]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/vmalloc.c
mm/vmalloc: remove unmap_kernel_range
[thirdparty/kernel/linux.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 7 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02 26#include <linux/rbtree.h>
0f14599c 27#include <linux/xarray.h>
db64fe02 28#include <linux/rcupdate.h>
f0aa6617 29#include <linux/pfn.h>
89219d37 30#include <linux/kmemleak.h>
60063497 31#include <linux/atomic.h>
3b32123d 32#include <linux/compiler.h>
32fcfd40 33#include <linux/llist.h>
0f616be1 34#include <linux/bitops.h>
68ad4a33 35#include <linux/rbtree_augmented.h>
bdebd6a2 36#include <linux/overflow.h>
c0eb315a 37#include <linux/pgtable.h>
7c0f6ba6 38#include <linux/uaccess.h>
1da177e4 39#include <asm/tlbflush.h>
2dca6999 40#include <asm/shmparam.h>
1da177e4 41
dd56b046 42#include "internal.h"
2a681cfa 43#include "pgalloc-track.h"
dd56b046 44
121e6f32
NP
45#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
46static bool __ro_after_init vmap_allow_huge = true;
47
48static int __init set_nohugevmalloc(char *str)
49{
50 vmap_allow_huge = false;
51 return 0;
52}
53early_param("nohugevmalloc", set_nohugevmalloc);
54#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
55static const bool vmap_allow_huge = false;
56#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
57
186525bd
IM
58bool is_vmalloc_addr(const void *x)
59{
60 unsigned long addr = (unsigned long)x;
61
62 return addr >= VMALLOC_START && addr < VMALLOC_END;
63}
64EXPORT_SYMBOL(is_vmalloc_addr);
65
32fcfd40
AV
66struct vfree_deferred {
67 struct llist_head list;
68 struct work_struct wq;
69};
70static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
71
72static void __vunmap(const void *, int);
73
74static void free_work(struct work_struct *w)
75{
76 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
77 struct llist_node *t, *llnode;
78
79 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
80 __vunmap((void *)llnode, 1);
32fcfd40
AV
81}
82
db64fe02 83/*** Page table manipulation functions ***/
5e9e3d77
NP
84static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
85 phys_addr_t phys_addr, pgprot_t prot,
86 pgtbl_mod_mask *mask)
87{
88 pte_t *pte;
89 u64 pfn;
90
91 pfn = phys_addr >> PAGE_SHIFT;
92 pte = pte_alloc_kernel_track(pmd, addr, mask);
93 if (!pte)
94 return -ENOMEM;
95 do {
96 BUG_ON(!pte_none(*pte));
97 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
98 pfn++;
99 } while (pte++, addr += PAGE_SIZE, addr != end);
100 *mask |= PGTBL_PTE_MODIFIED;
101 return 0;
102}
103
104static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
105 phys_addr_t phys_addr, pgprot_t prot,
106 unsigned int max_page_shift)
107{
108 if (max_page_shift < PMD_SHIFT)
109 return 0;
110
111 if (!arch_vmap_pmd_supported(prot))
112 return 0;
113
114 if ((end - addr) != PMD_SIZE)
115 return 0;
116
117 if (!IS_ALIGNED(addr, PMD_SIZE))
118 return 0;
119
120 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
121 return 0;
122
123 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
124 return 0;
125
126 return pmd_set_huge(pmd, phys_addr, prot);
127}
128
129static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
130 phys_addr_t phys_addr, pgprot_t prot,
131 unsigned int max_page_shift, pgtbl_mod_mask *mask)
132{
133 pmd_t *pmd;
134 unsigned long next;
135
136 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
137 if (!pmd)
138 return -ENOMEM;
139 do {
140 next = pmd_addr_end(addr, end);
141
142 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
143 max_page_shift)) {
144 *mask |= PGTBL_PMD_MODIFIED;
145 continue;
146 }
147
148 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, mask))
149 return -ENOMEM;
150 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
151 return 0;
152}
153
154static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
155 phys_addr_t phys_addr, pgprot_t prot,
156 unsigned int max_page_shift)
157{
158 if (max_page_shift < PUD_SHIFT)
159 return 0;
160
161 if (!arch_vmap_pud_supported(prot))
162 return 0;
163
164 if ((end - addr) != PUD_SIZE)
165 return 0;
166
167 if (!IS_ALIGNED(addr, PUD_SIZE))
168 return 0;
169
170 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
171 return 0;
172
173 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
174 return 0;
175
176 return pud_set_huge(pud, phys_addr, prot);
177}
178
179static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
180 phys_addr_t phys_addr, pgprot_t prot,
181 unsigned int max_page_shift, pgtbl_mod_mask *mask)
182{
183 pud_t *pud;
184 unsigned long next;
185
186 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
187 if (!pud)
188 return -ENOMEM;
189 do {
190 next = pud_addr_end(addr, end);
191
192 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
193 max_page_shift)) {
194 *mask |= PGTBL_PUD_MODIFIED;
195 continue;
196 }
197
198 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
199 max_page_shift, mask))
200 return -ENOMEM;
201 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
202 return 0;
203}
204
205static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
206 phys_addr_t phys_addr, pgprot_t prot,
207 unsigned int max_page_shift)
208{
209 if (max_page_shift < P4D_SHIFT)
210 return 0;
211
212 if (!arch_vmap_p4d_supported(prot))
213 return 0;
214
215 if ((end - addr) != P4D_SIZE)
216 return 0;
217
218 if (!IS_ALIGNED(addr, P4D_SIZE))
219 return 0;
220
221 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
222 return 0;
223
224 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
225 return 0;
226
227 return p4d_set_huge(p4d, phys_addr, prot);
228}
229
230static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
231 phys_addr_t phys_addr, pgprot_t prot,
232 unsigned int max_page_shift, pgtbl_mod_mask *mask)
233{
234 p4d_t *p4d;
235 unsigned long next;
236
237 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
238 if (!p4d)
239 return -ENOMEM;
240 do {
241 next = p4d_addr_end(addr, end);
242
243 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
244 max_page_shift)) {
245 *mask |= PGTBL_P4D_MODIFIED;
246 continue;
247 }
248
249 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
250 max_page_shift, mask))
251 return -ENOMEM;
252 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
253 return 0;
254}
255
5d87510d 256static int vmap_range_noflush(unsigned long addr, unsigned long end,
5e9e3d77
NP
257 phys_addr_t phys_addr, pgprot_t prot,
258 unsigned int max_page_shift)
259{
260 pgd_t *pgd;
261 unsigned long start;
262 unsigned long next;
263 int err;
264 pgtbl_mod_mask mask = 0;
265
266 might_sleep();
267 BUG_ON(addr >= end);
268
269 start = addr;
270 pgd = pgd_offset_k(addr);
271 do {
272 next = pgd_addr_end(addr, end);
273 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
274 max_page_shift, &mask);
275 if (err)
276 break;
277 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
278
5e9e3d77
NP
279 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
280 arch_sync_kernel_mappings(start, end);
281
282 return err;
283}
b221385b 284
5d87510d
NP
285int vmap_range(unsigned long addr, unsigned long end,
286 phys_addr_t phys_addr, pgprot_t prot,
287 unsigned int max_page_shift)
288{
289 int err;
290
291 err = vmap_range_noflush(addr, end, phys_addr, prot, max_page_shift);
292 flush_cache_vmap(addr, end);
293
294 return err;
295}
296
2ba3e694
JR
297static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
298 pgtbl_mod_mask *mask)
1da177e4
LT
299{
300 pte_t *pte;
301
302 pte = pte_offset_kernel(pmd, addr);
303 do {
304 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
305 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
306 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 307 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
308}
309
2ba3e694
JR
310static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
311 pgtbl_mod_mask *mask)
1da177e4
LT
312{
313 pmd_t *pmd;
314 unsigned long next;
2ba3e694 315 int cleared;
1da177e4
LT
316
317 pmd = pmd_offset(pud, addr);
318 do {
319 next = pmd_addr_end(addr, end);
2ba3e694
JR
320
321 cleared = pmd_clear_huge(pmd);
322 if (cleared || pmd_bad(*pmd))
323 *mask |= PGTBL_PMD_MODIFIED;
324
325 if (cleared)
b9820d8f 326 continue;
1da177e4
LT
327 if (pmd_none_or_clear_bad(pmd))
328 continue;
2ba3e694 329 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
330
331 cond_resched();
1da177e4
LT
332 } while (pmd++, addr = next, addr != end);
333}
334
2ba3e694
JR
335static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
336 pgtbl_mod_mask *mask)
1da177e4
LT
337{
338 pud_t *pud;
339 unsigned long next;
2ba3e694 340 int cleared;
1da177e4 341
c2febafc 342 pud = pud_offset(p4d, addr);
1da177e4
LT
343 do {
344 next = pud_addr_end(addr, end);
2ba3e694
JR
345
346 cleared = pud_clear_huge(pud);
347 if (cleared || pud_bad(*pud))
348 *mask |= PGTBL_PUD_MODIFIED;
349
350 if (cleared)
b9820d8f 351 continue;
1da177e4
LT
352 if (pud_none_or_clear_bad(pud))
353 continue;
2ba3e694 354 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
355 } while (pud++, addr = next, addr != end);
356}
357
2ba3e694
JR
358static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
359 pgtbl_mod_mask *mask)
c2febafc
KS
360{
361 p4d_t *p4d;
362 unsigned long next;
2ba3e694 363 int cleared;
c2febafc
KS
364
365 p4d = p4d_offset(pgd, addr);
366 do {
367 next = p4d_addr_end(addr, end);
2ba3e694
JR
368
369 cleared = p4d_clear_huge(p4d);
370 if (cleared || p4d_bad(*p4d))
371 *mask |= PGTBL_P4D_MODIFIED;
372
373 if (cleared)
c2febafc
KS
374 continue;
375 if (p4d_none_or_clear_bad(p4d))
376 continue;
2ba3e694 377 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
378 } while (p4d++, addr = next, addr != end);
379}
380
4ad0ae8c
NP
381/*
382 * vunmap_range_noflush is similar to vunmap_range, but does not
383 * flush caches or TLBs.
b521c43f 384 *
4ad0ae8c
NP
385 * The caller is responsible for calling flush_cache_vmap() before calling
386 * this function, and flush_tlb_kernel_range after it has returned
387 * successfully (and before the addresses are expected to cause a page fault
388 * or be re-mapped for something else, if TLB flushes are being delayed or
389 * coalesced).
b521c43f 390 *
4ad0ae8c 391 * This is an internal function only. Do not use outside mm/.
b521c43f 392 */
4ad0ae8c 393void vunmap_range_noflush(unsigned long start, unsigned long end)
1da177e4 394{
1da177e4 395 unsigned long next;
b521c43f 396 pgd_t *pgd;
2ba3e694
JR
397 unsigned long addr = start;
398 pgtbl_mod_mask mask = 0;
1da177e4
LT
399
400 BUG_ON(addr >= end);
401 pgd = pgd_offset_k(addr);
1da177e4
LT
402 do {
403 next = pgd_addr_end(addr, end);
2ba3e694
JR
404 if (pgd_bad(*pgd))
405 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
406 if (pgd_none_or_clear_bad(pgd))
407 continue;
2ba3e694 408 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 409 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
410
411 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
412 arch_sync_kernel_mappings(start, end);
1da177e4
LT
413}
414
4ad0ae8c
NP
415/**
416 * vunmap_range - unmap kernel virtual addresses
417 * @addr: start of the VM area to unmap
418 * @end: end of the VM area to unmap (non-inclusive)
419 *
420 * Clears any present PTEs in the virtual address range, flushes TLBs and
421 * caches. Any subsequent access to the address before it has been re-mapped
422 * is a kernel bug.
423 */
424void vunmap_range(unsigned long addr, unsigned long end)
425{
426 flush_cache_vunmap(addr, end);
427 vunmap_range_noflush(addr, end);
428 flush_tlb_kernel_range(addr, end);
429}
430
0a264884 431static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
432 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
433 pgtbl_mod_mask *mask)
1da177e4
LT
434{
435 pte_t *pte;
436
db64fe02
NP
437 /*
438 * nr is a running index into the array which helps higher level
439 * callers keep track of where we're up to.
440 */
441
2ba3e694 442 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
443 if (!pte)
444 return -ENOMEM;
445 do {
db64fe02
NP
446 struct page *page = pages[*nr];
447
448 if (WARN_ON(!pte_none(*pte)))
449 return -EBUSY;
450 if (WARN_ON(!page))
1da177e4
LT
451 return -ENOMEM;
452 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 453 (*nr)++;
1da177e4 454 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 455 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
456 return 0;
457}
458
0a264884 459static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
460 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
461 pgtbl_mod_mask *mask)
1da177e4
LT
462{
463 pmd_t *pmd;
464 unsigned long next;
465
2ba3e694 466 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
467 if (!pmd)
468 return -ENOMEM;
469 do {
470 next = pmd_addr_end(addr, end);
0a264884 471 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
472 return -ENOMEM;
473 } while (pmd++, addr = next, addr != end);
474 return 0;
475}
476
0a264884 477static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
478 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
479 pgtbl_mod_mask *mask)
1da177e4
LT
480{
481 pud_t *pud;
482 unsigned long next;
483
2ba3e694 484 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
485 if (!pud)
486 return -ENOMEM;
487 do {
488 next = pud_addr_end(addr, end);
0a264884 489 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
490 return -ENOMEM;
491 } while (pud++, addr = next, addr != end);
492 return 0;
493}
494
0a264884 495static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
496 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
497 pgtbl_mod_mask *mask)
c2febafc
KS
498{
499 p4d_t *p4d;
500 unsigned long next;
501
2ba3e694 502 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
503 if (!p4d)
504 return -ENOMEM;
505 do {
506 next = p4d_addr_end(addr, end);
0a264884 507 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
508 return -ENOMEM;
509 } while (p4d++, addr = next, addr != end);
510 return 0;
511}
512
121e6f32
NP
513static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
514 pgprot_t prot, struct page **pages)
1da177e4 515{
2ba3e694 516 unsigned long start = addr;
b521c43f 517 pgd_t *pgd;
121e6f32 518 unsigned long next;
db64fe02
NP
519 int err = 0;
520 int nr = 0;
2ba3e694 521 pgtbl_mod_mask mask = 0;
1da177e4
LT
522
523 BUG_ON(addr >= end);
524 pgd = pgd_offset_k(addr);
1da177e4
LT
525 do {
526 next = pgd_addr_end(addr, end);
2ba3e694
JR
527 if (pgd_bad(*pgd))
528 mask |= PGTBL_PGD_MODIFIED;
0a264884 529 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 530 if (err)
bf88c8c8 531 return err;
1da177e4 532 } while (pgd++, addr = next, addr != end);
db64fe02 533
2ba3e694
JR
534 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
535 arch_sync_kernel_mappings(start, end);
536
60bb4465 537 return 0;
1da177e4
LT
538}
539
b67177ec
NP
540/*
541 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
542 * flush caches.
543 *
544 * The caller is responsible for calling flush_cache_vmap() after this
545 * function returns successfully and before the addresses are accessed.
546 *
547 * This is an internal function only. Do not use outside mm/.
548 */
549int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
121e6f32
NP
550 pgprot_t prot, struct page **pages, unsigned int page_shift)
551{
552 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
553
554 WARN_ON(page_shift < PAGE_SHIFT);
555
556 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
557 page_shift == PAGE_SHIFT)
558 return vmap_small_pages_range_noflush(addr, end, prot, pages);
559
560 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
561 int err;
562
563 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
564 __pa(page_address(pages[i])), prot,
565 page_shift);
566 if (err)
567 return err;
568
569 addr += 1UL << page_shift;
570 }
571
572 return 0;
573}
574
121e6f32 575/**
b67177ec 576 * vmap_pages_range - map pages to a kernel virtual address
121e6f32 577 * @addr: start of the VM area to map
b67177ec 578 * @end: end of the VM area to map (non-inclusive)
121e6f32 579 * @prot: page protection flags to use
b67177ec
NP
580 * @pages: pages to map (always PAGE_SIZE pages)
581 * @page_shift: maximum shift that the pages may be mapped with, @pages must
582 * be aligned and contiguous up to at least this shift.
121e6f32
NP
583 *
584 * RETURNS:
585 * 0 on success, -errno on failure.
586 */
b67177ec
NP
587static int vmap_pages_range(unsigned long addr, unsigned long end,
588 pgprot_t prot, struct page **pages, unsigned int page_shift)
8fc48985 589{
b67177ec 590 int err;
8fc48985 591
b67177ec
NP
592 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
593 flush_cache_vmap(addr, end);
594 return err;
8fc48985
TH
595}
596
81ac3ad9 597int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
598{
599 /*
ab4f2ee1 600 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
601 * and fall back on vmalloc() if that fails. Others
602 * just put it in the vmalloc space.
603 */
604#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
605 unsigned long addr = (unsigned long)x;
606 if (addr >= MODULES_VADDR && addr < MODULES_END)
607 return 1;
608#endif
609 return is_vmalloc_addr(x);
610}
611
48667e7a 612/*
c0eb315a
NP
613 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
614 * return the tail page that corresponds to the base page address, which
615 * matches small vmap mappings.
48667e7a 616 */
add688fb 617struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
618{
619 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 620 struct page *page = NULL;
48667e7a 621 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
622 p4d_t *p4d;
623 pud_t *pud;
624 pmd_t *pmd;
625 pte_t *ptep, pte;
48667e7a 626
7aa413de
IM
627 /*
628 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
629 * architectures that do not vmalloc module space
630 */
73bdf0a6 631 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 632
c2febafc
KS
633 if (pgd_none(*pgd))
634 return NULL;
c0eb315a
NP
635 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
636 return NULL; /* XXX: no allowance for huge pgd */
637 if (WARN_ON_ONCE(pgd_bad(*pgd)))
638 return NULL;
639
c2febafc
KS
640 p4d = p4d_offset(pgd, addr);
641 if (p4d_none(*p4d))
642 return NULL;
c0eb315a
NP
643 if (p4d_leaf(*p4d))
644 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
645 if (WARN_ON_ONCE(p4d_bad(*p4d)))
646 return NULL;
029c54b0 647
c0eb315a
NP
648 pud = pud_offset(p4d, addr);
649 if (pud_none(*pud))
650 return NULL;
651 if (pud_leaf(*pud))
652 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
653 if (WARN_ON_ONCE(pud_bad(*pud)))
c2febafc 654 return NULL;
c0eb315a 655
c2febafc 656 pmd = pmd_offset(pud, addr);
c0eb315a
NP
657 if (pmd_none(*pmd))
658 return NULL;
659 if (pmd_leaf(*pmd))
660 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
661 if (WARN_ON_ONCE(pmd_bad(*pmd)))
c2febafc
KS
662 return NULL;
663
664 ptep = pte_offset_map(pmd, addr);
665 pte = *ptep;
666 if (pte_present(pte))
667 page = pte_page(pte);
668 pte_unmap(ptep);
c0eb315a 669
add688fb 670 return page;
48667e7a 671}
add688fb 672EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
673
674/*
add688fb 675 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 676 */
add688fb 677unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 678{
add688fb 679 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 680}
add688fb 681EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 682
db64fe02
NP
683
684/*** Global kva allocator ***/
685
bb850f4d 686#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 687#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 688
db64fe02 689
db64fe02 690static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 691static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
692/* Export for kexec only */
693LIST_HEAD(vmap_area_list);
89699605 694static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 695static bool vmap_initialized __read_mostly;
89699605 696
96e2db45
URS
697static struct rb_root purge_vmap_area_root = RB_ROOT;
698static LIST_HEAD(purge_vmap_area_list);
699static DEFINE_SPINLOCK(purge_vmap_area_lock);
700
68ad4a33
URS
701/*
702 * This kmem_cache is used for vmap_area objects. Instead of
703 * allocating from slab we reuse an object from this cache to
704 * make things faster. Especially in "no edge" splitting of
705 * free block.
706 */
707static struct kmem_cache *vmap_area_cachep;
708
709/*
710 * This linked list is used in pair with free_vmap_area_root.
711 * It gives O(1) access to prev/next to perform fast coalescing.
712 */
713static LIST_HEAD(free_vmap_area_list);
714
715/*
716 * This augment red-black tree represents the free vmap space.
717 * All vmap_area objects in this tree are sorted by va->va_start
718 * address. It is used for allocation and merging when a vmap
719 * object is released.
720 *
721 * Each vmap_area node contains a maximum available free block
722 * of its sub-tree, right or left. Therefore it is possible to
723 * find a lowest match of free area.
724 */
725static struct rb_root free_vmap_area_root = RB_ROOT;
726
82dd23e8
URS
727/*
728 * Preload a CPU with one object for "no edge" split case. The
729 * aim is to get rid of allocations from the atomic context, thus
730 * to use more permissive allocation masks.
731 */
732static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
733
68ad4a33
URS
734static __always_inline unsigned long
735va_size(struct vmap_area *va)
736{
737 return (va->va_end - va->va_start);
738}
739
740static __always_inline unsigned long
741get_subtree_max_size(struct rb_node *node)
742{
743 struct vmap_area *va;
744
745 va = rb_entry_safe(node, struct vmap_area, rb_node);
746 return va ? va->subtree_max_size : 0;
747}
89699605 748
68ad4a33
URS
749/*
750 * Gets called when remove the node and rotate.
751 */
752static __always_inline unsigned long
753compute_subtree_max_size(struct vmap_area *va)
754{
755 return max3(va_size(va),
756 get_subtree_max_size(va->rb_node.rb_left),
757 get_subtree_max_size(va->rb_node.rb_right));
758}
759
315cc066
ML
760RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
761 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
762
763static void purge_vmap_area_lazy(void);
764static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
765static unsigned long lazy_max_pages(void);
db64fe02 766
97105f0a
RG
767static atomic_long_t nr_vmalloc_pages;
768
769unsigned long vmalloc_nr_pages(void)
770{
771 return atomic_long_read(&nr_vmalloc_pages);
772}
773
db64fe02 774static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 775{
db64fe02
NP
776 struct rb_node *n = vmap_area_root.rb_node;
777
778 while (n) {
779 struct vmap_area *va;
780
781 va = rb_entry(n, struct vmap_area, rb_node);
782 if (addr < va->va_start)
783 n = n->rb_left;
cef2ac3f 784 else if (addr >= va->va_end)
db64fe02
NP
785 n = n->rb_right;
786 else
787 return va;
788 }
789
790 return NULL;
791}
792
68ad4a33
URS
793/*
794 * This function returns back addresses of parent node
795 * and its left or right link for further processing.
9c801f61
URS
796 *
797 * Otherwise NULL is returned. In that case all further
798 * steps regarding inserting of conflicting overlap range
799 * have to be declined and actually considered as a bug.
68ad4a33
URS
800 */
801static __always_inline struct rb_node **
802find_va_links(struct vmap_area *va,
803 struct rb_root *root, struct rb_node *from,
804 struct rb_node **parent)
805{
806 struct vmap_area *tmp_va;
807 struct rb_node **link;
808
809 if (root) {
810 link = &root->rb_node;
811 if (unlikely(!*link)) {
812 *parent = NULL;
813 return link;
814 }
815 } else {
816 link = &from;
817 }
db64fe02 818
68ad4a33
URS
819 /*
820 * Go to the bottom of the tree. When we hit the last point
821 * we end up with parent rb_node and correct direction, i name
822 * it link, where the new va->rb_node will be attached to.
823 */
824 do {
825 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 826
68ad4a33
URS
827 /*
828 * During the traversal we also do some sanity check.
829 * Trigger the BUG() if there are sides(left/right)
830 * or full overlaps.
831 */
832 if (va->va_start < tmp_va->va_end &&
833 va->va_end <= tmp_va->va_start)
834 link = &(*link)->rb_left;
835 else if (va->va_end > tmp_va->va_start &&
836 va->va_start >= tmp_va->va_end)
837 link = &(*link)->rb_right;
9c801f61
URS
838 else {
839 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
840 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
841
842 return NULL;
843 }
68ad4a33
URS
844 } while (*link);
845
846 *parent = &tmp_va->rb_node;
847 return link;
848}
849
850static __always_inline struct list_head *
851get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
852{
853 struct list_head *list;
854
855 if (unlikely(!parent))
856 /*
857 * The red-black tree where we try to find VA neighbors
858 * before merging or inserting is empty, i.e. it means
859 * there is no free vmap space. Normally it does not
860 * happen but we handle this case anyway.
861 */
862 return NULL;
863
864 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
865 return (&parent->rb_right == link ? list->next : list);
866}
867
868static __always_inline void
869link_va(struct vmap_area *va, struct rb_root *root,
870 struct rb_node *parent, struct rb_node **link, struct list_head *head)
871{
872 /*
873 * VA is still not in the list, but we can
874 * identify its future previous list_head node.
875 */
876 if (likely(parent)) {
877 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
878 if (&parent->rb_right != link)
879 head = head->prev;
db64fe02
NP
880 }
881
68ad4a33
URS
882 /* Insert to the rb-tree */
883 rb_link_node(&va->rb_node, parent, link);
884 if (root == &free_vmap_area_root) {
885 /*
886 * Some explanation here. Just perform simple insertion
887 * to the tree. We do not set va->subtree_max_size to
888 * its current size before calling rb_insert_augmented().
889 * It is because of we populate the tree from the bottom
890 * to parent levels when the node _is_ in the tree.
891 *
892 * Therefore we set subtree_max_size to zero after insertion,
893 * to let __augment_tree_propagate_from() puts everything to
894 * the correct order later on.
895 */
896 rb_insert_augmented(&va->rb_node,
897 root, &free_vmap_area_rb_augment_cb);
898 va->subtree_max_size = 0;
899 } else {
900 rb_insert_color(&va->rb_node, root);
901 }
db64fe02 902
68ad4a33
URS
903 /* Address-sort this list */
904 list_add(&va->list, head);
db64fe02
NP
905}
906
68ad4a33
URS
907static __always_inline void
908unlink_va(struct vmap_area *va, struct rb_root *root)
909{
460e42d1
URS
910 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
911 return;
db64fe02 912
460e42d1
URS
913 if (root == &free_vmap_area_root)
914 rb_erase_augmented(&va->rb_node,
915 root, &free_vmap_area_rb_augment_cb);
916 else
917 rb_erase(&va->rb_node, root);
918
919 list_del(&va->list);
920 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
921}
922
bb850f4d
URS
923#if DEBUG_AUGMENT_PROPAGATE_CHECK
924static void
da27c9ed 925augment_tree_propagate_check(void)
bb850f4d
URS
926{
927 struct vmap_area *va;
da27c9ed 928 unsigned long computed_size;
bb850f4d 929
da27c9ed
URS
930 list_for_each_entry(va, &free_vmap_area_list, list) {
931 computed_size = compute_subtree_max_size(va);
932 if (computed_size != va->subtree_max_size)
933 pr_emerg("tree is corrupted: %lu, %lu\n",
934 va_size(va), va->subtree_max_size);
bb850f4d 935 }
bb850f4d
URS
936}
937#endif
938
68ad4a33
URS
939/*
940 * This function populates subtree_max_size from bottom to upper
941 * levels starting from VA point. The propagation must be done
942 * when VA size is modified by changing its va_start/va_end. Or
943 * in case of newly inserting of VA to the tree.
944 *
945 * It means that __augment_tree_propagate_from() must be called:
946 * - After VA has been inserted to the tree(free path);
947 * - After VA has been shrunk(allocation path);
948 * - After VA has been increased(merging path).
949 *
950 * Please note that, it does not mean that upper parent nodes
951 * and their subtree_max_size are recalculated all the time up
952 * to the root node.
953 *
954 * 4--8
955 * /\
956 * / \
957 * / \
958 * 2--2 8--8
959 *
960 * For example if we modify the node 4, shrinking it to 2, then
961 * no any modification is required. If we shrink the node 2 to 1
962 * its subtree_max_size is updated only, and set to 1. If we shrink
963 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
964 * node becomes 4--6.
965 */
966static __always_inline void
967augment_tree_propagate_from(struct vmap_area *va)
968{
15ae144f
URS
969 /*
970 * Populate the tree from bottom towards the root until
971 * the calculated maximum available size of checked node
972 * is equal to its current one.
973 */
974 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
975
976#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 977 augment_tree_propagate_check();
bb850f4d 978#endif
68ad4a33
URS
979}
980
981static void
982insert_vmap_area(struct vmap_area *va,
983 struct rb_root *root, struct list_head *head)
984{
985 struct rb_node **link;
986 struct rb_node *parent;
987
988 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
989 if (link)
990 link_va(va, root, parent, link, head);
68ad4a33
URS
991}
992
993static void
994insert_vmap_area_augment(struct vmap_area *va,
995 struct rb_node *from, struct rb_root *root,
996 struct list_head *head)
997{
998 struct rb_node **link;
999 struct rb_node *parent;
1000
1001 if (from)
1002 link = find_va_links(va, NULL, from, &parent);
1003 else
1004 link = find_va_links(va, root, NULL, &parent);
1005
9c801f61
URS
1006 if (link) {
1007 link_va(va, root, parent, link, head);
1008 augment_tree_propagate_from(va);
1009 }
68ad4a33
URS
1010}
1011
1012/*
1013 * Merge de-allocated chunk of VA memory with previous
1014 * and next free blocks. If coalesce is not done a new
1015 * free area is inserted. If VA has been merged, it is
1016 * freed.
9c801f61
URS
1017 *
1018 * Please note, it can return NULL in case of overlap
1019 * ranges, followed by WARN() report. Despite it is a
1020 * buggy behaviour, a system can be alive and keep
1021 * ongoing.
68ad4a33 1022 */
3c5c3cfb 1023static __always_inline struct vmap_area *
68ad4a33
URS
1024merge_or_add_vmap_area(struct vmap_area *va,
1025 struct rb_root *root, struct list_head *head)
1026{
1027 struct vmap_area *sibling;
1028 struct list_head *next;
1029 struct rb_node **link;
1030 struct rb_node *parent;
1031 bool merged = false;
1032
1033 /*
1034 * Find a place in the tree where VA potentially will be
1035 * inserted, unless it is merged with its sibling/siblings.
1036 */
1037 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1038 if (!link)
1039 return NULL;
68ad4a33
URS
1040
1041 /*
1042 * Get next node of VA to check if merging can be done.
1043 */
1044 next = get_va_next_sibling(parent, link);
1045 if (unlikely(next == NULL))
1046 goto insert;
1047
1048 /*
1049 * start end
1050 * | |
1051 * |<------VA------>|<-----Next----->|
1052 * | |
1053 * start end
1054 */
1055 if (next != head) {
1056 sibling = list_entry(next, struct vmap_area, list);
1057 if (sibling->va_start == va->va_end) {
1058 sibling->va_start = va->va_start;
1059
68ad4a33
URS
1060 /* Free vmap_area object. */
1061 kmem_cache_free(vmap_area_cachep, va);
1062
1063 /* Point to the new merged area. */
1064 va = sibling;
1065 merged = true;
1066 }
1067 }
1068
1069 /*
1070 * start end
1071 * | |
1072 * |<-----Prev----->|<------VA------>|
1073 * | |
1074 * start end
1075 */
1076 if (next->prev != head) {
1077 sibling = list_entry(next->prev, struct vmap_area, list);
1078 if (sibling->va_end == va->va_start) {
5dd78640
URS
1079 /*
1080 * If both neighbors are coalesced, it is important
1081 * to unlink the "next" node first, followed by merging
1082 * with "previous" one. Otherwise the tree might not be
1083 * fully populated if a sibling's augmented value is
1084 * "normalized" because of rotation operations.
1085 */
54f63d9d
URS
1086 if (merged)
1087 unlink_va(va, root);
68ad4a33 1088
5dd78640
URS
1089 sibling->va_end = va->va_end;
1090
68ad4a33
URS
1091 /* Free vmap_area object. */
1092 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
1093
1094 /* Point to the new merged area. */
1095 va = sibling;
1096 merged = true;
68ad4a33
URS
1097 }
1098 }
1099
1100insert:
5dd78640 1101 if (!merged)
68ad4a33 1102 link_va(va, root, parent, link, head);
3c5c3cfb 1103
96e2db45
URS
1104 return va;
1105}
1106
1107static __always_inline struct vmap_area *
1108merge_or_add_vmap_area_augment(struct vmap_area *va,
1109 struct rb_root *root, struct list_head *head)
1110{
1111 va = merge_or_add_vmap_area(va, root, head);
1112 if (va)
1113 augment_tree_propagate_from(va);
1114
3c5c3cfb 1115 return va;
68ad4a33
URS
1116}
1117
1118static __always_inline bool
1119is_within_this_va(struct vmap_area *va, unsigned long size,
1120 unsigned long align, unsigned long vstart)
1121{
1122 unsigned long nva_start_addr;
1123
1124 if (va->va_start > vstart)
1125 nva_start_addr = ALIGN(va->va_start, align);
1126 else
1127 nva_start_addr = ALIGN(vstart, align);
1128
1129 /* Can be overflowed due to big size or alignment. */
1130 if (nva_start_addr + size < nva_start_addr ||
1131 nva_start_addr < vstart)
1132 return false;
1133
1134 return (nva_start_addr + size <= va->va_end);
1135}
1136
1137/*
1138 * Find the first free block(lowest start address) in the tree,
1139 * that will accomplish the request corresponding to passing
1140 * parameters.
1141 */
1142static __always_inline struct vmap_area *
1143find_vmap_lowest_match(unsigned long size,
1144 unsigned long align, unsigned long vstart)
1145{
1146 struct vmap_area *va;
1147 struct rb_node *node;
1148 unsigned long length;
1149
1150 /* Start from the root. */
1151 node = free_vmap_area_root.rb_node;
1152
1153 /* Adjust the search size for alignment overhead. */
1154 length = size + align - 1;
1155
1156 while (node) {
1157 va = rb_entry(node, struct vmap_area, rb_node);
1158
1159 if (get_subtree_max_size(node->rb_left) >= length &&
1160 vstart < va->va_start) {
1161 node = node->rb_left;
1162 } else {
1163 if (is_within_this_va(va, size, align, vstart))
1164 return va;
1165
1166 /*
1167 * Does not make sense to go deeper towards the right
1168 * sub-tree if it does not have a free block that is
1169 * equal or bigger to the requested search length.
1170 */
1171 if (get_subtree_max_size(node->rb_right) >= length) {
1172 node = node->rb_right;
1173 continue;
1174 }
1175
1176 /*
3806b041 1177 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
1178 * that will satisfy the search criteria. It can happen
1179 * only once due to "vstart" restriction.
1180 */
1181 while ((node = rb_parent(node))) {
1182 va = rb_entry(node, struct vmap_area, rb_node);
1183 if (is_within_this_va(va, size, align, vstart))
1184 return va;
1185
1186 if (get_subtree_max_size(node->rb_right) >= length &&
1187 vstart <= va->va_start) {
1188 node = node->rb_right;
1189 break;
1190 }
1191 }
1192 }
1193 }
1194
1195 return NULL;
1196}
1197
a6cf4e0f
URS
1198#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1199#include <linux/random.h>
1200
1201static struct vmap_area *
1202find_vmap_lowest_linear_match(unsigned long size,
1203 unsigned long align, unsigned long vstart)
1204{
1205 struct vmap_area *va;
1206
1207 list_for_each_entry(va, &free_vmap_area_list, list) {
1208 if (!is_within_this_va(va, size, align, vstart))
1209 continue;
1210
1211 return va;
1212 }
1213
1214 return NULL;
1215}
1216
1217static void
1218find_vmap_lowest_match_check(unsigned long size)
1219{
1220 struct vmap_area *va_1, *va_2;
1221 unsigned long vstart;
1222 unsigned int rnd;
1223
1224 get_random_bytes(&rnd, sizeof(rnd));
1225 vstart = VMALLOC_START + rnd;
1226
1227 va_1 = find_vmap_lowest_match(size, 1, vstart);
1228 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
1229
1230 if (va_1 != va_2)
1231 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1232 va_1, va_2, vstart);
1233}
1234#endif
1235
68ad4a33
URS
1236enum fit_type {
1237 NOTHING_FIT = 0,
1238 FL_FIT_TYPE = 1, /* full fit */
1239 LE_FIT_TYPE = 2, /* left edge fit */
1240 RE_FIT_TYPE = 3, /* right edge fit */
1241 NE_FIT_TYPE = 4 /* no edge fit */
1242};
1243
1244static __always_inline enum fit_type
1245classify_va_fit_type(struct vmap_area *va,
1246 unsigned long nva_start_addr, unsigned long size)
1247{
1248 enum fit_type type;
1249
1250 /* Check if it is within VA. */
1251 if (nva_start_addr < va->va_start ||
1252 nva_start_addr + size > va->va_end)
1253 return NOTHING_FIT;
1254
1255 /* Now classify. */
1256 if (va->va_start == nva_start_addr) {
1257 if (va->va_end == nva_start_addr + size)
1258 type = FL_FIT_TYPE;
1259 else
1260 type = LE_FIT_TYPE;
1261 } else if (va->va_end == nva_start_addr + size) {
1262 type = RE_FIT_TYPE;
1263 } else {
1264 type = NE_FIT_TYPE;
1265 }
1266
1267 return type;
1268}
1269
1270static __always_inline int
1271adjust_va_to_fit_type(struct vmap_area *va,
1272 unsigned long nva_start_addr, unsigned long size,
1273 enum fit_type type)
1274{
2c929233 1275 struct vmap_area *lva = NULL;
68ad4a33
URS
1276
1277 if (type == FL_FIT_TYPE) {
1278 /*
1279 * No need to split VA, it fully fits.
1280 *
1281 * | |
1282 * V NVA V
1283 * |---------------|
1284 */
1285 unlink_va(va, &free_vmap_area_root);
1286 kmem_cache_free(vmap_area_cachep, va);
1287 } else if (type == LE_FIT_TYPE) {
1288 /*
1289 * Split left edge of fit VA.
1290 *
1291 * | |
1292 * V NVA V R
1293 * |-------|-------|
1294 */
1295 va->va_start += size;
1296 } else if (type == RE_FIT_TYPE) {
1297 /*
1298 * Split right edge of fit VA.
1299 *
1300 * | |
1301 * L V NVA V
1302 * |-------|-------|
1303 */
1304 va->va_end = nva_start_addr;
1305 } else if (type == NE_FIT_TYPE) {
1306 /*
1307 * Split no edge of fit VA.
1308 *
1309 * | |
1310 * L V NVA V R
1311 * |---|-------|---|
1312 */
82dd23e8
URS
1313 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1314 if (unlikely(!lva)) {
1315 /*
1316 * For percpu allocator we do not do any pre-allocation
1317 * and leave it as it is. The reason is it most likely
1318 * never ends up with NE_FIT_TYPE splitting. In case of
1319 * percpu allocations offsets and sizes are aligned to
1320 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1321 * are its main fitting cases.
1322 *
1323 * There are a few exceptions though, as an example it is
1324 * a first allocation (early boot up) when we have "one"
1325 * big free space that has to be split.
060650a2
URS
1326 *
1327 * Also we can hit this path in case of regular "vmap"
1328 * allocations, if "this" current CPU was not preloaded.
1329 * See the comment in alloc_vmap_area() why. If so, then
1330 * GFP_NOWAIT is used instead to get an extra object for
1331 * split purpose. That is rare and most time does not
1332 * occur.
1333 *
1334 * What happens if an allocation gets failed. Basically,
1335 * an "overflow" path is triggered to purge lazily freed
1336 * areas to free some memory, then, the "retry" path is
1337 * triggered to repeat one more time. See more details
1338 * in alloc_vmap_area() function.
82dd23e8
URS
1339 */
1340 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1341 if (!lva)
1342 return -1;
1343 }
68ad4a33
URS
1344
1345 /*
1346 * Build the remainder.
1347 */
1348 lva->va_start = va->va_start;
1349 lva->va_end = nva_start_addr;
1350
1351 /*
1352 * Shrink this VA to remaining size.
1353 */
1354 va->va_start = nva_start_addr + size;
1355 } else {
1356 return -1;
1357 }
1358
1359 if (type != FL_FIT_TYPE) {
1360 augment_tree_propagate_from(va);
1361
2c929233 1362 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1363 insert_vmap_area_augment(lva, &va->rb_node,
1364 &free_vmap_area_root, &free_vmap_area_list);
1365 }
1366
1367 return 0;
1368}
1369
1370/*
1371 * Returns a start address of the newly allocated area, if success.
1372 * Otherwise a vend is returned that indicates failure.
1373 */
1374static __always_inline unsigned long
1375__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1376 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1377{
1378 unsigned long nva_start_addr;
1379 struct vmap_area *va;
1380 enum fit_type type;
1381 int ret;
1382
1383 va = find_vmap_lowest_match(size, align, vstart);
1384 if (unlikely(!va))
1385 return vend;
1386
1387 if (va->va_start > vstart)
1388 nva_start_addr = ALIGN(va->va_start, align);
1389 else
1390 nva_start_addr = ALIGN(vstart, align);
1391
1392 /* Check the "vend" restriction. */
1393 if (nva_start_addr + size > vend)
1394 return vend;
1395
1396 /* Classify what we have found. */
1397 type = classify_va_fit_type(va, nva_start_addr, size);
1398 if (WARN_ON_ONCE(type == NOTHING_FIT))
1399 return vend;
1400
1401 /* Update the free vmap_area. */
1402 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1403 if (ret)
1404 return vend;
1405
a6cf4e0f
URS
1406#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1407 find_vmap_lowest_match_check(size);
1408#endif
1409
68ad4a33
URS
1410 return nva_start_addr;
1411}
4da56b99 1412
d98c9e83
AR
1413/*
1414 * Free a region of KVA allocated by alloc_vmap_area
1415 */
1416static void free_vmap_area(struct vmap_area *va)
1417{
1418 /*
1419 * Remove from the busy tree/list.
1420 */
1421 spin_lock(&vmap_area_lock);
1422 unlink_va(va, &vmap_area_root);
1423 spin_unlock(&vmap_area_lock);
1424
1425 /*
1426 * Insert/Merge it back to the free tree/list.
1427 */
1428 spin_lock(&free_vmap_area_lock);
96e2db45 1429 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
d98c9e83
AR
1430 spin_unlock(&free_vmap_area_lock);
1431}
1432
db64fe02
NP
1433/*
1434 * Allocate a region of KVA of the specified size and alignment, within the
1435 * vstart and vend.
1436 */
1437static struct vmap_area *alloc_vmap_area(unsigned long size,
1438 unsigned long align,
1439 unsigned long vstart, unsigned long vend,
1440 int node, gfp_t gfp_mask)
1441{
82dd23e8 1442 struct vmap_area *va, *pva;
1da177e4 1443 unsigned long addr;
db64fe02 1444 int purged = 0;
d98c9e83 1445 int ret;
db64fe02 1446
7766970c 1447 BUG_ON(!size);
891c49ab 1448 BUG_ON(offset_in_page(size));
89699605 1449 BUG_ON(!is_power_of_2(align));
db64fe02 1450
68ad4a33
URS
1451 if (unlikely(!vmap_initialized))
1452 return ERR_PTR(-EBUSY);
1453
5803ed29 1454 might_sleep();
f07116d7 1455 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1456
f07116d7 1457 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1458 if (unlikely(!va))
1459 return ERR_PTR(-ENOMEM);
1460
7f88f88f
CM
1461 /*
1462 * Only scan the relevant parts containing pointers to other objects
1463 * to avoid false negatives.
1464 */
f07116d7 1465 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1466
db64fe02 1467retry:
82dd23e8 1468 /*
81f1ba58
URS
1469 * Preload this CPU with one extra vmap_area object. It is used
1470 * when fit type of free area is NE_FIT_TYPE. Please note, it
1471 * does not guarantee that an allocation occurs on a CPU that
1472 * is preloaded, instead we minimize the case when it is not.
1473 * It can happen because of cpu migration, because there is a
1474 * race until the below spinlock is taken.
82dd23e8
URS
1475 *
1476 * The preload is done in non-atomic context, thus it allows us
1477 * to use more permissive allocation masks to be more stable under
81f1ba58
URS
1478 * low memory condition and high memory pressure. In rare case,
1479 * if not preloaded, GFP_NOWAIT is used.
82dd23e8 1480 *
81f1ba58 1481 * Set "pva" to NULL here, because of "retry" path.
82dd23e8 1482 */
81f1ba58 1483 pva = NULL;
82dd23e8 1484
81f1ba58
URS
1485 if (!this_cpu_read(ne_fit_preload_node))
1486 /*
1487 * Even if it fails we do not really care about that.
1488 * Just proceed as it is. If needed "overflow" path
1489 * will refill the cache we allocate from.
1490 */
f07116d7 1491 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
82dd23e8 1492
e36176be 1493 spin_lock(&free_vmap_area_lock);
81f1ba58
URS
1494
1495 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1496 kmem_cache_free(vmap_area_cachep, pva);
89699605 1497
afd07389 1498 /*
68ad4a33
URS
1499 * If an allocation fails, the "vend" address is
1500 * returned. Therefore trigger the overflow path.
afd07389 1501 */
cacca6ba 1502 addr = __alloc_vmap_area(size, align, vstart, vend);
e36176be
URS
1503 spin_unlock(&free_vmap_area_lock);
1504
68ad4a33 1505 if (unlikely(addr == vend))
89699605 1506 goto overflow;
db64fe02
NP
1507
1508 va->va_start = addr;
1509 va->va_end = addr + size;
688fcbfc 1510 va->vm = NULL;
68ad4a33 1511
d98c9e83 1512
e36176be
URS
1513 spin_lock(&vmap_area_lock);
1514 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1515 spin_unlock(&vmap_area_lock);
1516
61e16557 1517 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1518 BUG_ON(va->va_start < vstart);
1519 BUG_ON(va->va_end > vend);
1520
d98c9e83
AR
1521 ret = kasan_populate_vmalloc(addr, size);
1522 if (ret) {
1523 free_vmap_area(va);
1524 return ERR_PTR(ret);
1525 }
1526
db64fe02 1527 return va;
89699605
NP
1528
1529overflow:
89699605
NP
1530 if (!purged) {
1531 purge_vmap_area_lazy();
1532 purged = 1;
1533 goto retry;
1534 }
4da56b99
CW
1535
1536 if (gfpflags_allow_blocking(gfp_mask)) {
1537 unsigned long freed = 0;
1538 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1539 if (freed > 0) {
1540 purged = 0;
1541 goto retry;
1542 }
1543 }
1544
03497d76 1545 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1546 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1547 size);
68ad4a33
URS
1548
1549 kmem_cache_free(vmap_area_cachep, va);
89699605 1550 return ERR_PTR(-EBUSY);
db64fe02
NP
1551}
1552
4da56b99
CW
1553int register_vmap_purge_notifier(struct notifier_block *nb)
1554{
1555 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1556}
1557EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1558
1559int unregister_vmap_purge_notifier(struct notifier_block *nb)
1560{
1561 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1562}
1563EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1564
db64fe02
NP
1565/*
1566 * lazy_max_pages is the maximum amount of virtual address space we gather up
1567 * before attempting to purge with a TLB flush.
1568 *
1569 * There is a tradeoff here: a larger number will cover more kernel page tables
1570 * and take slightly longer to purge, but it will linearly reduce the number of
1571 * global TLB flushes that must be performed. It would seem natural to scale
1572 * this number up linearly with the number of CPUs (because vmapping activity
1573 * could also scale linearly with the number of CPUs), however it is likely
1574 * that in practice, workloads might be constrained in other ways that mean
1575 * vmap activity will not scale linearly with CPUs. Also, I want to be
1576 * conservative and not introduce a big latency on huge systems, so go with
1577 * a less aggressive log scale. It will still be an improvement over the old
1578 * code, and it will be simple to change the scale factor if we find that it
1579 * becomes a problem on bigger systems.
1580 */
1581static unsigned long lazy_max_pages(void)
1582{
1583 unsigned int log;
1584
1585 log = fls(num_online_cpus());
1586
1587 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1588}
1589
4d36e6f8 1590static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1591
0574ecd1
CH
1592/*
1593 * Serialize vmap purging. There is no actual criticial section protected
1594 * by this look, but we want to avoid concurrent calls for performance
1595 * reasons and to make the pcpu_get_vm_areas more deterministic.
1596 */
f9e09977 1597static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1598
02b709df
NP
1599/* for per-CPU blocks */
1600static void purge_fragmented_blocks_allcpus(void);
1601
3ee48b6a
CW
1602/*
1603 * called before a call to iounmap() if the caller wants vm_area_struct's
1604 * immediately freed.
1605 */
1606void set_iounmap_nonlazy(void)
1607{
4d36e6f8 1608 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1609}
1610
db64fe02
NP
1611/*
1612 * Purges all lazily-freed vmap areas.
db64fe02 1613 */
0574ecd1 1614static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1615{
4d36e6f8 1616 unsigned long resched_threshold;
96e2db45
URS
1617 struct list_head local_pure_list;
1618 struct vmap_area *va, *n_va;
db64fe02 1619
0574ecd1 1620 lockdep_assert_held(&vmap_purge_lock);
02b709df 1621
96e2db45
URS
1622 spin_lock(&purge_vmap_area_lock);
1623 purge_vmap_area_root = RB_ROOT;
1624 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1625 spin_unlock(&purge_vmap_area_lock);
1626
1627 if (unlikely(list_empty(&local_pure_list)))
68571be9
URS
1628 return false;
1629
96e2db45
URS
1630 start = min(start,
1631 list_first_entry(&local_pure_list,
1632 struct vmap_area, list)->va_start);
1633
1634 end = max(end,
1635 list_last_entry(&local_pure_list,
1636 struct vmap_area, list)->va_end);
db64fe02 1637
0574ecd1 1638 flush_tlb_kernel_range(start, end);
4d36e6f8 1639 resched_threshold = lazy_max_pages() << 1;
db64fe02 1640
e36176be 1641 spin_lock(&free_vmap_area_lock);
96e2db45 1642 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
4d36e6f8 1643 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1644 unsigned long orig_start = va->va_start;
1645 unsigned long orig_end = va->va_end;
763b218d 1646
dd3b8353
URS
1647 /*
1648 * Finally insert or merge lazily-freed area. It is
1649 * detached and there is no need to "unlink" it from
1650 * anything.
1651 */
96e2db45
URS
1652 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1653 &free_vmap_area_list);
3c5c3cfb 1654
9c801f61
URS
1655 if (!va)
1656 continue;
1657
3c5c3cfb
DA
1658 if (is_vmalloc_or_module_addr((void *)orig_start))
1659 kasan_release_vmalloc(orig_start, orig_end,
1660 va->va_start, va->va_end);
dd3b8353 1661
4d36e6f8 1662 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1663
4d36e6f8 1664 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1665 cond_resched_lock(&free_vmap_area_lock);
763b218d 1666 }
e36176be 1667 spin_unlock(&free_vmap_area_lock);
0574ecd1 1668 return true;
db64fe02
NP
1669}
1670
496850e5
NP
1671/*
1672 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1673 * is already purging.
1674 */
1675static void try_purge_vmap_area_lazy(void)
1676{
f9e09977 1677 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1678 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1679 mutex_unlock(&vmap_purge_lock);
0574ecd1 1680 }
496850e5
NP
1681}
1682
db64fe02
NP
1683/*
1684 * Kick off a purge of the outstanding lazy areas.
1685 */
1686static void purge_vmap_area_lazy(void)
1687{
f9e09977 1688 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1689 purge_fragmented_blocks_allcpus();
1690 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1691 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1692}
1693
1694/*
64141da5
JF
1695 * Free a vmap area, caller ensuring that the area has been unmapped
1696 * and flush_cache_vunmap had been called for the correct range
1697 * previously.
db64fe02 1698 */
64141da5 1699static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1700{
4d36e6f8 1701 unsigned long nr_lazy;
80c4bd7a 1702
dd3b8353
URS
1703 spin_lock(&vmap_area_lock);
1704 unlink_va(va, &vmap_area_root);
1705 spin_unlock(&vmap_area_lock);
1706
4d36e6f8
URS
1707 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1708 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a 1709
96e2db45
URS
1710 /*
1711 * Merge or place it to the purge tree/list.
1712 */
1713 spin_lock(&purge_vmap_area_lock);
1714 merge_or_add_vmap_area(va,
1715 &purge_vmap_area_root, &purge_vmap_area_list);
1716 spin_unlock(&purge_vmap_area_lock);
80c4bd7a 1717
96e2db45 1718 /* After this point, we may free va at any time */
80c4bd7a 1719 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1720 try_purge_vmap_area_lazy();
db64fe02
NP
1721}
1722
b29acbdc
NP
1723/*
1724 * Free and unmap a vmap area
1725 */
1726static void free_unmap_vmap_area(struct vmap_area *va)
1727{
1728 flush_cache_vunmap(va->va_start, va->va_end);
4ad0ae8c 1729 vunmap_range_noflush(va->va_start, va->va_end);
8e57f8ac 1730 if (debug_pagealloc_enabled_static())
82a2e924
CP
1731 flush_tlb_kernel_range(va->va_start, va->va_end);
1732
c8eef01e 1733 free_vmap_area_noflush(va);
b29acbdc
NP
1734}
1735
db64fe02
NP
1736static struct vmap_area *find_vmap_area(unsigned long addr)
1737{
1738 struct vmap_area *va;
1739
1740 spin_lock(&vmap_area_lock);
1741 va = __find_vmap_area(addr);
1742 spin_unlock(&vmap_area_lock);
1743
1744 return va;
1745}
1746
db64fe02
NP
1747/*** Per cpu kva allocator ***/
1748
1749/*
1750 * vmap space is limited especially on 32 bit architectures. Ensure there is
1751 * room for at least 16 percpu vmap blocks per CPU.
1752 */
1753/*
1754 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1755 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1756 * instead (we just need a rough idea)
1757 */
1758#if BITS_PER_LONG == 32
1759#define VMALLOC_SPACE (128UL*1024*1024)
1760#else
1761#define VMALLOC_SPACE (128UL*1024*1024*1024)
1762#endif
1763
1764#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1765#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1766#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1767#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1768#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1769#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1770#define VMAP_BBMAP_BITS \
1771 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1772 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1773 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1774
1775#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1776
1777struct vmap_block_queue {
1778 spinlock_t lock;
1779 struct list_head free;
db64fe02
NP
1780};
1781
1782struct vmap_block {
1783 spinlock_t lock;
1784 struct vmap_area *va;
db64fe02 1785 unsigned long free, dirty;
7d61bfe8 1786 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1787 struct list_head free_list;
1788 struct rcu_head rcu_head;
02b709df 1789 struct list_head purge;
db64fe02
NP
1790};
1791
1792/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1793static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1794
1795/*
0f14599c 1796 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
db64fe02
NP
1797 * in the free path. Could get rid of this if we change the API to return a
1798 * "cookie" from alloc, to be passed to free. But no big deal yet.
1799 */
0f14599c 1800static DEFINE_XARRAY(vmap_blocks);
db64fe02
NP
1801
1802/*
1803 * We should probably have a fallback mechanism to allocate virtual memory
1804 * out of partially filled vmap blocks. However vmap block sizing should be
1805 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1806 * big problem.
1807 */
1808
1809static unsigned long addr_to_vb_idx(unsigned long addr)
1810{
1811 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1812 addr /= VMAP_BLOCK_SIZE;
1813 return addr;
1814}
1815
cf725ce2
RP
1816static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1817{
1818 unsigned long addr;
1819
1820 addr = va_start + (pages_off << PAGE_SHIFT);
1821 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1822 return (void *)addr;
1823}
1824
1825/**
1826 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1827 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1828 * @order: how many 2^order pages should be occupied in newly allocated block
1829 * @gfp_mask: flags for the page level allocator
1830 *
a862f68a 1831 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1832 */
1833static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1834{
1835 struct vmap_block_queue *vbq;
1836 struct vmap_block *vb;
1837 struct vmap_area *va;
1838 unsigned long vb_idx;
1839 int node, err;
cf725ce2 1840 void *vaddr;
db64fe02
NP
1841
1842 node = numa_node_id();
1843
1844 vb = kmalloc_node(sizeof(struct vmap_block),
1845 gfp_mask & GFP_RECLAIM_MASK, node);
1846 if (unlikely(!vb))
1847 return ERR_PTR(-ENOMEM);
1848
1849 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1850 VMALLOC_START, VMALLOC_END,
1851 node, gfp_mask);
ddf9c6d4 1852 if (IS_ERR(va)) {
db64fe02 1853 kfree(vb);
e7d86340 1854 return ERR_CAST(va);
db64fe02
NP
1855 }
1856
cf725ce2 1857 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1858 spin_lock_init(&vb->lock);
1859 vb->va = va;
cf725ce2
RP
1860 /* At least something should be left free */
1861 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1862 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1863 vb->dirty = 0;
7d61bfe8
RP
1864 vb->dirty_min = VMAP_BBMAP_BITS;
1865 vb->dirty_max = 0;
db64fe02 1866 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1867
1868 vb_idx = addr_to_vb_idx(va->va_start);
0f14599c
MWO
1869 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1870 if (err) {
1871 kfree(vb);
1872 free_vmap_area(va);
1873 return ERR_PTR(err);
1874 }
db64fe02
NP
1875
1876 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1877 spin_lock(&vbq->lock);
68ac546f 1878 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1879 spin_unlock(&vbq->lock);
3f04ba85 1880 put_cpu_var(vmap_block_queue);
db64fe02 1881
cf725ce2 1882 return vaddr;
db64fe02
NP
1883}
1884
db64fe02
NP
1885static void free_vmap_block(struct vmap_block *vb)
1886{
1887 struct vmap_block *tmp;
db64fe02 1888
0f14599c 1889 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
1890 BUG_ON(tmp != vb);
1891
64141da5 1892 free_vmap_area_noflush(vb->va);
22a3c7d1 1893 kfree_rcu(vb, rcu_head);
db64fe02
NP
1894}
1895
02b709df
NP
1896static void purge_fragmented_blocks(int cpu)
1897{
1898 LIST_HEAD(purge);
1899 struct vmap_block *vb;
1900 struct vmap_block *n_vb;
1901 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1902
1903 rcu_read_lock();
1904 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1905
1906 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1907 continue;
1908
1909 spin_lock(&vb->lock);
1910 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1911 vb->free = 0; /* prevent further allocs after releasing lock */
1912 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1913 vb->dirty_min = 0;
1914 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1915 spin_lock(&vbq->lock);
1916 list_del_rcu(&vb->free_list);
1917 spin_unlock(&vbq->lock);
1918 spin_unlock(&vb->lock);
1919 list_add_tail(&vb->purge, &purge);
1920 } else
1921 spin_unlock(&vb->lock);
1922 }
1923 rcu_read_unlock();
1924
1925 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1926 list_del(&vb->purge);
1927 free_vmap_block(vb);
1928 }
1929}
1930
02b709df
NP
1931static void purge_fragmented_blocks_allcpus(void)
1932{
1933 int cpu;
1934
1935 for_each_possible_cpu(cpu)
1936 purge_fragmented_blocks(cpu);
1937}
1938
db64fe02
NP
1939static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1940{
1941 struct vmap_block_queue *vbq;
1942 struct vmap_block *vb;
cf725ce2 1943 void *vaddr = NULL;
db64fe02
NP
1944 unsigned int order;
1945
891c49ab 1946 BUG_ON(offset_in_page(size));
db64fe02 1947 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1948 if (WARN_ON(size == 0)) {
1949 /*
1950 * Allocating 0 bytes isn't what caller wants since
1951 * get_order(0) returns funny result. Just warn and terminate
1952 * early.
1953 */
1954 return NULL;
1955 }
db64fe02
NP
1956 order = get_order(size);
1957
db64fe02
NP
1958 rcu_read_lock();
1959 vbq = &get_cpu_var(vmap_block_queue);
1960 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1961 unsigned long pages_off;
db64fe02
NP
1962
1963 spin_lock(&vb->lock);
cf725ce2
RP
1964 if (vb->free < (1UL << order)) {
1965 spin_unlock(&vb->lock);
1966 continue;
1967 }
02b709df 1968
cf725ce2
RP
1969 pages_off = VMAP_BBMAP_BITS - vb->free;
1970 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1971 vb->free -= 1UL << order;
1972 if (vb->free == 0) {
1973 spin_lock(&vbq->lock);
1974 list_del_rcu(&vb->free_list);
1975 spin_unlock(&vbq->lock);
1976 }
cf725ce2 1977
02b709df
NP
1978 spin_unlock(&vb->lock);
1979 break;
db64fe02 1980 }
02b709df 1981
3f04ba85 1982 put_cpu_var(vmap_block_queue);
db64fe02
NP
1983 rcu_read_unlock();
1984
cf725ce2
RP
1985 /* Allocate new block if nothing was found */
1986 if (!vaddr)
1987 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1988
cf725ce2 1989 return vaddr;
db64fe02
NP
1990}
1991
78a0e8c4 1992static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
1993{
1994 unsigned long offset;
db64fe02
NP
1995 unsigned int order;
1996 struct vmap_block *vb;
1997
891c49ab 1998 BUG_ON(offset_in_page(size));
db64fe02 1999 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 2000
78a0e8c4 2001 flush_cache_vunmap(addr, addr + size);
b29acbdc 2002
db64fe02 2003 order = get_order(size);
78a0e8c4 2004 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
0f14599c 2005 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
db64fe02 2006
4ad0ae8c 2007 vunmap_range_noflush(addr, addr + size);
64141da5 2008
8e57f8ac 2009 if (debug_pagealloc_enabled_static())
78a0e8c4 2010 flush_tlb_kernel_range(addr, addr + size);
82a2e924 2011
db64fe02 2012 spin_lock(&vb->lock);
7d61bfe8
RP
2013
2014 /* Expand dirty range */
2015 vb->dirty_min = min(vb->dirty_min, offset);
2016 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 2017
db64fe02
NP
2018 vb->dirty += 1UL << order;
2019 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 2020 BUG_ON(vb->free);
db64fe02
NP
2021 spin_unlock(&vb->lock);
2022 free_vmap_block(vb);
2023 } else
2024 spin_unlock(&vb->lock);
2025}
2026
868b104d 2027static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 2028{
db64fe02 2029 int cpu;
db64fe02 2030
9b463334
JF
2031 if (unlikely(!vmap_initialized))
2032 return;
2033
5803ed29
CH
2034 might_sleep();
2035
db64fe02
NP
2036 for_each_possible_cpu(cpu) {
2037 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2038 struct vmap_block *vb;
2039
2040 rcu_read_lock();
2041 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 2042 spin_lock(&vb->lock);
7d61bfe8
RP
2043 if (vb->dirty) {
2044 unsigned long va_start = vb->va->va_start;
db64fe02 2045 unsigned long s, e;
b136be5e 2046
7d61bfe8
RP
2047 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2048 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 2049
7d61bfe8
RP
2050 start = min(s, start);
2051 end = max(e, end);
db64fe02 2052
7d61bfe8 2053 flush = 1;
db64fe02
NP
2054 }
2055 spin_unlock(&vb->lock);
2056 }
2057 rcu_read_unlock();
2058 }
2059
f9e09977 2060 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
2061 purge_fragmented_blocks_allcpus();
2062 if (!__purge_vmap_area_lazy(start, end) && flush)
2063 flush_tlb_kernel_range(start, end);
f9e09977 2064 mutex_unlock(&vmap_purge_lock);
db64fe02 2065}
868b104d
RE
2066
2067/**
2068 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2069 *
2070 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2071 * to amortize TLB flushing overheads. What this means is that any page you
2072 * have now, may, in a former life, have been mapped into kernel virtual
2073 * address by the vmap layer and so there might be some CPUs with TLB entries
2074 * still referencing that page (additional to the regular 1:1 kernel mapping).
2075 *
2076 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2077 * be sure that none of the pages we have control over will have any aliases
2078 * from the vmap layer.
2079 */
2080void vm_unmap_aliases(void)
2081{
2082 unsigned long start = ULONG_MAX, end = 0;
2083 int flush = 0;
2084
2085 _vm_unmap_aliases(start, end, flush);
2086}
db64fe02
NP
2087EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2088
2089/**
2090 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2091 * @mem: the pointer returned by vm_map_ram
2092 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2093 */
2094void vm_unmap_ram(const void *mem, unsigned int count)
2095{
65ee03c4 2096 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 2097 unsigned long addr = (unsigned long)mem;
9c3acf60 2098 struct vmap_area *va;
db64fe02 2099
5803ed29 2100 might_sleep();
db64fe02
NP
2101 BUG_ON(!addr);
2102 BUG_ON(addr < VMALLOC_START);
2103 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 2104 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 2105
d98c9e83
AR
2106 kasan_poison_vmalloc(mem, size);
2107
9c3acf60 2108 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 2109 debug_check_no_locks_freed(mem, size);
78a0e8c4 2110 vb_free(addr, size);
9c3acf60
CH
2111 return;
2112 }
2113
2114 va = find_vmap_area(addr);
2115 BUG_ON(!va);
05e3ff95
CP
2116 debug_check_no_locks_freed((void *)va->va_start,
2117 (va->va_end - va->va_start));
9c3acf60 2118 free_unmap_vmap_area(va);
db64fe02
NP
2119}
2120EXPORT_SYMBOL(vm_unmap_ram);
2121
2122/**
2123 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2124 * @pages: an array of pointers to the pages to be mapped
2125 * @count: number of pages
2126 * @node: prefer to allocate data structures on this node
e99c97ad 2127 *
36437638
GK
2128 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2129 * faster than vmap so it's good. But if you mix long-life and short-life
2130 * objects with vm_map_ram(), it could consume lots of address space through
2131 * fragmentation (especially on a 32bit machine). You could see failures in
2132 * the end. Please use this function for short-lived objects.
2133 *
e99c97ad 2134 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 2135 */
d4efd79a 2136void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 2137{
65ee03c4 2138 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
2139 unsigned long addr;
2140 void *mem;
2141
2142 if (likely(count <= VMAP_MAX_ALLOC)) {
2143 mem = vb_alloc(size, GFP_KERNEL);
2144 if (IS_ERR(mem))
2145 return NULL;
2146 addr = (unsigned long)mem;
2147 } else {
2148 struct vmap_area *va;
2149 va = alloc_vmap_area(size, PAGE_SIZE,
2150 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2151 if (IS_ERR(va))
2152 return NULL;
2153
2154 addr = va->va_start;
2155 mem = (void *)addr;
2156 }
d98c9e83
AR
2157
2158 kasan_unpoison_vmalloc(mem, size);
2159
b67177ec
NP
2160 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2161 pages, PAGE_SHIFT) < 0) {
db64fe02
NP
2162 vm_unmap_ram(mem, count);
2163 return NULL;
2164 }
b67177ec 2165
db64fe02
NP
2166 return mem;
2167}
2168EXPORT_SYMBOL(vm_map_ram);
2169
4341fa45 2170static struct vm_struct *vmlist __initdata;
92eac168 2171
121e6f32
NP
2172static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2173{
2174#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2175 return vm->page_order;
2176#else
2177 return 0;
2178#endif
2179}
2180
2181static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2182{
2183#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2184 vm->page_order = order;
2185#else
2186 BUG_ON(order != 0);
2187#endif
2188}
2189
be9b7335
NP
2190/**
2191 * vm_area_add_early - add vmap area early during boot
2192 * @vm: vm_struct to add
2193 *
2194 * This function is used to add fixed kernel vm area to vmlist before
2195 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2196 * should contain proper values and the other fields should be zero.
2197 *
2198 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2199 */
2200void __init vm_area_add_early(struct vm_struct *vm)
2201{
2202 struct vm_struct *tmp, **p;
2203
2204 BUG_ON(vmap_initialized);
2205 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2206 if (tmp->addr >= vm->addr) {
2207 BUG_ON(tmp->addr < vm->addr + vm->size);
2208 break;
2209 } else
2210 BUG_ON(tmp->addr + tmp->size > vm->addr);
2211 }
2212 vm->next = *p;
2213 *p = vm;
2214}
2215
f0aa6617
TH
2216/**
2217 * vm_area_register_early - register vmap area early during boot
2218 * @vm: vm_struct to register
c0c0a293 2219 * @align: requested alignment
f0aa6617
TH
2220 *
2221 * This function is used to register kernel vm area before
2222 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2223 * proper values on entry and other fields should be zero. On return,
2224 * vm->addr contains the allocated address.
2225 *
2226 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2227 */
c0c0a293 2228void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
2229{
2230 static size_t vm_init_off __initdata;
c0c0a293
TH
2231 unsigned long addr;
2232
2233 addr = ALIGN(VMALLOC_START + vm_init_off, align);
2234 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 2235
c0c0a293 2236 vm->addr = (void *)addr;
f0aa6617 2237
be9b7335 2238 vm_area_add_early(vm);
f0aa6617
TH
2239}
2240
68ad4a33
URS
2241static void vmap_init_free_space(void)
2242{
2243 unsigned long vmap_start = 1;
2244 const unsigned long vmap_end = ULONG_MAX;
2245 struct vmap_area *busy, *free;
2246
2247 /*
2248 * B F B B B F
2249 * -|-----|.....|-----|-----|-----|.....|-
2250 * | The KVA space |
2251 * |<--------------------------------->|
2252 */
2253 list_for_each_entry(busy, &vmap_area_list, list) {
2254 if (busy->va_start - vmap_start > 0) {
2255 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2256 if (!WARN_ON_ONCE(!free)) {
2257 free->va_start = vmap_start;
2258 free->va_end = busy->va_start;
2259
2260 insert_vmap_area_augment(free, NULL,
2261 &free_vmap_area_root,
2262 &free_vmap_area_list);
2263 }
2264 }
2265
2266 vmap_start = busy->va_end;
2267 }
2268
2269 if (vmap_end - vmap_start > 0) {
2270 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2271 if (!WARN_ON_ONCE(!free)) {
2272 free->va_start = vmap_start;
2273 free->va_end = vmap_end;
2274
2275 insert_vmap_area_augment(free, NULL,
2276 &free_vmap_area_root,
2277 &free_vmap_area_list);
2278 }
2279 }
2280}
2281
db64fe02
NP
2282void __init vmalloc_init(void)
2283{
822c18f2
IK
2284 struct vmap_area *va;
2285 struct vm_struct *tmp;
db64fe02
NP
2286 int i;
2287
68ad4a33
URS
2288 /*
2289 * Create the cache for vmap_area objects.
2290 */
2291 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2292
db64fe02
NP
2293 for_each_possible_cpu(i) {
2294 struct vmap_block_queue *vbq;
32fcfd40 2295 struct vfree_deferred *p;
db64fe02
NP
2296
2297 vbq = &per_cpu(vmap_block_queue, i);
2298 spin_lock_init(&vbq->lock);
2299 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
2300 p = &per_cpu(vfree_deferred, i);
2301 init_llist_head(&p->list);
2302 INIT_WORK(&p->wq, free_work);
db64fe02 2303 }
9b463334 2304
822c18f2
IK
2305 /* Import existing vmlist entries. */
2306 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
2307 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2308 if (WARN_ON_ONCE(!va))
2309 continue;
2310
822c18f2
IK
2311 va->va_start = (unsigned long)tmp->addr;
2312 va->va_end = va->va_start + tmp->size;
dbda591d 2313 va->vm = tmp;
68ad4a33 2314 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 2315 }
ca23e405 2316
68ad4a33
URS
2317 /*
2318 * Now we can initialize a free vmap space.
2319 */
2320 vmap_init_free_space();
9b463334 2321 vmap_initialized = true;
db64fe02
NP
2322}
2323
e36176be
URS
2324static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2325 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2326{
cf88c790
TH
2327 vm->flags = flags;
2328 vm->addr = (void *)va->va_start;
2329 vm->size = va->va_end - va->va_start;
2330 vm->caller = caller;
db1aecaf 2331 va->vm = vm;
e36176be
URS
2332}
2333
2334static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2335 unsigned long flags, const void *caller)
2336{
2337 spin_lock(&vmap_area_lock);
2338 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2339 spin_unlock(&vmap_area_lock);
f5252e00 2340}
cf88c790 2341
20fc02b4 2342static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2343{
d4033afd 2344 /*
20fc02b4 2345 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2346 * we should make sure that vm has proper values.
2347 * Pair with smp_rmb() in show_numa_info().
2348 */
2349 smp_wmb();
20fc02b4 2350 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2351}
2352
db64fe02 2353static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2354 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2355 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2356{
0006526d 2357 struct vmap_area *va;
db64fe02 2358 struct vm_struct *area;
d98c9e83 2359 unsigned long requested_size = size;
1da177e4 2360
52fd24ca 2361 BUG_ON(in_interrupt());
1da177e4 2362 size = PAGE_ALIGN(size);
31be8309
OH
2363 if (unlikely(!size))
2364 return NULL;
1da177e4 2365
252e5c6e 2366 if (flags & VM_IOREMAP)
2367 align = 1ul << clamp_t(int, get_count_order_long(size),
2368 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2369
cf88c790 2370 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2371 if (unlikely(!area))
2372 return NULL;
2373
71394fe5
AR
2374 if (!(flags & VM_NO_GUARD))
2375 size += PAGE_SIZE;
1da177e4 2376
db64fe02
NP
2377 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2378 if (IS_ERR(va)) {
2379 kfree(area);
2380 return NULL;
1da177e4 2381 }
1da177e4 2382
d98c9e83 2383 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
f5252e00 2384
d98c9e83 2385 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2386
1da177e4 2387 return area;
1da177e4
LT
2388}
2389
c2968612
BH
2390struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2391 unsigned long start, unsigned long end,
5e6cafc8 2392 const void *caller)
c2968612 2393{
00ef2d2f
DR
2394 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2395 GFP_KERNEL, caller);
c2968612
BH
2396}
2397
1da177e4 2398/**
92eac168
MR
2399 * get_vm_area - reserve a contiguous kernel virtual area
2400 * @size: size of the area
2401 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2402 *
92eac168
MR
2403 * Search an area of @size in the kernel virtual mapping area,
2404 * and reserved it for out purposes. Returns the area descriptor
2405 * on success or %NULL on failure.
a862f68a
MR
2406 *
2407 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2408 */
2409struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2410{
2dca6999 2411 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2412 NUMA_NO_NODE, GFP_KERNEL,
2413 __builtin_return_address(0));
23016969
CL
2414}
2415
2416struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2417 const void *caller)
23016969 2418{
2dca6999 2419 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2420 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2421}
2422
e9da6e99 2423/**
92eac168
MR
2424 * find_vm_area - find a continuous kernel virtual area
2425 * @addr: base address
e9da6e99 2426 *
92eac168
MR
2427 * Search for the kernel VM area starting at @addr, and return it.
2428 * It is up to the caller to do all required locking to keep the returned
2429 * pointer valid.
a862f68a 2430 *
74640617 2431 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
2432 */
2433struct vm_struct *find_vm_area(const void *addr)
83342314 2434{
db64fe02 2435 struct vmap_area *va;
83342314 2436
db64fe02 2437 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2438 if (!va)
2439 return NULL;
1da177e4 2440
688fcbfc 2441 return va->vm;
1da177e4
LT
2442}
2443
7856dfeb 2444/**
92eac168
MR
2445 * remove_vm_area - find and remove a continuous kernel virtual area
2446 * @addr: base address
7856dfeb 2447 *
92eac168
MR
2448 * Search for the kernel VM area starting at @addr, and remove it.
2449 * This function returns the found VM area, but using it is NOT safe
2450 * on SMP machines, except for its size or flags.
a862f68a 2451 *
74640617 2452 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 2453 */
b3bdda02 2454struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2455{
db64fe02
NP
2456 struct vmap_area *va;
2457
5803ed29
CH
2458 might_sleep();
2459
dd3b8353
URS
2460 spin_lock(&vmap_area_lock);
2461 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2462 if (va && va->vm) {
db1aecaf 2463 struct vm_struct *vm = va->vm;
f5252e00 2464
c69480ad 2465 va->vm = NULL;
c69480ad
JK
2466 spin_unlock(&vmap_area_lock);
2467
a5af5aa8 2468 kasan_free_shadow(vm);
dd32c279 2469 free_unmap_vmap_area(va);
dd32c279 2470
db64fe02
NP
2471 return vm;
2472 }
dd3b8353
URS
2473
2474 spin_unlock(&vmap_area_lock);
db64fe02 2475 return NULL;
7856dfeb
AK
2476}
2477
868b104d
RE
2478static inline void set_area_direct_map(const struct vm_struct *area,
2479 int (*set_direct_map)(struct page *page))
2480{
2481 int i;
2482
121e6f32 2483 /* HUGE_VMALLOC passes small pages to set_direct_map */
868b104d
RE
2484 for (i = 0; i < area->nr_pages; i++)
2485 if (page_address(area->pages[i]))
2486 set_direct_map(area->pages[i]);
2487}
2488
2489/* Handle removing and resetting vm mappings related to the vm_struct. */
2490static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2491{
868b104d 2492 unsigned long start = ULONG_MAX, end = 0;
121e6f32 2493 unsigned int page_order = vm_area_page_order(area);
868b104d 2494 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2495 int flush_dmap = 0;
868b104d
RE
2496 int i;
2497
868b104d
RE
2498 remove_vm_area(area->addr);
2499
2500 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2501 if (!flush_reset)
2502 return;
2503
2504 /*
2505 * If not deallocating pages, just do the flush of the VM area and
2506 * return.
2507 */
2508 if (!deallocate_pages) {
2509 vm_unmap_aliases();
2510 return;
2511 }
2512
2513 /*
2514 * If execution gets here, flush the vm mapping and reset the direct
2515 * map. Find the start and end range of the direct mappings to make sure
2516 * the vm_unmap_aliases() flush includes the direct map.
2517 */
121e6f32 2518 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
8e41f872
RE
2519 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2520 if (addr) {
121e6f32
NP
2521 unsigned long page_size;
2522
2523 page_size = PAGE_SIZE << page_order;
868b104d 2524 start = min(addr, start);
121e6f32 2525 end = max(addr + page_size, end);
31e67340 2526 flush_dmap = 1;
868b104d
RE
2527 }
2528 }
2529
2530 /*
2531 * Set direct map to something invalid so that it won't be cached if
2532 * there are any accesses after the TLB flush, then flush the TLB and
2533 * reset the direct map permissions to the default.
2534 */
2535 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2536 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2537 set_area_direct_map(area, set_direct_map_default_noflush);
2538}
2539
b3bdda02 2540static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2541{
2542 struct vm_struct *area;
2543
2544 if (!addr)
2545 return;
2546
e69e9d4a 2547 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2548 addr))
1da177e4 2549 return;
1da177e4 2550
6ade2032 2551 area = find_vm_area(addr);
1da177e4 2552 if (unlikely(!area)) {
4c8573e2 2553 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2554 addr);
1da177e4
LT
2555 return;
2556 }
2557
05e3ff95
CP
2558 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2559 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2560
c041098c 2561 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
3c5c3cfb 2562
868b104d
RE
2563 vm_remove_mappings(area, deallocate_pages);
2564
1da177e4 2565 if (deallocate_pages) {
121e6f32 2566 unsigned int page_order = vm_area_page_order(area);
1da177e4
LT
2567 int i;
2568
121e6f32 2569 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
bf53d6f8
CL
2570 struct page *page = area->pages[i];
2571
2572 BUG_ON(!page);
121e6f32 2573 __free_pages(page, page_order);
1da177e4 2574 }
97105f0a 2575 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2576
244d63ee 2577 kvfree(area->pages);
1da177e4
LT
2578 }
2579
2580 kfree(area);
1da177e4 2581}
bf22e37a
AR
2582
2583static inline void __vfree_deferred(const void *addr)
2584{
2585 /*
2586 * Use raw_cpu_ptr() because this can be called from preemptible
2587 * context. Preemption is absolutely fine here, because the llist_add()
2588 * implementation is lockless, so it works even if we are adding to
73221d88 2589 * another cpu's list. schedule_work() should be fine with this too.
bf22e37a
AR
2590 */
2591 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2592
2593 if (llist_add((struct llist_node *)addr, &p->list))
2594 schedule_work(&p->wq);
2595}
2596
2597/**
92eac168
MR
2598 * vfree_atomic - release memory allocated by vmalloc()
2599 * @addr: memory base address
bf22e37a 2600 *
92eac168
MR
2601 * This one is just like vfree() but can be called in any atomic context
2602 * except NMIs.
bf22e37a
AR
2603 */
2604void vfree_atomic(const void *addr)
2605{
2606 BUG_ON(in_nmi());
2607
2608 kmemleak_free(addr);
2609
2610 if (!addr)
2611 return;
2612 __vfree_deferred(addr);
2613}
2614
c67dc624
RP
2615static void __vfree(const void *addr)
2616{
2617 if (unlikely(in_interrupt()))
2618 __vfree_deferred(addr);
2619 else
2620 __vunmap(addr, 1);
2621}
2622
1da177e4 2623/**
fa307474
MWO
2624 * vfree - Release memory allocated by vmalloc()
2625 * @addr: Memory base address
1da177e4 2626 *
fa307474
MWO
2627 * Free the virtually continuous memory area starting at @addr, as obtained
2628 * from one of the vmalloc() family of APIs. This will usually also free the
2629 * physical memory underlying the virtual allocation, but that memory is
2630 * reference counted, so it will not be freed until the last user goes away.
1da177e4 2631 *
fa307474 2632 * If @addr is NULL, no operation is performed.
c9fcee51 2633 *
fa307474 2634 * Context:
92eac168 2635 * May sleep if called *not* from interrupt context.
fa307474
MWO
2636 * Must not be called in NMI context (strictly speaking, it could be
2637 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2638 * conventions for vfree() arch-depenedent would be a really bad idea).
1da177e4 2639 */
b3bdda02 2640void vfree(const void *addr)
1da177e4 2641{
32fcfd40 2642 BUG_ON(in_nmi());
89219d37
CM
2643
2644 kmemleak_free(addr);
2645
a8dda165
AR
2646 might_sleep_if(!in_interrupt());
2647
32fcfd40
AV
2648 if (!addr)
2649 return;
c67dc624
RP
2650
2651 __vfree(addr);
1da177e4 2652}
1da177e4
LT
2653EXPORT_SYMBOL(vfree);
2654
2655/**
92eac168
MR
2656 * vunmap - release virtual mapping obtained by vmap()
2657 * @addr: memory base address
1da177e4 2658 *
92eac168
MR
2659 * Free the virtually contiguous memory area starting at @addr,
2660 * which was created from the page array passed to vmap().
1da177e4 2661 *
92eac168 2662 * Must not be called in interrupt context.
1da177e4 2663 */
b3bdda02 2664void vunmap(const void *addr)
1da177e4
LT
2665{
2666 BUG_ON(in_interrupt());
34754b69 2667 might_sleep();
32fcfd40
AV
2668 if (addr)
2669 __vunmap(addr, 0);
1da177e4 2670}
1da177e4
LT
2671EXPORT_SYMBOL(vunmap);
2672
2673/**
92eac168
MR
2674 * vmap - map an array of pages into virtually contiguous space
2675 * @pages: array of page pointers
2676 * @count: number of pages to map
2677 * @flags: vm_area->flags
2678 * @prot: page protection for the mapping
2679 *
b944afc9
CH
2680 * Maps @count pages from @pages into contiguous kernel virtual space.
2681 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2682 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2683 * are transferred from the caller to vmap(), and will be freed / dropped when
2684 * vfree() is called on the return value.
a862f68a
MR
2685 *
2686 * Return: the address of the area or %NULL on failure
1da177e4
LT
2687 */
2688void *vmap(struct page **pages, unsigned int count,
92eac168 2689 unsigned long flags, pgprot_t prot)
1da177e4
LT
2690{
2691 struct vm_struct *area;
b67177ec 2692 unsigned long addr;
65ee03c4 2693 unsigned long size; /* In bytes */
1da177e4 2694
34754b69
PZ
2695 might_sleep();
2696
ca79b0c2 2697 if (count > totalram_pages())
1da177e4
LT
2698 return NULL;
2699
65ee03c4
GJM
2700 size = (unsigned long)count << PAGE_SHIFT;
2701 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2702 if (!area)
2703 return NULL;
23016969 2704
b67177ec
NP
2705 addr = (unsigned long)area->addr;
2706 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2707 pages, PAGE_SHIFT) < 0) {
1da177e4
LT
2708 vunmap(area->addr);
2709 return NULL;
2710 }
2711
c22ee528 2712 if (flags & VM_MAP_PUT_PAGES) {
b944afc9 2713 area->pages = pages;
c22ee528
ML
2714 area->nr_pages = count;
2715 }
1da177e4
LT
2716 return area->addr;
2717}
1da177e4
LT
2718EXPORT_SYMBOL(vmap);
2719
3e9a9e25
CH
2720#ifdef CONFIG_VMAP_PFN
2721struct vmap_pfn_data {
2722 unsigned long *pfns;
2723 pgprot_t prot;
2724 unsigned int idx;
2725};
2726
2727static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2728{
2729 struct vmap_pfn_data *data = private;
2730
2731 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2732 return -EINVAL;
2733 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2734 return 0;
2735}
2736
2737/**
2738 * vmap_pfn - map an array of PFNs into virtually contiguous space
2739 * @pfns: array of PFNs
2740 * @count: number of pages to map
2741 * @prot: page protection for the mapping
2742 *
2743 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2744 * the start address of the mapping.
2745 */
2746void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2747{
2748 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2749 struct vm_struct *area;
2750
2751 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2752 __builtin_return_address(0));
2753 if (!area)
2754 return NULL;
2755 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2756 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2757 free_vm_area(area);
2758 return NULL;
2759 }
2760 return area->addr;
2761}
2762EXPORT_SYMBOL_GPL(vmap_pfn);
2763#endif /* CONFIG_VMAP_PFN */
2764
e31d9eb5 2765static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
121e6f32
NP
2766 pgprot_t prot, unsigned int page_shift,
2767 int node)
1da177e4 2768{
930f036b 2769 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
121e6f32
NP
2770 unsigned long addr = (unsigned long)area->addr;
2771 unsigned long size = get_vm_area_size(area);
34fe6537 2772 unsigned long array_size;
121e6f32
NP
2773 unsigned int nr_small_pages = size >> PAGE_SHIFT;
2774 unsigned int page_order;
f255935b 2775 struct page **pages;
121e6f32 2776 unsigned int i;
1da177e4 2777
121e6f32 2778 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
f255935b
CH
2779 gfp_mask |= __GFP_NOWARN;
2780 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2781 gfp_mask |= __GFP_HIGHMEM;
1da177e4 2782
1da177e4 2783 /* Please note that the recursion is strictly bounded. */
8757d5fa 2784 if (array_size > PAGE_SIZE) {
f255935b
CH
2785 pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2786 area->caller);
286e1ea3 2787 } else {
976d6dfb 2788 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2789 }
7ea36242
AK
2790
2791 if (!pages) {
8945a723 2792 free_vm_area(area);
1da177e4
LT
2793 return NULL;
2794 }
1da177e4 2795
7ea36242 2796 area->pages = pages;
121e6f32
NP
2797 area->nr_pages = nr_small_pages;
2798 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
7ea36242 2799
121e6f32 2800 page_order = vm_area_page_order(area);
bf53d6f8 2801
121e6f32
NP
2802 /*
2803 * Careful, we allocate and map page_order pages, but tracking is done
2804 * per PAGE_SIZE page so as to keep the vm_struct APIs independent of
2805 * the physical/mapped size.
2806 */
2807 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2808 struct page *page;
2809 int p;
bf53d6f8 2810
121e6f32
NP
2811 /* Compound pages required for remap_vmalloc_page */
2812 page = alloc_pages_node(node, gfp_mask | __GFP_COMP, page_order);
bf53d6f8 2813 if (unlikely(!page)) {
82afbc32 2814 /* Successfully allocated i pages, free them in __vfree() */
1da177e4 2815 area->nr_pages = i;
97105f0a 2816 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2817 goto fail;
2818 }
121e6f32
NP
2819
2820 for (p = 0; p < (1U << page_order); p++)
2821 area->pages[i + p] = page + p;
2822
dcf61ff0 2823 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2824 cond_resched();
1da177e4 2825 }
97105f0a 2826 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2827
121e6f32 2828 if (vmap_pages_range(addr, addr + size, prot, pages, page_shift) < 0)
1da177e4 2829 goto fail;
ed1f324c 2830
1da177e4
LT
2831 return area->addr;
2832
2833fail:
a8e99259 2834 warn_alloc(gfp_mask, NULL,
7877cdcc 2835 "vmalloc: allocation failure, allocated %ld of %ld bytes",
121e6f32 2836 (area->nr_pages*PAGE_SIZE), size);
c67dc624 2837 __vfree(area->addr);
1da177e4
LT
2838 return NULL;
2839}
2840
2841/**
92eac168
MR
2842 * __vmalloc_node_range - allocate virtually contiguous memory
2843 * @size: allocation size
2844 * @align: desired alignment
2845 * @start: vm area range start
2846 * @end: vm area range end
2847 * @gfp_mask: flags for the page level allocator
2848 * @prot: protection mask for the allocated pages
2849 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2850 * @node: node to use for allocation or NUMA_NO_NODE
2851 * @caller: caller's return address
2852 *
2853 * Allocate enough pages to cover @size from the page level
2854 * allocator with @gfp_mask flags. Map them into contiguous
2855 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2856 *
2857 * Return: the address of the area or %NULL on failure
1da177e4 2858 */
d0a21265
DR
2859void *__vmalloc_node_range(unsigned long size, unsigned long align,
2860 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2861 pgprot_t prot, unsigned long vm_flags, int node,
2862 const void *caller)
1da177e4
LT
2863{
2864 struct vm_struct *area;
89219d37
CM
2865 void *addr;
2866 unsigned long real_size = size;
121e6f32
NP
2867 unsigned long real_align = align;
2868 unsigned int shift = PAGE_SHIFT;
1da177e4 2869
121e6f32
NP
2870 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) {
2871 area = NULL;
de7d2b56 2872 goto fail;
121e6f32
NP
2873 }
2874
2875 if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP) &&
2876 arch_vmap_pmd_supported(prot)) {
2877 unsigned long size_per_node;
1da177e4 2878
121e6f32
NP
2879 /*
2880 * Try huge pages. Only try for PAGE_KERNEL allocations,
2881 * others like modules don't yet expect huge pages in
2882 * their allocations due to apply_to_page_range not
2883 * supporting them.
2884 */
2885
2886 size_per_node = size;
2887 if (node == NUMA_NO_NODE)
2888 size_per_node /= num_online_nodes();
2889 if (size_per_node >= PMD_SIZE) {
2890 shift = PMD_SHIFT;
2891 align = max(real_align, 1UL << shift);
2892 size = ALIGN(real_size, 1UL << shift);
2893 }
2894 }
2895
2896again:
2897 size = PAGE_ALIGN(size);
2898 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
cb9e3c29 2899 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2900 if (!area)
de7d2b56 2901 goto fail;
1da177e4 2902
121e6f32 2903 addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
1368edf0 2904 if (!addr)
121e6f32 2905 goto fail;
89219d37 2906
f5252e00 2907 /*
20fc02b4
ZY
2908 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2909 * flag. It means that vm_struct is not fully initialized.
4341fa45 2910 * Now, it is fully initialized, so remove this flag here.
f5252e00 2911 */
20fc02b4 2912 clear_vm_uninitialized_flag(area);
f5252e00 2913
94f4a161 2914 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2915
2916 return addr;
de7d2b56
JP
2917
2918fail:
121e6f32
NP
2919 if (shift > PAGE_SHIFT) {
2920 shift = PAGE_SHIFT;
2921 align = real_align;
2922 size = real_size;
2923 goto again;
2924 }
2925
2926 if (!area) {
2927 /* Warn for area allocation, page allocations already warn */
2928 warn_alloc(gfp_mask, NULL,
7877cdcc 2929 "vmalloc: allocation failure: %lu bytes", real_size);
121e6f32 2930 }
de7d2b56 2931 return NULL;
1da177e4
LT
2932}
2933
d0a21265 2934/**
92eac168
MR
2935 * __vmalloc_node - allocate virtually contiguous memory
2936 * @size: allocation size
2937 * @align: desired alignment
2938 * @gfp_mask: flags for the page level allocator
92eac168
MR
2939 * @node: node to use for allocation or NUMA_NO_NODE
2940 * @caller: caller's return address
a7c3e901 2941 *
f38fcb9c
CH
2942 * Allocate enough pages to cover @size from the page level allocator with
2943 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 2944 *
92eac168
MR
2945 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2946 * and __GFP_NOFAIL are not supported
a7c3e901 2947 *
92eac168
MR
2948 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2949 * with mm people.
a862f68a
MR
2950 *
2951 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2952 */
2b905948 2953void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 2954 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
2955{
2956 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 2957 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 2958}
c3f896dc
CH
2959/*
2960 * This is only for performance analysis of vmalloc and stress purpose.
2961 * It is required by vmalloc test module, therefore do not use it other
2962 * than that.
2963 */
2964#ifdef CONFIG_TEST_VMALLOC_MODULE
2965EXPORT_SYMBOL_GPL(__vmalloc_node);
2966#endif
d0a21265 2967
88dca4ca 2968void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 2969{
f38fcb9c 2970 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 2971 __builtin_return_address(0));
930fc45a 2972}
1da177e4
LT
2973EXPORT_SYMBOL(__vmalloc);
2974
2975/**
92eac168
MR
2976 * vmalloc - allocate virtually contiguous memory
2977 * @size: allocation size
2978 *
2979 * Allocate enough pages to cover @size from the page level
2980 * allocator and map them into contiguous kernel virtual space.
1da177e4 2981 *
92eac168
MR
2982 * For tight control over page level allocator and protection flags
2983 * use __vmalloc() instead.
a862f68a
MR
2984 *
2985 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2986 */
2987void *vmalloc(unsigned long size)
2988{
4d39d728
CH
2989 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2990 __builtin_return_address(0));
1da177e4 2991}
1da177e4
LT
2992EXPORT_SYMBOL(vmalloc);
2993
e1ca7788 2994/**
92eac168
MR
2995 * vzalloc - allocate virtually contiguous memory with zero fill
2996 * @size: allocation size
2997 *
2998 * Allocate enough pages to cover @size from the page level
2999 * allocator and map them into contiguous kernel virtual space.
3000 * The memory allocated is set to zero.
3001 *
3002 * For tight control over page level allocator and protection flags
3003 * use __vmalloc() instead.
a862f68a
MR
3004 *
3005 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3006 */
3007void *vzalloc(unsigned long size)
3008{
4d39d728
CH
3009 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3010 __builtin_return_address(0));
e1ca7788
DY
3011}
3012EXPORT_SYMBOL(vzalloc);
3013
83342314 3014/**
ead04089
REB
3015 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3016 * @size: allocation size
83342314 3017 *
ead04089
REB
3018 * The resulting memory area is zeroed so it can be mapped to userspace
3019 * without leaking data.
a862f68a
MR
3020 *
3021 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3022 */
3023void *vmalloc_user(unsigned long size)
3024{
bc84c535
RP
3025 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3026 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3027 VM_USERMAP, NUMA_NO_NODE,
3028 __builtin_return_address(0));
83342314
NP
3029}
3030EXPORT_SYMBOL(vmalloc_user);
3031
930fc45a 3032/**
92eac168
MR
3033 * vmalloc_node - allocate memory on a specific node
3034 * @size: allocation size
3035 * @node: numa node
930fc45a 3036 *
92eac168
MR
3037 * Allocate enough pages to cover @size from the page level
3038 * allocator and map them into contiguous kernel virtual space.
930fc45a 3039 *
92eac168
MR
3040 * For tight control over page level allocator and protection flags
3041 * use __vmalloc() instead.
a862f68a
MR
3042 *
3043 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
3044 */
3045void *vmalloc_node(unsigned long size, int node)
3046{
f38fcb9c
CH
3047 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3048 __builtin_return_address(0));
930fc45a
CL
3049}
3050EXPORT_SYMBOL(vmalloc_node);
3051
e1ca7788
DY
3052/**
3053 * vzalloc_node - allocate memory on a specific node with zero fill
3054 * @size: allocation size
3055 * @node: numa node
3056 *
3057 * Allocate enough pages to cover @size from the page level
3058 * allocator and map them into contiguous kernel virtual space.
3059 * The memory allocated is set to zero.
3060 *
a862f68a 3061 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3062 */
3063void *vzalloc_node(unsigned long size, int node)
3064{
4d39d728
CH
3065 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3066 __builtin_return_address(0));
e1ca7788
DY
3067}
3068EXPORT_SYMBOL(vzalloc_node);
3069
0d08e0d3 3070#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 3071#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 3072#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 3073#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 3074#else
698d0831
MH
3075/*
3076 * 64b systems should always have either DMA or DMA32 zones. For others
3077 * GFP_DMA32 should do the right thing and use the normal zone.
3078 */
3079#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
3080#endif
3081
1da177e4 3082/**
92eac168
MR
3083 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3084 * @size: allocation size
1da177e4 3085 *
92eac168
MR
3086 * Allocate enough 32bit PA addressable pages to cover @size from the
3087 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
3088 *
3089 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3090 */
3091void *vmalloc_32(unsigned long size)
3092{
f38fcb9c
CH
3093 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3094 __builtin_return_address(0));
1da177e4 3095}
1da177e4
LT
3096EXPORT_SYMBOL(vmalloc_32);
3097
83342314 3098/**
ead04089 3099 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 3100 * @size: allocation size
ead04089
REB
3101 *
3102 * The resulting memory area is 32bit addressable and zeroed so it can be
3103 * mapped to userspace without leaking data.
a862f68a
MR
3104 *
3105 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3106 */
3107void *vmalloc_32_user(unsigned long size)
3108{
bc84c535
RP
3109 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3110 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3111 VM_USERMAP, NUMA_NO_NODE,
3112 __builtin_return_address(0));
83342314
NP
3113}
3114EXPORT_SYMBOL(vmalloc_32_user);
3115
d0107eb0
KH
3116/*
3117 * small helper routine , copy contents to buf from addr.
3118 * If the page is not present, fill zero.
3119 */
3120
3121static int aligned_vread(char *buf, char *addr, unsigned long count)
3122{
3123 struct page *p;
3124 int copied = 0;
3125
3126 while (count) {
3127 unsigned long offset, length;
3128
891c49ab 3129 offset = offset_in_page(addr);
d0107eb0
KH
3130 length = PAGE_SIZE - offset;
3131 if (length > count)
3132 length = count;
3133 p = vmalloc_to_page(addr);
3134 /*
3135 * To do safe access to this _mapped_ area, we need
3136 * lock. But adding lock here means that we need to add
3137 * overhead of vmalloc()/vfree() calles for this _debug_
3138 * interface, rarely used. Instead of that, we'll use
3139 * kmap() and get small overhead in this access function.
3140 */
3141 if (p) {
3142 /*
3143 * we can expect USER0 is not used (see vread/vwrite's
3144 * function description)
3145 */
9b04c5fe 3146 void *map = kmap_atomic(p);
d0107eb0 3147 memcpy(buf, map + offset, length);
9b04c5fe 3148 kunmap_atomic(map);
d0107eb0
KH
3149 } else
3150 memset(buf, 0, length);
3151
3152 addr += length;
3153 buf += length;
3154 copied += length;
3155 count -= length;
3156 }
3157 return copied;
3158}
3159
3160static int aligned_vwrite(char *buf, char *addr, unsigned long count)
3161{
3162 struct page *p;
3163 int copied = 0;
3164
3165 while (count) {
3166 unsigned long offset, length;
3167
891c49ab 3168 offset = offset_in_page(addr);
d0107eb0
KH
3169 length = PAGE_SIZE - offset;
3170 if (length > count)
3171 length = count;
3172 p = vmalloc_to_page(addr);
3173 /*
3174 * To do safe access to this _mapped_ area, we need
3175 * lock. But adding lock here means that we need to add
3176 * overhead of vmalloc()/vfree() calles for this _debug_
3177 * interface, rarely used. Instead of that, we'll use
3178 * kmap() and get small overhead in this access function.
3179 */
3180 if (p) {
3181 /*
3182 * we can expect USER0 is not used (see vread/vwrite's
3183 * function description)
3184 */
9b04c5fe 3185 void *map = kmap_atomic(p);
d0107eb0 3186 memcpy(map + offset, buf, length);
9b04c5fe 3187 kunmap_atomic(map);
d0107eb0
KH
3188 }
3189 addr += length;
3190 buf += length;
3191 copied += length;
3192 count -= length;
3193 }
3194 return copied;
3195}
3196
3197/**
92eac168
MR
3198 * vread() - read vmalloc area in a safe way.
3199 * @buf: buffer for reading data
3200 * @addr: vm address.
3201 * @count: number of bytes to be read.
3202 *
92eac168
MR
3203 * This function checks that addr is a valid vmalloc'ed area, and
3204 * copy data from that area to a given buffer. If the given memory range
3205 * of [addr...addr+count) includes some valid address, data is copied to
3206 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3207 * IOREMAP area is treated as memory hole and no copy is done.
3208 *
3209 * If [addr...addr+count) doesn't includes any intersects with alive
3210 * vm_struct area, returns 0. @buf should be kernel's buffer.
3211 *
3212 * Note: In usual ops, vread() is never necessary because the caller
3213 * should know vmalloc() area is valid and can use memcpy().
3214 * This is for routines which have to access vmalloc area without
d9009d67 3215 * any information, as /dev/kmem.
a862f68a
MR
3216 *
3217 * Return: number of bytes for which addr and buf should be increased
3218 * (same number as @count) or %0 if [addr...addr+count) doesn't
3219 * include any intersection with valid vmalloc area
d0107eb0 3220 */
1da177e4
LT
3221long vread(char *buf, char *addr, unsigned long count)
3222{
e81ce85f
JK
3223 struct vmap_area *va;
3224 struct vm_struct *vm;
1da177e4 3225 char *vaddr, *buf_start = buf;
d0107eb0 3226 unsigned long buflen = count;
1da177e4
LT
3227 unsigned long n;
3228
3229 /* Don't allow overflow */
3230 if ((unsigned long) addr + count < count)
3231 count = -(unsigned long) addr;
3232
e81ce85f 3233 spin_lock(&vmap_area_lock);
f608788c
SD
3234 va = __find_vmap_area((unsigned long)addr);
3235 if (!va)
3236 goto finished;
3237 list_for_each_entry_from(va, &vmap_area_list, list) {
e81ce85f
JK
3238 if (!count)
3239 break;
3240
688fcbfc 3241 if (!va->vm)
e81ce85f
JK
3242 continue;
3243
3244 vm = va->vm;
3245 vaddr = (char *) vm->addr;
762216ab 3246 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
3247 continue;
3248 while (addr < vaddr) {
3249 if (count == 0)
3250 goto finished;
3251 *buf = '\0';
3252 buf++;
3253 addr++;
3254 count--;
3255 }
762216ab 3256 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
3257 if (n > count)
3258 n = count;
e81ce85f 3259 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
3260 aligned_vread(buf, addr, n);
3261 else /* IOREMAP area is treated as memory hole */
3262 memset(buf, 0, n);
3263 buf += n;
3264 addr += n;
3265 count -= n;
1da177e4
LT
3266 }
3267finished:
e81ce85f 3268 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3269
3270 if (buf == buf_start)
3271 return 0;
3272 /* zero-fill memory holes */
3273 if (buf != buf_start + buflen)
3274 memset(buf, 0, buflen - (buf - buf_start));
3275
3276 return buflen;
1da177e4
LT
3277}
3278
d0107eb0 3279/**
92eac168
MR
3280 * vwrite() - write vmalloc area in a safe way.
3281 * @buf: buffer for source data
3282 * @addr: vm address.
3283 * @count: number of bytes to be read.
3284 *
92eac168
MR
3285 * This function checks that addr is a valid vmalloc'ed area, and
3286 * copy data from a buffer to the given addr. If specified range of
3287 * [addr...addr+count) includes some valid address, data is copied from
3288 * proper area of @buf. If there are memory holes, no copy to hole.
3289 * IOREMAP area is treated as memory hole and no copy is done.
3290 *
3291 * If [addr...addr+count) doesn't includes any intersects with alive
3292 * vm_struct area, returns 0. @buf should be kernel's buffer.
3293 *
3294 * Note: In usual ops, vwrite() is never necessary because the caller
3295 * should know vmalloc() area is valid and can use memcpy().
3296 * This is for routines which have to access vmalloc area without
d9009d67 3297 * any information, as /dev/kmem.
a862f68a
MR
3298 *
3299 * Return: number of bytes for which addr and buf should be
3300 * increased (same number as @count) or %0 if [addr...addr+count)
3301 * doesn't include any intersection with valid vmalloc area
d0107eb0 3302 */
1da177e4
LT
3303long vwrite(char *buf, char *addr, unsigned long count)
3304{
e81ce85f
JK
3305 struct vmap_area *va;
3306 struct vm_struct *vm;
d0107eb0
KH
3307 char *vaddr;
3308 unsigned long n, buflen;
3309 int copied = 0;
1da177e4
LT
3310
3311 /* Don't allow overflow */
3312 if ((unsigned long) addr + count < count)
3313 count = -(unsigned long) addr;
d0107eb0 3314 buflen = count;
1da177e4 3315
e81ce85f
JK
3316 spin_lock(&vmap_area_lock);
3317 list_for_each_entry(va, &vmap_area_list, list) {
3318 if (!count)
3319 break;
3320
688fcbfc 3321 if (!va->vm)
e81ce85f
JK
3322 continue;
3323
3324 vm = va->vm;
3325 vaddr = (char *) vm->addr;
762216ab 3326 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
3327 continue;
3328 while (addr < vaddr) {
3329 if (count == 0)
3330 goto finished;
3331 buf++;
3332 addr++;
3333 count--;
3334 }
762216ab 3335 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
3336 if (n > count)
3337 n = count;
e81ce85f 3338 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
3339 aligned_vwrite(buf, addr, n);
3340 copied++;
3341 }
3342 buf += n;
3343 addr += n;
3344 count -= n;
1da177e4
LT
3345 }
3346finished:
e81ce85f 3347 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3348 if (!copied)
3349 return 0;
3350 return buflen;
1da177e4 3351}
83342314
NP
3352
3353/**
92eac168
MR
3354 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3355 * @vma: vma to cover
3356 * @uaddr: target user address to start at
3357 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3358 * @pgoff: offset from @kaddr to start at
92eac168 3359 * @size: size of map area
7682486b 3360 *
92eac168 3361 * Returns: 0 for success, -Exxx on failure
83342314 3362 *
92eac168
MR
3363 * This function checks that @kaddr is a valid vmalloc'ed area,
3364 * and that it is big enough to cover the range starting at
3365 * @uaddr in @vma. Will return failure if that criteria isn't
3366 * met.
83342314 3367 *
92eac168 3368 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3369 */
e69e9d4a 3370int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3371 void *kaddr, unsigned long pgoff,
3372 unsigned long size)
83342314
NP
3373{
3374 struct vm_struct *area;
bdebd6a2
JH
3375 unsigned long off;
3376 unsigned long end_index;
3377
3378 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3379 return -EINVAL;
83342314 3380
e69e9d4a
HD
3381 size = PAGE_ALIGN(size);
3382
3383 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3384 return -EINVAL;
3385
e69e9d4a 3386 area = find_vm_area(kaddr);
83342314 3387 if (!area)
db64fe02 3388 return -EINVAL;
83342314 3389
fe9041c2 3390 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3391 return -EINVAL;
83342314 3392
bdebd6a2
JH
3393 if (check_add_overflow(size, off, &end_index) ||
3394 end_index > get_vm_area_size(area))
db64fe02 3395 return -EINVAL;
bdebd6a2 3396 kaddr += off;
83342314 3397
83342314 3398 do {
e69e9d4a 3399 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3400 int ret;
3401
83342314
NP
3402 ret = vm_insert_page(vma, uaddr, page);
3403 if (ret)
3404 return ret;
3405
3406 uaddr += PAGE_SIZE;
e69e9d4a
HD
3407 kaddr += PAGE_SIZE;
3408 size -= PAGE_SIZE;
3409 } while (size > 0);
83342314 3410
314e51b9 3411 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3412
db64fe02 3413 return 0;
83342314 3414}
e69e9d4a
HD
3415
3416/**
92eac168
MR
3417 * remap_vmalloc_range - map vmalloc pages to userspace
3418 * @vma: vma to cover (map full range of vma)
3419 * @addr: vmalloc memory
3420 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3421 *
92eac168 3422 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3423 *
92eac168
MR
3424 * This function checks that addr is a valid vmalloc'ed area, and
3425 * that it is big enough to cover the vma. Will return failure if
3426 * that criteria isn't met.
e69e9d4a 3427 *
92eac168 3428 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3429 */
3430int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3431 unsigned long pgoff)
3432{
3433 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3434 addr, pgoff,
e69e9d4a
HD
3435 vma->vm_end - vma->vm_start);
3436}
83342314
NP
3437EXPORT_SYMBOL(remap_vmalloc_range);
3438
5f4352fb
JF
3439void free_vm_area(struct vm_struct *area)
3440{
3441 struct vm_struct *ret;
3442 ret = remove_vm_area(area->addr);
3443 BUG_ON(ret != area);
3444 kfree(area);
3445}
3446EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3447
4f8b02b4 3448#ifdef CONFIG_SMP
ca23e405
TH
3449static struct vmap_area *node_to_va(struct rb_node *n)
3450{
4583e773 3451 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3452}
3453
3454/**
68ad4a33
URS
3455 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3456 * @addr: target address
ca23e405 3457 *
68ad4a33
URS
3458 * Returns: vmap_area if it is found. If there is no such area
3459 * the first highest(reverse order) vmap_area is returned
3460 * i.e. va->va_start < addr && va->va_end < addr or NULL
3461 * if there are no any areas before @addr.
ca23e405 3462 */
68ad4a33
URS
3463static struct vmap_area *
3464pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3465{
68ad4a33
URS
3466 struct vmap_area *va, *tmp;
3467 struct rb_node *n;
3468
3469 n = free_vmap_area_root.rb_node;
3470 va = NULL;
ca23e405
TH
3471
3472 while (n) {
68ad4a33
URS
3473 tmp = rb_entry(n, struct vmap_area, rb_node);
3474 if (tmp->va_start <= addr) {
3475 va = tmp;
3476 if (tmp->va_end >= addr)
3477 break;
3478
ca23e405 3479 n = n->rb_right;
68ad4a33
URS
3480 } else {
3481 n = n->rb_left;
3482 }
ca23e405
TH
3483 }
3484
68ad4a33 3485 return va;
ca23e405
TH
3486}
3487
3488/**
68ad4a33
URS
3489 * pvm_determine_end_from_reverse - find the highest aligned address
3490 * of free block below VMALLOC_END
3491 * @va:
3492 * in - the VA we start the search(reverse order);
3493 * out - the VA with the highest aligned end address.
799fa85d 3494 * @align: alignment for required highest address
ca23e405 3495 *
68ad4a33 3496 * Returns: determined end address within vmap_area
ca23e405 3497 */
68ad4a33
URS
3498static unsigned long
3499pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3500{
68ad4a33 3501 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3502 unsigned long addr;
3503
68ad4a33
URS
3504 if (likely(*va)) {
3505 list_for_each_entry_from_reverse((*va),
3506 &free_vmap_area_list, list) {
3507 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3508 if ((*va)->va_start < addr)
3509 return addr;
3510 }
ca23e405
TH
3511 }
3512
68ad4a33 3513 return 0;
ca23e405
TH
3514}
3515
3516/**
3517 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3518 * @offsets: array containing offset of each area
3519 * @sizes: array containing size of each area
3520 * @nr_vms: the number of areas to allocate
3521 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3522 *
3523 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3524 * vm_structs on success, %NULL on failure
3525 *
3526 * Percpu allocator wants to use congruent vm areas so that it can
3527 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3528 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3529 * be scattered pretty far, distance between two areas easily going up
3530 * to gigabytes. To avoid interacting with regular vmallocs, these
3531 * areas are allocated from top.
ca23e405 3532 *
68ad4a33
URS
3533 * Despite its complicated look, this allocator is rather simple. It
3534 * does everything top-down and scans free blocks from the end looking
3535 * for matching base. While scanning, if any of the areas do not fit the
3536 * base address is pulled down to fit the area. Scanning is repeated till
3537 * all the areas fit and then all necessary data structures are inserted
3538 * and the result is returned.
ca23e405
TH
3539 */
3540struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3541 const size_t *sizes, int nr_vms,
ec3f64fc 3542 size_t align)
ca23e405
TH
3543{
3544 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3545 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3546 struct vmap_area **vas, *va;
ca23e405
TH
3547 struct vm_struct **vms;
3548 int area, area2, last_area, term_area;
253a496d 3549 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405 3550 bool purged = false;
68ad4a33 3551 enum fit_type type;
ca23e405 3552
ca23e405 3553 /* verify parameters and allocate data structures */
891c49ab 3554 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3555 for (last_area = 0, area = 0; area < nr_vms; area++) {
3556 start = offsets[area];
3557 end = start + sizes[area];
3558
3559 /* is everything aligned properly? */
3560 BUG_ON(!IS_ALIGNED(offsets[area], align));
3561 BUG_ON(!IS_ALIGNED(sizes[area], align));
3562
3563 /* detect the area with the highest address */
3564 if (start > offsets[last_area])
3565 last_area = area;
3566
c568da28 3567 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3568 unsigned long start2 = offsets[area2];
3569 unsigned long end2 = start2 + sizes[area2];
3570
c568da28 3571 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3572 }
3573 }
3574 last_end = offsets[last_area] + sizes[last_area];
3575
3576 if (vmalloc_end - vmalloc_start < last_end) {
3577 WARN_ON(true);
3578 return NULL;
3579 }
3580
4d67d860
TM
3581 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3582 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3583 if (!vas || !vms)
f1db7afd 3584 goto err_free2;
ca23e405
TH
3585
3586 for (area = 0; area < nr_vms; area++) {
68ad4a33 3587 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3588 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3589 if (!vas[area] || !vms[area])
3590 goto err_free;
3591 }
3592retry:
e36176be 3593 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3594
3595 /* start scanning - we scan from the top, begin with the last area */
3596 area = term_area = last_area;
3597 start = offsets[area];
3598 end = start + sizes[area];
3599
68ad4a33
URS
3600 va = pvm_find_va_enclose_addr(vmalloc_end);
3601 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3602
3603 while (true) {
ca23e405
TH
3604 /*
3605 * base might have underflowed, add last_end before
3606 * comparing.
3607 */
68ad4a33
URS
3608 if (base + last_end < vmalloc_start + last_end)
3609 goto overflow;
ca23e405
TH
3610
3611 /*
68ad4a33 3612 * Fitting base has not been found.
ca23e405 3613 */
68ad4a33
URS
3614 if (va == NULL)
3615 goto overflow;
ca23e405 3616
5336e52c 3617 /*
d8cc323d 3618 * If required width exceeds current VA block, move
5336e52c
KS
3619 * base downwards and then recheck.
3620 */
3621 if (base + end > va->va_end) {
3622 base = pvm_determine_end_from_reverse(&va, align) - end;
3623 term_area = area;
3624 continue;
3625 }
3626
ca23e405 3627 /*
68ad4a33 3628 * If this VA does not fit, move base downwards and recheck.
ca23e405 3629 */
5336e52c 3630 if (base + start < va->va_start) {
68ad4a33
URS
3631 va = node_to_va(rb_prev(&va->rb_node));
3632 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3633 term_area = area;
3634 continue;
3635 }
3636
3637 /*
3638 * This area fits, move on to the previous one. If
3639 * the previous one is the terminal one, we're done.
3640 */
3641 area = (area + nr_vms - 1) % nr_vms;
3642 if (area == term_area)
3643 break;
68ad4a33 3644
ca23e405
TH
3645 start = offsets[area];
3646 end = start + sizes[area];
68ad4a33 3647 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3648 }
68ad4a33 3649
ca23e405
TH
3650 /* we've found a fitting base, insert all va's */
3651 for (area = 0; area < nr_vms; area++) {
68ad4a33 3652 int ret;
ca23e405 3653
68ad4a33
URS
3654 start = base + offsets[area];
3655 size = sizes[area];
ca23e405 3656
68ad4a33
URS
3657 va = pvm_find_va_enclose_addr(start);
3658 if (WARN_ON_ONCE(va == NULL))
3659 /* It is a BUG(), but trigger recovery instead. */
3660 goto recovery;
3661
3662 type = classify_va_fit_type(va, start, size);
3663 if (WARN_ON_ONCE(type == NOTHING_FIT))
3664 /* It is a BUG(), but trigger recovery instead. */
3665 goto recovery;
3666
3667 ret = adjust_va_to_fit_type(va, start, size, type);
3668 if (unlikely(ret))
3669 goto recovery;
3670
3671 /* Allocated area. */
3672 va = vas[area];
3673 va->va_start = start;
3674 va->va_end = start + size;
68ad4a33 3675 }
ca23e405 3676
e36176be 3677 spin_unlock(&free_vmap_area_lock);
ca23e405 3678
253a496d
DA
3679 /* populate the kasan shadow space */
3680 for (area = 0; area < nr_vms; area++) {
3681 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3682 goto err_free_shadow;
3683
3684 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3685 sizes[area]);
3686 }
3687
ca23e405 3688 /* insert all vm's */
e36176be
URS
3689 spin_lock(&vmap_area_lock);
3690 for (area = 0; area < nr_vms; area++) {
3691 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3692
3693 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3694 pcpu_get_vm_areas);
e36176be
URS
3695 }
3696 spin_unlock(&vmap_area_lock);
ca23e405
TH
3697
3698 kfree(vas);
3699 return vms;
3700
68ad4a33 3701recovery:
e36176be
URS
3702 /*
3703 * Remove previously allocated areas. There is no
3704 * need in removing these areas from the busy tree,
3705 * because they are inserted only on the final step
3706 * and when pcpu_get_vm_areas() is success.
3707 */
68ad4a33 3708 while (area--) {
253a496d
DA
3709 orig_start = vas[area]->va_start;
3710 orig_end = vas[area]->va_end;
96e2db45
URS
3711 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3712 &free_vmap_area_list);
9c801f61
URS
3713 if (va)
3714 kasan_release_vmalloc(orig_start, orig_end,
3715 va->va_start, va->va_end);
68ad4a33
URS
3716 vas[area] = NULL;
3717 }
3718
3719overflow:
e36176be 3720 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3721 if (!purged) {
3722 purge_vmap_area_lazy();
3723 purged = true;
3724
3725 /* Before "retry", check if we recover. */
3726 for (area = 0; area < nr_vms; area++) {
3727 if (vas[area])
3728 continue;
3729
3730 vas[area] = kmem_cache_zalloc(
3731 vmap_area_cachep, GFP_KERNEL);
3732 if (!vas[area])
3733 goto err_free;
3734 }
3735
3736 goto retry;
3737 }
3738
ca23e405
TH
3739err_free:
3740 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3741 if (vas[area])
3742 kmem_cache_free(vmap_area_cachep, vas[area]);
3743
f1db7afd 3744 kfree(vms[area]);
ca23e405 3745 }
f1db7afd 3746err_free2:
ca23e405
TH
3747 kfree(vas);
3748 kfree(vms);
3749 return NULL;
253a496d
DA
3750
3751err_free_shadow:
3752 spin_lock(&free_vmap_area_lock);
3753 /*
3754 * We release all the vmalloc shadows, even the ones for regions that
3755 * hadn't been successfully added. This relies on kasan_release_vmalloc
3756 * being able to tolerate this case.
3757 */
3758 for (area = 0; area < nr_vms; area++) {
3759 orig_start = vas[area]->va_start;
3760 orig_end = vas[area]->va_end;
96e2db45
URS
3761 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3762 &free_vmap_area_list);
9c801f61
URS
3763 if (va)
3764 kasan_release_vmalloc(orig_start, orig_end,
3765 va->va_start, va->va_end);
253a496d
DA
3766 vas[area] = NULL;
3767 kfree(vms[area]);
3768 }
3769 spin_unlock(&free_vmap_area_lock);
3770 kfree(vas);
3771 kfree(vms);
3772 return NULL;
ca23e405
TH
3773}
3774
3775/**
3776 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3777 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3778 * @nr_vms: the number of allocated areas
3779 *
3780 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3781 */
3782void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3783{
3784 int i;
3785
3786 for (i = 0; i < nr_vms; i++)
3787 free_vm_area(vms[i]);
3788 kfree(vms);
3789}
4f8b02b4 3790#endif /* CONFIG_SMP */
a10aa579 3791
5bb1bb35 3792#ifdef CONFIG_PRINTK
98f18083
PM
3793bool vmalloc_dump_obj(void *object)
3794{
3795 struct vm_struct *vm;
3796 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3797
3798 vm = find_vm_area(objp);
3799 if (!vm)
3800 return false;
bd34dcd4
PM
3801 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3802 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
98f18083
PM
3803 return true;
3804}
5bb1bb35 3805#endif
98f18083 3806
a10aa579
CL
3807#ifdef CONFIG_PROC_FS
3808static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3809 __acquires(&vmap_purge_lock)
d4033afd 3810 __acquires(&vmap_area_lock)
a10aa579 3811{
e36176be 3812 mutex_lock(&vmap_purge_lock);
d4033afd 3813 spin_lock(&vmap_area_lock);
e36176be 3814
3f500069 3815 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3816}
3817
3818static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3819{
3f500069 3820 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3821}
3822
3823static void s_stop(struct seq_file *m, void *p)
d4033afd 3824 __releases(&vmap_area_lock)
0a7dd4e9 3825 __releases(&vmap_purge_lock)
a10aa579 3826{
d4033afd 3827 spin_unlock(&vmap_area_lock);
0a7dd4e9 3828 mutex_unlock(&vmap_purge_lock);
a10aa579
CL
3829}
3830
a47a126a
ED
3831static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3832{
e5adfffc 3833 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3834 unsigned int nr, *counters = m->private;
3835
3836 if (!counters)
3837 return;
3838
af12346c
WL
3839 if (v->flags & VM_UNINITIALIZED)
3840 return;
7e5b528b
DV
3841 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3842 smp_rmb();
af12346c 3843
a47a126a
ED
3844 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3845
3846 for (nr = 0; nr < v->nr_pages; nr++)
3847 counters[page_to_nid(v->pages[nr])]++;
3848
3849 for_each_node_state(nr, N_HIGH_MEMORY)
3850 if (counters[nr])
3851 seq_printf(m, " N%u=%u", nr, counters[nr]);
3852 }
3853}
3854
dd3b8353
URS
3855static void show_purge_info(struct seq_file *m)
3856{
dd3b8353
URS
3857 struct vmap_area *va;
3858
96e2db45
URS
3859 spin_lock(&purge_vmap_area_lock);
3860 list_for_each_entry(va, &purge_vmap_area_list, list) {
dd3b8353
URS
3861 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3862 (void *)va->va_start, (void *)va->va_end,
3863 va->va_end - va->va_start);
3864 }
96e2db45 3865 spin_unlock(&purge_vmap_area_lock);
dd3b8353
URS
3866}
3867
a10aa579
CL
3868static int s_show(struct seq_file *m, void *p)
3869{
3f500069 3870 struct vmap_area *va;
d4033afd
JK
3871 struct vm_struct *v;
3872
3f500069 3873 va = list_entry(p, struct vmap_area, list);
3874
c2ce8c14 3875 /*
688fcbfc
PL
3876 * s_show can encounter race with remove_vm_area, !vm on behalf
3877 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3878 */
688fcbfc 3879 if (!va->vm) {
dd3b8353 3880 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3881 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3882 va->va_end - va->va_start);
78c72746 3883
d4033afd 3884 return 0;
78c72746 3885 }
d4033afd
JK
3886
3887 v = va->vm;
a10aa579 3888
45ec1690 3889 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3890 v->addr, v->addr + v->size, v->size);
3891
62c70bce
JP
3892 if (v->caller)
3893 seq_printf(m, " %pS", v->caller);
23016969 3894
a10aa579
CL
3895 if (v->nr_pages)
3896 seq_printf(m, " pages=%d", v->nr_pages);
3897
3898 if (v->phys_addr)
199eaa05 3899 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3900
3901 if (v->flags & VM_IOREMAP)
f4527c90 3902 seq_puts(m, " ioremap");
a10aa579
CL
3903
3904 if (v->flags & VM_ALLOC)
f4527c90 3905 seq_puts(m, " vmalloc");
a10aa579
CL
3906
3907 if (v->flags & VM_MAP)
f4527c90 3908 seq_puts(m, " vmap");
a10aa579
CL
3909
3910 if (v->flags & VM_USERMAP)
f4527c90 3911 seq_puts(m, " user");
a10aa579 3912
fe9041c2
CH
3913 if (v->flags & VM_DMA_COHERENT)
3914 seq_puts(m, " dma-coherent");
3915
244d63ee 3916 if (is_vmalloc_addr(v->pages))
f4527c90 3917 seq_puts(m, " vpages");
a10aa579 3918
a47a126a 3919 show_numa_info(m, v);
a10aa579 3920 seq_putc(m, '\n');
dd3b8353
URS
3921
3922 /*
96e2db45 3923 * As a final step, dump "unpurged" areas.
dd3b8353
URS
3924 */
3925 if (list_is_last(&va->list, &vmap_area_list))
3926 show_purge_info(m);
3927
a10aa579
CL
3928 return 0;
3929}
3930
5f6a6a9c 3931static const struct seq_operations vmalloc_op = {
a10aa579
CL
3932 .start = s_start,
3933 .next = s_next,
3934 .stop = s_stop,
3935 .show = s_show,
3936};
5f6a6a9c 3937
5f6a6a9c
AD
3938static int __init proc_vmalloc_init(void)
3939{
fddda2b7 3940 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3941 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3942 &vmalloc_op,
3943 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3944 else
0825a6f9 3945 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3946 return 0;
3947}
3948module_init(proc_vmalloc_init);
db3808c1 3949
a10aa579 3950#endif