]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmalloc.c
mm: move free_area_empty() to mm/internal.h
[thirdparty/linux.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 7 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02 26#include <linux/rbtree.h>
0f14599c 27#include <linux/xarray.h>
5da96bdd 28#include <linux/io.h>
db64fe02 29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
4e5aa1f4 34#include <linux/memcontrol.h>
32fcfd40 35#include <linux/llist.h>
4c91c07c 36#include <linux/uio.h>
0f616be1 37#include <linux/bitops.h>
68ad4a33 38#include <linux/rbtree_augmented.h>
bdebd6a2 39#include <linux/overflow.h>
c0eb315a 40#include <linux/pgtable.h>
f7ee1f13 41#include <linux/hugetlb.h>
451769eb 42#include <linux/sched/mm.h>
1da177e4 43#include <asm/tlbflush.h>
2dca6999 44#include <asm/shmparam.h>
1da177e4 45
cf243da6
URS
46#define CREATE_TRACE_POINTS
47#include <trace/events/vmalloc.h>
48
dd56b046 49#include "internal.h"
2a681cfa 50#include "pgalloc-track.h"
dd56b046 51
82a70ce0
CH
52#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54
55static int __init set_nohugeiomap(char *str)
56{
57 ioremap_max_page_shift = PAGE_SHIFT;
58 return 0;
59}
60early_param("nohugeiomap", set_nohugeiomap);
61#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
64
121e6f32
NP
65#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66static bool __ro_after_init vmap_allow_huge = true;
67
68static int __init set_nohugevmalloc(char *str)
69{
70 vmap_allow_huge = false;
71 return 0;
72}
73early_param("nohugevmalloc", set_nohugevmalloc);
74#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75static const bool vmap_allow_huge = false;
76#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77
186525bd
IM
78bool is_vmalloc_addr(const void *x)
79{
4aff1dc4 80 unsigned long addr = (unsigned long)kasan_reset_tag(x);
186525bd
IM
81
82 return addr >= VMALLOC_START && addr < VMALLOC_END;
83}
84EXPORT_SYMBOL(is_vmalloc_addr);
85
32fcfd40
AV
86struct vfree_deferred {
87 struct llist_head list;
88 struct work_struct wq;
89};
90static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91
db64fe02 92/*** Page table manipulation functions ***/
5e9e3d77
NP
93static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 phys_addr_t phys_addr, pgprot_t prot,
f7ee1f13 95 unsigned int max_page_shift, pgtbl_mod_mask *mask)
5e9e3d77
NP
96{
97 pte_t *pte;
98 u64 pfn;
f7ee1f13 99 unsigned long size = PAGE_SIZE;
5e9e3d77
NP
100
101 pfn = phys_addr >> PAGE_SHIFT;
102 pte = pte_alloc_kernel_track(pmd, addr, mask);
103 if (!pte)
104 return -ENOMEM;
105 do {
106 BUG_ON(!pte_none(*pte));
f7ee1f13
CL
107
108#ifdef CONFIG_HUGETLB_PAGE
109 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 if (size != PAGE_SIZE) {
111 pte_t entry = pfn_pte(pfn, prot);
112
f7ee1f13
CL
113 entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 set_huge_pte_at(&init_mm, addr, pte, entry);
115 pfn += PFN_DOWN(size);
116 continue;
117 }
118#endif
5e9e3d77
NP
119 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 pfn++;
f7ee1f13 121 } while (pte += PFN_DOWN(size), addr += size, addr != end);
5e9e3d77
NP
122 *mask |= PGTBL_PTE_MODIFIED;
123 return 0;
124}
125
126static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 phys_addr_t phys_addr, pgprot_t prot,
128 unsigned int max_page_shift)
129{
130 if (max_page_shift < PMD_SHIFT)
131 return 0;
132
133 if (!arch_vmap_pmd_supported(prot))
134 return 0;
135
136 if ((end - addr) != PMD_SIZE)
137 return 0;
138
139 if (!IS_ALIGNED(addr, PMD_SIZE))
140 return 0;
141
142 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 return 0;
144
145 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 return 0;
147
148 return pmd_set_huge(pmd, phys_addr, prot);
149}
150
151static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 phys_addr_t phys_addr, pgprot_t prot,
153 unsigned int max_page_shift, pgtbl_mod_mask *mask)
154{
155 pmd_t *pmd;
156 unsigned long next;
157
158 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 if (!pmd)
160 return -ENOMEM;
161 do {
162 next = pmd_addr_end(addr, end);
163
164 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 max_page_shift)) {
166 *mask |= PGTBL_PMD_MODIFIED;
167 continue;
168 }
169
f7ee1f13 170 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
5e9e3d77
NP
171 return -ENOMEM;
172 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 return 0;
174}
175
176static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 phys_addr_t phys_addr, pgprot_t prot,
178 unsigned int max_page_shift)
179{
180 if (max_page_shift < PUD_SHIFT)
181 return 0;
182
183 if (!arch_vmap_pud_supported(prot))
184 return 0;
185
186 if ((end - addr) != PUD_SIZE)
187 return 0;
188
189 if (!IS_ALIGNED(addr, PUD_SIZE))
190 return 0;
191
192 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 return 0;
194
195 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 return 0;
197
198 return pud_set_huge(pud, phys_addr, prot);
199}
200
201static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 phys_addr_t phys_addr, pgprot_t prot,
203 unsigned int max_page_shift, pgtbl_mod_mask *mask)
204{
205 pud_t *pud;
206 unsigned long next;
207
208 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 if (!pud)
210 return -ENOMEM;
211 do {
212 next = pud_addr_end(addr, end);
213
214 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 max_page_shift)) {
216 *mask |= PGTBL_PUD_MODIFIED;
217 continue;
218 }
219
220 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 max_page_shift, mask))
222 return -ENOMEM;
223 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 return 0;
225}
226
227static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 phys_addr_t phys_addr, pgprot_t prot,
229 unsigned int max_page_shift)
230{
231 if (max_page_shift < P4D_SHIFT)
232 return 0;
233
234 if (!arch_vmap_p4d_supported(prot))
235 return 0;
236
237 if ((end - addr) != P4D_SIZE)
238 return 0;
239
240 if (!IS_ALIGNED(addr, P4D_SIZE))
241 return 0;
242
243 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 return 0;
245
246 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 return 0;
248
249 return p4d_set_huge(p4d, phys_addr, prot);
250}
251
252static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 phys_addr_t phys_addr, pgprot_t prot,
254 unsigned int max_page_shift, pgtbl_mod_mask *mask)
255{
256 p4d_t *p4d;
257 unsigned long next;
258
259 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 if (!p4d)
261 return -ENOMEM;
262 do {
263 next = p4d_addr_end(addr, end);
264
265 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 max_page_shift)) {
267 *mask |= PGTBL_P4D_MODIFIED;
268 continue;
269 }
270
271 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 max_page_shift, mask))
273 return -ENOMEM;
274 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 return 0;
276}
277
5d87510d 278static int vmap_range_noflush(unsigned long addr, unsigned long end,
5e9e3d77
NP
279 phys_addr_t phys_addr, pgprot_t prot,
280 unsigned int max_page_shift)
281{
282 pgd_t *pgd;
283 unsigned long start;
284 unsigned long next;
285 int err;
286 pgtbl_mod_mask mask = 0;
287
288 might_sleep();
289 BUG_ON(addr >= end);
290
291 start = addr;
292 pgd = pgd_offset_k(addr);
293 do {
294 next = pgd_addr_end(addr, end);
295 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 max_page_shift, &mask);
297 if (err)
298 break;
299 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300
5e9e3d77
NP
301 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 arch_sync_kernel_mappings(start, end);
303
304 return err;
305}
b221385b 306
82a70ce0
CH
307int ioremap_page_range(unsigned long addr, unsigned long end,
308 phys_addr_t phys_addr, pgprot_t prot)
5d87510d
NP
309{
310 int err;
311
8491502f 312 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
82a70ce0 313 ioremap_max_page_shift);
5d87510d 314 flush_cache_vmap(addr, end);
b073d7f8 315 if (!err)
fdea03e1
AP
316 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 ioremap_max_page_shift);
5d87510d
NP
318 return err;
319}
320
2ba3e694
JR
321static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
322 pgtbl_mod_mask *mask)
1da177e4
LT
323{
324 pte_t *pte;
325
326 pte = pte_offset_kernel(pmd, addr);
327 do {
328 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
329 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
330 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 331 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
332}
333
2ba3e694
JR
334static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
335 pgtbl_mod_mask *mask)
1da177e4
LT
336{
337 pmd_t *pmd;
338 unsigned long next;
2ba3e694 339 int cleared;
1da177e4
LT
340
341 pmd = pmd_offset(pud, addr);
342 do {
343 next = pmd_addr_end(addr, end);
2ba3e694
JR
344
345 cleared = pmd_clear_huge(pmd);
346 if (cleared || pmd_bad(*pmd))
347 *mask |= PGTBL_PMD_MODIFIED;
348
349 if (cleared)
b9820d8f 350 continue;
1da177e4
LT
351 if (pmd_none_or_clear_bad(pmd))
352 continue;
2ba3e694 353 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
354
355 cond_resched();
1da177e4
LT
356 } while (pmd++, addr = next, addr != end);
357}
358
2ba3e694
JR
359static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
360 pgtbl_mod_mask *mask)
1da177e4
LT
361{
362 pud_t *pud;
363 unsigned long next;
2ba3e694 364 int cleared;
1da177e4 365
c2febafc 366 pud = pud_offset(p4d, addr);
1da177e4
LT
367 do {
368 next = pud_addr_end(addr, end);
2ba3e694
JR
369
370 cleared = pud_clear_huge(pud);
371 if (cleared || pud_bad(*pud))
372 *mask |= PGTBL_PUD_MODIFIED;
373
374 if (cleared)
b9820d8f 375 continue;
1da177e4
LT
376 if (pud_none_or_clear_bad(pud))
377 continue;
2ba3e694 378 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
379 } while (pud++, addr = next, addr != end);
380}
381
2ba3e694
JR
382static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
383 pgtbl_mod_mask *mask)
c2febafc
KS
384{
385 p4d_t *p4d;
386 unsigned long next;
387
388 p4d = p4d_offset(pgd, addr);
389 do {
390 next = p4d_addr_end(addr, end);
2ba3e694 391
c8db8c26
L
392 p4d_clear_huge(p4d);
393 if (p4d_bad(*p4d))
2ba3e694
JR
394 *mask |= PGTBL_P4D_MODIFIED;
395
c2febafc
KS
396 if (p4d_none_or_clear_bad(p4d))
397 continue;
2ba3e694 398 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
399 } while (p4d++, addr = next, addr != end);
400}
401
4ad0ae8c
NP
402/*
403 * vunmap_range_noflush is similar to vunmap_range, but does not
404 * flush caches or TLBs.
b521c43f 405 *
4ad0ae8c
NP
406 * The caller is responsible for calling flush_cache_vmap() before calling
407 * this function, and flush_tlb_kernel_range after it has returned
408 * successfully (and before the addresses are expected to cause a page fault
409 * or be re-mapped for something else, if TLB flushes are being delayed or
410 * coalesced).
b521c43f 411 *
4ad0ae8c 412 * This is an internal function only. Do not use outside mm/.
b521c43f 413 */
b073d7f8 414void __vunmap_range_noflush(unsigned long start, unsigned long end)
1da177e4 415{
1da177e4 416 unsigned long next;
b521c43f 417 pgd_t *pgd;
2ba3e694
JR
418 unsigned long addr = start;
419 pgtbl_mod_mask mask = 0;
1da177e4
LT
420
421 BUG_ON(addr >= end);
422 pgd = pgd_offset_k(addr);
1da177e4
LT
423 do {
424 next = pgd_addr_end(addr, end);
2ba3e694
JR
425 if (pgd_bad(*pgd))
426 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
427 if (pgd_none_or_clear_bad(pgd))
428 continue;
2ba3e694 429 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 430 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
431
432 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
433 arch_sync_kernel_mappings(start, end);
1da177e4
LT
434}
435
b073d7f8
AP
436void vunmap_range_noflush(unsigned long start, unsigned long end)
437{
438 kmsan_vunmap_range_noflush(start, end);
439 __vunmap_range_noflush(start, end);
440}
441
4ad0ae8c
NP
442/**
443 * vunmap_range - unmap kernel virtual addresses
444 * @addr: start of the VM area to unmap
445 * @end: end of the VM area to unmap (non-inclusive)
446 *
447 * Clears any present PTEs in the virtual address range, flushes TLBs and
448 * caches. Any subsequent access to the address before it has been re-mapped
449 * is a kernel bug.
450 */
451void vunmap_range(unsigned long addr, unsigned long end)
452{
453 flush_cache_vunmap(addr, end);
454 vunmap_range_noflush(addr, end);
455 flush_tlb_kernel_range(addr, end);
456}
457
0a264884 458static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
459 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
460 pgtbl_mod_mask *mask)
1da177e4
LT
461{
462 pte_t *pte;
463
db64fe02
NP
464 /*
465 * nr is a running index into the array which helps higher level
466 * callers keep track of where we're up to.
467 */
468
2ba3e694 469 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
470 if (!pte)
471 return -ENOMEM;
472 do {
db64fe02
NP
473 struct page *page = pages[*nr];
474
475 if (WARN_ON(!pte_none(*pte)))
476 return -EBUSY;
477 if (WARN_ON(!page))
1da177e4 478 return -ENOMEM;
4fcdcc12
YN
479 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
480 return -EINVAL;
481
1da177e4 482 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 483 (*nr)++;
1da177e4 484 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 485 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
486 return 0;
487}
488
0a264884 489static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
490 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
491 pgtbl_mod_mask *mask)
1da177e4
LT
492{
493 pmd_t *pmd;
494 unsigned long next;
495
2ba3e694 496 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
497 if (!pmd)
498 return -ENOMEM;
499 do {
500 next = pmd_addr_end(addr, end);
0a264884 501 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
502 return -ENOMEM;
503 } while (pmd++, addr = next, addr != end);
504 return 0;
505}
506
0a264884 507static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
508 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
509 pgtbl_mod_mask *mask)
1da177e4
LT
510{
511 pud_t *pud;
512 unsigned long next;
513
2ba3e694 514 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
515 if (!pud)
516 return -ENOMEM;
517 do {
518 next = pud_addr_end(addr, end);
0a264884 519 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
520 return -ENOMEM;
521 } while (pud++, addr = next, addr != end);
522 return 0;
523}
524
0a264884 525static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
526 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
527 pgtbl_mod_mask *mask)
c2febafc
KS
528{
529 p4d_t *p4d;
530 unsigned long next;
531
2ba3e694 532 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
533 if (!p4d)
534 return -ENOMEM;
535 do {
536 next = p4d_addr_end(addr, end);
0a264884 537 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
538 return -ENOMEM;
539 } while (p4d++, addr = next, addr != end);
540 return 0;
541}
542
121e6f32
NP
543static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
544 pgprot_t prot, struct page **pages)
1da177e4 545{
2ba3e694 546 unsigned long start = addr;
b521c43f 547 pgd_t *pgd;
121e6f32 548 unsigned long next;
db64fe02
NP
549 int err = 0;
550 int nr = 0;
2ba3e694 551 pgtbl_mod_mask mask = 0;
1da177e4
LT
552
553 BUG_ON(addr >= end);
554 pgd = pgd_offset_k(addr);
1da177e4
LT
555 do {
556 next = pgd_addr_end(addr, end);
2ba3e694
JR
557 if (pgd_bad(*pgd))
558 mask |= PGTBL_PGD_MODIFIED;
0a264884 559 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 560 if (err)
bf88c8c8 561 return err;
1da177e4 562 } while (pgd++, addr = next, addr != end);
db64fe02 563
2ba3e694
JR
564 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
565 arch_sync_kernel_mappings(start, end);
566
60bb4465 567 return 0;
1da177e4
LT
568}
569
b67177ec
NP
570/*
571 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
572 * flush caches.
573 *
574 * The caller is responsible for calling flush_cache_vmap() after this
575 * function returns successfully and before the addresses are accessed.
576 *
577 * This is an internal function only. Do not use outside mm/.
578 */
b073d7f8 579int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
121e6f32
NP
580 pgprot_t prot, struct page **pages, unsigned int page_shift)
581{
582 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
583
584 WARN_ON(page_shift < PAGE_SHIFT);
585
586 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
587 page_shift == PAGE_SHIFT)
588 return vmap_small_pages_range_noflush(addr, end, prot, pages);
589
590 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
591 int err;
592
593 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
08262ac5 594 page_to_phys(pages[i]), prot,
121e6f32
NP
595 page_shift);
596 if (err)
597 return err;
598
599 addr += 1UL << page_shift;
600 }
601
602 return 0;
603}
b073d7f8
AP
604
605int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
606 pgprot_t prot, struct page **pages, unsigned int page_shift)
607{
47ebd031
AP
608 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
609 page_shift);
610
611 if (ret)
612 return ret;
b073d7f8
AP
613 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
614}
121e6f32 615
121e6f32 616/**
b67177ec 617 * vmap_pages_range - map pages to a kernel virtual address
121e6f32 618 * @addr: start of the VM area to map
b67177ec 619 * @end: end of the VM area to map (non-inclusive)
121e6f32 620 * @prot: page protection flags to use
b67177ec
NP
621 * @pages: pages to map (always PAGE_SIZE pages)
622 * @page_shift: maximum shift that the pages may be mapped with, @pages must
623 * be aligned and contiguous up to at least this shift.
121e6f32
NP
624 *
625 * RETURNS:
626 * 0 on success, -errno on failure.
627 */
b67177ec
NP
628static int vmap_pages_range(unsigned long addr, unsigned long end,
629 pgprot_t prot, struct page **pages, unsigned int page_shift)
8fc48985 630{
b67177ec 631 int err;
8fc48985 632
b67177ec
NP
633 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
634 flush_cache_vmap(addr, end);
635 return err;
8fc48985
TH
636}
637
81ac3ad9 638int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
639{
640 /*
ab4f2ee1 641 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
642 * and fall back on vmalloc() if that fails. Others
643 * just put it in the vmalloc space.
644 */
645#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
4aff1dc4 646 unsigned long addr = (unsigned long)kasan_reset_tag(x);
73bdf0a6
LT
647 if (addr >= MODULES_VADDR && addr < MODULES_END)
648 return 1;
649#endif
650 return is_vmalloc_addr(x);
651}
01858469 652EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
73bdf0a6 653
48667e7a 654/*
c0eb315a
NP
655 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
656 * return the tail page that corresponds to the base page address, which
657 * matches small vmap mappings.
48667e7a 658 */
add688fb 659struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
660{
661 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 662 struct page *page = NULL;
48667e7a 663 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
664 p4d_t *p4d;
665 pud_t *pud;
666 pmd_t *pmd;
667 pte_t *ptep, pte;
48667e7a 668
7aa413de
IM
669 /*
670 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
671 * architectures that do not vmalloc module space
672 */
73bdf0a6 673 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 674
c2febafc
KS
675 if (pgd_none(*pgd))
676 return NULL;
c0eb315a
NP
677 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
678 return NULL; /* XXX: no allowance for huge pgd */
679 if (WARN_ON_ONCE(pgd_bad(*pgd)))
680 return NULL;
681
c2febafc
KS
682 p4d = p4d_offset(pgd, addr);
683 if (p4d_none(*p4d))
684 return NULL;
c0eb315a
NP
685 if (p4d_leaf(*p4d))
686 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
687 if (WARN_ON_ONCE(p4d_bad(*p4d)))
688 return NULL;
029c54b0 689
c0eb315a
NP
690 pud = pud_offset(p4d, addr);
691 if (pud_none(*pud))
692 return NULL;
693 if (pud_leaf(*pud))
694 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
695 if (WARN_ON_ONCE(pud_bad(*pud)))
c2febafc 696 return NULL;
c0eb315a 697
c2febafc 698 pmd = pmd_offset(pud, addr);
c0eb315a
NP
699 if (pmd_none(*pmd))
700 return NULL;
701 if (pmd_leaf(*pmd))
702 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
703 if (WARN_ON_ONCE(pmd_bad(*pmd)))
c2febafc
KS
704 return NULL;
705
706 ptep = pte_offset_map(pmd, addr);
707 pte = *ptep;
708 if (pte_present(pte))
709 page = pte_page(pte);
710 pte_unmap(ptep);
c0eb315a 711
add688fb 712 return page;
48667e7a 713}
add688fb 714EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
715
716/*
add688fb 717 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 718 */
add688fb 719unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 720{
add688fb 721 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 722}
add688fb 723EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 724
db64fe02
NP
725
726/*** Global kva allocator ***/
727
bb850f4d 728#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 729#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 730
db64fe02 731
db64fe02 732static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 733static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
734/* Export for kexec only */
735LIST_HEAD(vmap_area_list);
89699605 736static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 737static bool vmap_initialized __read_mostly;
89699605 738
96e2db45
URS
739static struct rb_root purge_vmap_area_root = RB_ROOT;
740static LIST_HEAD(purge_vmap_area_list);
741static DEFINE_SPINLOCK(purge_vmap_area_lock);
742
68ad4a33
URS
743/*
744 * This kmem_cache is used for vmap_area objects. Instead of
745 * allocating from slab we reuse an object from this cache to
746 * make things faster. Especially in "no edge" splitting of
747 * free block.
748 */
749static struct kmem_cache *vmap_area_cachep;
750
751/*
752 * This linked list is used in pair with free_vmap_area_root.
753 * It gives O(1) access to prev/next to perform fast coalescing.
754 */
755static LIST_HEAD(free_vmap_area_list);
756
757/*
758 * This augment red-black tree represents the free vmap space.
759 * All vmap_area objects in this tree are sorted by va->va_start
760 * address. It is used for allocation and merging when a vmap
761 * object is released.
762 *
763 * Each vmap_area node contains a maximum available free block
764 * of its sub-tree, right or left. Therefore it is possible to
765 * find a lowest match of free area.
766 */
767static struct rb_root free_vmap_area_root = RB_ROOT;
768
82dd23e8
URS
769/*
770 * Preload a CPU with one object for "no edge" split case. The
771 * aim is to get rid of allocations from the atomic context, thus
772 * to use more permissive allocation masks.
773 */
774static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
775
68ad4a33
URS
776static __always_inline unsigned long
777va_size(struct vmap_area *va)
778{
779 return (va->va_end - va->va_start);
780}
781
782static __always_inline unsigned long
783get_subtree_max_size(struct rb_node *node)
784{
785 struct vmap_area *va;
786
787 va = rb_entry_safe(node, struct vmap_area, rb_node);
788 return va ? va->subtree_max_size : 0;
789}
89699605 790
315cc066
ML
791RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
792 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
793
794static void purge_vmap_area_lazy(void);
795static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
690467c8
URS
796static void drain_vmap_area_work(struct work_struct *work);
797static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
db64fe02 798
97105f0a
RG
799static atomic_long_t nr_vmalloc_pages;
800
801unsigned long vmalloc_nr_pages(void)
802{
803 return atomic_long_read(&nr_vmalloc_pages);
804}
805
153090f2 806/* Look up the first VA which satisfies addr < va_end, NULL if none. */
f181234a
CW
807static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
808{
809 struct vmap_area *va = NULL;
810 struct rb_node *n = vmap_area_root.rb_node;
811
4aff1dc4
AK
812 addr = (unsigned long)kasan_reset_tag((void *)addr);
813
f181234a
CW
814 while (n) {
815 struct vmap_area *tmp;
816
817 tmp = rb_entry(n, struct vmap_area, rb_node);
818 if (tmp->va_end > addr) {
819 va = tmp;
820 if (tmp->va_start <= addr)
821 break;
822
823 n = n->rb_left;
824 } else
825 n = n->rb_right;
826 }
827
828 return va;
829}
830
899c6efe 831static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1da177e4 832{
899c6efe 833 struct rb_node *n = root->rb_node;
db64fe02 834
4aff1dc4
AK
835 addr = (unsigned long)kasan_reset_tag((void *)addr);
836
db64fe02
NP
837 while (n) {
838 struct vmap_area *va;
839
840 va = rb_entry(n, struct vmap_area, rb_node);
841 if (addr < va->va_start)
842 n = n->rb_left;
cef2ac3f 843 else if (addr >= va->va_end)
db64fe02
NP
844 n = n->rb_right;
845 else
846 return va;
847 }
848
849 return NULL;
850}
851
68ad4a33
URS
852/*
853 * This function returns back addresses of parent node
854 * and its left or right link for further processing.
9c801f61
URS
855 *
856 * Otherwise NULL is returned. In that case all further
857 * steps regarding inserting of conflicting overlap range
858 * have to be declined and actually considered as a bug.
68ad4a33
URS
859 */
860static __always_inline struct rb_node **
861find_va_links(struct vmap_area *va,
862 struct rb_root *root, struct rb_node *from,
863 struct rb_node **parent)
864{
865 struct vmap_area *tmp_va;
866 struct rb_node **link;
867
868 if (root) {
869 link = &root->rb_node;
870 if (unlikely(!*link)) {
871 *parent = NULL;
872 return link;
873 }
874 } else {
875 link = &from;
876 }
db64fe02 877
68ad4a33
URS
878 /*
879 * Go to the bottom of the tree. When we hit the last point
880 * we end up with parent rb_node and correct direction, i name
881 * it link, where the new va->rb_node will be attached to.
882 */
883 do {
884 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 885
68ad4a33
URS
886 /*
887 * During the traversal we also do some sanity check.
888 * Trigger the BUG() if there are sides(left/right)
889 * or full overlaps.
890 */
753df96b 891 if (va->va_end <= tmp_va->va_start)
68ad4a33 892 link = &(*link)->rb_left;
753df96b 893 else if (va->va_start >= tmp_va->va_end)
68ad4a33 894 link = &(*link)->rb_right;
9c801f61
URS
895 else {
896 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
897 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
898
899 return NULL;
900 }
68ad4a33
URS
901 } while (*link);
902
903 *parent = &tmp_va->rb_node;
904 return link;
905}
906
907static __always_inline struct list_head *
908get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
909{
910 struct list_head *list;
911
912 if (unlikely(!parent))
913 /*
914 * The red-black tree where we try to find VA neighbors
915 * before merging or inserting is empty, i.e. it means
916 * there is no free vmap space. Normally it does not
917 * happen but we handle this case anyway.
918 */
919 return NULL;
920
921 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
922 return (&parent->rb_right == link ? list->next : list);
923}
924
925static __always_inline void
8eb510db
URS
926__link_va(struct vmap_area *va, struct rb_root *root,
927 struct rb_node *parent, struct rb_node **link,
928 struct list_head *head, bool augment)
68ad4a33
URS
929{
930 /*
931 * VA is still not in the list, but we can
932 * identify its future previous list_head node.
933 */
934 if (likely(parent)) {
935 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
936 if (&parent->rb_right != link)
937 head = head->prev;
db64fe02
NP
938 }
939
68ad4a33
URS
940 /* Insert to the rb-tree */
941 rb_link_node(&va->rb_node, parent, link);
8eb510db 942 if (augment) {
68ad4a33
URS
943 /*
944 * Some explanation here. Just perform simple insertion
945 * to the tree. We do not set va->subtree_max_size to
946 * its current size before calling rb_insert_augmented().
153090f2 947 * It is because we populate the tree from the bottom
68ad4a33
URS
948 * to parent levels when the node _is_ in the tree.
949 *
950 * Therefore we set subtree_max_size to zero after insertion,
951 * to let __augment_tree_propagate_from() puts everything to
952 * the correct order later on.
953 */
954 rb_insert_augmented(&va->rb_node,
955 root, &free_vmap_area_rb_augment_cb);
956 va->subtree_max_size = 0;
957 } else {
958 rb_insert_color(&va->rb_node, root);
959 }
db64fe02 960
68ad4a33
URS
961 /* Address-sort this list */
962 list_add(&va->list, head);
db64fe02
NP
963}
964
68ad4a33 965static __always_inline void
8eb510db
URS
966link_va(struct vmap_area *va, struct rb_root *root,
967 struct rb_node *parent, struct rb_node **link,
968 struct list_head *head)
969{
970 __link_va(va, root, parent, link, head, false);
971}
972
973static __always_inline void
974link_va_augment(struct vmap_area *va, struct rb_root *root,
975 struct rb_node *parent, struct rb_node **link,
976 struct list_head *head)
977{
978 __link_va(va, root, parent, link, head, true);
979}
980
981static __always_inline void
982__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
68ad4a33 983{
460e42d1
URS
984 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
985 return;
db64fe02 986
8eb510db 987 if (augment)
460e42d1
URS
988 rb_erase_augmented(&va->rb_node,
989 root, &free_vmap_area_rb_augment_cb);
990 else
991 rb_erase(&va->rb_node, root);
992
5d7a7c54 993 list_del_init(&va->list);
460e42d1 994 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
995}
996
8eb510db
URS
997static __always_inline void
998unlink_va(struct vmap_area *va, struct rb_root *root)
999{
1000 __unlink_va(va, root, false);
1001}
1002
1003static __always_inline void
1004unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1005{
1006 __unlink_va(va, root, true);
1007}
1008
bb850f4d 1009#if DEBUG_AUGMENT_PROPAGATE_CHECK
c3385e84
JC
1010/*
1011 * Gets called when remove the node and rotate.
1012 */
1013static __always_inline unsigned long
1014compute_subtree_max_size(struct vmap_area *va)
1015{
1016 return max3(va_size(va),
1017 get_subtree_max_size(va->rb_node.rb_left),
1018 get_subtree_max_size(va->rb_node.rb_right));
1019}
1020
bb850f4d 1021static void
da27c9ed 1022augment_tree_propagate_check(void)
bb850f4d
URS
1023{
1024 struct vmap_area *va;
da27c9ed 1025 unsigned long computed_size;
bb850f4d 1026
da27c9ed
URS
1027 list_for_each_entry(va, &free_vmap_area_list, list) {
1028 computed_size = compute_subtree_max_size(va);
1029 if (computed_size != va->subtree_max_size)
1030 pr_emerg("tree is corrupted: %lu, %lu\n",
1031 va_size(va), va->subtree_max_size);
bb850f4d 1032 }
bb850f4d
URS
1033}
1034#endif
1035
68ad4a33
URS
1036/*
1037 * This function populates subtree_max_size from bottom to upper
1038 * levels starting from VA point. The propagation must be done
1039 * when VA size is modified by changing its va_start/va_end. Or
1040 * in case of newly inserting of VA to the tree.
1041 *
1042 * It means that __augment_tree_propagate_from() must be called:
1043 * - After VA has been inserted to the tree(free path);
1044 * - After VA has been shrunk(allocation path);
1045 * - After VA has been increased(merging path).
1046 *
1047 * Please note that, it does not mean that upper parent nodes
1048 * and their subtree_max_size are recalculated all the time up
1049 * to the root node.
1050 *
1051 * 4--8
1052 * /\
1053 * / \
1054 * / \
1055 * 2--2 8--8
1056 *
1057 * For example if we modify the node 4, shrinking it to 2, then
1058 * no any modification is required. If we shrink the node 2 to 1
1059 * its subtree_max_size is updated only, and set to 1. If we shrink
1060 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1061 * node becomes 4--6.
1062 */
1063static __always_inline void
1064augment_tree_propagate_from(struct vmap_area *va)
1065{
15ae144f
URS
1066 /*
1067 * Populate the tree from bottom towards the root until
1068 * the calculated maximum available size of checked node
1069 * is equal to its current one.
1070 */
1071 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
1072
1073#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 1074 augment_tree_propagate_check();
bb850f4d 1075#endif
68ad4a33
URS
1076}
1077
1078static void
1079insert_vmap_area(struct vmap_area *va,
1080 struct rb_root *root, struct list_head *head)
1081{
1082 struct rb_node **link;
1083 struct rb_node *parent;
1084
1085 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1086 if (link)
1087 link_va(va, root, parent, link, head);
68ad4a33
URS
1088}
1089
1090static void
1091insert_vmap_area_augment(struct vmap_area *va,
1092 struct rb_node *from, struct rb_root *root,
1093 struct list_head *head)
1094{
1095 struct rb_node **link;
1096 struct rb_node *parent;
1097
1098 if (from)
1099 link = find_va_links(va, NULL, from, &parent);
1100 else
1101 link = find_va_links(va, root, NULL, &parent);
1102
9c801f61 1103 if (link) {
8eb510db 1104 link_va_augment(va, root, parent, link, head);
9c801f61
URS
1105 augment_tree_propagate_from(va);
1106 }
68ad4a33
URS
1107}
1108
1109/*
1110 * Merge de-allocated chunk of VA memory with previous
1111 * and next free blocks. If coalesce is not done a new
1112 * free area is inserted. If VA has been merged, it is
1113 * freed.
9c801f61
URS
1114 *
1115 * Please note, it can return NULL in case of overlap
1116 * ranges, followed by WARN() report. Despite it is a
1117 * buggy behaviour, a system can be alive and keep
1118 * ongoing.
68ad4a33 1119 */
3c5c3cfb 1120static __always_inline struct vmap_area *
8eb510db
URS
1121__merge_or_add_vmap_area(struct vmap_area *va,
1122 struct rb_root *root, struct list_head *head, bool augment)
68ad4a33
URS
1123{
1124 struct vmap_area *sibling;
1125 struct list_head *next;
1126 struct rb_node **link;
1127 struct rb_node *parent;
1128 bool merged = false;
1129
1130 /*
1131 * Find a place in the tree where VA potentially will be
1132 * inserted, unless it is merged with its sibling/siblings.
1133 */
1134 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1135 if (!link)
1136 return NULL;
68ad4a33
URS
1137
1138 /*
1139 * Get next node of VA to check if merging can be done.
1140 */
1141 next = get_va_next_sibling(parent, link);
1142 if (unlikely(next == NULL))
1143 goto insert;
1144
1145 /*
1146 * start end
1147 * | |
1148 * |<------VA------>|<-----Next----->|
1149 * | |
1150 * start end
1151 */
1152 if (next != head) {
1153 sibling = list_entry(next, struct vmap_area, list);
1154 if (sibling->va_start == va->va_end) {
1155 sibling->va_start = va->va_start;
1156
68ad4a33
URS
1157 /* Free vmap_area object. */
1158 kmem_cache_free(vmap_area_cachep, va);
1159
1160 /* Point to the new merged area. */
1161 va = sibling;
1162 merged = true;
1163 }
1164 }
1165
1166 /*
1167 * start end
1168 * | |
1169 * |<-----Prev----->|<------VA------>|
1170 * | |
1171 * start end
1172 */
1173 if (next->prev != head) {
1174 sibling = list_entry(next->prev, struct vmap_area, list);
1175 if (sibling->va_end == va->va_start) {
5dd78640
URS
1176 /*
1177 * If both neighbors are coalesced, it is important
1178 * to unlink the "next" node first, followed by merging
1179 * with "previous" one. Otherwise the tree might not be
1180 * fully populated if a sibling's augmented value is
1181 * "normalized" because of rotation operations.
1182 */
54f63d9d 1183 if (merged)
8eb510db 1184 __unlink_va(va, root, augment);
68ad4a33 1185
5dd78640
URS
1186 sibling->va_end = va->va_end;
1187
68ad4a33
URS
1188 /* Free vmap_area object. */
1189 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
1190
1191 /* Point to the new merged area. */
1192 va = sibling;
1193 merged = true;
68ad4a33
URS
1194 }
1195 }
1196
1197insert:
5dd78640 1198 if (!merged)
8eb510db 1199 __link_va(va, root, parent, link, head, augment);
3c5c3cfb 1200
96e2db45
URS
1201 return va;
1202}
1203
8eb510db
URS
1204static __always_inline struct vmap_area *
1205merge_or_add_vmap_area(struct vmap_area *va,
1206 struct rb_root *root, struct list_head *head)
1207{
1208 return __merge_or_add_vmap_area(va, root, head, false);
1209}
1210
96e2db45
URS
1211static __always_inline struct vmap_area *
1212merge_or_add_vmap_area_augment(struct vmap_area *va,
1213 struct rb_root *root, struct list_head *head)
1214{
8eb510db 1215 va = __merge_or_add_vmap_area(va, root, head, true);
96e2db45
URS
1216 if (va)
1217 augment_tree_propagate_from(va);
1218
3c5c3cfb 1219 return va;
68ad4a33
URS
1220}
1221
1222static __always_inline bool
1223is_within_this_va(struct vmap_area *va, unsigned long size,
1224 unsigned long align, unsigned long vstart)
1225{
1226 unsigned long nva_start_addr;
1227
1228 if (va->va_start > vstart)
1229 nva_start_addr = ALIGN(va->va_start, align);
1230 else
1231 nva_start_addr = ALIGN(vstart, align);
1232
1233 /* Can be overflowed due to big size or alignment. */
1234 if (nva_start_addr + size < nva_start_addr ||
1235 nva_start_addr < vstart)
1236 return false;
1237
1238 return (nva_start_addr + size <= va->va_end);
1239}
1240
1241/*
1242 * Find the first free block(lowest start address) in the tree,
1243 * that will accomplish the request corresponding to passing
9333fe98
UR
1244 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1245 * a search length is adjusted to account for worst case alignment
1246 * overhead.
68ad4a33
URS
1247 */
1248static __always_inline struct vmap_area *
f9863be4
URS
1249find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1250 unsigned long align, unsigned long vstart, bool adjust_search_size)
68ad4a33
URS
1251{
1252 struct vmap_area *va;
1253 struct rb_node *node;
9333fe98 1254 unsigned long length;
68ad4a33
URS
1255
1256 /* Start from the root. */
f9863be4 1257 node = root->rb_node;
68ad4a33 1258
9333fe98
UR
1259 /* Adjust the search size for alignment overhead. */
1260 length = adjust_search_size ? size + align - 1 : size;
1261
68ad4a33
URS
1262 while (node) {
1263 va = rb_entry(node, struct vmap_area, rb_node);
1264
9333fe98 1265 if (get_subtree_max_size(node->rb_left) >= length &&
68ad4a33
URS
1266 vstart < va->va_start) {
1267 node = node->rb_left;
1268 } else {
1269 if (is_within_this_va(va, size, align, vstart))
1270 return va;
1271
1272 /*
1273 * Does not make sense to go deeper towards the right
1274 * sub-tree if it does not have a free block that is
9333fe98 1275 * equal or bigger to the requested search length.
68ad4a33 1276 */
9333fe98 1277 if (get_subtree_max_size(node->rb_right) >= length) {
68ad4a33
URS
1278 node = node->rb_right;
1279 continue;
1280 }
1281
1282 /*
3806b041 1283 * OK. We roll back and find the first right sub-tree,
68ad4a33 1284 * that will satisfy the search criteria. It can happen
9f531973
URS
1285 * due to "vstart" restriction or an alignment overhead
1286 * that is bigger then PAGE_SIZE.
68ad4a33
URS
1287 */
1288 while ((node = rb_parent(node))) {
1289 va = rb_entry(node, struct vmap_area, rb_node);
1290 if (is_within_this_va(va, size, align, vstart))
1291 return va;
1292
9333fe98 1293 if (get_subtree_max_size(node->rb_right) >= length &&
68ad4a33 1294 vstart <= va->va_start) {
9f531973
URS
1295 /*
1296 * Shift the vstart forward. Please note, we update it with
1297 * parent's start address adding "1" because we do not want
1298 * to enter same sub-tree after it has already been checked
1299 * and no suitable free block found there.
1300 */
1301 vstart = va->va_start + 1;
68ad4a33
URS
1302 node = node->rb_right;
1303 break;
1304 }
1305 }
1306 }
1307 }
1308
1309 return NULL;
1310}
1311
a6cf4e0f
URS
1312#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1313#include <linux/random.h>
1314
1315static struct vmap_area *
bd1264c3 1316find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
a6cf4e0f
URS
1317 unsigned long align, unsigned long vstart)
1318{
1319 struct vmap_area *va;
1320
bd1264c3 1321 list_for_each_entry(va, head, list) {
a6cf4e0f
URS
1322 if (!is_within_this_va(va, size, align, vstart))
1323 continue;
1324
1325 return va;
1326 }
1327
1328 return NULL;
1329}
1330
1331static void
bd1264c3
SL
1332find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1333 unsigned long size, unsigned long align)
a6cf4e0f
URS
1334{
1335 struct vmap_area *va_1, *va_2;
1336 unsigned long vstart;
1337 unsigned int rnd;
1338
1339 get_random_bytes(&rnd, sizeof(rnd));
1340 vstart = VMALLOC_START + rnd;
1341
bd1264c3
SL
1342 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1343 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
a6cf4e0f
URS
1344
1345 if (va_1 != va_2)
1346 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1347 va_1, va_2, vstart);
1348}
1349#endif
1350
68ad4a33
URS
1351enum fit_type {
1352 NOTHING_FIT = 0,
1353 FL_FIT_TYPE = 1, /* full fit */
1354 LE_FIT_TYPE = 2, /* left edge fit */
1355 RE_FIT_TYPE = 3, /* right edge fit */
1356 NE_FIT_TYPE = 4 /* no edge fit */
1357};
1358
1359static __always_inline enum fit_type
1360classify_va_fit_type(struct vmap_area *va,
1361 unsigned long nva_start_addr, unsigned long size)
1362{
1363 enum fit_type type;
1364
1365 /* Check if it is within VA. */
1366 if (nva_start_addr < va->va_start ||
1367 nva_start_addr + size > va->va_end)
1368 return NOTHING_FIT;
1369
1370 /* Now classify. */
1371 if (va->va_start == nva_start_addr) {
1372 if (va->va_end == nva_start_addr + size)
1373 type = FL_FIT_TYPE;
1374 else
1375 type = LE_FIT_TYPE;
1376 } else if (va->va_end == nva_start_addr + size) {
1377 type = RE_FIT_TYPE;
1378 } else {
1379 type = NE_FIT_TYPE;
1380 }
1381
1382 return type;
1383}
1384
1385static __always_inline int
f9863be4
URS
1386adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1387 struct vmap_area *va, unsigned long nva_start_addr,
1388 unsigned long size)
68ad4a33 1389{
2c929233 1390 struct vmap_area *lva = NULL;
1b23ff80 1391 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
68ad4a33
URS
1392
1393 if (type == FL_FIT_TYPE) {
1394 /*
1395 * No need to split VA, it fully fits.
1396 *
1397 * | |
1398 * V NVA V
1399 * |---------------|
1400 */
f9863be4 1401 unlink_va_augment(va, root);
68ad4a33
URS
1402 kmem_cache_free(vmap_area_cachep, va);
1403 } else if (type == LE_FIT_TYPE) {
1404 /*
1405 * Split left edge of fit VA.
1406 *
1407 * | |
1408 * V NVA V R
1409 * |-------|-------|
1410 */
1411 va->va_start += size;
1412 } else if (type == RE_FIT_TYPE) {
1413 /*
1414 * Split right edge of fit VA.
1415 *
1416 * | |
1417 * L V NVA V
1418 * |-------|-------|
1419 */
1420 va->va_end = nva_start_addr;
1421 } else if (type == NE_FIT_TYPE) {
1422 /*
1423 * Split no edge of fit VA.
1424 *
1425 * | |
1426 * L V NVA V R
1427 * |---|-------|---|
1428 */
82dd23e8
URS
1429 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1430 if (unlikely(!lva)) {
1431 /*
1432 * For percpu allocator we do not do any pre-allocation
1433 * and leave it as it is. The reason is it most likely
1434 * never ends up with NE_FIT_TYPE splitting. In case of
1435 * percpu allocations offsets and sizes are aligned to
1436 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1437 * are its main fitting cases.
1438 *
1439 * There are a few exceptions though, as an example it is
1440 * a first allocation (early boot up) when we have "one"
1441 * big free space that has to be split.
060650a2
URS
1442 *
1443 * Also we can hit this path in case of regular "vmap"
1444 * allocations, if "this" current CPU was not preloaded.
1445 * See the comment in alloc_vmap_area() why. If so, then
1446 * GFP_NOWAIT is used instead to get an extra object for
1447 * split purpose. That is rare and most time does not
1448 * occur.
1449 *
1450 * What happens if an allocation gets failed. Basically,
1451 * an "overflow" path is triggered to purge lazily freed
1452 * areas to free some memory, then, the "retry" path is
1453 * triggered to repeat one more time. See more details
1454 * in alloc_vmap_area() function.
82dd23e8
URS
1455 */
1456 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1457 if (!lva)
1458 return -1;
1459 }
68ad4a33
URS
1460
1461 /*
1462 * Build the remainder.
1463 */
1464 lva->va_start = va->va_start;
1465 lva->va_end = nva_start_addr;
1466
1467 /*
1468 * Shrink this VA to remaining size.
1469 */
1470 va->va_start = nva_start_addr + size;
1471 } else {
1472 return -1;
1473 }
1474
1475 if (type != FL_FIT_TYPE) {
1476 augment_tree_propagate_from(va);
1477
2c929233 1478 if (lva) /* type == NE_FIT_TYPE */
f9863be4 1479 insert_vmap_area_augment(lva, &va->rb_node, root, head);
68ad4a33
URS
1480 }
1481
1482 return 0;
1483}
1484
1485/*
1486 * Returns a start address of the newly allocated area, if success.
1487 * Otherwise a vend is returned that indicates failure.
1488 */
1489static __always_inline unsigned long
f9863be4
URS
1490__alloc_vmap_area(struct rb_root *root, struct list_head *head,
1491 unsigned long size, unsigned long align,
cacca6ba 1492 unsigned long vstart, unsigned long vend)
68ad4a33 1493{
9333fe98 1494 bool adjust_search_size = true;
68ad4a33
URS
1495 unsigned long nva_start_addr;
1496 struct vmap_area *va;
68ad4a33
URS
1497 int ret;
1498
9333fe98
UR
1499 /*
1500 * Do not adjust when:
1501 * a) align <= PAGE_SIZE, because it does not make any sense.
1502 * All blocks(their start addresses) are at least PAGE_SIZE
1503 * aligned anyway;
1504 * b) a short range where a requested size corresponds to exactly
1505 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1506 * With adjusted search length an allocation would not succeed.
1507 */
1508 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1509 adjust_search_size = false;
1510
f9863be4 1511 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
68ad4a33
URS
1512 if (unlikely(!va))
1513 return vend;
1514
1515 if (va->va_start > vstart)
1516 nva_start_addr = ALIGN(va->va_start, align);
1517 else
1518 nva_start_addr = ALIGN(vstart, align);
1519
1520 /* Check the "vend" restriction. */
1521 if (nva_start_addr + size > vend)
1522 return vend;
1523
68ad4a33 1524 /* Update the free vmap_area. */
f9863be4 1525 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1b23ff80 1526 if (WARN_ON_ONCE(ret))
68ad4a33
URS
1527 return vend;
1528
a6cf4e0f 1529#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
bd1264c3 1530 find_vmap_lowest_match_check(root, head, size, align);
a6cf4e0f
URS
1531#endif
1532
68ad4a33
URS
1533 return nva_start_addr;
1534}
4da56b99 1535
d98c9e83
AR
1536/*
1537 * Free a region of KVA allocated by alloc_vmap_area
1538 */
1539static void free_vmap_area(struct vmap_area *va)
1540{
1541 /*
1542 * Remove from the busy tree/list.
1543 */
1544 spin_lock(&vmap_area_lock);
1545 unlink_va(va, &vmap_area_root);
1546 spin_unlock(&vmap_area_lock);
1547
1548 /*
1549 * Insert/Merge it back to the free tree/list.
1550 */
1551 spin_lock(&free_vmap_area_lock);
96e2db45 1552 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
d98c9e83
AR
1553 spin_unlock(&free_vmap_area_lock);
1554}
1555
187f8cc4
URS
1556static inline void
1557preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1558{
1559 struct vmap_area *va = NULL;
1560
1561 /*
1562 * Preload this CPU with one extra vmap_area object. It is used
1563 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1564 * a CPU that does an allocation is preloaded.
1565 *
1566 * We do it in non-atomic context, thus it allows us to use more
1567 * permissive allocation masks to be more stable under low memory
1568 * condition and high memory pressure.
1569 */
1570 if (!this_cpu_read(ne_fit_preload_node))
1571 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1572
1573 spin_lock(lock);
1574
1575 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1576 kmem_cache_free(vmap_area_cachep, va);
1577}
1578
db64fe02
NP
1579/*
1580 * Allocate a region of KVA of the specified size and alignment, within the
1581 * vstart and vend.
1582 */
1583static struct vmap_area *alloc_vmap_area(unsigned long size,
1584 unsigned long align,
1585 unsigned long vstart, unsigned long vend,
869176a0
BH
1586 int node, gfp_t gfp_mask,
1587 unsigned long va_flags)
db64fe02 1588{
187f8cc4 1589 struct vmap_area *va;
12e376a6 1590 unsigned long freed;
1da177e4 1591 unsigned long addr;
db64fe02 1592 int purged = 0;
d98c9e83 1593 int ret;
db64fe02 1594
7e4a32c0
HL
1595 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1596 return ERR_PTR(-EINVAL);
db64fe02 1597
68ad4a33
URS
1598 if (unlikely(!vmap_initialized))
1599 return ERR_PTR(-EBUSY);
1600
5803ed29 1601 might_sleep();
f07116d7 1602 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1603
f07116d7 1604 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1605 if (unlikely(!va))
1606 return ERR_PTR(-ENOMEM);
1607
7f88f88f
CM
1608 /*
1609 * Only scan the relevant parts containing pointers to other objects
1610 * to avoid false negatives.
1611 */
f07116d7 1612 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1613
db64fe02 1614retry:
187f8cc4 1615 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
f9863be4
URS
1616 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1617 size, align, vstart, vend);
187f8cc4 1618 spin_unlock(&free_vmap_area_lock);
89699605 1619
cf243da6
URS
1620 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1621
afd07389 1622 /*
68ad4a33
URS
1623 * If an allocation fails, the "vend" address is
1624 * returned. Therefore trigger the overflow path.
afd07389 1625 */
68ad4a33 1626 if (unlikely(addr == vend))
89699605 1627 goto overflow;
db64fe02
NP
1628
1629 va->va_start = addr;
1630 va->va_end = addr + size;
688fcbfc 1631 va->vm = NULL;
869176a0 1632 va->flags = va_flags;
68ad4a33 1633
e36176be
URS
1634 spin_lock(&vmap_area_lock);
1635 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1636 spin_unlock(&vmap_area_lock);
1637
61e16557 1638 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1639 BUG_ON(va->va_start < vstart);
1640 BUG_ON(va->va_end > vend);
1641
d98c9e83
AR
1642 ret = kasan_populate_vmalloc(addr, size);
1643 if (ret) {
1644 free_vmap_area(va);
1645 return ERR_PTR(ret);
1646 }
1647
db64fe02 1648 return va;
89699605
NP
1649
1650overflow:
89699605
NP
1651 if (!purged) {
1652 purge_vmap_area_lazy();
1653 purged = 1;
1654 goto retry;
1655 }
4da56b99 1656
12e376a6
URS
1657 freed = 0;
1658 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1659
1660 if (freed > 0) {
1661 purged = 0;
1662 goto retry;
4da56b99
CW
1663 }
1664
03497d76 1665 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1666 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1667 size);
68ad4a33
URS
1668
1669 kmem_cache_free(vmap_area_cachep, va);
89699605 1670 return ERR_PTR(-EBUSY);
db64fe02
NP
1671}
1672
4da56b99
CW
1673int register_vmap_purge_notifier(struct notifier_block *nb)
1674{
1675 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1676}
1677EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1678
1679int unregister_vmap_purge_notifier(struct notifier_block *nb)
1680{
1681 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1682}
1683EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1684
db64fe02
NP
1685/*
1686 * lazy_max_pages is the maximum amount of virtual address space we gather up
1687 * before attempting to purge with a TLB flush.
1688 *
1689 * There is a tradeoff here: a larger number will cover more kernel page tables
1690 * and take slightly longer to purge, but it will linearly reduce the number of
1691 * global TLB flushes that must be performed. It would seem natural to scale
1692 * this number up linearly with the number of CPUs (because vmapping activity
1693 * could also scale linearly with the number of CPUs), however it is likely
1694 * that in practice, workloads might be constrained in other ways that mean
1695 * vmap activity will not scale linearly with CPUs. Also, I want to be
1696 * conservative and not introduce a big latency on huge systems, so go with
1697 * a less aggressive log scale. It will still be an improvement over the old
1698 * code, and it will be simple to change the scale factor if we find that it
1699 * becomes a problem on bigger systems.
1700 */
1701static unsigned long lazy_max_pages(void)
1702{
1703 unsigned int log;
1704
1705 log = fls(num_online_cpus());
1706
1707 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1708}
1709
4d36e6f8 1710static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1711
0574ecd1 1712/*
f0953a1b 1713 * Serialize vmap purging. There is no actual critical section protected
153090f2 1714 * by this lock, but we want to avoid concurrent calls for performance
0574ecd1
CH
1715 * reasons and to make the pcpu_get_vm_areas more deterministic.
1716 */
f9e09977 1717static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1718
02b709df
NP
1719/* for per-CPU blocks */
1720static void purge_fragmented_blocks_allcpus(void);
1721
db64fe02
NP
1722/*
1723 * Purges all lazily-freed vmap areas.
db64fe02 1724 */
0574ecd1 1725static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1726{
4d36e6f8 1727 unsigned long resched_threshold;
6030fd5f 1728 unsigned int num_purged_areas = 0;
baa468a6 1729 struct list_head local_purge_list;
96e2db45 1730 struct vmap_area *va, *n_va;
db64fe02 1731
0574ecd1 1732 lockdep_assert_held(&vmap_purge_lock);
02b709df 1733
96e2db45
URS
1734 spin_lock(&purge_vmap_area_lock);
1735 purge_vmap_area_root = RB_ROOT;
baa468a6 1736 list_replace_init(&purge_vmap_area_list, &local_purge_list);
96e2db45
URS
1737 spin_unlock(&purge_vmap_area_lock);
1738
baa468a6 1739 if (unlikely(list_empty(&local_purge_list)))
6030fd5f 1740 goto out;
68571be9 1741
96e2db45 1742 start = min(start,
baa468a6 1743 list_first_entry(&local_purge_list,
96e2db45
URS
1744 struct vmap_area, list)->va_start);
1745
1746 end = max(end,
baa468a6 1747 list_last_entry(&local_purge_list,
96e2db45 1748 struct vmap_area, list)->va_end);
db64fe02 1749
0574ecd1 1750 flush_tlb_kernel_range(start, end);
4d36e6f8 1751 resched_threshold = lazy_max_pages() << 1;
db64fe02 1752
e36176be 1753 spin_lock(&free_vmap_area_lock);
baa468a6 1754 list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
4d36e6f8 1755 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1756 unsigned long orig_start = va->va_start;
1757 unsigned long orig_end = va->va_end;
763b218d 1758
dd3b8353
URS
1759 /*
1760 * Finally insert or merge lazily-freed area. It is
1761 * detached and there is no need to "unlink" it from
1762 * anything.
1763 */
96e2db45
URS
1764 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1765 &free_vmap_area_list);
3c5c3cfb 1766
9c801f61
URS
1767 if (!va)
1768 continue;
1769
3c5c3cfb
DA
1770 if (is_vmalloc_or_module_addr((void *)orig_start))
1771 kasan_release_vmalloc(orig_start, orig_end,
1772 va->va_start, va->va_end);
dd3b8353 1773
4d36e6f8 1774 atomic_long_sub(nr, &vmap_lazy_nr);
6030fd5f 1775 num_purged_areas++;
68571be9 1776
4d36e6f8 1777 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1778 cond_resched_lock(&free_vmap_area_lock);
763b218d 1779 }
e36176be 1780 spin_unlock(&free_vmap_area_lock);
6030fd5f
URS
1781
1782out:
1783 trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1784 return num_purged_areas > 0;
db64fe02
NP
1785}
1786
1787/*
1788 * Kick off a purge of the outstanding lazy areas.
1789 */
1790static void purge_vmap_area_lazy(void)
1791{
f9e09977 1792 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1793 purge_fragmented_blocks_allcpus();
1794 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1795 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1796}
1797
690467c8
URS
1798static void drain_vmap_area_work(struct work_struct *work)
1799{
1800 unsigned long nr_lazy;
1801
1802 do {
1803 mutex_lock(&vmap_purge_lock);
1804 __purge_vmap_area_lazy(ULONG_MAX, 0);
1805 mutex_unlock(&vmap_purge_lock);
1806
1807 /* Recheck if further work is required. */
1808 nr_lazy = atomic_long_read(&vmap_lazy_nr);
1809 } while (nr_lazy > lazy_max_pages());
1810}
1811
db64fe02 1812/*
edd89818
URS
1813 * Free a vmap area, caller ensuring that the area has been unmapped,
1814 * unlinked and flush_cache_vunmap had been called for the correct
1815 * range previously.
db64fe02 1816 */
64141da5 1817static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1818{
8c4196fe
URS
1819 unsigned long nr_lazy_max = lazy_max_pages();
1820 unsigned long va_start = va->va_start;
4d36e6f8 1821 unsigned long nr_lazy;
80c4bd7a 1822
edd89818
URS
1823 if (WARN_ON_ONCE(!list_empty(&va->list)))
1824 return;
dd3b8353 1825
4d36e6f8
URS
1826 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1827 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a 1828
96e2db45
URS
1829 /*
1830 * Merge or place it to the purge tree/list.
1831 */
1832 spin_lock(&purge_vmap_area_lock);
1833 merge_or_add_vmap_area(va,
1834 &purge_vmap_area_root, &purge_vmap_area_list);
1835 spin_unlock(&purge_vmap_area_lock);
80c4bd7a 1836
8c4196fe
URS
1837 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1838
96e2db45 1839 /* After this point, we may free va at any time */
8c4196fe 1840 if (unlikely(nr_lazy > nr_lazy_max))
690467c8 1841 schedule_work(&drain_vmap_work);
db64fe02
NP
1842}
1843
b29acbdc
NP
1844/*
1845 * Free and unmap a vmap area
1846 */
1847static void free_unmap_vmap_area(struct vmap_area *va)
1848{
1849 flush_cache_vunmap(va->va_start, va->va_end);
4ad0ae8c 1850 vunmap_range_noflush(va->va_start, va->va_end);
8e57f8ac 1851 if (debug_pagealloc_enabled_static())
82a2e924
CP
1852 flush_tlb_kernel_range(va->va_start, va->va_end);
1853
c8eef01e 1854 free_vmap_area_noflush(va);
b29acbdc
NP
1855}
1856
993d0b28 1857struct vmap_area *find_vmap_area(unsigned long addr)
db64fe02
NP
1858{
1859 struct vmap_area *va;
1860
1861 spin_lock(&vmap_area_lock);
899c6efe 1862 va = __find_vmap_area(addr, &vmap_area_root);
db64fe02
NP
1863 spin_unlock(&vmap_area_lock);
1864
1865 return va;
1866}
1867
edd89818
URS
1868static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1869{
1870 struct vmap_area *va;
1871
1872 spin_lock(&vmap_area_lock);
1873 va = __find_vmap_area(addr, &vmap_area_root);
1874 if (va)
1875 unlink_va(va, &vmap_area_root);
1876 spin_unlock(&vmap_area_lock);
1877
1878 return va;
1879}
1880
db64fe02
NP
1881/*** Per cpu kva allocator ***/
1882
1883/*
1884 * vmap space is limited especially on 32 bit architectures. Ensure there is
1885 * room for at least 16 percpu vmap blocks per CPU.
1886 */
1887/*
1888 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1889 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1890 * instead (we just need a rough idea)
1891 */
1892#if BITS_PER_LONG == 32
1893#define VMALLOC_SPACE (128UL*1024*1024)
1894#else
1895#define VMALLOC_SPACE (128UL*1024*1024*1024)
1896#endif
1897
1898#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1899#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1900#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1901#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1902#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1903#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1904#define VMAP_BBMAP_BITS \
1905 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1906 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1907 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1908
1909#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1910
869176a0
BH
1911#define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
1912#define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
1913#define VMAP_FLAGS_MASK 0x3
1914
db64fe02
NP
1915struct vmap_block_queue {
1916 spinlock_t lock;
1917 struct list_head free;
db64fe02
NP
1918};
1919
1920struct vmap_block {
1921 spinlock_t lock;
1922 struct vmap_area *va;
db64fe02 1923 unsigned long free, dirty;
d76f9954 1924 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
7d61bfe8 1925 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1926 struct list_head free_list;
1927 struct rcu_head rcu_head;
02b709df 1928 struct list_head purge;
db64fe02
NP
1929};
1930
1931/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1932static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1933
1934/*
0f14599c 1935 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
db64fe02
NP
1936 * in the free path. Could get rid of this if we change the API to return a
1937 * "cookie" from alloc, to be passed to free. But no big deal yet.
1938 */
0f14599c 1939static DEFINE_XARRAY(vmap_blocks);
db64fe02
NP
1940
1941/*
1942 * We should probably have a fallback mechanism to allocate virtual memory
1943 * out of partially filled vmap blocks. However vmap block sizing should be
1944 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1945 * big problem.
1946 */
1947
1948static unsigned long addr_to_vb_idx(unsigned long addr)
1949{
1950 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1951 addr /= VMAP_BLOCK_SIZE;
1952 return addr;
1953}
1954
cf725ce2
RP
1955static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1956{
1957 unsigned long addr;
1958
1959 addr = va_start + (pages_off << PAGE_SHIFT);
1960 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1961 return (void *)addr;
1962}
1963
1964/**
1965 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1966 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1967 * @order: how many 2^order pages should be occupied in newly allocated block
1968 * @gfp_mask: flags for the page level allocator
1969 *
a862f68a 1970 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1971 */
1972static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1973{
1974 struct vmap_block_queue *vbq;
1975 struct vmap_block *vb;
1976 struct vmap_area *va;
1977 unsigned long vb_idx;
1978 int node, err;
cf725ce2 1979 void *vaddr;
db64fe02
NP
1980
1981 node = numa_node_id();
1982
1983 vb = kmalloc_node(sizeof(struct vmap_block),
1984 gfp_mask & GFP_RECLAIM_MASK, node);
1985 if (unlikely(!vb))
1986 return ERR_PTR(-ENOMEM);
1987
1988 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1989 VMALLOC_START, VMALLOC_END,
869176a0
BH
1990 node, gfp_mask,
1991 VMAP_RAM|VMAP_BLOCK);
ddf9c6d4 1992 if (IS_ERR(va)) {
db64fe02 1993 kfree(vb);
e7d86340 1994 return ERR_CAST(va);
db64fe02
NP
1995 }
1996
cf725ce2 1997 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1998 spin_lock_init(&vb->lock);
1999 vb->va = va;
cf725ce2
RP
2000 /* At least something should be left free */
2001 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
d76f9954 2002 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
cf725ce2 2003 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 2004 vb->dirty = 0;
7d61bfe8
RP
2005 vb->dirty_min = VMAP_BBMAP_BITS;
2006 vb->dirty_max = 0;
d76f9954 2007 bitmap_set(vb->used_map, 0, (1UL << order));
db64fe02 2008 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
2009
2010 vb_idx = addr_to_vb_idx(va->va_start);
0f14599c
MWO
2011 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
2012 if (err) {
2013 kfree(vb);
2014 free_vmap_area(va);
2015 return ERR_PTR(err);
2016 }
db64fe02 2017
3f804920 2018 vbq = raw_cpu_ptr(&vmap_block_queue);
db64fe02 2019 spin_lock(&vbq->lock);
68ac546f 2020 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 2021 spin_unlock(&vbq->lock);
db64fe02 2022
cf725ce2 2023 return vaddr;
db64fe02
NP
2024}
2025
db64fe02
NP
2026static void free_vmap_block(struct vmap_block *vb)
2027{
2028 struct vmap_block *tmp;
db64fe02 2029
0f14599c 2030 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
2031 BUG_ON(tmp != vb);
2032
edd89818
URS
2033 spin_lock(&vmap_area_lock);
2034 unlink_va(vb->va, &vmap_area_root);
2035 spin_unlock(&vmap_area_lock);
2036
64141da5 2037 free_vmap_area_noflush(vb->va);
22a3c7d1 2038 kfree_rcu(vb, rcu_head);
db64fe02
NP
2039}
2040
02b709df
NP
2041static void purge_fragmented_blocks(int cpu)
2042{
2043 LIST_HEAD(purge);
2044 struct vmap_block *vb;
2045 struct vmap_block *n_vb;
2046 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2047
2048 rcu_read_lock();
2049 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2050
2051 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
2052 continue;
2053
2054 spin_lock(&vb->lock);
2055 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
2056 vb->free = 0; /* prevent further allocs after releasing lock */
2057 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
2058 vb->dirty_min = 0;
2059 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
2060 spin_lock(&vbq->lock);
2061 list_del_rcu(&vb->free_list);
2062 spin_unlock(&vbq->lock);
2063 spin_unlock(&vb->lock);
2064 list_add_tail(&vb->purge, &purge);
2065 } else
2066 spin_unlock(&vb->lock);
2067 }
2068 rcu_read_unlock();
2069
2070 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2071 list_del(&vb->purge);
2072 free_vmap_block(vb);
2073 }
2074}
2075
02b709df
NP
2076static void purge_fragmented_blocks_allcpus(void)
2077{
2078 int cpu;
2079
2080 for_each_possible_cpu(cpu)
2081 purge_fragmented_blocks(cpu);
2082}
2083
db64fe02
NP
2084static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2085{
2086 struct vmap_block_queue *vbq;
2087 struct vmap_block *vb;
cf725ce2 2088 void *vaddr = NULL;
db64fe02
NP
2089 unsigned int order;
2090
891c49ab 2091 BUG_ON(offset_in_page(size));
db64fe02 2092 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
2093 if (WARN_ON(size == 0)) {
2094 /*
2095 * Allocating 0 bytes isn't what caller wants since
2096 * get_order(0) returns funny result. Just warn and terminate
2097 * early.
2098 */
2099 return NULL;
2100 }
db64fe02
NP
2101 order = get_order(size);
2102
db64fe02 2103 rcu_read_lock();
3f804920 2104 vbq = raw_cpu_ptr(&vmap_block_queue);
db64fe02 2105 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 2106 unsigned long pages_off;
db64fe02
NP
2107
2108 spin_lock(&vb->lock);
cf725ce2
RP
2109 if (vb->free < (1UL << order)) {
2110 spin_unlock(&vb->lock);
2111 continue;
2112 }
02b709df 2113
cf725ce2
RP
2114 pages_off = VMAP_BBMAP_BITS - vb->free;
2115 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df 2116 vb->free -= 1UL << order;
d76f9954 2117 bitmap_set(vb->used_map, pages_off, (1UL << order));
02b709df
NP
2118 if (vb->free == 0) {
2119 spin_lock(&vbq->lock);
2120 list_del_rcu(&vb->free_list);
2121 spin_unlock(&vbq->lock);
2122 }
cf725ce2 2123
02b709df
NP
2124 spin_unlock(&vb->lock);
2125 break;
db64fe02 2126 }
02b709df 2127
db64fe02
NP
2128 rcu_read_unlock();
2129
cf725ce2
RP
2130 /* Allocate new block if nothing was found */
2131 if (!vaddr)
2132 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 2133
cf725ce2 2134 return vaddr;
db64fe02
NP
2135}
2136
78a0e8c4 2137static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
2138{
2139 unsigned long offset;
db64fe02
NP
2140 unsigned int order;
2141 struct vmap_block *vb;
2142
891c49ab 2143 BUG_ON(offset_in_page(size));
db64fe02 2144 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 2145
78a0e8c4 2146 flush_cache_vunmap(addr, addr + size);
b29acbdc 2147
db64fe02 2148 order = get_order(size);
78a0e8c4 2149 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
0f14599c 2150 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
d76f9954
BH
2151 spin_lock(&vb->lock);
2152 bitmap_clear(vb->used_map, offset, (1UL << order));
2153 spin_unlock(&vb->lock);
db64fe02 2154
4ad0ae8c 2155 vunmap_range_noflush(addr, addr + size);
64141da5 2156
8e57f8ac 2157 if (debug_pagealloc_enabled_static())
78a0e8c4 2158 flush_tlb_kernel_range(addr, addr + size);
82a2e924 2159
db64fe02 2160 spin_lock(&vb->lock);
7d61bfe8
RP
2161
2162 /* Expand dirty range */
2163 vb->dirty_min = min(vb->dirty_min, offset);
2164 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 2165
db64fe02
NP
2166 vb->dirty += 1UL << order;
2167 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 2168 BUG_ON(vb->free);
db64fe02
NP
2169 spin_unlock(&vb->lock);
2170 free_vmap_block(vb);
2171 } else
2172 spin_unlock(&vb->lock);
2173}
2174
868b104d 2175static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 2176{
db64fe02 2177 int cpu;
db64fe02 2178
9b463334
JF
2179 if (unlikely(!vmap_initialized))
2180 return;
2181
5803ed29
CH
2182 might_sleep();
2183
db64fe02
NP
2184 for_each_possible_cpu(cpu) {
2185 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2186 struct vmap_block *vb;
2187
2188 rcu_read_lock();
2189 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 2190 spin_lock(&vb->lock);
ad216c03 2191 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
7d61bfe8 2192 unsigned long va_start = vb->va->va_start;
db64fe02 2193 unsigned long s, e;
b136be5e 2194
7d61bfe8
RP
2195 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2196 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 2197
7d61bfe8
RP
2198 start = min(s, start);
2199 end = max(e, end);
db64fe02 2200
7d61bfe8 2201 flush = 1;
db64fe02
NP
2202 }
2203 spin_unlock(&vb->lock);
2204 }
2205 rcu_read_unlock();
2206 }
2207
f9e09977 2208 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
2209 purge_fragmented_blocks_allcpus();
2210 if (!__purge_vmap_area_lazy(start, end) && flush)
2211 flush_tlb_kernel_range(start, end);
f9e09977 2212 mutex_unlock(&vmap_purge_lock);
db64fe02 2213}
868b104d
RE
2214
2215/**
2216 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2217 *
2218 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2219 * to amortize TLB flushing overheads. What this means is that any page you
2220 * have now, may, in a former life, have been mapped into kernel virtual
2221 * address by the vmap layer and so there might be some CPUs with TLB entries
2222 * still referencing that page (additional to the regular 1:1 kernel mapping).
2223 *
2224 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2225 * be sure that none of the pages we have control over will have any aliases
2226 * from the vmap layer.
2227 */
2228void vm_unmap_aliases(void)
2229{
2230 unsigned long start = ULONG_MAX, end = 0;
2231 int flush = 0;
2232
2233 _vm_unmap_aliases(start, end, flush);
2234}
db64fe02
NP
2235EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2236
2237/**
2238 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2239 * @mem: the pointer returned by vm_map_ram
2240 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2241 */
2242void vm_unmap_ram(const void *mem, unsigned int count)
2243{
65ee03c4 2244 unsigned long size = (unsigned long)count << PAGE_SHIFT;
4aff1dc4 2245 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
9c3acf60 2246 struct vmap_area *va;
db64fe02 2247
5803ed29 2248 might_sleep();
db64fe02
NP
2249 BUG_ON(!addr);
2250 BUG_ON(addr < VMALLOC_START);
2251 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 2252 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 2253
d98c9e83
AR
2254 kasan_poison_vmalloc(mem, size);
2255
9c3acf60 2256 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 2257 debug_check_no_locks_freed(mem, size);
78a0e8c4 2258 vb_free(addr, size);
9c3acf60
CH
2259 return;
2260 }
2261
edd89818 2262 va = find_unlink_vmap_area(addr);
14687619
URS
2263 if (WARN_ON_ONCE(!va))
2264 return;
2265
05e3ff95
CP
2266 debug_check_no_locks_freed((void *)va->va_start,
2267 (va->va_end - va->va_start));
9c3acf60 2268 free_unmap_vmap_area(va);
db64fe02
NP
2269}
2270EXPORT_SYMBOL(vm_unmap_ram);
2271
2272/**
2273 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2274 * @pages: an array of pointers to the pages to be mapped
2275 * @count: number of pages
2276 * @node: prefer to allocate data structures on this node
e99c97ad 2277 *
36437638
GK
2278 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2279 * faster than vmap so it's good. But if you mix long-life and short-life
2280 * objects with vm_map_ram(), it could consume lots of address space through
2281 * fragmentation (especially on a 32bit machine). You could see failures in
2282 * the end. Please use this function for short-lived objects.
2283 *
e99c97ad 2284 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 2285 */
d4efd79a 2286void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 2287{
65ee03c4 2288 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
2289 unsigned long addr;
2290 void *mem;
2291
2292 if (likely(count <= VMAP_MAX_ALLOC)) {
2293 mem = vb_alloc(size, GFP_KERNEL);
2294 if (IS_ERR(mem))
2295 return NULL;
2296 addr = (unsigned long)mem;
2297 } else {
2298 struct vmap_area *va;
2299 va = alloc_vmap_area(size, PAGE_SIZE,
869176a0
BH
2300 VMALLOC_START, VMALLOC_END,
2301 node, GFP_KERNEL, VMAP_RAM);
db64fe02
NP
2302 if (IS_ERR(va))
2303 return NULL;
2304
2305 addr = va->va_start;
2306 mem = (void *)addr;
2307 }
d98c9e83 2308
b67177ec
NP
2309 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2310 pages, PAGE_SHIFT) < 0) {
db64fe02
NP
2311 vm_unmap_ram(mem, count);
2312 return NULL;
2313 }
b67177ec 2314
23689e91
AK
2315 /*
2316 * Mark the pages as accessible, now that they are mapped.
2317 * With hardware tag-based KASAN, marking is skipped for
2318 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2319 */
f6e39794 2320 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
19f1c3ac 2321
db64fe02
NP
2322 return mem;
2323}
2324EXPORT_SYMBOL(vm_map_ram);
2325
4341fa45 2326static struct vm_struct *vmlist __initdata;
92eac168 2327
121e6f32
NP
2328static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2329{
2330#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2331 return vm->page_order;
2332#else
2333 return 0;
2334#endif
2335}
2336
2337static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2338{
2339#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2340 vm->page_order = order;
2341#else
2342 BUG_ON(order != 0);
2343#endif
2344}
2345
be9b7335
NP
2346/**
2347 * vm_area_add_early - add vmap area early during boot
2348 * @vm: vm_struct to add
2349 *
2350 * This function is used to add fixed kernel vm area to vmlist before
2351 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2352 * should contain proper values and the other fields should be zero.
2353 *
2354 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2355 */
2356void __init vm_area_add_early(struct vm_struct *vm)
2357{
2358 struct vm_struct *tmp, **p;
2359
2360 BUG_ON(vmap_initialized);
2361 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2362 if (tmp->addr >= vm->addr) {
2363 BUG_ON(tmp->addr < vm->addr + vm->size);
2364 break;
2365 } else
2366 BUG_ON(tmp->addr + tmp->size > vm->addr);
2367 }
2368 vm->next = *p;
2369 *p = vm;
2370}
2371
f0aa6617
TH
2372/**
2373 * vm_area_register_early - register vmap area early during boot
2374 * @vm: vm_struct to register
c0c0a293 2375 * @align: requested alignment
f0aa6617
TH
2376 *
2377 * This function is used to register kernel vm area before
2378 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2379 * proper values on entry and other fields should be zero. On return,
2380 * vm->addr contains the allocated address.
2381 *
2382 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2383 */
c0c0a293 2384void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617 2385{
0eb68437
KW
2386 unsigned long addr = ALIGN(VMALLOC_START, align);
2387 struct vm_struct *cur, **p;
c0c0a293 2388
0eb68437 2389 BUG_ON(vmap_initialized);
f0aa6617 2390
0eb68437
KW
2391 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2392 if ((unsigned long)cur->addr - addr >= vm->size)
2393 break;
2394 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2395 }
f0aa6617 2396
0eb68437
KW
2397 BUG_ON(addr > VMALLOC_END - vm->size);
2398 vm->addr = (void *)addr;
2399 vm->next = *p;
2400 *p = vm;
3252b1d8 2401 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
f0aa6617
TH
2402}
2403
68ad4a33
URS
2404static void vmap_init_free_space(void)
2405{
2406 unsigned long vmap_start = 1;
2407 const unsigned long vmap_end = ULONG_MAX;
2408 struct vmap_area *busy, *free;
2409
2410 /*
2411 * B F B B B F
2412 * -|-----|.....|-----|-----|-----|.....|-
2413 * | The KVA space |
2414 * |<--------------------------------->|
2415 */
2416 list_for_each_entry(busy, &vmap_area_list, list) {
2417 if (busy->va_start - vmap_start > 0) {
2418 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2419 if (!WARN_ON_ONCE(!free)) {
2420 free->va_start = vmap_start;
2421 free->va_end = busy->va_start;
2422
2423 insert_vmap_area_augment(free, NULL,
2424 &free_vmap_area_root,
2425 &free_vmap_area_list);
2426 }
2427 }
2428
2429 vmap_start = busy->va_end;
2430 }
2431
2432 if (vmap_end - vmap_start > 0) {
2433 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2434 if (!WARN_ON_ONCE(!free)) {
2435 free->va_start = vmap_start;
2436 free->va_end = vmap_end;
2437
2438 insert_vmap_area_augment(free, NULL,
2439 &free_vmap_area_root,
2440 &free_vmap_area_list);
2441 }
2442 }
2443}
2444
e36176be
URS
2445static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2446 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2447{
cf88c790
TH
2448 vm->flags = flags;
2449 vm->addr = (void *)va->va_start;
2450 vm->size = va->va_end - va->va_start;
2451 vm->caller = caller;
db1aecaf 2452 va->vm = vm;
e36176be
URS
2453}
2454
2455static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2456 unsigned long flags, const void *caller)
2457{
2458 spin_lock(&vmap_area_lock);
2459 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2460 spin_unlock(&vmap_area_lock);
f5252e00 2461}
cf88c790 2462
20fc02b4 2463static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2464{
d4033afd 2465 /*
20fc02b4 2466 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2467 * we should make sure that vm has proper values.
2468 * Pair with smp_rmb() in show_numa_info().
2469 */
2470 smp_wmb();
20fc02b4 2471 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2472}
2473
db64fe02 2474static struct vm_struct *__get_vm_area_node(unsigned long size,
7ca3027b
DA
2475 unsigned long align, unsigned long shift, unsigned long flags,
2476 unsigned long start, unsigned long end, int node,
2477 gfp_t gfp_mask, const void *caller)
db64fe02 2478{
0006526d 2479 struct vmap_area *va;
db64fe02 2480 struct vm_struct *area;
d98c9e83 2481 unsigned long requested_size = size;
1da177e4 2482
52fd24ca 2483 BUG_ON(in_interrupt());
7ca3027b 2484 size = ALIGN(size, 1ul << shift);
31be8309
OH
2485 if (unlikely(!size))
2486 return NULL;
1da177e4 2487
252e5c6e 2488 if (flags & VM_IOREMAP)
2489 align = 1ul << clamp_t(int, get_count_order_long(size),
2490 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2491
cf88c790 2492 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2493 if (unlikely(!area))
2494 return NULL;
2495
71394fe5
AR
2496 if (!(flags & VM_NO_GUARD))
2497 size += PAGE_SIZE;
1da177e4 2498
869176a0 2499 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
db64fe02
NP
2500 if (IS_ERR(va)) {
2501 kfree(area);
2502 return NULL;
1da177e4 2503 }
1da177e4 2504
d98c9e83 2505 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2506
19f1c3ac
AK
2507 /*
2508 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2509 * best-effort approach, as they can be mapped outside of vmalloc code.
2510 * For VM_ALLOC mappings, the pages are marked as accessible after
2511 * getting mapped in __vmalloc_node_range().
23689e91
AK
2512 * With hardware tag-based KASAN, marking is skipped for
2513 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
19f1c3ac
AK
2514 */
2515 if (!(flags & VM_ALLOC))
23689e91 2516 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
f6e39794 2517 KASAN_VMALLOC_PROT_NORMAL);
1d96320f 2518
1da177e4 2519 return area;
1da177e4
LT
2520}
2521
c2968612
BH
2522struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2523 unsigned long start, unsigned long end,
5e6cafc8 2524 const void *caller)
c2968612 2525{
7ca3027b
DA
2526 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2527 NUMA_NO_NODE, GFP_KERNEL, caller);
c2968612
BH
2528}
2529
1da177e4 2530/**
92eac168
MR
2531 * get_vm_area - reserve a contiguous kernel virtual area
2532 * @size: size of the area
2533 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2534 *
92eac168
MR
2535 * Search an area of @size in the kernel virtual mapping area,
2536 * and reserved it for out purposes. Returns the area descriptor
2537 * on success or %NULL on failure.
a862f68a
MR
2538 *
2539 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2540 */
2541struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2542{
7ca3027b
DA
2543 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2544 VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2545 NUMA_NO_NODE, GFP_KERNEL,
2546 __builtin_return_address(0));
23016969
CL
2547}
2548
2549struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2550 const void *caller)
23016969 2551{
7ca3027b
DA
2552 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2553 VMALLOC_START, VMALLOC_END,
00ef2d2f 2554 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2555}
2556
e9da6e99 2557/**
92eac168
MR
2558 * find_vm_area - find a continuous kernel virtual area
2559 * @addr: base address
e9da6e99 2560 *
92eac168
MR
2561 * Search for the kernel VM area starting at @addr, and return it.
2562 * It is up to the caller to do all required locking to keep the returned
2563 * pointer valid.
a862f68a 2564 *
74640617 2565 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
2566 */
2567struct vm_struct *find_vm_area(const void *addr)
83342314 2568{
db64fe02 2569 struct vmap_area *va;
83342314 2570
db64fe02 2571 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2572 if (!va)
2573 return NULL;
1da177e4 2574
688fcbfc 2575 return va->vm;
1da177e4
LT
2576}
2577
7856dfeb 2578/**
92eac168
MR
2579 * remove_vm_area - find and remove a continuous kernel virtual area
2580 * @addr: base address
7856dfeb 2581 *
92eac168
MR
2582 * Search for the kernel VM area starting at @addr, and remove it.
2583 * This function returns the found VM area, but using it is NOT safe
2584 * on SMP machines, except for its size or flags.
a862f68a 2585 *
74640617 2586 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 2587 */
b3bdda02 2588struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2589{
db64fe02 2590 struct vmap_area *va;
75c59ce7 2591 struct vm_struct *vm;
db64fe02 2592
5803ed29
CH
2593 might_sleep();
2594
17d3ef43
CH
2595 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2596 addr))
2597 return NULL;
c69480ad 2598
75c59ce7
CH
2599 va = find_unlink_vmap_area((unsigned long)addr);
2600 if (!va || !va->vm)
2601 return NULL;
2602 vm = va->vm;
dd32c279 2603
17d3ef43
CH
2604 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2605 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
75c59ce7 2606 kasan_free_module_shadow(vm);
17d3ef43 2607 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
dd3b8353 2608
75c59ce7
CH
2609 free_unmap_vmap_area(va);
2610 return vm;
7856dfeb
AK
2611}
2612
868b104d
RE
2613static inline void set_area_direct_map(const struct vm_struct *area,
2614 int (*set_direct_map)(struct page *page))
2615{
2616 int i;
2617
121e6f32 2618 /* HUGE_VMALLOC passes small pages to set_direct_map */
868b104d
RE
2619 for (i = 0; i < area->nr_pages; i++)
2620 if (page_address(area->pages[i]))
2621 set_direct_map(area->pages[i]);
2622}
2623
9e5fa0ae
CH
2624/*
2625 * Flush the vm mapping and reset the direct map.
2626 */
2627static void vm_reset_perms(struct vm_struct *area)
868b104d 2628{
868b104d 2629 unsigned long start = ULONG_MAX, end = 0;
121e6f32 2630 unsigned int page_order = vm_area_page_order(area);
31e67340 2631 int flush_dmap = 0;
868b104d
RE
2632 int i;
2633
868b104d 2634 /*
9e5fa0ae 2635 * Find the start and end range of the direct mappings to make sure that
868b104d
RE
2636 * the vm_unmap_aliases() flush includes the direct map.
2637 */
121e6f32 2638 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
8e41f872 2639 unsigned long addr = (unsigned long)page_address(area->pages[i]);
9e5fa0ae 2640
8e41f872 2641 if (addr) {
121e6f32
NP
2642 unsigned long page_size;
2643
2644 page_size = PAGE_SIZE << page_order;
868b104d 2645 start = min(addr, start);
121e6f32 2646 end = max(addr + page_size, end);
31e67340 2647 flush_dmap = 1;
868b104d
RE
2648 }
2649 }
2650
2651 /*
2652 * Set direct map to something invalid so that it won't be cached if
2653 * there are any accesses after the TLB flush, then flush the TLB and
2654 * reset the direct map permissions to the default.
2655 */
2656 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2657 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2658 set_area_direct_map(area, set_direct_map_default_noflush);
2659}
2660
208162f4 2661static void delayed_vfree_work(struct work_struct *w)
1da177e4 2662{
208162f4
CH
2663 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2664 struct llist_node *t, *llnode;
bf22e37a 2665
208162f4 2666 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
5d3d31d6 2667 vfree(llnode);
bf22e37a
AR
2668}
2669
2670/**
92eac168
MR
2671 * vfree_atomic - release memory allocated by vmalloc()
2672 * @addr: memory base address
bf22e37a 2673 *
92eac168
MR
2674 * This one is just like vfree() but can be called in any atomic context
2675 * except NMIs.
bf22e37a
AR
2676 */
2677void vfree_atomic(const void *addr)
2678{
01e2e839 2679 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
bf22e37a 2680
01e2e839 2681 BUG_ON(in_nmi());
bf22e37a
AR
2682 kmemleak_free(addr);
2683
01e2e839
CH
2684 /*
2685 * Use raw_cpu_ptr() because this can be called from preemptible
2686 * context. Preemption is absolutely fine here, because the llist_add()
2687 * implementation is lockless, so it works even if we are adding to
2688 * another cpu's list. schedule_work() should be fine with this too.
2689 */
2690 if (addr && llist_add((struct llist_node *)addr, &p->list))
2691 schedule_work(&p->wq);
c67dc624
RP
2692}
2693
1da177e4 2694/**
fa307474
MWO
2695 * vfree - Release memory allocated by vmalloc()
2696 * @addr: Memory base address
1da177e4 2697 *
fa307474
MWO
2698 * Free the virtually continuous memory area starting at @addr, as obtained
2699 * from one of the vmalloc() family of APIs. This will usually also free the
2700 * physical memory underlying the virtual allocation, but that memory is
2701 * reference counted, so it will not be freed until the last user goes away.
1da177e4 2702 *
fa307474 2703 * If @addr is NULL, no operation is performed.
c9fcee51 2704 *
fa307474 2705 * Context:
92eac168 2706 * May sleep if called *not* from interrupt context.
fa307474
MWO
2707 * Must not be called in NMI context (strictly speaking, it could be
2708 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
f0953a1b 2709 * conventions for vfree() arch-dependent would be a really bad idea).
1da177e4 2710 */
b3bdda02 2711void vfree(const void *addr)
1da177e4 2712{
79311c1f
CH
2713 struct vm_struct *vm;
2714 int i;
89219d37 2715
01e2e839
CH
2716 if (unlikely(in_interrupt())) {
2717 vfree_atomic(addr);
2718 return;
2719 }
89219d37 2720
01e2e839 2721 BUG_ON(in_nmi());
89219d37 2722 kmemleak_free(addr);
01e2e839 2723 might_sleep();
a8dda165 2724
32fcfd40
AV
2725 if (!addr)
2726 return;
c67dc624 2727
79311c1f
CH
2728 vm = remove_vm_area(addr);
2729 if (unlikely(!vm)) {
2730 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2731 addr);
2732 return;
2733 }
2734
9e5fa0ae
CH
2735 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2736 vm_reset_perms(vm);
79311c1f
CH
2737 for (i = 0; i < vm->nr_pages; i++) {
2738 struct page *page = vm->pages[i];
2739
2740 BUG_ON(!page);
2741 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2742 /*
2743 * High-order allocs for huge vmallocs are split, so
2744 * can be freed as an array of order-0 allocations
2745 */
dcc1be11 2746 __free_page(page);
79311c1f
CH
2747 cond_resched();
2748 }
2749 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2750 kvfree(vm->pages);
2751 kfree(vm);
1da177e4 2752}
1da177e4
LT
2753EXPORT_SYMBOL(vfree);
2754
2755/**
92eac168
MR
2756 * vunmap - release virtual mapping obtained by vmap()
2757 * @addr: memory base address
1da177e4 2758 *
92eac168
MR
2759 * Free the virtually contiguous memory area starting at @addr,
2760 * which was created from the page array passed to vmap().
1da177e4 2761 *
92eac168 2762 * Must not be called in interrupt context.
1da177e4 2763 */
b3bdda02 2764void vunmap(const void *addr)
1da177e4 2765{
79311c1f
CH
2766 struct vm_struct *vm;
2767
1da177e4 2768 BUG_ON(in_interrupt());
34754b69 2769 might_sleep();
79311c1f
CH
2770
2771 if (!addr)
2772 return;
2773 vm = remove_vm_area(addr);
2774 if (unlikely(!vm)) {
2775 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2776 addr);
2777 return;
2778 }
2779 kfree(vm);
1da177e4 2780}
1da177e4
LT
2781EXPORT_SYMBOL(vunmap);
2782
2783/**
92eac168
MR
2784 * vmap - map an array of pages into virtually contiguous space
2785 * @pages: array of page pointers
2786 * @count: number of pages to map
2787 * @flags: vm_area->flags
2788 * @prot: page protection for the mapping
2789 *
b944afc9
CH
2790 * Maps @count pages from @pages into contiguous kernel virtual space.
2791 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2792 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2793 * are transferred from the caller to vmap(), and will be freed / dropped when
2794 * vfree() is called on the return value.
a862f68a
MR
2795 *
2796 * Return: the address of the area or %NULL on failure
1da177e4
LT
2797 */
2798void *vmap(struct page **pages, unsigned int count,
92eac168 2799 unsigned long flags, pgprot_t prot)
1da177e4
LT
2800{
2801 struct vm_struct *area;
b67177ec 2802 unsigned long addr;
65ee03c4 2803 unsigned long size; /* In bytes */
1da177e4 2804
34754b69
PZ
2805 might_sleep();
2806
37f3605e
CH
2807 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2808 return NULL;
2809
bd1a8fb2
PZ
2810 /*
2811 * Your top guard is someone else's bottom guard. Not having a top
2812 * guard compromises someone else's mappings too.
2813 */
2814 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2815 flags &= ~VM_NO_GUARD;
2816
ca79b0c2 2817 if (count > totalram_pages())
1da177e4
LT
2818 return NULL;
2819
65ee03c4
GJM
2820 size = (unsigned long)count << PAGE_SHIFT;
2821 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2822 if (!area)
2823 return NULL;
23016969 2824
b67177ec
NP
2825 addr = (unsigned long)area->addr;
2826 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2827 pages, PAGE_SHIFT) < 0) {
1da177e4
LT
2828 vunmap(area->addr);
2829 return NULL;
2830 }
2831
c22ee528 2832 if (flags & VM_MAP_PUT_PAGES) {
b944afc9 2833 area->pages = pages;
c22ee528
ML
2834 area->nr_pages = count;
2835 }
1da177e4
LT
2836 return area->addr;
2837}
1da177e4
LT
2838EXPORT_SYMBOL(vmap);
2839
3e9a9e25
CH
2840#ifdef CONFIG_VMAP_PFN
2841struct vmap_pfn_data {
2842 unsigned long *pfns;
2843 pgprot_t prot;
2844 unsigned int idx;
2845};
2846
2847static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2848{
2849 struct vmap_pfn_data *data = private;
2850
2851 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2852 return -EINVAL;
2853 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2854 return 0;
2855}
2856
2857/**
2858 * vmap_pfn - map an array of PFNs into virtually contiguous space
2859 * @pfns: array of PFNs
2860 * @count: number of pages to map
2861 * @prot: page protection for the mapping
2862 *
2863 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2864 * the start address of the mapping.
2865 */
2866void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2867{
2868 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2869 struct vm_struct *area;
2870
2871 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2872 __builtin_return_address(0));
2873 if (!area)
2874 return NULL;
2875 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2876 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2877 free_vm_area(area);
2878 return NULL;
2879 }
2880 return area->addr;
2881}
2882EXPORT_SYMBOL_GPL(vmap_pfn);
2883#endif /* CONFIG_VMAP_PFN */
2884
12b9f873
UR
2885static inline unsigned int
2886vm_area_alloc_pages(gfp_t gfp, int nid,
343ab817 2887 unsigned int order, unsigned int nr_pages, struct page **pages)
12b9f873
UR
2888{
2889 unsigned int nr_allocated = 0;
e9c3cda4
MH
2890 gfp_t alloc_gfp = gfp;
2891 bool nofail = false;
ffb29b1c
CW
2892 struct page *page;
2893 int i;
12b9f873
UR
2894
2895 /*
2896 * For order-0 pages we make use of bulk allocator, if
2897 * the page array is partly or not at all populated due
2898 * to fails, fallback to a single page allocator that is
2899 * more permissive.
2900 */
c00b6b96 2901 if (!order) {
e9c3cda4 2902 /* bulk allocator doesn't support nofail req. officially */
9376130c
MH
2903 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2904
343ab817
URS
2905 while (nr_allocated < nr_pages) {
2906 unsigned int nr, nr_pages_request;
2907
2908 /*
2909 * A maximum allowed request is hard-coded and is 100
2910 * pages per call. That is done in order to prevent a
2911 * long preemption off scenario in the bulk-allocator
2912 * so the range is [1:100].
2913 */
2914 nr_pages_request = min(100U, nr_pages - nr_allocated);
2915
c00b6b96
CW
2916 /* memory allocation should consider mempolicy, we can't
2917 * wrongly use nearest node when nid == NUMA_NO_NODE,
2918 * otherwise memory may be allocated in only one node,
98af39d5 2919 * but mempolicy wants to alloc memory by interleaving.
c00b6b96
CW
2920 */
2921 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
9376130c 2922 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
c00b6b96
CW
2923 nr_pages_request,
2924 pages + nr_allocated);
2925
2926 else
9376130c 2927 nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
c00b6b96
CW
2928 nr_pages_request,
2929 pages + nr_allocated);
343ab817
URS
2930
2931 nr_allocated += nr;
2932 cond_resched();
2933
2934 /*
2935 * If zero or pages were obtained partly,
2936 * fallback to a single page allocator.
2937 */
2938 if (nr != nr_pages_request)
2939 break;
2940 }
e9c3cda4
MH
2941 } else if (gfp & __GFP_NOFAIL) {
2942 /*
2943 * Higher order nofail allocations are really expensive and
2944 * potentially dangerous (pre-mature OOM, disruptive reclaim
2945 * and compaction etc.
2946 */
2947 alloc_gfp &= ~__GFP_NOFAIL;
2948 nofail = true;
3b8000ae 2949 }
12b9f873
UR
2950
2951 /* High-order pages or fallback path if "bulk" fails. */
ffb29b1c 2952 while (nr_allocated < nr_pages) {
dd544141
VA
2953 if (fatal_signal_pending(current))
2954 break;
2955
ffb29b1c 2956 if (nid == NUMA_NO_NODE)
e9c3cda4 2957 page = alloc_pages(alloc_gfp, order);
ffb29b1c 2958 else
e9c3cda4
MH
2959 page = alloc_pages_node(nid, alloc_gfp, order);
2960 if (unlikely(!page)) {
2961 if (!nofail)
2962 break;
2963
2964 /* fall back to the zero order allocations */
2965 alloc_gfp |= __GFP_NOFAIL;
2966 order = 0;
2967 continue;
2968 }
2969
3b8000ae
NP
2970 /*
2971 * Higher order allocations must be able to be treated as
2972 * indepdenent small pages by callers (as they can with
2973 * small-page vmallocs). Some drivers do their own refcounting
2974 * on vmalloc_to_page() pages, some use page->mapping,
2975 * page->lru, etc.
2976 */
2977 if (order)
2978 split_page(page, order);
12b9f873
UR
2979
2980 /*
2981 * Careful, we allocate and map page-order pages, but
2982 * tracking is done per PAGE_SIZE page so as to keep the
2983 * vm_struct APIs independent of the physical/mapped size.
2984 */
2985 for (i = 0; i < (1U << order); i++)
2986 pages[nr_allocated + i] = page + i;
2987
12e376a6 2988 cond_resched();
12b9f873
UR
2989 nr_allocated += 1U << order;
2990 }
2991
2992 return nr_allocated;
2993}
2994
e31d9eb5 2995static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
121e6f32
NP
2996 pgprot_t prot, unsigned int page_shift,
2997 int node)
1da177e4 2998{
930f036b 2999 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
9376130c 3000 bool nofail = gfp_mask & __GFP_NOFAIL;
121e6f32
NP
3001 unsigned long addr = (unsigned long)area->addr;
3002 unsigned long size = get_vm_area_size(area);
34fe6537 3003 unsigned long array_size;
121e6f32
NP
3004 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3005 unsigned int page_order;
451769eb
MH
3006 unsigned int flags;
3007 int ret;
1da177e4 3008
121e6f32 3009 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
80b1d8fd 3010
f255935b
CH
3011 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3012 gfp_mask |= __GFP_HIGHMEM;
1da177e4 3013
1da177e4 3014 /* Please note that the recursion is strictly bounded. */
8757d5fa 3015 if (array_size > PAGE_SIZE) {
5c1f4e69 3016 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
f255935b 3017 area->caller);
286e1ea3 3018 } else {
5c1f4e69 3019 area->pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 3020 }
7ea36242 3021
5c1f4e69 3022 if (!area->pages) {
c3d77172 3023 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3024 "vmalloc error: size %lu, failed to allocated page array size %lu",
3025 nr_small_pages * PAGE_SIZE, array_size);
cd61413b 3026 free_vm_area(area);
1da177e4
LT
3027 return NULL;
3028 }
1da177e4 3029
121e6f32 3030 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
121e6f32 3031 page_order = vm_area_page_order(area);
bf53d6f8 3032
c3d77172
URS
3033 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3034 node, page_order, nr_small_pages, area->pages);
5c1f4e69 3035
97105f0a 3036 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
4e5aa1f4 3037 if (gfp_mask & __GFP_ACCOUNT) {
3b8000ae 3038 int i;
4e5aa1f4 3039
3b8000ae
NP
3040 for (i = 0; i < area->nr_pages; i++)
3041 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
4e5aa1f4 3042 }
1da177e4 3043
5c1f4e69
URS
3044 /*
3045 * If not enough pages were obtained to accomplish an
f41f036b 3046 * allocation request, free them via vfree() if any.
5c1f4e69
URS
3047 */
3048 if (area->nr_pages != nr_small_pages) {
f349b15e
YS
3049 /* vm_area_alloc_pages() can also fail due to a fatal signal */
3050 if (!fatal_signal_pending(current))
3051 warn_alloc(gfp_mask, NULL,
3052 "vmalloc error: size %lu, page order %u, failed to allocate pages",
3053 area->nr_pages * PAGE_SIZE, page_order);
5c1f4e69
URS
3054 goto fail;
3055 }
3056
451769eb
MH
3057 /*
3058 * page tables allocations ignore external gfp mask, enforce it
3059 * by the scope API
3060 */
3061 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3062 flags = memalloc_nofs_save();
3063 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3064 flags = memalloc_noio_save();
3065
9376130c
MH
3066 do {
3067 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
451769eb 3068 page_shift);
9376130c
MH
3069 if (nofail && (ret < 0))
3070 schedule_timeout_uninterruptible(1);
3071 } while (nofail && (ret < 0));
451769eb
MH
3072
3073 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3074 memalloc_nofs_restore(flags);
3075 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3076 memalloc_noio_restore(flags);
3077
3078 if (ret < 0) {
c3d77172 3079 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3080 "vmalloc error: size %lu, failed to map pages",
3081 area->nr_pages * PAGE_SIZE);
1da177e4 3082 goto fail;
d70bec8c 3083 }
ed1f324c 3084
1da177e4
LT
3085 return area->addr;
3086
3087fail:
f41f036b 3088 vfree(area->addr);
1da177e4
LT
3089 return NULL;
3090}
3091
3092/**
92eac168
MR
3093 * __vmalloc_node_range - allocate virtually contiguous memory
3094 * @size: allocation size
3095 * @align: desired alignment
3096 * @start: vm area range start
3097 * @end: vm area range end
3098 * @gfp_mask: flags for the page level allocator
3099 * @prot: protection mask for the allocated pages
3100 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3101 * @node: node to use for allocation or NUMA_NO_NODE
3102 * @caller: caller's return address
3103 *
3104 * Allocate enough pages to cover @size from the page level
b7d90e7a 3105 * allocator with @gfp_mask flags. Please note that the full set of gfp
30d3f011
MH
3106 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3107 * supported.
3108 * Zone modifiers are not supported. From the reclaim modifiers
3109 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3110 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3111 * __GFP_RETRY_MAYFAIL are not supported).
3112 *
3113 * __GFP_NOWARN can be used to suppress failures messages.
b7d90e7a
MH
3114 *
3115 * Map them into contiguous kernel virtual space, using a pagetable
3116 * protection of @prot.
a862f68a
MR
3117 *
3118 * Return: the address of the area or %NULL on failure
1da177e4 3119 */
d0a21265
DR
3120void *__vmalloc_node_range(unsigned long size, unsigned long align,
3121 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
3122 pgprot_t prot, unsigned long vm_flags, int node,
3123 const void *caller)
1da177e4
LT
3124{
3125 struct vm_struct *area;
19f1c3ac 3126 void *ret;
f6e39794 3127 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
89219d37 3128 unsigned long real_size = size;
121e6f32
NP
3129 unsigned long real_align = align;
3130 unsigned int shift = PAGE_SHIFT;
1da177e4 3131
d70bec8c
NP
3132 if (WARN_ON_ONCE(!size))
3133 return NULL;
3134
3135 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3136 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3137 "vmalloc error: size %lu, exceeds total pages",
3138 real_size);
d70bec8c 3139 return NULL;
121e6f32
NP
3140 }
3141
559089e0 3142 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
121e6f32 3143 unsigned long size_per_node;
1da177e4 3144
121e6f32
NP
3145 /*
3146 * Try huge pages. Only try for PAGE_KERNEL allocations,
3147 * others like modules don't yet expect huge pages in
3148 * their allocations due to apply_to_page_range not
3149 * supporting them.
3150 */
3151
3152 size_per_node = size;
3153 if (node == NUMA_NO_NODE)
3154 size_per_node /= num_online_nodes();
3382bbee 3155 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
121e6f32 3156 shift = PMD_SHIFT;
3382bbee
CL
3157 else
3158 shift = arch_vmap_pte_supported_shift(size_per_node);
3159
3160 align = max(real_align, 1UL << shift);
3161 size = ALIGN(real_size, 1UL << shift);
121e6f32
NP
3162 }
3163
3164again:
7ca3027b
DA
3165 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3166 VM_UNINITIALIZED | vm_flags, start, end, node,
3167 gfp_mask, caller);
d70bec8c 3168 if (!area) {
9376130c 3169 bool nofail = gfp_mask & __GFP_NOFAIL;
d70bec8c 3170 warn_alloc(gfp_mask, NULL,
9376130c
MH
3171 "vmalloc error: size %lu, vm_struct allocation failed%s",
3172 real_size, (nofail) ? ". Retrying." : "");
3173 if (nofail) {
3174 schedule_timeout_uninterruptible(1);
3175 goto again;
3176 }
de7d2b56 3177 goto fail;
d70bec8c 3178 }
1da177e4 3179
f6e39794
AK
3180 /*
3181 * Prepare arguments for __vmalloc_area_node() and
3182 * kasan_unpoison_vmalloc().
3183 */
3184 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3185 if (kasan_hw_tags_enabled()) {
3186 /*
3187 * Modify protection bits to allow tagging.
3188 * This must be done before mapping.
3189 */
3190 prot = arch_vmap_pgprot_tagged(prot);
01d92c7f 3191
f6e39794
AK
3192 /*
3193 * Skip page_alloc poisoning and zeroing for physical
3194 * pages backing VM_ALLOC mapping. Memory is instead
3195 * poisoned and zeroed by kasan_unpoison_vmalloc().
3196 */
0a54864f 3197 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
f6e39794
AK
3198 }
3199
3200 /* Take note that the mapping is PAGE_KERNEL. */
3201 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
23689e91
AK
3202 }
3203
01d92c7f 3204 /* Allocate physical pages and map them into vmalloc space. */
19f1c3ac
AK
3205 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3206 if (!ret)
121e6f32 3207 goto fail;
89219d37 3208
23689e91
AK
3209 /*
3210 * Mark the pages as accessible, now that they are mapped.
6c2f761d
AK
3211 * The condition for setting KASAN_VMALLOC_INIT should complement the
3212 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3213 * to make sure that memory is initialized under the same conditions.
f6e39794
AK
3214 * Tag-based KASAN modes only assign tags to normal non-executable
3215 * allocations, see __kasan_unpoison_vmalloc().
23689e91 3216 */
f6e39794 3217 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
6c2f761d
AK
3218 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3219 (gfp_mask & __GFP_SKIP_ZERO))
23689e91 3220 kasan_flags |= KASAN_VMALLOC_INIT;
f6e39794 3221 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
23689e91 3222 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
19f1c3ac 3223
f5252e00 3224 /*
20fc02b4
ZY
3225 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3226 * flag. It means that vm_struct is not fully initialized.
4341fa45 3227 * Now, it is fully initialized, so remove this flag here.
f5252e00 3228 */
20fc02b4 3229 clear_vm_uninitialized_flag(area);
f5252e00 3230
7ca3027b 3231 size = PAGE_ALIGN(size);
60115fa5
KW
3232 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3233 kmemleak_vmalloc(area, size, gfp_mask);
89219d37 3234
19f1c3ac 3235 return area->addr;
de7d2b56
JP
3236
3237fail:
121e6f32
NP
3238 if (shift > PAGE_SHIFT) {
3239 shift = PAGE_SHIFT;
3240 align = real_align;
3241 size = real_size;
3242 goto again;
3243 }
3244
de7d2b56 3245 return NULL;
1da177e4
LT
3246}
3247
d0a21265 3248/**
92eac168
MR
3249 * __vmalloc_node - allocate virtually contiguous memory
3250 * @size: allocation size
3251 * @align: desired alignment
3252 * @gfp_mask: flags for the page level allocator
92eac168
MR
3253 * @node: node to use for allocation or NUMA_NO_NODE
3254 * @caller: caller's return address
a7c3e901 3255 *
f38fcb9c
CH
3256 * Allocate enough pages to cover @size from the page level allocator with
3257 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 3258 *
92eac168
MR
3259 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3260 * and __GFP_NOFAIL are not supported
a7c3e901 3261 *
92eac168
MR
3262 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3263 * with mm people.
a862f68a
MR
3264 *
3265 * Return: pointer to the allocated memory or %NULL on error
d0a21265 3266 */
2b905948 3267void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 3268 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
3269{
3270 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 3271 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 3272}
c3f896dc
CH
3273/*
3274 * This is only for performance analysis of vmalloc and stress purpose.
3275 * It is required by vmalloc test module, therefore do not use it other
3276 * than that.
3277 */
3278#ifdef CONFIG_TEST_VMALLOC_MODULE
3279EXPORT_SYMBOL_GPL(__vmalloc_node);
3280#endif
d0a21265 3281
88dca4ca 3282void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 3283{
f38fcb9c 3284 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 3285 __builtin_return_address(0));
930fc45a 3286}
1da177e4
LT
3287EXPORT_SYMBOL(__vmalloc);
3288
3289/**
92eac168
MR
3290 * vmalloc - allocate virtually contiguous memory
3291 * @size: allocation size
3292 *
3293 * Allocate enough pages to cover @size from the page level
3294 * allocator and map them into contiguous kernel virtual space.
1da177e4 3295 *
92eac168
MR
3296 * For tight control over page level allocator and protection flags
3297 * use __vmalloc() instead.
a862f68a
MR
3298 *
3299 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3300 */
3301void *vmalloc(unsigned long size)
3302{
4d39d728
CH
3303 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3304 __builtin_return_address(0));
1da177e4 3305}
1da177e4
LT
3306EXPORT_SYMBOL(vmalloc);
3307
15a64f5a 3308/**
559089e0
SL
3309 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3310 * @size: allocation size
3311 * @gfp_mask: flags for the page level allocator
15a64f5a 3312 *
559089e0 3313 * Allocate enough pages to cover @size from the page level
15a64f5a 3314 * allocator and map them into contiguous kernel virtual space.
559089e0
SL
3315 * If @size is greater than or equal to PMD_SIZE, allow using
3316 * huge pages for the memory
15a64f5a
CI
3317 *
3318 * Return: pointer to the allocated memory or %NULL on error
3319 */
559089e0 3320void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
15a64f5a
CI
3321{
3322 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
559089e0 3323 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
15a64f5a
CI
3324 NUMA_NO_NODE, __builtin_return_address(0));
3325}
559089e0 3326EXPORT_SYMBOL_GPL(vmalloc_huge);
15a64f5a 3327
e1ca7788 3328/**
92eac168
MR
3329 * vzalloc - allocate virtually contiguous memory with zero fill
3330 * @size: allocation size
3331 *
3332 * Allocate enough pages to cover @size from the page level
3333 * allocator and map them into contiguous kernel virtual space.
3334 * The memory allocated is set to zero.
3335 *
3336 * For tight control over page level allocator and protection flags
3337 * use __vmalloc() instead.
a862f68a
MR
3338 *
3339 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3340 */
3341void *vzalloc(unsigned long size)
3342{
4d39d728
CH
3343 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3344 __builtin_return_address(0));
e1ca7788
DY
3345}
3346EXPORT_SYMBOL(vzalloc);
3347
83342314 3348/**
ead04089
REB
3349 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3350 * @size: allocation size
83342314 3351 *
ead04089
REB
3352 * The resulting memory area is zeroed so it can be mapped to userspace
3353 * without leaking data.
a862f68a
MR
3354 *
3355 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3356 */
3357void *vmalloc_user(unsigned long size)
3358{
bc84c535
RP
3359 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3360 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3361 VM_USERMAP, NUMA_NO_NODE,
3362 __builtin_return_address(0));
83342314
NP
3363}
3364EXPORT_SYMBOL(vmalloc_user);
3365
930fc45a 3366/**
92eac168
MR
3367 * vmalloc_node - allocate memory on a specific node
3368 * @size: allocation size
3369 * @node: numa node
930fc45a 3370 *
92eac168
MR
3371 * Allocate enough pages to cover @size from the page level
3372 * allocator and map them into contiguous kernel virtual space.
930fc45a 3373 *
92eac168
MR
3374 * For tight control over page level allocator and protection flags
3375 * use __vmalloc() instead.
a862f68a
MR
3376 *
3377 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
3378 */
3379void *vmalloc_node(unsigned long size, int node)
3380{
f38fcb9c
CH
3381 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3382 __builtin_return_address(0));
930fc45a
CL
3383}
3384EXPORT_SYMBOL(vmalloc_node);
3385
e1ca7788
DY
3386/**
3387 * vzalloc_node - allocate memory on a specific node with zero fill
3388 * @size: allocation size
3389 * @node: numa node
3390 *
3391 * Allocate enough pages to cover @size from the page level
3392 * allocator and map them into contiguous kernel virtual space.
3393 * The memory allocated is set to zero.
3394 *
a862f68a 3395 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3396 */
3397void *vzalloc_node(unsigned long size, int node)
3398{
4d39d728
CH
3399 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3400 __builtin_return_address(0));
e1ca7788
DY
3401}
3402EXPORT_SYMBOL(vzalloc_node);
3403
0d08e0d3 3404#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 3405#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 3406#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 3407#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 3408#else
698d0831
MH
3409/*
3410 * 64b systems should always have either DMA or DMA32 zones. For others
3411 * GFP_DMA32 should do the right thing and use the normal zone.
3412 */
68d68ff6 3413#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3
AK
3414#endif
3415
1da177e4 3416/**
92eac168
MR
3417 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3418 * @size: allocation size
1da177e4 3419 *
92eac168
MR
3420 * Allocate enough 32bit PA addressable pages to cover @size from the
3421 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
3422 *
3423 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3424 */
3425void *vmalloc_32(unsigned long size)
3426{
f38fcb9c
CH
3427 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3428 __builtin_return_address(0));
1da177e4 3429}
1da177e4
LT
3430EXPORT_SYMBOL(vmalloc_32);
3431
83342314 3432/**
ead04089 3433 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 3434 * @size: allocation size
ead04089
REB
3435 *
3436 * The resulting memory area is 32bit addressable and zeroed so it can be
3437 * mapped to userspace without leaking data.
a862f68a
MR
3438 *
3439 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3440 */
3441void *vmalloc_32_user(unsigned long size)
3442{
bc84c535
RP
3443 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3444 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3445 VM_USERMAP, NUMA_NO_NODE,
3446 __builtin_return_address(0));
83342314
NP
3447}
3448EXPORT_SYMBOL(vmalloc_32_user);
3449
d0107eb0 3450/*
4c91c07c
LS
3451 * Atomically zero bytes in the iterator.
3452 *
3453 * Returns the number of zeroed bytes.
d0107eb0 3454 */
4c91c07c
LS
3455static size_t zero_iter(struct iov_iter *iter, size_t count)
3456{
3457 size_t remains = count;
3458
3459 while (remains > 0) {
3460 size_t num, copied;
3461
3462 num = remains < PAGE_SIZE ? remains : PAGE_SIZE;
3463 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
3464 remains -= copied;
3465
3466 if (copied < num)
3467 break;
3468 }
d0107eb0 3469
4c91c07c
LS
3470 return count - remains;
3471}
3472
3473/*
3474 * small helper routine, copy contents to iter from addr.
3475 * If the page is not present, fill zero.
3476 *
3477 * Returns the number of copied bytes.
3478 */
3479static size_t aligned_vread_iter(struct iov_iter *iter,
3480 const char *addr, size_t count)
d0107eb0 3481{
4c91c07c
LS
3482 size_t remains = count;
3483 struct page *page;
d0107eb0 3484
4c91c07c 3485 while (remains > 0) {
d0107eb0 3486 unsigned long offset, length;
4c91c07c 3487 size_t copied = 0;
d0107eb0 3488
891c49ab 3489 offset = offset_in_page(addr);
d0107eb0 3490 length = PAGE_SIZE - offset;
4c91c07c
LS
3491 if (length > remains)
3492 length = remains;
3493 page = vmalloc_to_page(addr);
d0107eb0 3494 /*
4c91c07c
LS
3495 * To do safe access to this _mapped_ area, we need lock. But
3496 * adding lock here means that we need to add overhead of
3497 * vmalloc()/vfree() calls for this _debug_ interface, rarely
3498 * used. Instead of that, we'll use an local mapping via
3499 * copy_page_to_iter_nofault() and accept a small overhead in
3500 * this access function.
d0107eb0 3501 */
4c91c07c
LS
3502 if (page)
3503 copied = copy_page_to_iter_nofault(page, offset,
3504 length, iter);
3505 else
3506 copied = zero_iter(iter, length);
d0107eb0 3507
4c91c07c
LS
3508 addr += copied;
3509 remains -= copied;
3510
3511 if (copied != length)
3512 break;
d0107eb0 3513 }
4c91c07c
LS
3514
3515 return count - remains;
d0107eb0
KH
3516}
3517
4c91c07c
LS
3518/*
3519 * Read from a vm_map_ram region of memory.
3520 *
3521 * Returns the number of copied bytes.
3522 */
3523static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
3524 size_t count, unsigned long flags)
06c89946
BH
3525{
3526 char *start;
3527 struct vmap_block *vb;
3528 unsigned long offset;
4c91c07c
LS
3529 unsigned int rs, re;
3530 size_t remains, n;
06c89946
BH
3531
3532 /*
3533 * If it's area created by vm_map_ram() interface directly, but
3534 * not further subdividing and delegating management to vmap_block,
3535 * handle it here.
3536 */
4c91c07c
LS
3537 if (!(flags & VMAP_BLOCK))
3538 return aligned_vread_iter(iter, addr, count);
3539
3540 remains = count;
06c89946
BH
3541
3542 /*
3543 * Area is split into regions and tracked with vmap_block, read out
3544 * each region and zero fill the hole between regions.
3545 */
3546 vb = xa_load(&vmap_blocks, addr_to_vb_idx((unsigned long)addr));
3547 if (!vb)
4c91c07c 3548 goto finished_zero;
06c89946
BH
3549
3550 spin_lock(&vb->lock);
3551 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3552 spin_unlock(&vb->lock);
4c91c07c 3553 goto finished_zero;
06c89946 3554 }
4c91c07c 3555
06c89946 3556 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4c91c07c
LS
3557 size_t copied;
3558
3559 if (remains == 0)
3560 goto finished;
3561
06c89946 3562 start = vmap_block_vaddr(vb->va->va_start, rs);
4c91c07c
LS
3563
3564 if (addr < start) {
3565 size_t to_zero = min_t(size_t, start - addr, remains);
3566 size_t zeroed = zero_iter(iter, to_zero);
3567
3568 addr += zeroed;
3569 remains -= zeroed;
3570
3571 if (remains == 0 || zeroed != to_zero)
3572 goto finished;
06c89946 3573 }
4c91c07c 3574
06c89946
BH
3575 /*it could start reading from the middle of used region*/
3576 offset = offset_in_page(addr);
3577 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4c91c07c
LS
3578 if (n > remains)
3579 n = remains;
3580
3581 copied = aligned_vread_iter(iter, start + offset, n);
06c89946 3582
4c91c07c
LS
3583 addr += copied;
3584 remains -= copied;
3585
3586 if (copied != n)
3587 goto finished;
06c89946 3588 }
4c91c07c 3589
06c89946
BH
3590 spin_unlock(&vb->lock);
3591
4c91c07c 3592finished_zero:
06c89946 3593 /* zero-fill the left dirty or free regions */
4c91c07c
LS
3594 return count - remains + zero_iter(iter, remains);
3595finished:
3596 /* We couldn't copy/zero everything */
3597 spin_unlock(&vb->lock);
3598 return count - remains;
06c89946
BH
3599}
3600
d0107eb0 3601/**
4c91c07c
LS
3602 * vread_iter() - read vmalloc area in a safe way to an iterator.
3603 * @iter: the iterator to which data should be written.
3604 * @addr: vm address.
3605 * @count: number of bytes to be read.
92eac168 3606 *
92eac168
MR
3607 * This function checks that addr is a valid vmalloc'ed area, and
3608 * copy data from that area to a given buffer. If the given memory range
3609 * of [addr...addr+count) includes some valid address, data is copied to
3610 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3611 * IOREMAP area is treated as memory hole and no copy is done.
3612 *
3613 * If [addr...addr+count) doesn't includes any intersects with alive
3614 * vm_struct area, returns 0. @buf should be kernel's buffer.
3615 *
3616 * Note: In usual ops, vread() is never necessary because the caller
3617 * should know vmalloc() area is valid and can use memcpy().
3618 * This is for routines which have to access vmalloc area without
bbcd53c9 3619 * any information, as /proc/kcore.
a862f68a
MR
3620 *
3621 * Return: number of bytes for which addr and buf should be increased
3622 * (same number as @count) or %0 if [addr...addr+count) doesn't
3623 * include any intersection with valid vmalloc area
d0107eb0 3624 */
4c91c07c 3625long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
1da177e4 3626{
e81ce85f
JK
3627 struct vmap_area *va;
3628 struct vm_struct *vm;
4c91c07c
LS
3629 char *vaddr;
3630 size_t n, size, flags, remains;
1da177e4 3631
4aff1dc4
AK
3632 addr = kasan_reset_tag(addr);
3633
1da177e4
LT
3634 /* Don't allow overflow */
3635 if ((unsigned long) addr + count < count)
3636 count = -(unsigned long) addr;
3637
4c91c07c
LS
3638 remains = count;
3639
e81ce85f 3640 spin_lock(&vmap_area_lock);
f181234a 3641 va = find_vmap_area_exceed_addr((unsigned long)addr);
f608788c 3642 if (!va)
4c91c07c 3643 goto finished_zero;
f181234a
CW
3644
3645 /* no intersects with alive vmap_area */
4c91c07c
LS
3646 if ((unsigned long)addr + remains <= va->va_start)
3647 goto finished_zero;
f181234a 3648
f608788c 3649 list_for_each_entry_from(va, &vmap_area_list, list) {
4c91c07c
LS
3650 size_t copied;
3651
3652 if (remains == 0)
3653 goto finished;
e81ce85f 3654
06c89946
BH
3655 vm = va->vm;
3656 flags = va->flags & VMAP_FLAGS_MASK;
3657 /*
3658 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3659 * be set together with VMAP_RAM.
3660 */
3661 WARN_ON(flags == VMAP_BLOCK);
3662
3663 if (!vm && !flags)
e81ce85f
JK
3664 continue;
3665
30a7a9b1
BH
3666 if (vm && (vm->flags & VM_UNINITIALIZED))
3667 continue;
4c91c07c 3668
30a7a9b1
BH
3669 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3670 smp_rmb();
3671
06c89946
BH
3672 vaddr = (char *) va->va_start;
3673 size = vm ? get_vm_area_size(vm) : va_size(va);
3674
3675 if (addr >= vaddr + size)
1da177e4 3676 continue;
4c91c07c
LS
3677
3678 if (addr < vaddr) {
3679 size_t to_zero = min_t(size_t, vaddr - addr, remains);
3680 size_t zeroed = zero_iter(iter, to_zero);
3681
3682 addr += zeroed;
3683 remains -= zeroed;
3684
3685 if (remains == 0 || zeroed != to_zero)
1da177e4 3686 goto finished;
1da177e4 3687 }
4c91c07c 3688
06c89946 3689 n = vaddr + size - addr;
4c91c07c
LS
3690 if (n > remains)
3691 n = remains;
06c89946
BH
3692
3693 if (flags & VMAP_RAM)
4c91c07c 3694 copied = vmap_ram_vread_iter(iter, addr, n, flags);
06c89946 3695 else if (!(vm->flags & VM_IOREMAP))
4c91c07c 3696 copied = aligned_vread_iter(iter, addr, n);
d0107eb0 3697 else /* IOREMAP area is treated as memory hole */
4c91c07c
LS
3698 copied = zero_iter(iter, n);
3699
3700 addr += copied;
3701 remains -= copied;
3702
3703 if (copied != n)
3704 goto finished;
1da177e4 3705 }
d0107eb0 3706
4c91c07c
LS
3707finished_zero:
3708 spin_unlock(&vmap_area_lock);
d0107eb0 3709 /* zero-fill memory holes */
4c91c07c
LS
3710 return count - remains + zero_iter(iter, remains);
3711finished:
3712 /* Nothing remains, or We couldn't copy/zero everything. */
3713 spin_unlock(&vmap_area_lock);
d0107eb0 3714
4c91c07c 3715 return count - remains;
1da177e4
LT
3716}
3717
83342314 3718/**
92eac168
MR
3719 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3720 * @vma: vma to cover
3721 * @uaddr: target user address to start at
3722 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3723 * @pgoff: offset from @kaddr to start at
92eac168 3724 * @size: size of map area
7682486b 3725 *
92eac168 3726 * Returns: 0 for success, -Exxx on failure
83342314 3727 *
92eac168
MR
3728 * This function checks that @kaddr is a valid vmalloc'ed area,
3729 * and that it is big enough to cover the range starting at
3730 * @uaddr in @vma. Will return failure if that criteria isn't
3731 * met.
83342314 3732 *
92eac168 3733 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3734 */
e69e9d4a 3735int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3736 void *kaddr, unsigned long pgoff,
3737 unsigned long size)
83342314
NP
3738{
3739 struct vm_struct *area;
bdebd6a2
JH
3740 unsigned long off;
3741 unsigned long end_index;
3742
3743 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3744 return -EINVAL;
83342314 3745
e69e9d4a
HD
3746 size = PAGE_ALIGN(size);
3747
3748 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3749 return -EINVAL;
3750
e69e9d4a 3751 area = find_vm_area(kaddr);
83342314 3752 if (!area)
db64fe02 3753 return -EINVAL;
83342314 3754
fe9041c2 3755 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3756 return -EINVAL;
83342314 3757
bdebd6a2
JH
3758 if (check_add_overflow(size, off, &end_index) ||
3759 end_index > get_vm_area_size(area))
db64fe02 3760 return -EINVAL;
bdebd6a2 3761 kaddr += off;
83342314 3762
83342314 3763 do {
e69e9d4a 3764 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3765 int ret;
3766
83342314
NP
3767 ret = vm_insert_page(vma, uaddr, page);
3768 if (ret)
3769 return ret;
3770
3771 uaddr += PAGE_SIZE;
e69e9d4a
HD
3772 kaddr += PAGE_SIZE;
3773 size -= PAGE_SIZE;
3774 } while (size > 0);
83342314 3775
1c71222e 3776 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
83342314 3777
db64fe02 3778 return 0;
83342314 3779}
e69e9d4a
HD
3780
3781/**
92eac168
MR
3782 * remap_vmalloc_range - map vmalloc pages to userspace
3783 * @vma: vma to cover (map full range of vma)
3784 * @addr: vmalloc memory
3785 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3786 *
92eac168 3787 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3788 *
92eac168
MR
3789 * This function checks that addr is a valid vmalloc'ed area, and
3790 * that it is big enough to cover the vma. Will return failure if
3791 * that criteria isn't met.
e69e9d4a 3792 *
92eac168 3793 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3794 */
3795int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3796 unsigned long pgoff)
3797{
3798 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3799 addr, pgoff,
e69e9d4a
HD
3800 vma->vm_end - vma->vm_start);
3801}
83342314
NP
3802EXPORT_SYMBOL(remap_vmalloc_range);
3803
5f4352fb
JF
3804void free_vm_area(struct vm_struct *area)
3805{
3806 struct vm_struct *ret;
3807 ret = remove_vm_area(area->addr);
3808 BUG_ON(ret != area);
3809 kfree(area);
3810}
3811EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3812
4f8b02b4 3813#ifdef CONFIG_SMP
ca23e405
TH
3814static struct vmap_area *node_to_va(struct rb_node *n)
3815{
4583e773 3816 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3817}
3818
3819/**
68ad4a33
URS
3820 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3821 * @addr: target address
ca23e405 3822 *
68ad4a33
URS
3823 * Returns: vmap_area if it is found. If there is no such area
3824 * the first highest(reverse order) vmap_area is returned
3825 * i.e. va->va_start < addr && va->va_end < addr or NULL
3826 * if there are no any areas before @addr.
ca23e405 3827 */
68ad4a33
URS
3828static struct vmap_area *
3829pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3830{
68ad4a33
URS
3831 struct vmap_area *va, *tmp;
3832 struct rb_node *n;
3833
3834 n = free_vmap_area_root.rb_node;
3835 va = NULL;
ca23e405
TH
3836
3837 while (n) {
68ad4a33
URS
3838 tmp = rb_entry(n, struct vmap_area, rb_node);
3839 if (tmp->va_start <= addr) {
3840 va = tmp;
3841 if (tmp->va_end >= addr)
3842 break;
3843
ca23e405 3844 n = n->rb_right;
68ad4a33
URS
3845 } else {
3846 n = n->rb_left;
3847 }
ca23e405
TH
3848 }
3849
68ad4a33 3850 return va;
ca23e405
TH
3851}
3852
3853/**
68ad4a33
URS
3854 * pvm_determine_end_from_reverse - find the highest aligned address
3855 * of free block below VMALLOC_END
3856 * @va:
3857 * in - the VA we start the search(reverse order);
3858 * out - the VA with the highest aligned end address.
799fa85d 3859 * @align: alignment for required highest address
ca23e405 3860 *
68ad4a33 3861 * Returns: determined end address within vmap_area
ca23e405 3862 */
68ad4a33
URS
3863static unsigned long
3864pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3865{
68ad4a33 3866 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3867 unsigned long addr;
3868
68ad4a33
URS
3869 if (likely(*va)) {
3870 list_for_each_entry_from_reverse((*va),
3871 &free_vmap_area_list, list) {
3872 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3873 if ((*va)->va_start < addr)
3874 return addr;
3875 }
ca23e405
TH
3876 }
3877
68ad4a33 3878 return 0;
ca23e405
TH
3879}
3880
3881/**
3882 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3883 * @offsets: array containing offset of each area
3884 * @sizes: array containing size of each area
3885 * @nr_vms: the number of areas to allocate
3886 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3887 *
3888 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3889 * vm_structs on success, %NULL on failure
3890 *
3891 * Percpu allocator wants to use congruent vm areas so that it can
3892 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3893 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3894 * be scattered pretty far, distance between two areas easily going up
3895 * to gigabytes. To avoid interacting with regular vmallocs, these
3896 * areas are allocated from top.
ca23e405 3897 *
68ad4a33
URS
3898 * Despite its complicated look, this allocator is rather simple. It
3899 * does everything top-down and scans free blocks from the end looking
3900 * for matching base. While scanning, if any of the areas do not fit the
3901 * base address is pulled down to fit the area. Scanning is repeated till
3902 * all the areas fit and then all necessary data structures are inserted
3903 * and the result is returned.
ca23e405
TH
3904 */
3905struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3906 const size_t *sizes, int nr_vms,
ec3f64fc 3907 size_t align)
ca23e405
TH
3908{
3909 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3910 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3911 struct vmap_area **vas, *va;
ca23e405
TH
3912 struct vm_struct **vms;
3913 int area, area2, last_area, term_area;
253a496d 3914 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405
TH
3915 bool purged = false;
3916
ca23e405 3917 /* verify parameters and allocate data structures */
891c49ab 3918 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3919 for (last_area = 0, area = 0; area < nr_vms; area++) {
3920 start = offsets[area];
3921 end = start + sizes[area];
3922
3923 /* is everything aligned properly? */
3924 BUG_ON(!IS_ALIGNED(offsets[area], align));
3925 BUG_ON(!IS_ALIGNED(sizes[area], align));
3926
3927 /* detect the area with the highest address */
3928 if (start > offsets[last_area])
3929 last_area = area;
3930
c568da28 3931 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3932 unsigned long start2 = offsets[area2];
3933 unsigned long end2 = start2 + sizes[area2];
3934
c568da28 3935 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3936 }
3937 }
3938 last_end = offsets[last_area] + sizes[last_area];
3939
3940 if (vmalloc_end - vmalloc_start < last_end) {
3941 WARN_ON(true);
3942 return NULL;
3943 }
3944
4d67d860
TM
3945 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3946 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3947 if (!vas || !vms)
f1db7afd 3948 goto err_free2;
ca23e405
TH
3949
3950 for (area = 0; area < nr_vms; area++) {
68ad4a33 3951 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3952 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3953 if (!vas[area] || !vms[area])
3954 goto err_free;
3955 }
3956retry:
e36176be 3957 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3958
3959 /* start scanning - we scan from the top, begin with the last area */
3960 area = term_area = last_area;
3961 start = offsets[area];
3962 end = start + sizes[area];
3963
68ad4a33
URS
3964 va = pvm_find_va_enclose_addr(vmalloc_end);
3965 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3966
3967 while (true) {
ca23e405
TH
3968 /*
3969 * base might have underflowed, add last_end before
3970 * comparing.
3971 */
68ad4a33
URS
3972 if (base + last_end < vmalloc_start + last_end)
3973 goto overflow;
ca23e405
TH
3974
3975 /*
68ad4a33 3976 * Fitting base has not been found.
ca23e405 3977 */
68ad4a33
URS
3978 if (va == NULL)
3979 goto overflow;
ca23e405 3980
5336e52c 3981 /*
d8cc323d 3982 * If required width exceeds current VA block, move
5336e52c
KS
3983 * base downwards and then recheck.
3984 */
3985 if (base + end > va->va_end) {
3986 base = pvm_determine_end_from_reverse(&va, align) - end;
3987 term_area = area;
3988 continue;
3989 }
3990
ca23e405 3991 /*
68ad4a33 3992 * If this VA does not fit, move base downwards and recheck.
ca23e405 3993 */
5336e52c 3994 if (base + start < va->va_start) {
68ad4a33
URS
3995 va = node_to_va(rb_prev(&va->rb_node));
3996 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3997 term_area = area;
3998 continue;
3999 }
4000
4001 /*
4002 * This area fits, move on to the previous one. If
4003 * the previous one is the terminal one, we're done.
4004 */
4005 area = (area + nr_vms - 1) % nr_vms;
4006 if (area == term_area)
4007 break;
68ad4a33 4008
ca23e405
TH
4009 start = offsets[area];
4010 end = start + sizes[area];
68ad4a33 4011 va = pvm_find_va_enclose_addr(base + end);
ca23e405 4012 }
68ad4a33 4013
ca23e405
TH
4014 /* we've found a fitting base, insert all va's */
4015 for (area = 0; area < nr_vms; area++) {
68ad4a33 4016 int ret;
ca23e405 4017
68ad4a33
URS
4018 start = base + offsets[area];
4019 size = sizes[area];
ca23e405 4020
68ad4a33
URS
4021 va = pvm_find_va_enclose_addr(start);
4022 if (WARN_ON_ONCE(va == NULL))
4023 /* It is a BUG(), but trigger recovery instead. */
4024 goto recovery;
4025
f9863be4
URS
4026 ret = adjust_va_to_fit_type(&free_vmap_area_root,
4027 &free_vmap_area_list,
4028 va, start, size);
1b23ff80 4029 if (WARN_ON_ONCE(unlikely(ret)))
68ad4a33
URS
4030 /* It is a BUG(), but trigger recovery instead. */
4031 goto recovery;
4032
68ad4a33
URS
4033 /* Allocated area. */
4034 va = vas[area];
4035 va->va_start = start;
4036 va->va_end = start + size;
68ad4a33 4037 }
ca23e405 4038
e36176be 4039 spin_unlock(&free_vmap_area_lock);
ca23e405 4040
253a496d
DA
4041 /* populate the kasan shadow space */
4042 for (area = 0; area < nr_vms; area++) {
4043 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4044 goto err_free_shadow;
253a496d
DA
4045 }
4046
ca23e405 4047 /* insert all vm's */
e36176be
URS
4048 spin_lock(&vmap_area_lock);
4049 for (area = 0; area < nr_vms; area++) {
4050 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
4051
4052 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 4053 pcpu_get_vm_areas);
e36176be
URS
4054 }
4055 spin_unlock(&vmap_area_lock);
ca23e405 4056
19f1c3ac
AK
4057 /*
4058 * Mark allocated areas as accessible. Do it now as a best-effort
4059 * approach, as they can be mapped outside of vmalloc code.
23689e91
AK
4060 * With hardware tag-based KASAN, marking is skipped for
4061 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
19f1c3ac 4062 */
1d96320f
AK
4063 for (area = 0; area < nr_vms; area++)
4064 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
f6e39794 4065 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
1d96320f 4066
ca23e405
TH
4067 kfree(vas);
4068 return vms;
4069
68ad4a33 4070recovery:
e36176be
URS
4071 /*
4072 * Remove previously allocated areas. There is no
4073 * need in removing these areas from the busy tree,
4074 * because they are inserted only on the final step
4075 * and when pcpu_get_vm_areas() is success.
4076 */
68ad4a33 4077 while (area--) {
253a496d
DA
4078 orig_start = vas[area]->va_start;
4079 orig_end = vas[area]->va_end;
96e2db45
URS
4080 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4081 &free_vmap_area_list);
9c801f61
URS
4082 if (va)
4083 kasan_release_vmalloc(orig_start, orig_end,
4084 va->va_start, va->va_end);
68ad4a33
URS
4085 vas[area] = NULL;
4086 }
4087
4088overflow:
e36176be 4089 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
4090 if (!purged) {
4091 purge_vmap_area_lazy();
4092 purged = true;
4093
4094 /* Before "retry", check if we recover. */
4095 for (area = 0; area < nr_vms; area++) {
4096 if (vas[area])
4097 continue;
4098
4099 vas[area] = kmem_cache_zalloc(
4100 vmap_area_cachep, GFP_KERNEL);
4101 if (!vas[area])
4102 goto err_free;
4103 }
4104
4105 goto retry;
4106 }
4107
ca23e405
TH
4108err_free:
4109 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
4110 if (vas[area])
4111 kmem_cache_free(vmap_area_cachep, vas[area]);
4112
f1db7afd 4113 kfree(vms[area]);
ca23e405 4114 }
f1db7afd 4115err_free2:
ca23e405
TH
4116 kfree(vas);
4117 kfree(vms);
4118 return NULL;
253a496d
DA
4119
4120err_free_shadow:
4121 spin_lock(&free_vmap_area_lock);
4122 /*
4123 * We release all the vmalloc shadows, even the ones for regions that
4124 * hadn't been successfully added. This relies on kasan_release_vmalloc
4125 * being able to tolerate this case.
4126 */
4127 for (area = 0; area < nr_vms; area++) {
4128 orig_start = vas[area]->va_start;
4129 orig_end = vas[area]->va_end;
96e2db45
URS
4130 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4131 &free_vmap_area_list);
9c801f61
URS
4132 if (va)
4133 kasan_release_vmalloc(orig_start, orig_end,
4134 va->va_start, va->va_end);
253a496d
DA
4135 vas[area] = NULL;
4136 kfree(vms[area]);
4137 }
4138 spin_unlock(&free_vmap_area_lock);
4139 kfree(vas);
4140 kfree(vms);
4141 return NULL;
ca23e405
TH
4142}
4143
4144/**
4145 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4146 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4147 * @nr_vms: the number of allocated areas
4148 *
4149 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4150 */
4151void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4152{
4153 int i;
4154
4155 for (i = 0; i < nr_vms; i++)
4156 free_vm_area(vms[i]);
4157 kfree(vms);
4158}
4f8b02b4 4159#endif /* CONFIG_SMP */
a10aa579 4160
5bb1bb35 4161#ifdef CONFIG_PRINTK
98f18083
PM
4162bool vmalloc_dump_obj(void *object)
4163{
4164 struct vm_struct *vm;
4165 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4166
4167 vm = find_vm_area(objp);
4168 if (!vm)
4169 return false;
bd34dcd4
PM
4170 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4171 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
98f18083
PM
4172 return true;
4173}
5bb1bb35 4174#endif
98f18083 4175
a10aa579
CL
4176#ifdef CONFIG_PROC_FS
4177static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 4178 __acquires(&vmap_purge_lock)
d4033afd 4179 __acquires(&vmap_area_lock)
a10aa579 4180{
e36176be 4181 mutex_lock(&vmap_purge_lock);
d4033afd 4182 spin_lock(&vmap_area_lock);
e36176be 4183
3f500069 4184 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
4185}
4186
4187static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4188{
3f500069 4189 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
4190}
4191
4192static void s_stop(struct seq_file *m, void *p)
d4033afd 4193 __releases(&vmap_area_lock)
0a7dd4e9 4194 __releases(&vmap_purge_lock)
a10aa579 4195{
d4033afd 4196 spin_unlock(&vmap_area_lock);
0a7dd4e9 4197 mutex_unlock(&vmap_purge_lock);
a10aa579
CL
4198}
4199
a47a126a
ED
4200static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4201{
e5adfffc 4202 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a 4203 unsigned int nr, *counters = m->private;
51e50b3a 4204 unsigned int step = 1U << vm_area_page_order(v);
a47a126a
ED
4205
4206 if (!counters)
4207 return;
4208
af12346c
WL
4209 if (v->flags & VM_UNINITIALIZED)
4210 return;
7e5b528b
DV
4211 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4212 smp_rmb();
af12346c 4213
a47a126a
ED
4214 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4215
51e50b3a
ED
4216 for (nr = 0; nr < v->nr_pages; nr += step)
4217 counters[page_to_nid(v->pages[nr])] += step;
a47a126a
ED
4218 for_each_node_state(nr, N_HIGH_MEMORY)
4219 if (counters[nr])
4220 seq_printf(m, " N%u=%u", nr, counters[nr]);
4221 }
4222}
4223
dd3b8353
URS
4224static void show_purge_info(struct seq_file *m)
4225{
dd3b8353
URS
4226 struct vmap_area *va;
4227
96e2db45
URS
4228 spin_lock(&purge_vmap_area_lock);
4229 list_for_each_entry(va, &purge_vmap_area_list, list) {
dd3b8353
URS
4230 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4231 (void *)va->va_start, (void *)va->va_end,
4232 va->va_end - va->va_start);
4233 }
96e2db45 4234 spin_unlock(&purge_vmap_area_lock);
dd3b8353
URS
4235}
4236
a10aa579
CL
4237static int s_show(struct seq_file *m, void *p)
4238{
3f500069 4239 struct vmap_area *va;
d4033afd
JK
4240 struct vm_struct *v;
4241
3f500069 4242 va = list_entry(p, struct vmap_area, list);
4243
688fcbfc 4244 if (!va->vm) {
bba9697b
BH
4245 if (va->flags & VMAP_RAM)
4246 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4247 (void *)va->va_start, (void *)va->va_end,
4248 va->va_end - va->va_start);
78c72746 4249
7cc7913e 4250 goto final;
78c72746 4251 }
d4033afd
JK
4252
4253 v = va->vm;
a10aa579 4254
45ec1690 4255 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
4256 v->addr, v->addr + v->size, v->size);
4257
62c70bce
JP
4258 if (v->caller)
4259 seq_printf(m, " %pS", v->caller);
23016969 4260
a10aa579
CL
4261 if (v->nr_pages)
4262 seq_printf(m, " pages=%d", v->nr_pages);
4263
4264 if (v->phys_addr)
199eaa05 4265 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
4266
4267 if (v->flags & VM_IOREMAP)
f4527c90 4268 seq_puts(m, " ioremap");
a10aa579
CL
4269
4270 if (v->flags & VM_ALLOC)
f4527c90 4271 seq_puts(m, " vmalloc");
a10aa579
CL
4272
4273 if (v->flags & VM_MAP)
f4527c90 4274 seq_puts(m, " vmap");
a10aa579
CL
4275
4276 if (v->flags & VM_USERMAP)
f4527c90 4277 seq_puts(m, " user");
a10aa579 4278
fe9041c2
CH
4279 if (v->flags & VM_DMA_COHERENT)
4280 seq_puts(m, " dma-coherent");
4281
244d63ee 4282 if (is_vmalloc_addr(v->pages))
f4527c90 4283 seq_puts(m, " vpages");
a10aa579 4284
a47a126a 4285 show_numa_info(m, v);
a10aa579 4286 seq_putc(m, '\n');
dd3b8353
URS
4287
4288 /*
96e2db45 4289 * As a final step, dump "unpurged" areas.
dd3b8353 4290 */
7cc7913e 4291final:
dd3b8353
URS
4292 if (list_is_last(&va->list, &vmap_area_list))
4293 show_purge_info(m);
4294
a10aa579
CL
4295 return 0;
4296}
4297
5f6a6a9c 4298static const struct seq_operations vmalloc_op = {
a10aa579
CL
4299 .start = s_start,
4300 .next = s_next,
4301 .stop = s_stop,
4302 .show = s_show,
4303};
5f6a6a9c 4304
5f6a6a9c
AD
4305static int __init proc_vmalloc_init(void)
4306{
fddda2b7 4307 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 4308 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
4309 &vmalloc_op,
4310 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 4311 else
0825a6f9 4312 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
4313 return 0;
4314}
4315module_init(proc_vmalloc_init);
db3808c1 4316
a10aa579 4317#endif
208162f4
CH
4318
4319void __init vmalloc_init(void)
4320{
4321 struct vmap_area *va;
4322 struct vm_struct *tmp;
4323 int i;
4324
4325 /*
4326 * Create the cache for vmap_area objects.
4327 */
4328 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4329
4330 for_each_possible_cpu(i) {
4331 struct vmap_block_queue *vbq;
4332 struct vfree_deferred *p;
4333
4334 vbq = &per_cpu(vmap_block_queue, i);
4335 spin_lock_init(&vbq->lock);
4336 INIT_LIST_HEAD(&vbq->free);
4337 p = &per_cpu(vfree_deferred, i);
4338 init_llist_head(&p->list);
4339 INIT_WORK(&p->wq, delayed_vfree_work);
4340 }
4341
4342 /* Import existing vmlist entries. */
4343 for (tmp = vmlist; tmp; tmp = tmp->next) {
4344 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4345 if (WARN_ON_ONCE(!va))
4346 continue;
4347
4348 va->va_start = (unsigned long)tmp->addr;
4349 va->va_end = va->va_start + tmp->size;
4350 va->vm = tmp;
4351 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4352 }
4353
4354 /*
4355 * Now we can initialize a free vmap space.
4356 */
4357 vmap_init_free_space();
4358 vmap_initialized = true;
4359}