]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/truncate.c
Linux 4.14.89
[people/arne_f/kernel.git] / mm / truncate.c
CommitLineData
1da177e4
LT
1/*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
e1f8e874 6 * 10Sep2002 Andrew Morton
1da177e4
LT
7 * Initial version.
8 */
9
10#include <linux/kernel.h>
4af3c9cc 11#include <linux/backing-dev.h>
f9fe48be 12#include <linux/dax.h>
5a0e3ad6 13#include <linux/gfp.h>
1da177e4 14#include <linux/mm.h>
0fd0e6b0 15#include <linux/swap.h>
b95f1b31 16#include <linux/export.h>
1da177e4 17#include <linux/pagemap.h>
01f2705d 18#include <linux/highmem.h>
1da177e4 19#include <linux/pagevec.h>
e08748ce 20#include <linux/task_io_accounting_ops.h>
1da177e4 21#include <linux/buffer_head.h> /* grr. try_to_release_page,
aaa4059b 22 do_invalidatepage */
3a4f8a0b 23#include <linux/shmem_fs.h>
c515e1fd 24#include <linux/cleancache.h>
90a80202 25#include <linux/rmap.h>
ba470de4 26#include "internal.h"
1da177e4 27
c6dcf52c
JK
28static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
29 void *entry)
0cd6144a 30{
449dd698
JW
31 struct radix_tree_node *node;
32 void **slot;
33
ac401cc7
JK
34 spin_lock_irq(&mapping->tree_lock);
35 /*
36 * Regular page slots are stabilized by the page lock even
37 * without the tree itself locked. These unlocked entries
38 * need verification under the tree lock.
39 */
14b46879 40 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
ac401cc7
JK
41 goto unlock;
42 if (*slot != entry)
43 goto unlock;
14b46879
JW
44 __radix_tree_replace(&mapping->page_tree, node, slot, NULL,
45 workingset_update_node, mapping);
ac401cc7 46 mapping->nrexceptional--;
449dd698 47unlock:
0cd6144a
JW
48 spin_unlock_irq(&mapping->tree_lock);
49}
1da177e4 50
c6dcf52c
JK
51/*
52 * Unconditionally remove exceptional entry. Usually called from truncate path.
53 */
54static void truncate_exceptional_entry(struct address_space *mapping,
55 pgoff_t index, void *entry)
56{
57 /* Handled by shmem itself */
58 if (shmem_mapping(mapping))
59 return;
60
61 if (dax_mapping(mapping)) {
62 dax_delete_mapping_entry(mapping, index);
63 return;
64 }
65 clear_shadow_entry(mapping, index, entry);
66}
67
68/*
69 * Invalidate exceptional entry if easily possible. This handles exceptional
4636e70b 70 * entries for invalidate_inode_pages().
c6dcf52c
JK
71 */
72static int invalidate_exceptional_entry(struct address_space *mapping,
73 pgoff_t index, void *entry)
74{
4636e70b
RZ
75 /* Handled by shmem itself, or for DAX we do nothing. */
76 if (shmem_mapping(mapping) || dax_mapping(mapping))
c6dcf52c 77 return 1;
c6dcf52c
JK
78 clear_shadow_entry(mapping, index, entry);
79 return 1;
80}
81
82/*
83 * Invalidate exceptional entry if clean. This handles exceptional entries for
84 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
85 */
86static int invalidate_exceptional_entry2(struct address_space *mapping,
87 pgoff_t index, void *entry)
88{
89 /* Handled by shmem itself */
90 if (shmem_mapping(mapping))
91 return 1;
92 if (dax_mapping(mapping))
93 return dax_invalidate_mapping_entry_sync(mapping, index);
94 clear_shadow_entry(mapping, index, entry);
95 return 1;
96}
97
cf9a2ae8 98/**
28bc44d7 99 * do_invalidatepage - invalidate part or all of a page
cf9a2ae8 100 * @page: the page which is affected
d47992f8
LC
101 * @offset: start of the range to invalidate
102 * @length: length of the range to invalidate
cf9a2ae8
DH
103 *
104 * do_invalidatepage() is called when all or part of the page has become
105 * invalidated by a truncate operation.
106 *
107 * do_invalidatepage() does not have to release all buffers, but it must
108 * ensure that no dirty buffer is left outside @offset and that no I/O
109 * is underway against any of the blocks which are outside the truncation
110 * point. Because the caller is about to free (and possibly reuse) those
111 * blocks on-disk.
112 */
d47992f8
LC
113void do_invalidatepage(struct page *page, unsigned int offset,
114 unsigned int length)
cf9a2ae8 115{
d47992f8
LC
116 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
117
cf9a2ae8 118 invalidatepage = page->mapping->a_ops->invalidatepage;
9361401e 119#ifdef CONFIG_BLOCK
cf9a2ae8
DH
120 if (!invalidatepage)
121 invalidatepage = block_invalidatepage;
9361401e 122#endif
cf9a2ae8 123 if (invalidatepage)
d47992f8 124 (*invalidatepage)(page, offset, length);
cf9a2ae8
DH
125}
126
1da177e4
LT
127/*
128 * If truncate cannot remove the fs-private metadata from the page, the page
62e1c553 129 * becomes orphaned. It will be left on the LRU and may even be mapped into
54cb8821 130 * user pagetables if we're racing with filemap_fault().
1da177e4
LT
131 *
132 * We need to bale out if page->mapping is no longer equal to the original
133 * mapping. This happens a) when the VM reclaimed the page while we waited on
fc0ecff6 134 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
1da177e4
LT
135 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
136 */
750b4987 137static int
1da177e4
LT
138truncate_complete_page(struct address_space *mapping, struct page *page)
139{
140 if (page->mapping != mapping)
750b4987 141 return -EIO;
1da177e4 142
266cf658 143 if (page_has_private(page))
09cbfeaf 144 do_invalidatepage(page, 0, PAGE_SIZE);
1da177e4 145
b9ea2515
KK
146 /*
147 * Some filesystems seem to re-dirty the page even after
148 * the VM has canceled the dirty bit (eg ext3 journaling).
149 * Hence dirty accounting check is placed after invalidation.
150 */
11f81bec 151 cancel_dirty_page(page);
1da177e4 152 ClearPageMappedToDisk(page);
5adc7b51 153 delete_from_page_cache(page);
750b4987 154 return 0;
1da177e4
LT
155}
156
157/*
fc0ecff6 158 * This is for invalidate_mapping_pages(). That function can be called at
1da177e4 159 * any time, and is not supposed to throw away dirty pages. But pages can
0fd0e6b0
NP
160 * be marked dirty at any time too, so use remove_mapping which safely
161 * discards clean, unused pages.
1da177e4
LT
162 *
163 * Returns non-zero if the page was successfully invalidated.
164 */
165static int
166invalidate_complete_page(struct address_space *mapping, struct page *page)
167{
0fd0e6b0
NP
168 int ret;
169
1da177e4
LT
170 if (page->mapping != mapping)
171 return 0;
172
266cf658 173 if (page_has_private(page) && !try_to_release_page(page, 0))
1da177e4
LT
174 return 0;
175
0fd0e6b0 176 ret = remove_mapping(mapping, page);
0fd0e6b0
NP
177
178 return ret;
1da177e4
LT
179}
180
750b4987
NP
181int truncate_inode_page(struct address_space *mapping, struct page *page)
182{
fc127da0
KS
183 loff_t holelen;
184 VM_BUG_ON_PAGE(PageTail(page), page);
185
186 holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
750b4987
NP
187 if (page_mapped(page)) {
188 unmap_mapping_range(mapping,
09cbfeaf 189 (loff_t)page->index << PAGE_SHIFT,
fc127da0 190 holelen, 0);
750b4987
NP
191 }
192 return truncate_complete_page(mapping, page);
193}
194
25718736
AK
195/*
196 * Used to get rid of pages on hardware memory corruption.
197 */
198int generic_error_remove_page(struct address_space *mapping, struct page *page)
199{
200 if (!mapping)
201 return -EINVAL;
202 /*
203 * Only punch for normal data pages for now.
204 * Handling other types like directories would need more auditing.
205 */
206 if (!S_ISREG(mapping->host->i_mode))
207 return -EIO;
208 return truncate_inode_page(mapping, page);
209}
210EXPORT_SYMBOL(generic_error_remove_page);
211
83f78668
WF
212/*
213 * Safely invalidate one page from its pagecache mapping.
214 * It only drops clean, unused pages. The page must be locked.
215 *
216 * Returns 1 if the page is successfully invalidated, otherwise 0.
217 */
218int invalidate_inode_page(struct page *page)
219{
220 struct address_space *mapping = page_mapping(page);
221 if (!mapping)
222 return 0;
223 if (PageDirty(page) || PageWriteback(page))
224 return 0;
225 if (page_mapped(page))
226 return 0;
227 return invalidate_complete_page(mapping, page);
228}
229
1da177e4 230/**
73c1e204 231 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
1da177e4
LT
232 * @mapping: mapping to truncate
233 * @lstart: offset from which to truncate
5a720394 234 * @lend: offset to which to truncate (inclusive)
1da177e4 235 *
d7339071 236 * Truncate the page cache, removing the pages that are between
5a720394
LC
237 * specified offsets (and zeroing out partial pages
238 * if lstart or lend + 1 is not page aligned).
1da177e4
LT
239 *
240 * Truncate takes two passes - the first pass is nonblocking. It will not
241 * block on page locks and it will not block on writeback. The second pass
242 * will wait. This is to prevent as much IO as possible in the affected region.
243 * The first pass will remove most pages, so the search cost of the second pass
244 * is low.
245 *
1da177e4
LT
246 * We pass down the cache-hot hint to the page freeing code. Even if the
247 * mapping is large, it is probably the case that the final pages are the most
248 * recently touched, and freeing happens in ascending file offset order.
5a720394
LC
249 *
250 * Note that since ->invalidatepage() accepts range to invalidate
251 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
252 * page aligned properly.
1da177e4 253 */
d7339071
HR
254void truncate_inode_pages_range(struct address_space *mapping,
255 loff_t lstart, loff_t lend)
1da177e4 256{
5a720394
LC
257 pgoff_t start; /* inclusive */
258 pgoff_t end; /* exclusive */
259 unsigned int partial_start; /* inclusive */
260 unsigned int partial_end; /* exclusive */
261 struct pagevec pvec;
0cd6144a 262 pgoff_t indices[PAGEVEC_SIZE];
5a720394
LC
263 pgoff_t index;
264 int i;
1da177e4 265
f9fe48be 266 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
34ccb69e 267 goto out;
1da177e4 268
5a720394 269 /* Offsets within partial pages */
09cbfeaf
KS
270 partial_start = lstart & (PAGE_SIZE - 1);
271 partial_end = (lend + 1) & (PAGE_SIZE - 1);
5a720394
LC
272
273 /*
274 * 'start' and 'end' always covers the range of pages to be fully
275 * truncated. Partial pages are covered with 'partial_start' at the
276 * start of the range and 'partial_end' at the end of the range.
277 * Note that 'end' is exclusive while 'lend' is inclusive.
278 */
09cbfeaf 279 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
5a720394
LC
280 if (lend == -1)
281 /*
282 * lend == -1 indicates end-of-file so we have to set 'end'
283 * to the highest possible pgoff_t and since the type is
284 * unsigned we're using -1.
285 */
286 end = -1;
287 else
09cbfeaf 288 end = (lend + 1) >> PAGE_SHIFT;
d7339071 289
1da177e4 290 pagevec_init(&pvec, 0);
b85e0eff 291 index = start;
0cd6144a
JW
292 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
293 min(end - index, (pgoff_t)PAGEVEC_SIZE),
294 indices)) {
1da177e4
LT
295 for (i = 0; i < pagevec_count(&pvec); i++) {
296 struct page *page = pvec.pages[i];
1da177e4 297
b85e0eff 298 /* We rely upon deletion not changing page->index */
0cd6144a 299 index = indices[i];
5a720394 300 if (index >= end)
d7339071 301 break;
d7339071 302
0cd6144a 303 if (radix_tree_exceptional_entry(page)) {
c6dcf52c
JK
304 truncate_exceptional_entry(mapping, index,
305 page);
0cd6144a
JW
306 continue;
307 }
308
529ae9aa 309 if (!trylock_page(page))
1da177e4 310 continue;
5cbc198a 311 WARN_ON(page_to_index(page) != index);
1da177e4
LT
312 if (PageWriteback(page)) {
313 unlock_page(page);
314 continue;
315 }
750b4987 316 truncate_inode_page(mapping, page);
1da177e4
LT
317 unlock_page(page);
318 }
0cd6144a 319 pagevec_remove_exceptionals(&pvec);
1da177e4
LT
320 pagevec_release(&pvec);
321 cond_resched();
b85e0eff 322 index++;
1da177e4
LT
323 }
324
5a720394 325 if (partial_start) {
1da177e4
LT
326 struct page *page = find_lock_page(mapping, start - 1);
327 if (page) {
09cbfeaf 328 unsigned int top = PAGE_SIZE;
5a720394
LC
329 if (start > end) {
330 /* Truncation within a single page */
331 top = partial_end;
332 partial_end = 0;
333 }
1da177e4 334 wait_on_page_writeback(page);
5a720394
LC
335 zero_user_segment(page, partial_start, top);
336 cleancache_invalidate_page(mapping, page);
337 if (page_has_private(page))
338 do_invalidatepage(page, partial_start,
339 top - partial_start);
1da177e4 340 unlock_page(page);
09cbfeaf 341 put_page(page);
1da177e4
LT
342 }
343 }
5a720394
LC
344 if (partial_end) {
345 struct page *page = find_lock_page(mapping, end);
346 if (page) {
347 wait_on_page_writeback(page);
348 zero_user_segment(page, 0, partial_end);
349 cleancache_invalidate_page(mapping, page);
350 if (page_has_private(page))
351 do_invalidatepage(page, 0,
352 partial_end);
353 unlock_page(page);
09cbfeaf 354 put_page(page);
5a720394
LC
355 }
356 }
357 /*
358 * If the truncation happened within a single page no pages
359 * will be released, just zeroed, so we can bail out now.
360 */
361 if (start >= end)
34ccb69e 362 goto out;
1da177e4 363
b85e0eff 364 index = start;
1da177e4
LT
365 for ( ; ; ) {
366 cond_resched();
0cd6144a 367 if (!pagevec_lookup_entries(&pvec, mapping, index,
792ceaef
HD
368 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
369 /* If all gone from start onwards, we're done */
b85e0eff 370 if (index == start)
1da177e4 371 break;
792ceaef 372 /* Otherwise restart to make sure all gone */
b85e0eff 373 index = start;
1da177e4
LT
374 continue;
375 }
0cd6144a 376 if (index == start && indices[0] >= end) {
792ceaef 377 /* All gone out of hole to be punched, we're done */
0cd6144a 378 pagevec_remove_exceptionals(&pvec);
d7339071
HR
379 pagevec_release(&pvec);
380 break;
381 }
1da177e4
LT
382 for (i = 0; i < pagevec_count(&pvec); i++) {
383 struct page *page = pvec.pages[i];
384
b85e0eff 385 /* We rely upon deletion not changing page->index */
0cd6144a 386 index = indices[i];
792ceaef
HD
387 if (index >= end) {
388 /* Restart punch to make sure all gone */
389 index = start - 1;
d7339071 390 break;
792ceaef 391 }
b85e0eff 392
0cd6144a 393 if (radix_tree_exceptional_entry(page)) {
c6dcf52c
JK
394 truncate_exceptional_entry(mapping, index,
395 page);
0cd6144a
JW
396 continue;
397 }
398
1da177e4 399 lock_page(page);
5cbc198a 400 WARN_ON(page_to_index(page) != index);
1da177e4 401 wait_on_page_writeback(page);
750b4987 402 truncate_inode_page(mapping, page);
1da177e4
LT
403 unlock_page(page);
404 }
0cd6144a 405 pagevec_remove_exceptionals(&pvec);
1da177e4 406 pagevec_release(&pvec);
b85e0eff 407 index++;
1da177e4 408 }
34ccb69e
AR
409
410out:
3167760f 411 cleancache_invalidate_inode(mapping);
1da177e4 412}
d7339071 413EXPORT_SYMBOL(truncate_inode_pages_range);
1da177e4 414
d7339071
HR
415/**
416 * truncate_inode_pages - truncate *all* the pages from an offset
417 * @mapping: mapping to truncate
418 * @lstart: offset from which to truncate
419 *
1b1dcc1b 420 * Called under (and serialised by) inode->i_mutex.
08142579
JK
421 *
422 * Note: When this function returns, there can be a page in the process of
423 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
424 * mapping->nrpages can be non-zero when this function returns even after
425 * truncation of the whole mapping.
d7339071
HR
426 */
427void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
428{
429 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
430}
1da177e4
LT
431EXPORT_SYMBOL(truncate_inode_pages);
432
91b0abe3
JW
433/**
434 * truncate_inode_pages_final - truncate *all* pages before inode dies
435 * @mapping: mapping to truncate
436 *
437 * Called under (and serialized by) inode->i_mutex.
438 *
439 * Filesystems have to use this in the .evict_inode path to inform the
440 * VM that this is the final truncate and the inode is going away.
441 */
442void truncate_inode_pages_final(struct address_space *mapping)
443{
f9fe48be 444 unsigned long nrexceptional;
91b0abe3
JW
445 unsigned long nrpages;
446
447 /*
448 * Page reclaim can not participate in regular inode lifetime
449 * management (can't call iput()) and thus can race with the
450 * inode teardown. Tell it when the address space is exiting,
451 * so that it does not install eviction information after the
452 * final truncate has begun.
453 */
454 mapping_set_exiting(mapping);
455
456 /*
457 * When reclaim installs eviction entries, it increases
f9fe48be 458 * nrexceptional first, then decreases nrpages. Make sure we see
91b0abe3
JW
459 * this in the right order or we might miss an entry.
460 */
461 nrpages = mapping->nrpages;
462 smp_rmb();
f9fe48be 463 nrexceptional = mapping->nrexceptional;
91b0abe3 464
f9fe48be 465 if (nrpages || nrexceptional) {
91b0abe3
JW
466 /*
467 * As truncation uses a lockless tree lookup, cycle
468 * the tree lock to make sure any ongoing tree
469 * modification that does not see AS_EXITING is
470 * completed before starting the final truncate.
471 */
472 spin_lock_irq(&mapping->tree_lock);
473 spin_unlock_irq(&mapping->tree_lock);
91b0abe3 474 }
60720df8
PT
475
476 /*
477 * Cleancache needs notification even if there are no pages or shadow
478 * entries.
479 */
480 truncate_inode_pages(mapping, 0);
91b0abe3
JW
481}
482EXPORT_SYMBOL(truncate_inode_pages_final);
483
28697355
MW
484/**
485 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
486 * @mapping: the address_space which holds the pages to invalidate
487 * @start: the offset 'from' which to invalidate
488 * @end: the offset 'to' which to invalidate (inclusive)
489 *
490 * This function only removes the unlocked pages, if you want to
491 * remove all the pages of one inode, you must call truncate_inode_pages.
492 *
493 * invalidate_mapping_pages() will not block on IO activity. It will not
494 * invalidate pages which are dirty, locked, under writeback or mapped into
495 * pagetables.
496 */
497unsigned long invalidate_mapping_pages(struct address_space *mapping,
31560180 498 pgoff_t start, pgoff_t end)
1da177e4 499{
0cd6144a 500 pgoff_t indices[PAGEVEC_SIZE];
1da177e4 501 struct pagevec pvec;
b85e0eff 502 pgoff_t index = start;
31560180
MK
503 unsigned long ret;
504 unsigned long count = 0;
1da177e4
LT
505 int i;
506
507 pagevec_init(&pvec, 0);
0cd6144a
JW
508 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
509 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
510 indices)) {
1da177e4
LT
511 for (i = 0; i < pagevec_count(&pvec); i++) {
512 struct page *page = pvec.pages[i];
e0f23603 513
b85e0eff 514 /* We rely upon deletion not changing page->index */
0cd6144a 515 index = indices[i];
b85e0eff
HD
516 if (index > end)
517 break;
e0f23603 518
0cd6144a 519 if (radix_tree_exceptional_entry(page)) {
c6dcf52c
JK
520 invalidate_exceptional_entry(mapping, index,
521 page);
0cd6144a
JW
522 continue;
523 }
524
b85e0eff
HD
525 if (!trylock_page(page))
526 continue;
fc127da0 527
5cbc198a 528 WARN_ON(page_to_index(page) != index);
fc127da0
KS
529
530 /* Middle of THP: skip */
531 if (PageTransTail(page)) {
532 unlock_page(page);
533 continue;
534 } else if (PageTransHuge(page)) {
535 index += HPAGE_PMD_NR - 1;
536 i += HPAGE_PMD_NR - 1;
76b6f9b7
JK
537 /*
538 * 'end' is in the middle of THP. Don't
539 * invalidate the page as the part outside of
540 * 'end' could be still useful.
541 */
542 if (index > end) {
543 unlock_page(page);
fc127da0 544 continue;
76b6f9b7 545 }
fc127da0
KS
546 }
547
31560180 548 ret = invalidate_inode_page(page);
1da177e4 549 unlock_page(page);
31560180
MK
550 /*
551 * Invalidation is a hint that the page is no longer
552 * of interest and try to speed up its reclaim.
553 */
554 if (!ret)
cc5993bd 555 deactivate_file_page(page);
31560180 556 count += ret;
1da177e4 557 }
0cd6144a 558 pagevec_remove_exceptionals(&pvec);
1da177e4 559 pagevec_release(&pvec);
28697355 560 cond_resched();
b85e0eff 561 index++;
1da177e4 562 }
31560180 563 return count;
1da177e4 564}
54bc4855 565EXPORT_SYMBOL(invalidate_mapping_pages);
1da177e4 566
bd4c8ce4
AM
567/*
568 * This is like invalidate_complete_page(), except it ignores the page's
569 * refcount. We do this because invalidate_inode_pages2() needs stronger
570 * invalidation guarantees, and cannot afford to leave pages behind because
2706a1b8
AB
571 * shrink_page_list() has a temp ref on them, or because they're transiently
572 * sitting in the lru_cache_add() pagevecs.
bd4c8ce4
AM
573 */
574static int
575invalidate_complete_page2(struct address_space *mapping, struct page *page)
576{
c4843a75
GT
577 unsigned long flags;
578
bd4c8ce4
AM
579 if (page->mapping != mapping)
580 return 0;
581
266cf658 582 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
bd4c8ce4
AM
583 return 0;
584
c4843a75 585 spin_lock_irqsave(&mapping->tree_lock, flags);
bd4c8ce4
AM
586 if (PageDirty(page))
587 goto failed;
588
266cf658 589 BUG_ON(page_has_private(page));
62cccb8c 590 __delete_from_page_cache(page, NULL);
c4843a75 591 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
592
593 if (mapping->a_ops->freepage)
594 mapping->a_ops->freepage(page);
595
09cbfeaf 596 put_page(page); /* pagecache ref */
bd4c8ce4
AM
597 return 1;
598failed:
c4843a75 599 spin_unlock_irqrestore(&mapping->tree_lock, flags);
bd4c8ce4
AM
600 return 0;
601}
602
e3db7691
TM
603static int do_launder_page(struct address_space *mapping, struct page *page)
604{
605 if (!PageDirty(page))
606 return 0;
607 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
608 return 0;
609 return mapping->a_ops->launder_page(page);
610}
611
1da177e4
LT
612/**
613 * invalidate_inode_pages2_range - remove range of pages from an address_space
67be2dd1 614 * @mapping: the address_space
1da177e4
LT
615 * @start: the page offset 'from' which to invalidate
616 * @end: the page offset 'to' which to invalidate (inclusive)
617 *
618 * Any pages which are found to be mapped into pagetables are unmapped prior to
619 * invalidation.
620 *
6ccfa806 621 * Returns -EBUSY if any pages could not be invalidated.
1da177e4
LT
622 */
623int invalidate_inode_pages2_range(struct address_space *mapping,
624 pgoff_t start, pgoff_t end)
625{
0cd6144a 626 pgoff_t indices[PAGEVEC_SIZE];
1da177e4 627 struct pagevec pvec;
b85e0eff 628 pgoff_t index;
1da177e4
LT
629 int i;
630 int ret = 0;
0dd1334f 631 int ret2 = 0;
1da177e4 632 int did_range_unmap = 0;
1da177e4 633
32691f0f 634 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
34ccb69e 635 goto out;
32691f0f 636
1da177e4 637 pagevec_init(&pvec, 0);
b85e0eff 638 index = start;
0cd6144a
JW
639 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
640 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
641 indices)) {
7b965e08 642 for (i = 0; i < pagevec_count(&pvec); i++) {
1da177e4 643 struct page *page = pvec.pages[i];
b85e0eff
HD
644
645 /* We rely upon deletion not changing page->index */
0cd6144a 646 index = indices[i];
b85e0eff
HD
647 if (index > end)
648 break;
1da177e4 649
0cd6144a 650 if (radix_tree_exceptional_entry(page)) {
c6dcf52c
JK
651 if (!invalidate_exceptional_entry2(mapping,
652 index, page))
653 ret = -EBUSY;
0cd6144a
JW
654 continue;
655 }
656
1da177e4 657 lock_page(page);
5cbc198a 658 WARN_ON(page_to_index(page) != index);
1da177e4
LT
659 if (page->mapping != mapping) {
660 unlock_page(page);
661 continue;
662 }
1da177e4 663 wait_on_page_writeback(page);
d00806b1 664 if (page_mapped(page)) {
1da177e4
LT
665 if (!did_range_unmap) {
666 /*
667 * Zap the rest of the file in one hit.
668 */
669 unmap_mapping_range(mapping,
09cbfeaf 670 (loff_t)index << PAGE_SHIFT,
b85e0eff 671 (loff_t)(1 + end - index)
09cbfeaf
KS
672 << PAGE_SHIFT,
673 0);
1da177e4
LT
674 did_range_unmap = 1;
675 } else {
676 /*
677 * Just zap this page
678 */
679 unmap_mapping_range(mapping,
09cbfeaf
KS
680 (loff_t)index << PAGE_SHIFT,
681 PAGE_SIZE, 0);
1da177e4
LT
682 }
683 }
d00806b1 684 BUG_ON(page_mapped(page));
0dd1334f
HH
685 ret2 = do_launder_page(mapping, page);
686 if (ret2 == 0) {
687 if (!invalidate_complete_page2(mapping, page))
6ccfa806 688 ret2 = -EBUSY;
0dd1334f
HH
689 }
690 if (ret2 < 0)
691 ret = ret2;
1da177e4
LT
692 unlock_page(page);
693 }
0cd6144a 694 pagevec_remove_exceptionals(&pvec);
1da177e4
LT
695 pagevec_release(&pvec);
696 cond_resched();
b85e0eff 697 index++;
1da177e4 698 }
cd656375
JK
699 /*
700 * For DAX we invalidate page tables after invalidating radix tree. We
701 * could invalidate page tables while invalidating each entry however
702 * that would be expensive. And doing range unmapping before doesn't
703 * work as we have no cheap way to find whether radix tree entry didn't
704 * get remapped later.
705 */
706 if (dax_mapping(mapping)) {
707 unmap_mapping_range(mapping, (loff_t)start << PAGE_SHIFT,
708 (loff_t)(end - start + 1) << PAGE_SHIFT, 0);
709 }
34ccb69e 710out:
3167760f 711 cleancache_invalidate_inode(mapping);
1da177e4
LT
712 return ret;
713}
714EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
715
716/**
717 * invalidate_inode_pages2 - remove all pages from an address_space
67be2dd1 718 * @mapping: the address_space
1da177e4
LT
719 *
720 * Any pages which are found to be mapped into pagetables are unmapped prior to
721 * invalidation.
722 *
e9de25dd 723 * Returns -EBUSY if any pages could not be invalidated.
1da177e4
LT
724 */
725int invalidate_inode_pages2(struct address_space *mapping)
726{
727 return invalidate_inode_pages2_range(mapping, 0, -1);
728}
729EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
25d9e2d1 730
731/**
732 * truncate_pagecache - unmap and remove pagecache that has been truncated
733 * @inode: inode
8a549bea 734 * @newsize: new file size
25d9e2d1 735 *
736 * inode's new i_size must already be written before truncate_pagecache
737 * is called.
738 *
739 * This function should typically be called before the filesystem
740 * releases resources associated with the freed range (eg. deallocates
741 * blocks). This way, pagecache will always stay logically coherent
742 * with on-disk format, and the filesystem would not have to deal with
743 * situations such as writepage being called for a page that has already
744 * had its underlying blocks deallocated.
745 */
7caef267 746void truncate_pagecache(struct inode *inode, loff_t newsize)
25d9e2d1 747{
cedabed4 748 struct address_space *mapping = inode->i_mapping;
8a549bea 749 loff_t holebegin = round_up(newsize, PAGE_SIZE);
cedabed4
OH
750
751 /*
752 * unmap_mapping_range is called twice, first simply for
753 * efficiency so that truncate_inode_pages does fewer
754 * single-page unmaps. However after this first call, and
755 * before truncate_inode_pages finishes, it is possible for
756 * private pages to be COWed, which remain after
757 * truncate_inode_pages finishes, hence the second
758 * unmap_mapping_range call must be made for correctness.
759 */
8a549bea
HD
760 unmap_mapping_range(mapping, holebegin, 0, 1);
761 truncate_inode_pages(mapping, newsize);
762 unmap_mapping_range(mapping, holebegin, 0, 1);
25d9e2d1 763}
764EXPORT_SYMBOL(truncate_pagecache);
765
2c27c65e
CH
766/**
767 * truncate_setsize - update inode and pagecache for a new file size
768 * @inode: inode
769 * @newsize: new file size
770 *
382e27da
JK
771 * truncate_setsize updates i_size and performs pagecache truncation (if
772 * necessary) to @newsize. It will be typically be called from the filesystem's
773 * setattr function when ATTR_SIZE is passed in.
2c27c65e 774 *
77783d06
JK
775 * Must be called with a lock serializing truncates and writes (generally
776 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
777 * specific block truncation has been performed.
2c27c65e
CH
778 */
779void truncate_setsize(struct inode *inode, loff_t newsize)
780{
90a80202
JK
781 loff_t oldsize = inode->i_size;
782
2c27c65e 783 i_size_write(inode, newsize);
90a80202
JK
784 if (newsize > oldsize)
785 pagecache_isize_extended(inode, oldsize, newsize);
7caef267 786 truncate_pagecache(inode, newsize);
2c27c65e
CH
787}
788EXPORT_SYMBOL(truncate_setsize);
789
90a80202
JK
790/**
791 * pagecache_isize_extended - update pagecache after extension of i_size
792 * @inode: inode for which i_size was extended
793 * @from: original inode size
794 * @to: new inode size
795 *
796 * Handle extension of inode size either caused by extending truncate or by
797 * write starting after current i_size. We mark the page straddling current
798 * i_size RO so that page_mkwrite() is called on the nearest write access to
799 * the page. This way filesystem can be sure that page_mkwrite() is called on
800 * the page before user writes to the page via mmap after the i_size has been
801 * changed.
802 *
803 * The function must be called after i_size is updated so that page fault
804 * coming after we unlock the page will already see the new i_size.
805 * The function must be called while we still hold i_mutex - this not only
806 * makes sure i_size is stable but also that userspace cannot observe new
807 * i_size value before we are prepared to store mmap writes at new inode size.
808 */
809void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
810{
93407472 811 int bsize = i_blocksize(inode);
90a80202
JK
812 loff_t rounded_from;
813 struct page *page;
814 pgoff_t index;
815
90a80202
JK
816 WARN_ON(to > inode->i_size);
817
09cbfeaf 818 if (from >= to || bsize == PAGE_SIZE)
90a80202
JK
819 return;
820 /* Page straddling @from will not have any hole block created? */
821 rounded_from = round_up(from, bsize);
09cbfeaf 822 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
90a80202
JK
823 return;
824
09cbfeaf 825 index = from >> PAGE_SHIFT;
90a80202
JK
826 page = find_lock_page(inode->i_mapping, index);
827 /* Page not cached? Nothing to do */
828 if (!page)
829 return;
830 /*
831 * See clear_page_dirty_for_io() for details why set_page_dirty()
832 * is needed.
833 */
834 if (page_mkclean(page))
835 set_page_dirty(page);
836 unlock_page(page);
09cbfeaf 837 put_page(page);
90a80202
JK
838}
839EXPORT_SYMBOL(pagecache_isize_extended);
840
623e3db9
HD
841/**
842 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
843 * @inode: inode
844 * @lstart: offset of beginning of hole
845 * @lend: offset of last byte of hole
846 *
847 * This function should typically be called before the filesystem
848 * releases resources associated with the freed range (eg. deallocates
849 * blocks). This way, pagecache will always stay logically coherent
850 * with on-disk format, and the filesystem would not have to deal with
851 * situations such as writepage being called for a page that has already
852 * had its underlying blocks deallocated.
853 */
854void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
855{
856 struct address_space *mapping = inode->i_mapping;
857 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
858 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
859 /*
860 * This rounding is currently just for example: unmap_mapping_range
861 * expands its hole outwards, whereas we want it to contract the hole
862 * inwards. However, existing callers of truncate_pagecache_range are
5a720394
LC
863 * doing their own page rounding first. Note that unmap_mapping_range
864 * allows holelen 0 for all, and we allow lend -1 for end of file.
623e3db9
HD
865 */
866
867 /*
868 * Unlike in truncate_pagecache, unmap_mapping_range is called only
869 * once (before truncating pagecache), and without "even_cows" flag:
870 * hole-punching should not remove private COWed pages from the hole.
871 */
872 if ((u64)unmap_end > (u64)unmap_start)
873 unmap_mapping_range(mapping, unmap_start,
874 1 + unmap_end - unmap_start, 0);
875 truncate_inode_pages_range(mapping, lstart, lend);
876}
877EXPORT_SYMBOL(truncate_pagecache_range);