(entry);
1da177e4
LT
1636 }
1637 if (page) {
a2c43eed
HD
1638 /*
1639 * Not mapped elsewhere, or swap space full? Free it!
1640 * Also recheck PageSwapCache now page is locked (above).
1641 */
93fac704 1642 if (PageSwapCache(page) && !PageWriteback(page) &&
322b8afe 1643 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
e0709829
HY
1644 !swap_page_trans_huge_swapped(p, entry)) {
1645 page = compound_head(page);
1da177e4
LT
1646 delete_from_swap_cache(page);
1647 SetPageDirty(page);
1648 }
1649 unlock_page(page);
09cbfeaf 1650 put_page(page);
1da177e4 1651 }
2509ef26 1652 return p != NULL;
1da177e4
LT
1653}
1654
b0cb1a19 1655#ifdef CONFIG_HIBERNATION
f577eb30 1656/*
915bae9e 1657 * Find the swap type that corresponds to given device (if any).
f577eb30 1658 *
915bae9e
RW
1659 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1660 * from 0, in which the swap header is expected to be located.
1661 *
1662 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1663 */
7bf23687 1664int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1665{
915bae9e 1666 struct block_device *bdev = NULL;
efa90a98 1667 int type;
f577eb30 1668
915bae9e
RW
1669 if (device)
1670 bdev = bdget(device);
1671
f577eb30 1672 spin_lock(&swap_lock);
efa90a98
HD
1673 for (type = 0; type < nr_swapfiles; type++) {
1674 struct swap_info_struct *sis = swap_info[type];
f577eb30 1675
915bae9e 1676 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1677 continue;
b6b5bce3 1678
915bae9e 1679 if (!bdev) {
7bf23687 1680 if (bdev_p)
dddac6a7 1681 *bdev_p = bdgrab(sis->bdev);
7bf23687 1682
6e1819d6 1683 spin_unlock(&swap_lock);
efa90a98 1684 return type;
6e1819d6 1685 }
915bae9e 1686 if (bdev == sis->bdev) {
9625a5f2 1687 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1688
915bae9e 1689 if (se->start_block == offset) {
7bf23687 1690 if (bdev_p)
dddac6a7 1691 *bdev_p = bdgrab(sis->bdev);
7bf23687 1692
915bae9e
RW
1693 spin_unlock(&swap_lock);
1694 bdput(bdev);
efa90a98 1695 return type;
915bae9e 1696 }
f577eb30
RW
1697 }
1698 }
1699 spin_unlock(&swap_lock);
915bae9e
RW
1700 if (bdev)
1701 bdput(bdev);
1702
f577eb30
RW
1703 return -ENODEV;
1704}
1705
73c34b6a
HD
1706/*
1707 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1708 * corresponding to given index in swap_info (swap type).
1709 */
1710sector_t swapdev_block(int type, pgoff_t offset)
1711{
1712 struct block_device *bdev;
1713
1714 if ((unsigned int)type >= nr_swapfiles)
1715 return 0;
1716 if (!(swap_info[type]->flags & SWP_WRITEOK))
1717 return 0;
d4906e1a 1718 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1719}
1720
f577eb30
RW
1721/*
1722 * Return either the total number of swap pages of given type, or the number
1723 * of free pages of that type (depending on @free)
1724 *
1725 * This is needed for software suspend
1726 */
1727unsigned int count_swap_pages(int type, int free)
1728{
1729 unsigned int n = 0;
1730
efa90a98
HD
1731 spin_lock(&swap_lock);
1732 if ((unsigned int)type < nr_swapfiles) {
1733 struct swap_info_struct *sis = swap_info[type];
1734
ec8acf20 1735 spin_lock(&sis->lock);
efa90a98
HD
1736 if (sis->flags & SWP_WRITEOK) {
1737 n = sis->pages;
f577eb30 1738 if (free)
efa90a98 1739 n -= sis->inuse_pages;
f577eb30 1740 }
ec8acf20 1741 spin_unlock(&sis->lock);
f577eb30 1742 }
efa90a98 1743 spin_unlock(&swap_lock);
f577eb30
RW
1744 return n;
1745}
73c34b6a 1746#endif /* CONFIG_HIBERNATION */
f577eb30 1747
9f8bdb3f 1748static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1749{
9f8bdb3f 1750 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1751}
1752
1da177e4 1753/*
72866f6f
HD
1754 * No need to decide whether this PTE shares the swap entry with others,
1755 * just let do_wp_page work it out if a write is requested later - to
1756 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1757 */
044d66c1 1758static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1759 unsigned long addr, swp_entry_t entry, struct page *page)
1760{
9e16b7fb 1761 struct page *swapcache;
72835c86 1762 struct mem_cgroup *memcg;
044d66c1
HD
1763 spinlock_t *ptl;
1764 pte_t *pte;
1765 int ret = 1;
1766
9e16b7fb
HD
1767 swapcache = page;
1768 page = ksm_might_need_to_copy(page, vma, addr);
1769 if (unlikely(!page))
1770 return -ENOMEM;
1771
f627c2f5
KS
1772 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1773 &memcg, false)) {
044d66c1 1774 ret = -ENOMEM;
85d9fc89
KH
1775 goto out_nolock;
1776 }
044d66c1
HD
1777
1778 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1779 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1780 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1781 ret = 0;
1782 goto out;
1783 }
8a9f3ccd 1784
b084d435 1785 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1786 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1787 get_page(page);
1788 set_pte_at(vma->vm_mm, addr, pte,
1789 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1790 if (page == swapcache) {
d281ee61 1791 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1792 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1793 } else { /* ksm created a completely new copy */
d281ee61 1794 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1795 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1796 lru_cache_add_active_or_unevictable(page, vma);
1797 }
1da177e4
LT
1798 swap_free(entry);
1799 /*
1800 * Move the page to the active list so it is not
1801 * immediately swapped out again after swapon.
1802 */
1803 activate_page(page);
044d66c1
HD
1804out:
1805 pte_unmap_unlock(pte, ptl);
85d9fc89 1806out_nolock:
9e16b7fb
HD
1807 if (page != swapcache) {
1808 unlock_page(page);
1809 put_page(page);
1810 }
044d66c1 1811 return ret;
1da177e4
LT
1812}
1813
1814static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1815 unsigned long addr, unsigned long end,
1816 swp_entry_t entry, struct page *page)
1817{
1da177e4 1818 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1819 pte_t *pte;
8a9f3ccd 1820 int ret = 0;
1da177e4 1821
044d66c1
HD
1822 /*
1823 * We don't actually need pte lock while scanning for swp_pte: since
1824 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1825 * page table while we're scanning; though it could get zapped, and on
1826 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1827 * of unmatched parts which look like swp_pte, so unuse_pte must
1828 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1829 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1830 */
1831 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1832 do {
1833 /*
1834 * swapoff spends a _lot_ of time in this loop!
1835 * Test inline before going to call unuse_pte.
1836 */
9f8bdb3f 1837 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1838 pte_unmap(pte);
1839 ret = unuse_pte(vma, pmd, addr, entry, page);
1840 if (ret)
1841 goto out;
1842 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1843 }
1844 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1845 pte_unmap(pte - 1);
1846out:
8a9f3ccd 1847 return ret;
1da177e4
LT
1848}
1849
1850static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1851 unsigned long addr, unsigned long end,
1852 swp_entry_t entry, struct page *page)
1853{
1854 pmd_t *pmd;
1855 unsigned long next;
8a9f3ccd 1856 int ret;
1da177e4
LT
1857
1858 pmd = pmd_offset(pud, addr);
1859 do {
dc644a07 1860 cond_resched();
1da177e4 1861 next = pmd_addr_end(addr, end);
1a5a9906 1862 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1863 continue;
8a9f3ccd
BS
1864 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1865 if (ret)
1866 return ret;
1da177e4
LT
1867 } while (pmd++, addr = next, addr != end);
1868 return 0;
1869}
1870
c2febafc 1871static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4
LT
1872 unsigned long addr, unsigned long end,
1873 swp_entry_t entry, struct page *page)
1874{
1875 pud_t *pud;
1876 unsigned long next;
8a9f3ccd 1877 int ret;
1da177e4 1878
c2febafc 1879 pud = pud_offset(p4d, addr);
1da177e4
LT
1880 do {
1881 next = pud_addr_end(addr, end);
1882 if (pud_none_or_clear_bad(pud))
1883 continue;
8a9f3ccd
BS
1884 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1885 if (ret)
1886 return ret;
1da177e4
LT
1887 } while (pud++, addr = next, addr != end);
1888 return 0;
1889}
1890
c2febafc
KS
1891static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1892 unsigned long addr, unsigned long end,
1893 swp_entry_t entry, struct page *page)
1894{
1895 p4d_t *p4d;
1896 unsigned long next;
1897 int ret;
1898
1899 p4d = p4d_offset(pgd, addr);
1900 do {
1901 next = p4d_addr_end(addr, end);
1902 if (p4d_none_or_clear_bad(p4d))
1903 continue;
1904 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1905 if (ret)
1906 return ret;
1907 } while (p4d++, addr = next, addr != end);
1908 return 0;
1909}
1910
1da177e4
LT
1911static int unuse_vma(struct vm_area_struct *vma,
1912 swp_entry_t entry, struct page *page)
1913{
1914 pgd_t *pgd;
1915 unsigned long addr, end, next;
8a9f3ccd 1916 int ret;
1da177e4 1917
3ca7b3c5 1918 if (page_anon_vma(page)) {
1da177e4
LT
1919 addr = page_address_in_vma(page, vma);
1920 if (addr == -EFAULT)
1921 return 0;
1922 else
1923 end = addr + PAGE_SIZE;
1924 } else {
1925 addr = vma->vm_start;
1926 end = vma->vm_end;
1927 }
1928
1929 pgd = pgd_offset(vma->vm_mm, addr);
1930 do {
1931 next = pgd_addr_end(addr, end);
1932 if (pgd_none_or_clear_bad(pgd))
1933 continue;
c2febafc 1934 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
8a9f3ccd
BS
1935 if (ret)
1936 return ret;
1da177e4
LT
1937 } while (pgd++, addr = next, addr != end);
1938 return 0;
1939}
1940
1941static int unuse_mm(struct mm_struct *mm,
1942 swp_entry_t entry, struct page *page)
1943{
1944 struct vm_area_struct *vma;
8a9f3ccd 1945 int ret = 0;
1da177e4
LT
1946
1947 if (!down_read_trylock(&mm->mmap_sem)) {
1948 /*
7d03431c
FLVC
1949 * Activate page so shrink_inactive_list is unlikely to unmap
1950 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1951 */
c475a8ab 1952 activate_page(page);
1da177e4
LT
1953 unlock_page(page);
1954 down_read(&mm->mmap_sem);
1955 lock_page(page);
1956 }
1da177e4 1957 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1958 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1959 break;
dc644a07 1960 cond_resched();
1da177e4 1961 }
1da177e4 1962 up_read(&mm->mmap_sem);
8a9f3ccd 1963 return (ret < 0)? ret: 0;
1da177e4
LT
1964}
1965
1966/*
38b5faf4
DM
1967 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1968 * from current position to next entry still in use.
1da177e4
LT
1969 * Recycle to start on reaching the end, returning 0 when empty.
1970 */
6eb396dc 1971static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1972 unsigned int prev, bool frontswap)
1da177e4 1973{
6eb396dc
HD
1974 unsigned int max = si->max;
1975 unsigned int i = prev;
8d69aaee 1976 unsigned char count;
1da177e4
LT
1977
1978 /*
5d337b91 1979 * No need for swap_lock here: we're just looking
1da177e4
LT
1980 * for whether an entry is in use, not modifying it; false
1981 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1982 * allocations from this area (while holding swap_lock).
1da177e4
LT
1983 */
1984 for (;;) {
1985 if (++i >= max) {
1986 if (!prev) {
1987 i = 0;
1988 break;
1989 }
1990 /*
1991 * No entries in use at top of swap_map,
1992 * loop back to start and recheck there.
1993 */
1994 max = prev + 1;
1995 prev = 0;
1996 i = 1;
1997 }
4db0c3c2 1998 count = READ_ONCE(si->swap_map[i]);
355cfa73 1999 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2000 if (!frontswap || frontswap_test(si, i))
2001 break;
2002 if ((i % LATENCY_LIMIT) == 0)
2003 cond_resched();
1da177e4
LT
2004 }
2005 return i;
2006}
2007
2008/*
2009 * We completely avoid races by reading each swap page in advance,
2010 * and then search for the process using it. All the necessary
2011 * page table adjustments can then be made atomically.
38b5faf4
DM
2012 *
2013 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2014 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2015 */
38b5faf4
DM
2016int try_to_unuse(unsigned int type, bool frontswap,
2017 unsigned long pages_to_unuse)
1da177e4 2018{
efa90a98 2019 struct swap_info_struct *si = swap_info[type];
1da177e4 2020 struct mm_struct *start_mm;
edfe23da
SL
2021 volatile unsigned char *swap_map; /* swap_map is accessed without
2022 * locking. Mark it as volatile
2023 * to prevent compiler doing
2024 * something odd.
2025 */
8d69aaee 2026 unsigned char swcount;
1da177e4
LT
2027 struct page *page;
2028 swp_entry_t entry;
6eb396dc 2029 unsigned int i = 0;
1da177e4 2030 int retval = 0;
1da177e4
LT
2031
2032 /*
2033 * When searching mms for an entry, a good strategy is to
2034 * start at the first mm we freed the previous entry from
2035 * (though actually we don't notice whether we or coincidence
2036 * freed the entry). Initialize this start_mm with a hold.
2037 *
2038 * A simpler strategy would be to start at the last mm we
2039 * freed the previous entry from; but that would take less
2040 * advantage of mmlist ordering, which clusters forked mms
2041 * together, child after parent. If we race with dup_mmap(), we
2042 * prefer to resolve parent before child, lest we miss entries
2043 * duplicated after we scanned child: using last mm would invert
570a335b 2044 * that.
1da177e4
LT
2045 */
2046 start_mm = &init_mm;
3fce371b 2047 mmget(&init_mm);
1da177e4
LT
2048
2049 /*
2050 * Keep on scanning until all entries have gone. Usually,
2051 * one pass through swap_map is enough, but not necessarily:
2052 * there are races when an instance of an entry might be missed.
2053 */
38b5faf4 2054 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
2055 if (signal_pending(current)) {
2056 retval = -EINTR;
2057 break;
2058 }
2059
886bb7e9 2060 /*
1da177e4
LT
2061 * Get a page for the entry, using the existing swap
2062 * cache page if there is one. Otherwise, get a clean
886bb7e9 2063 * page and read the swap into it.
1da177e4
LT
2064 */
2065 swap_map = &si->swap_map[i];
2066 entry = swp_entry(type, i);
02098fea 2067 page = read_swap_cache_async(entry,
23955622 2068 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
1da177e4
LT
2069 if (!page) {
2070 /*
2071 * Either swap_duplicate() failed because entry
2072 * has been freed independently, and will not be
2073 * reused since sys_swapoff() already disabled
2074 * allocation from here, or alloc_page() failed.
2075 */
edfe23da
SL
2076 swcount = *swap_map;
2077 /*
2078 * We don't hold lock here, so the swap entry could be
2079 * SWAP_MAP_BAD (when the cluster is discarding).
2080 * Instead of fail out, We can just skip the swap
2081 * entry because swapoff will wait for discarding
2082 * finish anyway.
2083 */
2084 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
2085 continue;
2086 retval = -ENOMEM;
2087 break;
2088 }
2089
2090 /*
2091 * Don't hold on to start_mm if it looks like exiting.
2092 */
2093 if (atomic_read(&start_mm->mm_users) == 1) {
2094 mmput(start_mm);
2095 start_mm = &init_mm;
3fce371b 2096 mmget(&init_mm);
1da177e4
LT
2097 }
2098
2099 /*
2100 * Wait for and lock page. When do_swap_page races with
2101 * try_to_unuse, do_swap_page can handle the fault much
2102 * faster than try_to_unuse can locate the entry. This
2103 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2104 * defer to do_swap_page in such a case - in some tests,
2105 * do_swap_page and try_to_unuse repeatedly compete.
2106 */
2107 wait_on_page_locked(page);
2108 wait_on_page_writeback(page);
2109 lock_page(page);
2110 wait_on_page_writeback(page);
2111
2112 /*
2113 * Remove all references to entry.
1da177e4 2114 */
1da177e4 2115 swcount = *swap_map;
aaa46865
HD
2116 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2117 retval = shmem_unuse(entry, page);
2118 /* page has already been unlocked and released */
2119 if (retval < 0)
2120 break;
2121 continue;
1da177e4 2122 }
aaa46865
HD
2123 if (swap_count(swcount) && start_mm != &init_mm)
2124 retval = unuse_mm(start_mm, entry, page);
2125
355cfa73 2126 if (swap_count(*swap_map)) {
1da177e4
LT
2127 int set_start_mm = (*swap_map >= swcount);
2128 struct list_head *p = &start_mm->mmlist;
2129 struct mm_struct *new_start_mm = start_mm;
2130 struct mm_struct *prev_mm = start_mm;
2131 struct mm_struct *mm;
2132
3fce371b
VN
2133 mmget(new_start_mm);
2134 mmget(prev_mm);
1da177e4 2135 spin_lock(&mmlist_lock);
aaa46865 2136 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
2137 (p = p->next) != &start_mm->mmlist) {
2138 mm = list_entry(p, struct mm_struct, mmlist);
388f7934 2139 if (!mmget_not_zero(mm))
1da177e4 2140 continue;
1da177e4
LT
2141 spin_unlock(&mmlist_lock);
2142 mmput(prev_mm);
2143 prev_mm = mm;
2144
2145 cond_resched();
2146
2147 swcount = *swap_map;
355cfa73 2148 if (!swap_count(swcount)) /* any usage ? */
1da177e4 2149 ;
aaa46865 2150 else if (mm == &init_mm)
1da177e4 2151 set_start_mm = 1;
aaa46865 2152 else
1da177e4 2153 retval = unuse_mm(mm, entry, page);
355cfa73 2154
32c5fc10 2155 if (set_start_mm && *swap_map < swcount) {
1da177e4 2156 mmput(new_start_mm);
3fce371b 2157 mmget(mm);
1da177e4
LT
2158 new_start_mm = mm;
2159 set_start_mm = 0;
2160 }
2161 spin_lock(&mmlist_lock);
2162 }
2163 spin_unlock(&mmlist_lock);
2164 mmput(prev_mm);
2165 mmput(start_mm);
2166 start_mm = new_start_mm;
2167 }
2168 if (retval) {
2169 unlock_page(page);
09cbfeaf 2170 put_page(page);
1da177e4
LT
2171 break;
2172 }
2173
1da177e4
LT
2174 /*
2175 * If a reference remains (rare), we would like to leave
2176 * the page in the swap cache; but try_to_unmap could
2177 * then re-duplicate the entry once we drop page lock,
2178 * so we might loop indefinitely; also, that page could
2179 * not be swapped out to other storage meanwhile. So:
2180 * delete from cache even if there's another reference,
2181 * after ensuring that the data has been saved to disk -
2182 * since if the reference remains (rarer), it will be
2183 * read from disk into another page. Splitting into two
2184 * pages would be incorrect if swap supported "shared
2185 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
2186 *
2187 * Given how unuse_vma() targets one particular offset
2188 * in an anon_vma, once the anon_vma has been determined,
2189 * this splitting happens to be just what is needed to
2190 * handle where KSM pages have been swapped out: re-reading
2191 * is unnecessarily slow, but we can fix that later on.
1da177e4 2192 */
355cfa73
KH
2193 if (swap_count(*swap_map) &&
2194 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
2195 struct writeback_control wbc = {
2196 .sync_mode = WB_SYNC_NONE,
2197 };
2198
e0709829 2199 swap_writepage(compound_head(page), &wbc);
1da177e4
LT
2200 lock_page(page);
2201 wait_on_page_writeback(page);
2202 }
68bdc8d6
HD
2203
2204 /*
2205 * It is conceivable that a racing task removed this page from
2206 * swap cache just before we acquired the page lock at the top,
2207 * or while we dropped it in unuse_mm(). The page might even
2208 * be back in swap cache on another swap area: that we must not
2209 * delete, since it may not have been written out to swap yet.
2210 */
2211 if (PageSwapCache(page) &&
e0709829
HY
2212 likely(page_private(page) == entry.val) &&
2213 !page_swapped(page))
2214 delete_from_swap_cache(compound_head(page));
1da177e4
LT
2215
2216 /*
2217 * So we could skip searching mms once swap count went
2218 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 2219 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
2220 */
2221 SetPageDirty(page);
2222 unlock_page(page);
09cbfeaf 2223 put_page(page);
1da177e4
LT
2224
2225 /*
2226 * Make sure that we aren't completely killing
2227 * interactive performance.
2228 */
2229 cond_resched();
38b5faf4
DM
2230 if (frontswap && pages_to_unuse > 0) {
2231 if (!--pages_to_unuse)
2232 break;
2233 }
1da177e4
LT
2234 }
2235
2236 mmput(start_mm);
1da177e4
LT
2237 return retval;
2238}
2239
2240/*
5d337b91
HD
2241 * After a successful try_to_unuse, if no swap is now in use, we know
2242 * we can empty the mmlist. swap_lock must be held on entry and exit.
2243 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2244 * added to the mmlist just after page_duplicate - before would be racy.
2245 */
2246static void drain_mmlist(void)
2247{
2248 struct list_head *p, *next;
efa90a98 2249 unsigned int type;
1da177e4 2250
efa90a98
HD
2251 for (type = 0; type < nr_swapfiles; type++)
2252 if (swap_info[type]->inuse_pages)
1da177e4
LT
2253 return;
2254 spin_lock(&mmlist_lock);
2255 list_for_each_safe(p, next, &init_mm.mmlist)
2256 list_del_init(p);
2257 spin_unlock(&mmlist_lock);
2258}
2259
2260/*
2261 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2262 * corresponds to page offset for the specified swap entry.
2263 * Note that the type of this function is sector_t, but it returns page offset
2264 * into the bdev, not sector offset.
1da177e4 2265 */
d4906e1a 2266static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2267{
f29ad6a9
HD
2268 struct swap_info_struct *sis;
2269 struct swap_extent *start_se;
2270 struct swap_extent *se;
2271 pgoff_t offset;
2272
efa90a98 2273 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
2274 *bdev = sis->bdev;
2275
2276 offset = swp_offset(entry);
2277 start_se = sis->curr_swap_extent;
2278 se = start_se;
1da177e4
LT
2279
2280 for ( ; ; ) {
1da177e4
LT
2281 if (se->start_page <= offset &&
2282 offset < (se->start_page + se->nr_pages)) {
2283 return se->start_block + (offset - se->start_page);
2284 }
a8ae4991 2285 se = list_next_entry(se, list);
1da177e4
LT
2286 sis->curr_swap_extent = se;
2287 BUG_ON(se == start_se); /* It *must* be present */
2288 }
2289}
2290
d4906e1a
LS
2291/*
2292 * Returns the page offset into bdev for the specified page's swap entry.
2293 */
2294sector_t map_swap_page(struct page *page, struct block_device **bdev)
2295{
2296 swp_entry_t entry;
2297 entry.val = page_private(page);
2298 return map_swap_entry(entry, bdev);
2299}
2300
1da177e4
LT
2301/*
2302 * Free all of a swapdev's extent information
2303 */
2304static void destroy_swap_extents(struct swap_info_struct *sis)
2305{
9625a5f2 2306 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
2307 struct swap_extent *se;
2308
a8ae4991 2309 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
2310 struct swap_extent, list);
2311 list_del(&se->list);
2312 kfree(se);
2313 }
62c230bc
MG
2314
2315 if (sis->flags & SWP_FILE) {
2316 struct file *swap_file = sis->swap_file;
2317 struct address_space *mapping = swap_file->f_mapping;
2318
2319 sis->flags &= ~SWP_FILE;
2320 mapping->a_ops->swap_deactivate(swap_file);
2321 }
1da177e4
LT
2322}
2323
2324/*
2325 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 2326 * extent list. The extent list is kept sorted in page order.
1da177e4 2327 *
11d31886 2328 * This function rather assumes that it is called in ascending page order.
1da177e4 2329 */
a509bc1a 2330int
1da177e4
LT
2331add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2332 unsigned long nr_pages, sector_t start_block)
2333{
2334 struct swap_extent *se;
2335 struct swap_extent *new_se;
2336 struct list_head *lh;
2337
9625a5f2
HD
2338 if (start_page == 0) {
2339 se = &sis->first_swap_extent;
2340 sis->curr_swap_extent = se;
2341 se->start_page = 0;
2342 se->nr_pages = nr_pages;
2343 se->start_block = start_block;
2344 return 1;
2345 } else {
2346 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 2347 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
2348 BUG_ON(se->start_page + se->nr_pages != start_page);
2349 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2350 /* Merge it */
2351 se->nr_pages += nr_pages;
2352 return 0;
2353 }
1da177e4
LT
2354 }
2355
2356 /*
2357 * No merge. Insert a new extent, preserving ordering.
2358 */
2359 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2360 if (new_se == NULL)
2361 return -ENOMEM;
2362 new_se->start_page = start_page;
2363 new_se->nr_pages = nr_pages;
2364 new_se->start_block = start_block;
2365
9625a5f2 2366 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 2367 return 1;
1da177e4
LT
2368}
2369
2370/*
2371 * A `swap extent' is a simple thing which maps a contiguous range of pages
2372 * onto a contiguous range of disk blocks. An ordered list of swap extents
2373 * is built at swapon time and is then used at swap_writepage/swap_readpage
2374 * time for locating where on disk a page belongs.
2375 *
2376 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2377 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2378 * swap files identically.
2379 *
2380 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2381 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2382 * swapfiles are handled *identically* after swapon time.
2383 *
2384 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2385 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2386 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2387 * requirements, they are simply tossed out - we will never use those blocks
2388 * for swapping.
2389 *
b0d9bcd4 2390 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
2391 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2392 * which will scribble on the fs.
2393 *
2394 * The amount of disk space which a single swap extent represents varies.
2395 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2396 * extents in the list. To avoid much list walking, we cache the previous
2397 * search location in `curr_swap_extent', and start new searches from there.
2398 * This is extremely effective. The average number of iterations in
2399 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2400 */
53092a74 2401static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2402{
62c230bc
MG
2403 struct file *swap_file = sis->swap_file;
2404 struct address_space *mapping = swap_file->f_mapping;
2405 struct inode *inode = mapping->host;
1da177e4
LT
2406 int ret;
2407
1da177e4
LT
2408 if (S_ISBLK(inode->i_mode)) {
2409 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2410 *span = sis->pages;
a509bc1a 2411 return ret;
1da177e4
LT
2412 }
2413
62c230bc 2414 if (mapping->a_ops->swap_activate) {
a509bc1a 2415 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
2416 if (!ret) {
2417 sis->flags |= SWP_FILE;
2418 ret = add_swap_extent(sis, 0, sis->max, 0);
2419 *span = sis->pages;
2420 }
a509bc1a 2421 return ret;
62c230bc
MG
2422 }
2423
a509bc1a 2424 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2425}
2426
a2468cc9
AL
2427static int swap_node(struct swap_info_struct *p)
2428{
2429 struct block_device *bdev;
2430
2431 if (p->bdev)
2432 bdev = p->bdev;
2433 else
2434 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2435
2436 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2437}
2438
cf0cac0a 2439static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
2440 unsigned char *swap_map,
2441 struct swap_cluster_info *cluster_info)
40531542 2442{
a2468cc9
AL
2443 int i;
2444
40531542
CEB
2445 if (prio >= 0)
2446 p->prio = prio;
2447 else
2448 p->prio = --least_priority;
18ab4d4c
DS
2449 /*
2450 * the plist prio is negated because plist ordering is
2451 * low-to-high, while swap ordering is high-to-low
2452 */
2453 p->list.prio = -p->prio;
a2468cc9
AL
2454 for_each_node(i) {
2455 if (p->prio >= 0)
2456 p->avail_lists[i].prio = -p->prio;
2457 else {
2458 if (swap_node(p) == i)
2459 p->avail_lists[i].prio = 1;
2460 else
2461 p->avail_lists[i].prio = -p->prio;
2462 }
2463 }
40531542 2464 p->swap_map = swap_map;
2a8f9449 2465 p->cluster_info = cluster_info;
40531542 2466 p->flags |= SWP_WRITEOK;
ec8acf20 2467 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2468 total_swap_pages += p->pages;
2469
adfab836 2470 assert_spin_locked(&swap_lock);
adfab836 2471 /*
18ab4d4c
DS
2472 * both lists are plists, and thus priority ordered.
2473 * swap_active_head needs to be priority ordered for swapoff(),
2474 * which on removal of any swap_info_struct with an auto-assigned
2475 * (i.e. negative) priority increments the auto-assigned priority
2476 * of any lower-priority swap_info_structs.
2477 * swap_avail_head needs to be priority ordered for get_swap_page(),
2478 * which allocates swap pages from the highest available priority
2479 * swap_info_struct.
adfab836 2480 */
18ab4d4c 2481 plist_add(&p->list, &swap_active_head);
a2468cc9 2482 add_to_avail_list(p);
cf0cac0a
CEB
2483}
2484
2485static void enable_swap_info(struct swap_info_struct *p, int prio,
2486 unsigned char *swap_map,
2a8f9449 2487 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2488 unsigned long *frontswap_map)
2489{
4f89849d 2490 frontswap_init(p->type, frontswap_map);
cf0cac0a 2491 spin_lock(&swap_lock);
ec8acf20 2492 spin_lock(&p->lock);
2a8f9449 2493 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 2494 spin_unlock(&p->lock);
cf0cac0a
CEB
2495 spin_unlock(&swap_lock);
2496}
2497
2498static void reinsert_swap_info(struct swap_info_struct *p)
2499{
2500 spin_lock(&swap_lock);
ec8acf20 2501 spin_lock(&p->lock);
2a8f9449 2502 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 2503 spin_unlock(&p->lock);
40531542
CEB
2504 spin_unlock(&swap_lock);
2505}
2506
67afa38e
TC
2507bool has_usable_swap(void)
2508{
2509 bool ret = true;
2510
2511 spin_lock(&swap_lock);
2512 if (plist_head_empty(&swap_active_head))
2513 ret = false;
2514 spin_unlock(&swap_lock);
2515 return ret;
2516}
2517
c4ea37c2 2518SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2519{
73c34b6a 2520 struct swap_info_struct *p = NULL;
8d69aaee 2521 unsigned char *swap_map;
2a8f9449 2522 struct swap_cluster_info *cluster_info;
4f89849d 2523 unsigned long *frontswap_map;
1da177e4
LT
2524 struct file *swap_file, *victim;
2525 struct address_space *mapping;
2526 struct inode *inode;
91a27b2a 2527 struct filename *pathname;
adfab836 2528 int err, found = 0;
5b808a23 2529 unsigned int old_block_size;
886bb7e9 2530
1da177e4
LT
2531 if (!capable(CAP_SYS_ADMIN))
2532 return -EPERM;
2533
191c5424
AV
2534 BUG_ON(!current->mm);
2535
1da177e4 2536 pathname = getname(specialfile);
1da177e4 2537 if (IS_ERR(pathname))
f58b59c1 2538 return PTR_ERR(pathname);
1da177e4 2539
669abf4e 2540 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2541 err = PTR_ERR(victim);
2542 if (IS_ERR(victim))
2543 goto out;
2544
2545 mapping = victim->f_mapping;
5d337b91 2546 spin_lock(&swap_lock);
18ab4d4c 2547 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2548 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2549 if (p->swap_file->f_mapping == mapping) {
2550 found = 1;
1da177e4 2551 break;
adfab836 2552 }
1da177e4 2553 }
1da177e4 2554 }
adfab836 2555 if (!found) {
1da177e4 2556 err = -EINVAL;
5d337b91 2557 spin_unlock(&swap_lock);
1da177e4
LT
2558 goto out_dput;
2559 }
191c5424 2560 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2561 vm_unacct_memory(p->pages);
2562 else {
2563 err = -ENOMEM;
5d337b91 2564 spin_unlock(&swap_lock);
1da177e4
LT
2565 goto out_dput;
2566 }
a2468cc9 2567 del_from_avail_list(p);
ec8acf20 2568 spin_lock(&p->lock);
78ecba08 2569 if (p->prio < 0) {
adfab836 2570 struct swap_info_struct *si = p;
a2468cc9 2571 int nid;
adfab836 2572
18ab4d4c 2573 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2574 si->prio++;
18ab4d4c 2575 si->list.prio--;
a2468cc9
AL
2576 for_each_node(nid) {
2577 if (si->avail_lists[nid].prio != 1)
2578 si->avail_lists[nid].prio--;
2579 }
adfab836 2580 }
78ecba08
HD
2581 least_priority++;
2582 }
18ab4d4c 2583 plist_del(&p->list, &swap_active_head);
ec8acf20 2584 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2585 total_swap_pages -= p->pages;
2586 p->flags &= ~SWP_WRITEOK;
ec8acf20 2587 spin_unlock(&p->lock);
5d337b91 2588 spin_unlock(&swap_lock);
fb4f88dc 2589
039939a6
TC
2590 disable_swap_slots_cache_lock();
2591
e1e12d2f 2592 set_current_oom_origin();
adfab836 2593 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2594 clear_current_oom_origin();
1da177e4 2595
1da177e4
LT
2596 if (err) {
2597 /* re-insert swap space back into swap_list */
cf0cac0a 2598 reinsert_swap_info(p);
039939a6 2599 reenable_swap_slots_cache_unlock();
1da177e4
LT
2600 goto out_dput;
2601 }
52b7efdb 2602
039939a6
TC
2603 reenable_swap_slots_cache_unlock();
2604
815c2c54
SL
2605 flush_work(&p->discard_work);
2606
5d337b91 2607 destroy_swap_extents(p);
570a335b
HD
2608 if (p->flags & SWP_CONTINUED)
2609 free_swap_count_continuations(p);
2610
81a0298b
HY
2611 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2612 atomic_dec(&nr_rotate_swap);
2613
fc0abb14 2614 mutex_lock(&swapon_mutex);
5d337b91 2615 spin_lock(&swap_lock);
ec8acf20 2616 spin_lock(&p->lock);
5d337b91
HD
2617 drain_mmlist();
2618
52b7efdb 2619 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2620 p->highest_bit = 0; /* cuts scans short */
2621 while (p->flags >= SWP_SCANNING) {
ec8acf20 2622 spin_unlock(&p->lock);
5d337b91 2623 spin_unlock(&swap_lock);
13e4b57f 2624 schedule_timeout_uninterruptible(1);
5d337b91 2625 spin_lock(&swap_lock);
ec8acf20 2626 spin_lock(&p->lock);
52b7efdb 2627 }
52b7efdb 2628
1da177e4 2629 swap_file = p->swap_file;
5b808a23 2630 old_block_size = p->old_block_size;
1da177e4
LT
2631 p->swap_file = NULL;
2632 p->max = 0;
2633 swap_map = p->swap_map;
2634 p->swap_map = NULL;
2a8f9449
SL
2635 cluster_info = p->cluster_info;
2636 p->cluster_info = NULL;
4f89849d 2637 frontswap_map = frontswap_map_get(p);
ec8acf20 2638 spin_unlock(&p->lock);
5d337b91 2639 spin_unlock(&swap_lock);
adfab836 2640 frontswap_invalidate_area(p->type);
58e97ba6 2641 frontswap_map_set(p, NULL);
fc0abb14 2642 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2643 free_percpu(p->percpu_cluster);
2644 p->percpu_cluster = NULL;
1da177e4 2645 vfree(swap_map);
54f180d3
HY
2646 kvfree(cluster_info);
2647 kvfree(frontswap_map);
2de1a7e4 2648 /* Destroy swap account information */
adfab836 2649 swap_cgroup_swapoff(p->type);
4b3ef9da 2650 exit_swap_address_space(p->type);
27a7faa0 2651
1da177e4
LT
2652 inode = mapping->host;
2653 if (S_ISBLK(inode->i_mode)) {
2654 struct block_device *bdev = I_BDEV(inode);
5b808a23 2655 set_blocksize(bdev, old_block_size);
e525fd89 2656 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2657 } else {
5955102c 2658 inode_lock(inode);
1da177e4 2659 inode->i_flags &= ~S_SWAPFILE;
5955102c 2660 inode_unlock(inode);
1da177e4
LT
2661 }
2662 filp_close(swap_file, NULL);
f893ab41
WY
2663
2664 /*
2665 * Clear the SWP_USED flag after all resources are freed so that swapon
2666 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2667 * not hold p->lock after we cleared its SWP_WRITEOK.
2668 */
2669 spin_lock(&swap_lock);
2670 p->flags = 0;
2671 spin_unlock(&swap_lock);
2672
1da177e4 2673 err = 0;
66d7dd51
KS
2674 atomic_inc(&proc_poll_event);
2675 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2676
2677out_dput:
2678 filp_close(victim, NULL);
2679out:
f58b59c1 2680 putname(pathname);
1da177e4
LT
2681 return err;
2682}
2683
2684#ifdef CONFIG_PROC_FS
9dd95748 2685static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2686{
f1514638 2687 struct seq_file *seq = file->private_data;
66d7dd51
KS
2688
2689 poll_wait(file, &proc_poll_wait, wait);
2690
f1514638
KS
2691 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2692 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2693 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2694 }
2695
a9a08845 2696 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2697}
2698
1da177e4
LT
2699/* iterator */
2700static void *swap_start(struct seq_file *swap, loff_t *pos)
2701{
efa90a98
HD
2702 struct swap_info_struct *si;
2703 int type;
1da177e4
LT
2704 loff_t l = *pos;
2705
fc0abb14 2706 mutex_lock(&swapon_mutex);
1da177e4 2707
881e4aab
SS
2708 if (!l)
2709 return SEQ_START_TOKEN;
2710
efa90a98
HD
2711 for (type = 0; type < nr_swapfiles; type++) {
2712 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2713 si = swap_info[type];
2714 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2715 continue;
881e4aab 2716 if (!--l)
efa90a98 2717 return si;
1da177e4
LT
2718 }
2719
2720 return NULL;
2721}
2722
2723static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2724{
efa90a98
HD
2725 struct swap_info_struct *si = v;
2726 int type;
1da177e4 2727
881e4aab 2728 if (v == SEQ_START_TOKEN)
efa90a98
HD
2729 type = 0;
2730 else
2731 type = si->type + 1;
881e4aab 2732
efa90a98
HD
2733 for (; type < nr_swapfiles; type++) {
2734 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2735 si = swap_info[type];
2736 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2737 continue;
2738 ++*pos;
efa90a98 2739 return si;
1da177e4
LT
2740 }
2741
2742 return NULL;
2743}
2744
2745static void swap_stop(struct seq_file *swap, void *v)
2746{
fc0abb14 2747 mutex_unlock(&swapon_mutex);
1da177e4
LT
2748}
2749
2750static int swap_show(struct seq_file *swap, void *v)
2751{
efa90a98 2752 struct swap_info_struct *si = v;
1da177e4
LT
2753 struct file *file;
2754 int len;
2755
efa90a98 2756 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2757 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2758 return 0;
2759 }
1da177e4 2760
efa90a98 2761 file = si->swap_file;
2726d566 2762 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2763 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2764 len < 40 ? 40 - len : 1, " ",
496ad9aa 2765 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2766 "partition" : "file\t",
efa90a98
HD
2767 si->pages << (PAGE_SHIFT - 10),
2768 si->inuse_pages << (PAGE_SHIFT - 10),
2769 si->prio);
1da177e4
LT
2770 return 0;
2771}
2772
15ad7cdc 2773static const struct seq_operations swaps_op = {
1da177e4
LT
2774 .start = swap_start,
2775 .next = swap_next,
2776 .stop = swap_stop,
2777 .show = swap_show
2778};
2779
2780static int swaps_open(struct inode *inode, struct file *file)
2781{
f1514638 2782 struct seq_file *seq;
66d7dd51
KS
2783 int ret;
2784
66d7dd51 2785 ret = seq_open(file, &swaps_op);
f1514638 2786 if (ret)
66d7dd51 2787 return ret;
66d7dd51 2788
f1514638
KS
2789 seq = file->private_data;
2790 seq->poll_event = atomic_read(&proc_poll_event);
2791 return 0;
1da177e4
LT
2792}
2793
15ad7cdc 2794static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2795 .open = swaps_open,
2796 .read = seq_read,
2797 .llseek = seq_lseek,
2798 .release = seq_release,
66d7dd51 2799 .poll = swaps_poll,
1da177e4
LT
2800};
2801
2802static int __init procswaps_init(void)
2803{
3d71f86f 2804 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2805 return 0;
2806}
2807__initcall(procswaps_init);
2808#endif /* CONFIG_PROC_FS */
2809
1796316a
JB
2810#ifdef MAX_SWAPFILES_CHECK
2811static int __init max_swapfiles_check(void)
2812{
2813 MAX_SWAPFILES_CHECK();
2814 return 0;
2815}
2816late_initcall(max_swapfiles_check);
2817#endif
2818
53cbb243 2819static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2820{
73c34b6a 2821 struct swap_info_struct *p;
1da177e4 2822 unsigned int type;
a2468cc9 2823 int i;
efa90a98
HD
2824
2825 p = kzalloc(sizeof(*p), GFP_KERNEL);
2826 if (!p)
53cbb243 2827 return ERR_PTR(-ENOMEM);
efa90a98 2828
5d337b91 2829 spin_lock(&swap_lock);
efa90a98
HD
2830 for (type = 0; type < nr_swapfiles; type++) {
2831 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2832 break;
efa90a98 2833 }
0697212a 2834 if (type >= MAX_SWAPFILES) {
5d337b91 2835 spin_unlock(&swap_lock);
efa90a98 2836 kfree(p);
730c0581 2837 return ERR_PTR(-EPERM);
1da177e4 2838 }
efa90a98
HD
2839 if (type >= nr_swapfiles) {
2840 p->type = type;
2841 swap_info[type] = p;
2842 /*
2843 * Write swap_info[type] before nr_swapfiles, in case a
2844 * racing procfs swap_start() or swap_next() is reading them.
2845 * (We never shrink nr_swapfiles, we never free this entry.)
2846 */
2847 smp_wmb();
2848 nr_swapfiles++;
2849 } else {
2850 kfree(p);
2851 p = swap_info[type];
2852 /*
2853 * Do not memset this entry: a racing procfs swap_next()
2854 * would be relying on p->type to remain valid.
2855 */
2856 }
9625a5f2 2857 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c 2858 plist_node_init(&p->list, 0);
a2468cc9
AL
2859 for_each_node(i)
2860 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2861 p->flags = SWP_USED;
5d337b91 2862 spin_unlock(&swap_lock);
ec8acf20 2863 spin_lock_init(&p->lock);
2628bd6f 2864 spin_lock_init(&p->cont_lock);
efa90a98 2865
53cbb243 2866 return p;
53cbb243
CEB
2867}
2868
4d0e1e10
CEB
2869static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2870{
2871 int error;
2872
2873 if (S_ISBLK(inode->i_mode)) {
2874 p->bdev = bdgrab(I_BDEV(inode));
2875 error = blkdev_get(p->bdev,
6f179af8 2876 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2877 if (error < 0) {
2878 p->bdev = NULL;
6f179af8 2879 return error;
4d0e1e10
CEB
2880 }
2881 p->old_block_size = block_size(p->bdev);
2882 error = set_blocksize(p->bdev, PAGE_SIZE);
2883 if (error < 0)
87ade72a 2884 return error;
4d0e1e10
CEB
2885 p->flags |= SWP_BLKDEV;
2886 } else if (S_ISREG(inode->i_mode)) {
2887 p->bdev = inode->i_sb->s_bdev;
5955102c 2888 inode_lock(inode);
87ade72a
CEB
2889 if (IS_SWAPFILE(inode))
2890 return -EBUSY;
2891 } else
2892 return -EINVAL;
4d0e1e10
CEB
2893
2894 return 0;
4d0e1e10
CEB
2895}
2896
377eeaa8
AK
2897
2898/*
2899 * Find out how many pages are allowed for a single swap device. There
2900 * are two limiting factors:
2901 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2902 * 2) the number of bits in the swap pte, as defined by the different
2903 * architectures.
2904 *
2905 * In order to find the largest possible bit mask, a swap entry with
2906 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2907 * decoded to a swp_entry_t again, and finally the swap offset is
2908 * extracted.
2909 *
2910 * This will mask all the bits from the initial ~0UL mask that can't
2911 * be encoded in either the swp_entry_t or the architecture definition
2912 * of a swap pte.
2913 */
2914unsigned long generic_max_swapfile_size(void)
2915{
2916 return swp_offset(pte_to_swp_entry(
2917 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2918}
2919
2920/* Can be overridden by an architecture for additional checks. */
2921__weak unsigned long max_swapfile_size(void)
2922{
2923 return generic_max_swapfile_size();
2924}
2925
ca8bd38b
CEB
2926static unsigned long read_swap_header(struct swap_info_struct *p,
2927 union swap_header *swap_header,
2928 struct inode *inode)
2929{
2930 int i;
2931 unsigned long maxpages;
2932 unsigned long swapfilepages;
d6bbbd29 2933 unsigned long last_page;
ca8bd38b
CEB
2934
2935 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2936 pr_err("Unable to find swap-space signature\n");
38719025 2937 return 0;
ca8bd38b
CEB
2938 }
2939
2940 /* swap partition endianess hack... */
2941 if (swab32(swap_header->info.version) == 1) {
2942 swab32s(&swap_header->info.version);
2943 swab32s(&swap_header->info.last_page);
2944 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2945 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2946 return 0;
ca8bd38b
CEB
2947 for (i = 0; i < swap_header->info.nr_badpages; i++)
2948 swab32s(&swap_header->info.badpages[i]);
2949 }
2950 /* Check the swap header's sub-version */
2951 if (swap_header->info.version != 1) {
465c47fd
AM
2952 pr_warn("Unable to handle swap header version %d\n",
2953 swap_header->info.version);
38719025 2954 return 0;
ca8bd38b
CEB
2955 }
2956
2957 p->lowest_bit = 1;
2958 p->cluster_next = 1;
2959 p->cluster_nr = 0;
2960
377eeaa8 2961 maxpages = max_swapfile_size();
d6bbbd29 2962 last_page = swap_header->info.last_page;
a06ad633
TA
2963 if (!last_page) {
2964 pr_warn("Empty swap-file\n");
2965 return 0;
2966 }
d6bbbd29 2967 if (last_page > maxpages) {
465c47fd 2968 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2969 maxpages << (PAGE_SHIFT - 10),
2970 last_page << (PAGE_SHIFT - 10));
2971 }
2972 if (maxpages > last_page) {
2973 maxpages = last_page + 1;
ca8bd38b
CEB
2974 /* p->max is an unsigned int: don't overflow it */
2975 if ((unsigned int)maxpages == 0)
2976 maxpages = UINT_MAX;
2977 }
2978 p->highest_bit = maxpages - 1;
2979
2980 if (!maxpages)
38719025 2981 return 0;
ca8bd38b
CEB
2982 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2983 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2984 pr_warn("Swap area shorter than signature indicates\n");
38719025 2985 return 0;
ca8bd38b
CEB
2986 }
2987 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2988 return 0;
ca8bd38b 2989 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2990 return 0;
ca8bd38b
CEB
2991
2992 return maxpages;
ca8bd38b
CEB
2993}
2994
4b3ef9da 2995#define SWAP_CLUSTER_INFO_COLS \
235b6217 2996 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2997#define SWAP_CLUSTER_SPACE_COLS \
2998 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2999#define SWAP_CLUSTER_COLS \
3000 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3001
915d4d7b
CEB
3002static int setup_swap_map_and_extents(struct swap_info_struct *p,
3003 union swap_header *swap_header,
3004 unsigned char *swap_map,
2a8f9449 3005 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3006 unsigned long maxpages,
3007 sector_t *span)
3008{
235b6217 3009 unsigned int j, k;
915d4d7b
CEB
3010 unsigned int nr_good_pages;
3011 int nr_extents;
2a8f9449 3012 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3013 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3014 unsigned long i, idx;
915d4d7b
CEB
3015
3016 nr_good_pages = maxpages - 1; /* omit header page */
3017
6b534915
HY
3018 cluster_list_init(&p->free_clusters);
3019 cluster_list_init(&p->discard_clusters);
2a8f9449 3020
915d4d7b
CEB
3021 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3022 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3023 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3024 return -EINVAL;
915d4d7b
CEB
3025 if (page_nr < maxpages) {
3026 swap_map[page_nr] = SWAP_MAP_BAD;
3027 nr_good_pages--;
2a8f9449
SL
3028 /*
3029 * Haven't marked the cluster free yet, no list
3030 * operation involved
3031 */
3032 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3033 }
3034 }
3035
2a8f9449
SL
3036 /* Haven't marked the cluster free yet, no list operation involved */
3037 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3038 inc_cluster_info_page(p, cluster_info, i);
3039
915d4d7b
CEB
3040 if (nr_good_pages) {
3041 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3042 /*
3043 * Not mark the cluster free yet, no list
3044 * operation involved
3045 */
3046 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3047 p->max = maxpages;
3048 p->pages = nr_good_pages;
3049 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3050 if (nr_extents < 0)
3051 return nr_extents;
915d4d7b
CEB
3052 nr_good_pages = p->pages;
3053 }
3054 if (!nr_good_pages) {
465c47fd 3055 pr_warn("Empty swap-file\n");
bdb8e3f6 3056 return -EINVAL;
915d4d7b
CEB
3057 }
3058
2a8f9449
SL
3059 if (!cluster_info)
3060 return nr_extents;
3061
235b6217 3062
4b3ef9da
HY
3063 /*
3064 * Reduce false cache line sharing between cluster_info and
3065 * sharing same address space.
3066 */
235b6217
HY
3067 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3068 j = (k + col) % SWAP_CLUSTER_COLS;
3069 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3070 idx = i * SWAP_CLUSTER_COLS + j;
3071 if (idx >= nr_clusters)
3072 continue;
3073 if (cluster_count(&cluster_info[idx]))
3074 continue;
2a8f9449 3075 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3076 cluster_list_add_tail(&p->free_clusters, cluster_info,
3077 idx);
2a8f9449 3078 }
2a8f9449 3079 }
915d4d7b 3080 return nr_extents;
915d4d7b
CEB
3081}
3082
dcf6b7dd
RA
3083/*
3084 * Helper to sys_swapon determining if a given swap
3085 * backing device queue supports DISCARD operations.
3086 */
3087static bool swap_discardable(struct swap_info_struct *si)
3088{
3089 struct request_queue *q = bdev_get_queue(si->bdev);
3090
3091 if (!q || !blk_queue_discard(q))
3092 return false;
3093
3094 return true;
3095}
3096
53cbb243
CEB
3097SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3098{
3099 struct swap_info_struct *p;
91a27b2a 3100 struct filename *name;
53cbb243
CEB
3101 struct file *swap_file = NULL;
3102 struct address_space *mapping;
40531542 3103 int prio;
53cbb243
CEB
3104 int error;
3105 union swap_header *swap_header;
915d4d7b 3106 int nr_extents;
53cbb243
CEB
3107 sector_t span;
3108 unsigned long maxpages;
53cbb243 3109 unsigned char *swap_map = NULL;
2a8f9449 3110 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3111 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3112 struct page *page = NULL;
3113 struct inode *inode = NULL;
7cbf3192 3114 bool inced_nr_rotate_swap = false;
53cbb243 3115
d15cab97
HD
3116 if (swap_flags & ~SWAP_FLAGS_VALID)
3117 return -EINVAL;
3118
53cbb243
CEB
3119 if (!capable(CAP_SYS_ADMIN))
3120 return -EPERM;
3121
a2468cc9
AL
3122 if (!swap_avail_heads)
3123 return -ENOMEM;
3124
53cbb243 3125 p = alloc_swap_info();
2542e513
CEB
3126 if (IS_ERR(p))
3127 return PTR_ERR(p);
53cbb243 3128
815c2c54
SL
3129 INIT_WORK(&p->discard_work, swap_discard_work);
3130
1da177e4 3131 name = getname(specialfile);
1da177e4 3132 if (IS_ERR(name)) {
7de7fb6b 3133 error = PTR_ERR(name);
1da177e4 3134 name = NULL;
bd69010b 3135 goto bad_swap;
1da177e4 3136 }
669abf4e 3137 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3138 if (IS_ERR(swap_file)) {
7de7fb6b 3139 error = PTR_ERR(swap_file);
1da177e4 3140 swap_file = NULL;
bd69010b 3141 goto bad_swap;
1da177e4
LT
3142 }
3143
3144 p->swap_file = swap_file;
3145 mapping = swap_file->f_mapping;
2130781e 3146 inode = mapping->host;
6f179af8 3147
5955102c 3148 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
3149 error = claim_swapfile(p, inode);
3150 if (unlikely(error))
1da177e4 3151 goto bad_swap;
1da177e4 3152
1da177e4
LT
3153 /*
3154 * Read the swap header.
3155 */
3156 if (!mapping->a_ops->readpage) {
3157 error = -EINVAL;
3158 goto bad_swap;
3159 }
090d2b18 3160 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3161 if (IS_ERR(page)) {
3162 error = PTR_ERR(page);
3163 goto bad_swap;
3164 }
81e33971 3165 swap_header = kmap(page);
1da177e4 3166
ca8bd38b
CEB
3167 maxpages = read_swap_header(p, swap_header, inode);
3168 if (unlikely(!maxpages)) {
1da177e4
LT
3169 error = -EINVAL;
3170 goto bad_swap;
3171 }
886bb7e9 3172
81e33971 3173 /* OK, set up the swap map and apply the bad block list */
803d0c83 3174 swap_map = vzalloc(maxpages);
81e33971
HD
3175 if (!swap_map) {
3176 error = -ENOMEM;
3177 goto bad_swap;
3178 }
f0571429
MK
3179
3180 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3181 p->flags |= SWP_STABLE_WRITES;
3182
539a6fea
MK
3183 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3184 p->flags |= SWP_SYNCHRONOUS_IO;
3185
2a8f9449 3186 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3187 int cpu;
235b6217 3188 unsigned long ci, nr_cluster;
6f179af8 3189
2a8f9449
SL
3190 p->flags |= SWP_SOLIDSTATE;
3191 /*
3192 * select a random position to start with to help wear leveling
3193 * SSD
3194 */
3195 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3196 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3197
778e1cdd 3198 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3199 GFP_KERNEL);
2a8f9449
SL
3200 if (!cluster_info) {
3201 error = -ENOMEM;
3202 goto bad_swap;
3203 }
235b6217
HY
3204
3205 for (ci = 0; ci < nr_cluster; ci++)
3206 spin_lock_init(&((cluster_info + ci)->lock));
3207
ebc2a1a6
SL
3208 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3209 if (!p->percpu_cluster) {
3210 error = -ENOMEM;
3211 goto bad_swap;
3212 }
6f179af8 3213 for_each_possible_cpu(cpu) {
ebc2a1a6 3214 struct percpu_cluster *cluster;
6f179af8 3215 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3216 cluster_set_null(&cluster->index);
3217 }
7cbf3192 3218 } else {
81a0298b 3219 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3220 inced_nr_rotate_swap = true;
3221 }
1da177e4 3222
1421ef3c
CEB
3223 error = swap_cgroup_swapon(p->type, maxpages);
3224 if (error)
3225 goto bad_swap;
3226
915d4d7b 3227 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3228 cluster_info, maxpages, &span);
915d4d7b
CEB
3229 if (unlikely(nr_extents < 0)) {
3230 error = nr_extents;
1da177e4
LT
3231 goto bad_swap;
3232 }
38b5faf4 3233 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3234 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3235 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3236 sizeof(long),
54f180d3 3237 GFP_KERNEL);
1da177e4 3238
2a8f9449
SL
3239 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3240 /*
3241 * When discard is enabled for swap with no particular
3242 * policy flagged, we set all swap discard flags here in
3243 * order to sustain backward compatibility with older
3244 * swapon(8) releases.
3245 */
3246 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3247 SWP_PAGE_DISCARD);
dcf6b7dd 3248
2a8f9449
SL
3249 /*
3250 * By flagging sys_swapon, a sysadmin can tell us to
3251 * either do single-time area discards only, or to just
3252 * perform discards for released swap page-clusters.
3253 * Now it's time to adjust the p->flags accordingly.
3254 */
3255 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3256 p->flags &= ~SWP_PAGE_DISCARD;
3257 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3258 p->flags &= ~SWP_AREA_DISCARD;
3259
3260 /* issue a swapon-time discard if it's still required */
3261 if (p->flags & SWP_AREA_DISCARD) {
3262 int err = discard_swap(p);
3263 if (unlikely(err))
3264 pr_err("swapon: discard_swap(%p): %d\n",
3265 p, err);
dcf6b7dd 3266 }
20137a49 3267 }
6a6ba831 3268
4b3ef9da
HY
3269 error = init_swap_address_space(p->type, maxpages);
3270 if (error)
3271 goto bad_swap;
3272
fc0abb14 3273 mutex_lock(&swapon_mutex);
40531542 3274 prio = -1;
78ecba08 3275 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3276 prio =
78ecba08 3277 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3278 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3279
756a025f 3280 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3281 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3282 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3283 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3284 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3285 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3286 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3287 (frontswap_map) ? "FS" : "");
c69dbfb8 3288
fc0abb14 3289 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3290 atomic_inc(&proc_poll_event);
3291 wake_up_interruptible(&proc_poll_wait);
3292
9b01c350
CEB
3293 if (S_ISREG(inode->i_mode))
3294 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
3295 error = 0;
3296 goto out;
3297bad_swap:
ebc2a1a6
SL
3298 free_percpu(p->percpu_cluster);
3299 p->percpu_cluster = NULL;
bd69010b 3300 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3301 set_blocksize(p->bdev, p->old_block_size);
3302 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3303 }
4cd3bb10 3304 destroy_swap_extents(p);
e8e6c2ec 3305 swap_cgroup_swapoff(p->type);
5d337b91 3306 spin_lock(&swap_lock);
1da177e4 3307 p->swap_file = NULL;
1da177e4 3308 p->flags = 0;
5d337b91 3309 spin_unlock(&swap_lock);
1da177e4 3310 vfree(swap_map);
8606a1a9 3311 kvfree(cluster_info);
b6b1fd2a 3312 kvfree(frontswap_map);
7cbf3192
OS
3313 if (inced_nr_rotate_swap)
3314 atomic_dec(&nr_rotate_swap);
52c50567 3315 if (swap_file) {
2130781e 3316 if (inode && S_ISREG(inode->i_mode)) {
5955102c 3317 inode_unlock(inode);
2130781e
CEB
3318 inode = NULL;
3319 }
1da177e4 3320 filp_close(swap_file, NULL);
52c50567 3321 }
1da177e4
LT
3322out:
3323 if (page && !IS_ERR(page)) {
3324 kunmap(page);
09cbfeaf 3325 put_page(page);
1da177e4
LT
3326 }
3327 if (name)
3328 putname(name);
9b01c350 3329 if (inode && S_ISREG(inode->i_mode))
5955102c 3330 inode_unlock(inode);
039939a6
TC
3331 if (!error)
3332 enable_swap_slots_cache();
1da177e4
LT
3333 return error;
3334}
3335
3336void si_swapinfo(struct sysinfo *val)
3337{
efa90a98 3338 unsigned int type;
1da177e4
LT
3339 unsigned long nr_to_be_unused = 0;
3340
5d337b91 3341 spin_lock(&swap_lock);
efa90a98
HD
3342 for (type = 0; type < nr_swapfiles; type++) {
3343 struct swap_info_struct *si = swap_info[type];
3344
3345 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3346 nr_to_be_unused += si->inuse_pages;
1da177e4 3347 }
ec8acf20 3348 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3349 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3350 spin_unlock(&swap_lock);
1da177e4
LT
3351}
3352
3353/*
3354 * Verify that a swap entry is valid and increment its swap map count.
3355 *
355cfa73
KH
3356 * Returns error code in following case.
3357 * - success -> 0
3358 * - swp_entry is invalid -> EINVAL
3359 * - swp_entry is migration entry -> EINVAL
3360 * - swap-cache reference is requested but there is already one. -> EEXIST
3361 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3362 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3363 */
8d69aaee 3364static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3365{
73c34b6a 3366 struct swap_info_struct *p;
235b6217 3367 struct swap_cluster_info *ci;
1da177e4 3368 unsigned long offset, type;
8d69aaee
HD
3369 unsigned char count;
3370 unsigned char has_cache;
253d553b 3371 int err = -EINVAL;
1da177e4 3372
a7420aa5 3373 if (non_swap_entry(entry))
253d553b 3374 goto out;
0697212a 3375
1da177e4
LT
3376 type = swp_type(entry);
3377 if (type >= nr_swapfiles)
3378 goto bad_file;
efa90a98 3379 p = swap_info[type];
1da177e4 3380 offset = swp_offset(entry);
355cfa73 3381 if (unlikely(offset >= p->max))
235b6217
HY
3382 goto out;
3383
3384 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3385
253d553b 3386 count = p->swap_map[offset];
edfe23da
SL
3387
3388 /*
3389 * swapin_readahead() doesn't check if a swap entry is valid, so the
3390 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3391 */
3392 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3393 err = -ENOENT;
3394 goto unlock_out;
3395 }
3396
253d553b
HD
3397 has_cache = count & SWAP_HAS_CACHE;
3398 count &= ~SWAP_HAS_CACHE;
3399 err = 0;
355cfa73 3400
253d553b 3401 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3402
3403 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3404 if (!has_cache && count)
3405 has_cache = SWAP_HAS_CACHE;
3406 else if (has_cache) /* someone else added cache */
3407 err = -EEXIST;
3408 else /* no users remaining */
3409 err = -ENOENT;
355cfa73
KH
3410
3411 } else if (count || has_cache) {
253d553b 3412
570a335b
HD
3413 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3414 count += usage;
3415 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3416 err = -EINVAL;
570a335b
HD
3417 else if (swap_count_continued(p, offset, count))
3418 count = COUNT_CONTINUED;
3419 else
3420 err = -ENOMEM;
355cfa73 3421 } else
253d553b
HD
3422 err = -ENOENT; /* unused swap entry */
3423
3424 p->swap_map[offset] = count | has_cache;
3425
355cfa73 3426unlock_out:
235b6217 3427 unlock_cluster_or_swap_info(p, ci);
1da177e4 3428out:
253d553b 3429 return err;
1da177e4
LT
3430
3431bad_file:
465c47fd 3432 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
3433 goto out;
3434}
253d553b 3435
aaa46865
HD
3436/*
3437 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3438 * (in which case its reference count is never incremented).
3439 */
3440void swap_shmem_alloc(swp_entry_t entry)
3441{
3442 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3443}
3444
355cfa73 3445/*
08259d58
HD
3446 * Increase reference count of swap entry by 1.
3447 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3448 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3449 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3450 * might occur if a page table entry has got corrupted.
355cfa73 3451 */
570a335b 3452int swap_duplicate(swp_entry_t entry)
355cfa73 3453{
570a335b
HD
3454 int err = 0;
3455
3456 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3457 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3458 return err;
355cfa73 3459}
1da177e4 3460
cb4b86ba 3461/*
355cfa73
KH
3462 * @entry: swap entry for which we allocate swap cache.
3463 *
73c34b6a 3464 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
3465 * This can return error codes. Returns 0 at success.
3466 * -EBUSY means there is a swap cache.
3467 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3468 */
3469int swapcache_prepare(swp_entry_t entry)
3470{
253d553b 3471 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3472}
3473
0bcac06f
MK
3474struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3475{
3476 return swap_info[swp_type(entry)];
3477}
3478
f981c595
MG
3479struct swap_info_struct *page_swap_info(struct page *page)
3480{
0bcac06f
MK
3481 swp_entry_t entry = { .val = page_private(page) };
3482 return swp_swap_info(entry);
f981c595
MG
3483}
3484
3485/*
3486 * out-of-line __page_file_ methods to avoid include hell.
3487 */
3488struct address_space *__page_file_mapping(struct page *page)
3489{
f981c595
MG
3490 return page_swap_info(page)->swap_file->f_mapping;
3491}
3492EXPORT_SYMBOL_GPL(__page_file_mapping);
3493
3494pgoff_t __page_file_index(struct page *page)
3495{
3496 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3497 return swp_offset(swap);
3498}
3499EXPORT_SYMBOL_GPL(__page_file_index);
3500
570a335b
HD
3501/*
3502 * add_swap_count_continuation - called when a swap count is duplicated
3503 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3504 * page of the original vmalloc'ed swap_map, to hold the continuation count
3505 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3506 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3507 *
3508 * These continuation pages are seldom referenced: the common paths all work
3509 * on the original swap_map, only referring to a continuation page when the
3510 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3511 *
3512 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3513 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3514 * can be called after dropping locks.
3515 */
3516int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3517{
3518 struct swap_info_struct *si;
235b6217 3519 struct swap_cluster_info *ci;
570a335b
HD
3520 struct page *head;
3521 struct page *page;
3522 struct page *list_page;
3523 pgoff_t offset;
3524 unsigned char count;
3525
3526 /*
3527 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3528 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3529 */
3530 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3531
3532 si = swap_info_get(entry);
3533 if (!si) {
3534 /*
3535 * An acceptable race has occurred since the failing
3536 * __swap_duplicate(): the swap entry has been freed,
3537 * perhaps even the whole swap_map cleared for swapoff.
3538 */
3539 goto outer;
3540 }
3541
3542 offset = swp_offset(entry);
235b6217
HY
3543
3544 ci = lock_cluster(si, offset);
3545
570a335b
HD
3546 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3547
3548 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3549 /*
3550 * The higher the swap count, the more likely it is that tasks
3551 * will race to add swap count continuation: we need to avoid
3552 * over-provisioning.
3553 */
3554 goto out;
3555 }
3556
3557 if (!page) {
235b6217 3558 unlock_cluster(ci);
ec8acf20 3559 spin_unlock(&si->lock);
570a335b
HD
3560 return -ENOMEM;
3561 }
3562
3563 /*
3564 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3565 * no architecture is using highmem pages for kernel page tables: so it
3566 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3567 */
3568 head = vmalloc_to_page(si->swap_map + offset);
3569 offset &= ~PAGE_MASK;
3570
2628bd6f 3571 spin_lock(&si->cont_lock);
570a335b
HD
3572 /*
3573 * Page allocation does not initialize the page's lru field,
3574 * but it does always reset its private field.
3575 */
3576 if (!page_private(head)) {
3577 BUG_ON(count & COUNT_CONTINUED);
3578 INIT_LIST_HEAD(&head->lru);
3579 set_page_private(head, SWP_CONTINUED);
3580 si->flags |= SWP_CONTINUED;
3581 }
3582
3583 list_for_each_entry(list_page, &head->lru, lru) {
3584 unsigned char *map;
3585
3586 /*
3587 * If the previous map said no continuation, but we've found
3588 * a continuation page, free our allocation and use this one.
3589 */
3590 if (!(count & COUNT_CONTINUED))
2628bd6f 3591 goto out_unlock_cont;
570a335b 3592
9b04c5fe 3593 map = kmap_atomic(list_page) + offset;
570a335b 3594 count = *map;
9b04c5fe 3595 kunmap_atomic(map);
570a335b
HD
3596
3597 /*
3598 * If this continuation count now has some space in it,
3599 * free our allocation and use this one.
3600 */
3601 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3602 goto out_unlock_cont;
570a335b
HD
3603 }
3604
3605 list_add_tail(&page->lru, &head->lru);
3606 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3607out_unlock_cont:
3608 spin_unlock(&si->cont_lock);
570a335b 3609out:
235b6217 3610 unlock_cluster(ci);
ec8acf20 3611 spin_unlock(&si->lock);
570a335b
HD
3612outer:
3613 if (page)
3614 __free_page(page);
3615 return 0;
3616}
3617
3618/*
3619 * swap_count_continued - when the original swap_map count is incremented
3620 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3621 * into, carry if so, or else fail until a new continuation page is allocated;
3622 * when the original swap_map count is decremented from 0 with continuation,
3623 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3624 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3625 * lock.
570a335b
HD
3626 */
3627static bool swap_count_continued(struct swap_info_struct *si,
3628 pgoff_t offset, unsigned char count)
3629{
3630 struct page *head;
3631 struct page *page;
3632 unsigned char *map;
2628bd6f 3633 bool ret;
570a335b
HD
3634
3635 head = vmalloc_to_page(si->swap_map + offset);
3636 if (page_private(head) != SWP_CONTINUED) {
3637 BUG_ON(count & COUNT_CONTINUED);
3638 return false; /* need to add count continuation */
3639 }
3640
2628bd6f 3641 spin_lock(&si->cont_lock);
570a335b
HD
3642 offset &= ~PAGE_MASK;
3643 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3644 map = kmap_atomic(page) + offset;
570a335b
HD
3645
3646 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3647 goto init_map; /* jump over SWAP_CONT_MAX checks */
3648
3649 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3650 /*
3651 * Think of how you add 1 to 999
3652 */
3653 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3654 kunmap_atomic(map);
570a335b
HD
3655 page = list_entry(page->lru.next, struct page, lru);
3656 BUG_ON(page == head);
9b04c5fe 3657 map = kmap_atomic(page) + offset;
570a335b
HD
3658 }
3659 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3660 kunmap_atomic(map);
570a335b 3661 page = list_entry(page->lru.next, struct page, lru);
2628bd6f
HY
3662 if (page == head) {
3663 ret = false; /* add count continuation */
3664 goto out;
3665 }
9b04c5fe 3666 map = kmap_atomic(page) + offset;
570a335b
HD
3667init_map: *map = 0; /* we didn't zero the page */
3668 }
3669 *map += 1;
9b04c5fe 3670 kunmap_atomic(map);
570a335b
HD
3671 page = list_entry(page->lru.prev, struct page, lru);
3672 while (page != head) {
9b04c5fe 3673 map = kmap_atomic(page) + offset;
570a335b 3674 *map = COUNT_CONTINUED;
9b04c5fe 3675 kunmap_atomic(map);
570a335b
HD
3676 page = list_entry(page->lru.prev, struct page, lru);
3677 }
2628bd6f 3678 ret = true; /* incremented */
570a335b
HD
3679
3680 } else { /* decrementing */
3681 /*
3682 * Think of how you subtract 1 from 1000
3683 */
3684 BUG_ON(count != COUNT_CONTINUED);
3685 while (*map == COUNT_CONTINUED) {
9b04c5fe 3686 kunmap_atomic(map);
570a335b
HD
3687 page = list_entry(page->lru.next, struct page, lru);
3688 BUG_ON(page == head);
9b04c5fe 3689 map = kmap_atomic(page) + offset;
570a335b
HD
3690 }
3691 BUG_ON(*map == 0);
3692 *map -= 1;
3693 if (*map == 0)
3694 count = 0;
9b04c5fe 3695 kunmap_atomic(map);
570a335b
HD
3696 page = list_entry(page->lru.prev, struct page, lru);
3697 while (page != head) {
9b04c5fe 3698 map = kmap_atomic(page) + offset;
570a335b
HD
3699 *map = SWAP_CONT_MAX | count;
3700 count = COUNT_CONTINUED;
9b04c5fe 3701 kunmap_atomic(map);
570a335b
HD
3702 page = list_entry(page->lru.prev, struct page, lru);
3703 }
2628bd6f 3704 ret = count == COUNT_CONTINUED;
570a335b 3705 }
2628bd6f
HY
3706out:
3707 spin_unlock(&si->cont_lock);
3708 return ret;
570a335b
HD
3709}
3710
3711/*
3712 * free_swap_count_continuations - swapoff free all the continuation pages
3713 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3714 */
3715static void free_swap_count_continuations(struct swap_info_struct *si)
3716{
3717 pgoff_t offset;
3718
3719 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3720 struct page *head;
3721 head = vmalloc_to_page(si->swap_map + offset);
3722 if (page_private(head)) {
0d576d20
GT
3723 struct page *page, *next;
3724
3725 list_for_each_entry_safe(page, next, &head->lru, lru) {
3726 list_del(&page->lru);
570a335b
HD
3727 __free_page(page);
3728 }
3729 }
3730 }
3731}
a2468cc9 3732
2cf85583
TH
3733#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3734void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3735 gfp_t gfp_mask)
3736{
3737 struct swap_info_struct *si, *next;
3738 if (!(gfp_mask & __GFP_IO) || !memcg)
3739 return;
3740
3741 if (!blk_cgroup_congested())
3742 return;
3743
3744 /*
3745 * We've already scheduled a throttle, avoid taking the global swap
3746 * lock.
3747 */
3748 if (current->throttle_queue)
3749 return;
3750
3751 spin_lock(&swap_avail_lock);
3752 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3753 avail_lists[node]) {
3754 if (si->bdev) {
3755 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3756 true);
3757 break;
3758 }
3759 }
3760 spin_unlock(&swap_avail_lock);
3761}
3762#endif
3763
a2468cc9
AL
3764static int __init swapfile_init(void)
3765{
3766 int nid;
3767
3768 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3769 GFP_KERNEL);
3770 if (!swap_avail_heads) {
3771 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3772 return -ENOMEM;
3773 }
3774
3775 for_each_node(nid)
3776 plist_head_init(&swap_avail_heads[nid]);
3777
3778 return 0;
3779}
3780subsys_initcall(swapfile_init);