]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmalloc.c
mm/vmalloc.c: preload a CPU with one object for split purpose
[thirdparty/linux.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 9 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
10 */
11
db64fe02 12#include <linux/vmalloc.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
c3edc401 16#include <linux/sched/signal.h>
1da177e4
LT
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
5f6a6a9c 20#include <linux/proc_fs.h>
a10aa579 21#include <linux/seq_file.h>
868b104d 22#include <linux/set_memory.h>
3ac7fe5a 23#include <linux/debugobjects.h>
23016969 24#include <linux/kallsyms.h>
db64fe02 25#include <linux/list.h>
4da56b99 26#include <linux/notifier.h>
db64fe02
NP
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
3b32123d 37
7c0f6ba6 38#include <linux/uaccess.h>
1da177e4 39#include <asm/tlbflush.h>
2dca6999 40#include <asm/shmparam.h>
1da177e4 41
dd56b046
MG
42#include "internal.h"
43
32fcfd40
AV
44struct vfree_deferred {
45 struct llist_head list;
46 struct work_struct wq;
47};
48static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49
50static void __vunmap(const void *, int);
51
52static void free_work(struct work_struct *w)
53{
54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
55 struct llist_node *t, *llnode;
56
57 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 __vunmap((void *)llnode, 1);
32fcfd40
AV
59}
60
db64fe02 61/*** Page table manipulation functions ***/
b221385b 62
1da177e4
LT
63static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64{
65 pte_t *pte;
66
67 pte = pte_offset_kernel(pmd, addr);
68 do {
69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 } while (pte++, addr += PAGE_SIZE, addr != end);
72}
73
db64fe02 74static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
75{
76 pmd_t *pmd;
77 unsigned long next;
78
79 pmd = pmd_offset(pud, addr);
80 do {
81 next = pmd_addr_end(addr, end);
b9820d8f
TK
82 if (pmd_clear_huge(pmd))
83 continue;
1da177e4
LT
84 if (pmd_none_or_clear_bad(pmd))
85 continue;
86 vunmap_pte_range(pmd, addr, next);
87 } while (pmd++, addr = next, addr != end);
88}
89
c2febafc 90static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
91{
92 pud_t *pud;
93 unsigned long next;
94
c2febafc 95 pud = pud_offset(p4d, addr);
1da177e4
LT
96 do {
97 next = pud_addr_end(addr, end);
b9820d8f
TK
98 if (pud_clear_huge(pud))
99 continue;
1da177e4
LT
100 if (pud_none_or_clear_bad(pud))
101 continue;
102 vunmap_pmd_range(pud, addr, next);
103 } while (pud++, addr = next, addr != end);
104}
105
c2febafc
KS
106static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107{
108 p4d_t *p4d;
109 unsigned long next;
110
111 p4d = p4d_offset(pgd, addr);
112 do {
113 next = p4d_addr_end(addr, end);
114 if (p4d_clear_huge(p4d))
115 continue;
116 if (p4d_none_or_clear_bad(p4d))
117 continue;
118 vunmap_pud_range(p4d, addr, next);
119 } while (p4d++, addr = next, addr != end);
120}
121
db64fe02 122static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
123{
124 pgd_t *pgd;
125 unsigned long next;
1da177e4
LT
126
127 BUG_ON(addr >= end);
128 pgd = pgd_offset_k(addr);
1da177e4
LT
129 do {
130 next = pgd_addr_end(addr, end);
131 if (pgd_none_or_clear_bad(pgd))
132 continue;
c2febafc 133 vunmap_p4d_range(pgd, addr, next);
1da177e4 134 } while (pgd++, addr = next, addr != end);
1da177e4
LT
135}
136
137static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 138 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
139{
140 pte_t *pte;
141
db64fe02
NP
142 /*
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
145 */
146
872fec16 147 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
148 if (!pte)
149 return -ENOMEM;
150 do {
db64fe02
NP
151 struct page *page = pages[*nr];
152
153 if (WARN_ON(!pte_none(*pte)))
154 return -EBUSY;
155 if (WARN_ON(!page))
1da177e4
LT
156 return -ENOMEM;
157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 158 (*nr)++;
1da177e4
LT
159 } while (pte++, addr += PAGE_SIZE, addr != end);
160 return 0;
161}
162
db64fe02
NP
163static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
165{
166 pmd_t *pmd;
167 unsigned long next;
168
169 pmd = pmd_alloc(&init_mm, pud, addr);
170 if (!pmd)
171 return -ENOMEM;
172 do {
173 next = pmd_addr_end(addr, end);
db64fe02 174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
175 return -ENOMEM;
176 } while (pmd++, addr = next, addr != end);
177 return 0;
178}
179
c2febafc 180static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 181 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
182{
183 pud_t *pud;
184 unsigned long next;
185
c2febafc 186 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
187 if (!pud)
188 return -ENOMEM;
189 do {
190 next = pud_addr_end(addr, end);
db64fe02 191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
192 return -ENOMEM;
193 } while (pud++, addr = next, addr != end);
194 return 0;
195}
196
c2febafc
KS
197static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199{
200 p4d_t *p4d;
201 unsigned long next;
202
203 p4d = p4d_alloc(&init_mm, pgd, addr);
204 if (!p4d)
205 return -ENOMEM;
206 do {
207 next = p4d_addr_end(addr, end);
208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 return -ENOMEM;
210 } while (p4d++, addr = next, addr != end);
211 return 0;
212}
213
db64fe02
NP
214/*
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
217 *
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219 */
8fc48985
TH
220static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 pgprot_t prot, struct page **pages)
1da177e4
LT
222{
223 pgd_t *pgd;
224 unsigned long next;
2e4e27c7 225 unsigned long addr = start;
db64fe02
NP
226 int err = 0;
227 int nr = 0;
1da177e4
LT
228
229 BUG_ON(addr >= end);
230 pgd = pgd_offset_k(addr);
1da177e4
LT
231 do {
232 next = pgd_addr_end(addr, end);
c2febafc 233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 234 if (err)
bf88c8c8 235 return err;
1da177e4 236 } while (pgd++, addr = next, addr != end);
db64fe02 237
db64fe02 238 return nr;
1da177e4
LT
239}
240
8fc48985
TH
241static int vmap_page_range(unsigned long start, unsigned long end,
242 pgprot_t prot, struct page **pages)
243{
244 int ret;
245
246 ret = vmap_page_range_noflush(start, end, prot, pages);
247 flush_cache_vmap(start, end);
248 return ret;
249}
250
81ac3ad9 251int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
252{
253 /*
ab4f2ee1 254 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
257 */
258#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr = (unsigned long)x;
260 if (addr >= MODULES_VADDR && addr < MODULES_END)
261 return 1;
262#endif
263 return is_vmalloc_addr(x);
264}
265
48667e7a 266/*
add688fb 267 * Walk a vmap address to the struct page it maps.
48667e7a 268 */
add688fb 269struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
270{
271 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 272 struct page *page = NULL;
48667e7a 273 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
274 p4d_t *p4d;
275 pud_t *pud;
276 pmd_t *pmd;
277 pte_t *ptep, pte;
48667e7a 278
7aa413de
IM
279 /*
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
282 */
73bdf0a6 283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 284
c2febafc
KS
285 if (pgd_none(*pgd))
286 return NULL;
287 p4d = p4d_offset(pgd, addr);
288 if (p4d_none(*p4d))
289 return NULL;
290 pud = pud_offset(p4d, addr);
029c54b0
AB
291
292 /*
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
299 */
300 WARN_ON_ONCE(pud_bad(*pud));
301 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
302 return NULL;
303 pmd = pmd_offset(pud, addr);
029c54b0
AB
304 WARN_ON_ONCE(pmd_bad(*pmd));
305 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
306 return NULL;
307
308 ptep = pte_offset_map(pmd, addr);
309 pte = *ptep;
310 if (pte_present(pte))
311 page = pte_page(pte);
312 pte_unmap(ptep);
add688fb 313 return page;
48667e7a 314}
add688fb 315EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
316
317/*
add688fb 318 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 319 */
add688fb 320unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 321{
add688fb 322 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 323}
add688fb 324EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 325
db64fe02
NP
326
327/*** Global kva allocator ***/
328
bb850f4d 329#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 330#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 331
78c72746 332#define VM_LAZY_FREE 0x02
db64fe02
NP
333#define VM_VM_AREA 0x04
334
db64fe02 335static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
336/* Export for kexec only */
337LIST_HEAD(vmap_area_list);
80c4bd7a 338static LLIST_HEAD(vmap_purge_list);
89699605 339static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 340static bool vmap_initialized __read_mostly;
89699605 341
68ad4a33
URS
342/*
343 * This kmem_cache is used for vmap_area objects. Instead of
344 * allocating from slab we reuse an object from this cache to
345 * make things faster. Especially in "no edge" splitting of
346 * free block.
347 */
348static struct kmem_cache *vmap_area_cachep;
349
350/*
351 * This linked list is used in pair with free_vmap_area_root.
352 * It gives O(1) access to prev/next to perform fast coalescing.
353 */
354static LIST_HEAD(free_vmap_area_list);
355
356/*
357 * This augment red-black tree represents the free vmap space.
358 * All vmap_area objects in this tree are sorted by va->va_start
359 * address. It is used for allocation and merging when a vmap
360 * object is released.
361 *
362 * Each vmap_area node contains a maximum available free block
363 * of its sub-tree, right or left. Therefore it is possible to
364 * find a lowest match of free area.
365 */
366static struct rb_root free_vmap_area_root = RB_ROOT;
367
82dd23e8
URS
368/*
369 * Preload a CPU with one object for "no edge" split case. The
370 * aim is to get rid of allocations from the atomic context, thus
371 * to use more permissive allocation masks.
372 */
373static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
374
68ad4a33
URS
375static __always_inline unsigned long
376va_size(struct vmap_area *va)
377{
378 return (va->va_end - va->va_start);
379}
380
381static __always_inline unsigned long
382get_subtree_max_size(struct rb_node *node)
383{
384 struct vmap_area *va;
385
386 va = rb_entry_safe(node, struct vmap_area, rb_node);
387 return va ? va->subtree_max_size : 0;
388}
89699605 389
68ad4a33
URS
390/*
391 * Gets called when remove the node and rotate.
392 */
393static __always_inline unsigned long
394compute_subtree_max_size(struct vmap_area *va)
395{
396 return max3(va_size(va),
397 get_subtree_max_size(va->rb_node.rb_left),
398 get_subtree_max_size(va->rb_node.rb_right));
399}
400
401RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
402 struct vmap_area, rb_node, unsigned long, subtree_max_size,
403 compute_subtree_max_size)
404
405static void purge_vmap_area_lazy(void);
406static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
407static unsigned long lazy_max_pages(void);
db64fe02
NP
408
409static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 410{
db64fe02
NP
411 struct rb_node *n = vmap_area_root.rb_node;
412
413 while (n) {
414 struct vmap_area *va;
415
416 va = rb_entry(n, struct vmap_area, rb_node);
417 if (addr < va->va_start)
418 n = n->rb_left;
cef2ac3f 419 else if (addr >= va->va_end)
db64fe02
NP
420 n = n->rb_right;
421 else
422 return va;
423 }
424
425 return NULL;
426}
427
68ad4a33
URS
428/*
429 * This function returns back addresses of parent node
430 * and its left or right link for further processing.
431 */
432static __always_inline struct rb_node **
433find_va_links(struct vmap_area *va,
434 struct rb_root *root, struct rb_node *from,
435 struct rb_node **parent)
436{
437 struct vmap_area *tmp_va;
438 struct rb_node **link;
439
440 if (root) {
441 link = &root->rb_node;
442 if (unlikely(!*link)) {
443 *parent = NULL;
444 return link;
445 }
446 } else {
447 link = &from;
448 }
db64fe02 449
68ad4a33
URS
450 /*
451 * Go to the bottom of the tree. When we hit the last point
452 * we end up with parent rb_node and correct direction, i name
453 * it link, where the new va->rb_node will be attached to.
454 */
455 do {
456 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 457
68ad4a33
URS
458 /*
459 * During the traversal we also do some sanity check.
460 * Trigger the BUG() if there are sides(left/right)
461 * or full overlaps.
462 */
463 if (va->va_start < tmp_va->va_end &&
464 va->va_end <= tmp_va->va_start)
465 link = &(*link)->rb_left;
466 else if (va->va_end > tmp_va->va_start &&
467 va->va_start >= tmp_va->va_end)
468 link = &(*link)->rb_right;
db64fe02
NP
469 else
470 BUG();
68ad4a33
URS
471 } while (*link);
472
473 *parent = &tmp_va->rb_node;
474 return link;
475}
476
477static __always_inline struct list_head *
478get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
479{
480 struct list_head *list;
481
482 if (unlikely(!parent))
483 /*
484 * The red-black tree where we try to find VA neighbors
485 * before merging or inserting is empty, i.e. it means
486 * there is no free vmap space. Normally it does not
487 * happen but we handle this case anyway.
488 */
489 return NULL;
490
491 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
492 return (&parent->rb_right == link ? list->next : list);
493}
494
495static __always_inline void
496link_va(struct vmap_area *va, struct rb_root *root,
497 struct rb_node *parent, struct rb_node **link, struct list_head *head)
498{
499 /*
500 * VA is still not in the list, but we can
501 * identify its future previous list_head node.
502 */
503 if (likely(parent)) {
504 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
505 if (&parent->rb_right != link)
506 head = head->prev;
db64fe02
NP
507 }
508
68ad4a33
URS
509 /* Insert to the rb-tree */
510 rb_link_node(&va->rb_node, parent, link);
511 if (root == &free_vmap_area_root) {
512 /*
513 * Some explanation here. Just perform simple insertion
514 * to the tree. We do not set va->subtree_max_size to
515 * its current size before calling rb_insert_augmented().
516 * It is because of we populate the tree from the bottom
517 * to parent levels when the node _is_ in the tree.
518 *
519 * Therefore we set subtree_max_size to zero after insertion,
520 * to let __augment_tree_propagate_from() puts everything to
521 * the correct order later on.
522 */
523 rb_insert_augmented(&va->rb_node,
524 root, &free_vmap_area_rb_augment_cb);
525 va->subtree_max_size = 0;
526 } else {
527 rb_insert_color(&va->rb_node, root);
528 }
db64fe02 529
68ad4a33
URS
530 /* Address-sort this list */
531 list_add(&va->list, head);
db64fe02
NP
532}
533
68ad4a33
URS
534static __always_inline void
535unlink_va(struct vmap_area *va, struct rb_root *root)
536{
537 /*
538 * During merging a VA node can be empty, therefore
539 * not linked with the tree nor list. Just check it.
540 */
541 if (!RB_EMPTY_NODE(&va->rb_node)) {
542 if (root == &free_vmap_area_root)
543 rb_erase_augmented(&va->rb_node,
544 root, &free_vmap_area_rb_augment_cb);
545 else
546 rb_erase(&va->rb_node, root);
db64fe02 547
68ad4a33
URS
548 list_del(&va->list);
549 RB_CLEAR_NODE(&va->rb_node);
550 }
551}
552
bb850f4d
URS
553#if DEBUG_AUGMENT_PROPAGATE_CHECK
554static void
555augment_tree_propagate_check(struct rb_node *n)
556{
557 struct vmap_area *va;
558 struct rb_node *node;
559 unsigned long size;
560 bool found = false;
561
562 if (n == NULL)
563 return;
564
565 va = rb_entry(n, struct vmap_area, rb_node);
566 size = va->subtree_max_size;
567 node = n;
568
569 while (node) {
570 va = rb_entry(node, struct vmap_area, rb_node);
571
572 if (get_subtree_max_size(node->rb_left) == size) {
573 node = node->rb_left;
574 } else {
575 if (va_size(va) == size) {
576 found = true;
577 break;
578 }
579
580 node = node->rb_right;
581 }
582 }
583
584 if (!found) {
585 va = rb_entry(n, struct vmap_area, rb_node);
586 pr_emerg("tree is corrupted: %lu, %lu\n",
587 va_size(va), va->subtree_max_size);
588 }
589
590 augment_tree_propagate_check(n->rb_left);
591 augment_tree_propagate_check(n->rb_right);
592}
593#endif
594
68ad4a33
URS
595/*
596 * This function populates subtree_max_size from bottom to upper
597 * levels starting from VA point. The propagation must be done
598 * when VA size is modified by changing its va_start/va_end. Or
599 * in case of newly inserting of VA to the tree.
600 *
601 * It means that __augment_tree_propagate_from() must be called:
602 * - After VA has been inserted to the tree(free path);
603 * - After VA has been shrunk(allocation path);
604 * - After VA has been increased(merging path).
605 *
606 * Please note that, it does not mean that upper parent nodes
607 * and their subtree_max_size are recalculated all the time up
608 * to the root node.
609 *
610 * 4--8
611 * /\
612 * / \
613 * / \
614 * 2--2 8--8
615 *
616 * For example if we modify the node 4, shrinking it to 2, then
617 * no any modification is required. If we shrink the node 2 to 1
618 * its subtree_max_size is updated only, and set to 1. If we shrink
619 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
620 * node becomes 4--6.
621 */
622static __always_inline void
623augment_tree_propagate_from(struct vmap_area *va)
624{
625 struct rb_node *node = &va->rb_node;
626 unsigned long new_va_sub_max_size;
627
628 while (node) {
629 va = rb_entry(node, struct vmap_area, rb_node);
630 new_va_sub_max_size = compute_subtree_max_size(va);
631
632 /*
633 * If the newly calculated maximum available size of the
634 * subtree is equal to the current one, then it means that
635 * the tree is propagated correctly. So we have to stop at
636 * this point to save cycles.
637 */
638 if (va->subtree_max_size == new_va_sub_max_size)
639 break;
640
641 va->subtree_max_size = new_va_sub_max_size;
642 node = rb_parent(&va->rb_node);
643 }
bb850f4d
URS
644
645#if DEBUG_AUGMENT_PROPAGATE_CHECK
646 augment_tree_propagate_check(free_vmap_area_root.rb_node);
647#endif
68ad4a33
URS
648}
649
650static void
651insert_vmap_area(struct vmap_area *va,
652 struct rb_root *root, struct list_head *head)
653{
654 struct rb_node **link;
655 struct rb_node *parent;
656
657 link = find_va_links(va, root, NULL, &parent);
658 link_va(va, root, parent, link, head);
659}
660
661static void
662insert_vmap_area_augment(struct vmap_area *va,
663 struct rb_node *from, struct rb_root *root,
664 struct list_head *head)
665{
666 struct rb_node **link;
667 struct rb_node *parent;
668
669 if (from)
670 link = find_va_links(va, NULL, from, &parent);
671 else
672 link = find_va_links(va, root, NULL, &parent);
673
674 link_va(va, root, parent, link, head);
675 augment_tree_propagate_from(va);
676}
677
678/*
679 * Merge de-allocated chunk of VA memory with previous
680 * and next free blocks. If coalesce is not done a new
681 * free area is inserted. If VA has been merged, it is
682 * freed.
683 */
684static __always_inline void
685merge_or_add_vmap_area(struct vmap_area *va,
686 struct rb_root *root, struct list_head *head)
687{
688 struct vmap_area *sibling;
689 struct list_head *next;
690 struct rb_node **link;
691 struct rb_node *parent;
692 bool merged = false;
693
694 /*
695 * Find a place in the tree where VA potentially will be
696 * inserted, unless it is merged with its sibling/siblings.
697 */
698 link = find_va_links(va, root, NULL, &parent);
699
700 /*
701 * Get next node of VA to check if merging can be done.
702 */
703 next = get_va_next_sibling(parent, link);
704 if (unlikely(next == NULL))
705 goto insert;
706
707 /*
708 * start end
709 * | |
710 * |<------VA------>|<-----Next----->|
711 * | |
712 * start end
713 */
714 if (next != head) {
715 sibling = list_entry(next, struct vmap_area, list);
716 if (sibling->va_start == va->va_end) {
717 sibling->va_start = va->va_start;
718
719 /* Check and update the tree if needed. */
720 augment_tree_propagate_from(sibling);
721
722 /* Remove this VA, it has been merged. */
723 unlink_va(va, root);
724
725 /* Free vmap_area object. */
726 kmem_cache_free(vmap_area_cachep, va);
727
728 /* Point to the new merged area. */
729 va = sibling;
730 merged = true;
731 }
732 }
733
734 /*
735 * start end
736 * | |
737 * |<-----Prev----->|<------VA------>|
738 * | |
739 * start end
740 */
741 if (next->prev != head) {
742 sibling = list_entry(next->prev, struct vmap_area, list);
743 if (sibling->va_end == va->va_start) {
744 sibling->va_end = va->va_end;
745
746 /* Check and update the tree if needed. */
747 augment_tree_propagate_from(sibling);
748
749 /* Remove this VA, it has been merged. */
750 unlink_va(va, root);
751
752 /* Free vmap_area object. */
753 kmem_cache_free(vmap_area_cachep, va);
754
755 return;
756 }
757 }
758
759insert:
760 if (!merged) {
761 link_va(va, root, parent, link, head);
762 augment_tree_propagate_from(va);
763 }
764}
765
766static __always_inline bool
767is_within_this_va(struct vmap_area *va, unsigned long size,
768 unsigned long align, unsigned long vstart)
769{
770 unsigned long nva_start_addr;
771
772 if (va->va_start > vstart)
773 nva_start_addr = ALIGN(va->va_start, align);
774 else
775 nva_start_addr = ALIGN(vstart, align);
776
777 /* Can be overflowed due to big size or alignment. */
778 if (nva_start_addr + size < nva_start_addr ||
779 nva_start_addr < vstart)
780 return false;
781
782 return (nva_start_addr + size <= va->va_end);
783}
784
785/*
786 * Find the first free block(lowest start address) in the tree,
787 * that will accomplish the request corresponding to passing
788 * parameters.
789 */
790static __always_inline struct vmap_area *
791find_vmap_lowest_match(unsigned long size,
792 unsigned long align, unsigned long vstart)
793{
794 struct vmap_area *va;
795 struct rb_node *node;
796 unsigned long length;
797
798 /* Start from the root. */
799 node = free_vmap_area_root.rb_node;
800
801 /* Adjust the search size for alignment overhead. */
802 length = size + align - 1;
803
804 while (node) {
805 va = rb_entry(node, struct vmap_area, rb_node);
806
807 if (get_subtree_max_size(node->rb_left) >= length &&
808 vstart < va->va_start) {
809 node = node->rb_left;
810 } else {
811 if (is_within_this_va(va, size, align, vstart))
812 return va;
813
814 /*
815 * Does not make sense to go deeper towards the right
816 * sub-tree if it does not have a free block that is
817 * equal or bigger to the requested search length.
818 */
819 if (get_subtree_max_size(node->rb_right) >= length) {
820 node = node->rb_right;
821 continue;
822 }
823
824 /*
3806b041 825 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
826 * that will satisfy the search criteria. It can happen
827 * only once due to "vstart" restriction.
828 */
829 while ((node = rb_parent(node))) {
830 va = rb_entry(node, struct vmap_area, rb_node);
831 if (is_within_this_va(va, size, align, vstart))
832 return va;
833
834 if (get_subtree_max_size(node->rb_right) >= length &&
835 vstart <= va->va_start) {
836 node = node->rb_right;
837 break;
838 }
839 }
840 }
841 }
842
843 return NULL;
844}
845
a6cf4e0f
URS
846#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
847#include <linux/random.h>
848
849static struct vmap_area *
850find_vmap_lowest_linear_match(unsigned long size,
851 unsigned long align, unsigned long vstart)
852{
853 struct vmap_area *va;
854
855 list_for_each_entry(va, &free_vmap_area_list, list) {
856 if (!is_within_this_va(va, size, align, vstart))
857 continue;
858
859 return va;
860 }
861
862 return NULL;
863}
864
865static void
866find_vmap_lowest_match_check(unsigned long size)
867{
868 struct vmap_area *va_1, *va_2;
869 unsigned long vstart;
870 unsigned int rnd;
871
872 get_random_bytes(&rnd, sizeof(rnd));
873 vstart = VMALLOC_START + rnd;
874
875 va_1 = find_vmap_lowest_match(size, 1, vstart);
876 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
877
878 if (va_1 != va_2)
879 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
880 va_1, va_2, vstart);
881}
882#endif
883
68ad4a33
URS
884enum fit_type {
885 NOTHING_FIT = 0,
886 FL_FIT_TYPE = 1, /* full fit */
887 LE_FIT_TYPE = 2, /* left edge fit */
888 RE_FIT_TYPE = 3, /* right edge fit */
889 NE_FIT_TYPE = 4 /* no edge fit */
890};
891
892static __always_inline enum fit_type
893classify_va_fit_type(struct vmap_area *va,
894 unsigned long nva_start_addr, unsigned long size)
895{
896 enum fit_type type;
897
898 /* Check if it is within VA. */
899 if (nva_start_addr < va->va_start ||
900 nva_start_addr + size > va->va_end)
901 return NOTHING_FIT;
902
903 /* Now classify. */
904 if (va->va_start == nva_start_addr) {
905 if (va->va_end == nva_start_addr + size)
906 type = FL_FIT_TYPE;
907 else
908 type = LE_FIT_TYPE;
909 } else if (va->va_end == nva_start_addr + size) {
910 type = RE_FIT_TYPE;
911 } else {
912 type = NE_FIT_TYPE;
913 }
914
915 return type;
916}
917
918static __always_inline int
919adjust_va_to_fit_type(struct vmap_area *va,
920 unsigned long nva_start_addr, unsigned long size,
921 enum fit_type type)
922{
2c929233 923 struct vmap_area *lva = NULL;
68ad4a33
URS
924
925 if (type == FL_FIT_TYPE) {
926 /*
927 * No need to split VA, it fully fits.
928 *
929 * | |
930 * V NVA V
931 * |---------------|
932 */
933 unlink_va(va, &free_vmap_area_root);
934 kmem_cache_free(vmap_area_cachep, va);
935 } else if (type == LE_FIT_TYPE) {
936 /*
937 * Split left edge of fit VA.
938 *
939 * | |
940 * V NVA V R
941 * |-------|-------|
942 */
943 va->va_start += size;
944 } else if (type == RE_FIT_TYPE) {
945 /*
946 * Split right edge of fit VA.
947 *
948 * | |
949 * L V NVA V
950 * |-------|-------|
951 */
952 va->va_end = nva_start_addr;
953 } else if (type == NE_FIT_TYPE) {
954 /*
955 * Split no edge of fit VA.
956 *
957 * | |
958 * L V NVA V R
959 * |---|-------|---|
960 */
82dd23e8
URS
961 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
962 if (unlikely(!lva)) {
963 /*
964 * For percpu allocator we do not do any pre-allocation
965 * and leave it as it is. The reason is it most likely
966 * never ends up with NE_FIT_TYPE splitting. In case of
967 * percpu allocations offsets and sizes are aligned to
968 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
969 * are its main fitting cases.
970 *
971 * There are a few exceptions though, as an example it is
972 * a first allocation (early boot up) when we have "one"
973 * big free space that has to be split.
974 */
975 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
976 if (!lva)
977 return -1;
978 }
68ad4a33
URS
979
980 /*
981 * Build the remainder.
982 */
983 lva->va_start = va->va_start;
984 lva->va_end = nva_start_addr;
985
986 /*
987 * Shrink this VA to remaining size.
988 */
989 va->va_start = nva_start_addr + size;
990 } else {
991 return -1;
992 }
993
994 if (type != FL_FIT_TYPE) {
995 augment_tree_propagate_from(va);
996
2c929233 997 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
998 insert_vmap_area_augment(lva, &va->rb_node,
999 &free_vmap_area_root, &free_vmap_area_list);
1000 }
1001
1002 return 0;
1003}
1004
1005/*
1006 * Returns a start address of the newly allocated area, if success.
1007 * Otherwise a vend is returned that indicates failure.
1008 */
1009static __always_inline unsigned long
1010__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1011 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1012{
1013 unsigned long nva_start_addr;
1014 struct vmap_area *va;
1015 enum fit_type type;
1016 int ret;
1017
1018 va = find_vmap_lowest_match(size, align, vstart);
1019 if (unlikely(!va))
1020 return vend;
1021
1022 if (va->va_start > vstart)
1023 nva_start_addr = ALIGN(va->va_start, align);
1024 else
1025 nva_start_addr = ALIGN(vstart, align);
1026
1027 /* Check the "vend" restriction. */
1028 if (nva_start_addr + size > vend)
1029 return vend;
1030
1031 /* Classify what we have found. */
1032 type = classify_va_fit_type(va, nva_start_addr, size);
1033 if (WARN_ON_ONCE(type == NOTHING_FIT))
1034 return vend;
1035
1036 /* Update the free vmap_area. */
1037 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1038 if (ret)
1039 return vend;
1040
a6cf4e0f
URS
1041#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1042 find_vmap_lowest_match_check(size);
1043#endif
1044
68ad4a33
URS
1045 return nva_start_addr;
1046}
4da56b99 1047
db64fe02
NP
1048/*
1049 * Allocate a region of KVA of the specified size and alignment, within the
1050 * vstart and vend.
1051 */
1052static struct vmap_area *alloc_vmap_area(unsigned long size,
1053 unsigned long align,
1054 unsigned long vstart, unsigned long vend,
1055 int node, gfp_t gfp_mask)
1056{
82dd23e8 1057 struct vmap_area *va, *pva;
1da177e4 1058 unsigned long addr;
db64fe02
NP
1059 int purged = 0;
1060
7766970c 1061 BUG_ON(!size);
891c49ab 1062 BUG_ON(offset_in_page(size));
89699605 1063 BUG_ON(!is_power_of_2(align));
db64fe02 1064
68ad4a33
URS
1065 if (unlikely(!vmap_initialized))
1066 return ERR_PTR(-EBUSY);
1067
5803ed29 1068 might_sleep();
4da56b99 1069
68ad4a33 1070 va = kmem_cache_alloc_node(vmap_area_cachep,
db64fe02
NP
1071 gfp_mask & GFP_RECLAIM_MASK, node);
1072 if (unlikely(!va))
1073 return ERR_PTR(-ENOMEM);
1074
7f88f88f
CM
1075 /*
1076 * Only scan the relevant parts containing pointers to other objects
1077 * to avoid false negatives.
1078 */
1079 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1080
db64fe02 1081retry:
82dd23e8
URS
1082 /*
1083 * Preload this CPU with one extra vmap_area object to ensure
1084 * that we have it available when fit type of free area is
1085 * NE_FIT_TYPE.
1086 *
1087 * The preload is done in non-atomic context, thus it allows us
1088 * to use more permissive allocation masks to be more stable under
1089 * low memory condition and high memory pressure.
1090 *
1091 * Even if it fails we do not really care about that. Just proceed
1092 * as it is. "overflow" path will refill the cache we allocate from.
1093 */
1094 preempt_disable();
1095 if (!__this_cpu_read(ne_fit_preload_node)) {
1096 preempt_enable();
1097 pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1098 preempt_disable();
1099
1100 if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1101 if (pva)
1102 kmem_cache_free(vmap_area_cachep, pva);
1103 }
1104 }
1105
db64fe02 1106 spin_lock(&vmap_area_lock);
82dd23e8 1107 preempt_enable();
89699605 1108
afd07389 1109 /*
68ad4a33
URS
1110 * If an allocation fails, the "vend" address is
1111 * returned. Therefore trigger the overflow path.
afd07389 1112 */
cacca6ba 1113 addr = __alloc_vmap_area(size, align, vstart, vend);
68ad4a33 1114 if (unlikely(addr == vend))
89699605 1115 goto overflow;
db64fe02
NP
1116
1117 va->va_start = addr;
1118 va->va_end = addr + size;
1119 va->flags = 0;
68ad4a33
URS
1120 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1121
db64fe02
NP
1122 spin_unlock(&vmap_area_lock);
1123
61e16557 1124 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1125 BUG_ON(va->va_start < vstart);
1126 BUG_ON(va->va_end > vend);
1127
db64fe02 1128 return va;
89699605
NP
1129
1130overflow:
1131 spin_unlock(&vmap_area_lock);
1132 if (!purged) {
1133 purge_vmap_area_lazy();
1134 purged = 1;
1135 goto retry;
1136 }
4da56b99
CW
1137
1138 if (gfpflags_allow_blocking(gfp_mask)) {
1139 unsigned long freed = 0;
1140 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1141 if (freed > 0) {
1142 purged = 0;
1143 goto retry;
1144 }
1145 }
1146
03497d76 1147 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1148 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1149 size);
68ad4a33
URS
1150
1151 kmem_cache_free(vmap_area_cachep, va);
89699605 1152 return ERR_PTR(-EBUSY);
db64fe02
NP
1153}
1154
4da56b99
CW
1155int register_vmap_purge_notifier(struct notifier_block *nb)
1156{
1157 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1158}
1159EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1160
1161int unregister_vmap_purge_notifier(struct notifier_block *nb)
1162{
1163 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1164}
1165EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1166
db64fe02
NP
1167static void __free_vmap_area(struct vmap_area *va)
1168{
1169 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605 1170
ca23e405 1171 /*
68ad4a33 1172 * Remove from the busy tree/list.
ca23e405 1173 */
68ad4a33 1174 unlink_va(va, &vmap_area_root);
ca23e405 1175
68ad4a33
URS
1176 /*
1177 * Merge VA with its neighbors, otherwise just add it.
1178 */
1179 merge_or_add_vmap_area(va,
1180 &free_vmap_area_root, &free_vmap_area_list);
db64fe02
NP
1181}
1182
1183/*
1184 * Free a region of KVA allocated by alloc_vmap_area
1185 */
1186static void free_vmap_area(struct vmap_area *va)
1187{
1188 spin_lock(&vmap_area_lock);
1189 __free_vmap_area(va);
1190 spin_unlock(&vmap_area_lock);
1191}
1192
1193/*
1194 * Clear the pagetable entries of a given vmap_area
1195 */
1196static void unmap_vmap_area(struct vmap_area *va)
1197{
1198 vunmap_page_range(va->va_start, va->va_end);
1199}
1200
1201/*
1202 * lazy_max_pages is the maximum amount of virtual address space we gather up
1203 * before attempting to purge with a TLB flush.
1204 *
1205 * There is a tradeoff here: a larger number will cover more kernel page tables
1206 * and take slightly longer to purge, but it will linearly reduce the number of
1207 * global TLB flushes that must be performed. It would seem natural to scale
1208 * this number up linearly with the number of CPUs (because vmapping activity
1209 * could also scale linearly with the number of CPUs), however it is likely
1210 * that in practice, workloads might be constrained in other ways that mean
1211 * vmap activity will not scale linearly with CPUs. Also, I want to be
1212 * conservative and not introduce a big latency on huge systems, so go with
1213 * a less aggressive log scale. It will still be an improvement over the old
1214 * code, and it will be simple to change the scale factor if we find that it
1215 * becomes a problem on bigger systems.
1216 */
1217static unsigned long lazy_max_pages(void)
1218{
1219 unsigned int log;
1220
1221 log = fls(num_online_cpus());
1222
1223 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1224}
1225
4d36e6f8 1226static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1227
0574ecd1
CH
1228/*
1229 * Serialize vmap purging. There is no actual criticial section protected
1230 * by this look, but we want to avoid concurrent calls for performance
1231 * reasons and to make the pcpu_get_vm_areas more deterministic.
1232 */
f9e09977 1233static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1234
02b709df
NP
1235/* for per-CPU blocks */
1236static void purge_fragmented_blocks_allcpus(void);
1237
3ee48b6a
CW
1238/*
1239 * called before a call to iounmap() if the caller wants vm_area_struct's
1240 * immediately freed.
1241 */
1242void set_iounmap_nonlazy(void)
1243{
4d36e6f8 1244 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1245}
1246
db64fe02
NP
1247/*
1248 * Purges all lazily-freed vmap areas.
db64fe02 1249 */
0574ecd1 1250static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1251{
4d36e6f8 1252 unsigned long resched_threshold;
80c4bd7a 1253 struct llist_node *valist;
db64fe02 1254 struct vmap_area *va;
cbb76676 1255 struct vmap_area *n_va;
db64fe02 1256
0574ecd1 1257 lockdep_assert_held(&vmap_purge_lock);
02b709df 1258
80c4bd7a 1259 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1260 if (unlikely(valist == NULL))
1261 return false;
1262
1263 /*
1264 * TODO: to calculate a flush range without looping.
1265 * The list can be up to lazy_max_pages() elements.
1266 */
80c4bd7a 1267 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1268 if (va->va_start < start)
1269 start = va->va_start;
1270 if (va->va_end > end)
1271 end = va->va_end;
db64fe02 1272 }
db64fe02 1273
0574ecd1 1274 flush_tlb_kernel_range(start, end);
4d36e6f8 1275 resched_threshold = lazy_max_pages() << 1;
db64fe02 1276
0574ecd1 1277 spin_lock(&vmap_area_lock);
763b218d 1278 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1279 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
763b218d 1280
0574ecd1 1281 __free_vmap_area(va);
4d36e6f8 1282 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1283
4d36e6f8 1284 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
68571be9 1285 cond_resched_lock(&vmap_area_lock);
763b218d 1286 }
0574ecd1
CH
1287 spin_unlock(&vmap_area_lock);
1288 return true;
db64fe02
NP
1289}
1290
496850e5
NP
1291/*
1292 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1293 * is already purging.
1294 */
1295static void try_purge_vmap_area_lazy(void)
1296{
f9e09977 1297 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1298 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1299 mutex_unlock(&vmap_purge_lock);
0574ecd1 1300 }
496850e5
NP
1301}
1302
db64fe02
NP
1303/*
1304 * Kick off a purge of the outstanding lazy areas.
1305 */
1306static void purge_vmap_area_lazy(void)
1307{
f9e09977 1308 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1309 purge_fragmented_blocks_allcpus();
1310 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1311 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1312}
1313
1314/*
64141da5
JF
1315 * Free a vmap area, caller ensuring that the area has been unmapped
1316 * and flush_cache_vunmap had been called for the correct range
1317 * previously.
db64fe02 1318 */
64141da5 1319static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1320{
4d36e6f8 1321 unsigned long nr_lazy;
80c4bd7a 1322
4d36e6f8
URS
1323 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1324 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1325
1326 /* After this point, we may free va at any time */
1327 llist_add(&va->purge_list, &vmap_purge_list);
1328
1329 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1330 try_purge_vmap_area_lazy();
db64fe02
NP
1331}
1332
b29acbdc
NP
1333/*
1334 * Free and unmap a vmap area
1335 */
1336static void free_unmap_vmap_area(struct vmap_area *va)
1337{
1338 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 1339 unmap_vmap_area(va);
82a2e924
CP
1340 if (debug_pagealloc_enabled())
1341 flush_tlb_kernel_range(va->va_start, va->va_end);
1342
c8eef01e 1343 free_vmap_area_noflush(va);
b29acbdc
NP
1344}
1345
db64fe02
NP
1346static struct vmap_area *find_vmap_area(unsigned long addr)
1347{
1348 struct vmap_area *va;
1349
1350 spin_lock(&vmap_area_lock);
1351 va = __find_vmap_area(addr);
1352 spin_unlock(&vmap_area_lock);
1353
1354 return va;
1355}
1356
db64fe02
NP
1357/*** Per cpu kva allocator ***/
1358
1359/*
1360 * vmap space is limited especially on 32 bit architectures. Ensure there is
1361 * room for at least 16 percpu vmap blocks per CPU.
1362 */
1363/*
1364 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1365 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1366 * instead (we just need a rough idea)
1367 */
1368#if BITS_PER_LONG == 32
1369#define VMALLOC_SPACE (128UL*1024*1024)
1370#else
1371#define VMALLOC_SPACE (128UL*1024*1024*1024)
1372#endif
1373
1374#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1375#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1376#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1377#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1378#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1379#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1380#define VMAP_BBMAP_BITS \
1381 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1382 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1383 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1384
1385#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1386
1387struct vmap_block_queue {
1388 spinlock_t lock;
1389 struct list_head free;
db64fe02
NP
1390};
1391
1392struct vmap_block {
1393 spinlock_t lock;
1394 struct vmap_area *va;
db64fe02 1395 unsigned long free, dirty;
7d61bfe8 1396 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1397 struct list_head free_list;
1398 struct rcu_head rcu_head;
02b709df 1399 struct list_head purge;
db64fe02
NP
1400};
1401
1402/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1403static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1404
1405/*
1406 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1407 * in the free path. Could get rid of this if we change the API to return a
1408 * "cookie" from alloc, to be passed to free. But no big deal yet.
1409 */
1410static DEFINE_SPINLOCK(vmap_block_tree_lock);
1411static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1412
1413/*
1414 * We should probably have a fallback mechanism to allocate virtual memory
1415 * out of partially filled vmap blocks. However vmap block sizing should be
1416 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1417 * big problem.
1418 */
1419
1420static unsigned long addr_to_vb_idx(unsigned long addr)
1421{
1422 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1423 addr /= VMAP_BLOCK_SIZE;
1424 return addr;
1425}
1426
cf725ce2
RP
1427static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1428{
1429 unsigned long addr;
1430
1431 addr = va_start + (pages_off << PAGE_SHIFT);
1432 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1433 return (void *)addr;
1434}
1435
1436/**
1437 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1438 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1439 * @order: how many 2^order pages should be occupied in newly allocated block
1440 * @gfp_mask: flags for the page level allocator
1441 *
a862f68a 1442 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1443 */
1444static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1445{
1446 struct vmap_block_queue *vbq;
1447 struct vmap_block *vb;
1448 struct vmap_area *va;
1449 unsigned long vb_idx;
1450 int node, err;
cf725ce2 1451 void *vaddr;
db64fe02
NP
1452
1453 node = numa_node_id();
1454
1455 vb = kmalloc_node(sizeof(struct vmap_block),
1456 gfp_mask & GFP_RECLAIM_MASK, node);
1457 if (unlikely(!vb))
1458 return ERR_PTR(-ENOMEM);
1459
1460 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1461 VMALLOC_START, VMALLOC_END,
1462 node, gfp_mask);
ddf9c6d4 1463 if (IS_ERR(va)) {
db64fe02 1464 kfree(vb);
e7d86340 1465 return ERR_CAST(va);
db64fe02
NP
1466 }
1467
1468 err = radix_tree_preload(gfp_mask);
1469 if (unlikely(err)) {
1470 kfree(vb);
1471 free_vmap_area(va);
1472 return ERR_PTR(err);
1473 }
1474
cf725ce2 1475 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1476 spin_lock_init(&vb->lock);
1477 vb->va = va;
cf725ce2
RP
1478 /* At least something should be left free */
1479 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1480 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1481 vb->dirty = 0;
7d61bfe8
RP
1482 vb->dirty_min = VMAP_BBMAP_BITS;
1483 vb->dirty_max = 0;
db64fe02 1484 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1485
1486 vb_idx = addr_to_vb_idx(va->va_start);
1487 spin_lock(&vmap_block_tree_lock);
1488 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1489 spin_unlock(&vmap_block_tree_lock);
1490 BUG_ON(err);
1491 radix_tree_preload_end();
1492
1493 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1494 spin_lock(&vbq->lock);
68ac546f 1495 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1496 spin_unlock(&vbq->lock);
3f04ba85 1497 put_cpu_var(vmap_block_queue);
db64fe02 1498
cf725ce2 1499 return vaddr;
db64fe02
NP
1500}
1501
db64fe02
NP
1502static void free_vmap_block(struct vmap_block *vb)
1503{
1504 struct vmap_block *tmp;
1505 unsigned long vb_idx;
1506
db64fe02
NP
1507 vb_idx = addr_to_vb_idx(vb->va->va_start);
1508 spin_lock(&vmap_block_tree_lock);
1509 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1510 spin_unlock(&vmap_block_tree_lock);
1511 BUG_ON(tmp != vb);
1512
64141da5 1513 free_vmap_area_noflush(vb->va);
22a3c7d1 1514 kfree_rcu(vb, rcu_head);
db64fe02
NP
1515}
1516
02b709df
NP
1517static void purge_fragmented_blocks(int cpu)
1518{
1519 LIST_HEAD(purge);
1520 struct vmap_block *vb;
1521 struct vmap_block *n_vb;
1522 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1523
1524 rcu_read_lock();
1525 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1526
1527 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1528 continue;
1529
1530 spin_lock(&vb->lock);
1531 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1532 vb->free = 0; /* prevent further allocs after releasing lock */
1533 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1534 vb->dirty_min = 0;
1535 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1536 spin_lock(&vbq->lock);
1537 list_del_rcu(&vb->free_list);
1538 spin_unlock(&vbq->lock);
1539 spin_unlock(&vb->lock);
1540 list_add_tail(&vb->purge, &purge);
1541 } else
1542 spin_unlock(&vb->lock);
1543 }
1544 rcu_read_unlock();
1545
1546 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1547 list_del(&vb->purge);
1548 free_vmap_block(vb);
1549 }
1550}
1551
02b709df
NP
1552static void purge_fragmented_blocks_allcpus(void)
1553{
1554 int cpu;
1555
1556 for_each_possible_cpu(cpu)
1557 purge_fragmented_blocks(cpu);
1558}
1559
db64fe02
NP
1560static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1561{
1562 struct vmap_block_queue *vbq;
1563 struct vmap_block *vb;
cf725ce2 1564 void *vaddr = NULL;
db64fe02
NP
1565 unsigned int order;
1566
891c49ab 1567 BUG_ON(offset_in_page(size));
db64fe02 1568 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1569 if (WARN_ON(size == 0)) {
1570 /*
1571 * Allocating 0 bytes isn't what caller wants since
1572 * get_order(0) returns funny result. Just warn and terminate
1573 * early.
1574 */
1575 return NULL;
1576 }
db64fe02
NP
1577 order = get_order(size);
1578
db64fe02
NP
1579 rcu_read_lock();
1580 vbq = &get_cpu_var(vmap_block_queue);
1581 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1582 unsigned long pages_off;
db64fe02
NP
1583
1584 spin_lock(&vb->lock);
cf725ce2
RP
1585 if (vb->free < (1UL << order)) {
1586 spin_unlock(&vb->lock);
1587 continue;
1588 }
02b709df 1589
cf725ce2
RP
1590 pages_off = VMAP_BBMAP_BITS - vb->free;
1591 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1592 vb->free -= 1UL << order;
1593 if (vb->free == 0) {
1594 spin_lock(&vbq->lock);
1595 list_del_rcu(&vb->free_list);
1596 spin_unlock(&vbq->lock);
1597 }
cf725ce2 1598
02b709df
NP
1599 spin_unlock(&vb->lock);
1600 break;
db64fe02 1601 }
02b709df 1602
3f04ba85 1603 put_cpu_var(vmap_block_queue);
db64fe02
NP
1604 rcu_read_unlock();
1605
cf725ce2
RP
1606 /* Allocate new block if nothing was found */
1607 if (!vaddr)
1608 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1609
cf725ce2 1610 return vaddr;
db64fe02
NP
1611}
1612
1613static void vb_free(const void *addr, unsigned long size)
1614{
1615 unsigned long offset;
1616 unsigned long vb_idx;
1617 unsigned int order;
1618 struct vmap_block *vb;
1619
891c49ab 1620 BUG_ON(offset_in_page(size));
db64fe02 1621 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1622
1623 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1624
db64fe02
NP
1625 order = get_order(size);
1626
1627 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1628 offset >>= PAGE_SHIFT;
db64fe02
NP
1629
1630 vb_idx = addr_to_vb_idx((unsigned long)addr);
1631 rcu_read_lock();
1632 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1633 rcu_read_unlock();
1634 BUG_ON(!vb);
1635
64141da5
JF
1636 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1637
82a2e924
CP
1638 if (debug_pagealloc_enabled())
1639 flush_tlb_kernel_range((unsigned long)addr,
1640 (unsigned long)addr + size);
1641
db64fe02 1642 spin_lock(&vb->lock);
7d61bfe8
RP
1643
1644 /* Expand dirty range */
1645 vb->dirty_min = min(vb->dirty_min, offset);
1646 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1647
db64fe02
NP
1648 vb->dirty += 1UL << order;
1649 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1650 BUG_ON(vb->free);
db64fe02
NP
1651 spin_unlock(&vb->lock);
1652 free_vmap_block(vb);
1653 } else
1654 spin_unlock(&vb->lock);
1655}
1656
868b104d 1657static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1658{
db64fe02 1659 int cpu;
db64fe02 1660
9b463334
JF
1661 if (unlikely(!vmap_initialized))
1662 return;
1663
5803ed29
CH
1664 might_sleep();
1665
db64fe02
NP
1666 for_each_possible_cpu(cpu) {
1667 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1668 struct vmap_block *vb;
1669
1670 rcu_read_lock();
1671 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1672 spin_lock(&vb->lock);
7d61bfe8
RP
1673 if (vb->dirty) {
1674 unsigned long va_start = vb->va->va_start;
db64fe02 1675 unsigned long s, e;
b136be5e 1676
7d61bfe8
RP
1677 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1678 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1679
7d61bfe8
RP
1680 start = min(s, start);
1681 end = max(e, end);
db64fe02 1682
7d61bfe8 1683 flush = 1;
db64fe02
NP
1684 }
1685 spin_unlock(&vb->lock);
1686 }
1687 rcu_read_unlock();
1688 }
1689
f9e09977 1690 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1691 purge_fragmented_blocks_allcpus();
1692 if (!__purge_vmap_area_lazy(start, end) && flush)
1693 flush_tlb_kernel_range(start, end);
f9e09977 1694 mutex_unlock(&vmap_purge_lock);
db64fe02 1695}
868b104d
RE
1696
1697/**
1698 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1699 *
1700 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1701 * to amortize TLB flushing overheads. What this means is that any page you
1702 * have now, may, in a former life, have been mapped into kernel virtual
1703 * address by the vmap layer and so there might be some CPUs with TLB entries
1704 * still referencing that page (additional to the regular 1:1 kernel mapping).
1705 *
1706 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1707 * be sure that none of the pages we have control over will have any aliases
1708 * from the vmap layer.
1709 */
1710void vm_unmap_aliases(void)
1711{
1712 unsigned long start = ULONG_MAX, end = 0;
1713 int flush = 0;
1714
1715 _vm_unmap_aliases(start, end, flush);
1716}
db64fe02
NP
1717EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1718
1719/**
1720 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1721 * @mem: the pointer returned by vm_map_ram
1722 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1723 */
1724void vm_unmap_ram(const void *mem, unsigned int count)
1725{
65ee03c4 1726 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1727 unsigned long addr = (unsigned long)mem;
9c3acf60 1728 struct vmap_area *va;
db64fe02 1729
5803ed29 1730 might_sleep();
db64fe02
NP
1731 BUG_ON(!addr);
1732 BUG_ON(addr < VMALLOC_START);
1733 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1734 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1735
9c3acf60 1736 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1737 debug_check_no_locks_freed(mem, size);
db64fe02 1738 vb_free(mem, size);
9c3acf60
CH
1739 return;
1740 }
1741
1742 va = find_vmap_area(addr);
1743 BUG_ON(!va);
05e3ff95
CP
1744 debug_check_no_locks_freed((void *)va->va_start,
1745 (va->va_end - va->va_start));
9c3acf60 1746 free_unmap_vmap_area(va);
db64fe02
NP
1747}
1748EXPORT_SYMBOL(vm_unmap_ram);
1749
1750/**
1751 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1752 * @pages: an array of pointers to the pages to be mapped
1753 * @count: number of pages
1754 * @node: prefer to allocate data structures on this node
1755 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1756 *
36437638
GK
1757 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1758 * faster than vmap so it's good. But if you mix long-life and short-life
1759 * objects with vm_map_ram(), it could consume lots of address space through
1760 * fragmentation (especially on a 32bit machine). You could see failures in
1761 * the end. Please use this function for short-lived objects.
1762 *
e99c97ad 1763 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1764 */
1765void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1766{
65ee03c4 1767 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1768 unsigned long addr;
1769 void *mem;
1770
1771 if (likely(count <= VMAP_MAX_ALLOC)) {
1772 mem = vb_alloc(size, GFP_KERNEL);
1773 if (IS_ERR(mem))
1774 return NULL;
1775 addr = (unsigned long)mem;
1776 } else {
1777 struct vmap_area *va;
1778 va = alloc_vmap_area(size, PAGE_SIZE,
1779 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1780 if (IS_ERR(va))
1781 return NULL;
1782
1783 addr = va->va_start;
1784 mem = (void *)addr;
1785 }
1786 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1787 vm_unmap_ram(mem, count);
1788 return NULL;
1789 }
1790 return mem;
1791}
1792EXPORT_SYMBOL(vm_map_ram);
1793
4341fa45 1794static struct vm_struct *vmlist __initdata;
92eac168 1795
be9b7335
NP
1796/**
1797 * vm_area_add_early - add vmap area early during boot
1798 * @vm: vm_struct to add
1799 *
1800 * This function is used to add fixed kernel vm area to vmlist before
1801 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1802 * should contain proper values and the other fields should be zero.
1803 *
1804 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1805 */
1806void __init vm_area_add_early(struct vm_struct *vm)
1807{
1808 struct vm_struct *tmp, **p;
1809
1810 BUG_ON(vmap_initialized);
1811 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1812 if (tmp->addr >= vm->addr) {
1813 BUG_ON(tmp->addr < vm->addr + vm->size);
1814 break;
1815 } else
1816 BUG_ON(tmp->addr + tmp->size > vm->addr);
1817 }
1818 vm->next = *p;
1819 *p = vm;
1820}
1821
f0aa6617
TH
1822/**
1823 * vm_area_register_early - register vmap area early during boot
1824 * @vm: vm_struct to register
c0c0a293 1825 * @align: requested alignment
f0aa6617
TH
1826 *
1827 * This function is used to register kernel vm area before
1828 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1829 * proper values on entry and other fields should be zero. On return,
1830 * vm->addr contains the allocated address.
1831 *
1832 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1833 */
c0c0a293 1834void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1835{
1836 static size_t vm_init_off __initdata;
c0c0a293
TH
1837 unsigned long addr;
1838
1839 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1840 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1841
c0c0a293 1842 vm->addr = (void *)addr;
f0aa6617 1843
be9b7335 1844 vm_area_add_early(vm);
f0aa6617
TH
1845}
1846
68ad4a33
URS
1847static void vmap_init_free_space(void)
1848{
1849 unsigned long vmap_start = 1;
1850 const unsigned long vmap_end = ULONG_MAX;
1851 struct vmap_area *busy, *free;
1852
1853 /*
1854 * B F B B B F
1855 * -|-----|.....|-----|-----|-----|.....|-
1856 * | The KVA space |
1857 * |<--------------------------------->|
1858 */
1859 list_for_each_entry(busy, &vmap_area_list, list) {
1860 if (busy->va_start - vmap_start > 0) {
1861 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1862 if (!WARN_ON_ONCE(!free)) {
1863 free->va_start = vmap_start;
1864 free->va_end = busy->va_start;
1865
1866 insert_vmap_area_augment(free, NULL,
1867 &free_vmap_area_root,
1868 &free_vmap_area_list);
1869 }
1870 }
1871
1872 vmap_start = busy->va_end;
1873 }
1874
1875 if (vmap_end - vmap_start > 0) {
1876 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1877 if (!WARN_ON_ONCE(!free)) {
1878 free->va_start = vmap_start;
1879 free->va_end = vmap_end;
1880
1881 insert_vmap_area_augment(free, NULL,
1882 &free_vmap_area_root,
1883 &free_vmap_area_list);
1884 }
1885 }
1886}
1887
db64fe02
NP
1888void __init vmalloc_init(void)
1889{
822c18f2
IK
1890 struct vmap_area *va;
1891 struct vm_struct *tmp;
db64fe02
NP
1892 int i;
1893
68ad4a33
URS
1894 /*
1895 * Create the cache for vmap_area objects.
1896 */
1897 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1898
db64fe02
NP
1899 for_each_possible_cpu(i) {
1900 struct vmap_block_queue *vbq;
32fcfd40 1901 struct vfree_deferred *p;
db64fe02
NP
1902
1903 vbq = &per_cpu(vmap_block_queue, i);
1904 spin_lock_init(&vbq->lock);
1905 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1906 p = &per_cpu(vfree_deferred, i);
1907 init_llist_head(&p->list);
1908 INIT_WORK(&p->wq, free_work);
db64fe02 1909 }
9b463334 1910
822c18f2
IK
1911 /* Import existing vmlist entries. */
1912 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
1913 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1914 if (WARN_ON_ONCE(!va))
1915 continue;
1916
dbda591d 1917 va->flags = VM_VM_AREA;
822c18f2
IK
1918 va->va_start = (unsigned long)tmp->addr;
1919 va->va_end = va->va_start + tmp->size;
dbda591d 1920 va->vm = tmp;
68ad4a33 1921 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 1922 }
ca23e405 1923
68ad4a33
URS
1924 /*
1925 * Now we can initialize a free vmap space.
1926 */
1927 vmap_init_free_space();
9b463334 1928 vmap_initialized = true;
db64fe02
NP
1929}
1930
8fc48985
TH
1931/**
1932 * map_kernel_range_noflush - map kernel VM area with the specified pages
1933 * @addr: start of the VM area to map
1934 * @size: size of the VM area to map
1935 * @prot: page protection flags to use
1936 * @pages: pages to map
1937 *
1938 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1939 * specify should have been allocated using get_vm_area() and its
1940 * friends.
1941 *
1942 * NOTE:
1943 * This function does NOT do any cache flushing. The caller is
1944 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1945 * before calling this function.
1946 *
1947 * RETURNS:
1948 * The number of pages mapped on success, -errno on failure.
1949 */
1950int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1951 pgprot_t prot, struct page **pages)
1952{
1953 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1954}
1955
1956/**
1957 * unmap_kernel_range_noflush - unmap kernel VM area
1958 * @addr: start of the VM area to unmap
1959 * @size: size of the VM area to unmap
1960 *
1961 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1962 * specify should have been allocated using get_vm_area() and its
1963 * friends.
1964 *
1965 * NOTE:
1966 * This function does NOT do any cache flushing. The caller is
1967 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1968 * before calling this function and flush_tlb_kernel_range() after.
1969 */
1970void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1971{
1972 vunmap_page_range(addr, addr + size);
1973}
81e88fdc 1974EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1975
1976/**
1977 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1978 * @addr: start of the VM area to unmap
1979 * @size: size of the VM area to unmap
1980 *
1981 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1982 * the unmapping and tlb after.
1983 */
db64fe02
NP
1984void unmap_kernel_range(unsigned long addr, unsigned long size)
1985{
1986 unsigned long end = addr + size;
f6fcba70
TH
1987
1988 flush_cache_vunmap(addr, end);
db64fe02
NP
1989 vunmap_page_range(addr, end);
1990 flush_tlb_kernel_range(addr, end);
1991}
93ef6d6c 1992EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1993
f6f8ed47 1994int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1995{
1996 unsigned long addr = (unsigned long)area->addr;
762216ab 1997 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1998 int err;
1999
f6f8ed47 2000 err = vmap_page_range(addr, end, prot, pages);
db64fe02 2001
f6f8ed47 2002 return err > 0 ? 0 : err;
db64fe02
NP
2003}
2004EXPORT_SYMBOL_GPL(map_vm_area);
2005
f5252e00 2006static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 2007 unsigned long flags, const void *caller)
cf88c790 2008{
c69480ad 2009 spin_lock(&vmap_area_lock);
cf88c790
TH
2010 vm->flags = flags;
2011 vm->addr = (void *)va->va_start;
2012 vm->size = va->va_end - va->va_start;
2013 vm->caller = caller;
db1aecaf 2014 va->vm = vm;
cf88c790 2015 va->flags |= VM_VM_AREA;
c69480ad 2016 spin_unlock(&vmap_area_lock);
f5252e00 2017}
cf88c790 2018
20fc02b4 2019static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2020{
d4033afd 2021 /*
20fc02b4 2022 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2023 * we should make sure that vm has proper values.
2024 * Pair with smp_rmb() in show_numa_info().
2025 */
2026 smp_wmb();
20fc02b4 2027 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2028}
2029
db64fe02 2030static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2031 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2032 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2033{
0006526d 2034 struct vmap_area *va;
db64fe02 2035 struct vm_struct *area;
1da177e4 2036
52fd24ca 2037 BUG_ON(in_interrupt());
1da177e4 2038 size = PAGE_ALIGN(size);
31be8309
OH
2039 if (unlikely(!size))
2040 return NULL;
1da177e4 2041
252e5c6e 2042 if (flags & VM_IOREMAP)
2043 align = 1ul << clamp_t(int, get_count_order_long(size),
2044 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2045
cf88c790 2046 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2047 if (unlikely(!area))
2048 return NULL;
2049
71394fe5
AR
2050 if (!(flags & VM_NO_GUARD))
2051 size += PAGE_SIZE;
1da177e4 2052
db64fe02
NP
2053 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2054 if (IS_ERR(va)) {
2055 kfree(area);
2056 return NULL;
1da177e4 2057 }
1da177e4 2058
d82b1d85 2059 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 2060
1da177e4 2061 return area;
1da177e4
LT
2062}
2063
930fc45a
CL
2064struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2065 unsigned long start, unsigned long end)
2066{
00ef2d2f
DR
2067 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2068 GFP_KERNEL, __builtin_return_address(0));
930fc45a 2069}
5992b6da 2070EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 2071
c2968612
BH
2072struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2073 unsigned long start, unsigned long end,
5e6cafc8 2074 const void *caller)
c2968612 2075{
00ef2d2f
DR
2076 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2077 GFP_KERNEL, caller);
c2968612
BH
2078}
2079
1da177e4 2080/**
92eac168
MR
2081 * get_vm_area - reserve a contiguous kernel virtual area
2082 * @size: size of the area
2083 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2084 *
92eac168
MR
2085 * Search an area of @size in the kernel virtual mapping area,
2086 * and reserved it for out purposes. Returns the area descriptor
2087 * on success or %NULL on failure.
a862f68a
MR
2088 *
2089 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2090 */
2091struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2092{
2dca6999 2093 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2094 NUMA_NO_NODE, GFP_KERNEL,
2095 __builtin_return_address(0));
23016969
CL
2096}
2097
2098struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2099 const void *caller)
23016969 2100{
2dca6999 2101 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2102 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2103}
2104
e9da6e99 2105/**
92eac168
MR
2106 * find_vm_area - find a continuous kernel virtual area
2107 * @addr: base address
e9da6e99 2108 *
92eac168
MR
2109 * Search for the kernel VM area starting at @addr, and return it.
2110 * It is up to the caller to do all required locking to keep the returned
2111 * pointer valid.
a862f68a
MR
2112 *
2113 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
2114 */
2115struct vm_struct *find_vm_area(const void *addr)
83342314 2116{
db64fe02 2117 struct vmap_area *va;
83342314 2118
db64fe02
NP
2119 va = find_vmap_area((unsigned long)addr);
2120 if (va && va->flags & VM_VM_AREA)
db1aecaf 2121 return va->vm;
1da177e4 2122
1da177e4 2123 return NULL;
1da177e4
LT
2124}
2125
7856dfeb 2126/**
92eac168
MR
2127 * remove_vm_area - find and remove a continuous kernel virtual area
2128 * @addr: base address
7856dfeb 2129 *
92eac168
MR
2130 * Search for the kernel VM area starting at @addr, and remove it.
2131 * This function returns the found VM area, but using it is NOT safe
2132 * on SMP machines, except for its size or flags.
a862f68a
MR
2133 *
2134 * Return: pointer to the found area or %NULL on faulure
7856dfeb 2135 */
b3bdda02 2136struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2137{
db64fe02
NP
2138 struct vmap_area *va;
2139
5803ed29
CH
2140 might_sleep();
2141
db64fe02
NP
2142 va = find_vmap_area((unsigned long)addr);
2143 if (va && va->flags & VM_VM_AREA) {
db1aecaf 2144 struct vm_struct *vm = va->vm;
f5252e00 2145
c69480ad
JK
2146 spin_lock(&vmap_area_lock);
2147 va->vm = NULL;
2148 va->flags &= ~VM_VM_AREA;
78c72746 2149 va->flags |= VM_LAZY_FREE;
c69480ad
JK
2150 spin_unlock(&vmap_area_lock);
2151
a5af5aa8 2152 kasan_free_shadow(vm);
dd32c279 2153 free_unmap_vmap_area(va);
dd32c279 2154
db64fe02
NP
2155 return vm;
2156 }
2157 return NULL;
7856dfeb
AK
2158}
2159
868b104d
RE
2160static inline void set_area_direct_map(const struct vm_struct *area,
2161 int (*set_direct_map)(struct page *page))
2162{
2163 int i;
2164
2165 for (i = 0; i < area->nr_pages; i++)
2166 if (page_address(area->pages[i]))
2167 set_direct_map(area->pages[i]);
2168}
2169
2170/* Handle removing and resetting vm mappings related to the vm_struct. */
2171static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2172{
868b104d
RE
2173 unsigned long start = ULONG_MAX, end = 0;
2174 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2175 int flush_dmap = 0;
868b104d
RE
2176 int i;
2177
868b104d
RE
2178 remove_vm_area(area->addr);
2179
2180 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2181 if (!flush_reset)
2182 return;
2183
2184 /*
2185 * If not deallocating pages, just do the flush of the VM area and
2186 * return.
2187 */
2188 if (!deallocate_pages) {
2189 vm_unmap_aliases();
2190 return;
2191 }
2192
2193 /*
2194 * If execution gets here, flush the vm mapping and reset the direct
2195 * map. Find the start and end range of the direct mappings to make sure
2196 * the vm_unmap_aliases() flush includes the direct map.
2197 */
2198 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2199 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2200 if (addr) {
868b104d 2201 start = min(addr, start);
8e41f872 2202 end = max(addr + PAGE_SIZE, end);
31e67340 2203 flush_dmap = 1;
868b104d
RE
2204 }
2205 }
2206
2207 /*
2208 * Set direct map to something invalid so that it won't be cached if
2209 * there are any accesses after the TLB flush, then flush the TLB and
2210 * reset the direct map permissions to the default.
2211 */
2212 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2213 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2214 set_area_direct_map(area, set_direct_map_default_noflush);
2215}
2216
b3bdda02 2217static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2218{
2219 struct vm_struct *area;
2220
2221 if (!addr)
2222 return;
2223
e69e9d4a 2224 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2225 addr))
1da177e4 2226 return;
1da177e4 2227
6ade2032 2228 area = find_vm_area(addr);
1da177e4 2229 if (unlikely(!area)) {
4c8573e2 2230 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2231 addr);
1da177e4
LT
2232 return;
2233 }
2234
05e3ff95
CP
2235 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2236 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2237
868b104d
RE
2238 vm_remove_mappings(area, deallocate_pages);
2239
1da177e4
LT
2240 if (deallocate_pages) {
2241 int i;
2242
2243 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2244 struct page *page = area->pages[i];
2245
2246 BUG_ON(!page);
4949148a 2247 __free_pages(page, 0);
1da177e4
LT
2248 }
2249
244d63ee 2250 kvfree(area->pages);
1da177e4
LT
2251 }
2252
2253 kfree(area);
2254 return;
2255}
bf22e37a
AR
2256
2257static inline void __vfree_deferred(const void *addr)
2258{
2259 /*
2260 * Use raw_cpu_ptr() because this can be called from preemptible
2261 * context. Preemption is absolutely fine here, because the llist_add()
2262 * implementation is lockless, so it works even if we are adding to
2263 * nother cpu's list. schedule_work() should be fine with this too.
2264 */
2265 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2266
2267 if (llist_add((struct llist_node *)addr, &p->list))
2268 schedule_work(&p->wq);
2269}
2270
2271/**
92eac168
MR
2272 * vfree_atomic - release memory allocated by vmalloc()
2273 * @addr: memory base address
bf22e37a 2274 *
92eac168
MR
2275 * This one is just like vfree() but can be called in any atomic context
2276 * except NMIs.
bf22e37a
AR
2277 */
2278void vfree_atomic(const void *addr)
2279{
2280 BUG_ON(in_nmi());
2281
2282 kmemleak_free(addr);
2283
2284 if (!addr)
2285 return;
2286 __vfree_deferred(addr);
2287}
2288
c67dc624
RP
2289static void __vfree(const void *addr)
2290{
2291 if (unlikely(in_interrupt()))
2292 __vfree_deferred(addr);
2293 else
2294 __vunmap(addr, 1);
2295}
2296
1da177e4 2297/**
92eac168
MR
2298 * vfree - release memory allocated by vmalloc()
2299 * @addr: memory base address
1da177e4 2300 *
92eac168
MR
2301 * Free the virtually continuous memory area starting at @addr, as
2302 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2303 * NULL, no operation is performed.
1da177e4 2304 *
92eac168
MR
2305 * Must not be called in NMI context (strictly speaking, only if we don't
2306 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2307 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 2308 *
92eac168 2309 * May sleep if called *not* from interrupt context.
3ca4ea3a 2310 *
92eac168 2311 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 2312 */
b3bdda02 2313void vfree(const void *addr)
1da177e4 2314{
32fcfd40 2315 BUG_ON(in_nmi());
89219d37
CM
2316
2317 kmemleak_free(addr);
2318
a8dda165
AR
2319 might_sleep_if(!in_interrupt());
2320
32fcfd40
AV
2321 if (!addr)
2322 return;
c67dc624
RP
2323
2324 __vfree(addr);
1da177e4 2325}
1da177e4
LT
2326EXPORT_SYMBOL(vfree);
2327
2328/**
92eac168
MR
2329 * vunmap - release virtual mapping obtained by vmap()
2330 * @addr: memory base address
1da177e4 2331 *
92eac168
MR
2332 * Free the virtually contiguous memory area starting at @addr,
2333 * which was created from the page array passed to vmap().
1da177e4 2334 *
92eac168 2335 * Must not be called in interrupt context.
1da177e4 2336 */
b3bdda02 2337void vunmap(const void *addr)
1da177e4
LT
2338{
2339 BUG_ON(in_interrupt());
34754b69 2340 might_sleep();
32fcfd40
AV
2341 if (addr)
2342 __vunmap(addr, 0);
1da177e4 2343}
1da177e4
LT
2344EXPORT_SYMBOL(vunmap);
2345
2346/**
92eac168
MR
2347 * vmap - map an array of pages into virtually contiguous space
2348 * @pages: array of page pointers
2349 * @count: number of pages to map
2350 * @flags: vm_area->flags
2351 * @prot: page protection for the mapping
2352 *
2353 * Maps @count pages from @pages into contiguous kernel virtual
2354 * space.
a862f68a
MR
2355 *
2356 * Return: the address of the area or %NULL on failure
1da177e4
LT
2357 */
2358void *vmap(struct page **pages, unsigned int count,
92eac168 2359 unsigned long flags, pgprot_t prot)
1da177e4
LT
2360{
2361 struct vm_struct *area;
65ee03c4 2362 unsigned long size; /* In bytes */
1da177e4 2363
34754b69
PZ
2364 might_sleep();
2365
ca79b0c2 2366 if (count > totalram_pages())
1da177e4
LT
2367 return NULL;
2368
65ee03c4
GJM
2369 size = (unsigned long)count << PAGE_SHIFT;
2370 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2371 if (!area)
2372 return NULL;
23016969 2373
f6f8ed47 2374 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
2375 vunmap(area->addr);
2376 return NULL;
2377 }
2378
2379 return area->addr;
2380}
1da177e4
LT
2381EXPORT_SYMBOL(vmap);
2382
8594a21c
MH
2383static void *__vmalloc_node(unsigned long size, unsigned long align,
2384 gfp_t gfp_mask, pgprot_t prot,
2385 int node, const void *caller);
e31d9eb5 2386static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2387 pgprot_t prot, int node)
1da177e4
LT
2388{
2389 struct page **pages;
2390 unsigned int nr_pages, array_size, i;
930f036b 2391 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2392 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2393 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2394 0 :
2395 __GFP_HIGHMEM;
1da177e4 2396
762216ab 2397 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2398 array_size = (nr_pages * sizeof(struct page *));
2399
2400 area->nr_pages = nr_pages;
2401 /* Please note that the recursion is strictly bounded. */
8757d5fa 2402 if (array_size > PAGE_SIZE) {
704b862f 2403 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 2404 PAGE_KERNEL, node, area->caller);
286e1ea3 2405 } else {
976d6dfb 2406 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2407 }
1da177e4
LT
2408 area->pages = pages;
2409 if (!area->pages) {
2410 remove_vm_area(area->addr);
2411 kfree(area);
2412 return NULL;
2413 }
1da177e4
LT
2414
2415 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2416 struct page *page;
2417
4b90951c 2418 if (node == NUMA_NO_NODE)
704b862f 2419 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2420 else
704b862f 2421 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2422
2423 if (unlikely(!page)) {
1da177e4
LT
2424 /* Successfully allocated i pages, free them in __vunmap() */
2425 area->nr_pages = i;
2426 goto fail;
2427 }
bf53d6f8 2428 area->pages[i] = page;
704b862f 2429 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
660654f9 2430 cond_resched();
1da177e4
LT
2431 }
2432
f6f8ed47 2433 if (map_vm_area(area, prot, pages))
1da177e4
LT
2434 goto fail;
2435 return area->addr;
2436
2437fail:
a8e99259 2438 warn_alloc(gfp_mask, NULL,
7877cdcc 2439 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2440 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2441 __vfree(area->addr);
1da177e4
LT
2442 return NULL;
2443}
2444
2445/**
92eac168
MR
2446 * __vmalloc_node_range - allocate virtually contiguous memory
2447 * @size: allocation size
2448 * @align: desired alignment
2449 * @start: vm area range start
2450 * @end: vm area range end
2451 * @gfp_mask: flags for the page level allocator
2452 * @prot: protection mask for the allocated pages
2453 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2454 * @node: node to use for allocation or NUMA_NO_NODE
2455 * @caller: caller's return address
2456 *
2457 * Allocate enough pages to cover @size from the page level
2458 * allocator with @gfp_mask flags. Map them into contiguous
2459 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2460 *
2461 * Return: the address of the area or %NULL on failure
1da177e4 2462 */
d0a21265
DR
2463void *__vmalloc_node_range(unsigned long size, unsigned long align,
2464 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2465 pgprot_t prot, unsigned long vm_flags, int node,
2466 const void *caller)
1da177e4
LT
2467{
2468 struct vm_struct *area;
89219d37
CM
2469 void *addr;
2470 unsigned long real_size = size;
1da177e4
LT
2471
2472 size = PAGE_ALIGN(size);
ca79b0c2 2473 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2474 goto fail;
1da177e4 2475
cb9e3c29
AR
2476 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2477 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2478 if (!area)
de7d2b56 2479 goto fail;
1da177e4 2480
3722e13c 2481 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2482 if (!addr)
b82225f3 2483 return NULL;
89219d37 2484
f5252e00 2485 /*
20fc02b4
ZY
2486 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2487 * flag. It means that vm_struct is not fully initialized.
4341fa45 2488 * Now, it is fully initialized, so remove this flag here.
f5252e00 2489 */
20fc02b4 2490 clear_vm_uninitialized_flag(area);
f5252e00 2491
94f4a161 2492 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2493
2494 return addr;
de7d2b56
JP
2495
2496fail:
a8e99259 2497 warn_alloc(gfp_mask, NULL,
7877cdcc 2498 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2499 return NULL;
1da177e4
LT
2500}
2501
153178ed
URS
2502/*
2503 * This is only for performance analysis of vmalloc and stress purpose.
2504 * It is required by vmalloc test module, therefore do not use it other
2505 * than that.
2506 */
2507#ifdef CONFIG_TEST_VMALLOC_MODULE
2508EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2509#endif
2510
d0a21265 2511/**
92eac168
MR
2512 * __vmalloc_node - allocate virtually contiguous memory
2513 * @size: allocation size
2514 * @align: desired alignment
2515 * @gfp_mask: flags for the page level allocator
2516 * @prot: protection mask for the allocated pages
2517 * @node: node to use for allocation or NUMA_NO_NODE
2518 * @caller: caller's return address
a7c3e901 2519 *
92eac168
MR
2520 * Allocate enough pages to cover @size from the page level
2521 * allocator with @gfp_mask flags. Map them into contiguous
2522 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 2523 *
92eac168
MR
2524 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2525 * and __GFP_NOFAIL are not supported
a7c3e901 2526 *
92eac168
MR
2527 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2528 * with mm people.
a862f68a
MR
2529 *
2530 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2531 */
8594a21c 2532static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 2533 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 2534 int node, const void *caller)
d0a21265
DR
2535{
2536 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 2537 gfp_mask, prot, 0, node, caller);
d0a21265
DR
2538}
2539
930fc45a
CL
2540void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2541{
00ef2d2f 2542 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 2543 __builtin_return_address(0));
930fc45a 2544}
1da177e4
LT
2545EXPORT_SYMBOL(__vmalloc);
2546
8594a21c
MH
2547static inline void *__vmalloc_node_flags(unsigned long size,
2548 int node, gfp_t flags)
2549{
2550 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2551 node, __builtin_return_address(0));
2552}
2553
2554
2555void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2556 void *caller)
2557{
2558 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2559}
2560
1da177e4 2561/**
92eac168
MR
2562 * vmalloc - allocate virtually contiguous memory
2563 * @size: allocation size
2564 *
2565 * Allocate enough pages to cover @size from the page level
2566 * allocator and map them into contiguous kernel virtual space.
1da177e4 2567 *
92eac168
MR
2568 * For tight control over page level allocator and protection flags
2569 * use __vmalloc() instead.
a862f68a
MR
2570 *
2571 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2572 */
2573void *vmalloc(unsigned long size)
2574{
00ef2d2f 2575 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2576 GFP_KERNEL);
1da177e4 2577}
1da177e4
LT
2578EXPORT_SYMBOL(vmalloc);
2579
e1ca7788 2580/**
92eac168
MR
2581 * vzalloc - allocate virtually contiguous memory with zero fill
2582 * @size: allocation size
2583 *
2584 * Allocate enough pages to cover @size from the page level
2585 * allocator and map them into contiguous kernel virtual space.
2586 * The memory allocated is set to zero.
2587 *
2588 * For tight control over page level allocator and protection flags
2589 * use __vmalloc() instead.
a862f68a
MR
2590 *
2591 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2592 */
2593void *vzalloc(unsigned long size)
2594{
00ef2d2f 2595 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2596 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2597}
2598EXPORT_SYMBOL(vzalloc);
2599
83342314 2600/**
ead04089
REB
2601 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2602 * @size: allocation size
83342314 2603 *
ead04089
REB
2604 * The resulting memory area is zeroed so it can be mapped to userspace
2605 * without leaking data.
a862f68a
MR
2606 *
2607 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2608 */
2609void *vmalloc_user(unsigned long size)
2610{
bc84c535
RP
2611 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2612 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2613 VM_USERMAP, NUMA_NO_NODE,
2614 __builtin_return_address(0));
83342314
NP
2615}
2616EXPORT_SYMBOL(vmalloc_user);
2617
930fc45a 2618/**
92eac168
MR
2619 * vmalloc_node - allocate memory on a specific node
2620 * @size: allocation size
2621 * @node: numa node
930fc45a 2622 *
92eac168
MR
2623 * Allocate enough pages to cover @size from the page level
2624 * allocator and map them into contiguous kernel virtual space.
930fc45a 2625 *
92eac168
MR
2626 * For tight control over page level allocator and protection flags
2627 * use __vmalloc() instead.
a862f68a
MR
2628 *
2629 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2630 */
2631void *vmalloc_node(unsigned long size, int node)
2632{
19809c2d 2633 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 2634 node, __builtin_return_address(0));
930fc45a
CL
2635}
2636EXPORT_SYMBOL(vmalloc_node);
2637
e1ca7788
DY
2638/**
2639 * vzalloc_node - allocate memory on a specific node with zero fill
2640 * @size: allocation size
2641 * @node: numa node
2642 *
2643 * Allocate enough pages to cover @size from the page level
2644 * allocator and map them into contiguous kernel virtual space.
2645 * The memory allocated is set to zero.
2646 *
2647 * For tight control over page level allocator and protection flags
2648 * use __vmalloc_node() instead.
a862f68a
MR
2649 *
2650 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2651 */
2652void *vzalloc_node(unsigned long size, int node)
2653{
2654 return __vmalloc_node_flags(size, node,
19809c2d 2655 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2656}
2657EXPORT_SYMBOL(vzalloc_node);
2658
1da177e4 2659/**
92eac168
MR
2660 * vmalloc_exec - allocate virtually contiguous, executable memory
2661 * @size: allocation size
1da177e4 2662 *
92eac168
MR
2663 * Kernel-internal function to allocate enough pages to cover @size
2664 * the page level allocator and map them into contiguous and
2665 * executable kernel virtual space.
1da177e4 2666 *
92eac168
MR
2667 * For tight control over page level allocator and protection flags
2668 * use __vmalloc() instead.
a862f68a
MR
2669 *
2670 * Return: pointer to the allocated memory or %NULL on error
1da177e4 2671 */
1da177e4
LT
2672void *vmalloc_exec(unsigned long size)
2673{
868b104d
RE
2674 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2675 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2676 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
2677}
2678
0d08e0d3 2679#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2680#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2681#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2682#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2683#else
698d0831
MH
2684/*
2685 * 64b systems should always have either DMA or DMA32 zones. For others
2686 * GFP_DMA32 should do the right thing and use the normal zone.
2687 */
2688#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2689#endif
2690
1da177e4 2691/**
92eac168
MR
2692 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2693 * @size: allocation size
1da177e4 2694 *
92eac168
MR
2695 * Allocate enough 32bit PA addressable pages to cover @size from the
2696 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2697 *
2698 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2699 */
2700void *vmalloc_32(unsigned long size)
2701{
2dca6999 2702 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 2703 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 2704}
1da177e4
LT
2705EXPORT_SYMBOL(vmalloc_32);
2706
83342314 2707/**
ead04089 2708 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2709 * @size: allocation size
ead04089
REB
2710 *
2711 * The resulting memory area is 32bit addressable and zeroed so it can be
2712 * mapped to userspace without leaking data.
a862f68a
MR
2713 *
2714 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2715 */
2716void *vmalloc_32_user(unsigned long size)
2717{
bc84c535
RP
2718 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2719 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2720 VM_USERMAP, NUMA_NO_NODE,
2721 __builtin_return_address(0));
83342314
NP
2722}
2723EXPORT_SYMBOL(vmalloc_32_user);
2724
d0107eb0
KH
2725/*
2726 * small helper routine , copy contents to buf from addr.
2727 * If the page is not present, fill zero.
2728 */
2729
2730static int aligned_vread(char *buf, char *addr, unsigned long count)
2731{
2732 struct page *p;
2733 int copied = 0;
2734
2735 while (count) {
2736 unsigned long offset, length;
2737
891c49ab 2738 offset = offset_in_page(addr);
d0107eb0
KH
2739 length = PAGE_SIZE - offset;
2740 if (length > count)
2741 length = count;
2742 p = vmalloc_to_page(addr);
2743 /*
2744 * To do safe access to this _mapped_ area, we need
2745 * lock. But adding lock here means that we need to add
2746 * overhead of vmalloc()/vfree() calles for this _debug_
2747 * interface, rarely used. Instead of that, we'll use
2748 * kmap() and get small overhead in this access function.
2749 */
2750 if (p) {
2751 /*
2752 * we can expect USER0 is not used (see vread/vwrite's
2753 * function description)
2754 */
9b04c5fe 2755 void *map = kmap_atomic(p);
d0107eb0 2756 memcpy(buf, map + offset, length);
9b04c5fe 2757 kunmap_atomic(map);
d0107eb0
KH
2758 } else
2759 memset(buf, 0, length);
2760
2761 addr += length;
2762 buf += length;
2763 copied += length;
2764 count -= length;
2765 }
2766 return copied;
2767}
2768
2769static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2770{
2771 struct page *p;
2772 int copied = 0;
2773
2774 while (count) {
2775 unsigned long offset, length;
2776
891c49ab 2777 offset = offset_in_page(addr);
d0107eb0
KH
2778 length = PAGE_SIZE - offset;
2779 if (length > count)
2780 length = count;
2781 p = vmalloc_to_page(addr);
2782 /*
2783 * To do safe access to this _mapped_ area, we need
2784 * lock. But adding lock here means that we need to add
2785 * overhead of vmalloc()/vfree() calles for this _debug_
2786 * interface, rarely used. Instead of that, we'll use
2787 * kmap() and get small overhead in this access function.
2788 */
2789 if (p) {
2790 /*
2791 * we can expect USER0 is not used (see vread/vwrite's
2792 * function description)
2793 */
9b04c5fe 2794 void *map = kmap_atomic(p);
d0107eb0 2795 memcpy(map + offset, buf, length);
9b04c5fe 2796 kunmap_atomic(map);
d0107eb0
KH
2797 }
2798 addr += length;
2799 buf += length;
2800 copied += length;
2801 count -= length;
2802 }
2803 return copied;
2804}
2805
2806/**
92eac168
MR
2807 * vread() - read vmalloc area in a safe way.
2808 * @buf: buffer for reading data
2809 * @addr: vm address.
2810 * @count: number of bytes to be read.
2811 *
92eac168
MR
2812 * This function checks that addr is a valid vmalloc'ed area, and
2813 * copy data from that area to a given buffer. If the given memory range
2814 * of [addr...addr+count) includes some valid address, data is copied to
2815 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2816 * IOREMAP area is treated as memory hole and no copy is done.
2817 *
2818 * If [addr...addr+count) doesn't includes any intersects with alive
2819 * vm_struct area, returns 0. @buf should be kernel's buffer.
2820 *
2821 * Note: In usual ops, vread() is never necessary because the caller
2822 * should know vmalloc() area is valid and can use memcpy().
2823 * This is for routines which have to access vmalloc area without
2824 * any informaion, as /dev/kmem.
a862f68a
MR
2825 *
2826 * Return: number of bytes for which addr and buf should be increased
2827 * (same number as @count) or %0 if [addr...addr+count) doesn't
2828 * include any intersection with valid vmalloc area
d0107eb0 2829 */
1da177e4
LT
2830long vread(char *buf, char *addr, unsigned long count)
2831{
e81ce85f
JK
2832 struct vmap_area *va;
2833 struct vm_struct *vm;
1da177e4 2834 char *vaddr, *buf_start = buf;
d0107eb0 2835 unsigned long buflen = count;
1da177e4
LT
2836 unsigned long n;
2837
2838 /* Don't allow overflow */
2839 if ((unsigned long) addr + count < count)
2840 count = -(unsigned long) addr;
2841
e81ce85f
JK
2842 spin_lock(&vmap_area_lock);
2843 list_for_each_entry(va, &vmap_area_list, list) {
2844 if (!count)
2845 break;
2846
2847 if (!(va->flags & VM_VM_AREA))
2848 continue;
2849
2850 vm = va->vm;
2851 vaddr = (char *) vm->addr;
762216ab 2852 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2853 continue;
2854 while (addr < vaddr) {
2855 if (count == 0)
2856 goto finished;
2857 *buf = '\0';
2858 buf++;
2859 addr++;
2860 count--;
2861 }
762216ab 2862 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2863 if (n > count)
2864 n = count;
e81ce85f 2865 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2866 aligned_vread(buf, addr, n);
2867 else /* IOREMAP area is treated as memory hole */
2868 memset(buf, 0, n);
2869 buf += n;
2870 addr += n;
2871 count -= n;
1da177e4
LT
2872 }
2873finished:
e81ce85f 2874 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2875
2876 if (buf == buf_start)
2877 return 0;
2878 /* zero-fill memory holes */
2879 if (buf != buf_start + buflen)
2880 memset(buf, 0, buflen - (buf - buf_start));
2881
2882 return buflen;
1da177e4
LT
2883}
2884
d0107eb0 2885/**
92eac168
MR
2886 * vwrite() - write vmalloc area in a safe way.
2887 * @buf: buffer for source data
2888 * @addr: vm address.
2889 * @count: number of bytes to be read.
2890 *
92eac168
MR
2891 * This function checks that addr is a valid vmalloc'ed area, and
2892 * copy data from a buffer to the given addr. If specified range of
2893 * [addr...addr+count) includes some valid address, data is copied from
2894 * proper area of @buf. If there are memory holes, no copy to hole.
2895 * IOREMAP area is treated as memory hole and no copy is done.
2896 *
2897 * If [addr...addr+count) doesn't includes any intersects with alive
2898 * vm_struct area, returns 0. @buf should be kernel's buffer.
2899 *
2900 * Note: In usual ops, vwrite() is never necessary because the caller
2901 * should know vmalloc() area is valid and can use memcpy().
2902 * This is for routines which have to access vmalloc area without
2903 * any informaion, as /dev/kmem.
a862f68a
MR
2904 *
2905 * Return: number of bytes for which addr and buf should be
2906 * increased (same number as @count) or %0 if [addr...addr+count)
2907 * doesn't include any intersection with valid vmalloc area
d0107eb0 2908 */
1da177e4
LT
2909long vwrite(char *buf, char *addr, unsigned long count)
2910{
e81ce85f
JK
2911 struct vmap_area *va;
2912 struct vm_struct *vm;
d0107eb0
KH
2913 char *vaddr;
2914 unsigned long n, buflen;
2915 int copied = 0;
1da177e4
LT
2916
2917 /* Don't allow overflow */
2918 if ((unsigned long) addr + count < count)
2919 count = -(unsigned long) addr;
d0107eb0 2920 buflen = count;
1da177e4 2921
e81ce85f
JK
2922 spin_lock(&vmap_area_lock);
2923 list_for_each_entry(va, &vmap_area_list, list) {
2924 if (!count)
2925 break;
2926
2927 if (!(va->flags & VM_VM_AREA))
2928 continue;
2929
2930 vm = va->vm;
2931 vaddr = (char *) vm->addr;
762216ab 2932 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2933 continue;
2934 while (addr < vaddr) {
2935 if (count == 0)
2936 goto finished;
2937 buf++;
2938 addr++;
2939 count--;
2940 }
762216ab 2941 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2942 if (n > count)
2943 n = count;
e81ce85f 2944 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2945 aligned_vwrite(buf, addr, n);
2946 copied++;
2947 }
2948 buf += n;
2949 addr += n;
2950 count -= n;
1da177e4
LT
2951 }
2952finished:
e81ce85f 2953 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2954 if (!copied)
2955 return 0;
2956 return buflen;
1da177e4 2957}
83342314
NP
2958
2959/**
92eac168
MR
2960 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2961 * @vma: vma to cover
2962 * @uaddr: target user address to start at
2963 * @kaddr: virtual address of vmalloc kernel memory
2964 * @size: size of map area
7682486b 2965 *
92eac168 2966 * Returns: 0 for success, -Exxx on failure
83342314 2967 *
92eac168
MR
2968 * This function checks that @kaddr is a valid vmalloc'ed area,
2969 * and that it is big enough to cover the range starting at
2970 * @uaddr in @vma. Will return failure if that criteria isn't
2971 * met.
83342314 2972 *
92eac168 2973 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2974 */
e69e9d4a
HD
2975int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2976 void *kaddr, unsigned long size)
83342314
NP
2977{
2978 struct vm_struct *area;
83342314 2979
e69e9d4a
HD
2980 size = PAGE_ALIGN(size);
2981
2982 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2983 return -EINVAL;
2984
e69e9d4a 2985 area = find_vm_area(kaddr);
83342314 2986 if (!area)
db64fe02 2987 return -EINVAL;
83342314
NP
2988
2989 if (!(area->flags & VM_USERMAP))
db64fe02 2990 return -EINVAL;
83342314 2991
401592d2 2992 if (kaddr + size > area->addr + get_vm_area_size(area))
db64fe02 2993 return -EINVAL;
83342314 2994
83342314 2995 do {
e69e9d4a 2996 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2997 int ret;
2998
83342314
NP
2999 ret = vm_insert_page(vma, uaddr, page);
3000 if (ret)
3001 return ret;
3002
3003 uaddr += PAGE_SIZE;
e69e9d4a
HD
3004 kaddr += PAGE_SIZE;
3005 size -= PAGE_SIZE;
3006 } while (size > 0);
83342314 3007
314e51b9 3008 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3009
db64fe02 3010 return 0;
83342314 3011}
e69e9d4a
HD
3012EXPORT_SYMBOL(remap_vmalloc_range_partial);
3013
3014/**
92eac168
MR
3015 * remap_vmalloc_range - map vmalloc pages to userspace
3016 * @vma: vma to cover (map full range of vma)
3017 * @addr: vmalloc memory
3018 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3019 *
92eac168 3020 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3021 *
92eac168
MR
3022 * This function checks that addr is a valid vmalloc'ed area, and
3023 * that it is big enough to cover the vma. Will return failure if
3024 * that criteria isn't met.
e69e9d4a 3025 *
92eac168 3026 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3027 */
3028int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3029 unsigned long pgoff)
3030{
3031 return remap_vmalloc_range_partial(vma, vma->vm_start,
3032 addr + (pgoff << PAGE_SHIFT),
3033 vma->vm_end - vma->vm_start);
3034}
83342314
NP
3035EXPORT_SYMBOL(remap_vmalloc_range);
3036
1eeb66a1
CH
3037/*
3038 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3039 * have one.
3040 */
3b32123d 3041void __weak vmalloc_sync_all(void)
1eeb66a1
CH
3042{
3043}
5f4352fb
JF
3044
3045
8b1e0f81 3046static int f(pte_t *pte, unsigned long addr, void *data)
5f4352fb 3047{
cd12909c
DV
3048 pte_t ***p = data;
3049
3050 if (p) {
3051 *(*p) = pte;
3052 (*p)++;
3053 }
5f4352fb
JF
3054 return 0;
3055}
3056
3057/**
92eac168
MR
3058 * alloc_vm_area - allocate a range of kernel address space
3059 * @size: size of the area
3060 * @ptes: returns the PTEs for the address space
7682486b 3061 *
92eac168 3062 * Returns: NULL on failure, vm_struct on success
5f4352fb 3063 *
92eac168
MR
3064 * This function reserves a range of kernel address space, and
3065 * allocates pagetables to map that range. No actual mappings
3066 * are created.
cd12909c 3067 *
92eac168
MR
3068 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3069 * allocated for the VM area are returned.
5f4352fb 3070 */
cd12909c 3071struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
3072{
3073 struct vm_struct *area;
3074
23016969
CL
3075 area = get_vm_area_caller(size, VM_IOREMAP,
3076 __builtin_return_address(0));
5f4352fb
JF
3077 if (area == NULL)
3078 return NULL;
3079
3080 /*
3081 * This ensures that page tables are constructed for this region
3082 * of kernel virtual address space and mapped into init_mm.
3083 */
3084 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 3085 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
3086 free_vm_area(area);
3087 return NULL;
3088 }
3089
5f4352fb
JF
3090 return area;
3091}
3092EXPORT_SYMBOL_GPL(alloc_vm_area);
3093
3094void free_vm_area(struct vm_struct *area)
3095{
3096 struct vm_struct *ret;
3097 ret = remove_vm_area(area->addr);
3098 BUG_ON(ret != area);
3099 kfree(area);
3100}
3101EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3102
4f8b02b4 3103#ifdef CONFIG_SMP
ca23e405
TH
3104static struct vmap_area *node_to_va(struct rb_node *n)
3105{
4583e773 3106 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3107}
3108
3109/**
68ad4a33
URS
3110 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3111 * @addr: target address
ca23e405 3112 *
68ad4a33
URS
3113 * Returns: vmap_area if it is found. If there is no such area
3114 * the first highest(reverse order) vmap_area is returned
3115 * i.e. va->va_start < addr && va->va_end < addr or NULL
3116 * if there are no any areas before @addr.
ca23e405 3117 */
68ad4a33
URS
3118static struct vmap_area *
3119pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3120{
68ad4a33
URS
3121 struct vmap_area *va, *tmp;
3122 struct rb_node *n;
3123
3124 n = free_vmap_area_root.rb_node;
3125 va = NULL;
ca23e405
TH
3126
3127 while (n) {
68ad4a33
URS
3128 tmp = rb_entry(n, struct vmap_area, rb_node);
3129 if (tmp->va_start <= addr) {
3130 va = tmp;
3131 if (tmp->va_end >= addr)
3132 break;
3133
ca23e405 3134 n = n->rb_right;
68ad4a33
URS
3135 } else {
3136 n = n->rb_left;
3137 }
ca23e405
TH
3138 }
3139
68ad4a33 3140 return va;
ca23e405
TH
3141}
3142
3143/**
68ad4a33
URS
3144 * pvm_determine_end_from_reverse - find the highest aligned address
3145 * of free block below VMALLOC_END
3146 * @va:
3147 * in - the VA we start the search(reverse order);
3148 * out - the VA with the highest aligned end address.
ca23e405 3149 *
68ad4a33 3150 * Returns: determined end address within vmap_area
ca23e405 3151 */
68ad4a33
URS
3152static unsigned long
3153pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3154{
68ad4a33 3155 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3156 unsigned long addr;
3157
68ad4a33
URS
3158 if (likely(*va)) {
3159 list_for_each_entry_from_reverse((*va),
3160 &free_vmap_area_list, list) {
3161 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3162 if ((*va)->va_start < addr)
3163 return addr;
3164 }
ca23e405
TH
3165 }
3166
68ad4a33 3167 return 0;
ca23e405
TH
3168}
3169
3170/**
3171 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3172 * @offsets: array containing offset of each area
3173 * @sizes: array containing size of each area
3174 * @nr_vms: the number of areas to allocate
3175 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3176 *
3177 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3178 * vm_structs on success, %NULL on failure
3179 *
3180 * Percpu allocator wants to use congruent vm areas so that it can
3181 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3182 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3183 * be scattered pretty far, distance between two areas easily going up
3184 * to gigabytes. To avoid interacting with regular vmallocs, these
3185 * areas are allocated from top.
ca23e405 3186 *
68ad4a33
URS
3187 * Despite its complicated look, this allocator is rather simple. It
3188 * does everything top-down and scans free blocks from the end looking
3189 * for matching base. While scanning, if any of the areas do not fit the
3190 * base address is pulled down to fit the area. Scanning is repeated till
3191 * all the areas fit and then all necessary data structures are inserted
3192 * and the result is returned.
ca23e405
TH
3193 */
3194struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3195 const size_t *sizes, int nr_vms,
ec3f64fc 3196 size_t align)
ca23e405
TH
3197{
3198 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3199 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3200 struct vmap_area **vas, *va;
ca23e405
TH
3201 struct vm_struct **vms;
3202 int area, area2, last_area, term_area;
68ad4a33 3203 unsigned long base, start, size, end, last_end;
ca23e405 3204 bool purged = false;
68ad4a33 3205 enum fit_type type;
ca23e405 3206
ca23e405 3207 /* verify parameters and allocate data structures */
891c49ab 3208 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3209 for (last_area = 0, area = 0; area < nr_vms; area++) {
3210 start = offsets[area];
3211 end = start + sizes[area];
3212
3213 /* is everything aligned properly? */
3214 BUG_ON(!IS_ALIGNED(offsets[area], align));
3215 BUG_ON(!IS_ALIGNED(sizes[area], align));
3216
3217 /* detect the area with the highest address */
3218 if (start > offsets[last_area])
3219 last_area = area;
3220
c568da28 3221 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3222 unsigned long start2 = offsets[area2];
3223 unsigned long end2 = start2 + sizes[area2];
3224
c568da28 3225 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3226 }
3227 }
3228 last_end = offsets[last_area] + sizes[last_area];
3229
3230 if (vmalloc_end - vmalloc_start < last_end) {
3231 WARN_ON(true);
3232 return NULL;
3233 }
3234
4d67d860
TM
3235 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3236 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3237 if (!vas || !vms)
f1db7afd 3238 goto err_free2;
ca23e405
TH
3239
3240 for (area = 0; area < nr_vms; area++) {
68ad4a33 3241 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3242 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3243 if (!vas[area] || !vms[area])
3244 goto err_free;
3245 }
3246retry:
3247 spin_lock(&vmap_area_lock);
3248
3249 /* start scanning - we scan from the top, begin with the last area */
3250 area = term_area = last_area;
3251 start = offsets[area];
3252 end = start + sizes[area];
3253
68ad4a33
URS
3254 va = pvm_find_va_enclose_addr(vmalloc_end);
3255 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3256
3257 while (true) {
ca23e405
TH
3258 /*
3259 * base might have underflowed, add last_end before
3260 * comparing.
3261 */
68ad4a33
URS
3262 if (base + last_end < vmalloc_start + last_end)
3263 goto overflow;
ca23e405
TH
3264
3265 /*
68ad4a33 3266 * Fitting base has not been found.
ca23e405 3267 */
68ad4a33
URS
3268 if (va == NULL)
3269 goto overflow;
ca23e405
TH
3270
3271 /*
68ad4a33 3272 * If this VA does not fit, move base downwards and recheck.
ca23e405 3273 */
68ad4a33
URS
3274 if (base + start < va->va_start || base + end > va->va_end) {
3275 va = node_to_va(rb_prev(&va->rb_node));
3276 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3277 term_area = area;
3278 continue;
3279 }
3280
3281 /*
3282 * This area fits, move on to the previous one. If
3283 * the previous one is the terminal one, we're done.
3284 */
3285 area = (area + nr_vms - 1) % nr_vms;
3286 if (area == term_area)
3287 break;
68ad4a33 3288
ca23e405
TH
3289 start = offsets[area];
3290 end = start + sizes[area];
68ad4a33 3291 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3292 }
68ad4a33 3293
ca23e405
TH
3294 /* we've found a fitting base, insert all va's */
3295 for (area = 0; area < nr_vms; area++) {
68ad4a33 3296 int ret;
ca23e405 3297
68ad4a33
URS
3298 start = base + offsets[area];
3299 size = sizes[area];
ca23e405 3300
68ad4a33
URS
3301 va = pvm_find_va_enclose_addr(start);
3302 if (WARN_ON_ONCE(va == NULL))
3303 /* It is a BUG(), but trigger recovery instead. */
3304 goto recovery;
3305
3306 type = classify_va_fit_type(va, start, size);
3307 if (WARN_ON_ONCE(type == NOTHING_FIT))
3308 /* It is a BUG(), but trigger recovery instead. */
3309 goto recovery;
3310
3311 ret = adjust_va_to_fit_type(va, start, size, type);
3312 if (unlikely(ret))
3313 goto recovery;
3314
3315 /* Allocated area. */
3316 va = vas[area];
3317 va->va_start = start;
3318 va->va_end = start + size;
3319
3320 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3321 }
ca23e405
TH
3322
3323 spin_unlock(&vmap_area_lock);
3324
3325 /* insert all vm's */
3326 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
3327 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3328 pcpu_get_vm_areas);
ca23e405
TH
3329
3330 kfree(vas);
3331 return vms;
3332
68ad4a33
URS
3333recovery:
3334 /* Remove previously inserted areas. */
3335 while (area--) {
3336 __free_vmap_area(vas[area]);
3337 vas[area] = NULL;
3338 }
3339
3340overflow:
3341 spin_unlock(&vmap_area_lock);
3342 if (!purged) {
3343 purge_vmap_area_lazy();
3344 purged = true;
3345
3346 /* Before "retry", check if we recover. */
3347 for (area = 0; area < nr_vms; area++) {
3348 if (vas[area])
3349 continue;
3350
3351 vas[area] = kmem_cache_zalloc(
3352 vmap_area_cachep, GFP_KERNEL);
3353 if (!vas[area])
3354 goto err_free;
3355 }
3356
3357 goto retry;
3358 }
3359
ca23e405
TH
3360err_free:
3361 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3362 if (vas[area])
3363 kmem_cache_free(vmap_area_cachep, vas[area]);
3364
f1db7afd 3365 kfree(vms[area]);
ca23e405 3366 }
f1db7afd 3367err_free2:
ca23e405
TH
3368 kfree(vas);
3369 kfree(vms);
3370 return NULL;
3371}
3372
3373/**
3374 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3375 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3376 * @nr_vms: the number of allocated areas
3377 *
3378 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3379 */
3380void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3381{
3382 int i;
3383
3384 for (i = 0; i < nr_vms; i++)
3385 free_vm_area(vms[i]);
3386 kfree(vms);
3387}
4f8b02b4 3388#endif /* CONFIG_SMP */
a10aa579
CL
3389
3390#ifdef CONFIG_PROC_FS
3391static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 3392 __acquires(&vmap_area_lock)
a10aa579 3393{
d4033afd 3394 spin_lock(&vmap_area_lock);
3f500069 3395 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3396}
3397
3398static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3399{
3f500069 3400 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3401}
3402
3403static void s_stop(struct seq_file *m, void *p)
d4033afd 3404 __releases(&vmap_area_lock)
a10aa579 3405{
d4033afd 3406 spin_unlock(&vmap_area_lock);
a10aa579
CL
3407}
3408
a47a126a
ED
3409static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3410{
e5adfffc 3411 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3412 unsigned int nr, *counters = m->private;
3413
3414 if (!counters)
3415 return;
3416
af12346c
WL
3417 if (v->flags & VM_UNINITIALIZED)
3418 return;
7e5b528b
DV
3419 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3420 smp_rmb();
af12346c 3421
a47a126a
ED
3422 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3423
3424 for (nr = 0; nr < v->nr_pages; nr++)
3425 counters[page_to_nid(v->pages[nr])]++;
3426
3427 for_each_node_state(nr, N_HIGH_MEMORY)
3428 if (counters[nr])
3429 seq_printf(m, " N%u=%u", nr, counters[nr]);
3430 }
3431}
3432
a10aa579
CL
3433static int s_show(struct seq_file *m, void *p)
3434{
3f500069 3435 struct vmap_area *va;
d4033afd
JK
3436 struct vm_struct *v;
3437
3f500069 3438 va = list_entry(p, struct vmap_area, list);
3439
c2ce8c14
WL
3440 /*
3441 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
3442 * behalf of vmap area is being tear down or vm_map_ram allocation.
3443 */
78c72746
YX
3444 if (!(va->flags & VM_VM_AREA)) {
3445 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
3446 (void *)va->va_start, (void *)va->va_end,
3447 va->va_end - va->va_start,
3448 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
3449
d4033afd 3450 return 0;
78c72746 3451 }
d4033afd
JK
3452
3453 v = va->vm;
a10aa579 3454
45ec1690 3455 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3456 v->addr, v->addr + v->size, v->size);
3457
62c70bce
JP
3458 if (v->caller)
3459 seq_printf(m, " %pS", v->caller);
23016969 3460
a10aa579
CL
3461 if (v->nr_pages)
3462 seq_printf(m, " pages=%d", v->nr_pages);
3463
3464 if (v->phys_addr)
199eaa05 3465 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3466
3467 if (v->flags & VM_IOREMAP)
f4527c90 3468 seq_puts(m, " ioremap");
a10aa579
CL
3469
3470 if (v->flags & VM_ALLOC)
f4527c90 3471 seq_puts(m, " vmalloc");
a10aa579
CL
3472
3473 if (v->flags & VM_MAP)
f4527c90 3474 seq_puts(m, " vmap");
a10aa579
CL
3475
3476 if (v->flags & VM_USERMAP)
f4527c90 3477 seq_puts(m, " user");
a10aa579 3478
244d63ee 3479 if (is_vmalloc_addr(v->pages))
f4527c90 3480 seq_puts(m, " vpages");
a10aa579 3481
a47a126a 3482 show_numa_info(m, v);
a10aa579
CL
3483 seq_putc(m, '\n');
3484 return 0;
3485}
3486
5f6a6a9c 3487static const struct seq_operations vmalloc_op = {
a10aa579
CL
3488 .start = s_start,
3489 .next = s_next,
3490 .stop = s_stop,
3491 .show = s_show,
3492};
5f6a6a9c 3493
5f6a6a9c
AD
3494static int __init proc_vmalloc_init(void)
3495{
fddda2b7 3496 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3497 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3498 &vmalloc_op,
3499 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3500 else
0825a6f9 3501 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3502 return 0;
3503}
3504module_init(proc_vmalloc_init);
db3808c1 3505
a10aa579 3506#endif