]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmalloc.c
mm: remove alloc_vm_area
[thirdparty/linux.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 9 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 10 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
11 */
12
db64fe02 13#include <linux/vmalloc.h>
1da177e4
LT
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/highmem.h>
c3edc401 17#include <linux/sched/signal.h>
1da177e4
LT
18#include <linux/slab.h>
19#include <linux/spinlock.h>
20#include <linux/interrupt.h>
5f6a6a9c 21#include <linux/proc_fs.h>
a10aa579 22#include <linux/seq_file.h>
868b104d 23#include <linux/set_memory.h>
3ac7fe5a 24#include <linux/debugobjects.h>
23016969 25#include <linux/kallsyms.h>
db64fe02 26#include <linux/list.h>
4da56b99 27#include <linux/notifier.h>
db64fe02 28#include <linux/rbtree.h>
0f14599c 29#include <linux/xarray.h>
db64fe02 30#include <linux/rcupdate.h>
f0aa6617 31#include <linux/pfn.h>
89219d37 32#include <linux/kmemleak.h>
60063497 33#include <linux/atomic.h>
3b32123d 34#include <linux/compiler.h>
32fcfd40 35#include <linux/llist.h>
0f616be1 36#include <linux/bitops.h>
68ad4a33 37#include <linux/rbtree_augmented.h>
bdebd6a2 38#include <linux/overflow.h>
3b32123d 39
7c0f6ba6 40#include <linux/uaccess.h>
1da177e4 41#include <asm/tlbflush.h>
2dca6999 42#include <asm/shmparam.h>
1da177e4 43
dd56b046 44#include "internal.h"
2a681cfa 45#include "pgalloc-track.h"
dd56b046 46
186525bd
IM
47bool is_vmalloc_addr(const void *x)
48{
49 unsigned long addr = (unsigned long)x;
50
51 return addr >= VMALLOC_START && addr < VMALLOC_END;
52}
53EXPORT_SYMBOL(is_vmalloc_addr);
54
32fcfd40
AV
55struct vfree_deferred {
56 struct llist_head list;
57 struct work_struct wq;
58};
59static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
60
61static void __vunmap(const void *, int);
62
63static void free_work(struct work_struct *w)
64{
65 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
66 struct llist_node *t, *llnode;
67
68 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
69 __vunmap((void *)llnode, 1);
32fcfd40
AV
70}
71
db64fe02 72/*** Page table manipulation functions ***/
b221385b 73
2ba3e694
JR
74static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
75 pgtbl_mod_mask *mask)
1da177e4
LT
76{
77 pte_t *pte;
78
79 pte = pte_offset_kernel(pmd, addr);
80 do {
81 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
82 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
83 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 84 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
85}
86
2ba3e694
JR
87static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
88 pgtbl_mod_mask *mask)
1da177e4
LT
89{
90 pmd_t *pmd;
91 unsigned long next;
2ba3e694 92 int cleared;
1da177e4
LT
93
94 pmd = pmd_offset(pud, addr);
95 do {
96 next = pmd_addr_end(addr, end);
2ba3e694
JR
97
98 cleared = pmd_clear_huge(pmd);
99 if (cleared || pmd_bad(*pmd))
100 *mask |= PGTBL_PMD_MODIFIED;
101
102 if (cleared)
b9820d8f 103 continue;
1da177e4
LT
104 if (pmd_none_or_clear_bad(pmd))
105 continue;
2ba3e694 106 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
107
108 cond_resched();
1da177e4
LT
109 } while (pmd++, addr = next, addr != end);
110}
111
2ba3e694
JR
112static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
113 pgtbl_mod_mask *mask)
1da177e4
LT
114{
115 pud_t *pud;
116 unsigned long next;
2ba3e694 117 int cleared;
1da177e4 118
c2febafc 119 pud = pud_offset(p4d, addr);
1da177e4
LT
120 do {
121 next = pud_addr_end(addr, end);
2ba3e694
JR
122
123 cleared = pud_clear_huge(pud);
124 if (cleared || pud_bad(*pud))
125 *mask |= PGTBL_PUD_MODIFIED;
126
127 if (cleared)
b9820d8f 128 continue;
1da177e4
LT
129 if (pud_none_or_clear_bad(pud))
130 continue;
2ba3e694 131 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
132 } while (pud++, addr = next, addr != end);
133}
134
2ba3e694
JR
135static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
136 pgtbl_mod_mask *mask)
c2febafc
KS
137{
138 p4d_t *p4d;
139 unsigned long next;
2ba3e694 140 int cleared;
c2febafc
KS
141
142 p4d = p4d_offset(pgd, addr);
143 do {
144 next = p4d_addr_end(addr, end);
2ba3e694
JR
145
146 cleared = p4d_clear_huge(p4d);
147 if (cleared || p4d_bad(*p4d))
148 *mask |= PGTBL_P4D_MODIFIED;
149
150 if (cleared)
c2febafc
KS
151 continue;
152 if (p4d_none_or_clear_bad(p4d))
153 continue;
2ba3e694 154 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
155 } while (p4d++, addr = next, addr != end);
156}
157
b521c43f
CH
158/**
159 * unmap_kernel_range_noflush - unmap kernel VM area
2ba3e694 160 * @start: start of the VM area to unmap
b521c43f
CH
161 * @size: size of the VM area to unmap
162 *
163 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify
164 * should have been allocated using get_vm_area() and its friends.
165 *
166 * NOTE:
167 * This function does NOT do any cache flushing. The caller is responsible
168 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
169 * function and flush_tlb_kernel_range() after.
170 */
2ba3e694 171void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
1da177e4 172{
2ba3e694 173 unsigned long end = start + size;
1da177e4 174 unsigned long next;
b521c43f 175 pgd_t *pgd;
2ba3e694
JR
176 unsigned long addr = start;
177 pgtbl_mod_mask mask = 0;
1da177e4
LT
178
179 BUG_ON(addr >= end);
180 pgd = pgd_offset_k(addr);
1da177e4
LT
181 do {
182 next = pgd_addr_end(addr, end);
2ba3e694
JR
183 if (pgd_bad(*pgd))
184 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
185 if (pgd_none_or_clear_bad(pgd))
186 continue;
2ba3e694 187 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 188 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
189
190 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
191 arch_sync_kernel_mappings(start, end);
1da177e4
LT
192}
193
194static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
195 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
196 pgtbl_mod_mask *mask)
1da177e4
LT
197{
198 pte_t *pte;
199
db64fe02
NP
200 /*
201 * nr is a running index into the array which helps higher level
202 * callers keep track of where we're up to.
203 */
204
2ba3e694 205 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
206 if (!pte)
207 return -ENOMEM;
208 do {
db64fe02
NP
209 struct page *page = pages[*nr];
210
211 if (WARN_ON(!pte_none(*pte)))
212 return -EBUSY;
213 if (WARN_ON(!page))
1da177e4
LT
214 return -ENOMEM;
215 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 216 (*nr)++;
1da177e4 217 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 218 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
219 return 0;
220}
221
db64fe02 222static int vmap_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
223 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
224 pgtbl_mod_mask *mask)
1da177e4
LT
225{
226 pmd_t *pmd;
227 unsigned long next;
228
2ba3e694 229 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
230 if (!pmd)
231 return -ENOMEM;
232 do {
233 next = pmd_addr_end(addr, end);
2ba3e694 234 if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
235 return -ENOMEM;
236 } while (pmd++, addr = next, addr != end);
237 return 0;
238}
239
c2febafc 240static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
241 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
242 pgtbl_mod_mask *mask)
1da177e4
LT
243{
244 pud_t *pud;
245 unsigned long next;
246
2ba3e694 247 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
248 if (!pud)
249 return -ENOMEM;
250 do {
251 next = pud_addr_end(addr, end);
2ba3e694 252 if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
253 return -ENOMEM;
254 } while (pud++, addr = next, addr != end);
255 return 0;
256}
257
c2febafc 258static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
259 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
260 pgtbl_mod_mask *mask)
c2febafc
KS
261{
262 p4d_t *p4d;
263 unsigned long next;
264
2ba3e694 265 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
266 if (!p4d)
267 return -ENOMEM;
268 do {
269 next = p4d_addr_end(addr, end);
2ba3e694 270 if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
271 return -ENOMEM;
272 } while (p4d++, addr = next, addr != end);
273 return 0;
274}
275
b521c43f
CH
276/**
277 * map_kernel_range_noflush - map kernel VM area with the specified pages
278 * @addr: start of the VM area to map
279 * @size: size of the VM area to map
280 * @prot: page protection flags to use
281 * @pages: pages to map
db64fe02 282 *
b521c43f
CH
283 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should
284 * have been allocated using get_vm_area() and its friends.
285 *
286 * NOTE:
287 * This function does NOT do any cache flushing. The caller is responsible for
288 * calling flush_cache_vmap() on to-be-mapped areas before calling this
289 * function.
290 *
291 * RETURNS:
60bb4465 292 * 0 on success, -errno on failure.
db64fe02 293 */
b521c43f
CH
294int map_kernel_range_noflush(unsigned long addr, unsigned long size,
295 pgprot_t prot, struct page **pages)
1da177e4 296{
2ba3e694 297 unsigned long start = addr;
b521c43f 298 unsigned long end = addr + size;
1da177e4 299 unsigned long next;
b521c43f 300 pgd_t *pgd;
db64fe02
NP
301 int err = 0;
302 int nr = 0;
2ba3e694 303 pgtbl_mod_mask mask = 0;
1da177e4
LT
304
305 BUG_ON(addr >= end);
306 pgd = pgd_offset_k(addr);
1da177e4
LT
307 do {
308 next = pgd_addr_end(addr, end);
2ba3e694
JR
309 if (pgd_bad(*pgd))
310 mask |= PGTBL_PGD_MODIFIED;
311 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 312 if (err)
bf88c8c8 313 return err;
1da177e4 314 } while (pgd++, addr = next, addr != end);
db64fe02 315
2ba3e694
JR
316 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
317 arch_sync_kernel_mappings(start, end);
318
60bb4465 319 return 0;
1da177e4
LT
320}
321
ed1f324c
CH
322int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
323 struct page **pages)
8fc48985
TH
324{
325 int ret;
326
a29adb62
CH
327 ret = map_kernel_range_noflush(start, size, prot, pages);
328 flush_cache_vmap(start, start + size);
8fc48985
TH
329 return ret;
330}
331
81ac3ad9 332int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
333{
334 /*
ab4f2ee1 335 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
336 * and fall back on vmalloc() if that fails. Others
337 * just put it in the vmalloc space.
338 */
339#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
340 unsigned long addr = (unsigned long)x;
341 if (addr >= MODULES_VADDR && addr < MODULES_END)
342 return 1;
343#endif
344 return is_vmalloc_addr(x);
345}
346
48667e7a 347/*
add688fb 348 * Walk a vmap address to the struct page it maps.
48667e7a 349 */
add688fb 350struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
351{
352 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 353 struct page *page = NULL;
48667e7a 354 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
355 p4d_t *p4d;
356 pud_t *pud;
357 pmd_t *pmd;
358 pte_t *ptep, pte;
48667e7a 359
7aa413de
IM
360 /*
361 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
362 * architectures that do not vmalloc module space
363 */
73bdf0a6 364 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 365
c2febafc
KS
366 if (pgd_none(*pgd))
367 return NULL;
368 p4d = p4d_offset(pgd, addr);
369 if (p4d_none(*p4d))
370 return NULL;
371 pud = pud_offset(p4d, addr);
029c54b0
AB
372
373 /*
374 * Don't dereference bad PUD or PMD (below) entries. This will also
375 * identify huge mappings, which we may encounter on architectures
376 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
377 * identified as vmalloc addresses by is_vmalloc_addr(), but are
378 * not [unambiguously] associated with a struct page, so there is
379 * no correct value to return for them.
380 */
381 WARN_ON_ONCE(pud_bad(*pud));
382 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
383 return NULL;
384 pmd = pmd_offset(pud, addr);
029c54b0
AB
385 WARN_ON_ONCE(pmd_bad(*pmd));
386 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
387 return NULL;
388
389 ptep = pte_offset_map(pmd, addr);
390 pte = *ptep;
391 if (pte_present(pte))
392 page = pte_page(pte);
393 pte_unmap(ptep);
add688fb 394 return page;
48667e7a 395}
add688fb 396EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
397
398/*
add688fb 399 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 400 */
add688fb 401unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 402{
add688fb 403 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 404}
add688fb 405EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 406
db64fe02
NP
407
408/*** Global kva allocator ***/
409
bb850f4d 410#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 411#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 412
db64fe02 413
db64fe02 414static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 415static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
416/* Export for kexec only */
417LIST_HEAD(vmap_area_list);
80c4bd7a 418static LLIST_HEAD(vmap_purge_list);
89699605 419static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 420static bool vmap_initialized __read_mostly;
89699605 421
68ad4a33
URS
422/*
423 * This kmem_cache is used for vmap_area objects. Instead of
424 * allocating from slab we reuse an object from this cache to
425 * make things faster. Especially in "no edge" splitting of
426 * free block.
427 */
428static struct kmem_cache *vmap_area_cachep;
429
430/*
431 * This linked list is used in pair with free_vmap_area_root.
432 * It gives O(1) access to prev/next to perform fast coalescing.
433 */
434static LIST_HEAD(free_vmap_area_list);
435
436/*
437 * This augment red-black tree represents the free vmap space.
438 * All vmap_area objects in this tree are sorted by va->va_start
439 * address. It is used for allocation and merging when a vmap
440 * object is released.
441 *
442 * Each vmap_area node contains a maximum available free block
443 * of its sub-tree, right or left. Therefore it is possible to
444 * find a lowest match of free area.
445 */
446static struct rb_root free_vmap_area_root = RB_ROOT;
447
82dd23e8
URS
448/*
449 * Preload a CPU with one object for "no edge" split case. The
450 * aim is to get rid of allocations from the atomic context, thus
451 * to use more permissive allocation masks.
452 */
453static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
454
68ad4a33
URS
455static __always_inline unsigned long
456va_size(struct vmap_area *va)
457{
458 return (va->va_end - va->va_start);
459}
460
461static __always_inline unsigned long
462get_subtree_max_size(struct rb_node *node)
463{
464 struct vmap_area *va;
465
466 va = rb_entry_safe(node, struct vmap_area, rb_node);
467 return va ? va->subtree_max_size : 0;
468}
89699605 469
68ad4a33
URS
470/*
471 * Gets called when remove the node and rotate.
472 */
473static __always_inline unsigned long
474compute_subtree_max_size(struct vmap_area *va)
475{
476 return max3(va_size(va),
477 get_subtree_max_size(va->rb_node.rb_left),
478 get_subtree_max_size(va->rb_node.rb_right));
479}
480
315cc066
ML
481RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
482 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
483
484static void purge_vmap_area_lazy(void);
485static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
486static unsigned long lazy_max_pages(void);
db64fe02 487
97105f0a
RG
488static atomic_long_t nr_vmalloc_pages;
489
490unsigned long vmalloc_nr_pages(void)
491{
492 return atomic_long_read(&nr_vmalloc_pages);
493}
494
db64fe02 495static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 496{
db64fe02
NP
497 struct rb_node *n = vmap_area_root.rb_node;
498
499 while (n) {
500 struct vmap_area *va;
501
502 va = rb_entry(n, struct vmap_area, rb_node);
503 if (addr < va->va_start)
504 n = n->rb_left;
cef2ac3f 505 else if (addr >= va->va_end)
db64fe02
NP
506 n = n->rb_right;
507 else
508 return va;
509 }
510
511 return NULL;
512}
513
68ad4a33
URS
514/*
515 * This function returns back addresses of parent node
516 * and its left or right link for further processing.
9c801f61
URS
517 *
518 * Otherwise NULL is returned. In that case all further
519 * steps regarding inserting of conflicting overlap range
520 * have to be declined and actually considered as a bug.
68ad4a33
URS
521 */
522static __always_inline struct rb_node **
523find_va_links(struct vmap_area *va,
524 struct rb_root *root, struct rb_node *from,
525 struct rb_node **parent)
526{
527 struct vmap_area *tmp_va;
528 struct rb_node **link;
529
530 if (root) {
531 link = &root->rb_node;
532 if (unlikely(!*link)) {
533 *parent = NULL;
534 return link;
535 }
536 } else {
537 link = &from;
538 }
db64fe02 539
68ad4a33
URS
540 /*
541 * Go to the bottom of the tree. When we hit the last point
542 * we end up with parent rb_node and correct direction, i name
543 * it link, where the new va->rb_node will be attached to.
544 */
545 do {
546 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 547
68ad4a33
URS
548 /*
549 * During the traversal we also do some sanity check.
550 * Trigger the BUG() if there are sides(left/right)
551 * or full overlaps.
552 */
553 if (va->va_start < tmp_va->va_end &&
554 va->va_end <= tmp_va->va_start)
555 link = &(*link)->rb_left;
556 else if (va->va_end > tmp_va->va_start &&
557 va->va_start >= tmp_va->va_end)
558 link = &(*link)->rb_right;
9c801f61
URS
559 else {
560 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
561 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
562
563 return NULL;
564 }
68ad4a33
URS
565 } while (*link);
566
567 *parent = &tmp_va->rb_node;
568 return link;
569}
570
571static __always_inline struct list_head *
572get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
573{
574 struct list_head *list;
575
576 if (unlikely(!parent))
577 /*
578 * The red-black tree where we try to find VA neighbors
579 * before merging or inserting is empty, i.e. it means
580 * there is no free vmap space. Normally it does not
581 * happen but we handle this case anyway.
582 */
583 return NULL;
584
585 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
586 return (&parent->rb_right == link ? list->next : list);
587}
588
589static __always_inline void
590link_va(struct vmap_area *va, struct rb_root *root,
591 struct rb_node *parent, struct rb_node **link, struct list_head *head)
592{
593 /*
594 * VA is still not in the list, but we can
595 * identify its future previous list_head node.
596 */
597 if (likely(parent)) {
598 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
599 if (&parent->rb_right != link)
600 head = head->prev;
db64fe02
NP
601 }
602
68ad4a33
URS
603 /* Insert to the rb-tree */
604 rb_link_node(&va->rb_node, parent, link);
605 if (root == &free_vmap_area_root) {
606 /*
607 * Some explanation here. Just perform simple insertion
608 * to the tree. We do not set va->subtree_max_size to
609 * its current size before calling rb_insert_augmented().
610 * It is because of we populate the tree from the bottom
611 * to parent levels when the node _is_ in the tree.
612 *
613 * Therefore we set subtree_max_size to zero after insertion,
614 * to let __augment_tree_propagate_from() puts everything to
615 * the correct order later on.
616 */
617 rb_insert_augmented(&va->rb_node,
618 root, &free_vmap_area_rb_augment_cb);
619 va->subtree_max_size = 0;
620 } else {
621 rb_insert_color(&va->rb_node, root);
622 }
db64fe02 623
68ad4a33
URS
624 /* Address-sort this list */
625 list_add(&va->list, head);
db64fe02
NP
626}
627
68ad4a33
URS
628static __always_inline void
629unlink_va(struct vmap_area *va, struct rb_root *root)
630{
460e42d1
URS
631 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
632 return;
db64fe02 633
460e42d1
URS
634 if (root == &free_vmap_area_root)
635 rb_erase_augmented(&va->rb_node,
636 root, &free_vmap_area_rb_augment_cb);
637 else
638 rb_erase(&va->rb_node, root);
639
640 list_del(&va->list);
641 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
642}
643
bb850f4d
URS
644#if DEBUG_AUGMENT_PROPAGATE_CHECK
645static void
da27c9ed 646augment_tree_propagate_check(void)
bb850f4d
URS
647{
648 struct vmap_area *va;
da27c9ed 649 unsigned long computed_size;
bb850f4d 650
da27c9ed
URS
651 list_for_each_entry(va, &free_vmap_area_list, list) {
652 computed_size = compute_subtree_max_size(va);
653 if (computed_size != va->subtree_max_size)
654 pr_emerg("tree is corrupted: %lu, %lu\n",
655 va_size(va), va->subtree_max_size);
bb850f4d 656 }
bb850f4d
URS
657}
658#endif
659
68ad4a33
URS
660/*
661 * This function populates subtree_max_size from bottom to upper
662 * levels starting from VA point. The propagation must be done
663 * when VA size is modified by changing its va_start/va_end. Or
664 * in case of newly inserting of VA to the tree.
665 *
666 * It means that __augment_tree_propagate_from() must be called:
667 * - After VA has been inserted to the tree(free path);
668 * - After VA has been shrunk(allocation path);
669 * - After VA has been increased(merging path).
670 *
671 * Please note that, it does not mean that upper parent nodes
672 * and their subtree_max_size are recalculated all the time up
673 * to the root node.
674 *
675 * 4--8
676 * /\
677 * / \
678 * / \
679 * 2--2 8--8
680 *
681 * For example if we modify the node 4, shrinking it to 2, then
682 * no any modification is required. If we shrink the node 2 to 1
683 * its subtree_max_size is updated only, and set to 1. If we shrink
684 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
685 * node becomes 4--6.
686 */
687static __always_inline void
688augment_tree_propagate_from(struct vmap_area *va)
689{
15ae144f
URS
690 /*
691 * Populate the tree from bottom towards the root until
692 * the calculated maximum available size of checked node
693 * is equal to its current one.
694 */
695 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
696
697#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 698 augment_tree_propagate_check();
bb850f4d 699#endif
68ad4a33
URS
700}
701
702static void
703insert_vmap_area(struct vmap_area *va,
704 struct rb_root *root, struct list_head *head)
705{
706 struct rb_node **link;
707 struct rb_node *parent;
708
709 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
710 if (link)
711 link_va(va, root, parent, link, head);
68ad4a33
URS
712}
713
714static void
715insert_vmap_area_augment(struct vmap_area *va,
716 struct rb_node *from, struct rb_root *root,
717 struct list_head *head)
718{
719 struct rb_node **link;
720 struct rb_node *parent;
721
722 if (from)
723 link = find_va_links(va, NULL, from, &parent);
724 else
725 link = find_va_links(va, root, NULL, &parent);
726
9c801f61
URS
727 if (link) {
728 link_va(va, root, parent, link, head);
729 augment_tree_propagate_from(va);
730 }
68ad4a33
URS
731}
732
733/*
734 * Merge de-allocated chunk of VA memory with previous
735 * and next free blocks. If coalesce is not done a new
736 * free area is inserted. If VA has been merged, it is
737 * freed.
9c801f61
URS
738 *
739 * Please note, it can return NULL in case of overlap
740 * ranges, followed by WARN() report. Despite it is a
741 * buggy behaviour, a system can be alive and keep
742 * ongoing.
68ad4a33 743 */
3c5c3cfb 744static __always_inline struct vmap_area *
68ad4a33
URS
745merge_or_add_vmap_area(struct vmap_area *va,
746 struct rb_root *root, struct list_head *head)
747{
748 struct vmap_area *sibling;
749 struct list_head *next;
750 struct rb_node **link;
751 struct rb_node *parent;
752 bool merged = false;
753
754 /*
755 * Find a place in the tree where VA potentially will be
756 * inserted, unless it is merged with its sibling/siblings.
757 */
758 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
759 if (!link)
760 return NULL;
68ad4a33
URS
761
762 /*
763 * Get next node of VA to check if merging can be done.
764 */
765 next = get_va_next_sibling(parent, link);
766 if (unlikely(next == NULL))
767 goto insert;
768
769 /*
770 * start end
771 * | |
772 * |<------VA------>|<-----Next----->|
773 * | |
774 * start end
775 */
776 if (next != head) {
777 sibling = list_entry(next, struct vmap_area, list);
778 if (sibling->va_start == va->va_end) {
779 sibling->va_start = va->va_start;
780
68ad4a33
URS
781 /* Free vmap_area object. */
782 kmem_cache_free(vmap_area_cachep, va);
783
784 /* Point to the new merged area. */
785 va = sibling;
786 merged = true;
787 }
788 }
789
790 /*
791 * start end
792 * | |
793 * |<-----Prev----->|<------VA------>|
794 * | |
795 * start end
796 */
797 if (next->prev != head) {
798 sibling = list_entry(next->prev, struct vmap_area, list);
799 if (sibling->va_end == va->va_start) {
5dd78640
URS
800 /*
801 * If both neighbors are coalesced, it is important
802 * to unlink the "next" node first, followed by merging
803 * with "previous" one. Otherwise the tree might not be
804 * fully populated if a sibling's augmented value is
805 * "normalized" because of rotation operations.
806 */
54f63d9d
URS
807 if (merged)
808 unlink_va(va, root);
68ad4a33 809
5dd78640
URS
810 sibling->va_end = va->va_end;
811
68ad4a33
URS
812 /* Free vmap_area object. */
813 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
814
815 /* Point to the new merged area. */
816 va = sibling;
817 merged = true;
68ad4a33
URS
818 }
819 }
820
821insert:
5dd78640 822 if (!merged)
68ad4a33 823 link_va(va, root, parent, link, head);
3c5c3cfb 824
5dd78640
URS
825 /*
826 * Last step is to check and update the tree.
827 */
828 augment_tree_propagate_from(va);
3c5c3cfb 829 return va;
68ad4a33
URS
830}
831
832static __always_inline bool
833is_within_this_va(struct vmap_area *va, unsigned long size,
834 unsigned long align, unsigned long vstart)
835{
836 unsigned long nva_start_addr;
837
838 if (va->va_start > vstart)
839 nva_start_addr = ALIGN(va->va_start, align);
840 else
841 nva_start_addr = ALIGN(vstart, align);
842
843 /* Can be overflowed due to big size or alignment. */
844 if (nva_start_addr + size < nva_start_addr ||
845 nva_start_addr < vstart)
846 return false;
847
848 return (nva_start_addr + size <= va->va_end);
849}
850
851/*
852 * Find the first free block(lowest start address) in the tree,
853 * that will accomplish the request corresponding to passing
854 * parameters.
855 */
856static __always_inline struct vmap_area *
857find_vmap_lowest_match(unsigned long size,
858 unsigned long align, unsigned long vstart)
859{
860 struct vmap_area *va;
861 struct rb_node *node;
862 unsigned long length;
863
864 /* Start from the root. */
865 node = free_vmap_area_root.rb_node;
866
867 /* Adjust the search size for alignment overhead. */
868 length = size + align - 1;
869
870 while (node) {
871 va = rb_entry(node, struct vmap_area, rb_node);
872
873 if (get_subtree_max_size(node->rb_left) >= length &&
874 vstart < va->va_start) {
875 node = node->rb_left;
876 } else {
877 if (is_within_this_va(va, size, align, vstart))
878 return va;
879
880 /*
881 * Does not make sense to go deeper towards the right
882 * sub-tree if it does not have a free block that is
883 * equal or bigger to the requested search length.
884 */
885 if (get_subtree_max_size(node->rb_right) >= length) {
886 node = node->rb_right;
887 continue;
888 }
889
890 /*
3806b041 891 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
892 * that will satisfy the search criteria. It can happen
893 * only once due to "vstart" restriction.
894 */
895 while ((node = rb_parent(node))) {
896 va = rb_entry(node, struct vmap_area, rb_node);
897 if (is_within_this_va(va, size, align, vstart))
898 return va;
899
900 if (get_subtree_max_size(node->rb_right) >= length &&
901 vstart <= va->va_start) {
902 node = node->rb_right;
903 break;
904 }
905 }
906 }
907 }
908
909 return NULL;
910}
911
a6cf4e0f
URS
912#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
913#include <linux/random.h>
914
915static struct vmap_area *
916find_vmap_lowest_linear_match(unsigned long size,
917 unsigned long align, unsigned long vstart)
918{
919 struct vmap_area *va;
920
921 list_for_each_entry(va, &free_vmap_area_list, list) {
922 if (!is_within_this_va(va, size, align, vstart))
923 continue;
924
925 return va;
926 }
927
928 return NULL;
929}
930
931static void
932find_vmap_lowest_match_check(unsigned long size)
933{
934 struct vmap_area *va_1, *va_2;
935 unsigned long vstart;
936 unsigned int rnd;
937
938 get_random_bytes(&rnd, sizeof(rnd));
939 vstart = VMALLOC_START + rnd;
940
941 va_1 = find_vmap_lowest_match(size, 1, vstart);
942 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
943
944 if (va_1 != va_2)
945 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
946 va_1, va_2, vstart);
947}
948#endif
949
68ad4a33
URS
950enum fit_type {
951 NOTHING_FIT = 0,
952 FL_FIT_TYPE = 1, /* full fit */
953 LE_FIT_TYPE = 2, /* left edge fit */
954 RE_FIT_TYPE = 3, /* right edge fit */
955 NE_FIT_TYPE = 4 /* no edge fit */
956};
957
958static __always_inline enum fit_type
959classify_va_fit_type(struct vmap_area *va,
960 unsigned long nva_start_addr, unsigned long size)
961{
962 enum fit_type type;
963
964 /* Check if it is within VA. */
965 if (nva_start_addr < va->va_start ||
966 nva_start_addr + size > va->va_end)
967 return NOTHING_FIT;
968
969 /* Now classify. */
970 if (va->va_start == nva_start_addr) {
971 if (va->va_end == nva_start_addr + size)
972 type = FL_FIT_TYPE;
973 else
974 type = LE_FIT_TYPE;
975 } else if (va->va_end == nva_start_addr + size) {
976 type = RE_FIT_TYPE;
977 } else {
978 type = NE_FIT_TYPE;
979 }
980
981 return type;
982}
983
984static __always_inline int
985adjust_va_to_fit_type(struct vmap_area *va,
986 unsigned long nva_start_addr, unsigned long size,
987 enum fit_type type)
988{
2c929233 989 struct vmap_area *lva = NULL;
68ad4a33
URS
990
991 if (type == FL_FIT_TYPE) {
992 /*
993 * No need to split VA, it fully fits.
994 *
995 * | |
996 * V NVA V
997 * |---------------|
998 */
999 unlink_va(va, &free_vmap_area_root);
1000 kmem_cache_free(vmap_area_cachep, va);
1001 } else if (type == LE_FIT_TYPE) {
1002 /*
1003 * Split left edge of fit VA.
1004 *
1005 * | |
1006 * V NVA V R
1007 * |-------|-------|
1008 */
1009 va->va_start += size;
1010 } else if (type == RE_FIT_TYPE) {
1011 /*
1012 * Split right edge of fit VA.
1013 *
1014 * | |
1015 * L V NVA V
1016 * |-------|-------|
1017 */
1018 va->va_end = nva_start_addr;
1019 } else if (type == NE_FIT_TYPE) {
1020 /*
1021 * Split no edge of fit VA.
1022 *
1023 * | |
1024 * L V NVA V R
1025 * |---|-------|---|
1026 */
82dd23e8
URS
1027 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1028 if (unlikely(!lva)) {
1029 /*
1030 * For percpu allocator we do not do any pre-allocation
1031 * and leave it as it is. The reason is it most likely
1032 * never ends up with NE_FIT_TYPE splitting. In case of
1033 * percpu allocations offsets and sizes are aligned to
1034 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1035 * are its main fitting cases.
1036 *
1037 * There are a few exceptions though, as an example it is
1038 * a first allocation (early boot up) when we have "one"
1039 * big free space that has to be split.
060650a2
URS
1040 *
1041 * Also we can hit this path in case of regular "vmap"
1042 * allocations, if "this" current CPU was not preloaded.
1043 * See the comment in alloc_vmap_area() why. If so, then
1044 * GFP_NOWAIT is used instead to get an extra object for
1045 * split purpose. That is rare and most time does not
1046 * occur.
1047 *
1048 * What happens if an allocation gets failed. Basically,
1049 * an "overflow" path is triggered to purge lazily freed
1050 * areas to free some memory, then, the "retry" path is
1051 * triggered to repeat one more time. See more details
1052 * in alloc_vmap_area() function.
82dd23e8
URS
1053 */
1054 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1055 if (!lva)
1056 return -1;
1057 }
68ad4a33
URS
1058
1059 /*
1060 * Build the remainder.
1061 */
1062 lva->va_start = va->va_start;
1063 lva->va_end = nva_start_addr;
1064
1065 /*
1066 * Shrink this VA to remaining size.
1067 */
1068 va->va_start = nva_start_addr + size;
1069 } else {
1070 return -1;
1071 }
1072
1073 if (type != FL_FIT_TYPE) {
1074 augment_tree_propagate_from(va);
1075
2c929233 1076 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1077 insert_vmap_area_augment(lva, &va->rb_node,
1078 &free_vmap_area_root, &free_vmap_area_list);
1079 }
1080
1081 return 0;
1082}
1083
1084/*
1085 * Returns a start address of the newly allocated area, if success.
1086 * Otherwise a vend is returned that indicates failure.
1087 */
1088static __always_inline unsigned long
1089__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1090 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1091{
1092 unsigned long nva_start_addr;
1093 struct vmap_area *va;
1094 enum fit_type type;
1095 int ret;
1096
1097 va = find_vmap_lowest_match(size, align, vstart);
1098 if (unlikely(!va))
1099 return vend;
1100
1101 if (va->va_start > vstart)
1102 nva_start_addr = ALIGN(va->va_start, align);
1103 else
1104 nva_start_addr = ALIGN(vstart, align);
1105
1106 /* Check the "vend" restriction. */
1107 if (nva_start_addr + size > vend)
1108 return vend;
1109
1110 /* Classify what we have found. */
1111 type = classify_va_fit_type(va, nva_start_addr, size);
1112 if (WARN_ON_ONCE(type == NOTHING_FIT))
1113 return vend;
1114
1115 /* Update the free vmap_area. */
1116 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1117 if (ret)
1118 return vend;
1119
a6cf4e0f
URS
1120#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1121 find_vmap_lowest_match_check(size);
1122#endif
1123
68ad4a33
URS
1124 return nva_start_addr;
1125}
4da56b99 1126
d98c9e83
AR
1127/*
1128 * Free a region of KVA allocated by alloc_vmap_area
1129 */
1130static void free_vmap_area(struct vmap_area *va)
1131{
1132 /*
1133 * Remove from the busy tree/list.
1134 */
1135 spin_lock(&vmap_area_lock);
1136 unlink_va(va, &vmap_area_root);
1137 spin_unlock(&vmap_area_lock);
1138
1139 /*
1140 * Insert/Merge it back to the free tree/list.
1141 */
1142 spin_lock(&free_vmap_area_lock);
1143 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1144 spin_unlock(&free_vmap_area_lock);
1145}
1146
db64fe02
NP
1147/*
1148 * Allocate a region of KVA of the specified size and alignment, within the
1149 * vstart and vend.
1150 */
1151static struct vmap_area *alloc_vmap_area(unsigned long size,
1152 unsigned long align,
1153 unsigned long vstart, unsigned long vend,
1154 int node, gfp_t gfp_mask)
1155{
82dd23e8 1156 struct vmap_area *va, *pva;
1da177e4 1157 unsigned long addr;
db64fe02 1158 int purged = 0;
d98c9e83 1159 int ret;
db64fe02 1160
7766970c 1161 BUG_ON(!size);
891c49ab 1162 BUG_ON(offset_in_page(size));
89699605 1163 BUG_ON(!is_power_of_2(align));
db64fe02 1164
68ad4a33
URS
1165 if (unlikely(!vmap_initialized))
1166 return ERR_PTR(-EBUSY);
1167
5803ed29 1168 might_sleep();
f07116d7 1169 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1170
f07116d7 1171 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1172 if (unlikely(!va))
1173 return ERR_PTR(-ENOMEM);
1174
7f88f88f
CM
1175 /*
1176 * Only scan the relevant parts containing pointers to other objects
1177 * to avoid false negatives.
1178 */
f07116d7 1179 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1180
db64fe02 1181retry:
82dd23e8 1182 /*
81f1ba58
URS
1183 * Preload this CPU with one extra vmap_area object. It is used
1184 * when fit type of free area is NE_FIT_TYPE. Please note, it
1185 * does not guarantee that an allocation occurs on a CPU that
1186 * is preloaded, instead we minimize the case when it is not.
1187 * It can happen because of cpu migration, because there is a
1188 * race until the below spinlock is taken.
82dd23e8
URS
1189 *
1190 * The preload is done in non-atomic context, thus it allows us
1191 * to use more permissive allocation masks to be more stable under
81f1ba58
URS
1192 * low memory condition and high memory pressure. In rare case,
1193 * if not preloaded, GFP_NOWAIT is used.
82dd23e8 1194 *
81f1ba58 1195 * Set "pva" to NULL here, because of "retry" path.
82dd23e8 1196 */
81f1ba58 1197 pva = NULL;
82dd23e8 1198
81f1ba58
URS
1199 if (!this_cpu_read(ne_fit_preload_node))
1200 /*
1201 * Even if it fails we do not really care about that.
1202 * Just proceed as it is. If needed "overflow" path
1203 * will refill the cache we allocate from.
1204 */
f07116d7 1205 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
82dd23e8 1206
e36176be 1207 spin_lock(&free_vmap_area_lock);
81f1ba58
URS
1208
1209 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1210 kmem_cache_free(vmap_area_cachep, pva);
89699605 1211
afd07389 1212 /*
68ad4a33
URS
1213 * If an allocation fails, the "vend" address is
1214 * returned. Therefore trigger the overflow path.
afd07389 1215 */
cacca6ba 1216 addr = __alloc_vmap_area(size, align, vstart, vend);
e36176be
URS
1217 spin_unlock(&free_vmap_area_lock);
1218
68ad4a33 1219 if (unlikely(addr == vend))
89699605 1220 goto overflow;
db64fe02
NP
1221
1222 va->va_start = addr;
1223 va->va_end = addr + size;
688fcbfc 1224 va->vm = NULL;
68ad4a33 1225
d98c9e83 1226
e36176be
URS
1227 spin_lock(&vmap_area_lock);
1228 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1229 spin_unlock(&vmap_area_lock);
1230
61e16557 1231 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1232 BUG_ON(va->va_start < vstart);
1233 BUG_ON(va->va_end > vend);
1234
d98c9e83
AR
1235 ret = kasan_populate_vmalloc(addr, size);
1236 if (ret) {
1237 free_vmap_area(va);
1238 return ERR_PTR(ret);
1239 }
1240
db64fe02 1241 return va;
89699605
NP
1242
1243overflow:
89699605
NP
1244 if (!purged) {
1245 purge_vmap_area_lazy();
1246 purged = 1;
1247 goto retry;
1248 }
4da56b99
CW
1249
1250 if (gfpflags_allow_blocking(gfp_mask)) {
1251 unsigned long freed = 0;
1252 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1253 if (freed > 0) {
1254 purged = 0;
1255 goto retry;
1256 }
1257 }
1258
03497d76 1259 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1260 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1261 size);
68ad4a33
URS
1262
1263 kmem_cache_free(vmap_area_cachep, va);
89699605 1264 return ERR_PTR(-EBUSY);
db64fe02
NP
1265}
1266
4da56b99
CW
1267int register_vmap_purge_notifier(struct notifier_block *nb)
1268{
1269 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1270}
1271EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1272
1273int unregister_vmap_purge_notifier(struct notifier_block *nb)
1274{
1275 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1276}
1277EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1278
db64fe02
NP
1279/*
1280 * lazy_max_pages is the maximum amount of virtual address space we gather up
1281 * before attempting to purge with a TLB flush.
1282 *
1283 * There is a tradeoff here: a larger number will cover more kernel page tables
1284 * and take slightly longer to purge, but it will linearly reduce the number of
1285 * global TLB flushes that must be performed. It would seem natural to scale
1286 * this number up linearly with the number of CPUs (because vmapping activity
1287 * could also scale linearly with the number of CPUs), however it is likely
1288 * that in practice, workloads might be constrained in other ways that mean
1289 * vmap activity will not scale linearly with CPUs. Also, I want to be
1290 * conservative and not introduce a big latency on huge systems, so go with
1291 * a less aggressive log scale. It will still be an improvement over the old
1292 * code, and it will be simple to change the scale factor if we find that it
1293 * becomes a problem on bigger systems.
1294 */
1295static unsigned long lazy_max_pages(void)
1296{
1297 unsigned int log;
1298
1299 log = fls(num_online_cpus());
1300
1301 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1302}
1303
4d36e6f8 1304static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1305
0574ecd1
CH
1306/*
1307 * Serialize vmap purging. There is no actual criticial section protected
1308 * by this look, but we want to avoid concurrent calls for performance
1309 * reasons and to make the pcpu_get_vm_areas more deterministic.
1310 */
f9e09977 1311static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1312
02b709df
NP
1313/* for per-CPU blocks */
1314static void purge_fragmented_blocks_allcpus(void);
1315
3ee48b6a
CW
1316/*
1317 * called before a call to iounmap() if the caller wants vm_area_struct's
1318 * immediately freed.
1319 */
1320void set_iounmap_nonlazy(void)
1321{
4d36e6f8 1322 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1323}
1324
db64fe02
NP
1325/*
1326 * Purges all lazily-freed vmap areas.
db64fe02 1327 */
0574ecd1 1328static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1329{
4d36e6f8 1330 unsigned long resched_threshold;
80c4bd7a 1331 struct llist_node *valist;
db64fe02 1332 struct vmap_area *va;
cbb76676 1333 struct vmap_area *n_va;
db64fe02 1334
0574ecd1 1335 lockdep_assert_held(&vmap_purge_lock);
02b709df 1336
80c4bd7a 1337 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1338 if (unlikely(valist == NULL))
1339 return false;
1340
1341 /*
1342 * TODO: to calculate a flush range without looping.
1343 * The list can be up to lazy_max_pages() elements.
1344 */
80c4bd7a 1345 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1346 if (va->va_start < start)
1347 start = va->va_start;
1348 if (va->va_end > end)
1349 end = va->va_end;
db64fe02 1350 }
db64fe02 1351
0574ecd1 1352 flush_tlb_kernel_range(start, end);
4d36e6f8 1353 resched_threshold = lazy_max_pages() << 1;
db64fe02 1354
e36176be 1355 spin_lock(&free_vmap_area_lock);
763b218d 1356 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1357 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1358 unsigned long orig_start = va->va_start;
1359 unsigned long orig_end = va->va_end;
763b218d 1360
dd3b8353
URS
1361 /*
1362 * Finally insert or merge lazily-freed area. It is
1363 * detached and there is no need to "unlink" it from
1364 * anything.
1365 */
3c5c3cfb
DA
1366 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1367 &free_vmap_area_list);
1368
9c801f61
URS
1369 if (!va)
1370 continue;
1371
3c5c3cfb
DA
1372 if (is_vmalloc_or_module_addr((void *)orig_start))
1373 kasan_release_vmalloc(orig_start, orig_end,
1374 va->va_start, va->va_end);
dd3b8353 1375
4d36e6f8 1376 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1377
4d36e6f8 1378 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1379 cond_resched_lock(&free_vmap_area_lock);
763b218d 1380 }
e36176be 1381 spin_unlock(&free_vmap_area_lock);
0574ecd1 1382 return true;
db64fe02
NP
1383}
1384
496850e5
NP
1385/*
1386 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1387 * is already purging.
1388 */
1389static void try_purge_vmap_area_lazy(void)
1390{
f9e09977 1391 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1392 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1393 mutex_unlock(&vmap_purge_lock);
0574ecd1 1394 }
496850e5
NP
1395}
1396
db64fe02
NP
1397/*
1398 * Kick off a purge of the outstanding lazy areas.
1399 */
1400static void purge_vmap_area_lazy(void)
1401{
f9e09977 1402 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1403 purge_fragmented_blocks_allcpus();
1404 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1405 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1406}
1407
1408/*
64141da5
JF
1409 * Free a vmap area, caller ensuring that the area has been unmapped
1410 * and flush_cache_vunmap had been called for the correct range
1411 * previously.
db64fe02 1412 */
64141da5 1413static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1414{
4d36e6f8 1415 unsigned long nr_lazy;
80c4bd7a 1416
dd3b8353
URS
1417 spin_lock(&vmap_area_lock);
1418 unlink_va(va, &vmap_area_root);
1419 spin_unlock(&vmap_area_lock);
1420
4d36e6f8
URS
1421 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1422 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1423
1424 /* After this point, we may free va at any time */
1425 llist_add(&va->purge_list, &vmap_purge_list);
1426
1427 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1428 try_purge_vmap_area_lazy();
db64fe02
NP
1429}
1430
b29acbdc
NP
1431/*
1432 * Free and unmap a vmap area
1433 */
1434static void free_unmap_vmap_area(struct vmap_area *va)
1435{
1436 flush_cache_vunmap(va->va_start, va->va_end);
855e57a1 1437 unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
8e57f8ac 1438 if (debug_pagealloc_enabled_static())
82a2e924
CP
1439 flush_tlb_kernel_range(va->va_start, va->va_end);
1440
c8eef01e 1441 free_vmap_area_noflush(va);
b29acbdc
NP
1442}
1443
db64fe02
NP
1444static struct vmap_area *find_vmap_area(unsigned long addr)
1445{
1446 struct vmap_area *va;
1447
1448 spin_lock(&vmap_area_lock);
1449 va = __find_vmap_area(addr);
1450 spin_unlock(&vmap_area_lock);
1451
1452 return va;
1453}
1454
db64fe02
NP
1455/*** Per cpu kva allocator ***/
1456
1457/*
1458 * vmap space is limited especially on 32 bit architectures. Ensure there is
1459 * room for at least 16 percpu vmap blocks per CPU.
1460 */
1461/*
1462 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1463 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1464 * instead (we just need a rough idea)
1465 */
1466#if BITS_PER_LONG == 32
1467#define VMALLOC_SPACE (128UL*1024*1024)
1468#else
1469#define VMALLOC_SPACE (128UL*1024*1024*1024)
1470#endif
1471
1472#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1473#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1474#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1475#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1476#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1477#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1478#define VMAP_BBMAP_BITS \
1479 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1480 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1481 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1482
1483#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1484
1485struct vmap_block_queue {
1486 spinlock_t lock;
1487 struct list_head free;
db64fe02
NP
1488};
1489
1490struct vmap_block {
1491 spinlock_t lock;
1492 struct vmap_area *va;
db64fe02 1493 unsigned long free, dirty;
7d61bfe8 1494 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1495 struct list_head free_list;
1496 struct rcu_head rcu_head;
02b709df 1497 struct list_head purge;
db64fe02
NP
1498};
1499
1500/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1501static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1502
1503/*
0f14599c 1504 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
db64fe02
NP
1505 * in the free path. Could get rid of this if we change the API to return a
1506 * "cookie" from alloc, to be passed to free. But no big deal yet.
1507 */
0f14599c 1508static DEFINE_XARRAY(vmap_blocks);
db64fe02
NP
1509
1510/*
1511 * We should probably have a fallback mechanism to allocate virtual memory
1512 * out of partially filled vmap blocks. However vmap block sizing should be
1513 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1514 * big problem.
1515 */
1516
1517static unsigned long addr_to_vb_idx(unsigned long addr)
1518{
1519 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1520 addr /= VMAP_BLOCK_SIZE;
1521 return addr;
1522}
1523
cf725ce2
RP
1524static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1525{
1526 unsigned long addr;
1527
1528 addr = va_start + (pages_off << PAGE_SHIFT);
1529 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1530 return (void *)addr;
1531}
1532
1533/**
1534 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1535 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1536 * @order: how many 2^order pages should be occupied in newly allocated block
1537 * @gfp_mask: flags for the page level allocator
1538 *
a862f68a 1539 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1540 */
1541static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1542{
1543 struct vmap_block_queue *vbq;
1544 struct vmap_block *vb;
1545 struct vmap_area *va;
1546 unsigned long vb_idx;
1547 int node, err;
cf725ce2 1548 void *vaddr;
db64fe02
NP
1549
1550 node = numa_node_id();
1551
1552 vb = kmalloc_node(sizeof(struct vmap_block),
1553 gfp_mask & GFP_RECLAIM_MASK, node);
1554 if (unlikely(!vb))
1555 return ERR_PTR(-ENOMEM);
1556
1557 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1558 VMALLOC_START, VMALLOC_END,
1559 node, gfp_mask);
ddf9c6d4 1560 if (IS_ERR(va)) {
db64fe02 1561 kfree(vb);
e7d86340 1562 return ERR_CAST(va);
db64fe02
NP
1563 }
1564
cf725ce2 1565 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1566 spin_lock_init(&vb->lock);
1567 vb->va = va;
cf725ce2
RP
1568 /* At least something should be left free */
1569 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1570 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1571 vb->dirty = 0;
7d61bfe8
RP
1572 vb->dirty_min = VMAP_BBMAP_BITS;
1573 vb->dirty_max = 0;
db64fe02 1574 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1575
1576 vb_idx = addr_to_vb_idx(va->va_start);
0f14599c
MWO
1577 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1578 if (err) {
1579 kfree(vb);
1580 free_vmap_area(va);
1581 return ERR_PTR(err);
1582 }
db64fe02
NP
1583
1584 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1585 spin_lock(&vbq->lock);
68ac546f 1586 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1587 spin_unlock(&vbq->lock);
3f04ba85 1588 put_cpu_var(vmap_block_queue);
db64fe02 1589
cf725ce2 1590 return vaddr;
db64fe02
NP
1591}
1592
db64fe02
NP
1593static void free_vmap_block(struct vmap_block *vb)
1594{
1595 struct vmap_block *tmp;
db64fe02 1596
0f14599c 1597 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
1598 BUG_ON(tmp != vb);
1599
64141da5 1600 free_vmap_area_noflush(vb->va);
22a3c7d1 1601 kfree_rcu(vb, rcu_head);
db64fe02
NP
1602}
1603
02b709df
NP
1604static void purge_fragmented_blocks(int cpu)
1605{
1606 LIST_HEAD(purge);
1607 struct vmap_block *vb;
1608 struct vmap_block *n_vb;
1609 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1610
1611 rcu_read_lock();
1612 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1613
1614 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1615 continue;
1616
1617 spin_lock(&vb->lock);
1618 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1619 vb->free = 0; /* prevent further allocs after releasing lock */
1620 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1621 vb->dirty_min = 0;
1622 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1623 spin_lock(&vbq->lock);
1624 list_del_rcu(&vb->free_list);
1625 spin_unlock(&vbq->lock);
1626 spin_unlock(&vb->lock);
1627 list_add_tail(&vb->purge, &purge);
1628 } else
1629 spin_unlock(&vb->lock);
1630 }
1631 rcu_read_unlock();
1632
1633 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1634 list_del(&vb->purge);
1635 free_vmap_block(vb);
1636 }
1637}
1638
02b709df
NP
1639static void purge_fragmented_blocks_allcpus(void)
1640{
1641 int cpu;
1642
1643 for_each_possible_cpu(cpu)
1644 purge_fragmented_blocks(cpu);
1645}
1646
db64fe02
NP
1647static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1648{
1649 struct vmap_block_queue *vbq;
1650 struct vmap_block *vb;
cf725ce2 1651 void *vaddr = NULL;
db64fe02
NP
1652 unsigned int order;
1653
891c49ab 1654 BUG_ON(offset_in_page(size));
db64fe02 1655 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1656 if (WARN_ON(size == 0)) {
1657 /*
1658 * Allocating 0 bytes isn't what caller wants since
1659 * get_order(0) returns funny result. Just warn and terminate
1660 * early.
1661 */
1662 return NULL;
1663 }
db64fe02
NP
1664 order = get_order(size);
1665
db64fe02
NP
1666 rcu_read_lock();
1667 vbq = &get_cpu_var(vmap_block_queue);
1668 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1669 unsigned long pages_off;
db64fe02
NP
1670
1671 spin_lock(&vb->lock);
cf725ce2
RP
1672 if (vb->free < (1UL << order)) {
1673 spin_unlock(&vb->lock);
1674 continue;
1675 }
02b709df 1676
cf725ce2
RP
1677 pages_off = VMAP_BBMAP_BITS - vb->free;
1678 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1679 vb->free -= 1UL << order;
1680 if (vb->free == 0) {
1681 spin_lock(&vbq->lock);
1682 list_del_rcu(&vb->free_list);
1683 spin_unlock(&vbq->lock);
1684 }
cf725ce2 1685
02b709df
NP
1686 spin_unlock(&vb->lock);
1687 break;
db64fe02 1688 }
02b709df 1689
3f04ba85 1690 put_cpu_var(vmap_block_queue);
db64fe02
NP
1691 rcu_read_unlock();
1692
cf725ce2
RP
1693 /* Allocate new block if nothing was found */
1694 if (!vaddr)
1695 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1696
cf725ce2 1697 return vaddr;
db64fe02
NP
1698}
1699
78a0e8c4 1700static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
1701{
1702 unsigned long offset;
db64fe02
NP
1703 unsigned int order;
1704 struct vmap_block *vb;
1705
891c49ab 1706 BUG_ON(offset_in_page(size));
db64fe02 1707 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 1708
78a0e8c4 1709 flush_cache_vunmap(addr, addr + size);
b29acbdc 1710
db64fe02 1711 order = get_order(size);
78a0e8c4 1712 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
0f14599c 1713 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
db64fe02 1714
b521c43f 1715 unmap_kernel_range_noflush(addr, size);
64141da5 1716
8e57f8ac 1717 if (debug_pagealloc_enabled_static())
78a0e8c4 1718 flush_tlb_kernel_range(addr, addr + size);
82a2e924 1719
db64fe02 1720 spin_lock(&vb->lock);
7d61bfe8
RP
1721
1722 /* Expand dirty range */
1723 vb->dirty_min = min(vb->dirty_min, offset);
1724 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1725
db64fe02
NP
1726 vb->dirty += 1UL << order;
1727 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1728 BUG_ON(vb->free);
db64fe02
NP
1729 spin_unlock(&vb->lock);
1730 free_vmap_block(vb);
1731 } else
1732 spin_unlock(&vb->lock);
1733}
1734
868b104d 1735static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1736{
db64fe02 1737 int cpu;
db64fe02 1738
9b463334
JF
1739 if (unlikely(!vmap_initialized))
1740 return;
1741
5803ed29
CH
1742 might_sleep();
1743
db64fe02
NP
1744 for_each_possible_cpu(cpu) {
1745 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1746 struct vmap_block *vb;
1747
1748 rcu_read_lock();
1749 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1750 spin_lock(&vb->lock);
7d61bfe8
RP
1751 if (vb->dirty) {
1752 unsigned long va_start = vb->va->va_start;
db64fe02 1753 unsigned long s, e;
b136be5e 1754
7d61bfe8
RP
1755 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1756 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1757
7d61bfe8
RP
1758 start = min(s, start);
1759 end = max(e, end);
db64fe02 1760
7d61bfe8 1761 flush = 1;
db64fe02
NP
1762 }
1763 spin_unlock(&vb->lock);
1764 }
1765 rcu_read_unlock();
1766 }
1767
f9e09977 1768 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1769 purge_fragmented_blocks_allcpus();
1770 if (!__purge_vmap_area_lazy(start, end) && flush)
1771 flush_tlb_kernel_range(start, end);
f9e09977 1772 mutex_unlock(&vmap_purge_lock);
db64fe02 1773}
868b104d
RE
1774
1775/**
1776 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1777 *
1778 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1779 * to amortize TLB flushing overheads. What this means is that any page you
1780 * have now, may, in a former life, have been mapped into kernel virtual
1781 * address by the vmap layer and so there might be some CPUs with TLB entries
1782 * still referencing that page (additional to the regular 1:1 kernel mapping).
1783 *
1784 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1785 * be sure that none of the pages we have control over will have any aliases
1786 * from the vmap layer.
1787 */
1788void vm_unmap_aliases(void)
1789{
1790 unsigned long start = ULONG_MAX, end = 0;
1791 int flush = 0;
1792
1793 _vm_unmap_aliases(start, end, flush);
1794}
db64fe02
NP
1795EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1796
1797/**
1798 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1799 * @mem: the pointer returned by vm_map_ram
1800 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1801 */
1802void vm_unmap_ram(const void *mem, unsigned int count)
1803{
65ee03c4 1804 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1805 unsigned long addr = (unsigned long)mem;
9c3acf60 1806 struct vmap_area *va;
db64fe02 1807
5803ed29 1808 might_sleep();
db64fe02
NP
1809 BUG_ON(!addr);
1810 BUG_ON(addr < VMALLOC_START);
1811 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1812 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1813
d98c9e83
AR
1814 kasan_poison_vmalloc(mem, size);
1815
9c3acf60 1816 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1817 debug_check_no_locks_freed(mem, size);
78a0e8c4 1818 vb_free(addr, size);
9c3acf60
CH
1819 return;
1820 }
1821
1822 va = find_vmap_area(addr);
1823 BUG_ON(!va);
05e3ff95
CP
1824 debug_check_no_locks_freed((void *)va->va_start,
1825 (va->va_end - va->va_start));
9c3acf60 1826 free_unmap_vmap_area(va);
db64fe02
NP
1827}
1828EXPORT_SYMBOL(vm_unmap_ram);
1829
1830/**
1831 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1832 * @pages: an array of pointers to the pages to be mapped
1833 * @count: number of pages
1834 * @node: prefer to allocate data structures on this node
e99c97ad 1835 *
36437638
GK
1836 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1837 * faster than vmap so it's good. But if you mix long-life and short-life
1838 * objects with vm_map_ram(), it could consume lots of address space through
1839 * fragmentation (especially on a 32bit machine). You could see failures in
1840 * the end. Please use this function for short-lived objects.
1841 *
e99c97ad 1842 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 1843 */
d4efd79a 1844void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 1845{
65ee03c4 1846 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1847 unsigned long addr;
1848 void *mem;
1849
1850 if (likely(count <= VMAP_MAX_ALLOC)) {
1851 mem = vb_alloc(size, GFP_KERNEL);
1852 if (IS_ERR(mem))
1853 return NULL;
1854 addr = (unsigned long)mem;
1855 } else {
1856 struct vmap_area *va;
1857 va = alloc_vmap_area(size, PAGE_SIZE,
1858 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1859 if (IS_ERR(va))
1860 return NULL;
1861
1862 addr = va->va_start;
1863 mem = (void *)addr;
1864 }
d98c9e83
AR
1865
1866 kasan_unpoison_vmalloc(mem, size);
1867
d4efd79a 1868 if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
db64fe02
NP
1869 vm_unmap_ram(mem, count);
1870 return NULL;
1871 }
1872 return mem;
1873}
1874EXPORT_SYMBOL(vm_map_ram);
1875
4341fa45 1876static struct vm_struct *vmlist __initdata;
92eac168 1877
be9b7335
NP
1878/**
1879 * vm_area_add_early - add vmap area early during boot
1880 * @vm: vm_struct to add
1881 *
1882 * This function is used to add fixed kernel vm area to vmlist before
1883 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1884 * should contain proper values and the other fields should be zero.
1885 *
1886 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1887 */
1888void __init vm_area_add_early(struct vm_struct *vm)
1889{
1890 struct vm_struct *tmp, **p;
1891
1892 BUG_ON(vmap_initialized);
1893 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1894 if (tmp->addr >= vm->addr) {
1895 BUG_ON(tmp->addr < vm->addr + vm->size);
1896 break;
1897 } else
1898 BUG_ON(tmp->addr + tmp->size > vm->addr);
1899 }
1900 vm->next = *p;
1901 *p = vm;
1902}
1903
f0aa6617
TH
1904/**
1905 * vm_area_register_early - register vmap area early during boot
1906 * @vm: vm_struct to register
c0c0a293 1907 * @align: requested alignment
f0aa6617
TH
1908 *
1909 * This function is used to register kernel vm area before
1910 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1911 * proper values on entry and other fields should be zero. On return,
1912 * vm->addr contains the allocated address.
1913 *
1914 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1915 */
c0c0a293 1916void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1917{
1918 static size_t vm_init_off __initdata;
c0c0a293
TH
1919 unsigned long addr;
1920
1921 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1922 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1923
c0c0a293 1924 vm->addr = (void *)addr;
f0aa6617 1925
be9b7335 1926 vm_area_add_early(vm);
f0aa6617
TH
1927}
1928
68ad4a33
URS
1929static void vmap_init_free_space(void)
1930{
1931 unsigned long vmap_start = 1;
1932 const unsigned long vmap_end = ULONG_MAX;
1933 struct vmap_area *busy, *free;
1934
1935 /*
1936 * B F B B B F
1937 * -|-----|.....|-----|-----|-----|.....|-
1938 * | The KVA space |
1939 * |<--------------------------------->|
1940 */
1941 list_for_each_entry(busy, &vmap_area_list, list) {
1942 if (busy->va_start - vmap_start > 0) {
1943 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1944 if (!WARN_ON_ONCE(!free)) {
1945 free->va_start = vmap_start;
1946 free->va_end = busy->va_start;
1947
1948 insert_vmap_area_augment(free, NULL,
1949 &free_vmap_area_root,
1950 &free_vmap_area_list);
1951 }
1952 }
1953
1954 vmap_start = busy->va_end;
1955 }
1956
1957 if (vmap_end - vmap_start > 0) {
1958 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1959 if (!WARN_ON_ONCE(!free)) {
1960 free->va_start = vmap_start;
1961 free->va_end = vmap_end;
1962
1963 insert_vmap_area_augment(free, NULL,
1964 &free_vmap_area_root,
1965 &free_vmap_area_list);
1966 }
1967 }
1968}
1969
db64fe02
NP
1970void __init vmalloc_init(void)
1971{
822c18f2
IK
1972 struct vmap_area *va;
1973 struct vm_struct *tmp;
db64fe02
NP
1974 int i;
1975
68ad4a33
URS
1976 /*
1977 * Create the cache for vmap_area objects.
1978 */
1979 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1980
db64fe02
NP
1981 for_each_possible_cpu(i) {
1982 struct vmap_block_queue *vbq;
32fcfd40 1983 struct vfree_deferred *p;
db64fe02
NP
1984
1985 vbq = &per_cpu(vmap_block_queue, i);
1986 spin_lock_init(&vbq->lock);
1987 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1988 p = &per_cpu(vfree_deferred, i);
1989 init_llist_head(&p->list);
1990 INIT_WORK(&p->wq, free_work);
db64fe02 1991 }
9b463334 1992
822c18f2
IK
1993 /* Import existing vmlist entries. */
1994 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
1995 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1996 if (WARN_ON_ONCE(!va))
1997 continue;
1998
822c18f2
IK
1999 va->va_start = (unsigned long)tmp->addr;
2000 va->va_end = va->va_start + tmp->size;
dbda591d 2001 va->vm = tmp;
68ad4a33 2002 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 2003 }
ca23e405 2004
68ad4a33
URS
2005 /*
2006 * Now we can initialize a free vmap space.
2007 */
2008 vmap_init_free_space();
9b463334 2009 vmap_initialized = true;
db64fe02
NP
2010}
2011
8fc48985
TH
2012/**
2013 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2014 * @addr: start of the VM area to unmap
2015 * @size: size of the VM area to unmap
2016 *
2017 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2018 * the unmapping and tlb after.
2019 */
db64fe02
NP
2020void unmap_kernel_range(unsigned long addr, unsigned long size)
2021{
2022 unsigned long end = addr + size;
f6fcba70
TH
2023
2024 flush_cache_vunmap(addr, end);
b521c43f 2025 unmap_kernel_range_noflush(addr, size);
db64fe02
NP
2026 flush_tlb_kernel_range(addr, end);
2027}
2028
e36176be
URS
2029static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2030 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2031{
cf88c790
TH
2032 vm->flags = flags;
2033 vm->addr = (void *)va->va_start;
2034 vm->size = va->va_end - va->va_start;
2035 vm->caller = caller;
db1aecaf 2036 va->vm = vm;
e36176be
URS
2037}
2038
2039static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2040 unsigned long flags, const void *caller)
2041{
2042 spin_lock(&vmap_area_lock);
2043 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2044 spin_unlock(&vmap_area_lock);
f5252e00 2045}
cf88c790 2046
20fc02b4 2047static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2048{
d4033afd 2049 /*
20fc02b4 2050 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2051 * we should make sure that vm has proper values.
2052 * Pair with smp_rmb() in show_numa_info().
2053 */
2054 smp_wmb();
20fc02b4 2055 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2056}
2057
db64fe02 2058static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2059 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2060 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2061{
0006526d 2062 struct vmap_area *va;
db64fe02 2063 struct vm_struct *area;
d98c9e83 2064 unsigned long requested_size = size;
1da177e4 2065
52fd24ca 2066 BUG_ON(in_interrupt());
1da177e4 2067 size = PAGE_ALIGN(size);
31be8309
OH
2068 if (unlikely(!size))
2069 return NULL;
1da177e4 2070
252e5c6e 2071 if (flags & VM_IOREMAP)
2072 align = 1ul << clamp_t(int, get_count_order_long(size),
2073 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2074
cf88c790 2075 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2076 if (unlikely(!area))
2077 return NULL;
2078
71394fe5
AR
2079 if (!(flags & VM_NO_GUARD))
2080 size += PAGE_SIZE;
1da177e4 2081
db64fe02
NP
2082 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2083 if (IS_ERR(va)) {
2084 kfree(area);
2085 return NULL;
1da177e4 2086 }
1da177e4 2087
d98c9e83 2088 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
f5252e00 2089
d98c9e83 2090 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2091
1da177e4 2092 return area;
1da177e4
LT
2093}
2094
c2968612
BH
2095struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2096 unsigned long start, unsigned long end,
5e6cafc8 2097 const void *caller)
c2968612 2098{
00ef2d2f
DR
2099 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2100 GFP_KERNEL, caller);
c2968612
BH
2101}
2102
1da177e4 2103/**
92eac168
MR
2104 * get_vm_area - reserve a contiguous kernel virtual area
2105 * @size: size of the area
2106 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2107 *
92eac168
MR
2108 * Search an area of @size in the kernel virtual mapping area,
2109 * and reserved it for out purposes. Returns the area descriptor
2110 * on success or %NULL on failure.
a862f68a
MR
2111 *
2112 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2113 */
2114struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2115{
2dca6999 2116 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2117 NUMA_NO_NODE, GFP_KERNEL,
2118 __builtin_return_address(0));
23016969
CL
2119}
2120
2121struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2122 const void *caller)
23016969 2123{
2dca6999 2124 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2125 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2126}
2127
e9da6e99 2128/**
92eac168
MR
2129 * find_vm_area - find a continuous kernel virtual area
2130 * @addr: base address
e9da6e99 2131 *
92eac168
MR
2132 * Search for the kernel VM area starting at @addr, and return it.
2133 * It is up to the caller to do all required locking to keep the returned
2134 * pointer valid.
a862f68a 2135 *
74640617 2136 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
2137 */
2138struct vm_struct *find_vm_area(const void *addr)
83342314 2139{
db64fe02 2140 struct vmap_area *va;
83342314 2141
db64fe02 2142 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2143 if (!va)
2144 return NULL;
1da177e4 2145
688fcbfc 2146 return va->vm;
1da177e4
LT
2147}
2148
7856dfeb 2149/**
92eac168
MR
2150 * remove_vm_area - find and remove a continuous kernel virtual area
2151 * @addr: base address
7856dfeb 2152 *
92eac168
MR
2153 * Search for the kernel VM area starting at @addr, and remove it.
2154 * This function returns the found VM area, but using it is NOT safe
2155 * on SMP machines, except for its size or flags.
a862f68a 2156 *
74640617 2157 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 2158 */
b3bdda02 2159struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2160{
db64fe02
NP
2161 struct vmap_area *va;
2162
5803ed29
CH
2163 might_sleep();
2164
dd3b8353
URS
2165 spin_lock(&vmap_area_lock);
2166 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2167 if (va && va->vm) {
db1aecaf 2168 struct vm_struct *vm = va->vm;
f5252e00 2169
c69480ad 2170 va->vm = NULL;
c69480ad
JK
2171 spin_unlock(&vmap_area_lock);
2172
a5af5aa8 2173 kasan_free_shadow(vm);
dd32c279 2174 free_unmap_vmap_area(va);
dd32c279 2175
db64fe02
NP
2176 return vm;
2177 }
dd3b8353
URS
2178
2179 spin_unlock(&vmap_area_lock);
db64fe02 2180 return NULL;
7856dfeb
AK
2181}
2182
868b104d
RE
2183static inline void set_area_direct_map(const struct vm_struct *area,
2184 int (*set_direct_map)(struct page *page))
2185{
2186 int i;
2187
2188 for (i = 0; i < area->nr_pages; i++)
2189 if (page_address(area->pages[i]))
2190 set_direct_map(area->pages[i]);
2191}
2192
2193/* Handle removing and resetting vm mappings related to the vm_struct. */
2194static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2195{
868b104d
RE
2196 unsigned long start = ULONG_MAX, end = 0;
2197 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2198 int flush_dmap = 0;
868b104d
RE
2199 int i;
2200
868b104d
RE
2201 remove_vm_area(area->addr);
2202
2203 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2204 if (!flush_reset)
2205 return;
2206
2207 /*
2208 * If not deallocating pages, just do the flush of the VM area and
2209 * return.
2210 */
2211 if (!deallocate_pages) {
2212 vm_unmap_aliases();
2213 return;
2214 }
2215
2216 /*
2217 * If execution gets here, flush the vm mapping and reset the direct
2218 * map. Find the start and end range of the direct mappings to make sure
2219 * the vm_unmap_aliases() flush includes the direct map.
2220 */
2221 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2222 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2223 if (addr) {
868b104d 2224 start = min(addr, start);
8e41f872 2225 end = max(addr + PAGE_SIZE, end);
31e67340 2226 flush_dmap = 1;
868b104d
RE
2227 }
2228 }
2229
2230 /*
2231 * Set direct map to something invalid so that it won't be cached if
2232 * there are any accesses after the TLB flush, then flush the TLB and
2233 * reset the direct map permissions to the default.
2234 */
2235 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2236 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2237 set_area_direct_map(area, set_direct_map_default_noflush);
2238}
2239
b3bdda02 2240static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2241{
2242 struct vm_struct *area;
2243
2244 if (!addr)
2245 return;
2246
e69e9d4a 2247 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2248 addr))
1da177e4 2249 return;
1da177e4 2250
6ade2032 2251 area = find_vm_area(addr);
1da177e4 2252 if (unlikely(!area)) {
4c8573e2 2253 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2254 addr);
1da177e4
LT
2255 return;
2256 }
2257
05e3ff95
CP
2258 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2259 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2260
d98c9e83 2261 kasan_poison_vmalloc(area->addr, area->size);
3c5c3cfb 2262
868b104d
RE
2263 vm_remove_mappings(area, deallocate_pages);
2264
1da177e4
LT
2265 if (deallocate_pages) {
2266 int i;
2267
2268 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2269 struct page *page = area->pages[i];
2270
2271 BUG_ON(!page);
4949148a 2272 __free_pages(page, 0);
1da177e4 2273 }
97105f0a 2274 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2275
244d63ee 2276 kvfree(area->pages);
1da177e4
LT
2277 }
2278
2279 kfree(area);
2280 return;
2281}
bf22e37a
AR
2282
2283static inline void __vfree_deferred(const void *addr)
2284{
2285 /*
2286 * Use raw_cpu_ptr() because this can be called from preemptible
2287 * context. Preemption is absolutely fine here, because the llist_add()
2288 * implementation is lockless, so it works even if we are adding to
73221d88 2289 * another cpu's list. schedule_work() should be fine with this too.
bf22e37a
AR
2290 */
2291 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2292
2293 if (llist_add((struct llist_node *)addr, &p->list))
2294 schedule_work(&p->wq);
2295}
2296
2297/**
92eac168
MR
2298 * vfree_atomic - release memory allocated by vmalloc()
2299 * @addr: memory base address
bf22e37a 2300 *
92eac168
MR
2301 * This one is just like vfree() but can be called in any atomic context
2302 * except NMIs.
bf22e37a
AR
2303 */
2304void vfree_atomic(const void *addr)
2305{
2306 BUG_ON(in_nmi());
2307
2308 kmemleak_free(addr);
2309
2310 if (!addr)
2311 return;
2312 __vfree_deferred(addr);
2313}
2314
c67dc624
RP
2315static void __vfree(const void *addr)
2316{
2317 if (unlikely(in_interrupt()))
2318 __vfree_deferred(addr);
2319 else
2320 __vunmap(addr, 1);
2321}
2322
1da177e4 2323/**
fa307474
MWO
2324 * vfree - Release memory allocated by vmalloc()
2325 * @addr: Memory base address
1da177e4 2326 *
fa307474
MWO
2327 * Free the virtually continuous memory area starting at @addr, as obtained
2328 * from one of the vmalloc() family of APIs. This will usually also free the
2329 * physical memory underlying the virtual allocation, but that memory is
2330 * reference counted, so it will not be freed until the last user goes away.
1da177e4 2331 *
fa307474 2332 * If @addr is NULL, no operation is performed.
c9fcee51 2333 *
fa307474 2334 * Context:
92eac168 2335 * May sleep if called *not* from interrupt context.
fa307474
MWO
2336 * Must not be called in NMI context (strictly speaking, it could be
2337 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2338 * conventions for vfree() arch-depenedent would be a really bad idea).
1da177e4 2339 */
b3bdda02 2340void vfree(const void *addr)
1da177e4 2341{
32fcfd40 2342 BUG_ON(in_nmi());
89219d37
CM
2343
2344 kmemleak_free(addr);
2345
a8dda165
AR
2346 might_sleep_if(!in_interrupt());
2347
32fcfd40
AV
2348 if (!addr)
2349 return;
c67dc624
RP
2350
2351 __vfree(addr);
1da177e4 2352}
1da177e4
LT
2353EXPORT_SYMBOL(vfree);
2354
2355/**
92eac168
MR
2356 * vunmap - release virtual mapping obtained by vmap()
2357 * @addr: memory base address
1da177e4 2358 *
92eac168
MR
2359 * Free the virtually contiguous memory area starting at @addr,
2360 * which was created from the page array passed to vmap().
1da177e4 2361 *
92eac168 2362 * Must not be called in interrupt context.
1da177e4 2363 */
b3bdda02 2364void vunmap(const void *addr)
1da177e4
LT
2365{
2366 BUG_ON(in_interrupt());
34754b69 2367 might_sleep();
32fcfd40
AV
2368 if (addr)
2369 __vunmap(addr, 0);
1da177e4 2370}
1da177e4
LT
2371EXPORT_SYMBOL(vunmap);
2372
2373/**
92eac168
MR
2374 * vmap - map an array of pages into virtually contiguous space
2375 * @pages: array of page pointers
2376 * @count: number of pages to map
2377 * @flags: vm_area->flags
2378 * @prot: page protection for the mapping
2379 *
b944afc9
CH
2380 * Maps @count pages from @pages into contiguous kernel virtual space.
2381 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2382 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2383 * are transferred from the caller to vmap(), and will be freed / dropped when
2384 * vfree() is called on the return value.
a862f68a
MR
2385 *
2386 * Return: the address of the area or %NULL on failure
1da177e4
LT
2387 */
2388void *vmap(struct page **pages, unsigned int count,
92eac168 2389 unsigned long flags, pgprot_t prot)
1da177e4
LT
2390{
2391 struct vm_struct *area;
65ee03c4 2392 unsigned long size; /* In bytes */
1da177e4 2393
34754b69
PZ
2394 might_sleep();
2395
ca79b0c2 2396 if (count > totalram_pages())
1da177e4
LT
2397 return NULL;
2398
65ee03c4
GJM
2399 size = (unsigned long)count << PAGE_SHIFT;
2400 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2401 if (!area)
2402 return NULL;
23016969 2403
cca98e9f 2404 if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
ed1f324c 2405 pages) < 0) {
1da177e4
LT
2406 vunmap(area->addr);
2407 return NULL;
2408 }
2409
b944afc9
CH
2410 if (flags & VM_MAP_PUT_PAGES)
2411 area->pages = pages;
1da177e4
LT
2412 return area->addr;
2413}
1da177e4
LT
2414EXPORT_SYMBOL(vmap);
2415
3e9a9e25
CH
2416#ifdef CONFIG_VMAP_PFN
2417struct vmap_pfn_data {
2418 unsigned long *pfns;
2419 pgprot_t prot;
2420 unsigned int idx;
2421};
2422
2423static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2424{
2425 struct vmap_pfn_data *data = private;
2426
2427 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2428 return -EINVAL;
2429 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2430 return 0;
2431}
2432
2433/**
2434 * vmap_pfn - map an array of PFNs into virtually contiguous space
2435 * @pfns: array of PFNs
2436 * @count: number of pages to map
2437 * @prot: page protection for the mapping
2438 *
2439 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2440 * the start address of the mapping.
2441 */
2442void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2443{
2444 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2445 struct vm_struct *area;
2446
2447 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2448 __builtin_return_address(0));
2449 if (!area)
2450 return NULL;
2451 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2452 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2453 free_vm_area(area);
2454 return NULL;
2455 }
2456 return area->addr;
2457}
2458EXPORT_SYMBOL_GPL(vmap_pfn);
2459#endif /* CONFIG_VMAP_PFN */
2460
e31d9eb5 2461static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2462 pgprot_t prot, int node)
1da177e4
LT
2463{
2464 struct page **pages;
2465 unsigned int nr_pages, array_size, i;
930f036b 2466 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2467 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2468 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2469 0 :
2470 __GFP_HIGHMEM;
1da177e4 2471
762216ab 2472 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2473 array_size = (nr_pages * sizeof(struct page *));
2474
1da177e4 2475 /* Please note that the recursion is strictly bounded. */
8757d5fa 2476 if (array_size > PAGE_SIZE) {
704b862f 2477 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
f38fcb9c 2478 node, area->caller);
286e1ea3 2479 } else {
976d6dfb 2480 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2481 }
7ea36242
AK
2482
2483 if (!pages) {
1da177e4
LT
2484 remove_vm_area(area->addr);
2485 kfree(area);
2486 return NULL;
2487 }
1da177e4 2488
7ea36242
AK
2489 area->pages = pages;
2490 area->nr_pages = nr_pages;
2491
1da177e4 2492 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2493 struct page *page;
2494
4b90951c 2495 if (node == NUMA_NO_NODE)
704b862f 2496 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2497 else
704b862f 2498 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2499
2500 if (unlikely(!page)) {
82afbc32 2501 /* Successfully allocated i pages, free them in __vfree() */
1da177e4 2502 area->nr_pages = i;
97105f0a 2503 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2504 goto fail;
2505 }
bf53d6f8 2506 area->pages[i] = page;
dcf61ff0 2507 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2508 cond_resched();
1da177e4 2509 }
97105f0a 2510 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2511
ed1f324c
CH
2512 if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2513 prot, pages) < 0)
1da177e4 2514 goto fail;
ed1f324c 2515
1da177e4
LT
2516 return area->addr;
2517
2518fail:
a8e99259 2519 warn_alloc(gfp_mask, NULL,
7877cdcc 2520 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2521 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2522 __vfree(area->addr);
1da177e4
LT
2523 return NULL;
2524}
2525
2526/**
92eac168
MR
2527 * __vmalloc_node_range - allocate virtually contiguous memory
2528 * @size: allocation size
2529 * @align: desired alignment
2530 * @start: vm area range start
2531 * @end: vm area range end
2532 * @gfp_mask: flags for the page level allocator
2533 * @prot: protection mask for the allocated pages
2534 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2535 * @node: node to use for allocation or NUMA_NO_NODE
2536 * @caller: caller's return address
2537 *
2538 * Allocate enough pages to cover @size from the page level
2539 * allocator with @gfp_mask flags. Map them into contiguous
2540 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2541 *
2542 * Return: the address of the area or %NULL on failure
1da177e4 2543 */
d0a21265
DR
2544void *__vmalloc_node_range(unsigned long size, unsigned long align,
2545 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2546 pgprot_t prot, unsigned long vm_flags, int node,
2547 const void *caller)
1da177e4
LT
2548{
2549 struct vm_struct *area;
89219d37
CM
2550 void *addr;
2551 unsigned long real_size = size;
1da177e4
LT
2552
2553 size = PAGE_ALIGN(size);
ca79b0c2 2554 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2555 goto fail;
1da177e4 2556
d98c9e83 2557 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
cb9e3c29 2558 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2559 if (!area)
de7d2b56 2560 goto fail;
1da177e4 2561
3722e13c 2562 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2563 if (!addr)
b82225f3 2564 return NULL;
89219d37 2565
f5252e00 2566 /*
20fc02b4
ZY
2567 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2568 * flag. It means that vm_struct is not fully initialized.
4341fa45 2569 * Now, it is fully initialized, so remove this flag here.
f5252e00 2570 */
20fc02b4 2571 clear_vm_uninitialized_flag(area);
f5252e00 2572
94f4a161 2573 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2574
2575 return addr;
de7d2b56
JP
2576
2577fail:
a8e99259 2578 warn_alloc(gfp_mask, NULL,
7877cdcc 2579 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2580 return NULL;
1da177e4
LT
2581}
2582
d0a21265 2583/**
92eac168
MR
2584 * __vmalloc_node - allocate virtually contiguous memory
2585 * @size: allocation size
2586 * @align: desired alignment
2587 * @gfp_mask: flags for the page level allocator
92eac168
MR
2588 * @node: node to use for allocation or NUMA_NO_NODE
2589 * @caller: caller's return address
a7c3e901 2590 *
f38fcb9c
CH
2591 * Allocate enough pages to cover @size from the page level allocator with
2592 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 2593 *
92eac168
MR
2594 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2595 * and __GFP_NOFAIL are not supported
a7c3e901 2596 *
92eac168
MR
2597 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2598 * with mm people.
a862f68a
MR
2599 *
2600 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2601 */
2b905948 2602void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 2603 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
2604{
2605 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 2606 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 2607}
c3f896dc
CH
2608/*
2609 * This is only for performance analysis of vmalloc and stress purpose.
2610 * It is required by vmalloc test module, therefore do not use it other
2611 * than that.
2612 */
2613#ifdef CONFIG_TEST_VMALLOC_MODULE
2614EXPORT_SYMBOL_GPL(__vmalloc_node);
2615#endif
d0a21265 2616
88dca4ca 2617void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 2618{
f38fcb9c 2619 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 2620 __builtin_return_address(0));
930fc45a 2621}
1da177e4
LT
2622EXPORT_SYMBOL(__vmalloc);
2623
2624/**
92eac168
MR
2625 * vmalloc - allocate virtually contiguous memory
2626 * @size: allocation size
2627 *
2628 * Allocate enough pages to cover @size from the page level
2629 * allocator and map them into contiguous kernel virtual space.
1da177e4 2630 *
92eac168
MR
2631 * For tight control over page level allocator and protection flags
2632 * use __vmalloc() instead.
a862f68a
MR
2633 *
2634 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2635 */
2636void *vmalloc(unsigned long size)
2637{
4d39d728
CH
2638 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2639 __builtin_return_address(0));
1da177e4 2640}
1da177e4
LT
2641EXPORT_SYMBOL(vmalloc);
2642
e1ca7788 2643/**
92eac168
MR
2644 * vzalloc - allocate virtually contiguous memory with zero fill
2645 * @size: allocation size
2646 *
2647 * Allocate enough pages to cover @size from the page level
2648 * allocator and map them into contiguous kernel virtual space.
2649 * The memory allocated is set to zero.
2650 *
2651 * For tight control over page level allocator and protection flags
2652 * use __vmalloc() instead.
a862f68a
MR
2653 *
2654 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2655 */
2656void *vzalloc(unsigned long size)
2657{
4d39d728
CH
2658 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2659 __builtin_return_address(0));
e1ca7788
DY
2660}
2661EXPORT_SYMBOL(vzalloc);
2662
83342314 2663/**
ead04089
REB
2664 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2665 * @size: allocation size
83342314 2666 *
ead04089
REB
2667 * The resulting memory area is zeroed so it can be mapped to userspace
2668 * without leaking data.
a862f68a
MR
2669 *
2670 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2671 */
2672void *vmalloc_user(unsigned long size)
2673{
bc84c535
RP
2674 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2675 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2676 VM_USERMAP, NUMA_NO_NODE,
2677 __builtin_return_address(0));
83342314
NP
2678}
2679EXPORT_SYMBOL(vmalloc_user);
2680
930fc45a 2681/**
92eac168
MR
2682 * vmalloc_node - allocate memory on a specific node
2683 * @size: allocation size
2684 * @node: numa node
930fc45a 2685 *
92eac168
MR
2686 * Allocate enough pages to cover @size from the page level
2687 * allocator and map them into contiguous kernel virtual space.
930fc45a 2688 *
92eac168
MR
2689 * For tight control over page level allocator and protection flags
2690 * use __vmalloc() instead.
a862f68a
MR
2691 *
2692 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2693 */
2694void *vmalloc_node(unsigned long size, int node)
2695{
f38fcb9c
CH
2696 return __vmalloc_node(size, 1, GFP_KERNEL, node,
2697 __builtin_return_address(0));
930fc45a
CL
2698}
2699EXPORT_SYMBOL(vmalloc_node);
2700
e1ca7788
DY
2701/**
2702 * vzalloc_node - allocate memory on a specific node with zero fill
2703 * @size: allocation size
2704 * @node: numa node
2705 *
2706 * Allocate enough pages to cover @size from the page level
2707 * allocator and map them into contiguous kernel virtual space.
2708 * The memory allocated is set to zero.
2709 *
a862f68a 2710 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2711 */
2712void *vzalloc_node(unsigned long size, int node)
2713{
4d39d728
CH
2714 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2715 __builtin_return_address(0));
e1ca7788
DY
2716}
2717EXPORT_SYMBOL(vzalloc_node);
2718
0d08e0d3 2719#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2720#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2721#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2722#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2723#else
698d0831
MH
2724/*
2725 * 64b systems should always have either DMA or DMA32 zones. For others
2726 * GFP_DMA32 should do the right thing and use the normal zone.
2727 */
2728#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2729#endif
2730
1da177e4 2731/**
92eac168
MR
2732 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2733 * @size: allocation size
1da177e4 2734 *
92eac168
MR
2735 * Allocate enough 32bit PA addressable pages to cover @size from the
2736 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2737 *
2738 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2739 */
2740void *vmalloc_32(unsigned long size)
2741{
f38fcb9c
CH
2742 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2743 __builtin_return_address(0));
1da177e4 2744}
1da177e4
LT
2745EXPORT_SYMBOL(vmalloc_32);
2746
83342314 2747/**
ead04089 2748 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2749 * @size: allocation size
ead04089
REB
2750 *
2751 * The resulting memory area is 32bit addressable and zeroed so it can be
2752 * mapped to userspace without leaking data.
a862f68a
MR
2753 *
2754 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2755 */
2756void *vmalloc_32_user(unsigned long size)
2757{
bc84c535
RP
2758 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2759 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2760 VM_USERMAP, NUMA_NO_NODE,
2761 __builtin_return_address(0));
83342314
NP
2762}
2763EXPORT_SYMBOL(vmalloc_32_user);
2764
d0107eb0
KH
2765/*
2766 * small helper routine , copy contents to buf from addr.
2767 * If the page is not present, fill zero.
2768 */
2769
2770static int aligned_vread(char *buf, char *addr, unsigned long count)
2771{
2772 struct page *p;
2773 int copied = 0;
2774
2775 while (count) {
2776 unsigned long offset, length;
2777
891c49ab 2778 offset = offset_in_page(addr);
d0107eb0
KH
2779 length = PAGE_SIZE - offset;
2780 if (length > count)
2781 length = count;
2782 p = vmalloc_to_page(addr);
2783 /*
2784 * To do safe access to this _mapped_ area, we need
2785 * lock. But adding lock here means that we need to add
2786 * overhead of vmalloc()/vfree() calles for this _debug_
2787 * interface, rarely used. Instead of that, we'll use
2788 * kmap() and get small overhead in this access function.
2789 */
2790 if (p) {
2791 /*
2792 * we can expect USER0 is not used (see vread/vwrite's
2793 * function description)
2794 */
9b04c5fe 2795 void *map = kmap_atomic(p);
d0107eb0 2796 memcpy(buf, map + offset, length);
9b04c5fe 2797 kunmap_atomic(map);
d0107eb0
KH
2798 } else
2799 memset(buf, 0, length);
2800
2801 addr += length;
2802 buf += length;
2803 copied += length;
2804 count -= length;
2805 }
2806 return copied;
2807}
2808
2809static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2810{
2811 struct page *p;
2812 int copied = 0;
2813
2814 while (count) {
2815 unsigned long offset, length;
2816
891c49ab 2817 offset = offset_in_page(addr);
d0107eb0
KH
2818 length = PAGE_SIZE - offset;
2819 if (length > count)
2820 length = count;
2821 p = vmalloc_to_page(addr);
2822 /*
2823 * To do safe access to this _mapped_ area, we need
2824 * lock. But adding lock here means that we need to add
2825 * overhead of vmalloc()/vfree() calles for this _debug_
2826 * interface, rarely used. Instead of that, we'll use
2827 * kmap() and get small overhead in this access function.
2828 */
2829 if (p) {
2830 /*
2831 * we can expect USER0 is not used (see vread/vwrite's
2832 * function description)
2833 */
9b04c5fe 2834 void *map = kmap_atomic(p);
d0107eb0 2835 memcpy(map + offset, buf, length);
9b04c5fe 2836 kunmap_atomic(map);
d0107eb0
KH
2837 }
2838 addr += length;
2839 buf += length;
2840 copied += length;
2841 count -= length;
2842 }
2843 return copied;
2844}
2845
2846/**
92eac168
MR
2847 * vread() - read vmalloc area in a safe way.
2848 * @buf: buffer for reading data
2849 * @addr: vm address.
2850 * @count: number of bytes to be read.
2851 *
92eac168
MR
2852 * This function checks that addr is a valid vmalloc'ed area, and
2853 * copy data from that area to a given buffer. If the given memory range
2854 * of [addr...addr+count) includes some valid address, data is copied to
2855 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2856 * IOREMAP area is treated as memory hole and no copy is done.
2857 *
2858 * If [addr...addr+count) doesn't includes any intersects with alive
2859 * vm_struct area, returns 0. @buf should be kernel's buffer.
2860 *
2861 * Note: In usual ops, vread() is never necessary because the caller
2862 * should know vmalloc() area is valid and can use memcpy().
2863 * This is for routines which have to access vmalloc area without
d9009d67 2864 * any information, as /dev/kmem.
a862f68a
MR
2865 *
2866 * Return: number of bytes for which addr and buf should be increased
2867 * (same number as @count) or %0 if [addr...addr+count) doesn't
2868 * include any intersection with valid vmalloc area
d0107eb0 2869 */
1da177e4
LT
2870long vread(char *buf, char *addr, unsigned long count)
2871{
e81ce85f
JK
2872 struct vmap_area *va;
2873 struct vm_struct *vm;
1da177e4 2874 char *vaddr, *buf_start = buf;
d0107eb0 2875 unsigned long buflen = count;
1da177e4
LT
2876 unsigned long n;
2877
2878 /* Don't allow overflow */
2879 if ((unsigned long) addr + count < count)
2880 count = -(unsigned long) addr;
2881
e81ce85f
JK
2882 spin_lock(&vmap_area_lock);
2883 list_for_each_entry(va, &vmap_area_list, list) {
2884 if (!count)
2885 break;
2886
688fcbfc 2887 if (!va->vm)
e81ce85f
JK
2888 continue;
2889
2890 vm = va->vm;
2891 vaddr = (char *) vm->addr;
762216ab 2892 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2893 continue;
2894 while (addr < vaddr) {
2895 if (count == 0)
2896 goto finished;
2897 *buf = '\0';
2898 buf++;
2899 addr++;
2900 count--;
2901 }
762216ab 2902 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2903 if (n > count)
2904 n = count;
e81ce85f 2905 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2906 aligned_vread(buf, addr, n);
2907 else /* IOREMAP area is treated as memory hole */
2908 memset(buf, 0, n);
2909 buf += n;
2910 addr += n;
2911 count -= n;
1da177e4
LT
2912 }
2913finished:
e81ce85f 2914 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2915
2916 if (buf == buf_start)
2917 return 0;
2918 /* zero-fill memory holes */
2919 if (buf != buf_start + buflen)
2920 memset(buf, 0, buflen - (buf - buf_start));
2921
2922 return buflen;
1da177e4
LT
2923}
2924
d0107eb0 2925/**
92eac168
MR
2926 * vwrite() - write vmalloc area in a safe way.
2927 * @buf: buffer for source data
2928 * @addr: vm address.
2929 * @count: number of bytes to be read.
2930 *
92eac168
MR
2931 * This function checks that addr is a valid vmalloc'ed area, and
2932 * copy data from a buffer to the given addr. If specified range of
2933 * [addr...addr+count) includes some valid address, data is copied from
2934 * proper area of @buf. If there are memory holes, no copy to hole.
2935 * IOREMAP area is treated as memory hole and no copy is done.
2936 *
2937 * If [addr...addr+count) doesn't includes any intersects with alive
2938 * vm_struct area, returns 0. @buf should be kernel's buffer.
2939 *
2940 * Note: In usual ops, vwrite() is never necessary because the caller
2941 * should know vmalloc() area is valid and can use memcpy().
2942 * This is for routines which have to access vmalloc area without
d9009d67 2943 * any information, as /dev/kmem.
a862f68a
MR
2944 *
2945 * Return: number of bytes for which addr and buf should be
2946 * increased (same number as @count) or %0 if [addr...addr+count)
2947 * doesn't include any intersection with valid vmalloc area
d0107eb0 2948 */
1da177e4
LT
2949long vwrite(char *buf, char *addr, unsigned long count)
2950{
e81ce85f
JK
2951 struct vmap_area *va;
2952 struct vm_struct *vm;
d0107eb0
KH
2953 char *vaddr;
2954 unsigned long n, buflen;
2955 int copied = 0;
1da177e4
LT
2956
2957 /* Don't allow overflow */
2958 if ((unsigned long) addr + count < count)
2959 count = -(unsigned long) addr;
d0107eb0 2960 buflen = count;
1da177e4 2961
e81ce85f
JK
2962 spin_lock(&vmap_area_lock);
2963 list_for_each_entry(va, &vmap_area_list, list) {
2964 if (!count)
2965 break;
2966
688fcbfc 2967 if (!va->vm)
e81ce85f
JK
2968 continue;
2969
2970 vm = va->vm;
2971 vaddr = (char *) vm->addr;
762216ab 2972 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2973 continue;
2974 while (addr < vaddr) {
2975 if (count == 0)
2976 goto finished;
2977 buf++;
2978 addr++;
2979 count--;
2980 }
762216ab 2981 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2982 if (n > count)
2983 n = count;
e81ce85f 2984 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2985 aligned_vwrite(buf, addr, n);
2986 copied++;
2987 }
2988 buf += n;
2989 addr += n;
2990 count -= n;
1da177e4
LT
2991 }
2992finished:
e81ce85f 2993 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2994 if (!copied)
2995 return 0;
2996 return buflen;
1da177e4 2997}
83342314
NP
2998
2999/**
92eac168
MR
3000 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3001 * @vma: vma to cover
3002 * @uaddr: target user address to start at
3003 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3004 * @pgoff: offset from @kaddr to start at
92eac168 3005 * @size: size of map area
7682486b 3006 *
92eac168 3007 * Returns: 0 for success, -Exxx on failure
83342314 3008 *
92eac168
MR
3009 * This function checks that @kaddr is a valid vmalloc'ed area,
3010 * and that it is big enough to cover the range starting at
3011 * @uaddr in @vma. Will return failure if that criteria isn't
3012 * met.
83342314 3013 *
92eac168 3014 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3015 */
e69e9d4a 3016int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3017 void *kaddr, unsigned long pgoff,
3018 unsigned long size)
83342314
NP
3019{
3020 struct vm_struct *area;
bdebd6a2
JH
3021 unsigned long off;
3022 unsigned long end_index;
3023
3024 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3025 return -EINVAL;
83342314 3026
e69e9d4a
HD
3027 size = PAGE_ALIGN(size);
3028
3029 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3030 return -EINVAL;
3031
e69e9d4a 3032 area = find_vm_area(kaddr);
83342314 3033 if (!area)
db64fe02 3034 return -EINVAL;
83342314 3035
fe9041c2 3036 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3037 return -EINVAL;
83342314 3038
bdebd6a2
JH
3039 if (check_add_overflow(size, off, &end_index) ||
3040 end_index > get_vm_area_size(area))
db64fe02 3041 return -EINVAL;
bdebd6a2 3042 kaddr += off;
83342314 3043
83342314 3044 do {
e69e9d4a 3045 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3046 int ret;
3047
83342314
NP
3048 ret = vm_insert_page(vma, uaddr, page);
3049 if (ret)
3050 return ret;
3051
3052 uaddr += PAGE_SIZE;
e69e9d4a
HD
3053 kaddr += PAGE_SIZE;
3054 size -= PAGE_SIZE;
3055 } while (size > 0);
83342314 3056
314e51b9 3057 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3058
db64fe02 3059 return 0;
83342314 3060}
e69e9d4a
HD
3061EXPORT_SYMBOL(remap_vmalloc_range_partial);
3062
3063/**
92eac168
MR
3064 * remap_vmalloc_range - map vmalloc pages to userspace
3065 * @vma: vma to cover (map full range of vma)
3066 * @addr: vmalloc memory
3067 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3068 *
92eac168 3069 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3070 *
92eac168
MR
3071 * This function checks that addr is a valid vmalloc'ed area, and
3072 * that it is big enough to cover the vma. Will return failure if
3073 * that criteria isn't met.
e69e9d4a 3074 *
92eac168 3075 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3076 */
3077int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3078 unsigned long pgoff)
3079{
3080 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3081 addr, pgoff,
e69e9d4a
HD
3082 vma->vm_end - vma->vm_start);
3083}
83342314
NP
3084EXPORT_SYMBOL(remap_vmalloc_range);
3085
5f4352fb
JF
3086void free_vm_area(struct vm_struct *area)
3087{
3088 struct vm_struct *ret;
3089 ret = remove_vm_area(area->addr);
3090 BUG_ON(ret != area);
3091 kfree(area);
3092}
3093EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3094
4f8b02b4 3095#ifdef CONFIG_SMP
ca23e405
TH
3096static struct vmap_area *node_to_va(struct rb_node *n)
3097{
4583e773 3098 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3099}
3100
3101/**
68ad4a33
URS
3102 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3103 * @addr: target address
ca23e405 3104 *
68ad4a33
URS
3105 * Returns: vmap_area if it is found. If there is no such area
3106 * the first highest(reverse order) vmap_area is returned
3107 * i.e. va->va_start < addr && va->va_end < addr or NULL
3108 * if there are no any areas before @addr.
ca23e405 3109 */
68ad4a33
URS
3110static struct vmap_area *
3111pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3112{
68ad4a33
URS
3113 struct vmap_area *va, *tmp;
3114 struct rb_node *n;
3115
3116 n = free_vmap_area_root.rb_node;
3117 va = NULL;
ca23e405
TH
3118
3119 while (n) {
68ad4a33
URS
3120 tmp = rb_entry(n, struct vmap_area, rb_node);
3121 if (tmp->va_start <= addr) {
3122 va = tmp;
3123 if (tmp->va_end >= addr)
3124 break;
3125
ca23e405 3126 n = n->rb_right;
68ad4a33
URS
3127 } else {
3128 n = n->rb_left;
3129 }
ca23e405
TH
3130 }
3131
68ad4a33 3132 return va;
ca23e405
TH
3133}
3134
3135/**
68ad4a33
URS
3136 * pvm_determine_end_from_reverse - find the highest aligned address
3137 * of free block below VMALLOC_END
3138 * @va:
3139 * in - the VA we start the search(reverse order);
3140 * out - the VA with the highest aligned end address.
ca23e405 3141 *
68ad4a33 3142 * Returns: determined end address within vmap_area
ca23e405 3143 */
68ad4a33
URS
3144static unsigned long
3145pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3146{
68ad4a33 3147 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3148 unsigned long addr;
3149
68ad4a33
URS
3150 if (likely(*va)) {
3151 list_for_each_entry_from_reverse((*va),
3152 &free_vmap_area_list, list) {
3153 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3154 if ((*va)->va_start < addr)
3155 return addr;
3156 }
ca23e405
TH
3157 }
3158
68ad4a33 3159 return 0;
ca23e405
TH
3160}
3161
3162/**
3163 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3164 * @offsets: array containing offset of each area
3165 * @sizes: array containing size of each area
3166 * @nr_vms: the number of areas to allocate
3167 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3168 *
3169 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3170 * vm_structs on success, %NULL on failure
3171 *
3172 * Percpu allocator wants to use congruent vm areas so that it can
3173 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3174 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3175 * be scattered pretty far, distance between two areas easily going up
3176 * to gigabytes. To avoid interacting with regular vmallocs, these
3177 * areas are allocated from top.
ca23e405 3178 *
68ad4a33
URS
3179 * Despite its complicated look, this allocator is rather simple. It
3180 * does everything top-down and scans free blocks from the end looking
3181 * for matching base. While scanning, if any of the areas do not fit the
3182 * base address is pulled down to fit the area. Scanning is repeated till
3183 * all the areas fit and then all necessary data structures are inserted
3184 * and the result is returned.
ca23e405
TH
3185 */
3186struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3187 const size_t *sizes, int nr_vms,
ec3f64fc 3188 size_t align)
ca23e405
TH
3189{
3190 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3191 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3192 struct vmap_area **vas, *va;
ca23e405
TH
3193 struct vm_struct **vms;
3194 int area, area2, last_area, term_area;
253a496d 3195 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405 3196 bool purged = false;
68ad4a33 3197 enum fit_type type;
ca23e405 3198
ca23e405 3199 /* verify parameters and allocate data structures */
891c49ab 3200 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3201 for (last_area = 0, area = 0; area < nr_vms; area++) {
3202 start = offsets[area];
3203 end = start + sizes[area];
3204
3205 /* is everything aligned properly? */
3206 BUG_ON(!IS_ALIGNED(offsets[area], align));
3207 BUG_ON(!IS_ALIGNED(sizes[area], align));
3208
3209 /* detect the area with the highest address */
3210 if (start > offsets[last_area])
3211 last_area = area;
3212
c568da28 3213 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3214 unsigned long start2 = offsets[area2];
3215 unsigned long end2 = start2 + sizes[area2];
3216
c568da28 3217 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3218 }
3219 }
3220 last_end = offsets[last_area] + sizes[last_area];
3221
3222 if (vmalloc_end - vmalloc_start < last_end) {
3223 WARN_ON(true);
3224 return NULL;
3225 }
3226
4d67d860
TM
3227 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3228 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3229 if (!vas || !vms)
f1db7afd 3230 goto err_free2;
ca23e405
TH
3231
3232 for (area = 0; area < nr_vms; area++) {
68ad4a33 3233 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3234 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3235 if (!vas[area] || !vms[area])
3236 goto err_free;
3237 }
3238retry:
e36176be 3239 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3240
3241 /* start scanning - we scan from the top, begin with the last area */
3242 area = term_area = last_area;
3243 start = offsets[area];
3244 end = start + sizes[area];
3245
68ad4a33
URS
3246 va = pvm_find_va_enclose_addr(vmalloc_end);
3247 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3248
3249 while (true) {
ca23e405
TH
3250 /*
3251 * base might have underflowed, add last_end before
3252 * comparing.
3253 */
68ad4a33
URS
3254 if (base + last_end < vmalloc_start + last_end)
3255 goto overflow;
ca23e405
TH
3256
3257 /*
68ad4a33 3258 * Fitting base has not been found.
ca23e405 3259 */
68ad4a33
URS
3260 if (va == NULL)
3261 goto overflow;
ca23e405 3262
5336e52c 3263 /*
d8cc323d 3264 * If required width exceeds current VA block, move
5336e52c
KS
3265 * base downwards and then recheck.
3266 */
3267 if (base + end > va->va_end) {
3268 base = pvm_determine_end_from_reverse(&va, align) - end;
3269 term_area = area;
3270 continue;
3271 }
3272
ca23e405 3273 /*
68ad4a33 3274 * If this VA does not fit, move base downwards and recheck.
ca23e405 3275 */
5336e52c 3276 if (base + start < va->va_start) {
68ad4a33
URS
3277 va = node_to_va(rb_prev(&va->rb_node));
3278 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3279 term_area = area;
3280 continue;
3281 }
3282
3283 /*
3284 * This area fits, move on to the previous one. If
3285 * the previous one is the terminal one, we're done.
3286 */
3287 area = (area + nr_vms - 1) % nr_vms;
3288 if (area == term_area)
3289 break;
68ad4a33 3290
ca23e405
TH
3291 start = offsets[area];
3292 end = start + sizes[area];
68ad4a33 3293 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3294 }
68ad4a33 3295
ca23e405
TH
3296 /* we've found a fitting base, insert all va's */
3297 for (area = 0; area < nr_vms; area++) {
68ad4a33 3298 int ret;
ca23e405 3299
68ad4a33
URS
3300 start = base + offsets[area];
3301 size = sizes[area];
ca23e405 3302
68ad4a33
URS
3303 va = pvm_find_va_enclose_addr(start);
3304 if (WARN_ON_ONCE(va == NULL))
3305 /* It is a BUG(), but trigger recovery instead. */
3306 goto recovery;
3307
3308 type = classify_va_fit_type(va, start, size);
3309 if (WARN_ON_ONCE(type == NOTHING_FIT))
3310 /* It is a BUG(), but trigger recovery instead. */
3311 goto recovery;
3312
3313 ret = adjust_va_to_fit_type(va, start, size, type);
3314 if (unlikely(ret))
3315 goto recovery;
3316
3317 /* Allocated area. */
3318 va = vas[area];
3319 va->va_start = start;
3320 va->va_end = start + size;
68ad4a33 3321 }
ca23e405 3322
e36176be 3323 spin_unlock(&free_vmap_area_lock);
ca23e405 3324
253a496d
DA
3325 /* populate the kasan shadow space */
3326 for (area = 0; area < nr_vms; area++) {
3327 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3328 goto err_free_shadow;
3329
3330 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3331 sizes[area]);
3332 }
3333
ca23e405 3334 /* insert all vm's */
e36176be
URS
3335 spin_lock(&vmap_area_lock);
3336 for (area = 0; area < nr_vms; area++) {
3337 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3338
3339 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3340 pcpu_get_vm_areas);
e36176be
URS
3341 }
3342 spin_unlock(&vmap_area_lock);
ca23e405
TH
3343
3344 kfree(vas);
3345 return vms;
3346
68ad4a33 3347recovery:
e36176be
URS
3348 /*
3349 * Remove previously allocated areas. There is no
3350 * need in removing these areas from the busy tree,
3351 * because they are inserted only on the final step
3352 * and when pcpu_get_vm_areas() is success.
3353 */
68ad4a33 3354 while (area--) {
253a496d
DA
3355 orig_start = vas[area]->va_start;
3356 orig_end = vas[area]->va_end;
3357 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3358 &free_vmap_area_list);
9c801f61
URS
3359 if (va)
3360 kasan_release_vmalloc(orig_start, orig_end,
3361 va->va_start, va->va_end);
68ad4a33
URS
3362 vas[area] = NULL;
3363 }
3364
3365overflow:
e36176be 3366 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3367 if (!purged) {
3368 purge_vmap_area_lazy();
3369 purged = true;
3370
3371 /* Before "retry", check if we recover. */
3372 for (area = 0; area < nr_vms; area++) {
3373 if (vas[area])
3374 continue;
3375
3376 vas[area] = kmem_cache_zalloc(
3377 vmap_area_cachep, GFP_KERNEL);
3378 if (!vas[area])
3379 goto err_free;
3380 }
3381
3382 goto retry;
3383 }
3384
ca23e405
TH
3385err_free:
3386 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3387 if (vas[area])
3388 kmem_cache_free(vmap_area_cachep, vas[area]);
3389
f1db7afd 3390 kfree(vms[area]);
ca23e405 3391 }
f1db7afd 3392err_free2:
ca23e405
TH
3393 kfree(vas);
3394 kfree(vms);
3395 return NULL;
253a496d
DA
3396
3397err_free_shadow:
3398 spin_lock(&free_vmap_area_lock);
3399 /*
3400 * We release all the vmalloc shadows, even the ones for regions that
3401 * hadn't been successfully added. This relies on kasan_release_vmalloc
3402 * being able to tolerate this case.
3403 */
3404 for (area = 0; area < nr_vms; area++) {
3405 orig_start = vas[area]->va_start;
3406 orig_end = vas[area]->va_end;
3407 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3408 &free_vmap_area_list);
9c801f61
URS
3409 if (va)
3410 kasan_release_vmalloc(orig_start, orig_end,
3411 va->va_start, va->va_end);
253a496d
DA
3412 vas[area] = NULL;
3413 kfree(vms[area]);
3414 }
3415 spin_unlock(&free_vmap_area_lock);
3416 kfree(vas);
3417 kfree(vms);
3418 return NULL;
ca23e405
TH
3419}
3420
3421/**
3422 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3423 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3424 * @nr_vms: the number of allocated areas
3425 *
3426 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3427 */
3428void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3429{
3430 int i;
3431
3432 for (i = 0; i < nr_vms; i++)
3433 free_vm_area(vms[i]);
3434 kfree(vms);
3435}
4f8b02b4 3436#endif /* CONFIG_SMP */
a10aa579
CL
3437
3438#ifdef CONFIG_PROC_FS
3439static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3440 __acquires(&vmap_purge_lock)
d4033afd 3441 __acquires(&vmap_area_lock)
a10aa579 3442{
e36176be 3443 mutex_lock(&vmap_purge_lock);
d4033afd 3444 spin_lock(&vmap_area_lock);
e36176be 3445
3f500069 3446 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3447}
3448
3449static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3450{
3f500069 3451 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3452}
3453
3454static void s_stop(struct seq_file *m, void *p)
e36176be 3455 __releases(&vmap_purge_lock)
d4033afd 3456 __releases(&vmap_area_lock)
a10aa579 3457{
e36176be 3458 mutex_unlock(&vmap_purge_lock);
d4033afd 3459 spin_unlock(&vmap_area_lock);
a10aa579
CL
3460}
3461
a47a126a
ED
3462static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3463{
e5adfffc 3464 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3465 unsigned int nr, *counters = m->private;
3466
3467 if (!counters)
3468 return;
3469
af12346c
WL
3470 if (v->flags & VM_UNINITIALIZED)
3471 return;
7e5b528b
DV
3472 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3473 smp_rmb();
af12346c 3474
a47a126a
ED
3475 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3476
3477 for (nr = 0; nr < v->nr_pages; nr++)
3478 counters[page_to_nid(v->pages[nr])]++;
3479
3480 for_each_node_state(nr, N_HIGH_MEMORY)
3481 if (counters[nr])
3482 seq_printf(m, " N%u=%u", nr, counters[nr]);
3483 }
3484}
3485
dd3b8353
URS
3486static void show_purge_info(struct seq_file *m)
3487{
3488 struct llist_node *head;
3489 struct vmap_area *va;
3490
3491 head = READ_ONCE(vmap_purge_list.first);
3492 if (head == NULL)
3493 return;
3494
3495 llist_for_each_entry(va, head, purge_list) {
3496 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3497 (void *)va->va_start, (void *)va->va_end,
3498 va->va_end - va->va_start);
3499 }
3500}
3501
a10aa579
CL
3502static int s_show(struct seq_file *m, void *p)
3503{
3f500069 3504 struct vmap_area *va;
d4033afd
JK
3505 struct vm_struct *v;
3506
3f500069 3507 va = list_entry(p, struct vmap_area, list);
3508
c2ce8c14 3509 /*
688fcbfc
PL
3510 * s_show can encounter race with remove_vm_area, !vm on behalf
3511 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3512 */
688fcbfc 3513 if (!va->vm) {
dd3b8353 3514 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3515 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3516 va->va_end - va->va_start);
78c72746 3517
d4033afd 3518 return 0;
78c72746 3519 }
d4033afd
JK
3520
3521 v = va->vm;
a10aa579 3522
45ec1690 3523 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3524 v->addr, v->addr + v->size, v->size);
3525
62c70bce
JP
3526 if (v->caller)
3527 seq_printf(m, " %pS", v->caller);
23016969 3528
a10aa579
CL
3529 if (v->nr_pages)
3530 seq_printf(m, " pages=%d", v->nr_pages);
3531
3532 if (v->phys_addr)
199eaa05 3533 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3534
3535 if (v->flags & VM_IOREMAP)
f4527c90 3536 seq_puts(m, " ioremap");
a10aa579
CL
3537
3538 if (v->flags & VM_ALLOC)
f4527c90 3539 seq_puts(m, " vmalloc");
a10aa579
CL
3540
3541 if (v->flags & VM_MAP)
f4527c90 3542 seq_puts(m, " vmap");
a10aa579
CL
3543
3544 if (v->flags & VM_USERMAP)
f4527c90 3545 seq_puts(m, " user");
a10aa579 3546
fe9041c2
CH
3547 if (v->flags & VM_DMA_COHERENT)
3548 seq_puts(m, " dma-coherent");
3549
244d63ee 3550 if (is_vmalloc_addr(v->pages))
f4527c90 3551 seq_puts(m, " vpages");
a10aa579 3552
a47a126a 3553 show_numa_info(m, v);
a10aa579 3554 seq_putc(m, '\n');
dd3b8353
URS
3555
3556 /*
3557 * As a final step, dump "unpurged" areas. Note,
3558 * that entire "/proc/vmallocinfo" output will not
3559 * be address sorted, because the purge list is not
3560 * sorted.
3561 */
3562 if (list_is_last(&va->list, &vmap_area_list))
3563 show_purge_info(m);
3564
a10aa579
CL
3565 return 0;
3566}
3567
5f6a6a9c 3568static const struct seq_operations vmalloc_op = {
a10aa579
CL
3569 .start = s_start,
3570 .next = s_next,
3571 .stop = s_stop,
3572 .show = s_show,
3573};
5f6a6a9c 3574
5f6a6a9c
AD
3575static int __init proc_vmalloc_init(void)
3576{
fddda2b7 3577 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3578 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3579 &vmalloc_op,
3580 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3581 else
0825a6f9 3582 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3583 return 0;
3584}
3585module_init(proc_vmalloc_init);
db3808c1 3586
a10aa579 3587#endif