]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/vmalloc.c
arm/kasan: fix the array size of kasan_early_shadow_pte[]
[thirdparty/kernel/linux.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 7 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02 26#include <linux/rbtree.h>
0f14599c 27#include <linux/xarray.h>
db64fe02 28#include <linux/rcupdate.h>
f0aa6617 29#include <linux/pfn.h>
89219d37 30#include <linux/kmemleak.h>
60063497 31#include <linux/atomic.h>
3b32123d 32#include <linux/compiler.h>
32fcfd40 33#include <linux/llist.h>
0f616be1 34#include <linux/bitops.h>
68ad4a33 35#include <linux/rbtree_augmented.h>
bdebd6a2 36#include <linux/overflow.h>
3b32123d 37
7c0f6ba6 38#include <linux/uaccess.h>
1da177e4 39#include <asm/tlbflush.h>
2dca6999 40#include <asm/shmparam.h>
1da177e4 41
dd56b046 42#include "internal.h"
2a681cfa 43#include "pgalloc-track.h"
dd56b046 44
186525bd
IM
45bool is_vmalloc_addr(const void *x)
46{
47 unsigned long addr = (unsigned long)x;
48
49 return addr >= VMALLOC_START && addr < VMALLOC_END;
50}
51EXPORT_SYMBOL(is_vmalloc_addr);
52
32fcfd40
AV
53struct vfree_deferred {
54 struct llist_head list;
55 struct work_struct wq;
56};
57static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58
59static void __vunmap(const void *, int);
60
61static void free_work(struct work_struct *w)
62{
63 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
64 struct llist_node *t, *llnode;
65
66 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 __vunmap((void *)llnode, 1);
32fcfd40
AV
68}
69
db64fe02 70/*** Page table manipulation functions ***/
b221385b 71
2ba3e694
JR
72static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
73 pgtbl_mod_mask *mask)
1da177e4
LT
74{
75 pte_t *pte;
76
77 pte = pte_offset_kernel(pmd, addr);
78 do {
79 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
80 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
81 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 82 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
83}
84
2ba3e694
JR
85static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
86 pgtbl_mod_mask *mask)
1da177e4
LT
87{
88 pmd_t *pmd;
89 unsigned long next;
2ba3e694 90 int cleared;
1da177e4
LT
91
92 pmd = pmd_offset(pud, addr);
93 do {
94 next = pmd_addr_end(addr, end);
2ba3e694
JR
95
96 cleared = pmd_clear_huge(pmd);
97 if (cleared || pmd_bad(*pmd))
98 *mask |= PGTBL_PMD_MODIFIED;
99
100 if (cleared)
b9820d8f 101 continue;
1da177e4
LT
102 if (pmd_none_or_clear_bad(pmd))
103 continue;
2ba3e694 104 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
105
106 cond_resched();
1da177e4
LT
107 } while (pmd++, addr = next, addr != end);
108}
109
2ba3e694
JR
110static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
111 pgtbl_mod_mask *mask)
1da177e4
LT
112{
113 pud_t *pud;
114 unsigned long next;
2ba3e694 115 int cleared;
1da177e4 116
c2febafc 117 pud = pud_offset(p4d, addr);
1da177e4
LT
118 do {
119 next = pud_addr_end(addr, end);
2ba3e694
JR
120
121 cleared = pud_clear_huge(pud);
122 if (cleared || pud_bad(*pud))
123 *mask |= PGTBL_PUD_MODIFIED;
124
125 if (cleared)
b9820d8f 126 continue;
1da177e4
LT
127 if (pud_none_or_clear_bad(pud))
128 continue;
2ba3e694 129 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
130 } while (pud++, addr = next, addr != end);
131}
132
2ba3e694
JR
133static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
134 pgtbl_mod_mask *mask)
c2febafc
KS
135{
136 p4d_t *p4d;
137 unsigned long next;
2ba3e694 138 int cleared;
c2febafc
KS
139
140 p4d = p4d_offset(pgd, addr);
141 do {
142 next = p4d_addr_end(addr, end);
2ba3e694
JR
143
144 cleared = p4d_clear_huge(p4d);
145 if (cleared || p4d_bad(*p4d))
146 *mask |= PGTBL_P4D_MODIFIED;
147
148 if (cleared)
c2febafc
KS
149 continue;
150 if (p4d_none_or_clear_bad(p4d))
151 continue;
2ba3e694 152 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
153 } while (p4d++, addr = next, addr != end);
154}
155
b521c43f
CH
156/**
157 * unmap_kernel_range_noflush - unmap kernel VM area
2ba3e694 158 * @start: start of the VM area to unmap
b521c43f
CH
159 * @size: size of the VM area to unmap
160 *
161 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify
162 * should have been allocated using get_vm_area() and its friends.
163 *
164 * NOTE:
165 * This function does NOT do any cache flushing. The caller is responsible
166 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
167 * function and flush_tlb_kernel_range() after.
168 */
2ba3e694 169void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
1da177e4 170{
2ba3e694 171 unsigned long end = start + size;
1da177e4 172 unsigned long next;
b521c43f 173 pgd_t *pgd;
2ba3e694
JR
174 unsigned long addr = start;
175 pgtbl_mod_mask mask = 0;
1da177e4
LT
176
177 BUG_ON(addr >= end);
178 pgd = pgd_offset_k(addr);
1da177e4
LT
179 do {
180 next = pgd_addr_end(addr, end);
2ba3e694
JR
181 if (pgd_bad(*pgd))
182 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
183 if (pgd_none_or_clear_bad(pgd))
184 continue;
2ba3e694 185 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 186 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
187
188 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
189 arch_sync_kernel_mappings(start, end);
1da177e4
LT
190}
191
192static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
193 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
194 pgtbl_mod_mask *mask)
1da177e4
LT
195{
196 pte_t *pte;
197
db64fe02
NP
198 /*
199 * nr is a running index into the array which helps higher level
200 * callers keep track of where we're up to.
201 */
202
2ba3e694 203 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
204 if (!pte)
205 return -ENOMEM;
206 do {
db64fe02
NP
207 struct page *page = pages[*nr];
208
209 if (WARN_ON(!pte_none(*pte)))
210 return -EBUSY;
211 if (WARN_ON(!page))
1da177e4
LT
212 return -ENOMEM;
213 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 214 (*nr)++;
1da177e4 215 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 216 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
217 return 0;
218}
219
db64fe02 220static int vmap_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
221 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
222 pgtbl_mod_mask *mask)
1da177e4
LT
223{
224 pmd_t *pmd;
225 unsigned long next;
226
2ba3e694 227 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
228 if (!pmd)
229 return -ENOMEM;
230 do {
231 next = pmd_addr_end(addr, end);
2ba3e694 232 if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
233 return -ENOMEM;
234 } while (pmd++, addr = next, addr != end);
235 return 0;
236}
237
c2febafc 238static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
239 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
240 pgtbl_mod_mask *mask)
1da177e4
LT
241{
242 pud_t *pud;
243 unsigned long next;
244
2ba3e694 245 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
246 if (!pud)
247 return -ENOMEM;
248 do {
249 next = pud_addr_end(addr, end);
2ba3e694 250 if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
251 return -ENOMEM;
252 } while (pud++, addr = next, addr != end);
253 return 0;
254}
255
c2febafc 256static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
257 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
258 pgtbl_mod_mask *mask)
c2febafc
KS
259{
260 p4d_t *p4d;
261 unsigned long next;
262
2ba3e694 263 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
264 if (!p4d)
265 return -ENOMEM;
266 do {
267 next = p4d_addr_end(addr, end);
2ba3e694 268 if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
269 return -ENOMEM;
270 } while (p4d++, addr = next, addr != end);
271 return 0;
272}
273
b521c43f
CH
274/**
275 * map_kernel_range_noflush - map kernel VM area with the specified pages
276 * @addr: start of the VM area to map
277 * @size: size of the VM area to map
278 * @prot: page protection flags to use
279 * @pages: pages to map
db64fe02 280 *
b521c43f
CH
281 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should
282 * have been allocated using get_vm_area() and its friends.
283 *
284 * NOTE:
285 * This function does NOT do any cache flushing. The caller is responsible for
286 * calling flush_cache_vmap() on to-be-mapped areas before calling this
287 * function.
288 *
289 * RETURNS:
60bb4465 290 * 0 on success, -errno on failure.
db64fe02 291 */
b521c43f
CH
292int map_kernel_range_noflush(unsigned long addr, unsigned long size,
293 pgprot_t prot, struct page **pages)
1da177e4 294{
2ba3e694 295 unsigned long start = addr;
b521c43f 296 unsigned long end = addr + size;
1da177e4 297 unsigned long next;
b521c43f 298 pgd_t *pgd;
db64fe02
NP
299 int err = 0;
300 int nr = 0;
2ba3e694 301 pgtbl_mod_mask mask = 0;
1da177e4
LT
302
303 BUG_ON(addr >= end);
304 pgd = pgd_offset_k(addr);
1da177e4
LT
305 do {
306 next = pgd_addr_end(addr, end);
2ba3e694
JR
307 if (pgd_bad(*pgd))
308 mask |= PGTBL_PGD_MODIFIED;
309 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 310 if (err)
bf88c8c8 311 return err;
1da177e4 312 } while (pgd++, addr = next, addr != end);
db64fe02 313
2ba3e694
JR
314 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
315 arch_sync_kernel_mappings(start, end);
316
60bb4465 317 return 0;
1da177e4
LT
318}
319
ed1f324c
CH
320int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
321 struct page **pages)
8fc48985
TH
322{
323 int ret;
324
a29adb62
CH
325 ret = map_kernel_range_noflush(start, size, prot, pages);
326 flush_cache_vmap(start, start + size);
8fc48985
TH
327 return ret;
328}
329
81ac3ad9 330int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
331{
332 /*
ab4f2ee1 333 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
334 * and fall back on vmalloc() if that fails. Others
335 * just put it in the vmalloc space.
336 */
337#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
338 unsigned long addr = (unsigned long)x;
339 if (addr >= MODULES_VADDR && addr < MODULES_END)
340 return 1;
341#endif
342 return is_vmalloc_addr(x);
343}
344
48667e7a 345/*
add688fb 346 * Walk a vmap address to the struct page it maps.
48667e7a 347 */
add688fb 348struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
349{
350 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 351 struct page *page = NULL;
48667e7a 352 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
353 p4d_t *p4d;
354 pud_t *pud;
355 pmd_t *pmd;
356 pte_t *ptep, pte;
48667e7a 357
7aa413de
IM
358 /*
359 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
360 * architectures that do not vmalloc module space
361 */
73bdf0a6 362 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 363
c2febafc
KS
364 if (pgd_none(*pgd))
365 return NULL;
366 p4d = p4d_offset(pgd, addr);
367 if (p4d_none(*p4d))
368 return NULL;
369 pud = pud_offset(p4d, addr);
029c54b0
AB
370
371 /*
372 * Don't dereference bad PUD or PMD (below) entries. This will also
373 * identify huge mappings, which we may encounter on architectures
374 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
375 * identified as vmalloc addresses by is_vmalloc_addr(), but are
376 * not [unambiguously] associated with a struct page, so there is
377 * no correct value to return for them.
378 */
379 WARN_ON_ONCE(pud_bad(*pud));
380 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
381 return NULL;
382 pmd = pmd_offset(pud, addr);
029c54b0
AB
383 WARN_ON_ONCE(pmd_bad(*pmd));
384 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
385 return NULL;
386
387 ptep = pte_offset_map(pmd, addr);
388 pte = *ptep;
389 if (pte_present(pte))
390 page = pte_page(pte);
391 pte_unmap(ptep);
add688fb 392 return page;
48667e7a 393}
add688fb 394EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
395
396/*
add688fb 397 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 398 */
add688fb 399unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 400{
add688fb 401 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 402}
add688fb 403EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 404
db64fe02
NP
405
406/*** Global kva allocator ***/
407
bb850f4d 408#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 409#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 410
db64fe02 411
db64fe02 412static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 413static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
414/* Export for kexec only */
415LIST_HEAD(vmap_area_list);
89699605 416static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 417static bool vmap_initialized __read_mostly;
89699605 418
96e2db45
URS
419static struct rb_root purge_vmap_area_root = RB_ROOT;
420static LIST_HEAD(purge_vmap_area_list);
421static DEFINE_SPINLOCK(purge_vmap_area_lock);
422
68ad4a33
URS
423/*
424 * This kmem_cache is used for vmap_area objects. Instead of
425 * allocating from slab we reuse an object from this cache to
426 * make things faster. Especially in "no edge" splitting of
427 * free block.
428 */
429static struct kmem_cache *vmap_area_cachep;
430
431/*
432 * This linked list is used in pair with free_vmap_area_root.
433 * It gives O(1) access to prev/next to perform fast coalescing.
434 */
435static LIST_HEAD(free_vmap_area_list);
436
437/*
438 * This augment red-black tree represents the free vmap space.
439 * All vmap_area objects in this tree are sorted by va->va_start
440 * address. It is used for allocation and merging when a vmap
441 * object is released.
442 *
443 * Each vmap_area node contains a maximum available free block
444 * of its sub-tree, right or left. Therefore it is possible to
445 * find a lowest match of free area.
446 */
447static struct rb_root free_vmap_area_root = RB_ROOT;
448
82dd23e8
URS
449/*
450 * Preload a CPU with one object for "no edge" split case. The
451 * aim is to get rid of allocations from the atomic context, thus
452 * to use more permissive allocation masks.
453 */
454static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
455
68ad4a33
URS
456static __always_inline unsigned long
457va_size(struct vmap_area *va)
458{
459 return (va->va_end - va->va_start);
460}
461
462static __always_inline unsigned long
463get_subtree_max_size(struct rb_node *node)
464{
465 struct vmap_area *va;
466
467 va = rb_entry_safe(node, struct vmap_area, rb_node);
468 return va ? va->subtree_max_size : 0;
469}
89699605 470
68ad4a33
URS
471/*
472 * Gets called when remove the node and rotate.
473 */
474static __always_inline unsigned long
475compute_subtree_max_size(struct vmap_area *va)
476{
477 return max3(va_size(va),
478 get_subtree_max_size(va->rb_node.rb_left),
479 get_subtree_max_size(va->rb_node.rb_right));
480}
481
315cc066
ML
482RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
483 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
484
485static void purge_vmap_area_lazy(void);
486static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
487static unsigned long lazy_max_pages(void);
db64fe02 488
97105f0a
RG
489static atomic_long_t nr_vmalloc_pages;
490
491unsigned long vmalloc_nr_pages(void)
492{
493 return atomic_long_read(&nr_vmalloc_pages);
494}
495
db64fe02 496static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 497{
db64fe02
NP
498 struct rb_node *n = vmap_area_root.rb_node;
499
500 while (n) {
501 struct vmap_area *va;
502
503 va = rb_entry(n, struct vmap_area, rb_node);
504 if (addr < va->va_start)
505 n = n->rb_left;
cef2ac3f 506 else if (addr >= va->va_end)
db64fe02
NP
507 n = n->rb_right;
508 else
509 return va;
510 }
511
512 return NULL;
513}
514
68ad4a33
URS
515/*
516 * This function returns back addresses of parent node
517 * and its left or right link for further processing.
9c801f61
URS
518 *
519 * Otherwise NULL is returned. In that case all further
520 * steps regarding inserting of conflicting overlap range
521 * have to be declined and actually considered as a bug.
68ad4a33
URS
522 */
523static __always_inline struct rb_node **
524find_va_links(struct vmap_area *va,
525 struct rb_root *root, struct rb_node *from,
526 struct rb_node **parent)
527{
528 struct vmap_area *tmp_va;
529 struct rb_node **link;
530
531 if (root) {
532 link = &root->rb_node;
533 if (unlikely(!*link)) {
534 *parent = NULL;
535 return link;
536 }
537 } else {
538 link = &from;
539 }
db64fe02 540
68ad4a33
URS
541 /*
542 * Go to the bottom of the tree. When we hit the last point
543 * we end up with parent rb_node and correct direction, i name
544 * it link, where the new va->rb_node will be attached to.
545 */
546 do {
547 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 548
68ad4a33
URS
549 /*
550 * During the traversal we also do some sanity check.
551 * Trigger the BUG() if there are sides(left/right)
552 * or full overlaps.
553 */
554 if (va->va_start < tmp_va->va_end &&
555 va->va_end <= tmp_va->va_start)
556 link = &(*link)->rb_left;
557 else if (va->va_end > tmp_va->va_start &&
558 va->va_start >= tmp_va->va_end)
559 link = &(*link)->rb_right;
9c801f61
URS
560 else {
561 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
562 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
563
564 return NULL;
565 }
68ad4a33
URS
566 } while (*link);
567
568 *parent = &tmp_va->rb_node;
569 return link;
570}
571
572static __always_inline struct list_head *
573get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
574{
575 struct list_head *list;
576
577 if (unlikely(!parent))
578 /*
579 * The red-black tree where we try to find VA neighbors
580 * before merging or inserting is empty, i.e. it means
581 * there is no free vmap space. Normally it does not
582 * happen but we handle this case anyway.
583 */
584 return NULL;
585
586 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
587 return (&parent->rb_right == link ? list->next : list);
588}
589
590static __always_inline void
591link_va(struct vmap_area *va, struct rb_root *root,
592 struct rb_node *parent, struct rb_node **link, struct list_head *head)
593{
594 /*
595 * VA is still not in the list, but we can
596 * identify its future previous list_head node.
597 */
598 if (likely(parent)) {
599 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
600 if (&parent->rb_right != link)
601 head = head->prev;
db64fe02
NP
602 }
603
68ad4a33
URS
604 /* Insert to the rb-tree */
605 rb_link_node(&va->rb_node, parent, link);
606 if (root == &free_vmap_area_root) {
607 /*
608 * Some explanation here. Just perform simple insertion
609 * to the tree. We do not set va->subtree_max_size to
610 * its current size before calling rb_insert_augmented().
611 * It is because of we populate the tree from the bottom
612 * to parent levels when the node _is_ in the tree.
613 *
614 * Therefore we set subtree_max_size to zero after insertion,
615 * to let __augment_tree_propagate_from() puts everything to
616 * the correct order later on.
617 */
618 rb_insert_augmented(&va->rb_node,
619 root, &free_vmap_area_rb_augment_cb);
620 va->subtree_max_size = 0;
621 } else {
622 rb_insert_color(&va->rb_node, root);
623 }
db64fe02 624
68ad4a33
URS
625 /* Address-sort this list */
626 list_add(&va->list, head);
db64fe02
NP
627}
628
68ad4a33
URS
629static __always_inline void
630unlink_va(struct vmap_area *va, struct rb_root *root)
631{
460e42d1
URS
632 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
633 return;
db64fe02 634
460e42d1
URS
635 if (root == &free_vmap_area_root)
636 rb_erase_augmented(&va->rb_node,
637 root, &free_vmap_area_rb_augment_cb);
638 else
639 rb_erase(&va->rb_node, root);
640
641 list_del(&va->list);
642 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
643}
644
bb850f4d
URS
645#if DEBUG_AUGMENT_PROPAGATE_CHECK
646static void
da27c9ed 647augment_tree_propagate_check(void)
bb850f4d
URS
648{
649 struct vmap_area *va;
da27c9ed 650 unsigned long computed_size;
bb850f4d 651
da27c9ed
URS
652 list_for_each_entry(va, &free_vmap_area_list, list) {
653 computed_size = compute_subtree_max_size(va);
654 if (computed_size != va->subtree_max_size)
655 pr_emerg("tree is corrupted: %lu, %lu\n",
656 va_size(va), va->subtree_max_size);
bb850f4d 657 }
bb850f4d
URS
658}
659#endif
660
68ad4a33
URS
661/*
662 * This function populates subtree_max_size from bottom to upper
663 * levels starting from VA point. The propagation must be done
664 * when VA size is modified by changing its va_start/va_end. Or
665 * in case of newly inserting of VA to the tree.
666 *
667 * It means that __augment_tree_propagate_from() must be called:
668 * - After VA has been inserted to the tree(free path);
669 * - After VA has been shrunk(allocation path);
670 * - After VA has been increased(merging path).
671 *
672 * Please note that, it does not mean that upper parent nodes
673 * and their subtree_max_size are recalculated all the time up
674 * to the root node.
675 *
676 * 4--8
677 * /\
678 * / \
679 * / \
680 * 2--2 8--8
681 *
682 * For example if we modify the node 4, shrinking it to 2, then
683 * no any modification is required. If we shrink the node 2 to 1
684 * its subtree_max_size is updated only, and set to 1. If we shrink
685 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
686 * node becomes 4--6.
687 */
688static __always_inline void
689augment_tree_propagate_from(struct vmap_area *va)
690{
15ae144f
URS
691 /*
692 * Populate the tree from bottom towards the root until
693 * the calculated maximum available size of checked node
694 * is equal to its current one.
695 */
696 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
697
698#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 699 augment_tree_propagate_check();
bb850f4d 700#endif
68ad4a33
URS
701}
702
703static void
704insert_vmap_area(struct vmap_area *va,
705 struct rb_root *root, struct list_head *head)
706{
707 struct rb_node **link;
708 struct rb_node *parent;
709
710 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
711 if (link)
712 link_va(va, root, parent, link, head);
68ad4a33
URS
713}
714
715static void
716insert_vmap_area_augment(struct vmap_area *va,
717 struct rb_node *from, struct rb_root *root,
718 struct list_head *head)
719{
720 struct rb_node **link;
721 struct rb_node *parent;
722
723 if (from)
724 link = find_va_links(va, NULL, from, &parent);
725 else
726 link = find_va_links(va, root, NULL, &parent);
727
9c801f61
URS
728 if (link) {
729 link_va(va, root, parent, link, head);
730 augment_tree_propagate_from(va);
731 }
68ad4a33
URS
732}
733
734/*
735 * Merge de-allocated chunk of VA memory with previous
736 * and next free blocks. If coalesce is not done a new
737 * free area is inserted. If VA has been merged, it is
738 * freed.
9c801f61
URS
739 *
740 * Please note, it can return NULL in case of overlap
741 * ranges, followed by WARN() report. Despite it is a
742 * buggy behaviour, a system can be alive and keep
743 * ongoing.
68ad4a33 744 */
3c5c3cfb 745static __always_inline struct vmap_area *
68ad4a33
URS
746merge_or_add_vmap_area(struct vmap_area *va,
747 struct rb_root *root, struct list_head *head)
748{
749 struct vmap_area *sibling;
750 struct list_head *next;
751 struct rb_node **link;
752 struct rb_node *parent;
753 bool merged = false;
754
755 /*
756 * Find a place in the tree where VA potentially will be
757 * inserted, unless it is merged with its sibling/siblings.
758 */
759 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
760 if (!link)
761 return NULL;
68ad4a33
URS
762
763 /*
764 * Get next node of VA to check if merging can be done.
765 */
766 next = get_va_next_sibling(parent, link);
767 if (unlikely(next == NULL))
768 goto insert;
769
770 /*
771 * start end
772 * | |
773 * |<------VA------>|<-----Next----->|
774 * | |
775 * start end
776 */
777 if (next != head) {
778 sibling = list_entry(next, struct vmap_area, list);
779 if (sibling->va_start == va->va_end) {
780 sibling->va_start = va->va_start;
781
68ad4a33
URS
782 /* Free vmap_area object. */
783 kmem_cache_free(vmap_area_cachep, va);
784
785 /* Point to the new merged area. */
786 va = sibling;
787 merged = true;
788 }
789 }
790
791 /*
792 * start end
793 * | |
794 * |<-----Prev----->|<------VA------>|
795 * | |
796 * start end
797 */
798 if (next->prev != head) {
799 sibling = list_entry(next->prev, struct vmap_area, list);
800 if (sibling->va_end == va->va_start) {
5dd78640
URS
801 /*
802 * If both neighbors are coalesced, it is important
803 * to unlink the "next" node first, followed by merging
804 * with "previous" one. Otherwise the tree might not be
805 * fully populated if a sibling's augmented value is
806 * "normalized" because of rotation operations.
807 */
54f63d9d
URS
808 if (merged)
809 unlink_va(va, root);
68ad4a33 810
5dd78640
URS
811 sibling->va_end = va->va_end;
812
68ad4a33
URS
813 /* Free vmap_area object. */
814 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
815
816 /* Point to the new merged area. */
817 va = sibling;
818 merged = true;
68ad4a33
URS
819 }
820 }
821
822insert:
5dd78640 823 if (!merged)
68ad4a33 824 link_va(va, root, parent, link, head);
3c5c3cfb 825
96e2db45
URS
826 return va;
827}
828
829static __always_inline struct vmap_area *
830merge_or_add_vmap_area_augment(struct vmap_area *va,
831 struct rb_root *root, struct list_head *head)
832{
833 va = merge_or_add_vmap_area(va, root, head);
834 if (va)
835 augment_tree_propagate_from(va);
836
3c5c3cfb 837 return va;
68ad4a33
URS
838}
839
840static __always_inline bool
841is_within_this_va(struct vmap_area *va, unsigned long size,
842 unsigned long align, unsigned long vstart)
843{
844 unsigned long nva_start_addr;
845
846 if (va->va_start > vstart)
847 nva_start_addr = ALIGN(va->va_start, align);
848 else
849 nva_start_addr = ALIGN(vstart, align);
850
851 /* Can be overflowed due to big size or alignment. */
852 if (nva_start_addr + size < nva_start_addr ||
853 nva_start_addr < vstart)
854 return false;
855
856 return (nva_start_addr + size <= va->va_end);
857}
858
859/*
860 * Find the first free block(lowest start address) in the tree,
861 * that will accomplish the request corresponding to passing
862 * parameters.
863 */
864static __always_inline struct vmap_area *
865find_vmap_lowest_match(unsigned long size,
866 unsigned long align, unsigned long vstart)
867{
868 struct vmap_area *va;
869 struct rb_node *node;
870 unsigned long length;
871
872 /* Start from the root. */
873 node = free_vmap_area_root.rb_node;
874
875 /* Adjust the search size for alignment overhead. */
876 length = size + align - 1;
877
878 while (node) {
879 va = rb_entry(node, struct vmap_area, rb_node);
880
881 if (get_subtree_max_size(node->rb_left) >= length &&
882 vstart < va->va_start) {
883 node = node->rb_left;
884 } else {
885 if (is_within_this_va(va, size, align, vstart))
886 return va;
887
888 /*
889 * Does not make sense to go deeper towards the right
890 * sub-tree if it does not have a free block that is
891 * equal or bigger to the requested search length.
892 */
893 if (get_subtree_max_size(node->rb_right) >= length) {
894 node = node->rb_right;
895 continue;
896 }
897
898 /*
3806b041 899 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
900 * that will satisfy the search criteria. It can happen
901 * only once due to "vstart" restriction.
902 */
903 while ((node = rb_parent(node))) {
904 va = rb_entry(node, struct vmap_area, rb_node);
905 if (is_within_this_va(va, size, align, vstart))
906 return va;
907
908 if (get_subtree_max_size(node->rb_right) >= length &&
909 vstart <= va->va_start) {
910 node = node->rb_right;
911 break;
912 }
913 }
914 }
915 }
916
917 return NULL;
918}
919
a6cf4e0f
URS
920#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
921#include <linux/random.h>
922
923static struct vmap_area *
924find_vmap_lowest_linear_match(unsigned long size,
925 unsigned long align, unsigned long vstart)
926{
927 struct vmap_area *va;
928
929 list_for_each_entry(va, &free_vmap_area_list, list) {
930 if (!is_within_this_va(va, size, align, vstart))
931 continue;
932
933 return va;
934 }
935
936 return NULL;
937}
938
939static void
940find_vmap_lowest_match_check(unsigned long size)
941{
942 struct vmap_area *va_1, *va_2;
943 unsigned long vstart;
944 unsigned int rnd;
945
946 get_random_bytes(&rnd, sizeof(rnd));
947 vstart = VMALLOC_START + rnd;
948
949 va_1 = find_vmap_lowest_match(size, 1, vstart);
950 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
951
952 if (va_1 != va_2)
953 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
954 va_1, va_2, vstart);
955}
956#endif
957
68ad4a33
URS
958enum fit_type {
959 NOTHING_FIT = 0,
960 FL_FIT_TYPE = 1, /* full fit */
961 LE_FIT_TYPE = 2, /* left edge fit */
962 RE_FIT_TYPE = 3, /* right edge fit */
963 NE_FIT_TYPE = 4 /* no edge fit */
964};
965
966static __always_inline enum fit_type
967classify_va_fit_type(struct vmap_area *va,
968 unsigned long nva_start_addr, unsigned long size)
969{
970 enum fit_type type;
971
972 /* Check if it is within VA. */
973 if (nva_start_addr < va->va_start ||
974 nva_start_addr + size > va->va_end)
975 return NOTHING_FIT;
976
977 /* Now classify. */
978 if (va->va_start == nva_start_addr) {
979 if (va->va_end == nva_start_addr + size)
980 type = FL_FIT_TYPE;
981 else
982 type = LE_FIT_TYPE;
983 } else if (va->va_end == nva_start_addr + size) {
984 type = RE_FIT_TYPE;
985 } else {
986 type = NE_FIT_TYPE;
987 }
988
989 return type;
990}
991
992static __always_inline int
993adjust_va_to_fit_type(struct vmap_area *va,
994 unsigned long nva_start_addr, unsigned long size,
995 enum fit_type type)
996{
2c929233 997 struct vmap_area *lva = NULL;
68ad4a33
URS
998
999 if (type == FL_FIT_TYPE) {
1000 /*
1001 * No need to split VA, it fully fits.
1002 *
1003 * | |
1004 * V NVA V
1005 * |---------------|
1006 */
1007 unlink_va(va, &free_vmap_area_root);
1008 kmem_cache_free(vmap_area_cachep, va);
1009 } else if (type == LE_FIT_TYPE) {
1010 /*
1011 * Split left edge of fit VA.
1012 *
1013 * | |
1014 * V NVA V R
1015 * |-------|-------|
1016 */
1017 va->va_start += size;
1018 } else if (type == RE_FIT_TYPE) {
1019 /*
1020 * Split right edge of fit VA.
1021 *
1022 * | |
1023 * L V NVA V
1024 * |-------|-------|
1025 */
1026 va->va_end = nva_start_addr;
1027 } else if (type == NE_FIT_TYPE) {
1028 /*
1029 * Split no edge of fit VA.
1030 *
1031 * | |
1032 * L V NVA V R
1033 * |---|-------|---|
1034 */
82dd23e8
URS
1035 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1036 if (unlikely(!lva)) {
1037 /*
1038 * For percpu allocator we do not do any pre-allocation
1039 * and leave it as it is. The reason is it most likely
1040 * never ends up with NE_FIT_TYPE splitting. In case of
1041 * percpu allocations offsets and sizes are aligned to
1042 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1043 * are its main fitting cases.
1044 *
1045 * There are a few exceptions though, as an example it is
1046 * a first allocation (early boot up) when we have "one"
1047 * big free space that has to be split.
060650a2
URS
1048 *
1049 * Also we can hit this path in case of regular "vmap"
1050 * allocations, if "this" current CPU was not preloaded.
1051 * See the comment in alloc_vmap_area() why. If so, then
1052 * GFP_NOWAIT is used instead to get an extra object for
1053 * split purpose. That is rare and most time does not
1054 * occur.
1055 *
1056 * What happens if an allocation gets failed. Basically,
1057 * an "overflow" path is triggered to purge lazily freed
1058 * areas to free some memory, then, the "retry" path is
1059 * triggered to repeat one more time. See more details
1060 * in alloc_vmap_area() function.
82dd23e8
URS
1061 */
1062 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1063 if (!lva)
1064 return -1;
1065 }
68ad4a33
URS
1066
1067 /*
1068 * Build the remainder.
1069 */
1070 lva->va_start = va->va_start;
1071 lva->va_end = nva_start_addr;
1072
1073 /*
1074 * Shrink this VA to remaining size.
1075 */
1076 va->va_start = nva_start_addr + size;
1077 } else {
1078 return -1;
1079 }
1080
1081 if (type != FL_FIT_TYPE) {
1082 augment_tree_propagate_from(va);
1083
2c929233 1084 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1085 insert_vmap_area_augment(lva, &va->rb_node,
1086 &free_vmap_area_root, &free_vmap_area_list);
1087 }
1088
1089 return 0;
1090}
1091
1092/*
1093 * Returns a start address of the newly allocated area, if success.
1094 * Otherwise a vend is returned that indicates failure.
1095 */
1096static __always_inline unsigned long
1097__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1098 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1099{
1100 unsigned long nva_start_addr;
1101 struct vmap_area *va;
1102 enum fit_type type;
1103 int ret;
1104
1105 va = find_vmap_lowest_match(size, align, vstart);
1106 if (unlikely(!va))
1107 return vend;
1108
1109 if (va->va_start > vstart)
1110 nva_start_addr = ALIGN(va->va_start, align);
1111 else
1112 nva_start_addr = ALIGN(vstart, align);
1113
1114 /* Check the "vend" restriction. */
1115 if (nva_start_addr + size > vend)
1116 return vend;
1117
1118 /* Classify what we have found. */
1119 type = classify_va_fit_type(va, nva_start_addr, size);
1120 if (WARN_ON_ONCE(type == NOTHING_FIT))
1121 return vend;
1122
1123 /* Update the free vmap_area. */
1124 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1125 if (ret)
1126 return vend;
1127
a6cf4e0f
URS
1128#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1129 find_vmap_lowest_match_check(size);
1130#endif
1131
68ad4a33
URS
1132 return nva_start_addr;
1133}
4da56b99 1134
d98c9e83
AR
1135/*
1136 * Free a region of KVA allocated by alloc_vmap_area
1137 */
1138static void free_vmap_area(struct vmap_area *va)
1139{
1140 /*
1141 * Remove from the busy tree/list.
1142 */
1143 spin_lock(&vmap_area_lock);
1144 unlink_va(va, &vmap_area_root);
1145 spin_unlock(&vmap_area_lock);
1146
1147 /*
1148 * Insert/Merge it back to the free tree/list.
1149 */
1150 spin_lock(&free_vmap_area_lock);
96e2db45 1151 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
d98c9e83
AR
1152 spin_unlock(&free_vmap_area_lock);
1153}
1154
db64fe02
NP
1155/*
1156 * Allocate a region of KVA of the specified size and alignment, within the
1157 * vstart and vend.
1158 */
1159static struct vmap_area *alloc_vmap_area(unsigned long size,
1160 unsigned long align,
1161 unsigned long vstart, unsigned long vend,
1162 int node, gfp_t gfp_mask)
1163{
82dd23e8 1164 struct vmap_area *va, *pva;
1da177e4 1165 unsigned long addr;
db64fe02 1166 int purged = 0;
d98c9e83 1167 int ret;
db64fe02 1168
7766970c 1169 BUG_ON(!size);
891c49ab 1170 BUG_ON(offset_in_page(size));
89699605 1171 BUG_ON(!is_power_of_2(align));
db64fe02 1172
68ad4a33
URS
1173 if (unlikely(!vmap_initialized))
1174 return ERR_PTR(-EBUSY);
1175
5803ed29 1176 might_sleep();
f07116d7 1177 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1178
f07116d7 1179 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1180 if (unlikely(!va))
1181 return ERR_PTR(-ENOMEM);
1182
7f88f88f
CM
1183 /*
1184 * Only scan the relevant parts containing pointers to other objects
1185 * to avoid false negatives.
1186 */
f07116d7 1187 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1188
db64fe02 1189retry:
82dd23e8 1190 /*
81f1ba58
URS
1191 * Preload this CPU with one extra vmap_area object. It is used
1192 * when fit type of free area is NE_FIT_TYPE. Please note, it
1193 * does not guarantee that an allocation occurs on a CPU that
1194 * is preloaded, instead we minimize the case when it is not.
1195 * It can happen because of cpu migration, because there is a
1196 * race until the below spinlock is taken.
82dd23e8
URS
1197 *
1198 * The preload is done in non-atomic context, thus it allows us
1199 * to use more permissive allocation masks to be more stable under
81f1ba58
URS
1200 * low memory condition and high memory pressure. In rare case,
1201 * if not preloaded, GFP_NOWAIT is used.
82dd23e8 1202 *
81f1ba58 1203 * Set "pva" to NULL here, because of "retry" path.
82dd23e8 1204 */
81f1ba58 1205 pva = NULL;
82dd23e8 1206
81f1ba58
URS
1207 if (!this_cpu_read(ne_fit_preload_node))
1208 /*
1209 * Even if it fails we do not really care about that.
1210 * Just proceed as it is. If needed "overflow" path
1211 * will refill the cache we allocate from.
1212 */
f07116d7 1213 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
82dd23e8 1214
e36176be 1215 spin_lock(&free_vmap_area_lock);
81f1ba58
URS
1216
1217 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1218 kmem_cache_free(vmap_area_cachep, pva);
89699605 1219
afd07389 1220 /*
68ad4a33
URS
1221 * If an allocation fails, the "vend" address is
1222 * returned. Therefore trigger the overflow path.
afd07389 1223 */
cacca6ba 1224 addr = __alloc_vmap_area(size, align, vstart, vend);
e36176be
URS
1225 spin_unlock(&free_vmap_area_lock);
1226
68ad4a33 1227 if (unlikely(addr == vend))
89699605 1228 goto overflow;
db64fe02
NP
1229
1230 va->va_start = addr;
1231 va->va_end = addr + size;
688fcbfc 1232 va->vm = NULL;
68ad4a33 1233
d98c9e83 1234
e36176be
URS
1235 spin_lock(&vmap_area_lock);
1236 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1237 spin_unlock(&vmap_area_lock);
1238
61e16557 1239 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1240 BUG_ON(va->va_start < vstart);
1241 BUG_ON(va->va_end > vend);
1242
d98c9e83
AR
1243 ret = kasan_populate_vmalloc(addr, size);
1244 if (ret) {
1245 free_vmap_area(va);
1246 return ERR_PTR(ret);
1247 }
1248
db64fe02 1249 return va;
89699605
NP
1250
1251overflow:
89699605
NP
1252 if (!purged) {
1253 purge_vmap_area_lazy();
1254 purged = 1;
1255 goto retry;
1256 }
4da56b99
CW
1257
1258 if (gfpflags_allow_blocking(gfp_mask)) {
1259 unsigned long freed = 0;
1260 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1261 if (freed > 0) {
1262 purged = 0;
1263 goto retry;
1264 }
1265 }
1266
03497d76 1267 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1268 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1269 size);
68ad4a33
URS
1270
1271 kmem_cache_free(vmap_area_cachep, va);
89699605 1272 return ERR_PTR(-EBUSY);
db64fe02
NP
1273}
1274
4da56b99
CW
1275int register_vmap_purge_notifier(struct notifier_block *nb)
1276{
1277 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1278}
1279EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1280
1281int unregister_vmap_purge_notifier(struct notifier_block *nb)
1282{
1283 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1284}
1285EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1286
db64fe02
NP
1287/*
1288 * lazy_max_pages is the maximum amount of virtual address space we gather up
1289 * before attempting to purge with a TLB flush.
1290 *
1291 * There is a tradeoff here: a larger number will cover more kernel page tables
1292 * and take slightly longer to purge, but it will linearly reduce the number of
1293 * global TLB flushes that must be performed. It would seem natural to scale
1294 * this number up linearly with the number of CPUs (because vmapping activity
1295 * could also scale linearly with the number of CPUs), however it is likely
1296 * that in practice, workloads might be constrained in other ways that mean
1297 * vmap activity will not scale linearly with CPUs. Also, I want to be
1298 * conservative and not introduce a big latency on huge systems, so go with
1299 * a less aggressive log scale. It will still be an improvement over the old
1300 * code, and it will be simple to change the scale factor if we find that it
1301 * becomes a problem on bigger systems.
1302 */
1303static unsigned long lazy_max_pages(void)
1304{
1305 unsigned int log;
1306
1307 log = fls(num_online_cpus());
1308
1309 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1310}
1311
4d36e6f8 1312static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1313
0574ecd1
CH
1314/*
1315 * Serialize vmap purging. There is no actual criticial section protected
1316 * by this look, but we want to avoid concurrent calls for performance
1317 * reasons and to make the pcpu_get_vm_areas more deterministic.
1318 */
f9e09977 1319static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1320
02b709df
NP
1321/* for per-CPU blocks */
1322static void purge_fragmented_blocks_allcpus(void);
1323
3ee48b6a
CW
1324/*
1325 * called before a call to iounmap() if the caller wants vm_area_struct's
1326 * immediately freed.
1327 */
1328void set_iounmap_nonlazy(void)
1329{
4d36e6f8 1330 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1331}
1332
db64fe02
NP
1333/*
1334 * Purges all lazily-freed vmap areas.
db64fe02 1335 */
0574ecd1 1336static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1337{
4d36e6f8 1338 unsigned long resched_threshold;
96e2db45
URS
1339 struct list_head local_pure_list;
1340 struct vmap_area *va, *n_va;
db64fe02 1341
0574ecd1 1342 lockdep_assert_held(&vmap_purge_lock);
02b709df 1343
96e2db45
URS
1344 spin_lock(&purge_vmap_area_lock);
1345 purge_vmap_area_root = RB_ROOT;
1346 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1347 spin_unlock(&purge_vmap_area_lock);
1348
1349 if (unlikely(list_empty(&local_pure_list)))
68571be9
URS
1350 return false;
1351
96e2db45
URS
1352 start = min(start,
1353 list_first_entry(&local_pure_list,
1354 struct vmap_area, list)->va_start);
1355
1356 end = max(end,
1357 list_last_entry(&local_pure_list,
1358 struct vmap_area, list)->va_end);
db64fe02 1359
0574ecd1 1360 flush_tlb_kernel_range(start, end);
4d36e6f8 1361 resched_threshold = lazy_max_pages() << 1;
db64fe02 1362
e36176be 1363 spin_lock(&free_vmap_area_lock);
96e2db45 1364 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
4d36e6f8 1365 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1366 unsigned long orig_start = va->va_start;
1367 unsigned long orig_end = va->va_end;
763b218d 1368
dd3b8353
URS
1369 /*
1370 * Finally insert or merge lazily-freed area. It is
1371 * detached and there is no need to "unlink" it from
1372 * anything.
1373 */
96e2db45
URS
1374 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1375 &free_vmap_area_list);
3c5c3cfb 1376
9c801f61
URS
1377 if (!va)
1378 continue;
1379
3c5c3cfb
DA
1380 if (is_vmalloc_or_module_addr((void *)orig_start))
1381 kasan_release_vmalloc(orig_start, orig_end,
1382 va->va_start, va->va_end);
dd3b8353 1383
4d36e6f8 1384 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1385
4d36e6f8 1386 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1387 cond_resched_lock(&free_vmap_area_lock);
763b218d 1388 }
e36176be 1389 spin_unlock(&free_vmap_area_lock);
0574ecd1 1390 return true;
db64fe02
NP
1391}
1392
496850e5
NP
1393/*
1394 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1395 * is already purging.
1396 */
1397static void try_purge_vmap_area_lazy(void)
1398{
f9e09977 1399 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1400 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1401 mutex_unlock(&vmap_purge_lock);
0574ecd1 1402 }
496850e5
NP
1403}
1404
db64fe02
NP
1405/*
1406 * Kick off a purge of the outstanding lazy areas.
1407 */
1408static void purge_vmap_area_lazy(void)
1409{
f9e09977 1410 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1411 purge_fragmented_blocks_allcpus();
1412 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1413 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1414}
1415
1416/*
64141da5
JF
1417 * Free a vmap area, caller ensuring that the area has been unmapped
1418 * and flush_cache_vunmap had been called for the correct range
1419 * previously.
db64fe02 1420 */
64141da5 1421static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1422{
4d36e6f8 1423 unsigned long nr_lazy;
80c4bd7a 1424
dd3b8353
URS
1425 spin_lock(&vmap_area_lock);
1426 unlink_va(va, &vmap_area_root);
1427 spin_unlock(&vmap_area_lock);
1428
4d36e6f8
URS
1429 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1430 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a 1431
96e2db45
URS
1432 /*
1433 * Merge or place it to the purge tree/list.
1434 */
1435 spin_lock(&purge_vmap_area_lock);
1436 merge_or_add_vmap_area(va,
1437 &purge_vmap_area_root, &purge_vmap_area_list);
1438 spin_unlock(&purge_vmap_area_lock);
80c4bd7a 1439
96e2db45 1440 /* After this point, we may free va at any time */
80c4bd7a 1441 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1442 try_purge_vmap_area_lazy();
db64fe02
NP
1443}
1444
b29acbdc
NP
1445/*
1446 * Free and unmap a vmap area
1447 */
1448static void free_unmap_vmap_area(struct vmap_area *va)
1449{
1450 flush_cache_vunmap(va->va_start, va->va_end);
855e57a1 1451 unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
8e57f8ac 1452 if (debug_pagealloc_enabled_static())
82a2e924
CP
1453 flush_tlb_kernel_range(va->va_start, va->va_end);
1454
c8eef01e 1455 free_vmap_area_noflush(va);
b29acbdc
NP
1456}
1457
db64fe02
NP
1458static struct vmap_area *find_vmap_area(unsigned long addr)
1459{
1460 struct vmap_area *va;
1461
1462 spin_lock(&vmap_area_lock);
1463 va = __find_vmap_area(addr);
1464 spin_unlock(&vmap_area_lock);
1465
1466 return va;
1467}
1468
db64fe02
NP
1469/*** Per cpu kva allocator ***/
1470
1471/*
1472 * vmap space is limited especially on 32 bit architectures. Ensure there is
1473 * room for at least 16 percpu vmap blocks per CPU.
1474 */
1475/*
1476 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1477 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1478 * instead (we just need a rough idea)
1479 */
1480#if BITS_PER_LONG == 32
1481#define VMALLOC_SPACE (128UL*1024*1024)
1482#else
1483#define VMALLOC_SPACE (128UL*1024*1024*1024)
1484#endif
1485
1486#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1487#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1488#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1489#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1490#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1491#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1492#define VMAP_BBMAP_BITS \
1493 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1494 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1495 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1496
1497#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1498
1499struct vmap_block_queue {
1500 spinlock_t lock;
1501 struct list_head free;
db64fe02
NP
1502};
1503
1504struct vmap_block {
1505 spinlock_t lock;
1506 struct vmap_area *va;
db64fe02 1507 unsigned long free, dirty;
7d61bfe8 1508 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1509 struct list_head free_list;
1510 struct rcu_head rcu_head;
02b709df 1511 struct list_head purge;
db64fe02
NP
1512};
1513
1514/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1515static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1516
1517/*
0f14599c 1518 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
db64fe02
NP
1519 * in the free path. Could get rid of this if we change the API to return a
1520 * "cookie" from alloc, to be passed to free. But no big deal yet.
1521 */
0f14599c 1522static DEFINE_XARRAY(vmap_blocks);
db64fe02
NP
1523
1524/*
1525 * We should probably have a fallback mechanism to allocate virtual memory
1526 * out of partially filled vmap blocks. However vmap block sizing should be
1527 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1528 * big problem.
1529 */
1530
1531static unsigned long addr_to_vb_idx(unsigned long addr)
1532{
1533 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1534 addr /= VMAP_BLOCK_SIZE;
1535 return addr;
1536}
1537
cf725ce2
RP
1538static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1539{
1540 unsigned long addr;
1541
1542 addr = va_start + (pages_off << PAGE_SHIFT);
1543 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1544 return (void *)addr;
1545}
1546
1547/**
1548 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1549 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1550 * @order: how many 2^order pages should be occupied in newly allocated block
1551 * @gfp_mask: flags for the page level allocator
1552 *
a862f68a 1553 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1554 */
1555static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1556{
1557 struct vmap_block_queue *vbq;
1558 struct vmap_block *vb;
1559 struct vmap_area *va;
1560 unsigned long vb_idx;
1561 int node, err;
cf725ce2 1562 void *vaddr;
db64fe02
NP
1563
1564 node = numa_node_id();
1565
1566 vb = kmalloc_node(sizeof(struct vmap_block),
1567 gfp_mask & GFP_RECLAIM_MASK, node);
1568 if (unlikely(!vb))
1569 return ERR_PTR(-ENOMEM);
1570
1571 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1572 VMALLOC_START, VMALLOC_END,
1573 node, gfp_mask);
ddf9c6d4 1574 if (IS_ERR(va)) {
db64fe02 1575 kfree(vb);
e7d86340 1576 return ERR_CAST(va);
db64fe02
NP
1577 }
1578
cf725ce2 1579 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1580 spin_lock_init(&vb->lock);
1581 vb->va = va;
cf725ce2
RP
1582 /* At least something should be left free */
1583 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1584 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1585 vb->dirty = 0;
7d61bfe8
RP
1586 vb->dirty_min = VMAP_BBMAP_BITS;
1587 vb->dirty_max = 0;
db64fe02 1588 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1589
1590 vb_idx = addr_to_vb_idx(va->va_start);
0f14599c
MWO
1591 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1592 if (err) {
1593 kfree(vb);
1594 free_vmap_area(va);
1595 return ERR_PTR(err);
1596 }
db64fe02
NP
1597
1598 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1599 spin_lock(&vbq->lock);
68ac546f 1600 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1601 spin_unlock(&vbq->lock);
3f04ba85 1602 put_cpu_var(vmap_block_queue);
db64fe02 1603
cf725ce2 1604 return vaddr;
db64fe02
NP
1605}
1606
db64fe02
NP
1607static void free_vmap_block(struct vmap_block *vb)
1608{
1609 struct vmap_block *tmp;
db64fe02 1610
0f14599c 1611 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
1612 BUG_ON(tmp != vb);
1613
64141da5 1614 free_vmap_area_noflush(vb->va);
22a3c7d1 1615 kfree_rcu(vb, rcu_head);
db64fe02
NP
1616}
1617
02b709df
NP
1618static void purge_fragmented_blocks(int cpu)
1619{
1620 LIST_HEAD(purge);
1621 struct vmap_block *vb;
1622 struct vmap_block *n_vb;
1623 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1624
1625 rcu_read_lock();
1626 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1627
1628 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1629 continue;
1630
1631 spin_lock(&vb->lock);
1632 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1633 vb->free = 0; /* prevent further allocs after releasing lock */
1634 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1635 vb->dirty_min = 0;
1636 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1637 spin_lock(&vbq->lock);
1638 list_del_rcu(&vb->free_list);
1639 spin_unlock(&vbq->lock);
1640 spin_unlock(&vb->lock);
1641 list_add_tail(&vb->purge, &purge);
1642 } else
1643 spin_unlock(&vb->lock);
1644 }
1645 rcu_read_unlock();
1646
1647 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1648 list_del(&vb->purge);
1649 free_vmap_block(vb);
1650 }
1651}
1652
02b709df
NP
1653static void purge_fragmented_blocks_allcpus(void)
1654{
1655 int cpu;
1656
1657 for_each_possible_cpu(cpu)
1658 purge_fragmented_blocks(cpu);
1659}
1660
db64fe02
NP
1661static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1662{
1663 struct vmap_block_queue *vbq;
1664 struct vmap_block *vb;
cf725ce2 1665 void *vaddr = NULL;
db64fe02
NP
1666 unsigned int order;
1667
891c49ab 1668 BUG_ON(offset_in_page(size));
db64fe02 1669 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1670 if (WARN_ON(size == 0)) {
1671 /*
1672 * Allocating 0 bytes isn't what caller wants since
1673 * get_order(0) returns funny result. Just warn and terminate
1674 * early.
1675 */
1676 return NULL;
1677 }
db64fe02
NP
1678 order = get_order(size);
1679
db64fe02
NP
1680 rcu_read_lock();
1681 vbq = &get_cpu_var(vmap_block_queue);
1682 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1683 unsigned long pages_off;
db64fe02
NP
1684
1685 spin_lock(&vb->lock);
cf725ce2
RP
1686 if (vb->free < (1UL << order)) {
1687 spin_unlock(&vb->lock);
1688 continue;
1689 }
02b709df 1690
cf725ce2
RP
1691 pages_off = VMAP_BBMAP_BITS - vb->free;
1692 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1693 vb->free -= 1UL << order;
1694 if (vb->free == 0) {
1695 spin_lock(&vbq->lock);
1696 list_del_rcu(&vb->free_list);
1697 spin_unlock(&vbq->lock);
1698 }
cf725ce2 1699
02b709df
NP
1700 spin_unlock(&vb->lock);
1701 break;
db64fe02 1702 }
02b709df 1703
3f04ba85 1704 put_cpu_var(vmap_block_queue);
db64fe02
NP
1705 rcu_read_unlock();
1706
cf725ce2
RP
1707 /* Allocate new block if nothing was found */
1708 if (!vaddr)
1709 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1710
cf725ce2 1711 return vaddr;
db64fe02
NP
1712}
1713
78a0e8c4 1714static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
1715{
1716 unsigned long offset;
db64fe02
NP
1717 unsigned int order;
1718 struct vmap_block *vb;
1719
891c49ab 1720 BUG_ON(offset_in_page(size));
db64fe02 1721 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 1722
78a0e8c4 1723 flush_cache_vunmap(addr, addr + size);
b29acbdc 1724
db64fe02 1725 order = get_order(size);
78a0e8c4 1726 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
0f14599c 1727 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
db64fe02 1728
b521c43f 1729 unmap_kernel_range_noflush(addr, size);
64141da5 1730
8e57f8ac 1731 if (debug_pagealloc_enabled_static())
78a0e8c4 1732 flush_tlb_kernel_range(addr, addr + size);
82a2e924 1733
db64fe02 1734 spin_lock(&vb->lock);
7d61bfe8
RP
1735
1736 /* Expand dirty range */
1737 vb->dirty_min = min(vb->dirty_min, offset);
1738 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1739
db64fe02
NP
1740 vb->dirty += 1UL << order;
1741 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1742 BUG_ON(vb->free);
db64fe02
NP
1743 spin_unlock(&vb->lock);
1744 free_vmap_block(vb);
1745 } else
1746 spin_unlock(&vb->lock);
1747}
1748
868b104d 1749static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1750{
db64fe02 1751 int cpu;
db64fe02 1752
9b463334
JF
1753 if (unlikely(!vmap_initialized))
1754 return;
1755
5803ed29
CH
1756 might_sleep();
1757
db64fe02
NP
1758 for_each_possible_cpu(cpu) {
1759 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1760 struct vmap_block *vb;
1761
1762 rcu_read_lock();
1763 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1764 spin_lock(&vb->lock);
7d61bfe8
RP
1765 if (vb->dirty) {
1766 unsigned long va_start = vb->va->va_start;
db64fe02 1767 unsigned long s, e;
b136be5e 1768
7d61bfe8
RP
1769 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1770 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1771
7d61bfe8
RP
1772 start = min(s, start);
1773 end = max(e, end);
db64fe02 1774
7d61bfe8 1775 flush = 1;
db64fe02
NP
1776 }
1777 spin_unlock(&vb->lock);
1778 }
1779 rcu_read_unlock();
1780 }
1781
f9e09977 1782 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1783 purge_fragmented_blocks_allcpus();
1784 if (!__purge_vmap_area_lazy(start, end) && flush)
1785 flush_tlb_kernel_range(start, end);
f9e09977 1786 mutex_unlock(&vmap_purge_lock);
db64fe02 1787}
868b104d
RE
1788
1789/**
1790 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1791 *
1792 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1793 * to amortize TLB flushing overheads. What this means is that any page you
1794 * have now, may, in a former life, have been mapped into kernel virtual
1795 * address by the vmap layer and so there might be some CPUs with TLB entries
1796 * still referencing that page (additional to the regular 1:1 kernel mapping).
1797 *
1798 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1799 * be sure that none of the pages we have control over will have any aliases
1800 * from the vmap layer.
1801 */
1802void vm_unmap_aliases(void)
1803{
1804 unsigned long start = ULONG_MAX, end = 0;
1805 int flush = 0;
1806
1807 _vm_unmap_aliases(start, end, flush);
1808}
db64fe02
NP
1809EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1810
1811/**
1812 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1813 * @mem: the pointer returned by vm_map_ram
1814 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1815 */
1816void vm_unmap_ram(const void *mem, unsigned int count)
1817{
65ee03c4 1818 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1819 unsigned long addr = (unsigned long)mem;
9c3acf60 1820 struct vmap_area *va;
db64fe02 1821
5803ed29 1822 might_sleep();
db64fe02
NP
1823 BUG_ON(!addr);
1824 BUG_ON(addr < VMALLOC_START);
1825 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1826 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1827
d98c9e83
AR
1828 kasan_poison_vmalloc(mem, size);
1829
9c3acf60 1830 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1831 debug_check_no_locks_freed(mem, size);
78a0e8c4 1832 vb_free(addr, size);
9c3acf60
CH
1833 return;
1834 }
1835
1836 va = find_vmap_area(addr);
1837 BUG_ON(!va);
05e3ff95
CP
1838 debug_check_no_locks_freed((void *)va->va_start,
1839 (va->va_end - va->va_start));
9c3acf60 1840 free_unmap_vmap_area(va);
db64fe02
NP
1841}
1842EXPORT_SYMBOL(vm_unmap_ram);
1843
1844/**
1845 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1846 * @pages: an array of pointers to the pages to be mapped
1847 * @count: number of pages
1848 * @node: prefer to allocate data structures on this node
e99c97ad 1849 *
36437638
GK
1850 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1851 * faster than vmap so it's good. But if you mix long-life and short-life
1852 * objects with vm_map_ram(), it could consume lots of address space through
1853 * fragmentation (especially on a 32bit machine). You could see failures in
1854 * the end. Please use this function for short-lived objects.
1855 *
e99c97ad 1856 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 1857 */
d4efd79a 1858void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 1859{
65ee03c4 1860 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1861 unsigned long addr;
1862 void *mem;
1863
1864 if (likely(count <= VMAP_MAX_ALLOC)) {
1865 mem = vb_alloc(size, GFP_KERNEL);
1866 if (IS_ERR(mem))
1867 return NULL;
1868 addr = (unsigned long)mem;
1869 } else {
1870 struct vmap_area *va;
1871 va = alloc_vmap_area(size, PAGE_SIZE,
1872 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1873 if (IS_ERR(va))
1874 return NULL;
1875
1876 addr = va->va_start;
1877 mem = (void *)addr;
1878 }
d98c9e83
AR
1879
1880 kasan_unpoison_vmalloc(mem, size);
1881
d4efd79a 1882 if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
db64fe02
NP
1883 vm_unmap_ram(mem, count);
1884 return NULL;
1885 }
1886 return mem;
1887}
1888EXPORT_SYMBOL(vm_map_ram);
1889
4341fa45 1890static struct vm_struct *vmlist __initdata;
92eac168 1891
be9b7335
NP
1892/**
1893 * vm_area_add_early - add vmap area early during boot
1894 * @vm: vm_struct to add
1895 *
1896 * This function is used to add fixed kernel vm area to vmlist before
1897 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1898 * should contain proper values and the other fields should be zero.
1899 *
1900 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1901 */
1902void __init vm_area_add_early(struct vm_struct *vm)
1903{
1904 struct vm_struct *tmp, **p;
1905
1906 BUG_ON(vmap_initialized);
1907 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1908 if (tmp->addr >= vm->addr) {
1909 BUG_ON(tmp->addr < vm->addr + vm->size);
1910 break;
1911 } else
1912 BUG_ON(tmp->addr + tmp->size > vm->addr);
1913 }
1914 vm->next = *p;
1915 *p = vm;
1916}
1917
f0aa6617
TH
1918/**
1919 * vm_area_register_early - register vmap area early during boot
1920 * @vm: vm_struct to register
c0c0a293 1921 * @align: requested alignment
f0aa6617
TH
1922 *
1923 * This function is used to register kernel vm area before
1924 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1925 * proper values on entry and other fields should be zero. On return,
1926 * vm->addr contains the allocated address.
1927 *
1928 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1929 */
c0c0a293 1930void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1931{
1932 static size_t vm_init_off __initdata;
c0c0a293
TH
1933 unsigned long addr;
1934
1935 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1936 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1937
c0c0a293 1938 vm->addr = (void *)addr;
f0aa6617 1939
be9b7335 1940 vm_area_add_early(vm);
f0aa6617
TH
1941}
1942
68ad4a33
URS
1943static void vmap_init_free_space(void)
1944{
1945 unsigned long vmap_start = 1;
1946 const unsigned long vmap_end = ULONG_MAX;
1947 struct vmap_area *busy, *free;
1948
1949 /*
1950 * B F B B B F
1951 * -|-----|.....|-----|-----|-----|.....|-
1952 * | The KVA space |
1953 * |<--------------------------------->|
1954 */
1955 list_for_each_entry(busy, &vmap_area_list, list) {
1956 if (busy->va_start - vmap_start > 0) {
1957 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1958 if (!WARN_ON_ONCE(!free)) {
1959 free->va_start = vmap_start;
1960 free->va_end = busy->va_start;
1961
1962 insert_vmap_area_augment(free, NULL,
1963 &free_vmap_area_root,
1964 &free_vmap_area_list);
1965 }
1966 }
1967
1968 vmap_start = busy->va_end;
1969 }
1970
1971 if (vmap_end - vmap_start > 0) {
1972 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1973 if (!WARN_ON_ONCE(!free)) {
1974 free->va_start = vmap_start;
1975 free->va_end = vmap_end;
1976
1977 insert_vmap_area_augment(free, NULL,
1978 &free_vmap_area_root,
1979 &free_vmap_area_list);
1980 }
1981 }
1982}
1983
db64fe02
NP
1984void __init vmalloc_init(void)
1985{
822c18f2
IK
1986 struct vmap_area *va;
1987 struct vm_struct *tmp;
db64fe02
NP
1988 int i;
1989
68ad4a33
URS
1990 /*
1991 * Create the cache for vmap_area objects.
1992 */
1993 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1994
db64fe02
NP
1995 for_each_possible_cpu(i) {
1996 struct vmap_block_queue *vbq;
32fcfd40 1997 struct vfree_deferred *p;
db64fe02
NP
1998
1999 vbq = &per_cpu(vmap_block_queue, i);
2000 spin_lock_init(&vbq->lock);
2001 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
2002 p = &per_cpu(vfree_deferred, i);
2003 init_llist_head(&p->list);
2004 INIT_WORK(&p->wq, free_work);
db64fe02 2005 }
9b463334 2006
822c18f2
IK
2007 /* Import existing vmlist entries. */
2008 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
2009 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2010 if (WARN_ON_ONCE(!va))
2011 continue;
2012
822c18f2
IK
2013 va->va_start = (unsigned long)tmp->addr;
2014 va->va_end = va->va_start + tmp->size;
dbda591d 2015 va->vm = tmp;
68ad4a33 2016 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 2017 }
ca23e405 2018
68ad4a33
URS
2019 /*
2020 * Now we can initialize a free vmap space.
2021 */
2022 vmap_init_free_space();
9b463334 2023 vmap_initialized = true;
db64fe02
NP
2024}
2025
8fc48985
TH
2026/**
2027 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2028 * @addr: start of the VM area to unmap
2029 * @size: size of the VM area to unmap
2030 *
2031 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2032 * the unmapping and tlb after.
2033 */
db64fe02
NP
2034void unmap_kernel_range(unsigned long addr, unsigned long size)
2035{
2036 unsigned long end = addr + size;
f6fcba70
TH
2037
2038 flush_cache_vunmap(addr, end);
b521c43f 2039 unmap_kernel_range_noflush(addr, size);
db64fe02
NP
2040 flush_tlb_kernel_range(addr, end);
2041}
2042
e36176be
URS
2043static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2044 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2045{
cf88c790
TH
2046 vm->flags = flags;
2047 vm->addr = (void *)va->va_start;
2048 vm->size = va->va_end - va->va_start;
2049 vm->caller = caller;
db1aecaf 2050 va->vm = vm;
e36176be
URS
2051}
2052
2053static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2054 unsigned long flags, const void *caller)
2055{
2056 spin_lock(&vmap_area_lock);
2057 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2058 spin_unlock(&vmap_area_lock);
f5252e00 2059}
cf88c790 2060
20fc02b4 2061static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2062{
d4033afd 2063 /*
20fc02b4 2064 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2065 * we should make sure that vm has proper values.
2066 * Pair with smp_rmb() in show_numa_info().
2067 */
2068 smp_wmb();
20fc02b4 2069 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2070}
2071
db64fe02 2072static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2073 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2074 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2075{
0006526d 2076 struct vmap_area *va;
db64fe02 2077 struct vm_struct *area;
d98c9e83 2078 unsigned long requested_size = size;
1da177e4 2079
52fd24ca 2080 BUG_ON(in_interrupt());
1da177e4 2081 size = PAGE_ALIGN(size);
31be8309
OH
2082 if (unlikely(!size))
2083 return NULL;
1da177e4 2084
252e5c6e 2085 if (flags & VM_IOREMAP)
2086 align = 1ul << clamp_t(int, get_count_order_long(size),
2087 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2088
cf88c790 2089 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2090 if (unlikely(!area))
2091 return NULL;
2092
71394fe5
AR
2093 if (!(flags & VM_NO_GUARD))
2094 size += PAGE_SIZE;
1da177e4 2095
db64fe02
NP
2096 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2097 if (IS_ERR(va)) {
2098 kfree(area);
2099 return NULL;
1da177e4 2100 }
1da177e4 2101
d98c9e83 2102 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
f5252e00 2103
d98c9e83 2104 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2105
1da177e4 2106 return area;
1da177e4
LT
2107}
2108
c2968612
BH
2109struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2110 unsigned long start, unsigned long end,
5e6cafc8 2111 const void *caller)
c2968612 2112{
00ef2d2f
DR
2113 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2114 GFP_KERNEL, caller);
c2968612
BH
2115}
2116
1da177e4 2117/**
92eac168
MR
2118 * get_vm_area - reserve a contiguous kernel virtual area
2119 * @size: size of the area
2120 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2121 *
92eac168
MR
2122 * Search an area of @size in the kernel virtual mapping area,
2123 * and reserved it for out purposes. Returns the area descriptor
2124 * on success or %NULL on failure.
a862f68a
MR
2125 *
2126 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2127 */
2128struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2129{
2dca6999 2130 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2131 NUMA_NO_NODE, GFP_KERNEL,
2132 __builtin_return_address(0));
23016969
CL
2133}
2134
2135struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2136 const void *caller)
23016969 2137{
2dca6999 2138 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2139 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2140}
2141
e9da6e99 2142/**
92eac168
MR
2143 * find_vm_area - find a continuous kernel virtual area
2144 * @addr: base address
e9da6e99 2145 *
92eac168
MR
2146 * Search for the kernel VM area starting at @addr, and return it.
2147 * It is up to the caller to do all required locking to keep the returned
2148 * pointer valid.
a862f68a 2149 *
74640617 2150 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
2151 */
2152struct vm_struct *find_vm_area(const void *addr)
83342314 2153{
db64fe02 2154 struct vmap_area *va;
83342314 2155
db64fe02 2156 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2157 if (!va)
2158 return NULL;
1da177e4 2159
688fcbfc 2160 return va->vm;
1da177e4
LT
2161}
2162
7856dfeb 2163/**
92eac168
MR
2164 * remove_vm_area - find and remove a continuous kernel virtual area
2165 * @addr: base address
7856dfeb 2166 *
92eac168
MR
2167 * Search for the kernel VM area starting at @addr, and remove it.
2168 * This function returns the found VM area, but using it is NOT safe
2169 * on SMP machines, except for its size or flags.
a862f68a 2170 *
74640617 2171 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 2172 */
b3bdda02 2173struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2174{
db64fe02
NP
2175 struct vmap_area *va;
2176
5803ed29
CH
2177 might_sleep();
2178
dd3b8353
URS
2179 spin_lock(&vmap_area_lock);
2180 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2181 if (va && va->vm) {
db1aecaf 2182 struct vm_struct *vm = va->vm;
f5252e00 2183
c69480ad 2184 va->vm = NULL;
c69480ad
JK
2185 spin_unlock(&vmap_area_lock);
2186
a5af5aa8 2187 kasan_free_shadow(vm);
dd32c279 2188 free_unmap_vmap_area(va);
dd32c279 2189
db64fe02
NP
2190 return vm;
2191 }
dd3b8353
URS
2192
2193 spin_unlock(&vmap_area_lock);
db64fe02 2194 return NULL;
7856dfeb
AK
2195}
2196
868b104d
RE
2197static inline void set_area_direct_map(const struct vm_struct *area,
2198 int (*set_direct_map)(struct page *page))
2199{
2200 int i;
2201
2202 for (i = 0; i < area->nr_pages; i++)
2203 if (page_address(area->pages[i]))
2204 set_direct_map(area->pages[i]);
2205}
2206
2207/* Handle removing and resetting vm mappings related to the vm_struct. */
2208static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2209{
868b104d
RE
2210 unsigned long start = ULONG_MAX, end = 0;
2211 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2212 int flush_dmap = 0;
868b104d
RE
2213 int i;
2214
868b104d
RE
2215 remove_vm_area(area->addr);
2216
2217 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2218 if (!flush_reset)
2219 return;
2220
2221 /*
2222 * If not deallocating pages, just do the flush of the VM area and
2223 * return.
2224 */
2225 if (!deallocate_pages) {
2226 vm_unmap_aliases();
2227 return;
2228 }
2229
2230 /*
2231 * If execution gets here, flush the vm mapping and reset the direct
2232 * map. Find the start and end range of the direct mappings to make sure
2233 * the vm_unmap_aliases() flush includes the direct map.
2234 */
2235 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2236 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2237 if (addr) {
868b104d 2238 start = min(addr, start);
8e41f872 2239 end = max(addr + PAGE_SIZE, end);
31e67340 2240 flush_dmap = 1;
868b104d
RE
2241 }
2242 }
2243
2244 /*
2245 * Set direct map to something invalid so that it won't be cached if
2246 * there are any accesses after the TLB flush, then flush the TLB and
2247 * reset the direct map permissions to the default.
2248 */
2249 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2250 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2251 set_area_direct_map(area, set_direct_map_default_noflush);
2252}
2253
b3bdda02 2254static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2255{
2256 struct vm_struct *area;
2257
2258 if (!addr)
2259 return;
2260
e69e9d4a 2261 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2262 addr))
1da177e4 2263 return;
1da177e4 2264
6ade2032 2265 area = find_vm_area(addr);
1da177e4 2266 if (unlikely(!area)) {
4c8573e2 2267 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2268 addr);
1da177e4
LT
2269 return;
2270 }
2271
05e3ff95
CP
2272 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2273 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2274
c041098c 2275 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
3c5c3cfb 2276
868b104d
RE
2277 vm_remove_mappings(area, deallocate_pages);
2278
1da177e4
LT
2279 if (deallocate_pages) {
2280 int i;
2281
2282 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2283 struct page *page = area->pages[i];
2284
2285 BUG_ON(!page);
4949148a 2286 __free_pages(page, 0);
1da177e4 2287 }
97105f0a 2288 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2289
244d63ee 2290 kvfree(area->pages);
1da177e4
LT
2291 }
2292
2293 kfree(area);
1da177e4 2294}
bf22e37a
AR
2295
2296static inline void __vfree_deferred(const void *addr)
2297{
2298 /*
2299 * Use raw_cpu_ptr() because this can be called from preemptible
2300 * context. Preemption is absolutely fine here, because the llist_add()
2301 * implementation is lockless, so it works even if we are adding to
73221d88 2302 * another cpu's list. schedule_work() should be fine with this too.
bf22e37a
AR
2303 */
2304 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2305
2306 if (llist_add((struct llist_node *)addr, &p->list))
2307 schedule_work(&p->wq);
2308}
2309
2310/**
92eac168
MR
2311 * vfree_atomic - release memory allocated by vmalloc()
2312 * @addr: memory base address
bf22e37a 2313 *
92eac168
MR
2314 * This one is just like vfree() but can be called in any atomic context
2315 * except NMIs.
bf22e37a
AR
2316 */
2317void vfree_atomic(const void *addr)
2318{
2319 BUG_ON(in_nmi());
2320
2321 kmemleak_free(addr);
2322
2323 if (!addr)
2324 return;
2325 __vfree_deferred(addr);
2326}
2327
c67dc624
RP
2328static void __vfree(const void *addr)
2329{
2330 if (unlikely(in_interrupt()))
2331 __vfree_deferred(addr);
2332 else
2333 __vunmap(addr, 1);
2334}
2335
1da177e4 2336/**
fa307474
MWO
2337 * vfree - Release memory allocated by vmalloc()
2338 * @addr: Memory base address
1da177e4 2339 *
fa307474
MWO
2340 * Free the virtually continuous memory area starting at @addr, as obtained
2341 * from one of the vmalloc() family of APIs. This will usually also free the
2342 * physical memory underlying the virtual allocation, but that memory is
2343 * reference counted, so it will not be freed until the last user goes away.
1da177e4 2344 *
fa307474 2345 * If @addr is NULL, no operation is performed.
c9fcee51 2346 *
fa307474 2347 * Context:
92eac168 2348 * May sleep if called *not* from interrupt context.
fa307474
MWO
2349 * Must not be called in NMI context (strictly speaking, it could be
2350 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2351 * conventions for vfree() arch-depenedent would be a really bad idea).
1da177e4 2352 */
b3bdda02 2353void vfree(const void *addr)
1da177e4 2354{
32fcfd40 2355 BUG_ON(in_nmi());
89219d37
CM
2356
2357 kmemleak_free(addr);
2358
a8dda165
AR
2359 might_sleep_if(!in_interrupt());
2360
32fcfd40
AV
2361 if (!addr)
2362 return;
c67dc624
RP
2363
2364 __vfree(addr);
1da177e4 2365}
1da177e4
LT
2366EXPORT_SYMBOL(vfree);
2367
2368/**
92eac168
MR
2369 * vunmap - release virtual mapping obtained by vmap()
2370 * @addr: memory base address
1da177e4 2371 *
92eac168
MR
2372 * Free the virtually contiguous memory area starting at @addr,
2373 * which was created from the page array passed to vmap().
1da177e4 2374 *
92eac168 2375 * Must not be called in interrupt context.
1da177e4 2376 */
b3bdda02 2377void vunmap(const void *addr)
1da177e4
LT
2378{
2379 BUG_ON(in_interrupt());
34754b69 2380 might_sleep();
32fcfd40
AV
2381 if (addr)
2382 __vunmap(addr, 0);
1da177e4 2383}
1da177e4
LT
2384EXPORT_SYMBOL(vunmap);
2385
2386/**
92eac168
MR
2387 * vmap - map an array of pages into virtually contiguous space
2388 * @pages: array of page pointers
2389 * @count: number of pages to map
2390 * @flags: vm_area->flags
2391 * @prot: page protection for the mapping
2392 *
b944afc9
CH
2393 * Maps @count pages from @pages into contiguous kernel virtual space.
2394 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2395 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2396 * are transferred from the caller to vmap(), and will be freed / dropped when
2397 * vfree() is called on the return value.
a862f68a
MR
2398 *
2399 * Return: the address of the area or %NULL on failure
1da177e4
LT
2400 */
2401void *vmap(struct page **pages, unsigned int count,
92eac168 2402 unsigned long flags, pgprot_t prot)
1da177e4
LT
2403{
2404 struct vm_struct *area;
65ee03c4 2405 unsigned long size; /* In bytes */
1da177e4 2406
34754b69
PZ
2407 might_sleep();
2408
ca79b0c2 2409 if (count > totalram_pages())
1da177e4
LT
2410 return NULL;
2411
65ee03c4
GJM
2412 size = (unsigned long)count << PAGE_SHIFT;
2413 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2414 if (!area)
2415 return NULL;
23016969 2416
cca98e9f 2417 if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
ed1f324c 2418 pages) < 0) {
1da177e4
LT
2419 vunmap(area->addr);
2420 return NULL;
2421 }
2422
b944afc9
CH
2423 if (flags & VM_MAP_PUT_PAGES)
2424 area->pages = pages;
1da177e4
LT
2425 return area->addr;
2426}
1da177e4
LT
2427EXPORT_SYMBOL(vmap);
2428
3e9a9e25
CH
2429#ifdef CONFIG_VMAP_PFN
2430struct vmap_pfn_data {
2431 unsigned long *pfns;
2432 pgprot_t prot;
2433 unsigned int idx;
2434};
2435
2436static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2437{
2438 struct vmap_pfn_data *data = private;
2439
2440 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2441 return -EINVAL;
2442 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2443 return 0;
2444}
2445
2446/**
2447 * vmap_pfn - map an array of PFNs into virtually contiguous space
2448 * @pfns: array of PFNs
2449 * @count: number of pages to map
2450 * @prot: page protection for the mapping
2451 *
2452 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2453 * the start address of the mapping.
2454 */
2455void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2456{
2457 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2458 struct vm_struct *area;
2459
2460 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2461 __builtin_return_address(0));
2462 if (!area)
2463 return NULL;
2464 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2465 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2466 free_vm_area(area);
2467 return NULL;
2468 }
2469 return area->addr;
2470}
2471EXPORT_SYMBOL_GPL(vmap_pfn);
2472#endif /* CONFIG_VMAP_PFN */
2473
e31d9eb5 2474static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2475 pgprot_t prot, int node)
1da177e4 2476{
930f036b 2477 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
f255935b 2478 unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
34fe6537
AM
2479 unsigned long array_size;
2480 unsigned int i;
f255935b 2481 struct page **pages;
1da177e4 2482
34fe6537 2483 array_size = (unsigned long)nr_pages * sizeof(struct page *);
f255935b
CH
2484 gfp_mask |= __GFP_NOWARN;
2485 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2486 gfp_mask |= __GFP_HIGHMEM;
1da177e4 2487
1da177e4 2488 /* Please note that the recursion is strictly bounded. */
8757d5fa 2489 if (array_size > PAGE_SIZE) {
f255935b
CH
2490 pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2491 area->caller);
286e1ea3 2492 } else {
976d6dfb 2493 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2494 }
7ea36242
AK
2495
2496 if (!pages) {
8945a723 2497 free_vm_area(area);
1da177e4
LT
2498 return NULL;
2499 }
1da177e4 2500
7ea36242
AK
2501 area->pages = pages;
2502 area->nr_pages = nr_pages;
2503
1da177e4 2504 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2505 struct page *page;
2506
4b90951c 2507 if (node == NUMA_NO_NODE)
f255935b 2508 page = alloc_page(gfp_mask);
930fc45a 2509 else
f255935b 2510 page = alloc_pages_node(node, gfp_mask, 0);
bf53d6f8
CL
2511
2512 if (unlikely(!page)) {
82afbc32 2513 /* Successfully allocated i pages, free them in __vfree() */
1da177e4 2514 area->nr_pages = i;
97105f0a 2515 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2516 goto fail;
2517 }
bf53d6f8 2518 area->pages[i] = page;
dcf61ff0 2519 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2520 cond_resched();
1da177e4 2521 }
97105f0a 2522 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2523
ed1f324c
CH
2524 if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2525 prot, pages) < 0)
1da177e4 2526 goto fail;
ed1f324c 2527
1da177e4
LT
2528 return area->addr;
2529
2530fail:
a8e99259 2531 warn_alloc(gfp_mask, NULL,
7877cdcc 2532 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2533 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2534 __vfree(area->addr);
1da177e4
LT
2535 return NULL;
2536}
2537
2538/**
92eac168
MR
2539 * __vmalloc_node_range - allocate virtually contiguous memory
2540 * @size: allocation size
2541 * @align: desired alignment
2542 * @start: vm area range start
2543 * @end: vm area range end
2544 * @gfp_mask: flags for the page level allocator
2545 * @prot: protection mask for the allocated pages
2546 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2547 * @node: node to use for allocation or NUMA_NO_NODE
2548 * @caller: caller's return address
2549 *
2550 * Allocate enough pages to cover @size from the page level
2551 * allocator with @gfp_mask flags. Map them into contiguous
2552 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2553 *
2554 * Return: the address of the area or %NULL on failure
1da177e4 2555 */
d0a21265
DR
2556void *__vmalloc_node_range(unsigned long size, unsigned long align,
2557 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2558 pgprot_t prot, unsigned long vm_flags, int node,
2559 const void *caller)
1da177e4
LT
2560{
2561 struct vm_struct *area;
89219d37
CM
2562 void *addr;
2563 unsigned long real_size = size;
1da177e4
LT
2564
2565 size = PAGE_ALIGN(size);
ca79b0c2 2566 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2567 goto fail;
1da177e4 2568
d98c9e83 2569 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
cb9e3c29 2570 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2571 if (!area)
de7d2b56 2572 goto fail;
1da177e4 2573
3722e13c 2574 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2575 if (!addr)
b82225f3 2576 return NULL;
89219d37 2577
f5252e00 2578 /*
20fc02b4
ZY
2579 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2580 * flag. It means that vm_struct is not fully initialized.
4341fa45 2581 * Now, it is fully initialized, so remove this flag here.
f5252e00 2582 */
20fc02b4 2583 clear_vm_uninitialized_flag(area);
f5252e00 2584
94f4a161 2585 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2586
2587 return addr;
de7d2b56
JP
2588
2589fail:
a8e99259 2590 warn_alloc(gfp_mask, NULL,
7877cdcc 2591 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2592 return NULL;
1da177e4
LT
2593}
2594
d0a21265 2595/**
92eac168
MR
2596 * __vmalloc_node - allocate virtually contiguous memory
2597 * @size: allocation size
2598 * @align: desired alignment
2599 * @gfp_mask: flags for the page level allocator
92eac168
MR
2600 * @node: node to use for allocation or NUMA_NO_NODE
2601 * @caller: caller's return address
a7c3e901 2602 *
f38fcb9c
CH
2603 * Allocate enough pages to cover @size from the page level allocator with
2604 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 2605 *
92eac168
MR
2606 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2607 * and __GFP_NOFAIL are not supported
a7c3e901 2608 *
92eac168
MR
2609 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2610 * with mm people.
a862f68a
MR
2611 *
2612 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2613 */
2b905948 2614void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 2615 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
2616{
2617 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 2618 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 2619}
c3f896dc
CH
2620/*
2621 * This is only for performance analysis of vmalloc and stress purpose.
2622 * It is required by vmalloc test module, therefore do not use it other
2623 * than that.
2624 */
2625#ifdef CONFIG_TEST_VMALLOC_MODULE
2626EXPORT_SYMBOL_GPL(__vmalloc_node);
2627#endif
d0a21265 2628
88dca4ca 2629void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 2630{
f38fcb9c 2631 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 2632 __builtin_return_address(0));
930fc45a 2633}
1da177e4
LT
2634EXPORT_SYMBOL(__vmalloc);
2635
2636/**
92eac168
MR
2637 * vmalloc - allocate virtually contiguous memory
2638 * @size: allocation size
2639 *
2640 * Allocate enough pages to cover @size from the page level
2641 * allocator and map them into contiguous kernel virtual space.
1da177e4 2642 *
92eac168
MR
2643 * For tight control over page level allocator and protection flags
2644 * use __vmalloc() instead.
a862f68a
MR
2645 *
2646 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2647 */
2648void *vmalloc(unsigned long size)
2649{
4d39d728
CH
2650 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2651 __builtin_return_address(0));
1da177e4 2652}
1da177e4
LT
2653EXPORT_SYMBOL(vmalloc);
2654
e1ca7788 2655/**
92eac168
MR
2656 * vzalloc - allocate virtually contiguous memory with zero fill
2657 * @size: allocation size
2658 *
2659 * Allocate enough pages to cover @size from the page level
2660 * allocator and map them into contiguous kernel virtual space.
2661 * The memory allocated is set to zero.
2662 *
2663 * For tight control over page level allocator and protection flags
2664 * use __vmalloc() instead.
a862f68a
MR
2665 *
2666 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2667 */
2668void *vzalloc(unsigned long size)
2669{
4d39d728
CH
2670 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2671 __builtin_return_address(0));
e1ca7788
DY
2672}
2673EXPORT_SYMBOL(vzalloc);
2674
83342314 2675/**
ead04089
REB
2676 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2677 * @size: allocation size
83342314 2678 *
ead04089
REB
2679 * The resulting memory area is zeroed so it can be mapped to userspace
2680 * without leaking data.
a862f68a
MR
2681 *
2682 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2683 */
2684void *vmalloc_user(unsigned long size)
2685{
bc84c535
RP
2686 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2687 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2688 VM_USERMAP, NUMA_NO_NODE,
2689 __builtin_return_address(0));
83342314
NP
2690}
2691EXPORT_SYMBOL(vmalloc_user);
2692
930fc45a 2693/**
92eac168
MR
2694 * vmalloc_node - allocate memory on a specific node
2695 * @size: allocation size
2696 * @node: numa node
930fc45a 2697 *
92eac168
MR
2698 * Allocate enough pages to cover @size from the page level
2699 * allocator and map them into contiguous kernel virtual space.
930fc45a 2700 *
92eac168
MR
2701 * For tight control over page level allocator and protection flags
2702 * use __vmalloc() instead.
a862f68a
MR
2703 *
2704 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2705 */
2706void *vmalloc_node(unsigned long size, int node)
2707{
f38fcb9c
CH
2708 return __vmalloc_node(size, 1, GFP_KERNEL, node,
2709 __builtin_return_address(0));
930fc45a
CL
2710}
2711EXPORT_SYMBOL(vmalloc_node);
2712
e1ca7788
DY
2713/**
2714 * vzalloc_node - allocate memory on a specific node with zero fill
2715 * @size: allocation size
2716 * @node: numa node
2717 *
2718 * Allocate enough pages to cover @size from the page level
2719 * allocator and map them into contiguous kernel virtual space.
2720 * The memory allocated is set to zero.
2721 *
a862f68a 2722 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2723 */
2724void *vzalloc_node(unsigned long size, int node)
2725{
4d39d728
CH
2726 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2727 __builtin_return_address(0));
e1ca7788
DY
2728}
2729EXPORT_SYMBOL(vzalloc_node);
2730
0d08e0d3 2731#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2732#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2733#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2734#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2735#else
698d0831
MH
2736/*
2737 * 64b systems should always have either DMA or DMA32 zones. For others
2738 * GFP_DMA32 should do the right thing and use the normal zone.
2739 */
2740#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2741#endif
2742
1da177e4 2743/**
92eac168
MR
2744 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2745 * @size: allocation size
1da177e4 2746 *
92eac168
MR
2747 * Allocate enough 32bit PA addressable pages to cover @size from the
2748 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2749 *
2750 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2751 */
2752void *vmalloc_32(unsigned long size)
2753{
f38fcb9c
CH
2754 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2755 __builtin_return_address(0));
1da177e4 2756}
1da177e4
LT
2757EXPORT_SYMBOL(vmalloc_32);
2758
83342314 2759/**
ead04089 2760 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2761 * @size: allocation size
ead04089
REB
2762 *
2763 * The resulting memory area is 32bit addressable and zeroed so it can be
2764 * mapped to userspace without leaking data.
a862f68a
MR
2765 *
2766 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2767 */
2768void *vmalloc_32_user(unsigned long size)
2769{
bc84c535
RP
2770 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2771 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2772 VM_USERMAP, NUMA_NO_NODE,
2773 __builtin_return_address(0));
83342314
NP
2774}
2775EXPORT_SYMBOL(vmalloc_32_user);
2776
d0107eb0
KH
2777/*
2778 * small helper routine , copy contents to buf from addr.
2779 * If the page is not present, fill zero.
2780 */
2781
2782static int aligned_vread(char *buf, char *addr, unsigned long count)
2783{
2784 struct page *p;
2785 int copied = 0;
2786
2787 while (count) {
2788 unsigned long offset, length;
2789
891c49ab 2790 offset = offset_in_page(addr);
d0107eb0
KH
2791 length = PAGE_SIZE - offset;
2792 if (length > count)
2793 length = count;
2794 p = vmalloc_to_page(addr);
2795 /*
2796 * To do safe access to this _mapped_ area, we need
2797 * lock. But adding lock here means that we need to add
2798 * overhead of vmalloc()/vfree() calles for this _debug_
2799 * interface, rarely used. Instead of that, we'll use
2800 * kmap() and get small overhead in this access function.
2801 */
2802 if (p) {
2803 /*
2804 * we can expect USER0 is not used (see vread/vwrite's
2805 * function description)
2806 */
9b04c5fe 2807 void *map = kmap_atomic(p);
d0107eb0 2808 memcpy(buf, map + offset, length);
9b04c5fe 2809 kunmap_atomic(map);
d0107eb0
KH
2810 } else
2811 memset(buf, 0, length);
2812
2813 addr += length;
2814 buf += length;
2815 copied += length;
2816 count -= length;
2817 }
2818 return copied;
2819}
2820
2821static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2822{
2823 struct page *p;
2824 int copied = 0;
2825
2826 while (count) {
2827 unsigned long offset, length;
2828
891c49ab 2829 offset = offset_in_page(addr);
d0107eb0
KH
2830 length = PAGE_SIZE - offset;
2831 if (length > count)
2832 length = count;
2833 p = vmalloc_to_page(addr);
2834 /*
2835 * To do safe access to this _mapped_ area, we need
2836 * lock. But adding lock here means that we need to add
2837 * overhead of vmalloc()/vfree() calles for this _debug_
2838 * interface, rarely used. Instead of that, we'll use
2839 * kmap() and get small overhead in this access function.
2840 */
2841 if (p) {
2842 /*
2843 * we can expect USER0 is not used (see vread/vwrite's
2844 * function description)
2845 */
9b04c5fe 2846 void *map = kmap_atomic(p);
d0107eb0 2847 memcpy(map + offset, buf, length);
9b04c5fe 2848 kunmap_atomic(map);
d0107eb0
KH
2849 }
2850 addr += length;
2851 buf += length;
2852 copied += length;
2853 count -= length;
2854 }
2855 return copied;
2856}
2857
2858/**
92eac168
MR
2859 * vread() - read vmalloc area in a safe way.
2860 * @buf: buffer for reading data
2861 * @addr: vm address.
2862 * @count: number of bytes to be read.
2863 *
92eac168
MR
2864 * This function checks that addr is a valid vmalloc'ed area, and
2865 * copy data from that area to a given buffer. If the given memory range
2866 * of [addr...addr+count) includes some valid address, data is copied to
2867 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2868 * IOREMAP area is treated as memory hole and no copy is done.
2869 *
2870 * If [addr...addr+count) doesn't includes any intersects with alive
2871 * vm_struct area, returns 0. @buf should be kernel's buffer.
2872 *
2873 * Note: In usual ops, vread() is never necessary because the caller
2874 * should know vmalloc() area is valid and can use memcpy().
2875 * This is for routines which have to access vmalloc area without
d9009d67 2876 * any information, as /dev/kmem.
a862f68a
MR
2877 *
2878 * Return: number of bytes for which addr and buf should be increased
2879 * (same number as @count) or %0 if [addr...addr+count) doesn't
2880 * include any intersection with valid vmalloc area
d0107eb0 2881 */
1da177e4
LT
2882long vread(char *buf, char *addr, unsigned long count)
2883{
e81ce85f
JK
2884 struct vmap_area *va;
2885 struct vm_struct *vm;
1da177e4 2886 char *vaddr, *buf_start = buf;
d0107eb0 2887 unsigned long buflen = count;
1da177e4
LT
2888 unsigned long n;
2889
2890 /* Don't allow overflow */
2891 if ((unsigned long) addr + count < count)
2892 count = -(unsigned long) addr;
2893
e81ce85f
JK
2894 spin_lock(&vmap_area_lock);
2895 list_for_each_entry(va, &vmap_area_list, list) {
2896 if (!count)
2897 break;
2898
688fcbfc 2899 if (!va->vm)
e81ce85f
JK
2900 continue;
2901
2902 vm = va->vm;
2903 vaddr = (char *) vm->addr;
762216ab 2904 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2905 continue;
2906 while (addr < vaddr) {
2907 if (count == 0)
2908 goto finished;
2909 *buf = '\0';
2910 buf++;
2911 addr++;
2912 count--;
2913 }
762216ab 2914 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2915 if (n > count)
2916 n = count;
e81ce85f 2917 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2918 aligned_vread(buf, addr, n);
2919 else /* IOREMAP area is treated as memory hole */
2920 memset(buf, 0, n);
2921 buf += n;
2922 addr += n;
2923 count -= n;
1da177e4
LT
2924 }
2925finished:
e81ce85f 2926 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2927
2928 if (buf == buf_start)
2929 return 0;
2930 /* zero-fill memory holes */
2931 if (buf != buf_start + buflen)
2932 memset(buf, 0, buflen - (buf - buf_start));
2933
2934 return buflen;
1da177e4
LT
2935}
2936
d0107eb0 2937/**
92eac168
MR
2938 * vwrite() - write vmalloc area in a safe way.
2939 * @buf: buffer for source data
2940 * @addr: vm address.
2941 * @count: number of bytes to be read.
2942 *
92eac168
MR
2943 * This function checks that addr is a valid vmalloc'ed area, and
2944 * copy data from a buffer to the given addr. If specified range of
2945 * [addr...addr+count) includes some valid address, data is copied from
2946 * proper area of @buf. If there are memory holes, no copy to hole.
2947 * IOREMAP area is treated as memory hole and no copy is done.
2948 *
2949 * If [addr...addr+count) doesn't includes any intersects with alive
2950 * vm_struct area, returns 0. @buf should be kernel's buffer.
2951 *
2952 * Note: In usual ops, vwrite() is never necessary because the caller
2953 * should know vmalloc() area is valid and can use memcpy().
2954 * This is for routines which have to access vmalloc area without
d9009d67 2955 * any information, as /dev/kmem.
a862f68a
MR
2956 *
2957 * Return: number of bytes for which addr and buf should be
2958 * increased (same number as @count) or %0 if [addr...addr+count)
2959 * doesn't include any intersection with valid vmalloc area
d0107eb0 2960 */
1da177e4
LT
2961long vwrite(char *buf, char *addr, unsigned long count)
2962{
e81ce85f
JK
2963 struct vmap_area *va;
2964 struct vm_struct *vm;
d0107eb0
KH
2965 char *vaddr;
2966 unsigned long n, buflen;
2967 int copied = 0;
1da177e4
LT
2968
2969 /* Don't allow overflow */
2970 if ((unsigned long) addr + count < count)
2971 count = -(unsigned long) addr;
d0107eb0 2972 buflen = count;
1da177e4 2973
e81ce85f
JK
2974 spin_lock(&vmap_area_lock);
2975 list_for_each_entry(va, &vmap_area_list, list) {
2976 if (!count)
2977 break;
2978
688fcbfc 2979 if (!va->vm)
e81ce85f
JK
2980 continue;
2981
2982 vm = va->vm;
2983 vaddr = (char *) vm->addr;
762216ab 2984 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2985 continue;
2986 while (addr < vaddr) {
2987 if (count == 0)
2988 goto finished;
2989 buf++;
2990 addr++;
2991 count--;
2992 }
762216ab 2993 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2994 if (n > count)
2995 n = count;
e81ce85f 2996 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2997 aligned_vwrite(buf, addr, n);
2998 copied++;
2999 }
3000 buf += n;
3001 addr += n;
3002 count -= n;
1da177e4
LT
3003 }
3004finished:
e81ce85f 3005 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3006 if (!copied)
3007 return 0;
3008 return buflen;
1da177e4 3009}
83342314
NP
3010
3011/**
92eac168
MR
3012 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3013 * @vma: vma to cover
3014 * @uaddr: target user address to start at
3015 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3016 * @pgoff: offset from @kaddr to start at
92eac168 3017 * @size: size of map area
7682486b 3018 *
92eac168 3019 * Returns: 0 for success, -Exxx on failure
83342314 3020 *
92eac168
MR
3021 * This function checks that @kaddr is a valid vmalloc'ed area,
3022 * and that it is big enough to cover the range starting at
3023 * @uaddr in @vma. Will return failure if that criteria isn't
3024 * met.
83342314 3025 *
92eac168 3026 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3027 */
e69e9d4a 3028int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3029 void *kaddr, unsigned long pgoff,
3030 unsigned long size)
83342314
NP
3031{
3032 struct vm_struct *area;
bdebd6a2
JH
3033 unsigned long off;
3034 unsigned long end_index;
3035
3036 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3037 return -EINVAL;
83342314 3038
e69e9d4a
HD
3039 size = PAGE_ALIGN(size);
3040
3041 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3042 return -EINVAL;
3043
e69e9d4a 3044 area = find_vm_area(kaddr);
83342314 3045 if (!area)
db64fe02 3046 return -EINVAL;
83342314 3047
fe9041c2 3048 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3049 return -EINVAL;
83342314 3050
bdebd6a2
JH
3051 if (check_add_overflow(size, off, &end_index) ||
3052 end_index > get_vm_area_size(area))
db64fe02 3053 return -EINVAL;
bdebd6a2 3054 kaddr += off;
83342314 3055
83342314 3056 do {
e69e9d4a 3057 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3058 int ret;
3059
83342314
NP
3060 ret = vm_insert_page(vma, uaddr, page);
3061 if (ret)
3062 return ret;
3063
3064 uaddr += PAGE_SIZE;
e69e9d4a
HD
3065 kaddr += PAGE_SIZE;
3066 size -= PAGE_SIZE;
3067 } while (size > 0);
83342314 3068
314e51b9 3069 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3070
db64fe02 3071 return 0;
83342314 3072}
e69e9d4a
HD
3073EXPORT_SYMBOL(remap_vmalloc_range_partial);
3074
3075/**
92eac168
MR
3076 * remap_vmalloc_range - map vmalloc pages to userspace
3077 * @vma: vma to cover (map full range of vma)
3078 * @addr: vmalloc memory
3079 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3080 *
92eac168 3081 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3082 *
92eac168
MR
3083 * This function checks that addr is a valid vmalloc'ed area, and
3084 * that it is big enough to cover the vma. Will return failure if
3085 * that criteria isn't met.
e69e9d4a 3086 *
92eac168 3087 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3088 */
3089int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3090 unsigned long pgoff)
3091{
3092 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3093 addr, pgoff,
e69e9d4a
HD
3094 vma->vm_end - vma->vm_start);
3095}
83342314
NP
3096EXPORT_SYMBOL(remap_vmalloc_range);
3097
5f4352fb
JF
3098void free_vm_area(struct vm_struct *area)
3099{
3100 struct vm_struct *ret;
3101 ret = remove_vm_area(area->addr);
3102 BUG_ON(ret != area);
3103 kfree(area);
3104}
3105EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3106
4f8b02b4 3107#ifdef CONFIG_SMP
ca23e405
TH
3108static struct vmap_area *node_to_va(struct rb_node *n)
3109{
4583e773 3110 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3111}
3112
3113/**
68ad4a33
URS
3114 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3115 * @addr: target address
ca23e405 3116 *
68ad4a33
URS
3117 * Returns: vmap_area if it is found. If there is no such area
3118 * the first highest(reverse order) vmap_area is returned
3119 * i.e. va->va_start < addr && va->va_end < addr or NULL
3120 * if there are no any areas before @addr.
ca23e405 3121 */
68ad4a33
URS
3122static struct vmap_area *
3123pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3124{
68ad4a33
URS
3125 struct vmap_area *va, *tmp;
3126 struct rb_node *n;
3127
3128 n = free_vmap_area_root.rb_node;
3129 va = NULL;
ca23e405
TH
3130
3131 while (n) {
68ad4a33
URS
3132 tmp = rb_entry(n, struct vmap_area, rb_node);
3133 if (tmp->va_start <= addr) {
3134 va = tmp;
3135 if (tmp->va_end >= addr)
3136 break;
3137
ca23e405 3138 n = n->rb_right;
68ad4a33
URS
3139 } else {
3140 n = n->rb_left;
3141 }
ca23e405
TH
3142 }
3143
68ad4a33 3144 return va;
ca23e405
TH
3145}
3146
3147/**
68ad4a33
URS
3148 * pvm_determine_end_from_reverse - find the highest aligned address
3149 * of free block below VMALLOC_END
3150 * @va:
3151 * in - the VA we start the search(reverse order);
3152 * out - the VA with the highest aligned end address.
799fa85d 3153 * @align: alignment for required highest address
ca23e405 3154 *
68ad4a33 3155 * Returns: determined end address within vmap_area
ca23e405 3156 */
68ad4a33
URS
3157static unsigned long
3158pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3159{
68ad4a33 3160 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3161 unsigned long addr;
3162
68ad4a33
URS
3163 if (likely(*va)) {
3164 list_for_each_entry_from_reverse((*va),
3165 &free_vmap_area_list, list) {
3166 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3167 if ((*va)->va_start < addr)
3168 return addr;
3169 }
ca23e405
TH
3170 }
3171
68ad4a33 3172 return 0;
ca23e405
TH
3173}
3174
3175/**
3176 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3177 * @offsets: array containing offset of each area
3178 * @sizes: array containing size of each area
3179 * @nr_vms: the number of areas to allocate
3180 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3181 *
3182 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3183 * vm_structs on success, %NULL on failure
3184 *
3185 * Percpu allocator wants to use congruent vm areas so that it can
3186 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3187 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3188 * be scattered pretty far, distance between two areas easily going up
3189 * to gigabytes. To avoid interacting with regular vmallocs, these
3190 * areas are allocated from top.
ca23e405 3191 *
68ad4a33
URS
3192 * Despite its complicated look, this allocator is rather simple. It
3193 * does everything top-down and scans free blocks from the end looking
3194 * for matching base. While scanning, if any of the areas do not fit the
3195 * base address is pulled down to fit the area. Scanning is repeated till
3196 * all the areas fit and then all necessary data structures are inserted
3197 * and the result is returned.
ca23e405
TH
3198 */
3199struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3200 const size_t *sizes, int nr_vms,
ec3f64fc 3201 size_t align)
ca23e405
TH
3202{
3203 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3204 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3205 struct vmap_area **vas, *va;
ca23e405
TH
3206 struct vm_struct **vms;
3207 int area, area2, last_area, term_area;
253a496d 3208 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405 3209 bool purged = false;
68ad4a33 3210 enum fit_type type;
ca23e405 3211
ca23e405 3212 /* verify parameters and allocate data structures */
891c49ab 3213 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3214 for (last_area = 0, area = 0; area < nr_vms; area++) {
3215 start = offsets[area];
3216 end = start + sizes[area];
3217
3218 /* is everything aligned properly? */
3219 BUG_ON(!IS_ALIGNED(offsets[area], align));
3220 BUG_ON(!IS_ALIGNED(sizes[area], align));
3221
3222 /* detect the area with the highest address */
3223 if (start > offsets[last_area])
3224 last_area = area;
3225
c568da28 3226 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3227 unsigned long start2 = offsets[area2];
3228 unsigned long end2 = start2 + sizes[area2];
3229
c568da28 3230 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3231 }
3232 }
3233 last_end = offsets[last_area] + sizes[last_area];
3234
3235 if (vmalloc_end - vmalloc_start < last_end) {
3236 WARN_ON(true);
3237 return NULL;
3238 }
3239
4d67d860
TM
3240 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3241 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3242 if (!vas || !vms)
f1db7afd 3243 goto err_free2;
ca23e405
TH
3244
3245 for (area = 0; area < nr_vms; area++) {
68ad4a33 3246 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3247 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3248 if (!vas[area] || !vms[area])
3249 goto err_free;
3250 }
3251retry:
e36176be 3252 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3253
3254 /* start scanning - we scan from the top, begin with the last area */
3255 area = term_area = last_area;
3256 start = offsets[area];
3257 end = start + sizes[area];
3258
68ad4a33
URS
3259 va = pvm_find_va_enclose_addr(vmalloc_end);
3260 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3261
3262 while (true) {
ca23e405
TH
3263 /*
3264 * base might have underflowed, add last_end before
3265 * comparing.
3266 */
68ad4a33
URS
3267 if (base + last_end < vmalloc_start + last_end)
3268 goto overflow;
ca23e405
TH
3269
3270 /*
68ad4a33 3271 * Fitting base has not been found.
ca23e405 3272 */
68ad4a33
URS
3273 if (va == NULL)
3274 goto overflow;
ca23e405 3275
5336e52c 3276 /*
d8cc323d 3277 * If required width exceeds current VA block, move
5336e52c
KS
3278 * base downwards and then recheck.
3279 */
3280 if (base + end > va->va_end) {
3281 base = pvm_determine_end_from_reverse(&va, align) - end;
3282 term_area = area;
3283 continue;
3284 }
3285
ca23e405 3286 /*
68ad4a33 3287 * If this VA does not fit, move base downwards and recheck.
ca23e405 3288 */
5336e52c 3289 if (base + start < va->va_start) {
68ad4a33
URS
3290 va = node_to_va(rb_prev(&va->rb_node));
3291 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3292 term_area = area;
3293 continue;
3294 }
3295
3296 /*
3297 * This area fits, move on to the previous one. If
3298 * the previous one is the terminal one, we're done.
3299 */
3300 area = (area + nr_vms - 1) % nr_vms;
3301 if (area == term_area)
3302 break;
68ad4a33 3303
ca23e405
TH
3304 start = offsets[area];
3305 end = start + sizes[area];
68ad4a33 3306 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3307 }
68ad4a33 3308
ca23e405
TH
3309 /* we've found a fitting base, insert all va's */
3310 for (area = 0; area < nr_vms; area++) {
68ad4a33 3311 int ret;
ca23e405 3312
68ad4a33
URS
3313 start = base + offsets[area];
3314 size = sizes[area];
ca23e405 3315
68ad4a33
URS
3316 va = pvm_find_va_enclose_addr(start);
3317 if (WARN_ON_ONCE(va == NULL))
3318 /* It is a BUG(), but trigger recovery instead. */
3319 goto recovery;
3320
3321 type = classify_va_fit_type(va, start, size);
3322 if (WARN_ON_ONCE(type == NOTHING_FIT))
3323 /* It is a BUG(), but trigger recovery instead. */
3324 goto recovery;
3325
3326 ret = adjust_va_to_fit_type(va, start, size, type);
3327 if (unlikely(ret))
3328 goto recovery;
3329
3330 /* Allocated area. */
3331 va = vas[area];
3332 va->va_start = start;
3333 va->va_end = start + size;
68ad4a33 3334 }
ca23e405 3335
e36176be 3336 spin_unlock(&free_vmap_area_lock);
ca23e405 3337
253a496d
DA
3338 /* populate the kasan shadow space */
3339 for (area = 0; area < nr_vms; area++) {
3340 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3341 goto err_free_shadow;
3342
3343 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3344 sizes[area]);
3345 }
3346
ca23e405 3347 /* insert all vm's */
e36176be
URS
3348 spin_lock(&vmap_area_lock);
3349 for (area = 0; area < nr_vms; area++) {
3350 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3351
3352 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3353 pcpu_get_vm_areas);
e36176be
URS
3354 }
3355 spin_unlock(&vmap_area_lock);
ca23e405
TH
3356
3357 kfree(vas);
3358 return vms;
3359
68ad4a33 3360recovery:
e36176be
URS
3361 /*
3362 * Remove previously allocated areas. There is no
3363 * need in removing these areas from the busy tree,
3364 * because they are inserted only on the final step
3365 * and when pcpu_get_vm_areas() is success.
3366 */
68ad4a33 3367 while (area--) {
253a496d
DA
3368 orig_start = vas[area]->va_start;
3369 orig_end = vas[area]->va_end;
96e2db45
URS
3370 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3371 &free_vmap_area_list);
9c801f61
URS
3372 if (va)
3373 kasan_release_vmalloc(orig_start, orig_end,
3374 va->va_start, va->va_end);
68ad4a33
URS
3375 vas[area] = NULL;
3376 }
3377
3378overflow:
e36176be 3379 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3380 if (!purged) {
3381 purge_vmap_area_lazy();
3382 purged = true;
3383
3384 /* Before "retry", check if we recover. */
3385 for (area = 0; area < nr_vms; area++) {
3386 if (vas[area])
3387 continue;
3388
3389 vas[area] = kmem_cache_zalloc(
3390 vmap_area_cachep, GFP_KERNEL);
3391 if (!vas[area])
3392 goto err_free;
3393 }
3394
3395 goto retry;
3396 }
3397
ca23e405
TH
3398err_free:
3399 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3400 if (vas[area])
3401 kmem_cache_free(vmap_area_cachep, vas[area]);
3402
f1db7afd 3403 kfree(vms[area]);
ca23e405 3404 }
f1db7afd 3405err_free2:
ca23e405
TH
3406 kfree(vas);
3407 kfree(vms);
3408 return NULL;
253a496d
DA
3409
3410err_free_shadow:
3411 spin_lock(&free_vmap_area_lock);
3412 /*
3413 * We release all the vmalloc shadows, even the ones for regions that
3414 * hadn't been successfully added. This relies on kasan_release_vmalloc
3415 * being able to tolerate this case.
3416 */
3417 for (area = 0; area < nr_vms; area++) {
3418 orig_start = vas[area]->va_start;
3419 orig_end = vas[area]->va_end;
96e2db45
URS
3420 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3421 &free_vmap_area_list);
9c801f61
URS
3422 if (va)
3423 kasan_release_vmalloc(orig_start, orig_end,
3424 va->va_start, va->va_end);
253a496d
DA
3425 vas[area] = NULL;
3426 kfree(vms[area]);
3427 }
3428 spin_unlock(&free_vmap_area_lock);
3429 kfree(vas);
3430 kfree(vms);
3431 return NULL;
ca23e405
TH
3432}
3433
3434/**
3435 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3436 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3437 * @nr_vms: the number of allocated areas
3438 *
3439 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3440 */
3441void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3442{
3443 int i;
3444
3445 for (i = 0; i < nr_vms; i++)
3446 free_vm_area(vms[i]);
3447 kfree(vms);
3448}
4f8b02b4 3449#endif /* CONFIG_SMP */
a10aa579
CL
3450
3451#ifdef CONFIG_PROC_FS
3452static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3453 __acquires(&vmap_purge_lock)
d4033afd 3454 __acquires(&vmap_area_lock)
a10aa579 3455{
e36176be 3456 mutex_lock(&vmap_purge_lock);
d4033afd 3457 spin_lock(&vmap_area_lock);
e36176be 3458
3f500069 3459 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3460}
3461
3462static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3463{
3f500069 3464 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3465}
3466
3467static void s_stop(struct seq_file *m, void *p)
d4033afd 3468 __releases(&vmap_area_lock)
0a7dd4e9 3469 __releases(&vmap_purge_lock)
a10aa579 3470{
d4033afd 3471 spin_unlock(&vmap_area_lock);
0a7dd4e9 3472 mutex_unlock(&vmap_purge_lock);
a10aa579
CL
3473}
3474
a47a126a
ED
3475static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3476{
e5adfffc 3477 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3478 unsigned int nr, *counters = m->private;
3479
3480 if (!counters)
3481 return;
3482
af12346c
WL
3483 if (v->flags & VM_UNINITIALIZED)
3484 return;
7e5b528b
DV
3485 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3486 smp_rmb();
af12346c 3487
a47a126a
ED
3488 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3489
3490 for (nr = 0; nr < v->nr_pages; nr++)
3491 counters[page_to_nid(v->pages[nr])]++;
3492
3493 for_each_node_state(nr, N_HIGH_MEMORY)
3494 if (counters[nr])
3495 seq_printf(m, " N%u=%u", nr, counters[nr]);
3496 }
3497}
3498
dd3b8353
URS
3499static void show_purge_info(struct seq_file *m)
3500{
dd3b8353
URS
3501 struct vmap_area *va;
3502
96e2db45
URS
3503 spin_lock(&purge_vmap_area_lock);
3504 list_for_each_entry(va, &purge_vmap_area_list, list) {
dd3b8353
URS
3505 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3506 (void *)va->va_start, (void *)va->va_end,
3507 va->va_end - va->va_start);
3508 }
96e2db45 3509 spin_unlock(&purge_vmap_area_lock);
dd3b8353
URS
3510}
3511
a10aa579
CL
3512static int s_show(struct seq_file *m, void *p)
3513{
3f500069 3514 struct vmap_area *va;
d4033afd
JK
3515 struct vm_struct *v;
3516
3f500069 3517 va = list_entry(p, struct vmap_area, list);
3518
c2ce8c14 3519 /*
688fcbfc
PL
3520 * s_show can encounter race with remove_vm_area, !vm on behalf
3521 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3522 */
688fcbfc 3523 if (!va->vm) {
dd3b8353 3524 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3525 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3526 va->va_end - va->va_start);
78c72746 3527
d4033afd 3528 return 0;
78c72746 3529 }
d4033afd
JK
3530
3531 v = va->vm;
a10aa579 3532
45ec1690 3533 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3534 v->addr, v->addr + v->size, v->size);
3535
62c70bce
JP
3536 if (v->caller)
3537 seq_printf(m, " %pS", v->caller);
23016969 3538
a10aa579
CL
3539 if (v->nr_pages)
3540 seq_printf(m, " pages=%d", v->nr_pages);
3541
3542 if (v->phys_addr)
199eaa05 3543 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3544
3545 if (v->flags & VM_IOREMAP)
f4527c90 3546 seq_puts(m, " ioremap");
a10aa579
CL
3547
3548 if (v->flags & VM_ALLOC)
f4527c90 3549 seq_puts(m, " vmalloc");
a10aa579
CL
3550
3551 if (v->flags & VM_MAP)
f4527c90 3552 seq_puts(m, " vmap");
a10aa579
CL
3553
3554 if (v->flags & VM_USERMAP)
f4527c90 3555 seq_puts(m, " user");
a10aa579 3556
fe9041c2
CH
3557 if (v->flags & VM_DMA_COHERENT)
3558 seq_puts(m, " dma-coherent");
3559
244d63ee 3560 if (is_vmalloc_addr(v->pages))
f4527c90 3561 seq_puts(m, " vpages");
a10aa579 3562
a47a126a 3563 show_numa_info(m, v);
a10aa579 3564 seq_putc(m, '\n');
dd3b8353
URS
3565
3566 /*
96e2db45 3567 * As a final step, dump "unpurged" areas.
dd3b8353
URS
3568 */
3569 if (list_is_last(&va->list, &vmap_area_list))
3570 show_purge_info(m);
3571
a10aa579
CL
3572 return 0;
3573}
3574
5f6a6a9c 3575static const struct seq_operations vmalloc_op = {
a10aa579
CL
3576 .start = s_start,
3577 .next = s_next,
3578 .stop = s_stop,
3579 .show = s_show,
3580};
5f6a6a9c 3581
5f6a6a9c
AD
3582static int __init proc_vmalloc_init(void)
3583{
fddda2b7 3584 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3585 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3586 &vmalloc_op,
3587 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3588 else
0825a6f9 3589 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3590 return 0;
3591}
3592module_init(proc_vmalloc_init);
db3808c1 3593
a10aa579 3594#endif