]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/vmalloc.c
Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/kernel/stable.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02
NP
26#include <linux/rbtree.h>
27#include <linux/radix-tree.h>
28#include <linux/rcupdate.h>
f0aa6617 29#include <linux/pfn.h>
89219d37 30#include <linux/kmemleak.h>
60063497 31#include <linux/atomic.h>
3b32123d 32#include <linux/compiler.h>
32fcfd40 33#include <linux/llist.h>
0f616be1 34#include <linux/bitops.h>
3b32123d 35
7c0f6ba6 36#include <linux/uaccess.h>
1da177e4 37#include <asm/tlbflush.h>
2dca6999 38#include <asm/shmparam.h>
1da177e4 39
dd56b046
MG
40#include "internal.h"
41
32fcfd40
AV
42struct vfree_deferred {
43 struct llist_head list;
44 struct work_struct wq;
45};
46static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
47
48static void __vunmap(const void *, int);
49
50static void free_work(struct work_struct *w)
51{
52 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
53 struct llist_node *t, *llnode;
54
55 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
56 __vunmap((void *)llnode, 1);
32fcfd40
AV
57}
58
db64fe02 59/*** Page table manipulation functions ***/
b221385b 60
1da177e4
LT
61static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
62{
63 pte_t *pte;
64
65 pte = pte_offset_kernel(pmd, addr);
66 do {
67 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
68 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
69 } while (pte++, addr += PAGE_SIZE, addr != end);
70}
71
db64fe02 72static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
73{
74 pmd_t *pmd;
75 unsigned long next;
76
77 pmd = pmd_offset(pud, addr);
78 do {
79 next = pmd_addr_end(addr, end);
b9820d8f
TK
80 if (pmd_clear_huge(pmd))
81 continue;
1da177e4
LT
82 if (pmd_none_or_clear_bad(pmd))
83 continue;
84 vunmap_pte_range(pmd, addr, next);
85 } while (pmd++, addr = next, addr != end);
86}
87
c2febafc 88static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
89{
90 pud_t *pud;
91 unsigned long next;
92
c2febafc 93 pud = pud_offset(p4d, addr);
1da177e4
LT
94 do {
95 next = pud_addr_end(addr, end);
b9820d8f
TK
96 if (pud_clear_huge(pud))
97 continue;
1da177e4
LT
98 if (pud_none_or_clear_bad(pud))
99 continue;
100 vunmap_pmd_range(pud, addr, next);
101 } while (pud++, addr = next, addr != end);
102}
103
c2febafc
KS
104static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
105{
106 p4d_t *p4d;
107 unsigned long next;
108
109 p4d = p4d_offset(pgd, addr);
110 do {
111 next = p4d_addr_end(addr, end);
112 if (p4d_clear_huge(p4d))
113 continue;
114 if (p4d_none_or_clear_bad(p4d))
115 continue;
116 vunmap_pud_range(p4d, addr, next);
117 } while (p4d++, addr = next, addr != end);
118}
119
db64fe02 120static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
121{
122 pgd_t *pgd;
123 unsigned long next;
1da177e4
LT
124
125 BUG_ON(addr >= end);
126 pgd = pgd_offset_k(addr);
1da177e4
LT
127 do {
128 next = pgd_addr_end(addr, end);
129 if (pgd_none_or_clear_bad(pgd))
130 continue;
c2febafc 131 vunmap_p4d_range(pgd, addr, next);
1da177e4 132 } while (pgd++, addr = next, addr != end);
1da177e4
LT
133}
134
135static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 136 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
137{
138 pte_t *pte;
139
db64fe02
NP
140 /*
141 * nr is a running index into the array which helps higher level
142 * callers keep track of where we're up to.
143 */
144
872fec16 145 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
146 if (!pte)
147 return -ENOMEM;
148 do {
db64fe02
NP
149 struct page *page = pages[*nr];
150
151 if (WARN_ON(!pte_none(*pte)))
152 return -EBUSY;
153 if (WARN_ON(!page))
1da177e4
LT
154 return -ENOMEM;
155 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 156 (*nr)++;
1da177e4
LT
157 } while (pte++, addr += PAGE_SIZE, addr != end);
158 return 0;
159}
160
db64fe02
NP
161static int vmap_pmd_range(pud_t *pud, unsigned long addr,
162 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
163{
164 pmd_t *pmd;
165 unsigned long next;
166
167 pmd = pmd_alloc(&init_mm, pud, addr);
168 if (!pmd)
169 return -ENOMEM;
170 do {
171 next = pmd_addr_end(addr, end);
db64fe02 172 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
173 return -ENOMEM;
174 } while (pmd++, addr = next, addr != end);
175 return 0;
176}
177
c2febafc 178static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 179 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
180{
181 pud_t *pud;
182 unsigned long next;
183
c2febafc 184 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
185 if (!pud)
186 return -ENOMEM;
187 do {
188 next = pud_addr_end(addr, end);
db64fe02 189 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
190 return -ENOMEM;
191 } while (pud++, addr = next, addr != end);
192 return 0;
193}
194
c2febafc
KS
195static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
196 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
197{
198 p4d_t *p4d;
199 unsigned long next;
200
201 p4d = p4d_alloc(&init_mm, pgd, addr);
202 if (!p4d)
203 return -ENOMEM;
204 do {
205 next = p4d_addr_end(addr, end);
206 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
207 return -ENOMEM;
208 } while (p4d++, addr = next, addr != end);
209 return 0;
210}
211
db64fe02
NP
212/*
213 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
214 * will have pfns corresponding to the "pages" array.
215 *
216 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
217 */
8fc48985
TH
218static int vmap_page_range_noflush(unsigned long start, unsigned long end,
219 pgprot_t prot, struct page **pages)
1da177e4
LT
220{
221 pgd_t *pgd;
222 unsigned long next;
2e4e27c7 223 unsigned long addr = start;
db64fe02
NP
224 int err = 0;
225 int nr = 0;
1da177e4
LT
226
227 BUG_ON(addr >= end);
228 pgd = pgd_offset_k(addr);
1da177e4
LT
229 do {
230 next = pgd_addr_end(addr, end);
c2febafc 231 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 232 if (err)
bf88c8c8 233 return err;
1da177e4 234 } while (pgd++, addr = next, addr != end);
db64fe02 235
db64fe02 236 return nr;
1da177e4
LT
237}
238
8fc48985
TH
239static int vmap_page_range(unsigned long start, unsigned long end,
240 pgprot_t prot, struct page **pages)
241{
242 int ret;
243
244 ret = vmap_page_range_noflush(start, end, prot, pages);
245 flush_cache_vmap(start, end);
246 return ret;
247}
248
81ac3ad9 249int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
250{
251 /*
ab4f2ee1 252 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
253 * and fall back on vmalloc() if that fails. Others
254 * just put it in the vmalloc space.
255 */
256#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
257 unsigned long addr = (unsigned long)x;
258 if (addr >= MODULES_VADDR && addr < MODULES_END)
259 return 1;
260#endif
261 return is_vmalloc_addr(x);
262}
263
48667e7a 264/*
add688fb 265 * Walk a vmap address to the struct page it maps.
48667e7a 266 */
add688fb 267struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
268{
269 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 270 struct page *page = NULL;
48667e7a 271 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
272 p4d_t *p4d;
273 pud_t *pud;
274 pmd_t *pmd;
275 pte_t *ptep, pte;
48667e7a 276
7aa413de
IM
277 /*
278 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
279 * architectures that do not vmalloc module space
280 */
73bdf0a6 281 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 282
c2febafc
KS
283 if (pgd_none(*pgd))
284 return NULL;
285 p4d = p4d_offset(pgd, addr);
286 if (p4d_none(*p4d))
287 return NULL;
288 pud = pud_offset(p4d, addr);
029c54b0
AB
289
290 /*
291 * Don't dereference bad PUD or PMD (below) entries. This will also
292 * identify huge mappings, which we may encounter on architectures
293 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
294 * identified as vmalloc addresses by is_vmalloc_addr(), but are
295 * not [unambiguously] associated with a struct page, so there is
296 * no correct value to return for them.
297 */
298 WARN_ON_ONCE(pud_bad(*pud));
299 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
300 return NULL;
301 pmd = pmd_offset(pud, addr);
029c54b0
AB
302 WARN_ON_ONCE(pmd_bad(*pmd));
303 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
304 return NULL;
305
306 ptep = pte_offset_map(pmd, addr);
307 pte = *ptep;
308 if (pte_present(pte))
309 page = pte_page(pte);
310 pte_unmap(ptep);
add688fb 311 return page;
48667e7a 312}
add688fb 313EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
314
315/*
add688fb 316 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 317 */
add688fb 318unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 319{
add688fb 320 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 321}
add688fb 322EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 323
db64fe02
NP
324
325/*** Global kva allocator ***/
326
78c72746 327#define VM_LAZY_FREE 0x02
db64fe02
NP
328#define VM_VM_AREA 0x04
329
db64fe02 330static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
331/* Export for kexec only */
332LIST_HEAD(vmap_area_list);
80c4bd7a 333static LLIST_HEAD(vmap_purge_list);
89699605
NP
334static struct rb_root vmap_area_root = RB_ROOT;
335
336/* The vmap cache globals are protected by vmap_area_lock */
337static struct rb_node *free_vmap_cache;
338static unsigned long cached_hole_size;
339static unsigned long cached_vstart;
340static unsigned long cached_align;
341
ca23e405 342static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
343
344static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 345{
db64fe02
NP
346 struct rb_node *n = vmap_area_root.rb_node;
347
348 while (n) {
349 struct vmap_area *va;
350
351 va = rb_entry(n, struct vmap_area, rb_node);
352 if (addr < va->va_start)
353 n = n->rb_left;
cef2ac3f 354 else if (addr >= va->va_end)
db64fe02
NP
355 n = n->rb_right;
356 else
357 return va;
358 }
359
360 return NULL;
361}
362
363static void __insert_vmap_area(struct vmap_area *va)
364{
365 struct rb_node **p = &vmap_area_root.rb_node;
366 struct rb_node *parent = NULL;
367 struct rb_node *tmp;
368
369 while (*p) {
170168d0 370 struct vmap_area *tmp_va;
db64fe02
NP
371
372 parent = *p;
170168d0
NK
373 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
374 if (va->va_start < tmp_va->va_end)
db64fe02 375 p = &(*p)->rb_left;
170168d0 376 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
377 p = &(*p)->rb_right;
378 else
379 BUG();
380 }
381
382 rb_link_node(&va->rb_node, parent, p);
383 rb_insert_color(&va->rb_node, &vmap_area_root);
384
4341fa45 385 /* address-sort this list */
db64fe02
NP
386 tmp = rb_prev(&va->rb_node);
387 if (tmp) {
388 struct vmap_area *prev;
389 prev = rb_entry(tmp, struct vmap_area, rb_node);
390 list_add_rcu(&va->list, &prev->list);
391 } else
392 list_add_rcu(&va->list, &vmap_area_list);
393}
394
395static void purge_vmap_area_lazy(void);
396
4da56b99
CW
397static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
398
db64fe02
NP
399/*
400 * Allocate a region of KVA of the specified size and alignment, within the
401 * vstart and vend.
402 */
403static struct vmap_area *alloc_vmap_area(unsigned long size,
404 unsigned long align,
405 unsigned long vstart, unsigned long vend,
406 int node, gfp_t gfp_mask)
407{
408 struct vmap_area *va;
409 struct rb_node *n;
1da177e4 410 unsigned long addr;
db64fe02 411 int purged = 0;
89699605 412 struct vmap_area *first;
db64fe02 413
7766970c 414 BUG_ON(!size);
891c49ab 415 BUG_ON(offset_in_page(size));
89699605 416 BUG_ON(!is_power_of_2(align));
db64fe02 417
5803ed29 418 might_sleep();
4da56b99 419
db64fe02
NP
420 va = kmalloc_node(sizeof(struct vmap_area),
421 gfp_mask & GFP_RECLAIM_MASK, node);
422 if (unlikely(!va))
423 return ERR_PTR(-ENOMEM);
424
7f88f88f
CM
425 /*
426 * Only scan the relevant parts containing pointers to other objects
427 * to avoid false negatives.
428 */
429 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
430
db64fe02
NP
431retry:
432 spin_lock(&vmap_area_lock);
89699605
NP
433 /*
434 * Invalidate cache if we have more permissive parameters.
435 * cached_hole_size notes the largest hole noticed _below_
436 * the vmap_area cached in free_vmap_cache: if size fits
437 * into that hole, we want to scan from vstart to reuse
438 * the hole instead of allocating above free_vmap_cache.
439 * Note that __free_vmap_area may update free_vmap_cache
440 * without updating cached_hole_size or cached_align.
441 */
442 if (!free_vmap_cache ||
443 size < cached_hole_size ||
444 vstart < cached_vstart ||
445 align < cached_align) {
446nocache:
447 cached_hole_size = 0;
448 free_vmap_cache = NULL;
449 }
450 /* record if we encounter less permissive parameters */
451 cached_vstart = vstart;
452 cached_align = align;
453
454 /* find starting point for our search */
455 if (free_vmap_cache) {
456 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 457 addr = ALIGN(first->va_end, align);
89699605
NP
458 if (addr < vstart)
459 goto nocache;
bcb615a8 460 if (addr + size < addr)
89699605
NP
461 goto overflow;
462
463 } else {
464 addr = ALIGN(vstart, align);
bcb615a8 465 if (addr + size < addr)
89699605
NP
466 goto overflow;
467
468 n = vmap_area_root.rb_node;
469 first = NULL;
470
471 while (n) {
db64fe02
NP
472 struct vmap_area *tmp;
473 tmp = rb_entry(n, struct vmap_area, rb_node);
474 if (tmp->va_end >= addr) {
db64fe02 475 first = tmp;
89699605
NP
476 if (tmp->va_start <= addr)
477 break;
478 n = n->rb_left;
479 } else
db64fe02 480 n = n->rb_right;
89699605 481 }
db64fe02
NP
482
483 if (!first)
484 goto found;
db64fe02 485 }
89699605
NP
486
487 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 488 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
489 if (addr + cached_hole_size < first->va_start)
490 cached_hole_size = first->va_start - addr;
248ac0e1 491 addr = ALIGN(first->va_end, align);
bcb615a8 492 if (addr + size < addr)
89699605
NP
493 goto overflow;
494
92ca922f 495 if (list_is_last(&first->list, &vmap_area_list))
89699605 496 goto found;
92ca922f 497
6219c2a2 498 first = list_next_entry(first, list);
db64fe02
NP
499 }
500
89699605 501found:
afd07389
URS
502 /*
503 * Check also calculated address against the vstart,
504 * because it can be 0 because of big align request.
505 */
506 if (addr + size > vend || addr < vstart)
89699605 507 goto overflow;
db64fe02
NP
508
509 va->va_start = addr;
510 va->va_end = addr + size;
511 va->flags = 0;
512 __insert_vmap_area(va);
89699605 513 free_vmap_cache = &va->rb_node;
db64fe02
NP
514 spin_unlock(&vmap_area_lock);
515
61e16557 516 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
517 BUG_ON(va->va_start < vstart);
518 BUG_ON(va->va_end > vend);
519
db64fe02 520 return va;
89699605
NP
521
522overflow:
523 spin_unlock(&vmap_area_lock);
524 if (!purged) {
525 purge_vmap_area_lazy();
526 purged = 1;
527 goto retry;
528 }
4da56b99
CW
529
530 if (gfpflags_allow_blocking(gfp_mask)) {
531 unsigned long freed = 0;
532 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
533 if (freed > 0) {
534 purged = 0;
535 goto retry;
536 }
537 }
538
03497d76 539 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
540 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
541 size);
89699605
NP
542 kfree(va);
543 return ERR_PTR(-EBUSY);
db64fe02
NP
544}
545
4da56b99
CW
546int register_vmap_purge_notifier(struct notifier_block *nb)
547{
548 return blocking_notifier_chain_register(&vmap_notify_list, nb);
549}
550EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
551
552int unregister_vmap_purge_notifier(struct notifier_block *nb)
553{
554 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
555}
556EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
557
db64fe02
NP
558static void __free_vmap_area(struct vmap_area *va)
559{
560 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
561
562 if (free_vmap_cache) {
563 if (va->va_end < cached_vstart) {
564 free_vmap_cache = NULL;
565 } else {
566 struct vmap_area *cache;
567 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
568 if (va->va_start <= cache->va_start) {
569 free_vmap_cache = rb_prev(&va->rb_node);
570 /*
571 * We don't try to update cached_hole_size or
572 * cached_align, but it won't go very wrong.
573 */
574 }
575 }
576 }
db64fe02
NP
577 rb_erase(&va->rb_node, &vmap_area_root);
578 RB_CLEAR_NODE(&va->rb_node);
579 list_del_rcu(&va->list);
580
ca23e405
TH
581 /*
582 * Track the highest possible candidate for pcpu area
583 * allocation. Areas outside of vmalloc area can be returned
584 * here too, consider only end addresses which fall inside
585 * vmalloc area proper.
586 */
587 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
588 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
589
14769de9 590 kfree_rcu(va, rcu_head);
db64fe02
NP
591}
592
593/*
594 * Free a region of KVA allocated by alloc_vmap_area
595 */
596static void free_vmap_area(struct vmap_area *va)
597{
598 spin_lock(&vmap_area_lock);
599 __free_vmap_area(va);
600 spin_unlock(&vmap_area_lock);
601}
602
603/*
604 * Clear the pagetable entries of a given vmap_area
605 */
606static void unmap_vmap_area(struct vmap_area *va)
607{
608 vunmap_page_range(va->va_start, va->va_end);
609}
610
611/*
612 * lazy_max_pages is the maximum amount of virtual address space we gather up
613 * before attempting to purge with a TLB flush.
614 *
615 * There is a tradeoff here: a larger number will cover more kernel page tables
616 * and take slightly longer to purge, but it will linearly reduce the number of
617 * global TLB flushes that must be performed. It would seem natural to scale
618 * this number up linearly with the number of CPUs (because vmapping activity
619 * could also scale linearly with the number of CPUs), however it is likely
620 * that in practice, workloads might be constrained in other ways that mean
621 * vmap activity will not scale linearly with CPUs. Also, I want to be
622 * conservative and not introduce a big latency on huge systems, so go with
623 * a less aggressive log scale. It will still be an improvement over the old
624 * code, and it will be simple to change the scale factor if we find that it
625 * becomes a problem on bigger systems.
626 */
627static unsigned long lazy_max_pages(void)
628{
629 unsigned int log;
630
631 log = fls(num_online_cpus());
632
633 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
634}
635
4d36e6f8 636static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 637
0574ecd1
CH
638/*
639 * Serialize vmap purging. There is no actual criticial section protected
640 * by this look, but we want to avoid concurrent calls for performance
641 * reasons and to make the pcpu_get_vm_areas more deterministic.
642 */
f9e09977 643static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 644
02b709df
NP
645/* for per-CPU blocks */
646static void purge_fragmented_blocks_allcpus(void);
647
3ee48b6a
CW
648/*
649 * called before a call to iounmap() if the caller wants vm_area_struct's
650 * immediately freed.
651 */
652void set_iounmap_nonlazy(void)
653{
4d36e6f8 654 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
655}
656
db64fe02
NP
657/*
658 * Purges all lazily-freed vmap areas.
db64fe02 659 */
0574ecd1 660static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 661{
4d36e6f8 662 unsigned long resched_threshold;
80c4bd7a 663 struct llist_node *valist;
db64fe02 664 struct vmap_area *va;
cbb76676 665 struct vmap_area *n_va;
db64fe02 666
0574ecd1 667 lockdep_assert_held(&vmap_purge_lock);
02b709df 668
80c4bd7a 669 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
670 if (unlikely(valist == NULL))
671 return false;
672
673 /*
674 * TODO: to calculate a flush range without looping.
675 * The list can be up to lazy_max_pages() elements.
676 */
80c4bd7a 677 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
678 if (va->va_start < start)
679 start = va->va_start;
680 if (va->va_end > end)
681 end = va->va_end;
db64fe02 682 }
db64fe02 683
0574ecd1 684 flush_tlb_kernel_range(start, end);
4d36e6f8 685 resched_threshold = lazy_max_pages() << 1;
db64fe02 686
0574ecd1 687 spin_lock(&vmap_area_lock);
763b218d 688 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 689 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
763b218d 690
0574ecd1 691 __free_vmap_area(va);
4d36e6f8 692 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 693
4d36e6f8 694 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
68571be9 695 cond_resched_lock(&vmap_area_lock);
763b218d 696 }
0574ecd1
CH
697 spin_unlock(&vmap_area_lock);
698 return true;
db64fe02
NP
699}
700
496850e5
NP
701/*
702 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
703 * is already purging.
704 */
705static void try_purge_vmap_area_lazy(void)
706{
f9e09977 707 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 708 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 709 mutex_unlock(&vmap_purge_lock);
0574ecd1 710 }
496850e5
NP
711}
712
db64fe02
NP
713/*
714 * Kick off a purge of the outstanding lazy areas.
715 */
716static void purge_vmap_area_lazy(void)
717{
f9e09977 718 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
719 purge_fragmented_blocks_allcpus();
720 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 721 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
722}
723
724/*
64141da5
JF
725 * Free a vmap area, caller ensuring that the area has been unmapped
726 * and flush_cache_vunmap had been called for the correct range
727 * previously.
db64fe02 728 */
64141da5 729static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 730{
4d36e6f8 731 unsigned long nr_lazy;
80c4bd7a 732
4d36e6f8
URS
733 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
734 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
735
736 /* After this point, we may free va at any time */
737 llist_add(&va->purge_list, &vmap_purge_list);
738
739 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 740 try_purge_vmap_area_lazy();
db64fe02
NP
741}
742
b29acbdc
NP
743/*
744 * Free and unmap a vmap area
745 */
746static void free_unmap_vmap_area(struct vmap_area *va)
747{
748 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 749 unmap_vmap_area(va);
82a2e924
CP
750 if (debug_pagealloc_enabled())
751 flush_tlb_kernel_range(va->va_start, va->va_end);
752
c8eef01e 753 free_vmap_area_noflush(va);
b29acbdc
NP
754}
755
db64fe02
NP
756static struct vmap_area *find_vmap_area(unsigned long addr)
757{
758 struct vmap_area *va;
759
760 spin_lock(&vmap_area_lock);
761 va = __find_vmap_area(addr);
762 spin_unlock(&vmap_area_lock);
763
764 return va;
765}
766
db64fe02
NP
767/*** Per cpu kva allocator ***/
768
769/*
770 * vmap space is limited especially on 32 bit architectures. Ensure there is
771 * room for at least 16 percpu vmap blocks per CPU.
772 */
773/*
774 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
775 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
776 * instead (we just need a rough idea)
777 */
778#if BITS_PER_LONG == 32
779#define VMALLOC_SPACE (128UL*1024*1024)
780#else
781#define VMALLOC_SPACE (128UL*1024*1024*1024)
782#endif
783
784#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
785#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
786#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
787#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
788#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
789#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
790#define VMAP_BBMAP_BITS \
791 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
792 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
793 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
794
795#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
796
9b463334
JF
797static bool vmap_initialized __read_mostly = false;
798
db64fe02
NP
799struct vmap_block_queue {
800 spinlock_t lock;
801 struct list_head free;
db64fe02
NP
802};
803
804struct vmap_block {
805 spinlock_t lock;
806 struct vmap_area *va;
db64fe02 807 unsigned long free, dirty;
7d61bfe8 808 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
809 struct list_head free_list;
810 struct rcu_head rcu_head;
02b709df 811 struct list_head purge;
db64fe02
NP
812};
813
814/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
815static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
816
817/*
818 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
819 * in the free path. Could get rid of this if we change the API to return a
820 * "cookie" from alloc, to be passed to free. But no big deal yet.
821 */
822static DEFINE_SPINLOCK(vmap_block_tree_lock);
823static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
824
825/*
826 * We should probably have a fallback mechanism to allocate virtual memory
827 * out of partially filled vmap blocks. However vmap block sizing should be
828 * fairly reasonable according to the vmalloc size, so it shouldn't be a
829 * big problem.
830 */
831
832static unsigned long addr_to_vb_idx(unsigned long addr)
833{
834 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
835 addr /= VMAP_BLOCK_SIZE;
836 return addr;
837}
838
cf725ce2
RP
839static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
840{
841 unsigned long addr;
842
843 addr = va_start + (pages_off << PAGE_SHIFT);
844 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
845 return (void *)addr;
846}
847
848/**
849 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
850 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
851 * @order: how many 2^order pages should be occupied in newly allocated block
852 * @gfp_mask: flags for the page level allocator
853 *
a862f68a 854 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
855 */
856static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
857{
858 struct vmap_block_queue *vbq;
859 struct vmap_block *vb;
860 struct vmap_area *va;
861 unsigned long vb_idx;
862 int node, err;
cf725ce2 863 void *vaddr;
db64fe02
NP
864
865 node = numa_node_id();
866
867 vb = kmalloc_node(sizeof(struct vmap_block),
868 gfp_mask & GFP_RECLAIM_MASK, node);
869 if (unlikely(!vb))
870 return ERR_PTR(-ENOMEM);
871
872 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
873 VMALLOC_START, VMALLOC_END,
874 node, gfp_mask);
ddf9c6d4 875 if (IS_ERR(va)) {
db64fe02 876 kfree(vb);
e7d86340 877 return ERR_CAST(va);
db64fe02
NP
878 }
879
880 err = radix_tree_preload(gfp_mask);
881 if (unlikely(err)) {
882 kfree(vb);
883 free_vmap_area(va);
884 return ERR_PTR(err);
885 }
886
cf725ce2 887 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
888 spin_lock_init(&vb->lock);
889 vb->va = va;
cf725ce2
RP
890 /* At least something should be left free */
891 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
892 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 893 vb->dirty = 0;
7d61bfe8
RP
894 vb->dirty_min = VMAP_BBMAP_BITS;
895 vb->dirty_max = 0;
db64fe02 896 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
897
898 vb_idx = addr_to_vb_idx(va->va_start);
899 spin_lock(&vmap_block_tree_lock);
900 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
901 spin_unlock(&vmap_block_tree_lock);
902 BUG_ON(err);
903 radix_tree_preload_end();
904
905 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 906 spin_lock(&vbq->lock);
68ac546f 907 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 908 spin_unlock(&vbq->lock);
3f04ba85 909 put_cpu_var(vmap_block_queue);
db64fe02 910
cf725ce2 911 return vaddr;
db64fe02
NP
912}
913
db64fe02
NP
914static void free_vmap_block(struct vmap_block *vb)
915{
916 struct vmap_block *tmp;
917 unsigned long vb_idx;
918
db64fe02
NP
919 vb_idx = addr_to_vb_idx(vb->va->va_start);
920 spin_lock(&vmap_block_tree_lock);
921 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
922 spin_unlock(&vmap_block_tree_lock);
923 BUG_ON(tmp != vb);
924
64141da5 925 free_vmap_area_noflush(vb->va);
22a3c7d1 926 kfree_rcu(vb, rcu_head);
db64fe02
NP
927}
928
02b709df
NP
929static void purge_fragmented_blocks(int cpu)
930{
931 LIST_HEAD(purge);
932 struct vmap_block *vb;
933 struct vmap_block *n_vb;
934 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
935
936 rcu_read_lock();
937 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
938
939 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
940 continue;
941
942 spin_lock(&vb->lock);
943 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
944 vb->free = 0; /* prevent further allocs after releasing lock */
945 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
946 vb->dirty_min = 0;
947 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
948 spin_lock(&vbq->lock);
949 list_del_rcu(&vb->free_list);
950 spin_unlock(&vbq->lock);
951 spin_unlock(&vb->lock);
952 list_add_tail(&vb->purge, &purge);
953 } else
954 spin_unlock(&vb->lock);
955 }
956 rcu_read_unlock();
957
958 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
959 list_del(&vb->purge);
960 free_vmap_block(vb);
961 }
962}
963
02b709df
NP
964static void purge_fragmented_blocks_allcpus(void)
965{
966 int cpu;
967
968 for_each_possible_cpu(cpu)
969 purge_fragmented_blocks(cpu);
970}
971
db64fe02
NP
972static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
973{
974 struct vmap_block_queue *vbq;
975 struct vmap_block *vb;
cf725ce2 976 void *vaddr = NULL;
db64fe02
NP
977 unsigned int order;
978
891c49ab 979 BUG_ON(offset_in_page(size));
db64fe02 980 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
981 if (WARN_ON(size == 0)) {
982 /*
983 * Allocating 0 bytes isn't what caller wants since
984 * get_order(0) returns funny result. Just warn and terminate
985 * early.
986 */
987 return NULL;
988 }
db64fe02
NP
989 order = get_order(size);
990
db64fe02
NP
991 rcu_read_lock();
992 vbq = &get_cpu_var(vmap_block_queue);
993 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 994 unsigned long pages_off;
db64fe02
NP
995
996 spin_lock(&vb->lock);
cf725ce2
RP
997 if (vb->free < (1UL << order)) {
998 spin_unlock(&vb->lock);
999 continue;
1000 }
02b709df 1001
cf725ce2
RP
1002 pages_off = VMAP_BBMAP_BITS - vb->free;
1003 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1004 vb->free -= 1UL << order;
1005 if (vb->free == 0) {
1006 spin_lock(&vbq->lock);
1007 list_del_rcu(&vb->free_list);
1008 spin_unlock(&vbq->lock);
1009 }
cf725ce2 1010
02b709df
NP
1011 spin_unlock(&vb->lock);
1012 break;
db64fe02 1013 }
02b709df 1014
3f04ba85 1015 put_cpu_var(vmap_block_queue);
db64fe02
NP
1016 rcu_read_unlock();
1017
cf725ce2
RP
1018 /* Allocate new block if nothing was found */
1019 if (!vaddr)
1020 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1021
cf725ce2 1022 return vaddr;
db64fe02
NP
1023}
1024
1025static void vb_free(const void *addr, unsigned long size)
1026{
1027 unsigned long offset;
1028 unsigned long vb_idx;
1029 unsigned int order;
1030 struct vmap_block *vb;
1031
891c49ab 1032 BUG_ON(offset_in_page(size));
db64fe02 1033 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1034
1035 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1036
db64fe02
NP
1037 order = get_order(size);
1038
1039 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1040 offset >>= PAGE_SHIFT;
db64fe02
NP
1041
1042 vb_idx = addr_to_vb_idx((unsigned long)addr);
1043 rcu_read_lock();
1044 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1045 rcu_read_unlock();
1046 BUG_ON(!vb);
1047
64141da5
JF
1048 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1049
82a2e924
CP
1050 if (debug_pagealloc_enabled())
1051 flush_tlb_kernel_range((unsigned long)addr,
1052 (unsigned long)addr + size);
1053
db64fe02 1054 spin_lock(&vb->lock);
7d61bfe8
RP
1055
1056 /* Expand dirty range */
1057 vb->dirty_min = min(vb->dirty_min, offset);
1058 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1059
db64fe02
NP
1060 vb->dirty += 1UL << order;
1061 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1062 BUG_ON(vb->free);
db64fe02
NP
1063 spin_unlock(&vb->lock);
1064 free_vmap_block(vb);
1065 } else
1066 spin_unlock(&vb->lock);
1067}
1068
868b104d 1069static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1070{
db64fe02 1071 int cpu;
db64fe02 1072
9b463334
JF
1073 if (unlikely(!vmap_initialized))
1074 return;
1075
5803ed29
CH
1076 might_sleep();
1077
db64fe02
NP
1078 for_each_possible_cpu(cpu) {
1079 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1080 struct vmap_block *vb;
1081
1082 rcu_read_lock();
1083 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1084 spin_lock(&vb->lock);
7d61bfe8
RP
1085 if (vb->dirty) {
1086 unsigned long va_start = vb->va->va_start;
db64fe02 1087 unsigned long s, e;
b136be5e 1088
7d61bfe8
RP
1089 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1090 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1091
7d61bfe8
RP
1092 start = min(s, start);
1093 end = max(e, end);
db64fe02 1094
7d61bfe8 1095 flush = 1;
db64fe02
NP
1096 }
1097 spin_unlock(&vb->lock);
1098 }
1099 rcu_read_unlock();
1100 }
1101
f9e09977 1102 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1103 purge_fragmented_blocks_allcpus();
1104 if (!__purge_vmap_area_lazy(start, end) && flush)
1105 flush_tlb_kernel_range(start, end);
f9e09977 1106 mutex_unlock(&vmap_purge_lock);
db64fe02 1107}
868b104d
RE
1108
1109/**
1110 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1111 *
1112 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1113 * to amortize TLB flushing overheads. What this means is that any page you
1114 * have now, may, in a former life, have been mapped into kernel virtual
1115 * address by the vmap layer and so there might be some CPUs with TLB entries
1116 * still referencing that page (additional to the regular 1:1 kernel mapping).
1117 *
1118 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1119 * be sure that none of the pages we have control over will have any aliases
1120 * from the vmap layer.
1121 */
1122void vm_unmap_aliases(void)
1123{
1124 unsigned long start = ULONG_MAX, end = 0;
1125 int flush = 0;
1126
1127 _vm_unmap_aliases(start, end, flush);
1128}
db64fe02
NP
1129EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1130
1131/**
1132 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1133 * @mem: the pointer returned by vm_map_ram
1134 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1135 */
1136void vm_unmap_ram(const void *mem, unsigned int count)
1137{
65ee03c4 1138 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1139 unsigned long addr = (unsigned long)mem;
9c3acf60 1140 struct vmap_area *va;
db64fe02 1141
5803ed29 1142 might_sleep();
db64fe02
NP
1143 BUG_ON(!addr);
1144 BUG_ON(addr < VMALLOC_START);
1145 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1146 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1147
9c3acf60 1148 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1149 debug_check_no_locks_freed(mem, size);
db64fe02 1150 vb_free(mem, size);
9c3acf60
CH
1151 return;
1152 }
1153
1154 va = find_vmap_area(addr);
1155 BUG_ON(!va);
05e3ff95
CP
1156 debug_check_no_locks_freed((void *)va->va_start,
1157 (va->va_end - va->va_start));
9c3acf60 1158 free_unmap_vmap_area(va);
db64fe02
NP
1159}
1160EXPORT_SYMBOL(vm_unmap_ram);
1161
1162/**
1163 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1164 * @pages: an array of pointers to the pages to be mapped
1165 * @count: number of pages
1166 * @node: prefer to allocate data structures on this node
1167 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1168 *
36437638
GK
1169 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1170 * faster than vmap so it's good. But if you mix long-life and short-life
1171 * objects with vm_map_ram(), it could consume lots of address space through
1172 * fragmentation (especially on a 32bit machine). You could see failures in
1173 * the end. Please use this function for short-lived objects.
1174 *
e99c97ad 1175 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1176 */
1177void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1178{
65ee03c4 1179 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1180 unsigned long addr;
1181 void *mem;
1182
1183 if (likely(count <= VMAP_MAX_ALLOC)) {
1184 mem = vb_alloc(size, GFP_KERNEL);
1185 if (IS_ERR(mem))
1186 return NULL;
1187 addr = (unsigned long)mem;
1188 } else {
1189 struct vmap_area *va;
1190 va = alloc_vmap_area(size, PAGE_SIZE,
1191 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1192 if (IS_ERR(va))
1193 return NULL;
1194
1195 addr = va->va_start;
1196 mem = (void *)addr;
1197 }
1198 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1199 vm_unmap_ram(mem, count);
1200 return NULL;
1201 }
1202 return mem;
1203}
1204EXPORT_SYMBOL(vm_map_ram);
1205
4341fa45 1206static struct vm_struct *vmlist __initdata;
92eac168 1207
be9b7335
NP
1208/**
1209 * vm_area_add_early - add vmap area early during boot
1210 * @vm: vm_struct to add
1211 *
1212 * This function is used to add fixed kernel vm area to vmlist before
1213 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1214 * should contain proper values and the other fields should be zero.
1215 *
1216 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1217 */
1218void __init vm_area_add_early(struct vm_struct *vm)
1219{
1220 struct vm_struct *tmp, **p;
1221
1222 BUG_ON(vmap_initialized);
1223 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1224 if (tmp->addr >= vm->addr) {
1225 BUG_ON(tmp->addr < vm->addr + vm->size);
1226 break;
1227 } else
1228 BUG_ON(tmp->addr + tmp->size > vm->addr);
1229 }
1230 vm->next = *p;
1231 *p = vm;
1232}
1233
f0aa6617
TH
1234/**
1235 * vm_area_register_early - register vmap area early during boot
1236 * @vm: vm_struct to register
c0c0a293 1237 * @align: requested alignment
f0aa6617
TH
1238 *
1239 * This function is used to register kernel vm area before
1240 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1241 * proper values on entry and other fields should be zero. On return,
1242 * vm->addr contains the allocated address.
1243 *
1244 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1245 */
c0c0a293 1246void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1247{
1248 static size_t vm_init_off __initdata;
c0c0a293
TH
1249 unsigned long addr;
1250
1251 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1252 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1253
c0c0a293 1254 vm->addr = (void *)addr;
f0aa6617 1255
be9b7335 1256 vm_area_add_early(vm);
f0aa6617
TH
1257}
1258
db64fe02
NP
1259void __init vmalloc_init(void)
1260{
822c18f2
IK
1261 struct vmap_area *va;
1262 struct vm_struct *tmp;
db64fe02
NP
1263 int i;
1264
1265 for_each_possible_cpu(i) {
1266 struct vmap_block_queue *vbq;
32fcfd40 1267 struct vfree_deferred *p;
db64fe02
NP
1268
1269 vbq = &per_cpu(vmap_block_queue, i);
1270 spin_lock_init(&vbq->lock);
1271 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1272 p = &per_cpu(vfree_deferred, i);
1273 init_llist_head(&p->list);
1274 INIT_WORK(&p->wq, free_work);
db64fe02 1275 }
9b463334 1276
822c18f2
IK
1277 /* Import existing vmlist entries. */
1278 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1279 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1280 va->flags = VM_VM_AREA;
822c18f2
IK
1281 va->va_start = (unsigned long)tmp->addr;
1282 va->va_end = va->va_start + tmp->size;
dbda591d 1283 va->vm = tmp;
822c18f2
IK
1284 __insert_vmap_area(va);
1285 }
ca23e405
TH
1286
1287 vmap_area_pcpu_hole = VMALLOC_END;
1288
9b463334 1289 vmap_initialized = true;
db64fe02
NP
1290}
1291
8fc48985
TH
1292/**
1293 * map_kernel_range_noflush - map kernel VM area with the specified pages
1294 * @addr: start of the VM area to map
1295 * @size: size of the VM area to map
1296 * @prot: page protection flags to use
1297 * @pages: pages to map
1298 *
1299 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1300 * specify should have been allocated using get_vm_area() and its
1301 * friends.
1302 *
1303 * NOTE:
1304 * This function does NOT do any cache flushing. The caller is
1305 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1306 * before calling this function.
1307 *
1308 * RETURNS:
1309 * The number of pages mapped on success, -errno on failure.
1310 */
1311int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1312 pgprot_t prot, struct page **pages)
1313{
1314 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1315}
1316
1317/**
1318 * unmap_kernel_range_noflush - unmap kernel VM area
1319 * @addr: start of the VM area to unmap
1320 * @size: size of the VM area to unmap
1321 *
1322 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1323 * specify should have been allocated using get_vm_area() and its
1324 * friends.
1325 *
1326 * NOTE:
1327 * This function does NOT do any cache flushing. The caller is
1328 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1329 * before calling this function and flush_tlb_kernel_range() after.
1330 */
1331void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1332{
1333 vunmap_page_range(addr, addr + size);
1334}
81e88fdc 1335EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1336
1337/**
1338 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1339 * @addr: start of the VM area to unmap
1340 * @size: size of the VM area to unmap
1341 *
1342 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1343 * the unmapping and tlb after.
1344 */
db64fe02
NP
1345void unmap_kernel_range(unsigned long addr, unsigned long size)
1346{
1347 unsigned long end = addr + size;
f6fcba70
TH
1348
1349 flush_cache_vunmap(addr, end);
db64fe02
NP
1350 vunmap_page_range(addr, end);
1351 flush_tlb_kernel_range(addr, end);
1352}
93ef6d6c 1353EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1354
f6f8ed47 1355int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1356{
1357 unsigned long addr = (unsigned long)area->addr;
762216ab 1358 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1359 int err;
1360
f6f8ed47 1361 err = vmap_page_range(addr, end, prot, pages);
db64fe02 1362
f6f8ed47 1363 return err > 0 ? 0 : err;
db64fe02
NP
1364}
1365EXPORT_SYMBOL_GPL(map_vm_area);
1366
f5252e00 1367static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1368 unsigned long flags, const void *caller)
cf88c790 1369{
c69480ad 1370 spin_lock(&vmap_area_lock);
cf88c790
TH
1371 vm->flags = flags;
1372 vm->addr = (void *)va->va_start;
1373 vm->size = va->va_end - va->va_start;
1374 vm->caller = caller;
db1aecaf 1375 va->vm = vm;
cf88c790 1376 va->flags |= VM_VM_AREA;
c69480ad 1377 spin_unlock(&vmap_area_lock);
f5252e00 1378}
cf88c790 1379
20fc02b4 1380static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1381{
d4033afd 1382 /*
20fc02b4 1383 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1384 * we should make sure that vm has proper values.
1385 * Pair with smp_rmb() in show_numa_info().
1386 */
1387 smp_wmb();
20fc02b4 1388 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1389}
1390
db64fe02 1391static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1392 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1393 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1394{
0006526d 1395 struct vmap_area *va;
db64fe02 1396 struct vm_struct *area;
1da177e4 1397
52fd24ca 1398 BUG_ON(in_interrupt());
1da177e4 1399 size = PAGE_ALIGN(size);
31be8309
OH
1400 if (unlikely(!size))
1401 return NULL;
1da177e4 1402
252e5c6e 1403 if (flags & VM_IOREMAP)
1404 align = 1ul << clamp_t(int, get_count_order_long(size),
1405 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1406
cf88c790 1407 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1408 if (unlikely(!area))
1409 return NULL;
1410
71394fe5
AR
1411 if (!(flags & VM_NO_GUARD))
1412 size += PAGE_SIZE;
1da177e4 1413
db64fe02
NP
1414 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1415 if (IS_ERR(va)) {
1416 kfree(area);
1417 return NULL;
1da177e4 1418 }
1da177e4 1419
d82b1d85 1420 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1421
1da177e4 1422 return area;
1da177e4
LT
1423}
1424
930fc45a
CL
1425struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1426 unsigned long start, unsigned long end)
1427{
00ef2d2f
DR
1428 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1429 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1430}
5992b6da 1431EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1432
c2968612
BH
1433struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1434 unsigned long start, unsigned long end,
5e6cafc8 1435 const void *caller)
c2968612 1436{
00ef2d2f
DR
1437 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1438 GFP_KERNEL, caller);
c2968612
BH
1439}
1440
1da177e4 1441/**
92eac168
MR
1442 * get_vm_area - reserve a contiguous kernel virtual area
1443 * @size: size of the area
1444 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 1445 *
92eac168
MR
1446 * Search an area of @size in the kernel virtual mapping area,
1447 * and reserved it for out purposes. Returns the area descriptor
1448 * on success or %NULL on failure.
a862f68a
MR
1449 *
1450 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
1451 */
1452struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1453{
2dca6999 1454 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1455 NUMA_NO_NODE, GFP_KERNEL,
1456 __builtin_return_address(0));
23016969
CL
1457}
1458
1459struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1460 const void *caller)
23016969 1461{
2dca6999 1462 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1463 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1464}
1465
e9da6e99 1466/**
92eac168
MR
1467 * find_vm_area - find a continuous kernel virtual area
1468 * @addr: base address
e9da6e99 1469 *
92eac168
MR
1470 * Search for the kernel VM area starting at @addr, and return it.
1471 * It is up to the caller to do all required locking to keep the returned
1472 * pointer valid.
a862f68a
MR
1473 *
1474 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
1475 */
1476struct vm_struct *find_vm_area(const void *addr)
83342314 1477{
db64fe02 1478 struct vmap_area *va;
83342314 1479
db64fe02
NP
1480 va = find_vmap_area((unsigned long)addr);
1481 if (va && va->flags & VM_VM_AREA)
db1aecaf 1482 return va->vm;
1da177e4 1483
1da177e4 1484 return NULL;
1da177e4
LT
1485}
1486
7856dfeb 1487/**
92eac168
MR
1488 * remove_vm_area - find and remove a continuous kernel virtual area
1489 * @addr: base address
7856dfeb 1490 *
92eac168
MR
1491 * Search for the kernel VM area starting at @addr, and remove it.
1492 * This function returns the found VM area, but using it is NOT safe
1493 * on SMP machines, except for its size or flags.
a862f68a
MR
1494 *
1495 * Return: pointer to the found area or %NULL on faulure
7856dfeb 1496 */
b3bdda02 1497struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1498{
db64fe02
NP
1499 struct vmap_area *va;
1500
5803ed29
CH
1501 might_sleep();
1502
db64fe02
NP
1503 va = find_vmap_area((unsigned long)addr);
1504 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1505 struct vm_struct *vm = va->vm;
f5252e00 1506
c69480ad
JK
1507 spin_lock(&vmap_area_lock);
1508 va->vm = NULL;
1509 va->flags &= ~VM_VM_AREA;
78c72746 1510 va->flags |= VM_LAZY_FREE;
c69480ad
JK
1511 spin_unlock(&vmap_area_lock);
1512
a5af5aa8 1513 kasan_free_shadow(vm);
dd32c279 1514 free_unmap_vmap_area(va);
dd32c279 1515
db64fe02
NP
1516 return vm;
1517 }
1518 return NULL;
7856dfeb
AK
1519}
1520
868b104d
RE
1521static inline void set_area_direct_map(const struct vm_struct *area,
1522 int (*set_direct_map)(struct page *page))
1523{
1524 int i;
1525
1526 for (i = 0; i < area->nr_pages; i++)
1527 if (page_address(area->pages[i]))
1528 set_direct_map(area->pages[i]);
1529}
1530
1531/* Handle removing and resetting vm mappings related to the vm_struct. */
1532static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
1533{
1534 unsigned long addr = (unsigned long)area->addr;
1535 unsigned long start = ULONG_MAX, end = 0;
1536 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
1537 int i;
1538
1539 /*
1540 * The below block can be removed when all architectures that have
1541 * direct map permissions also have set_direct_map_() implementations.
1542 * This is concerned with resetting the direct map any an vm alias with
1543 * execute permissions, without leaving a RW+X window.
1544 */
1545 if (flush_reset && !IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
1546 set_memory_nx(addr, area->nr_pages);
1547 set_memory_rw(addr, area->nr_pages);
1548 }
1549
1550 remove_vm_area(area->addr);
1551
1552 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
1553 if (!flush_reset)
1554 return;
1555
1556 /*
1557 * If not deallocating pages, just do the flush of the VM area and
1558 * return.
1559 */
1560 if (!deallocate_pages) {
1561 vm_unmap_aliases();
1562 return;
1563 }
1564
1565 /*
1566 * If execution gets here, flush the vm mapping and reset the direct
1567 * map. Find the start and end range of the direct mappings to make sure
1568 * the vm_unmap_aliases() flush includes the direct map.
1569 */
1570 for (i = 0; i < area->nr_pages; i++) {
1571 if (page_address(area->pages[i])) {
1572 start = min(addr, start);
1573 end = max(addr, end);
1574 }
1575 }
1576
1577 /*
1578 * Set direct map to something invalid so that it won't be cached if
1579 * there are any accesses after the TLB flush, then flush the TLB and
1580 * reset the direct map permissions to the default.
1581 */
1582 set_area_direct_map(area, set_direct_map_invalid_noflush);
1583 _vm_unmap_aliases(start, end, 1);
1584 set_area_direct_map(area, set_direct_map_default_noflush);
1585}
1586
b3bdda02 1587static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1588{
1589 struct vm_struct *area;
1590
1591 if (!addr)
1592 return;
1593
e69e9d4a 1594 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 1595 addr))
1da177e4 1596 return;
1da177e4 1597
6ade2032 1598 area = find_vm_area(addr);
1da177e4 1599 if (unlikely(!area)) {
4c8573e2 1600 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1601 addr);
1da177e4
LT
1602 return;
1603 }
1604
05e3ff95
CP
1605 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
1606 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 1607
868b104d
RE
1608 vm_remove_mappings(area, deallocate_pages);
1609
1da177e4
LT
1610 if (deallocate_pages) {
1611 int i;
1612
1613 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1614 struct page *page = area->pages[i];
1615
1616 BUG_ON(!page);
4949148a 1617 __free_pages(page, 0);
1da177e4
LT
1618 }
1619
244d63ee 1620 kvfree(area->pages);
1da177e4
LT
1621 }
1622
1623 kfree(area);
1624 return;
1625}
bf22e37a
AR
1626
1627static inline void __vfree_deferred(const void *addr)
1628{
1629 /*
1630 * Use raw_cpu_ptr() because this can be called from preemptible
1631 * context. Preemption is absolutely fine here, because the llist_add()
1632 * implementation is lockless, so it works even if we are adding to
1633 * nother cpu's list. schedule_work() should be fine with this too.
1634 */
1635 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1636
1637 if (llist_add((struct llist_node *)addr, &p->list))
1638 schedule_work(&p->wq);
1639}
1640
1641/**
92eac168
MR
1642 * vfree_atomic - release memory allocated by vmalloc()
1643 * @addr: memory base address
bf22e37a 1644 *
92eac168
MR
1645 * This one is just like vfree() but can be called in any atomic context
1646 * except NMIs.
bf22e37a
AR
1647 */
1648void vfree_atomic(const void *addr)
1649{
1650 BUG_ON(in_nmi());
1651
1652 kmemleak_free(addr);
1653
1654 if (!addr)
1655 return;
1656 __vfree_deferred(addr);
1657}
1658
c67dc624
RP
1659static void __vfree(const void *addr)
1660{
1661 if (unlikely(in_interrupt()))
1662 __vfree_deferred(addr);
1663 else
1664 __vunmap(addr, 1);
1665}
1666
1da177e4 1667/**
92eac168
MR
1668 * vfree - release memory allocated by vmalloc()
1669 * @addr: memory base address
1da177e4 1670 *
92eac168
MR
1671 * Free the virtually continuous memory area starting at @addr, as
1672 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1673 * NULL, no operation is performed.
1da177e4 1674 *
92eac168
MR
1675 * Must not be called in NMI context (strictly speaking, only if we don't
1676 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1677 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 1678 *
92eac168 1679 * May sleep if called *not* from interrupt context.
3ca4ea3a 1680 *
92eac168 1681 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 1682 */
b3bdda02 1683void vfree(const void *addr)
1da177e4 1684{
32fcfd40 1685 BUG_ON(in_nmi());
89219d37
CM
1686
1687 kmemleak_free(addr);
1688
a8dda165
AR
1689 might_sleep_if(!in_interrupt());
1690
32fcfd40
AV
1691 if (!addr)
1692 return;
c67dc624
RP
1693
1694 __vfree(addr);
1da177e4 1695}
1da177e4
LT
1696EXPORT_SYMBOL(vfree);
1697
1698/**
92eac168
MR
1699 * vunmap - release virtual mapping obtained by vmap()
1700 * @addr: memory base address
1da177e4 1701 *
92eac168
MR
1702 * Free the virtually contiguous memory area starting at @addr,
1703 * which was created from the page array passed to vmap().
1da177e4 1704 *
92eac168 1705 * Must not be called in interrupt context.
1da177e4 1706 */
b3bdda02 1707void vunmap(const void *addr)
1da177e4
LT
1708{
1709 BUG_ON(in_interrupt());
34754b69 1710 might_sleep();
32fcfd40
AV
1711 if (addr)
1712 __vunmap(addr, 0);
1da177e4 1713}
1da177e4
LT
1714EXPORT_SYMBOL(vunmap);
1715
1716/**
92eac168
MR
1717 * vmap - map an array of pages into virtually contiguous space
1718 * @pages: array of page pointers
1719 * @count: number of pages to map
1720 * @flags: vm_area->flags
1721 * @prot: page protection for the mapping
1722 *
1723 * Maps @count pages from @pages into contiguous kernel virtual
1724 * space.
a862f68a
MR
1725 *
1726 * Return: the address of the area or %NULL on failure
1da177e4
LT
1727 */
1728void *vmap(struct page **pages, unsigned int count,
92eac168 1729 unsigned long flags, pgprot_t prot)
1da177e4
LT
1730{
1731 struct vm_struct *area;
65ee03c4 1732 unsigned long size; /* In bytes */
1da177e4 1733
34754b69
PZ
1734 might_sleep();
1735
ca79b0c2 1736 if (count > totalram_pages())
1da177e4
LT
1737 return NULL;
1738
65ee03c4
GJM
1739 size = (unsigned long)count << PAGE_SHIFT;
1740 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
1741 if (!area)
1742 return NULL;
23016969 1743
f6f8ed47 1744 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
1745 vunmap(area->addr);
1746 return NULL;
1747 }
1748
1749 return area->addr;
1750}
1da177e4
LT
1751EXPORT_SYMBOL(vmap);
1752
8594a21c
MH
1753static void *__vmalloc_node(unsigned long size, unsigned long align,
1754 gfp_t gfp_mask, pgprot_t prot,
1755 int node, const void *caller);
e31d9eb5 1756static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 1757 pgprot_t prot, int node)
1da177e4
LT
1758{
1759 struct page **pages;
1760 unsigned int nr_pages, array_size, i;
930f036b 1761 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
1762 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1763 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1764 0 :
1765 __GFP_HIGHMEM;
1da177e4 1766
762216ab 1767 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
1768 array_size = (nr_pages * sizeof(struct page *));
1769
1770 area->nr_pages = nr_pages;
1771 /* Please note that the recursion is strictly bounded. */
8757d5fa 1772 if (array_size > PAGE_SIZE) {
704b862f 1773 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 1774 PAGE_KERNEL, node, area->caller);
286e1ea3 1775 } else {
976d6dfb 1776 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1777 }
1da177e4
LT
1778 area->pages = pages;
1779 if (!area->pages) {
1780 remove_vm_area(area->addr);
1781 kfree(area);
1782 return NULL;
1783 }
1da177e4
LT
1784
1785 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1786 struct page *page;
1787
4b90951c 1788 if (node == NUMA_NO_NODE)
704b862f 1789 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 1790 else
704b862f 1791 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
1792
1793 if (unlikely(!page)) {
1da177e4
LT
1794 /* Successfully allocated i pages, free them in __vunmap() */
1795 area->nr_pages = i;
1796 goto fail;
1797 }
bf53d6f8 1798 area->pages[i] = page;
704b862f 1799 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
660654f9 1800 cond_resched();
1da177e4
LT
1801 }
1802
f6f8ed47 1803 if (map_vm_area(area, prot, pages))
1da177e4
LT
1804 goto fail;
1805 return area->addr;
1806
1807fail:
a8e99259 1808 warn_alloc(gfp_mask, NULL,
7877cdcc 1809 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 1810 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 1811 __vfree(area->addr);
1da177e4
LT
1812 return NULL;
1813}
1814
1815/**
92eac168
MR
1816 * __vmalloc_node_range - allocate virtually contiguous memory
1817 * @size: allocation size
1818 * @align: desired alignment
1819 * @start: vm area range start
1820 * @end: vm area range end
1821 * @gfp_mask: flags for the page level allocator
1822 * @prot: protection mask for the allocated pages
1823 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1824 * @node: node to use for allocation or NUMA_NO_NODE
1825 * @caller: caller's return address
1826 *
1827 * Allocate enough pages to cover @size from the page level
1828 * allocator with @gfp_mask flags. Map them into contiguous
1829 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
1830 *
1831 * Return: the address of the area or %NULL on failure
1da177e4 1832 */
d0a21265
DR
1833void *__vmalloc_node_range(unsigned long size, unsigned long align,
1834 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
1835 pgprot_t prot, unsigned long vm_flags, int node,
1836 const void *caller)
1da177e4
LT
1837{
1838 struct vm_struct *area;
89219d37
CM
1839 void *addr;
1840 unsigned long real_size = size;
1da177e4
LT
1841
1842 size = PAGE_ALIGN(size);
ca79b0c2 1843 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 1844 goto fail;
1da177e4 1845
cb9e3c29
AR
1846 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1847 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 1848 if (!area)
de7d2b56 1849 goto fail;
1da177e4 1850
3722e13c 1851 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 1852 if (!addr)
b82225f3 1853 return NULL;
89219d37 1854
f5252e00 1855 /*
20fc02b4
ZY
1856 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1857 * flag. It means that vm_struct is not fully initialized.
4341fa45 1858 * Now, it is fully initialized, so remove this flag here.
f5252e00 1859 */
20fc02b4 1860 clear_vm_uninitialized_flag(area);
f5252e00 1861
94f4a161 1862 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
1863
1864 return addr;
de7d2b56
JP
1865
1866fail:
a8e99259 1867 warn_alloc(gfp_mask, NULL,
7877cdcc 1868 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 1869 return NULL;
1da177e4
LT
1870}
1871
153178ed
URS
1872/*
1873 * This is only for performance analysis of vmalloc and stress purpose.
1874 * It is required by vmalloc test module, therefore do not use it other
1875 * than that.
1876 */
1877#ifdef CONFIG_TEST_VMALLOC_MODULE
1878EXPORT_SYMBOL_GPL(__vmalloc_node_range);
1879#endif
1880
d0a21265 1881/**
92eac168
MR
1882 * __vmalloc_node - allocate virtually contiguous memory
1883 * @size: allocation size
1884 * @align: desired alignment
1885 * @gfp_mask: flags for the page level allocator
1886 * @prot: protection mask for the allocated pages
1887 * @node: node to use for allocation or NUMA_NO_NODE
1888 * @caller: caller's return address
a7c3e901 1889 *
92eac168
MR
1890 * Allocate enough pages to cover @size from the page level
1891 * allocator with @gfp_mask flags. Map them into contiguous
1892 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 1893 *
92eac168
MR
1894 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1895 * and __GFP_NOFAIL are not supported
a7c3e901 1896 *
92eac168
MR
1897 * Any use of gfp flags outside of GFP_KERNEL should be consulted
1898 * with mm people.
a862f68a
MR
1899 *
1900 * Return: pointer to the allocated memory or %NULL on error
d0a21265 1901 */
8594a21c 1902static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 1903 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1904 int node, const void *caller)
d0a21265
DR
1905{
1906 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 1907 gfp_mask, prot, 0, node, caller);
d0a21265
DR
1908}
1909
930fc45a
CL
1910void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1911{
00ef2d2f 1912 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1913 __builtin_return_address(0));
930fc45a 1914}
1da177e4
LT
1915EXPORT_SYMBOL(__vmalloc);
1916
8594a21c
MH
1917static inline void *__vmalloc_node_flags(unsigned long size,
1918 int node, gfp_t flags)
1919{
1920 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1921 node, __builtin_return_address(0));
1922}
1923
1924
1925void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1926 void *caller)
1927{
1928 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1929}
1930
1da177e4 1931/**
92eac168
MR
1932 * vmalloc - allocate virtually contiguous memory
1933 * @size: allocation size
1934 *
1935 * Allocate enough pages to cover @size from the page level
1936 * allocator and map them into contiguous kernel virtual space.
1da177e4 1937 *
92eac168
MR
1938 * For tight control over page level allocator and protection flags
1939 * use __vmalloc() instead.
a862f68a
MR
1940 *
1941 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
1942 */
1943void *vmalloc(unsigned long size)
1944{
00ef2d2f 1945 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 1946 GFP_KERNEL);
1da177e4 1947}
1da177e4
LT
1948EXPORT_SYMBOL(vmalloc);
1949
e1ca7788 1950/**
92eac168
MR
1951 * vzalloc - allocate virtually contiguous memory with zero fill
1952 * @size: allocation size
1953 *
1954 * Allocate enough pages to cover @size from the page level
1955 * allocator and map them into contiguous kernel virtual space.
1956 * The memory allocated is set to zero.
1957 *
1958 * For tight control over page level allocator and protection flags
1959 * use __vmalloc() instead.
a862f68a
MR
1960 *
1961 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
1962 */
1963void *vzalloc(unsigned long size)
1964{
00ef2d2f 1965 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 1966 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
1967}
1968EXPORT_SYMBOL(vzalloc);
1969
83342314 1970/**
ead04089
REB
1971 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1972 * @size: allocation size
83342314 1973 *
ead04089
REB
1974 * The resulting memory area is zeroed so it can be mapped to userspace
1975 * without leaking data.
a862f68a
MR
1976 *
1977 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
1978 */
1979void *vmalloc_user(unsigned long size)
1980{
bc84c535
RP
1981 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
1982 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
1983 VM_USERMAP, NUMA_NO_NODE,
1984 __builtin_return_address(0));
83342314
NP
1985}
1986EXPORT_SYMBOL(vmalloc_user);
1987
930fc45a 1988/**
92eac168
MR
1989 * vmalloc_node - allocate memory on a specific node
1990 * @size: allocation size
1991 * @node: numa node
930fc45a 1992 *
92eac168
MR
1993 * Allocate enough pages to cover @size from the page level
1994 * allocator and map them into contiguous kernel virtual space.
930fc45a 1995 *
92eac168
MR
1996 * For tight control over page level allocator and protection flags
1997 * use __vmalloc() instead.
a862f68a
MR
1998 *
1999 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2000 */
2001void *vmalloc_node(unsigned long size, int node)
2002{
19809c2d 2003 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 2004 node, __builtin_return_address(0));
930fc45a
CL
2005}
2006EXPORT_SYMBOL(vmalloc_node);
2007
e1ca7788
DY
2008/**
2009 * vzalloc_node - allocate memory on a specific node with zero fill
2010 * @size: allocation size
2011 * @node: numa node
2012 *
2013 * Allocate enough pages to cover @size from the page level
2014 * allocator and map them into contiguous kernel virtual space.
2015 * The memory allocated is set to zero.
2016 *
2017 * For tight control over page level allocator and protection flags
2018 * use __vmalloc_node() instead.
a862f68a
MR
2019 *
2020 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2021 */
2022void *vzalloc_node(unsigned long size, int node)
2023{
2024 return __vmalloc_node_flags(size, node,
19809c2d 2025 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2026}
2027EXPORT_SYMBOL(vzalloc_node);
2028
1da177e4 2029/**
92eac168
MR
2030 * vmalloc_exec - allocate virtually contiguous, executable memory
2031 * @size: allocation size
1da177e4 2032 *
92eac168
MR
2033 * Kernel-internal function to allocate enough pages to cover @size
2034 * the page level allocator and map them into contiguous and
2035 * executable kernel virtual space.
1da177e4 2036 *
92eac168
MR
2037 * For tight control over page level allocator and protection flags
2038 * use __vmalloc() instead.
a862f68a
MR
2039 *
2040 * Return: pointer to the allocated memory or %NULL on error
1da177e4 2041 */
1da177e4
LT
2042void *vmalloc_exec(unsigned long size)
2043{
868b104d
RE
2044 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2045 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2046 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
2047}
2048
0d08e0d3 2049#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2050#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2051#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2052#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2053#else
698d0831
MH
2054/*
2055 * 64b systems should always have either DMA or DMA32 zones. For others
2056 * GFP_DMA32 should do the right thing and use the normal zone.
2057 */
2058#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2059#endif
2060
1da177e4 2061/**
92eac168
MR
2062 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2063 * @size: allocation size
1da177e4 2064 *
92eac168
MR
2065 * Allocate enough 32bit PA addressable pages to cover @size from the
2066 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2067 *
2068 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2069 */
2070void *vmalloc_32(unsigned long size)
2071{
2dca6999 2072 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 2073 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 2074}
1da177e4
LT
2075EXPORT_SYMBOL(vmalloc_32);
2076
83342314 2077/**
ead04089 2078 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2079 * @size: allocation size
ead04089
REB
2080 *
2081 * The resulting memory area is 32bit addressable and zeroed so it can be
2082 * mapped to userspace without leaking data.
a862f68a
MR
2083 *
2084 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2085 */
2086void *vmalloc_32_user(unsigned long size)
2087{
bc84c535
RP
2088 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2089 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2090 VM_USERMAP, NUMA_NO_NODE,
2091 __builtin_return_address(0));
83342314
NP
2092}
2093EXPORT_SYMBOL(vmalloc_32_user);
2094
d0107eb0
KH
2095/*
2096 * small helper routine , copy contents to buf from addr.
2097 * If the page is not present, fill zero.
2098 */
2099
2100static int aligned_vread(char *buf, char *addr, unsigned long count)
2101{
2102 struct page *p;
2103 int copied = 0;
2104
2105 while (count) {
2106 unsigned long offset, length;
2107
891c49ab 2108 offset = offset_in_page(addr);
d0107eb0
KH
2109 length = PAGE_SIZE - offset;
2110 if (length > count)
2111 length = count;
2112 p = vmalloc_to_page(addr);
2113 /*
2114 * To do safe access to this _mapped_ area, we need
2115 * lock. But adding lock here means that we need to add
2116 * overhead of vmalloc()/vfree() calles for this _debug_
2117 * interface, rarely used. Instead of that, we'll use
2118 * kmap() and get small overhead in this access function.
2119 */
2120 if (p) {
2121 /*
2122 * we can expect USER0 is not used (see vread/vwrite's
2123 * function description)
2124 */
9b04c5fe 2125 void *map = kmap_atomic(p);
d0107eb0 2126 memcpy(buf, map + offset, length);
9b04c5fe 2127 kunmap_atomic(map);
d0107eb0
KH
2128 } else
2129 memset(buf, 0, length);
2130
2131 addr += length;
2132 buf += length;
2133 copied += length;
2134 count -= length;
2135 }
2136 return copied;
2137}
2138
2139static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2140{
2141 struct page *p;
2142 int copied = 0;
2143
2144 while (count) {
2145 unsigned long offset, length;
2146
891c49ab 2147 offset = offset_in_page(addr);
d0107eb0
KH
2148 length = PAGE_SIZE - offset;
2149 if (length > count)
2150 length = count;
2151 p = vmalloc_to_page(addr);
2152 /*
2153 * To do safe access to this _mapped_ area, we need
2154 * lock. But adding lock here means that we need to add
2155 * overhead of vmalloc()/vfree() calles for this _debug_
2156 * interface, rarely used. Instead of that, we'll use
2157 * kmap() and get small overhead in this access function.
2158 */
2159 if (p) {
2160 /*
2161 * we can expect USER0 is not used (see vread/vwrite's
2162 * function description)
2163 */
9b04c5fe 2164 void *map = kmap_atomic(p);
d0107eb0 2165 memcpy(map + offset, buf, length);
9b04c5fe 2166 kunmap_atomic(map);
d0107eb0
KH
2167 }
2168 addr += length;
2169 buf += length;
2170 copied += length;
2171 count -= length;
2172 }
2173 return copied;
2174}
2175
2176/**
92eac168
MR
2177 * vread() - read vmalloc area in a safe way.
2178 * @buf: buffer for reading data
2179 * @addr: vm address.
2180 * @count: number of bytes to be read.
2181 *
92eac168
MR
2182 * This function checks that addr is a valid vmalloc'ed area, and
2183 * copy data from that area to a given buffer. If the given memory range
2184 * of [addr...addr+count) includes some valid address, data is copied to
2185 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2186 * IOREMAP area is treated as memory hole and no copy is done.
2187 *
2188 * If [addr...addr+count) doesn't includes any intersects with alive
2189 * vm_struct area, returns 0. @buf should be kernel's buffer.
2190 *
2191 * Note: In usual ops, vread() is never necessary because the caller
2192 * should know vmalloc() area is valid and can use memcpy().
2193 * This is for routines which have to access vmalloc area without
2194 * any informaion, as /dev/kmem.
a862f68a
MR
2195 *
2196 * Return: number of bytes for which addr and buf should be increased
2197 * (same number as @count) or %0 if [addr...addr+count) doesn't
2198 * include any intersection with valid vmalloc area
d0107eb0 2199 */
1da177e4
LT
2200long vread(char *buf, char *addr, unsigned long count)
2201{
e81ce85f
JK
2202 struct vmap_area *va;
2203 struct vm_struct *vm;
1da177e4 2204 char *vaddr, *buf_start = buf;
d0107eb0 2205 unsigned long buflen = count;
1da177e4
LT
2206 unsigned long n;
2207
2208 /* Don't allow overflow */
2209 if ((unsigned long) addr + count < count)
2210 count = -(unsigned long) addr;
2211
e81ce85f
JK
2212 spin_lock(&vmap_area_lock);
2213 list_for_each_entry(va, &vmap_area_list, list) {
2214 if (!count)
2215 break;
2216
2217 if (!(va->flags & VM_VM_AREA))
2218 continue;
2219
2220 vm = va->vm;
2221 vaddr = (char *) vm->addr;
762216ab 2222 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2223 continue;
2224 while (addr < vaddr) {
2225 if (count == 0)
2226 goto finished;
2227 *buf = '\0';
2228 buf++;
2229 addr++;
2230 count--;
2231 }
762216ab 2232 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2233 if (n > count)
2234 n = count;
e81ce85f 2235 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2236 aligned_vread(buf, addr, n);
2237 else /* IOREMAP area is treated as memory hole */
2238 memset(buf, 0, n);
2239 buf += n;
2240 addr += n;
2241 count -= n;
1da177e4
LT
2242 }
2243finished:
e81ce85f 2244 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2245
2246 if (buf == buf_start)
2247 return 0;
2248 /* zero-fill memory holes */
2249 if (buf != buf_start + buflen)
2250 memset(buf, 0, buflen - (buf - buf_start));
2251
2252 return buflen;
1da177e4
LT
2253}
2254
d0107eb0 2255/**
92eac168
MR
2256 * vwrite() - write vmalloc area in a safe way.
2257 * @buf: buffer for source data
2258 * @addr: vm address.
2259 * @count: number of bytes to be read.
2260 *
92eac168
MR
2261 * This function checks that addr is a valid vmalloc'ed area, and
2262 * copy data from a buffer to the given addr. If specified range of
2263 * [addr...addr+count) includes some valid address, data is copied from
2264 * proper area of @buf. If there are memory holes, no copy to hole.
2265 * IOREMAP area is treated as memory hole and no copy is done.
2266 *
2267 * If [addr...addr+count) doesn't includes any intersects with alive
2268 * vm_struct area, returns 0. @buf should be kernel's buffer.
2269 *
2270 * Note: In usual ops, vwrite() is never necessary because the caller
2271 * should know vmalloc() area is valid and can use memcpy().
2272 * This is for routines which have to access vmalloc area without
2273 * any informaion, as /dev/kmem.
a862f68a
MR
2274 *
2275 * Return: number of bytes for which addr and buf should be
2276 * increased (same number as @count) or %0 if [addr...addr+count)
2277 * doesn't include any intersection with valid vmalloc area
d0107eb0 2278 */
1da177e4
LT
2279long vwrite(char *buf, char *addr, unsigned long count)
2280{
e81ce85f
JK
2281 struct vmap_area *va;
2282 struct vm_struct *vm;
d0107eb0
KH
2283 char *vaddr;
2284 unsigned long n, buflen;
2285 int copied = 0;
1da177e4
LT
2286
2287 /* Don't allow overflow */
2288 if ((unsigned long) addr + count < count)
2289 count = -(unsigned long) addr;
d0107eb0 2290 buflen = count;
1da177e4 2291
e81ce85f
JK
2292 spin_lock(&vmap_area_lock);
2293 list_for_each_entry(va, &vmap_area_list, list) {
2294 if (!count)
2295 break;
2296
2297 if (!(va->flags & VM_VM_AREA))
2298 continue;
2299
2300 vm = va->vm;
2301 vaddr = (char *) vm->addr;
762216ab 2302 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2303 continue;
2304 while (addr < vaddr) {
2305 if (count == 0)
2306 goto finished;
2307 buf++;
2308 addr++;
2309 count--;
2310 }
762216ab 2311 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2312 if (n > count)
2313 n = count;
e81ce85f 2314 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2315 aligned_vwrite(buf, addr, n);
2316 copied++;
2317 }
2318 buf += n;
2319 addr += n;
2320 count -= n;
1da177e4
LT
2321 }
2322finished:
e81ce85f 2323 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2324 if (!copied)
2325 return 0;
2326 return buflen;
1da177e4 2327}
83342314
NP
2328
2329/**
92eac168
MR
2330 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2331 * @vma: vma to cover
2332 * @uaddr: target user address to start at
2333 * @kaddr: virtual address of vmalloc kernel memory
2334 * @size: size of map area
7682486b 2335 *
92eac168 2336 * Returns: 0 for success, -Exxx on failure
83342314 2337 *
92eac168
MR
2338 * This function checks that @kaddr is a valid vmalloc'ed area,
2339 * and that it is big enough to cover the range starting at
2340 * @uaddr in @vma. Will return failure if that criteria isn't
2341 * met.
83342314 2342 *
92eac168 2343 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2344 */
e69e9d4a
HD
2345int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2346 void *kaddr, unsigned long size)
83342314
NP
2347{
2348 struct vm_struct *area;
83342314 2349
e69e9d4a
HD
2350 size = PAGE_ALIGN(size);
2351
2352 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2353 return -EINVAL;
2354
e69e9d4a 2355 area = find_vm_area(kaddr);
83342314 2356 if (!area)
db64fe02 2357 return -EINVAL;
83342314
NP
2358
2359 if (!(area->flags & VM_USERMAP))
db64fe02 2360 return -EINVAL;
83342314 2361
401592d2 2362 if (kaddr + size > area->addr + get_vm_area_size(area))
db64fe02 2363 return -EINVAL;
83342314 2364
83342314 2365 do {
e69e9d4a 2366 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2367 int ret;
2368
83342314
NP
2369 ret = vm_insert_page(vma, uaddr, page);
2370 if (ret)
2371 return ret;
2372
2373 uaddr += PAGE_SIZE;
e69e9d4a
HD
2374 kaddr += PAGE_SIZE;
2375 size -= PAGE_SIZE;
2376 } while (size > 0);
83342314 2377
314e51b9 2378 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2379
db64fe02 2380 return 0;
83342314 2381}
e69e9d4a
HD
2382EXPORT_SYMBOL(remap_vmalloc_range_partial);
2383
2384/**
92eac168
MR
2385 * remap_vmalloc_range - map vmalloc pages to userspace
2386 * @vma: vma to cover (map full range of vma)
2387 * @addr: vmalloc memory
2388 * @pgoff: number of pages into addr before first page to map
e69e9d4a 2389 *
92eac168 2390 * Returns: 0 for success, -Exxx on failure
e69e9d4a 2391 *
92eac168
MR
2392 * This function checks that addr is a valid vmalloc'ed area, and
2393 * that it is big enough to cover the vma. Will return failure if
2394 * that criteria isn't met.
e69e9d4a 2395 *
92eac168 2396 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
2397 */
2398int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2399 unsigned long pgoff)
2400{
2401 return remap_vmalloc_range_partial(vma, vma->vm_start,
2402 addr + (pgoff << PAGE_SHIFT),
2403 vma->vm_end - vma->vm_start);
2404}
83342314
NP
2405EXPORT_SYMBOL(remap_vmalloc_range);
2406
1eeb66a1
CH
2407/*
2408 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2409 * have one.
2410 */
3b32123d 2411void __weak vmalloc_sync_all(void)
1eeb66a1
CH
2412{
2413}
5f4352fb
JF
2414
2415
2f569afd 2416static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2417{
cd12909c
DV
2418 pte_t ***p = data;
2419
2420 if (p) {
2421 *(*p) = pte;
2422 (*p)++;
2423 }
5f4352fb
JF
2424 return 0;
2425}
2426
2427/**
92eac168
MR
2428 * alloc_vm_area - allocate a range of kernel address space
2429 * @size: size of the area
2430 * @ptes: returns the PTEs for the address space
7682486b 2431 *
92eac168 2432 * Returns: NULL on failure, vm_struct on success
5f4352fb 2433 *
92eac168
MR
2434 * This function reserves a range of kernel address space, and
2435 * allocates pagetables to map that range. No actual mappings
2436 * are created.
cd12909c 2437 *
92eac168
MR
2438 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2439 * allocated for the VM area are returned.
5f4352fb 2440 */
cd12909c 2441struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2442{
2443 struct vm_struct *area;
2444
23016969
CL
2445 area = get_vm_area_caller(size, VM_IOREMAP,
2446 __builtin_return_address(0));
5f4352fb
JF
2447 if (area == NULL)
2448 return NULL;
2449
2450 /*
2451 * This ensures that page tables are constructed for this region
2452 * of kernel virtual address space and mapped into init_mm.
2453 */
2454 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2455 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2456 free_vm_area(area);
2457 return NULL;
2458 }
2459
5f4352fb
JF
2460 return area;
2461}
2462EXPORT_SYMBOL_GPL(alloc_vm_area);
2463
2464void free_vm_area(struct vm_struct *area)
2465{
2466 struct vm_struct *ret;
2467 ret = remove_vm_area(area->addr);
2468 BUG_ON(ret != area);
2469 kfree(area);
2470}
2471EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2472
4f8b02b4 2473#ifdef CONFIG_SMP
ca23e405
TH
2474static struct vmap_area *node_to_va(struct rb_node *n)
2475{
4583e773 2476 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
2477}
2478
2479/**
2480 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2481 * @end: target address
2482 * @pnext: out arg for the next vmap_area
2483 * @pprev: out arg for the previous vmap_area
2484 *
2485 * Returns: %true if either or both of next and prev are found,
2486 * %false if no vmap_area exists
2487 *
2488 * Find vmap_areas end addresses of which enclose @end. ie. if not
2489 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2490 */
2491static bool pvm_find_next_prev(unsigned long end,
2492 struct vmap_area **pnext,
2493 struct vmap_area **pprev)
2494{
2495 struct rb_node *n = vmap_area_root.rb_node;
2496 struct vmap_area *va = NULL;
2497
2498 while (n) {
2499 va = rb_entry(n, struct vmap_area, rb_node);
2500 if (end < va->va_end)
2501 n = n->rb_left;
2502 else if (end > va->va_end)
2503 n = n->rb_right;
2504 else
2505 break;
2506 }
2507
2508 if (!va)
2509 return false;
2510
2511 if (va->va_end > end) {
2512 *pnext = va;
2513 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2514 } else {
2515 *pprev = va;
2516 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2517 }
2518 return true;
2519}
2520
2521/**
2522 * pvm_determine_end - find the highest aligned address between two vmap_areas
2523 * @pnext: in/out arg for the next vmap_area
2524 * @pprev: in/out arg for the previous vmap_area
2525 * @align: alignment
2526 *
2527 * Returns: determined end address
2528 *
2529 * Find the highest aligned address between *@pnext and *@pprev below
2530 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2531 * down address is between the end addresses of the two vmap_areas.
2532 *
2533 * Please note that the address returned by this function may fall
2534 * inside *@pnext vmap_area. The caller is responsible for checking
2535 * that.
2536 */
2537static unsigned long pvm_determine_end(struct vmap_area **pnext,
2538 struct vmap_area **pprev,
2539 unsigned long align)
2540{
2541 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2542 unsigned long addr;
2543
2544 if (*pnext)
2545 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2546 else
2547 addr = vmalloc_end;
2548
2549 while (*pprev && (*pprev)->va_end > addr) {
2550 *pnext = *pprev;
2551 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2552 }
2553
2554 return addr;
2555}
2556
2557/**
2558 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2559 * @offsets: array containing offset of each area
2560 * @sizes: array containing size of each area
2561 * @nr_vms: the number of areas to allocate
2562 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2563 *
2564 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2565 * vm_structs on success, %NULL on failure
2566 *
2567 * Percpu allocator wants to use congruent vm areas so that it can
2568 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2569 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2570 * be scattered pretty far, distance between two areas easily going up
2571 * to gigabytes. To avoid interacting with regular vmallocs, these
2572 * areas are allocated from top.
ca23e405
TH
2573 *
2574 * Despite its complicated look, this allocator is rather simple. It
2575 * does everything top-down and scans areas from the end looking for
2576 * matching slot. While scanning, if any of the areas overlaps with
2577 * existing vmap_area, the base address is pulled down to fit the
2578 * area. Scanning is repeated till all the areas fit and then all
c568da28 2579 * necessary data structures are inserted and the result is returned.
ca23e405
TH
2580 */
2581struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2582 const size_t *sizes, int nr_vms,
ec3f64fc 2583 size_t align)
ca23e405
TH
2584{
2585 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2586 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2587 struct vmap_area **vas, *prev, *next;
2588 struct vm_struct **vms;
2589 int area, area2, last_area, term_area;
2590 unsigned long base, start, end, last_end;
2591 bool purged = false;
2592
ca23e405 2593 /* verify parameters and allocate data structures */
891c49ab 2594 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
2595 for (last_area = 0, area = 0; area < nr_vms; area++) {
2596 start = offsets[area];
2597 end = start + sizes[area];
2598
2599 /* is everything aligned properly? */
2600 BUG_ON(!IS_ALIGNED(offsets[area], align));
2601 BUG_ON(!IS_ALIGNED(sizes[area], align));
2602
2603 /* detect the area with the highest address */
2604 if (start > offsets[last_area])
2605 last_area = area;
2606
c568da28 2607 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
2608 unsigned long start2 = offsets[area2];
2609 unsigned long end2 = start2 + sizes[area2];
2610
c568da28 2611 BUG_ON(start2 < end && start < end2);
ca23e405
TH
2612 }
2613 }
2614 last_end = offsets[last_area] + sizes[last_area];
2615
2616 if (vmalloc_end - vmalloc_start < last_end) {
2617 WARN_ON(true);
2618 return NULL;
2619 }
2620
4d67d860
TM
2621 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2622 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2623 if (!vas || !vms)
f1db7afd 2624 goto err_free2;
ca23e405
TH
2625
2626 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2627 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2628 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2629 if (!vas[area] || !vms[area])
2630 goto err_free;
2631 }
2632retry:
2633 spin_lock(&vmap_area_lock);
2634
2635 /* start scanning - we scan from the top, begin with the last area */
2636 area = term_area = last_area;
2637 start = offsets[area];
2638 end = start + sizes[area];
2639
2640 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2641 base = vmalloc_end - last_end;
2642 goto found;
2643 }
2644 base = pvm_determine_end(&next, &prev, align) - end;
2645
2646 while (true) {
2647 BUG_ON(next && next->va_end <= base + end);
2648 BUG_ON(prev && prev->va_end > base + end);
2649
2650 /*
2651 * base might have underflowed, add last_end before
2652 * comparing.
2653 */
2654 if (base + last_end < vmalloc_start + last_end) {
2655 spin_unlock(&vmap_area_lock);
2656 if (!purged) {
2657 purge_vmap_area_lazy();
2658 purged = true;
2659 goto retry;
2660 }
2661 goto err_free;
2662 }
2663
2664 /*
2665 * If next overlaps, move base downwards so that it's
2666 * right below next and then recheck.
2667 */
2668 if (next && next->va_start < base + end) {
2669 base = pvm_determine_end(&next, &prev, align) - end;
2670 term_area = area;
2671 continue;
2672 }
2673
2674 /*
2675 * If prev overlaps, shift down next and prev and move
2676 * base so that it's right below new next and then
2677 * recheck.
2678 */
2679 if (prev && prev->va_end > base + start) {
2680 next = prev;
2681 prev = node_to_va(rb_prev(&next->rb_node));
2682 base = pvm_determine_end(&next, &prev, align) - end;
2683 term_area = area;
2684 continue;
2685 }
2686
2687 /*
2688 * This area fits, move on to the previous one. If
2689 * the previous one is the terminal one, we're done.
2690 */
2691 area = (area + nr_vms - 1) % nr_vms;
2692 if (area == term_area)
2693 break;
2694 start = offsets[area];
2695 end = start + sizes[area];
2696 pvm_find_next_prev(base + end, &next, &prev);
2697 }
2698found:
2699 /* we've found a fitting base, insert all va's */
2700 for (area = 0; area < nr_vms; area++) {
2701 struct vmap_area *va = vas[area];
2702
2703 va->va_start = base + offsets[area];
2704 va->va_end = va->va_start + sizes[area];
2705 __insert_vmap_area(va);
2706 }
2707
2708 vmap_area_pcpu_hole = base + offsets[last_area];
2709
2710 spin_unlock(&vmap_area_lock);
2711
2712 /* insert all vm's */
2713 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
2714 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2715 pcpu_get_vm_areas);
ca23e405
TH
2716
2717 kfree(vas);
2718 return vms;
2719
2720err_free:
2721 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2722 kfree(vas[area]);
2723 kfree(vms[area]);
ca23e405 2724 }
f1db7afd 2725err_free2:
ca23e405
TH
2726 kfree(vas);
2727 kfree(vms);
2728 return NULL;
2729}
2730
2731/**
2732 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2733 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2734 * @nr_vms: the number of allocated areas
2735 *
2736 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2737 */
2738void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2739{
2740 int i;
2741
2742 for (i = 0; i < nr_vms; i++)
2743 free_vm_area(vms[i]);
2744 kfree(vms);
2745}
4f8b02b4 2746#endif /* CONFIG_SMP */
a10aa579
CL
2747
2748#ifdef CONFIG_PROC_FS
2749static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2750 __acquires(&vmap_area_lock)
a10aa579 2751{
d4033afd 2752 spin_lock(&vmap_area_lock);
3f500069 2753 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
2754}
2755
2756static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2757{
3f500069 2758 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
2759}
2760
2761static void s_stop(struct seq_file *m, void *p)
d4033afd 2762 __releases(&vmap_area_lock)
a10aa579 2763{
d4033afd 2764 spin_unlock(&vmap_area_lock);
a10aa579
CL
2765}
2766
a47a126a
ED
2767static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2768{
e5adfffc 2769 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2770 unsigned int nr, *counters = m->private;
2771
2772 if (!counters)
2773 return;
2774
af12346c
WL
2775 if (v->flags & VM_UNINITIALIZED)
2776 return;
7e5b528b
DV
2777 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2778 smp_rmb();
af12346c 2779
a47a126a
ED
2780 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2781
2782 for (nr = 0; nr < v->nr_pages; nr++)
2783 counters[page_to_nid(v->pages[nr])]++;
2784
2785 for_each_node_state(nr, N_HIGH_MEMORY)
2786 if (counters[nr])
2787 seq_printf(m, " N%u=%u", nr, counters[nr]);
2788 }
2789}
2790
a10aa579
CL
2791static int s_show(struct seq_file *m, void *p)
2792{
3f500069 2793 struct vmap_area *va;
d4033afd
JK
2794 struct vm_struct *v;
2795
3f500069 2796 va = list_entry(p, struct vmap_area, list);
2797
c2ce8c14
WL
2798 /*
2799 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2800 * behalf of vmap area is being tear down or vm_map_ram allocation.
2801 */
78c72746
YX
2802 if (!(va->flags & VM_VM_AREA)) {
2803 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2804 (void *)va->va_start, (void *)va->va_end,
2805 va->va_end - va->va_start,
2806 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2807
d4033afd 2808 return 0;
78c72746 2809 }
d4033afd
JK
2810
2811 v = va->vm;
a10aa579 2812
45ec1690 2813 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2814 v->addr, v->addr + v->size, v->size);
2815
62c70bce
JP
2816 if (v->caller)
2817 seq_printf(m, " %pS", v->caller);
23016969 2818
a10aa579
CL
2819 if (v->nr_pages)
2820 seq_printf(m, " pages=%d", v->nr_pages);
2821
2822 if (v->phys_addr)
199eaa05 2823 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
2824
2825 if (v->flags & VM_IOREMAP)
f4527c90 2826 seq_puts(m, " ioremap");
a10aa579
CL
2827
2828 if (v->flags & VM_ALLOC)
f4527c90 2829 seq_puts(m, " vmalloc");
a10aa579
CL
2830
2831 if (v->flags & VM_MAP)
f4527c90 2832 seq_puts(m, " vmap");
a10aa579
CL
2833
2834 if (v->flags & VM_USERMAP)
f4527c90 2835 seq_puts(m, " user");
a10aa579 2836
244d63ee 2837 if (is_vmalloc_addr(v->pages))
f4527c90 2838 seq_puts(m, " vpages");
a10aa579 2839
a47a126a 2840 show_numa_info(m, v);
a10aa579
CL
2841 seq_putc(m, '\n');
2842 return 0;
2843}
2844
5f6a6a9c 2845static const struct seq_operations vmalloc_op = {
a10aa579
CL
2846 .start = s_start,
2847 .next = s_next,
2848 .stop = s_stop,
2849 .show = s_show,
2850};
5f6a6a9c 2851
5f6a6a9c
AD
2852static int __init proc_vmalloc_init(void)
2853{
fddda2b7 2854 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 2855 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
2856 &vmalloc_op,
2857 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 2858 else
0825a6f9 2859 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
2860 return 0;
2861}
2862module_init(proc_vmalloc_init);
db3808c1 2863
a10aa579 2864#endif