]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/util.c
x86/srso: Fix SBPB enablement for spec_rstack_overflow=off
[thirdparty/linux.git] / mm / util.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
16d69265 2#include <linux/mm.h>
30992c97
MM
3#include <linux/slab.h>
4#include <linux/string.h>
3b32123d 5#include <linux/compiler.h>
b95f1b31 6#include <linux/export.h>
96840aa0 7#include <linux/err.h>
3b8f14b4 8#include <linux/sched.h>
6e84f315 9#include <linux/sched/mm.h>
79eb597c 10#include <linux/sched/signal.h>
68db0cf1 11#include <linux/sched/task_stack.h>
eb36c587 12#include <linux/security.h>
9800339b 13#include <linux/swap.h>
33806f06 14#include <linux/swapops.h>
00619bcc
JM
15#include <linux/mman.h>
16#include <linux/hugetlb.h>
39f1f78d 17#include <linux/vmalloc.h>
897ab3e0 18#include <linux/userfaultfd_k.h>
649775be 19#include <linux/elf.h>
67f3977f
AG
20#include <linux/elf-randomize.h>
21#include <linux/personality.h>
649775be 22#include <linux/random.h>
67f3977f
AG
23#include <linux/processor.h>
24#include <linux/sizes.h>
25#include <linux/compat.h>
00619bcc 26
7c0f6ba6 27#include <linux/uaccess.h>
30992c97 28
6038def0 29#include "internal.h"
014bb1de 30#include "swap.h"
6038def0 31
a4bb1e43
AH
32/**
33 * kfree_const - conditionally free memory
34 * @x: pointer to the memory
35 *
36 * Function calls kfree only if @x is not in .rodata section.
37 */
38void kfree_const(const void *x)
39{
40 if (!is_kernel_rodata((unsigned long)x))
41 kfree(x);
42}
43EXPORT_SYMBOL(kfree_const);
44
30992c97 45/**
30992c97 46 * kstrdup - allocate space for and copy an existing string
30992c97
MM
47 * @s: the string to duplicate
48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
a862f68a
MR
49 *
50 * Return: newly allocated copy of @s or %NULL in case of error
30992c97 51 */
2a6772eb 52noinline
30992c97
MM
53char *kstrdup(const char *s, gfp_t gfp)
54{
55 size_t len;
56 char *buf;
57
58 if (!s)
59 return NULL;
60
61 len = strlen(s) + 1;
1d2c8eea 62 buf = kmalloc_track_caller(len, gfp);
30992c97
MM
63 if (buf)
64 memcpy(buf, s, len);
65 return buf;
66}
67EXPORT_SYMBOL(kstrdup);
96840aa0 68
a4bb1e43
AH
69/**
70 * kstrdup_const - conditionally duplicate an existing const string
71 * @s: the string to duplicate
72 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
73 *
295a1730
BG
74 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
75 * must not be passed to krealloc().
a862f68a
MR
76 *
77 * Return: source string if it is in .rodata section otherwise
78 * fallback to kstrdup.
a4bb1e43
AH
79 */
80const char *kstrdup_const(const char *s, gfp_t gfp)
81{
82 if (is_kernel_rodata((unsigned long)s))
83 return s;
84
85 return kstrdup(s, gfp);
86}
87EXPORT_SYMBOL(kstrdup_const);
88
1e66df3e
JF
89/**
90 * kstrndup - allocate space for and copy an existing string
91 * @s: the string to duplicate
92 * @max: read at most @max chars from @s
93 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
f3515741
DH
94 *
95 * Note: Use kmemdup_nul() instead if the size is known exactly.
a862f68a
MR
96 *
97 * Return: newly allocated copy of @s or %NULL in case of error
1e66df3e
JF
98 */
99char *kstrndup(const char *s, size_t max, gfp_t gfp)
100{
101 size_t len;
102 char *buf;
103
104 if (!s)
105 return NULL;
106
107 len = strnlen(s, max);
108 buf = kmalloc_track_caller(len+1, gfp);
109 if (buf) {
110 memcpy(buf, s, len);
111 buf[len] = '\0';
112 }
113 return buf;
114}
115EXPORT_SYMBOL(kstrndup);
116
1a2f67b4
AD
117/**
118 * kmemdup - duplicate region of memory
119 *
120 * @src: memory region to duplicate
121 * @len: memory region length
122 * @gfp: GFP mask to use
a862f68a 123 *
0b7b8704
HS
124 * Return: newly allocated copy of @src or %NULL in case of error,
125 * result is physically contiguous. Use kfree() to free.
1a2f67b4
AD
126 */
127void *kmemdup(const void *src, size_t len, gfp_t gfp)
128{
129 void *p;
130
1d2c8eea 131 p = kmalloc_track_caller(len, gfp);
1a2f67b4
AD
132 if (p)
133 memcpy(p, src, len);
134 return p;
135}
136EXPORT_SYMBOL(kmemdup);
137
0b7b8704
HS
138/**
139 * kvmemdup - duplicate region of memory
140 *
141 * @src: memory region to duplicate
142 * @len: memory region length
143 * @gfp: GFP mask to use
144 *
145 * Return: newly allocated copy of @src or %NULL in case of error,
146 * result may be not physically contiguous. Use kvfree() to free.
147 */
148void *kvmemdup(const void *src, size_t len, gfp_t gfp)
149{
150 void *p;
151
152 p = kvmalloc(len, gfp);
153 if (p)
154 memcpy(p, src, len);
155 return p;
156}
157EXPORT_SYMBOL(kvmemdup);
158
f3515741
DH
159/**
160 * kmemdup_nul - Create a NUL-terminated string from unterminated data
161 * @s: The data to stringify
162 * @len: The size of the data
163 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
a862f68a
MR
164 *
165 * Return: newly allocated copy of @s with NUL-termination or %NULL in
166 * case of error
f3515741
DH
167 */
168char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
169{
170 char *buf;
171
172 if (!s)
173 return NULL;
174
175 buf = kmalloc_track_caller(len + 1, gfp);
176 if (buf) {
177 memcpy(buf, s, len);
178 buf[len] = '\0';
179 }
180 return buf;
181}
182EXPORT_SYMBOL(kmemdup_nul);
183
610a77e0
LZ
184/**
185 * memdup_user - duplicate memory region from user space
186 *
187 * @src: source address in user space
188 * @len: number of bytes to copy
189 *
a862f68a 190 * Return: an ERR_PTR() on failure. Result is physically
50fd2f29 191 * contiguous, to be freed by kfree().
610a77e0
LZ
192 */
193void *memdup_user(const void __user *src, size_t len)
194{
195 void *p;
196
6c8fcc09 197 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
610a77e0
LZ
198 if (!p)
199 return ERR_PTR(-ENOMEM);
200
201 if (copy_from_user(p, src, len)) {
202 kfree(p);
203 return ERR_PTR(-EFAULT);
204 }
205
206 return p;
207}
208EXPORT_SYMBOL(memdup_user);
209
50fd2f29
AV
210/**
211 * vmemdup_user - duplicate memory region from user space
212 *
213 * @src: source address in user space
214 * @len: number of bytes to copy
215 *
a862f68a 216 * Return: an ERR_PTR() on failure. Result may be not
50fd2f29
AV
217 * physically contiguous. Use kvfree() to free.
218 */
219void *vmemdup_user(const void __user *src, size_t len)
220{
221 void *p;
222
223 p = kvmalloc(len, GFP_USER);
224 if (!p)
225 return ERR_PTR(-ENOMEM);
226
227 if (copy_from_user(p, src, len)) {
228 kvfree(p);
229 return ERR_PTR(-EFAULT);
230 }
231
232 return p;
233}
234EXPORT_SYMBOL(vmemdup_user);
235
b86181f1 236/**
96840aa0 237 * strndup_user - duplicate an existing string from user space
96840aa0
DA
238 * @s: The string to duplicate
239 * @n: Maximum number of bytes to copy, including the trailing NUL.
a862f68a 240 *
e9145521 241 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
96840aa0
DA
242 */
243char *strndup_user(const char __user *s, long n)
244{
245 char *p;
246 long length;
247
248 length = strnlen_user(s, n);
249
250 if (!length)
251 return ERR_PTR(-EFAULT);
252
253 if (length > n)
254 return ERR_PTR(-EINVAL);
255
90d74045 256 p = memdup_user(s, length);
96840aa0 257
90d74045
JL
258 if (IS_ERR(p))
259 return p;
96840aa0
DA
260
261 p[length - 1] = '\0';
262
263 return p;
264}
265EXPORT_SYMBOL(strndup_user);
16d69265 266
e9d408e1
AV
267/**
268 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
269 *
270 * @src: source address in user space
271 * @len: number of bytes to copy
272 *
a862f68a 273 * Return: an ERR_PTR() on failure.
e9d408e1
AV
274 */
275void *memdup_user_nul(const void __user *src, size_t len)
276{
277 char *p;
278
279 /*
280 * Always use GFP_KERNEL, since copy_from_user() can sleep and
281 * cause pagefault, which makes it pointless to use GFP_NOFS
282 * or GFP_ATOMIC.
283 */
284 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
285 if (!p)
286 return ERR_PTR(-ENOMEM);
287
288 if (copy_from_user(p, src, len)) {
289 kfree(p);
290 return ERR_PTR(-EFAULT);
291 }
292 p[len] = '\0';
293
294 return p;
295}
296EXPORT_SYMBOL(memdup_user_nul);
297
b7643757 298/* Check if the vma is being used as a stack by this task */
d17af505 299int vma_is_stack_for_current(struct vm_area_struct *vma)
b7643757 300{
d17af505
AL
301 struct task_struct * __maybe_unused t = current;
302
b7643757
SP
303 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
304}
305
295992fb
CK
306/*
307 * Change backing file, only valid to use during initial VMA setup.
308 */
309void vma_set_file(struct vm_area_struct *vma, struct file *file)
310{
311 /* Changing an anonymous vma with this is illegal */
312 get_file(file);
313 swap(vma->vm_file, file);
314 fput(file);
315}
316EXPORT_SYMBOL(vma_set_file);
317
649775be
AG
318#ifndef STACK_RND_MASK
319#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
320#endif
321
322unsigned long randomize_stack_top(unsigned long stack_top)
323{
324 unsigned long random_variable = 0;
325
326 if (current->flags & PF_RANDOMIZE) {
327 random_variable = get_random_long();
328 random_variable &= STACK_RND_MASK;
329 random_variable <<= PAGE_SHIFT;
330 }
331#ifdef CONFIG_STACK_GROWSUP
332 return PAGE_ALIGN(stack_top) + random_variable;
333#else
334 return PAGE_ALIGN(stack_top) - random_variable;
335#endif
336}
337
5ad7dd88
JD
338/**
339 * randomize_page - Generate a random, page aligned address
340 * @start: The smallest acceptable address the caller will take.
341 * @range: The size of the area, starting at @start, within which the
342 * random address must fall.
343 *
344 * If @start + @range would overflow, @range is capped.
345 *
346 * NOTE: Historical use of randomize_range, which this replaces, presumed that
347 * @start was already page aligned. We now align it regardless.
348 *
349 * Return: A page aligned address within [start, start + range). On error,
350 * @start is returned.
351 */
352unsigned long randomize_page(unsigned long start, unsigned long range)
353{
354 if (!PAGE_ALIGNED(start)) {
355 range -= PAGE_ALIGN(start) - start;
356 start = PAGE_ALIGN(start);
357 }
358
359 if (start > ULONG_MAX - range)
360 range = ULONG_MAX - start;
361
362 range >>= PAGE_SHIFT;
363
364 if (range == 0)
365 return start;
366
367 return start + (get_random_long() % range << PAGE_SHIFT);
368}
369
67f3977f 370#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
723820f3 371unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
e7142bf5
AG
372{
373 /* Is the current task 32bit ? */
374 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
375 return randomize_page(mm->brk, SZ_32M);
376
377 return randomize_page(mm->brk, SZ_1G);
378}
379
67f3977f
AG
380unsigned long arch_mmap_rnd(void)
381{
382 unsigned long rnd;
383
384#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
385 if (is_compat_task())
386 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
387 else
388#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
389 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
390
391 return rnd << PAGE_SHIFT;
392}
67f3977f
AG
393
394static int mmap_is_legacy(struct rlimit *rlim_stack)
395{
396 if (current->personality & ADDR_COMPAT_LAYOUT)
397 return 1;
398
3033cd43
HD
399 /* On parisc the stack always grows up - so a unlimited stack should
400 * not be an indicator to use the legacy memory layout. */
401 if (rlim_stack->rlim_cur == RLIM_INFINITY &&
402 !IS_ENABLED(CONFIG_STACK_GROWSUP))
67f3977f
AG
403 return 1;
404
405 return sysctl_legacy_va_layout;
406}
407
408/*
409 * Leave enough space between the mmap area and the stack to honour ulimit in
410 * the face of randomisation.
411 */
412#define MIN_GAP (SZ_128M)
413#define MAX_GAP (STACK_TOP / 6 * 5)
414
415static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
416{
417 unsigned long gap = rlim_stack->rlim_cur;
418 unsigned long pad = stack_guard_gap;
419
420 /* Account for stack randomization if necessary */
421 if (current->flags & PF_RANDOMIZE)
422 pad += (STACK_RND_MASK << PAGE_SHIFT);
423
424 /* Values close to RLIM_INFINITY can overflow. */
425 if (gap + pad > gap)
426 gap += pad;
427
428 if (gap < MIN_GAP)
429 gap = MIN_GAP;
430 else if (gap > MAX_GAP)
431 gap = MAX_GAP;
432
433 return PAGE_ALIGN(STACK_TOP - gap - rnd);
434}
435
436void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
437{
438 unsigned long random_factor = 0UL;
439
440 if (current->flags & PF_RANDOMIZE)
441 random_factor = arch_mmap_rnd();
442
443 if (mmap_is_legacy(rlim_stack)) {
444 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
445 mm->get_unmapped_area = arch_get_unmapped_area;
446 } else {
447 mm->mmap_base = mmap_base(random_factor, rlim_stack);
448 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
449 }
450}
451#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
8f2af155 452void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
16d69265
AM
453{
454 mm->mmap_base = TASK_UNMAPPED_BASE;
455 mm->get_unmapped_area = arch_get_unmapped_area;
16d69265
AM
456}
457#endif
912985dc 458
79eb597c
DJ
459/**
460 * __account_locked_vm - account locked pages to an mm's locked_vm
461 * @mm: mm to account against
462 * @pages: number of pages to account
463 * @inc: %true if @pages should be considered positive, %false if not
464 * @task: task used to check RLIMIT_MEMLOCK
465 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
466 *
467 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
c1e8d7c6 468 * that mmap_lock is held as writer.
79eb597c
DJ
469 *
470 * Return:
471 * * 0 on success
472 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
473 */
474int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
475 struct task_struct *task, bool bypass_rlim)
476{
477 unsigned long locked_vm, limit;
478 int ret = 0;
479
42fc5414 480 mmap_assert_write_locked(mm);
79eb597c
DJ
481
482 locked_vm = mm->locked_vm;
483 if (inc) {
484 if (!bypass_rlim) {
485 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
486 if (locked_vm + pages > limit)
487 ret = -ENOMEM;
488 }
489 if (!ret)
490 mm->locked_vm = locked_vm + pages;
491 } else {
492 WARN_ON_ONCE(pages > locked_vm);
493 mm->locked_vm = locked_vm - pages;
494 }
495
496 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
497 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
498 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
499 ret ? " - exceeded" : "");
500
501 return ret;
502}
503EXPORT_SYMBOL_GPL(__account_locked_vm);
504
505/**
506 * account_locked_vm - account locked pages to an mm's locked_vm
507 * @mm: mm to account against, may be NULL
508 * @pages: number of pages to account
509 * @inc: %true if @pages should be considered positive, %false if not
510 *
511 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
512 *
513 * Return:
514 * * 0 on success, or if mm is NULL
515 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
516 */
517int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
518{
519 int ret;
520
521 if (pages == 0 || !mm)
522 return 0;
523
d8ed45c5 524 mmap_write_lock(mm);
79eb597c
DJ
525 ret = __account_locked_vm(mm, pages, inc, current,
526 capable(CAP_IPC_LOCK));
d8ed45c5 527 mmap_write_unlock(mm);
79eb597c
DJ
528
529 return ret;
530}
531EXPORT_SYMBOL_GPL(account_locked_vm);
532
eb36c587
AV
533unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
534 unsigned long len, unsigned long prot,
9fbeb5ab 535 unsigned long flag, unsigned long pgoff)
eb36c587
AV
536{
537 unsigned long ret;
538 struct mm_struct *mm = current->mm;
41badc15 539 unsigned long populate;
897ab3e0 540 LIST_HEAD(uf);
eb36c587
AV
541
542 ret = security_mmap_file(file, prot, flag);
543 if (!ret) {
d8ed45c5 544 if (mmap_write_lock_killable(mm))
9fbeb5ab 545 return -EINTR;
592b5fad 546 ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
45e55300 547 &uf);
d8ed45c5 548 mmap_write_unlock(mm);
897ab3e0 549 userfaultfd_unmap_complete(mm, &uf);
41badc15
ML
550 if (populate)
551 mm_populate(ret, populate);
eb36c587
AV
552 }
553 return ret;
554}
555
556unsigned long vm_mmap(struct file *file, unsigned long addr,
557 unsigned long len, unsigned long prot,
558 unsigned long flag, unsigned long offset)
559{
560 if (unlikely(offset + PAGE_ALIGN(len) < offset))
561 return -EINVAL;
ea53cde0 562 if (unlikely(offset_in_page(offset)))
eb36c587
AV
563 return -EINVAL;
564
9fbeb5ab 565 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
eb36c587
AV
566}
567EXPORT_SYMBOL(vm_mmap);
568
a7c3e901
MH
569/**
570 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
571 * failure, fall back to non-contiguous (vmalloc) allocation.
572 * @size: size of the request.
573 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
574 * @node: numa node to allocate from
575 *
576 * Uses kmalloc to get the memory but if the allocation fails then falls back
577 * to the vmalloc allocator. Use kvfree for freeing the memory.
578 *
a421ef30 579 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
cc965a29
MH
580 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
581 * preferable to the vmalloc fallback, due to visible performance drawbacks.
a7c3e901 582 *
a862f68a 583 * Return: pointer to the allocated memory of %NULL in case of failure
a7c3e901
MH
584 */
585void *kvmalloc_node(size_t size, gfp_t flags, int node)
586{
587 gfp_t kmalloc_flags = flags;
588 void *ret;
589
a7c3e901 590 /*
4f4f2ba9
MH
591 * We want to attempt a large physically contiguous block first because
592 * it is less likely to fragment multiple larger blocks and therefore
593 * contribute to a long term fragmentation less than vmalloc fallback.
594 * However make sure that larger requests are not too disruptive - no
595 * OOM killer and no allocation failure warnings as we have a fallback.
a7c3e901 596 */
6c5ab651
MH
597 if (size > PAGE_SIZE) {
598 kmalloc_flags |= __GFP_NOWARN;
599
cc965a29 600 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
6c5ab651 601 kmalloc_flags |= __GFP_NORETRY;
a421ef30
MH
602
603 /* nofail semantic is implemented by the vmalloc fallback */
604 kmalloc_flags &= ~__GFP_NOFAIL;
6c5ab651 605 }
a7c3e901
MH
606
607 ret = kmalloc_node(size, kmalloc_flags, node);
608
609 /*
610 * It doesn't really make sense to fallback to vmalloc for sub page
611 * requests
612 */
613 if (ret || size <= PAGE_SIZE)
614 return ret;
615
30c19366
FW
616 /* non-sleeping allocations are not supported by vmalloc */
617 if (!gfpflags_allow_blocking(flags))
618 return NULL;
619
7661809d 620 /* Don't even allow crazy sizes */
0708a0af
DB
621 if (unlikely(size > INT_MAX)) {
622 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
7661809d 623 return NULL;
0708a0af 624 }
7661809d 625
9becb688
LT
626 /*
627 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
628 * since the callers already cannot assume anything
629 * about the resulting pointer, and cannot play
630 * protection games.
631 */
632 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
633 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
634 node, __builtin_return_address(0));
a7c3e901
MH
635}
636EXPORT_SYMBOL(kvmalloc_node);
637
ff4dc772 638/**
04b8e946
AM
639 * kvfree() - Free memory.
640 * @addr: Pointer to allocated memory.
ff4dc772 641 *
04b8e946
AM
642 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
643 * It is slightly more efficient to use kfree() or vfree() if you are certain
644 * that you know which one to use.
645 *
52414d33 646 * Context: Either preemptible task context or not-NMI interrupt.
ff4dc772 647 */
39f1f78d
AV
648void kvfree(const void *addr)
649{
650 if (is_vmalloc_addr(addr))
651 vfree(addr);
652 else
653 kfree(addr);
654}
655EXPORT_SYMBOL(kvfree);
656
d4eaa283
WL
657/**
658 * kvfree_sensitive - Free a data object containing sensitive information.
659 * @addr: address of the data object to be freed.
660 * @len: length of the data object.
661 *
662 * Use the special memzero_explicit() function to clear the content of a
663 * kvmalloc'ed object containing sensitive data to make sure that the
664 * compiler won't optimize out the data clearing.
665 */
666void kvfree_sensitive(const void *addr, size_t len)
667{
668 if (likely(!ZERO_OR_NULL_PTR(addr))) {
669 memzero_explicit((void *)addr, len);
670 kvfree(addr);
671 }
672}
673EXPORT_SYMBOL(kvfree_sensitive);
674
de2860f4
DC
675void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
676{
677 void *newp;
678
679 if (oldsize >= newsize)
680 return (void *)p;
681 newp = kvmalloc(newsize, flags);
682 if (!newp)
683 return NULL;
684 memcpy(newp, p, oldsize);
685 kvfree(p);
686 return newp;
687}
688EXPORT_SYMBOL(kvrealloc);
689
a8749a35
PB
690/**
691 * __vmalloc_array - allocate memory for a virtually contiguous array.
692 * @n: number of elements.
693 * @size: element size.
694 * @flags: the type of memory to allocate (see kmalloc).
695 */
696void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
697{
698 size_t bytes;
699
700 if (unlikely(check_mul_overflow(n, size, &bytes)))
701 return NULL;
702 return __vmalloc(bytes, flags);
703}
704EXPORT_SYMBOL(__vmalloc_array);
705
706/**
707 * vmalloc_array - allocate memory for a virtually contiguous array.
708 * @n: number of elements.
709 * @size: element size.
710 */
711void *vmalloc_array(size_t n, size_t size)
712{
713 return __vmalloc_array(n, size, GFP_KERNEL);
714}
715EXPORT_SYMBOL(vmalloc_array);
716
717/**
718 * __vcalloc - allocate and zero memory for a virtually contiguous array.
719 * @n: number of elements.
720 * @size: element size.
721 * @flags: the type of memory to allocate (see kmalloc).
722 */
723void *__vcalloc(size_t n, size_t size, gfp_t flags)
724{
725 return __vmalloc_array(n, size, flags | __GFP_ZERO);
726}
727EXPORT_SYMBOL(__vcalloc);
728
729/**
730 * vcalloc - allocate and zero memory for a virtually contiguous array.
731 * @n: number of elements.
732 * @size: element size.
733 */
734void *vcalloc(size_t n, size_t size)
735{
736 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
737}
738EXPORT_SYMBOL(vcalloc);
739
e05b3453 740struct anon_vma *folio_anon_vma(struct folio *folio)
e39155ea 741{
64601000 742 unsigned long mapping = (unsigned long)folio->mapping;
e39155ea 743
e39155ea
KS
744 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
745 return NULL;
64601000 746 return (void *)(mapping - PAGE_MAPPING_ANON);
e39155ea
KS
747}
748
2f52578f
MWO
749/**
750 * folio_mapping - Find the mapping where this folio is stored.
751 * @folio: The folio.
752 *
753 * For folios which are in the page cache, return the mapping that this
754 * page belongs to. Folios in the swap cache return the swap mapping
755 * this page is stored in (which is different from the mapping for the
756 * swap file or swap device where the data is stored).
757 *
758 * You can call this for folios which aren't in the swap cache or page
759 * cache and it will return NULL.
760 */
761struct address_space *folio_mapping(struct folio *folio)
9800339b 762{
1c290f64
KS
763 struct address_space *mapping;
764
03e5ac2f 765 /* This happens if someone calls flush_dcache_page on slab page */
2f52578f 766 if (unlikely(folio_test_slab(folio)))
03e5ac2f
MP
767 return NULL;
768
2f52578f 769 if (unlikely(folio_test_swapcache(folio)))
3d2c9087 770 return swap_address_space(folio->swap);
e39155ea 771
2f52578f 772 mapping = folio->mapping;
68f2736a 773 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
e39155ea 774 return NULL;
bda807d4 775
68f2736a 776 return mapping;
9800339b 777}
2f52578f 778EXPORT_SYMBOL(folio_mapping);
9800339b 779
715cbfd6
MWO
780/**
781 * folio_copy - Copy the contents of one folio to another.
782 * @dst: Folio to copy to.
783 * @src: Folio to copy from.
784 *
785 * The bytes in the folio represented by @src are copied to @dst.
786 * Assumes the caller has validated that @dst is at least as large as @src.
787 * Can be called in atomic context for order-0 folios, but if the folio is
788 * larger, it may sleep.
789 */
790void folio_copy(struct folio *dst, struct folio *src)
79789db0 791{
715cbfd6
MWO
792 long i = 0;
793 long nr = folio_nr_pages(src);
79789db0 794
715cbfd6
MWO
795 for (;;) {
796 copy_highpage(folio_page(dst, i), folio_page(src, i));
797 if (++i == nr)
798 break;
79789db0 799 cond_resched();
79789db0
MWO
800 }
801}
802
39a1aa8e
AR
803int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
804int sysctl_overcommit_ratio __read_mostly = 50;
805unsigned long sysctl_overcommit_kbytes __read_mostly;
806int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
807unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
808unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
809
32927393
CH
810int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
811 size_t *lenp, loff_t *ppos)
49f0ce5f
JM
812{
813 int ret;
814
815 ret = proc_dointvec(table, write, buffer, lenp, ppos);
816 if (ret == 0 && write)
817 sysctl_overcommit_kbytes = 0;
818 return ret;
819}
820
56f3547b
FT
821static void sync_overcommit_as(struct work_struct *dummy)
822{
823 percpu_counter_sync(&vm_committed_as);
824}
825
826int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
827 size_t *lenp, loff_t *ppos)
828{
829 struct ctl_table t;
bcbda810 830 int new_policy = -1;
56f3547b
FT
831 int ret;
832
833 /*
834 * The deviation of sync_overcommit_as could be big with loose policy
835 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
836 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
31454980 837 * with the strict "NEVER", and to avoid possible race condition (even
56f3547b
FT
838 * though user usually won't too frequently do the switching to policy
839 * OVERCOMMIT_NEVER), the switch is done in the following order:
840 * 1. changing the batch
841 * 2. sync percpu count on each CPU
842 * 3. switch the policy
843 */
844 if (write) {
845 t = *table;
846 t.data = &new_policy;
847 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
bcbda810 848 if (ret || new_policy == -1)
56f3547b
FT
849 return ret;
850
851 mm_compute_batch(new_policy);
852 if (new_policy == OVERCOMMIT_NEVER)
853 schedule_on_each_cpu(sync_overcommit_as);
854 sysctl_overcommit_memory = new_policy;
855 } else {
856 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
857 }
858
859 return ret;
860}
861
32927393
CH
862int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
863 size_t *lenp, loff_t *ppos)
49f0ce5f
JM
864{
865 int ret;
866
867 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
868 if (ret == 0 && write)
869 sysctl_overcommit_ratio = 0;
870 return ret;
871}
872
00619bcc
JM
873/*
874 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
875 */
876unsigned long vm_commit_limit(void)
877{
49f0ce5f
JM
878 unsigned long allowed;
879
880 if (sysctl_overcommit_kbytes)
881 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
882 else
ca79b0c2 883 allowed = ((totalram_pages() - hugetlb_total_pages())
49f0ce5f
JM
884 * sysctl_overcommit_ratio / 100);
885 allowed += total_swap_pages;
886
887 return allowed;
00619bcc
JM
888}
889
39a1aa8e
AR
890/*
891 * Make sure vm_committed_as in one cacheline and not cacheline shared with
892 * other variables. It can be updated by several CPUs frequently.
893 */
894struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
895
896/*
897 * The global memory commitment made in the system can be a metric
898 * that can be used to drive ballooning decisions when Linux is hosted
899 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
900 * balancing memory across competing virtual machines that are hosted.
901 * Several metrics drive this policy engine including the guest reported
902 * memory commitment.
4e2ee51e
FT
903 *
904 * The time cost of this is very low for small platforms, and for big
905 * platform like a 2S/36C/72T Skylake server, in worst case where
906 * vm_committed_as's spinlock is under severe contention, the time cost
907 * could be about 30~40 microseconds.
39a1aa8e
AR
908 */
909unsigned long vm_memory_committed(void)
910{
4e2ee51e 911 return percpu_counter_sum_positive(&vm_committed_as);
39a1aa8e
AR
912}
913EXPORT_SYMBOL_GPL(vm_memory_committed);
914
915/*
916 * Check that a process has enough memory to allocate a new virtual
917 * mapping. 0 means there is enough memory for the allocation to
918 * succeed and -ENOMEM implies there is not.
919 *
920 * We currently support three overcommit policies, which are set via the
ee65728e 921 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst
39a1aa8e
AR
922 *
923 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
924 * Additional code 2002 Jul 20 by Robert Love.
925 *
926 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
927 *
928 * Note this is a helper function intended to be used by LSMs which
929 * wish to use this logic.
930 */
931int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
932{
8c7829b0 933 long allowed;
39a1aa8e 934
39a1aa8e
AR
935 vm_acct_memory(pages);
936
937 /*
938 * Sometimes we want to use more memory than we have
939 */
940 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
941 return 0;
942
943 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
8c7829b0 944 if (pages > totalram_pages() + total_swap_pages)
39a1aa8e 945 goto error;
8c7829b0 946 return 0;
39a1aa8e
AR
947 }
948
949 allowed = vm_commit_limit();
950 /*
951 * Reserve some for root
952 */
953 if (!cap_sys_admin)
954 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
955
956 /*
957 * Don't let a single process grow so big a user can't recover
958 */
959 if (mm) {
8c7829b0
JW
960 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
961
39a1aa8e
AR
962 allowed -= min_t(long, mm->total_vm / 32, reserve);
963 }
964
965 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
966 return 0;
967error:
6bdfc60c 968 pr_warn_ratelimited("%s: pid: %d, comm: %s, not enough memory for the allocation\n",
44b414c8 969 __func__, current->pid, current->comm);
39a1aa8e
AR
970 vm_unacct_memory(pages);
971
972 return -ENOMEM;
973}
974
a9090253
WR
975/**
976 * get_cmdline() - copy the cmdline value to a buffer.
977 * @task: the task whose cmdline value to copy.
978 * @buffer: the buffer to copy to.
979 * @buflen: the length of the buffer. Larger cmdline values are truncated
980 * to this length.
a862f68a
MR
981 *
982 * Return: the size of the cmdline field copied. Note that the copy does
a9090253
WR
983 * not guarantee an ending NULL byte.
984 */
985int get_cmdline(struct task_struct *task, char *buffer, int buflen)
986{
987 int res = 0;
988 unsigned int len;
989 struct mm_struct *mm = get_task_mm(task);
a3b609ef 990 unsigned long arg_start, arg_end, env_start, env_end;
a9090253
WR
991 if (!mm)
992 goto out;
993 if (!mm->arg_end)
994 goto out_mm; /* Shh! No looking before we're done */
995
bc81426f 996 spin_lock(&mm->arg_lock);
a3b609ef
MG
997 arg_start = mm->arg_start;
998 arg_end = mm->arg_end;
999 env_start = mm->env_start;
1000 env_end = mm->env_end;
bc81426f 1001 spin_unlock(&mm->arg_lock);
a3b609ef
MG
1002
1003 len = arg_end - arg_start;
a9090253
WR
1004
1005 if (len > buflen)
1006 len = buflen;
1007
f307ab6d 1008 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
a9090253
WR
1009
1010 /*
1011 * If the nul at the end of args has been overwritten, then
1012 * assume application is using setproctitle(3).
1013 */
1014 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1015 len = strnlen(buffer, res);
1016 if (len < res) {
1017 res = len;
1018 } else {
a3b609ef 1019 len = env_end - env_start;
a9090253
WR
1020 if (len > buflen - res)
1021 len = buflen - res;
a3b609ef 1022 res += access_process_vm(task, env_start,
f307ab6d
LS
1023 buffer+res, len,
1024 FOLL_FORCE);
a9090253
WR
1025 res = strnlen(buffer, res);
1026 }
1027 }
1028out_mm:
1029 mmput(mm);
1030out:
1031 return res;
1032}
010c164a 1033
4d1a8a2d 1034int __weak memcmp_pages(struct page *page1, struct page *page2)
010c164a
SL
1035{
1036 char *addr1, *addr2;
1037 int ret;
1038
1039 addr1 = kmap_atomic(page1);
1040 addr2 = kmap_atomic(page2);
1041 ret = memcmp(addr1, addr2, PAGE_SIZE);
1042 kunmap_atomic(addr2);
1043 kunmap_atomic(addr1);
1044 return ret;
1045}
8e7f37f2 1046
5bb1bb35 1047#ifdef CONFIG_PRINTK
8e7f37f2
PM
1048/**
1049 * mem_dump_obj - Print available provenance information
1050 * @object: object for which to find provenance information.
1051 *
1052 * This function uses pr_cont(), so that the caller is expected to have
1053 * printed out whatever preamble is appropriate. The provenance information
1054 * depends on the type of object and on how much debugging is enabled.
1055 * For example, for a slab-cache object, the slab name is printed, and,
1056 * if available, the return address and stack trace from the allocation
e548eaa1 1057 * and last free path of that object.
8e7f37f2
PM
1058 */
1059void mem_dump_obj(void *object)
1060{
2521781c
JP
1061 const char *type;
1062
98f18083
PM
1063 if (kmem_valid_obj(object)) {
1064 kmem_dump_obj(object);
1065 return;
1066 }
2521781c 1067
98f18083
PM
1068 if (vmalloc_dump_obj(object))
1069 return;
2521781c 1070
c83ad36a
Z
1071 if (is_vmalloc_addr(object))
1072 type = "vmalloc memory";
1073 else if (virt_addr_valid(object))
2521781c
JP
1074 type = "non-slab/vmalloc memory";
1075 else if (object == NULL)
1076 type = "NULL pointer";
1077 else if (object == ZERO_SIZE_PTR)
1078 type = "zero-size pointer";
1079 else
1080 type = "non-paged memory";
1081
1082 pr_cont(" %s\n", type);
8e7f37f2 1083}
0d3dd2c8 1084EXPORT_SYMBOL_GPL(mem_dump_obj);
5bb1bb35 1085#endif
82840451
DH
1086
1087/*
1088 * A driver might set a page logically offline -- PageOffline() -- and
1089 * turn the page inaccessible in the hypervisor; after that, access to page
1090 * content can be fatal.
1091 *
1092 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1093 * pages after checking PageOffline(); however, these PFN walkers can race
1094 * with drivers that set PageOffline().
1095 *
1096 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1097 * synchronize with such drivers, achieving that a page cannot be set
1098 * PageOffline() while frozen.
1099 *
1100 * page_offline_begin()/page_offline_end() is used by drivers that care about
1101 * such races when setting a page PageOffline().
1102 */
1103static DECLARE_RWSEM(page_offline_rwsem);
1104
1105void page_offline_freeze(void)
1106{
1107 down_read(&page_offline_rwsem);
1108}
1109
1110void page_offline_thaw(void)
1111{
1112 up_read(&page_offline_rwsem);
1113}
1114
1115void page_offline_begin(void)
1116{
1117 down_write(&page_offline_rwsem);
1118}
1119EXPORT_SYMBOL(page_offline_begin);
1120
1121void page_offline_end(void)
1122{
1123 up_write(&page_offline_rwsem);
1124}
1125EXPORT_SYMBOL(page_offline_end);
08b0b005 1126
29d26f12 1127#ifndef flush_dcache_folio
08b0b005
MWO
1128void flush_dcache_folio(struct folio *folio)
1129{
1130 long i, nr = folio_nr_pages(folio);
1131
1132 for (i = 0; i < nr; i++)
1133 flush_dcache_page(folio_page(folio, i));
1134}
1135EXPORT_SYMBOL(flush_dcache_folio);
1136#endif