]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/vmalloc.c
netfs: Add a function to extract a UBUF or IOVEC into a BVEC iterator
[thirdparty/kernel/linux.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 7 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02 26#include <linux/rbtree.h>
0f14599c 27#include <linux/xarray.h>
5da96bdd 28#include <linux/io.h>
db64fe02 29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
4e5aa1f4 34#include <linux/memcontrol.h>
32fcfd40 35#include <linux/llist.h>
0f616be1 36#include <linux/bitops.h>
68ad4a33 37#include <linux/rbtree_augmented.h>
bdebd6a2 38#include <linux/overflow.h>
c0eb315a 39#include <linux/pgtable.h>
7c0f6ba6 40#include <linux/uaccess.h>
f7ee1f13 41#include <linux/hugetlb.h>
451769eb 42#include <linux/sched/mm.h>
1da177e4 43#include <asm/tlbflush.h>
2dca6999 44#include <asm/shmparam.h>
1da177e4 45
cf243da6
URS
46#define CREATE_TRACE_POINTS
47#include <trace/events/vmalloc.h>
48
dd56b046 49#include "internal.h"
2a681cfa 50#include "pgalloc-track.h"
dd56b046 51
82a70ce0
CH
52#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54
55static int __init set_nohugeiomap(char *str)
56{
57 ioremap_max_page_shift = PAGE_SHIFT;
58 return 0;
59}
60early_param("nohugeiomap", set_nohugeiomap);
61#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
64
121e6f32
NP
65#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66static bool __ro_after_init vmap_allow_huge = true;
67
68static int __init set_nohugevmalloc(char *str)
69{
70 vmap_allow_huge = false;
71 return 0;
72}
73early_param("nohugevmalloc", set_nohugevmalloc);
74#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75static const bool vmap_allow_huge = false;
76#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77
186525bd
IM
78bool is_vmalloc_addr(const void *x)
79{
4aff1dc4 80 unsigned long addr = (unsigned long)kasan_reset_tag(x);
186525bd
IM
81
82 return addr >= VMALLOC_START && addr < VMALLOC_END;
83}
84EXPORT_SYMBOL(is_vmalloc_addr);
85
32fcfd40
AV
86struct vfree_deferred {
87 struct llist_head list;
88 struct work_struct wq;
89};
90static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91
92static void __vunmap(const void *, int);
93
94static void free_work(struct work_struct *w)
95{
96 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
97 struct llist_node *t, *llnode;
98
99 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
100 __vunmap((void *)llnode, 1);
32fcfd40
AV
101}
102
db64fe02 103/*** Page table manipulation functions ***/
5e9e3d77
NP
104static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
105 phys_addr_t phys_addr, pgprot_t prot,
f7ee1f13 106 unsigned int max_page_shift, pgtbl_mod_mask *mask)
5e9e3d77
NP
107{
108 pte_t *pte;
109 u64 pfn;
f7ee1f13 110 unsigned long size = PAGE_SIZE;
5e9e3d77
NP
111
112 pfn = phys_addr >> PAGE_SHIFT;
113 pte = pte_alloc_kernel_track(pmd, addr, mask);
114 if (!pte)
115 return -ENOMEM;
116 do {
117 BUG_ON(!pte_none(*pte));
f7ee1f13
CL
118
119#ifdef CONFIG_HUGETLB_PAGE
120 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
121 if (size != PAGE_SIZE) {
122 pte_t entry = pfn_pte(pfn, prot);
123
f7ee1f13
CL
124 entry = arch_make_huge_pte(entry, ilog2(size), 0);
125 set_huge_pte_at(&init_mm, addr, pte, entry);
126 pfn += PFN_DOWN(size);
127 continue;
128 }
129#endif
5e9e3d77
NP
130 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
131 pfn++;
f7ee1f13 132 } while (pte += PFN_DOWN(size), addr += size, addr != end);
5e9e3d77
NP
133 *mask |= PGTBL_PTE_MODIFIED;
134 return 0;
135}
136
137static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
138 phys_addr_t phys_addr, pgprot_t prot,
139 unsigned int max_page_shift)
140{
141 if (max_page_shift < PMD_SHIFT)
142 return 0;
143
144 if (!arch_vmap_pmd_supported(prot))
145 return 0;
146
147 if ((end - addr) != PMD_SIZE)
148 return 0;
149
150 if (!IS_ALIGNED(addr, PMD_SIZE))
151 return 0;
152
153 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
154 return 0;
155
156 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
157 return 0;
158
159 return pmd_set_huge(pmd, phys_addr, prot);
160}
161
162static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
163 phys_addr_t phys_addr, pgprot_t prot,
164 unsigned int max_page_shift, pgtbl_mod_mask *mask)
165{
166 pmd_t *pmd;
167 unsigned long next;
168
169 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
170 if (!pmd)
171 return -ENOMEM;
172 do {
173 next = pmd_addr_end(addr, end);
174
175 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
176 max_page_shift)) {
177 *mask |= PGTBL_PMD_MODIFIED;
178 continue;
179 }
180
f7ee1f13 181 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
5e9e3d77
NP
182 return -ENOMEM;
183 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
184 return 0;
185}
186
187static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
188 phys_addr_t phys_addr, pgprot_t prot,
189 unsigned int max_page_shift)
190{
191 if (max_page_shift < PUD_SHIFT)
192 return 0;
193
194 if (!arch_vmap_pud_supported(prot))
195 return 0;
196
197 if ((end - addr) != PUD_SIZE)
198 return 0;
199
200 if (!IS_ALIGNED(addr, PUD_SIZE))
201 return 0;
202
203 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
204 return 0;
205
206 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
207 return 0;
208
209 return pud_set_huge(pud, phys_addr, prot);
210}
211
212static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
213 phys_addr_t phys_addr, pgprot_t prot,
214 unsigned int max_page_shift, pgtbl_mod_mask *mask)
215{
216 pud_t *pud;
217 unsigned long next;
218
219 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
220 if (!pud)
221 return -ENOMEM;
222 do {
223 next = pud_addr_end(addr, end);
224
225 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
226 max_page_shift)) {
227 *mask |= PGTBL_PUD_MODIFIED;
228 continue;
229 }
230
231 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
232 max_page_shift, mask))
233 return -ENOMEM;
234 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
235 return 0;
236}
237
238static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
239 phys_addr_t phys_addr, pgprot_t prot,
240 unsigned int max_page_shift)
241{
242 if (max_page_shift < P4D_SHIFT)
243 return 0;
244
245 if (!arch_vmap_p4d_supported(prot))
246 return 0;
247
248 if ((end - addr) != P4D_SIZE)
249 return 0;
250
251 if (!IS_ALIGNED(addr, P4D_SIZE))
252 return 0;
253
254 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
255 return 0;
256
257 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
258 return 0;
259
260 return p4d_set_huge(p4d, phys_addr, prot);
261}
262
263static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
264 phys_addr_t phys_addr, pgprot_t prot,
265 unsigned int max_page_shift, pgtbl_mod_mask *mask)
266{
267 p4d_t *p4d;
268 unsigned long next;
269
270 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
271 if (!p4d)
272 return -ENOMEM;
273 do {
274 next = p4d_addr_end(addr, end);
275
276 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
277 max_page_shift)) {
278 *mask |= PGTBL_P4D_MODIFIED;
279 continue;
280 }
281
282 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
283 max_page_shift, mask))
284 return -ENOMEM;
285 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
286 return 0;
287}
288
5d87510d 289static int vmap_range_noflush(unsigned long addr, unsigned long end,
5e9e3d77
NP
290 phys_addr_t phys_addr, pgprot_t prot,
291 unsigned int max_page_shift)
292{
293 pgd_t *pgd;
294 unsigned long start;
295 unsigned long next;
296 int err;
297 pgtbl_mod_mask mask = 0;
298
299 might_sleep();
300 BUG_ON(addr >= end);
301
302 start = addr;
303 pgd = pgd_offset_k(addr);
304 do {
305 next = pgd_addr_end(addr, end);
306 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
307 max_page_shift, &mask);
308 if (err)
309 break;
310 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
311
5e9e3d77
NP
312 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
313 arch_sync_kernel_mappings(start, end);
314
315 return err;
316}
b221385b 317
82a70ce0
CH
318int ioremap_page_range(unsigned long addr, unsigned long end,
319 phys_addr_t phys_addr, pgprot_t prot)
5d87510d
NP
320{
321 int err;
322
8491502f 323 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
82a70ce0 324 ioremap_max_page_shift);
5d87510d 325 flush_cache_vmap(addr, end);
b073d7f8
AP
326 if (!err)
327 kmsan_ioremap_page_range(addr, end, phys_addr, prot,
328 ioremap_max_page_shift);
5d87510d
NP
329 return err;
330}
331
2ba3e694
JR
332static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
333 pgtbl_mod_mask *mask)
1da177e4
LT
334{
335 pte_t *pte;
336
337 pte = pte_offset_kernel(pmd, addr);
338 do {
339 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
340 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
341 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 342 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
343}
344
2ba3e694
JR
345static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
346 pgtbl_mod_mask *mask)
1da177e4
LT
347{
348 pmd_t *pmd;
349 unsigned long next;
2ba3e694 350 int cleared;
1da177e4
LT
351
352 pmd = pmd_offset(pud, addr);
353 do {
354 next = pmd_addr_end(addr, end);
2ba3e694
JR
355
356 cleared = pmd_clear_huge(pmd);
357 if (cleared || pmd_bad(*pmd))
358 *mask |= PGTBL_PMD_MODIFIED;
359
360 if (cleared)
b9820d8f 361 continue;
1da177e4
LT
362 if (pmd_none_or_clear_bad(pmd))
363 continue;
2ba3e694 364 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
365
366 cond_resched();
1da177e4
LT
367 } while (pmd++, addr = next, addr != end);
368}
369
2ba3e694
JR
370static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
371 pgtbl_mod_mask *mask)
1da177e4
LT
372{
373 pud_t *pud;
374 unsigned long next;
2ba3e694 375 int cleared;
1da177e4 376
c2febafc 377 pud = pud_offset(p4d, addr);
1da177e4
LT
378 do {
379 next = pud_addr_end(addr, end);
2ba3e694
JR
380
381 cleared = pud_clear_huge(pud);
382 if (cleared || pud_bad(*pud))
383 *mask |= PGTBL_PUD_MODIFIED;
384
385 if (cleared)
b9820d8f 386 continue;
1da177e4
LT
387 if (pud_none_or_clear_bad(pud))
388 continue;
2ba3e694 389 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
390 } while (pud++, addr = next, addr != end);
391}
392
2ba3e694
JR
393static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
394 pgtbl_mod_mask *mask)
c2febafc
KS
395{
396 p4d_t *p4d;
397 unsigned long next;
398
399 p4d = p4d_offset(pgd, addr);
400 do {
401 next = p4d_addr_end(addr, end);
2ba3e694 402
c8db8c26
L
403 p4d_clear_huge(p4d);
404 if (p4d_bad(*p4d))
2ba3e694
JR
405 *mask |= PGTBL_P4D_MODIFIED;
406
c2febafc
KS
407 if (p4d_none_or_clear_bad(p4d))
408 continue;
2ba3e694 409 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
410 } while (p4d++, addr = next, addr != end);
411}
412
4ad0ae8c
NP
413/*
414 * vunmap_range_noflush is similar to vunmap_range, but does not
415 * flush caches or TLBs.
b521c43f 416 *
4ad0ae8c
NP
417 * The caller is responsible for calling flush_cache_vmap() before calling
418 * this function, and flush_tlb_kernel_range after it has returned
419 * successfully (and before the addresses are expected to cause a page fault
420 * or be re-mapped for something else, if TLB flushes are being delayed or
421 * coalesced).
b521c43f 422 *
4ad0ae8c 423 * This is an internal function only. Do not use outside mm/.
b521c43f 424 */
b073d7f8 425void __vunmap_range_noflush(unsigned long start, unsigned long end)
1da177e4 426{
1da177e4 427 unsigned long next;
b521c43f 428 pgd_t *pgd;
2ba3e694
JR
429 unsigned long addr = start;
430 pgtbl_mod_mask mask = 0;
1da177e4
LT
431
432 BUG_ON(addr >= end);
433 pgd = pgd_offset_k(addr);
1da177e4
LT
434 do {
435 next = pgd_addr_end(addr, end);
2ba3e694
JR
436 if (pgd_bad(*pgd))
437 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
438 if (pgd_none_or_clear_bad(pgd))
439 continue;
2ba3e694 440 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 441 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
442
443 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
444 arch_sync_kernel_mappings(start, end);
1da177e4
LT
445}
446
b073d7f8
AP
447void vunmap_range_noflush(unsigned long start, unsigned long end)
448{
449 kmsan_vunmap_range_noflush(start, end);
450 __vunmap_range_noflush(start, end);
451}
452
4ad0ae8c
NP
453/**
454 * vunmap_range - unmap kernel virtual addresses
455 * @addr: start of the VM area to unmap
456 * @end: end of the VM area to unmap (non-inclusive)
457 *
458 * Clears any present PTEs in the virtual address range, flushes TLBs and
459 * caches. Any subsequent access to the address before it has been re-mapped
460 * is a kernel bug.
461 */
462void vunmap_range(unsigned long addr, unsigned long end)
463{
464 flush_cache_vunmap(addr, end);
465 vunmap_range_noflush(addr, end);
466 flush_tlb_kernel_range(addr, end);
467}
468
0a264884 469static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
470 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
471 pgtbl_mod_mask *mask)
1da177e4
LT
472{
473 pte_t *pte;
474
db64fe02
NP
475 /*
476 * nr is a running index into the array which helps higher level
477 * callers keep track of where we're up to.
478 */
479
2ba3e694 480 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
481 if (!pte)
482 return -ENOMEM;
483 do {
db64fe02
NP
484 struct page *page = pages[*nr];
485
486 if (WARN_ON(!pte_none(*pte)))
487 return -EBUSY;
488 if (WARN_ON(!page))
1da177e4 489 return -ENOMEM;
4fcdcc12
YN
490 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
491 return -EINVAL;
492
1da177e4 493 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 494 (*nr)++;
1da177e4 495 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 496 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
497 return 0;
498}
499
0a264884 500static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
501 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
502 pgtbl_mod_mask *mask)
1da177e4
LT
503{
504 pmd_t *pmd;
505 unsigned long next;
506
2ba3e694 507 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
508 if (!pmd)
509 return -ENOMEM;
510 do {
511 next = pmd_addr_end(addr, end);
0a264884 512 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
513 return -ENOMEM;
514 } while (pmd++, addr = next, addr != end);
515 return 0;
516}
517
0a264884 518static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
519 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
520 pgtbl_mod_mask *mask)
1da177e4
LT
521{
522 pud_t *pud;
523 unsigned long next;
524
2ba3e694 525 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
526 if (!pud)
527 return -ENOMEM;
528 do {
529 next = pud_addr_end(addr, end);
0a264884 530 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
531 return -ENOMEM;
532 } while (pud++, addr = next, addr != end);
533 return 0;
534}
535
0a264884 536static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
537 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
538 pgtbl_mod_mask *mask)
c2febafc
KS
539{
540 p4d_t *p4d;
541 unsigned long next;
542
2ba3e694 543 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
544 if (!p4d)
545 return -ENOMEM;
546 do {
547 next = p4d_addr_end(addr, end);
0a264884 548 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
549 return -ENOMEM;
550 } while (p4d++, addr = next, addr != end);
551 return 0;
552}
553
121e6f32
NP
554static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
555 pgprot_t prot, struct page **pages)
1da177e4 556{
2ba3e694 557 unsigned long start = addr;
b521c43f 558 pgd_t *pgd;
121e6f32 559 unsigned long next;
db64fe02
NP
560 int err = 0;
561 int nr = 0;
2ba3e694 562 pgtbl_mod_mask mask = 0;
1da177e4
LT
563
564 BUG_ON(addr >= end);
565 pgd = pgd_offset_k(addr);
1da177e4
LT
566 do {
567 next = pgd_addr_end(addr, end);
2ba3e694
JR
568 if (pgd_bad(*pgd))
569 mask |= PGTBL_PGD_MODIFIED;
0a264884 570 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 571 if (err)
bf88c8c8 572 return err;
1da177e4 573 } while (pgd++, addr = next, addr != end);
db64fe02 574
2ba3e694
JR
575 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
576 arch_sync_kernel_mappings(start, end);
577
60bb4465 578 return 0;
1da177e4
LT
579}
580
b67177ec
NP
581/*
582 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
583 * flush caches.
584 *
585 * The caller is responsible for calling flush_cache_vmap() after this
586 * function returns successfully and before the addresses are accessed.
587 *
588 * This is an internal function only. Do not use outside mm/.
589 */
b073d7f8 590int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
121e6f32
NP
591 pgprot_t prot, struct page **pages, unsigned int page_shift)
592{
593 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
594
595 WARN_ON(page_shift < PAGE_SHIFT);
596
597 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
598 page_shift == PAGE_SHIFT)
599 return vmap_small_pages_range_noflush(addr, end, prot, pages);
600
601 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
602 int err;
603
604 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
08262ac5 605 page_to_phys(pages[i]), prot,
121e6f32
NP
606 page_shift);
607 if (err)
608 return err;
609
610 addr += 1UL << page_shift;
611 }
612
613 return 0;
614}
b073d7f8
AP
615
616int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
617 pgprot_t prot, struct page **pages, unsigned int page_shift)
618{
619 kmsan_vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
620 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
621}
121e6f32 622
121e6f32 623/**
b67177ec 624 * vmap_pages_range - map pages to a kernel virtual address
121e6f32 625 * @addr: start of the VM area to map
b67177ec 626 * @end: end of the VM area to map (non-inclusive)
121e6f32 627 * @prot: page protection flags to use
b67177ec
NP
628 * @pages: pages to map (always PAGE_SIZE pages)
629 * @page_shift: maximum shift that the pages may be mapped with, @pages must
630 * be aligned and contiguous up to at least this shift.
121e6f32
NP
631 *
632 * RETURNS:
633 * 0 on success, -errno on failure.
634 */
b67177ec
NP
635static int vmap_pages_range(unsigned long addr, unsigned long end,
636 pgprot_t prot, struct page **pages, unsigned int page_shift)
8fc48985 637{
b67177ec 638 int err;
8fc48985 639
b67177ec
NP
640 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
641 flush_cache_vmap(addr, end);
642 return err;
8fc48985
TH
643}
644
81ac3ad9 645int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
646{
647 /*
ab4f2ee1 648 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
649 * and fall back on vmalloc() if that fails. Others
650 * just put it in the vmalloc space.
651 */
652#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
4aff1dc4 653 unsigned long addr = (unsigned long)kasan_reset_tag(x);
73bdf0a6
LT
654 if (addr >= MODULES_VADDR && addr < MODULES_END)
655 return 1;
656#endif
657 return is_vmalloc_addr(x);
658}
659
48667e7a 660/*
c0eb315a
NP
661 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
662 * return the tail page that corresponds to the base page address, which
663 * matches small vmap mappings.
48667e7a 664 */
add688fb 665struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
666{
667 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 668 struct page *page = NULL;
48667e7a 669 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
670 p4d_t *p4d;
671 pud_t *pud;
672 pmd_t *pmd;
673 pte_t *ptep, pte;
48667e7a 674
7aa413de
IM
675 /*
676 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
677 * architectures that do not vmalloc module space
678 */
73bdf0a6 679 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 680
c2febafc
KS
681 if (pgd_none(*pgd))
682 return NULL;
c0eb315a
NP
683 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
684 return NULL; /* XXX: no allowance for huge pgd */
685 if (WARN_ON_ONCE(pgd_bad(*pgd)))
686 return NULL;
687
c2febafc
KS
688 p4d = p4d_offset(pgd, addr);
689 if (p4d_none(*p4d))
690 return NULL;
c0eb315a
NP
691 if (p4d_leaf(*p4d))
692 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
693 if (WARN_ON_ONCE(p4d_bad(*p4d)))
694 return NULL;
029c54b0 695
c0eb315a
NP
696 pud = pud_offset(p4d, addr);
697 if (pud_none(*pud))
698 return NULL;
699 if (pud_leaf(*pud))
700 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
701 if (WARN_ON_ONCE(pud_bad(*pud)))
c2febafc 702 return NULL;
c0eb315a 703
c2febafc 704 pmd = pmd_offset(pud, addr);
c0eb315a
NP
705 if (pmd_none(*pmd))
706 return NULL;
707 if (pmd_leaf(*pmd))
708 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
709 if (WARN_ON_ONCE(pmd_bad(*pmd)))
c2febafc
KS
710 return NULL;
711
712 ptep = pte_offset_map(pmd, addr);
713 pte = *ptep;
714 if (pte_present(pte))
715 page = pte_page(pte);
716 pte_unmap(ptep);
c0eb315a 717
add688fb 718 return page;
48667e7a 719}
add688fb 720EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
721
722/*
add688fb 723 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 724 */
add688fb 725unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 726{
add688fb 727 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 728}
add688fb 729EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 730
db64fe02
NP
731
732/*** Global kva allocator ***/
733
bb850f4d 734#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 735#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 736
db64fe02 737
db64fe02 738static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 739static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
740/* Export for kexec only */
741LIST_HEAD(vmap_area_list);
89699605 742static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 743static bool vmap_initialized __read_mostly;
89699605 744
96e2db45
URS
745static struct rb_root purge_vmap_area_root = RB_ROOT;
746static LIST_HEAD(purge_vmap_area_list);
747static DEFINE_SPINLOCK(purge_vmap_area_lock);
748
68ad4a33
URS
749/*
750 * This kmem_cache is used for vmap_area objects. Instead of
751 * allocating from slab we reuse an object from this cache to
752 * make things faster. Especially in "no edge" splitting of
753 * free block.
754 */
755static struct kmem_cache *vmap_area_cachep;
756
757/*
758 * This linked list is used in pair with free_vmap_area_root.
759 * It gives O(1) access to prev/next to perform fast coalescing.
760 */
761static LIST_HEAD(free_vmap_area_list);
762
763/*
764 * This augment red-black tree represents the free vmap space.
765 * All vmap_area objects in this tree are sorted by va->va_start
766 * address. It is used for allocation and merging when a vmap
767 * object is released.
768 *
769 * Each vmap_area node contains a maximum available free block
770 * of its sub-tree, right or left. Therefore it is possible to
771 * find a lowest match of free area.
772 */
773static struct rb_root free_vmap_area_root = RB_ROOT;
774
82dd23e8
URS
775/*
776 * Preload a CPU with one object for "no edge" split case. The
777 * aim is to get rid of allocations from the atomic context, thus
778 * to use more permissive allocation masks.
779 */
780static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
781
68ad4a33
URS
782static __always_inline unsigned long
783va_size(struct vmap_area *va)
784{
785 return (va->va_end - va->va_start);
786}
787
788static __always_inline unsigned long
789get_subtree_max_size(struct rb_node *node)
790{
791 struct vmap_area *va;
792
793 va = rb_entry_safe(node, struct vmap_area, rb_node);
794 return va ? va->subtree_max_size : 0;
795}
89699605 796
315cc066
ML
797RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
798 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
799
800static void purge_vmap_area_lazy(void);
801static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
690467c8
URS
802static void drain_vmap_area_work(struct work_struct *work);
803static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
db64fe02 804
97105f0a
RG
805static atomic_long_t nr_vmalloc_pages;
806
807unsigned long vmalloc_nr_pages(void)
808{
809 return atomic_long_read(&nr_vmalloc_pages);
810}
811
153090f2 812/* Look up the first VA which satisfies addr < va_end, NULL if none. */
f181234a
CW
813static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
814{
815 struct vmap_area *va = NULL;
816 struct rb_node *n = vmap_area_root.rb_node;
817
4aff1dc4
AK
818 addr = (unsigned long)kasan_reset_tag((void *)addr);
819
f181234a
CW
820 while (n) {
821 struct vmap_area *tmp;
822
823 tmp = rb_entry(n, struct vmap_area, rb_node);
824 if (tmp->va_end > addr) {
825 va = tmp;
826 if (tmp->va_start <= addr)
827 break;
828
829 n = n->rb_left;
830 } else
831 n = n->rb_right;
832 }
833
834 return va;
835}
836
899c6efe 837static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1da177e4 838{
899c6efe 839 struct rb_node *n = root->rb_node;
db64fe02 840
4aff1dc4
AK
841 addr = (unsigned long)kasan_reset_tag((void *)addr);
842
db64fe02
NP
843 while (n) {
844 struct vmap_area *va;
845
846 va = rb_entry(n, struct vmap_area, rb_node);
847 if (addr < va->va_start)
848 n = n->rb_left;
cef2ac3f 849 else if (addr >= va->va_end)
db64fe02
NP
850 n = n->rb_right;
851 else
852 return va;
853 }
854
855 return NULL;
856}
857
68ad4a33
URS
858/*
859 * This function returns back addresses of parent node
860 * and its left or right link for further processing.
9c801f61
URS
861 *
862 * Otherwise NULL is returned. In that case all further
863 * steps regarding inserting of conflicting overlap range
864 * have to be declined and actually considered as a bug.
68ad4a33
URS
865 */
866static __always_inline struct rb_node **
867find_va_links(struct vmap_area *va,
868 struct rb_root *root, struct rb_node *from,
869 struct rb_node **parent)
870{
871 struct vmap_area *tmp_va;
872 struct rb_node **link;
873
874 if (root) {
875 link = &root->rb_node;
876 if (unlikely(!*link)) {
877 *parent = NULL;
878 return link;
879 }
880 } else {
881 link = &from;
882 }
db64fe02 883
68ad4a33
URS
884 /*
885 * Go to the bottom of the tree. When we hit the last point
886 * we end up with parent rb_node and correct direction, i name
887 * it link, where the new va->rb_node will be attached to.
888 */
889 do {
890 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 891
68ad4a33
URS
892 /*
893 * During the traversal we also do some sanity check.
894 * Trigger the BUG() if there are sides(left/right)
895 * or full overlaps.
896 */
753df96b 897 if (va->va_end <= tmp_va->va_start)
68ad4a33 898 link = &(*link)->rb_left;
753df96b 899 else if (va->va_start >= tmp_va->va_end)
68ad4a33 900 link = &(*link)->rb_right;
9c801f61
URS
901 else {
902 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
903 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
904
905 return NULL;
906 }
68ad4a33
URS
907 } while (*link);
908
909 *parent = &tmp_va->rb_node;
910 return link;
911}
912
913static __always_inline struct list_head *
914get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
915{
916 struct list_head *list;
917
918 if (unlikely(!parent))
919 /*
920 * The red-black tree where we try to find VA neighbors
921 * before merging or inserting is empty, i.e. it means
922 * there is no free vmap space. Normally it does not
923 * happen but we handle this case anyway.
924 */
925 return NULL;
926
927 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
928 return (&parent->rb_right == link ? list->next : list);
929}
930
931static __always_inline void
8eb510db
URS
932__link_va(struct vmap_area *va, struct rb_root *root,
933 struct rb_node *parent, struct rb_node **link,
934 struct list_head *head, bool augment)
68ad4a33
URS
935{
936 /*
937 * VA is still not in the list, but we can
938 * identify its future previous list_head node.
939 */
940 if (likely(parent)) {
941 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
942 if (&parent->rb_right != link)
943 head = head->prev;
db64fe02
NP
944 }
945
68ad4a33
URS
946 /* Insert to the rb-tree */
947 rb_link_node(&va->rb_node, parent, link);
8eb510db 948 if (augment) {
68ad4a33
URS
949 /*
950 * Some explanation here. Just perform simple insertion
951 * to the tree. We do not set va->subtree_max_size to
952 * its current size before calling rb_insert_augmented().
153090f2 953 * It is because we populate the tree from the bottom
68ad4a33
URS
954 * to parent levels when the node _is_ in the tree.
955 *
956 * Therefore we set subtree_max_size to zero after insertion,
957 * to let __augment_tree_propagate_from() puts everything to
958 * the correct order later on.
959 */
960 rb_insert_augmented(&va->rb_node,
961 root, &free_vmap_area_rb_augment_cb);
962 va->subtree_max_size = 0;
963 } else {
964 rb_insert_color(&va->rb_node, root);
965 }
db64fe02 966
68ad4a33
URS
967 /* Address-sort this list */
968 list_add(&va->list, head);
db64fe02
NP
969}
970
68ad4a33 971static __always_inline void
8eb510db
URS
972link_va(struct vmap_area *va, struct rb_root *root,
973 struct rb_node *parent, struct rb_node **link,
974 struct list_head *head)
975{
976 __link_va(va, root, parent, link, head, false);
977}
978
979static __always_inline void
980link_va_augment(struct vmap_area *va, struct rb_root *root,
981 struct rb_node *parent, struct rb_node **link,
982 struct list_head *head)
983{
984 __link_va(va, root, parent, link, head, true);
985}
986
987static __always_inline void
988__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
68ad4a33 989{
460e42d1
URS
990 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
991 return;
db64fe02 992
8eb510db 993 if (augment)
460e42d1
URS
994 rb_erase_augmented(&va->rb_node,
995 root, &free_vmap_area_rb_augment_cb);
996 else
997 rb_erase(&va->rb_node, root);
998
5d7a7c54 999 list_del_init(&va->list);
460e42d1 1000 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
1001}
1002
8eb510db
URS
1003static __always_inline void
1004unlink_va(struct vmap_area *va, struct rb_root *root)
1005{
1006 __unlink_va(va, root, false);
1007}
1008
1009static __always_inline void
1010unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1011{
1012 __unlink_va(va, root, true);
1013}
1014
bb850f4d 1015#if DEBUG_AUGMENT_PROPAGATE_CHECK
c3385e84
JC
1016/*
1017 * Gets called when remove the node and rotate.
1018 */
1019static __always_inline unsigned long
1020compute_subtree_max_size(struct vmap_area *va)
1021{
1022 return max3(va_size(va),
1023 get_subtree_max_size(va->rb_node.rb_left),
1024 get_subtree_max_size(va->rb_node.rb_right));
1025}
1026
bb850f4d 1027static void
da27c9ed 1028augment_tree_propagate_check(void)
bb850f4d
URS
1029{
1030 struct vmap_area *va;
da27c9ed 1031 unsigned long computed_size;
bb850f4d 1032
da27c9ed
URS
1033 list_for_each_entry(va, &free_vmap_area_list, list) {
1034 computed_size = compute_subtree_max_size(va);
1035 if (computed_size != va->subtree_max_size)
1036 pr_emerg("tree is corrupted: %lu, %lu\n",
1037 va_size(va), va->subtree_max_size);
bb850f4d 1038 }
bb850f4d
URS
1039}
1040#endif
1041
68ad4a33
URS
1042/*
1043 * This function populates subtree_max_size from bottom to upper
1044 * levels starting from VA point. The propagation must be done
1045 * when VA size is modified by changing its va_start/va_end. Or
1046 * in case of newly inserting of VA to the tree.
1047 *
1048 * It means that __augment_tree_propagate_from() must be called:
1049 * - After VA has been inserted to the tree(free path);
1050 * - After VA has been shrunk(allocation path);
1051 * - After VA has been increased(merging path).
1052 *
1053 * Please note that, it does not mean that upper parent nodes
1054 * and their subtree_max_size are recalculated all the time up
1055 * to the root node.
1056 *
1057 * 4--8
1058 * /\
1059 * / \
1060 * / \
1061 * 2--2 8--8
1062 *
1063 * For example if we modify the node 4, shrinking it to 2, then
1064 * no any modification is required. If we shrink the node 2 to 1
1065 * its subtree_max_size is updated only, and set to 1. If we shrink
1066 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1067 * node becomes 4--6.
1068 */
1069static __always_inline void
1070augment_tree_propagate_from(struct vmap_area *va)
1071{
15ae144f
URS
1072 /*
1073 * Populate the tree from bottom towards the root until
1074 * the calculated maximum available size of checked node
1075 * is equal to its current one.
1076 */
1077 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
1078
1079#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 1080 augment_tree_propagate_check();
bb850f4d 1081#endif
68ad4a33
URS
1082}
1083
1084static void
1085insert_vmap_area(struct vmap_area *va,
1086 struct rb_root *root, struct list_head *head)
1087{
1088 struct rb_node **link;
1089 struct rb_node *parent;
1090
1091 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1092 if (link)
1093 link_va(va, root, parent, link, head);
68ad4a33
URS
1094}
1095
1096static void
1097insert_vmap_area_augment(struct vmap_area *va,
1098 struct rb_node *from, struct rb_root *root,
1099 struct list_head *head)
1100{
1101 struct rb_node **link;
1102 struct rb_node *parent;
1103
1104 if (from)
1105 link = find_va_links(va, NULL, from, &parent);
1106 else
1107 link = find_va_links(va, root, NULL, &parent);
1108
9c801f61 1109 if (link) {
8eb510db 1110 link_va_augment(va, root, parent, link, head);
9c801f61
URS
1111 augment_tree_propagate_from(va);
1112 }
68ad4a33
URS
1113}
1114
1115/*
1116 * Merge de-allocated chunk of VA memory with previous
1117 * and next free blocks. If coalesce is not done a new
1118 * free area is inserted. If VA has been merged, it is
1119 * freed.
9c801f61
URS
1120 *
1121 * Please note, it can return NULL in case of overlap
1122 * ranges, followed by WARN() report. Despite it is a
1123 * buggy behaviour, a system can be alive and keep
1124 * ongoing.
68ad4a33 1125 */
3c5c3cfb 1126static __always_inline struct vmap_area *
8eb510db
URS
1127__merge_or_add_vmap_area(struct vmap_area *va,
1128 struct rb_root *root, struct list_head *head, bool augment)
68ad4a33
URS
1129{
1130 struct vmap_area *sibling;
1131 struct list_head *next;
1132 struct rb_node **link;
1133 struct rb_node *parent;
1134 bool merged = false;
1135
1136 /*
1137 * Find a place in the tree where VA potentially will be
1138 * inserted, unless it is merged with its sibling/siblings.
1139 */
1140 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1141 if (!link)
1142 return NULL;
68ad4a33
URS
1143
1144 /*
1145 * Get next node of VA to check if merging can be done.
1146 */
1147 next = get_va_next_sibling(parent, link);
1148 if (unlikely(next == NULL))
1149 goto insert;
1150
1151 /*
1152 * start end
1153 * | |
1154 * |<------VA------>|<-----Next----->|
1155 * | |
1156 * start end
1157 */
1158 if (next != head) {
1159 sibling = list_entry(next, struct vmap_area, list);
1160 if (sibling->va_start == va->va_end) {
1161 sibling->va_start = va->va_start;
1162
68ad4a33
URS
1163 /* Free vmap_area object. */
1164 kmem_cache_free(vmap_area_cachep, va);
1165
1166 /* Point to the new merged area. */
1167 va = sibling;
1168 merged = true;
1169 }
1170 }
1171
1172 /*
1173 * start end
1174 * | |
1175 * |<-----Prev----->|<------VA------>|
1176 * | |
1177 * start end
1178 */
1179 if (next->prev != head) {
1180 sibling = list_entry(next->prev, struct vmap_area, list);
1181 if (sibling->va_end == va->va_start) {
5dd78640
URS
1182 /*
1183 * If both neighbors are coalesced, it is important
1184 * to unlink the "next" node first, followed by merging
1185 * with "previous" one. Otherwise the tree might not be
1186 * fully populated if a sibling's augmented value is
1187 * "normalized" because of rotation operations.
1188 */
54f63d9d 1189 if (merged)
8eb510db 1190 __unlink_va(va, root, augment);
68ad4a33 1191
5dd78640
URS
1192 sibling->va_end = va->va_end;
1193
68ad4a33
URS
1194 /* Free vmap_area object. */
1195 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
1196
1197 /* Point to the new merged area. */
1198 va = sibling;
1199 merged = true;
68ad4a33
URS
1200 }
1201 }
1202
1203insert:
5dd78640 1204 if (!merged)
8eb510db 1205 __link_va(va, root, parent, link, head, augment);
3c5c3cfb 1206
96e2db45
URS
1207 return va;
1208}
1209
8eb510db
URS
1210static __always_inline struct vmap_area *
1211merge_or_add_vmap_area(struct vmap_area *va,
1212 struct rb_root *root, struct list_head *head)
1213{
1214 return __merge_or_add_vmap_area(va, root, head, false);
1215}
1216
96e2db45
URS
1217static __always_inline struct vmap_area *
1218merge_or_add_vmap_area_augment(struct vmap_area *va,
1219 struct rb_root *root, struct list_head *head)
1220{
8eb510db 1221 va = __merge_or_add_vmap_area(va, root, head, true);
96e2db45
URS
1222 if (va)
1223 augment_tree_propagate_from(va);
1224
3c5c3cfb 1225 return va;
68ad4a33
URS
1226}
1227
1228static __always_inline bool
1229is_within_this_va(struct vmap_area *va, unsigned long size,
1230 unsigned long align, unsigned long vstart)
1231{
1232 unsigned long nva_start_addr;
1233
1234 if (va->va_start > vstart)
1235 nva_start_addr = ALIGN(va->va_start, align);
1236 else
1237 nva_start_addr = ALIGN(vstart, align);
1238
1239 /* Can be overflowed due to big size or alignment. */
1240 if (nva_start_addr + size < nva_start_addr ||
1241 nva_start_addr < vstart)
1242 return false;
1243
1244 return (nva_start_addr + size <= va->va_end);
1245}
1246
1247/*
1248 * Find the first free block(lowest start address) in the tree,
1249 * that will accomplish the request corresponding to passing
9333fe98
UR
1250 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1251 * a search length is adjusted to account for worst case alignment
1252 * overhead.
68ad4a33
URS
1253 */
1254static __always_inline struct vmap_area *
f9863be4
URS
1255find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1256 unsigned long align, unsigned long vstart, bool adjust_search_size)
68ad4a33
URS
1257{
1258 struct vmap_area *va;
1259 struct rb_node *node;
9333fe98 1260 unsigned long length;
68ad4a33
URS
1261
1262 /* Start from the root. */
f9863be4 1263 node = root->rb_node;
68ad4a33 1264
9333fe98
UR
1265 /* Adjust the search size for alignment overhead. */
1266 length = adjust_search_size ? size + align - 1 : size;
1267
68ad4a33
URS
1268 while (node) {
1269 va = rb_entry(node, struct vmap_area, rb_node);
1270
9333fe98 1271 if (get_subtree_max_size(node->rb_left) >= length &&
68ad4a33
URS
1272 vstart < va->va_start) {
1273 node = node->rb_left;
1274 } else {
1275 if (is_within_this_va(va, size, align, vstart))
1276 return va;
1277
1278 /*
1279 * Does not make sense to go deeper towards the right
1280 * sub-tree if it does not have a free block that is
9333fe98 1281 * equal or bigger to the requested search length.
68ad4a33 1282 */
9333fe98 1283 if (get_subtree_max_size(node->rb_right) >= length) {
68ad4a33
URS
1284 node = node->rb_right;
1285 continue;
1286 }
1287
1288 /*
3806b041 1289 * OK. We roll back and find the first right sub-tree,
68ad4a33 1290 * that will satisfy the search criteria. It can happen
9f531973
URS
1291 * due to "vstart" restriction or an alignment overhead
1292 * that is bigger then PAGE_SIZE.
68ad4a33
URS
1293 */
1294 while ((node = rb_parent(node))) {
1295 va = rb_entry(node, struct vmap_area, rb_node);
1296 if (is_within_this_va(va, size, align, vstart))
1297 return va;
1298
9333fe98 1299 if (get_subtree_max_size(node->rb_right) >= length &&
68ad4a33 1300 vstart <= va->va_start) {
9f531973
URS
1301 /*
1302 * Shift the vstart forward. Please note, we update it with
1303 * parent's start address adding "1" because we do not want
1304 * to enter same sub-tree after it has already been checked
1305 * and no suitable free block found there.
1306 */
1307 vstart = va->va_start + 1;
68ad4a33
URS
1308 node = node->rb_right;
1309 break;
1310 }
1311 }
1312 }
1313 }
1314
1315 return NULL;
1316}
1317
a6cf4e0f
URS
1318#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1319#include <linux/random.h>
1320
1321static struct vmap_area *
bd1264c3 1322find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
a6cf4e0f
URS
1323 unsigned long align, unsigned long vstart)
1324{
1325 struct vmap_area *va;
1326
bd1264c3 1327 list_for_each_entry(va, head, list) {
a6cf4e0f
URS
1328 if (!is_within_this_va(va, size, align, vstart))
1329 continue;
1330
1331 return va;
1332 }
1333
1334 return NULL;
1335}
1336
1337static void
bd1264c3
SL
1338find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1339 unsigned long size, unsigned long align)
a6cf4e0f
URS
1340{
1341 struct vmap_area *va_1, *va_2;
1342 unsigned long vstart;
1343 unsigned int rnd;
1344
1345 get_random_bytes(&rnd, sizeof(rnd));
1346 vstart = VMALLOC_START + rnd;
1347
bd1264c3
SL
1348 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1349 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
a6cf4e0f
URS
1350
1351 if (va_1 != va_2)
1352 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1353 va_1, va_2, vstart);
1354}
1355#endif
1356
68ad4a33
URS
1357enum fit_type {
1358 NOTHING_FIT = 0,
1359 FL_FIT_TYPE = 1, /* full fit */
1360 LE_FIT_TYPE = 2, /* left edge fit */
1361 RE_FIT_TYPE = 3, /* right edge fit */
1362 NE_FIT_TYPE = 4 /* no edge fit */
1363};
1364
1365static __always_inline enum fit_type
1366classify_va_fit_type(struct vmap_area *va,
1367 unsigned long nva_start_addr, unsigned long size)
1368{
1369 enum fit_type type;
1370
1371 /* Check if it is within VA. */
1372 if (nva_start_addr < va->va_start ||
1373 nva_start_addr + size > va->va_end)
1374 return NOTHING_FIT;
1375
1376 /* Now classify. */
1377 if (va->va_start == nva_start_addr) {
1378 if (va->va_end == nva_start_addr + size)
1379 type = FL_FIT_TYPE;
1380 else
1381 type = LE_FIT_TYPE;
1382 } else if (va->va_end == nva_start_addr + size) {
1383 type = RE_FIT_TYPE;
1384 } else {
1385 type = NE_FIT_TYPE;
1386 }
1387
1388 return type;
1389}
1390
1391static __always_inline int
f9863be4
URS
1392adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1393 struct vmap_area *va, unsigned long nva_start_addr,
1394 unsigned long size)
68ad4a33 1395{
2c929233 1396 struct vmap_area *lva = NULL;
1b23ff80 1397 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
68ad4a33
URS
1398
1399 if (type == FL_FIT_TYPE) {
1400 /*
1401 * No need to split VA, it fully fits.
1402 *
1403 * | |
1404 * V NVA V
1405 * |---------------|
1406 */
f9863be4 1407 unlink_va_augment(va, root);
68ad4a33
URS
1408 kmem_cache_free(vmap_area_cachep, va);
1409 } else if (type == LE_FIT_TYPE) {
1410 /*
1411 * Split left edge of fit VA.
1412 *
1413 * | |
1414 * V NVA V R
1415 * |-------|-------|
1416 */
1417 va->va_start += size;
1418 } else if (type == RE_FIT_TYPE) {
1419 /*
1420 * Split right edge of fit VA.
1421 *
1422 * | |
1423 * L V NVA V
1424 * |-------|-------|
1425 */
1426 va->va_end = nva_start_addr;
1427 } else if (type == NE_FIT_TYPE) {
1428 /*
1429 * Split no edge of fit VA.
1430 *
1431 * | |
1432 * L V NVA V R
1433 * |---|-------|---|
1434 */
82dd23e8
URS
1435 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1436 if (unlikely(!lva)) {
1437 /*
1438 * For percpu allocator we do not do any pre-allocation
1439 * and leave it as it is. The reason is it most likely
1440 * never ends up with NE_FIT_TYPE splitting. In case of
1441 * percpu allocations offsets and sizes are aligned to
1442 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1443 * are its main fitting cases.
1444 *
1445 * There are a few exceptions though, as an example it is
1446 * a first allocation (early boot up) when we have "one"
1447 * big free space that has to be split.
060650a2
URS
1448 *
1449 * Also we can hit this path in case of regular "vmap"
1450 * allocations, if "this" current CPU was not preloaded.
1451 * See the comment in alloc_vmap_area() why. If so, then
1452 * GFP_NOWAIT is used instead to get an extra object for
1453 * split purpose. That is rare and most time does not
1454 * occur.
1455 *
1456 * What happens if an allocation gets failed. Basically,
1457 * an "overflow" path is triggered to purge lazily freed
1458 * areas to free some memory, then, the "retry" path is
1459 * triggered to repeat one more time. See more details
1460 * in alloc_vmap_area() function.
82dd23e8
URS
1461 */
1462 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1463 if (!lva)
1464 return -1;
1465 }
68ad4a33
URS
1466
1467 /*
1468 * Build the remainder.
1469 */
1470 lva->va_start = va->va_start;
1471 lva->va_end = nva_start_addr;
1472
1473 /*
1474 * Shrink this VA to remaining size.
1475 */
1476 va->va_start = nva_start_addr + size;
1477 } else {
1478 return -1;
1479 }
1480
1481 if (type != FL_FIT_TYPE) {
1482 augment_tree_propagate_from(va);
1483
2c929233 1484 if (lva) /* type == NE_FIT_TYPE */
f9863be4 1485 insert_vmap_area_augment(lva, &va->rb_node, root, head);
68ad4a33
URS
1486 }
1487
1488 return 0;
1489}
1490
1491/*
1492 * Returns a start address of the newly allocated area, if success.
1493 * Otherwise a vend is returned that indicates failure.
1494 */
1495static __always_inline unsigned long
f9863be4
URS
1496__alloc_vmap_area(struct rb_root *root, struct list_head *head,
1497 unsigned long size, unsigned long align,
cacca6ba 1498 unsigned long vstart, unsigned long vend)
68ad4a33 1499{
9333fe98 1500 bool adjust_search_size = true;
68ad4a33
URS
1501 unsigned long nva_start_addr;
1502 struct vmap_area *va;
68ad4a33
URS
1503 int ret;
1504
9333fe98
UR
1505 /*
1506 * Do not adjust when:
1507 * a) align <= PAGE_SIZE, because it does not make any sense.
1508 * All blocks(their start addresses) are at least PAGE_SIZE
1509 * aligned anyway;
1510 * b) a short range where a requested size corresponds to exactly
1511 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1512 * With adjusted search length an allocation would not succeed.
1513 */
1514 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1515 adjust_search_size = false;
1516
f9863be4 1517 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
68ad4a33
URS
1518 if (unlikely(!va))
1519 return vend;
1520
1521 if (va->va_start > vstart)
1522 nva_start_addr = ALIGN(va->va_start, align);
1523 else
1524 nva_start_addr = ALIGN(vstart, align);
1525
1526 /* Check the "vend" restriction. */
1527 if (nva_start_addr + size > vend)
1528 return vend;
1529
68ad4a33 1530 /* Update the free vmap_area. */
f9863be4 1531 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1b23ff80 1532 if (WARN_ON_ONCE(ret))
68ad4a33
URS
1533 return vend;
1534
a6cf4e0f 1535#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
bd1264c3 1536 find_vmap_lowest_match_check(root, head, size, align);
a6cf4e0f
URS
1537#endif
1538
68ad4a33
URS
1539 return nva_start_addr;
1540}
4da56b99 1541
d98c9e83
AR
1542/*
1543 * Free a region of KVA allocated by alloc_vmap_area
1544 */
1545static void free_vmap_area(struct vmap_area *va)
1546{
1547 /*
1548 * Remove from the busy tree/list.
1549 */
1550 spin_lock(&vmap_area_lock);
1551 unlink_va(va, &vmap_area_root);
1552 spin_unlock(&vmap_area_lock);
1553
1554 /*
1555 * Insert/Merge it back to the free tree/list.
1556 */
1557 spin_lock(&free_vmap_area_lock);
96e2db45 1558 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
d98c9e83
AR
1559 spin_unlock(&free_vmap_area_lock);
1560}
1561
187f8cc4
URS
1562static inline void
1563preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1564{
1565 struct vmap_area *va = NULL;
1566
1567 /*
1568 * Preload this CPU with one extra vmap_area object. It is used
1569 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1570 * a CPU that does an allocation is preloaded.
1571 *
1572 * We do it in non-atomic context, thus it allows us to use more
1573 * permissive allocation masks to be more stable under low memory
1574 * condition and high memory pressure.
1575 */
1576 if (!this_cpu_read(ne_fit_preload_node))
1577 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1578
1579 spin_lock(lock);
1580
1581 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1582 kmem_cache_free(vmap_area_cachep, va);
1583}
1584
db64fe02
NP
1585/*
1586 * Allocate a region of KVA of the specified size and alignment, within the
1587 * vstart and vend.
1588 */
1589static struct vmap_area *alloc_vmap_area(unsigned long size,
1590 unsigned long align,
1591 unsigned long vstart, unsigned long vend,
1592 int node, gfp_t gfp_mask)
1593{
187f8cc4 1594 struct vmap_area *va;
12e376a6 1595 unsigned long freed;
1da177e4 1596 unsigned long addr;
db64fe02 1597 int purged = 0;
d98c9e83 1598 int ret;
db64fe02 1599
7766970c 1600 BUG_ON(!size);
891c49ab 1601 BUG_ON(offset_in_page(size));
89699605 1602 BUG_ON(!is_power_of_2(align));
db64fe02 1603
68ad4a33
URS
1604 if (unlikely(!vmap_initialized))
1605 return ERR_PTR(-EBUSY);
1606
5803ed29 1607 might_sleep();
f07116d7 1608 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1609
f07116d7 1610 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1611 if (unlikely(!va))
1612 return ERR_PTR(-ENOMEM);
1613
7f88f88f
CM
1614 /*
1615 * Only scan the relevant parts containing pointers to other objects
1616 * to avoid false negatives.
1617 */
f07116d7 1618 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1619
db64fe02 1620retry:
187f8cc4 1621 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
f9863be4
URS
1622 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1623 size, align, vstart, vend);
187f8cc4 1624 spin_unlock(&free_vmap_area_lock);
89699605 1625
cf243da6
URS
1626 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1627
afd07389 1628 /*
68ad4a33
URS
1629 * If an allocation fails, the "vend" address is
1630 * returned. Therefore trigger the overflow path.
afd07389 1631 */
68ad4a33 1632 if (unlikely(addr == vend))
89699605 1633 goto overflow;
db64fe02
NP
1634
1635 va->va_start = addr;
1636 va->va_end = addr + size;
688fcbfc 1637 va->vm = NULL;
68ad4a33 1638
e36176be
URS
1639 spin_lock(&vmap_area_lock);
1640 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1641 spin_unlock(&vmap_area_lock);
1642
61e16557 1643 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1644 BUG_ON(va->va_start < vstart);
1645 BUG_ON(va->va_end > vend);
1646
d98c9e83
AR
1647 ret = kasan_populate_vmalloc(addr, size);
1648 if (ret) {
1649 free_vmap_area(va);
1650 return ERR_PTR(ret);
1651 }
1652
db64fe02 1653 return va;
89699605
NP
1654
1655overflow:
89699605
NP
1656 if (!purged) {
1657 purge_vmap_area_lazy();
1658 purged = 1;
1659 goto retry;
1660 }
4da56b99 1661
12e376a6
URS
1662 freed = 0;
1663 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1664
1665 if (freed > 0) {
1666 purged = 0;
1667 goto retry;
4da56b99
CW
1668 }
1669
03497d76 1670 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1671 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1672 size);
68ad4a33
URS
1673
1674 kmem_cache_free(vmap_area_cachep, va);
89699605 1675 return ERR_PTR(-EBUSY);
db64fe02
NP
1676}
1677
4da56b99
CW
1678int register_vmap_purge_notifier(struct notifier_block *nb)
1679{
1680 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1681}
1682EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1683
1684int unregister_vmap_purge_notifier(struct notifier_block *nb)
1685{
1686 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1687}
1688EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1689
db64fe02
NP
1690/*
1691 * lazy_max_pages is the maximum amount of virtual address space we gather up
1692 * before attempting to purge with a TLB flush.
1693 *
1694 * There is a tradeoff here: a larger number will cover more kernel page tables
1695 * and take slightly longer to purge, but it will linearly reduce the number of
1696 * global TLB flushes that must be performed. It would seem natural to scale
1697 * this number up linearly with the number of CPUs (because vmapping activity
1698 * could also scale linearly with the number of CPUs), however it is likely
1699 * that in practice, workloads might be constrained in other ways that mean
1700 * vmap activity will not scale linearly with CPUs. Also, I want to be
1701 * conservative and not introduce a big latency on huge systems, so go with
1702 * a less aggressive log scale. It will still be an improvement over the old
1703 * code, and it will be simple to change the scale factor if we find that it
1704 * becomes a problem on bigger systems.
1705 */
1706static unsigned long lazy_max_pages(void)
1707{
1708 unsigned int log;
1709
1710 log = fls(num_online_cpus());
1711
1712 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1713}
1714
4d36e6f8 1715static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1716
0574ecd1 1717/*
f0953a1b 1718 * Serialize vmap purging. There is no actual critical section protected
153090f2 1719 * by this lock, but we want to avoid concurrent calls for performance
0574ecd1
CH
1720 * reasons and to make the pcpu_get_vm_areas more deterministic.
1721 */
f9e09977 1722static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1723
02b709df
NP
1724/* for per-CPU blocks */
1725static void purge_fragmented_blocks_allcpus(void);
1726
db64fe02
NP
1727/*
1728 * Purges all lazily-freed vmap areas.
db64fe02 1729 */
0574ecd1 1730static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1731{
4d36e6f8 1732 unsigned long resched_threshold;
6030fd5f 1733 unsigned int num_purged_areas = 0;
baa468a6 1734 struct list_head local_purge_list;
96e2db45 1735 struct vmap_area *va, *n_va;
db64fe02 1736
0574ecd1 1737 lockdep_assert_held(&vmap_purge_lock);
02b709df 1738
96e2db45
URS
1739 spin_lock(&purge_vmap_area_lock);
1740 purge_vmap_area_root = RB_ROOT;
baa468a6 1741 list_replace_init(&purge_vmap_area_list, &local_purge_list);
96e2db45
URS
1742 spin_unlock(&purge_vmap_area_lock);
1743
baa468a6 1744 if (unlikely(list_empty(&local_purge_list)))
6030fd5f 1745 goto out;
68571be9 1746
96e2db45 1747 start = min(start,
baa468a6 1748 list_first_entry(&local_purge_list,
96e2db45
URS
1749 struct vmap_area, list)->va_start);
1750
1751 end = max(end,
baa468a6 1752 list_last_entry(&local_purge_list,
96e2db45 1753 struct vmap_area, list)->va_end);
db64fe02 1754
0574ecd1 1755 flush_tlb_kernel_range(start, end);
4d36e6f8 1756 resched_threshold = lazy_max_pages() << 1;
db64fe02 1757
e36176be 1758 spin_lock(&free_vmap_area_lock);
baa468a6 1759 list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
4d36e6f8 1760 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1761 unsigned long orig_start = va->va_start;
1762 unsigned long orig_end = va->va_end;
763b218d 1763
dd3b8353
URS
1764 /*
1765 * Finally insert or merge lazily-freed area. It is
1766 * detached and there is no need to "unlink" it from
1767 * anything.
1768 */
96e2db45
URS
1769 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1770 &free_vmap_area_list);
3c5c3cfb 1771
9c801f61
URS
1772 if (!va)
1773 continue;
1774
3c5c3cfb
DA
1775 if (is_vmalloc_or_module_addr((void *)orig_start))
1776 kasan_release_vmalloc(orig_start, orig_end,
1777 va->va_start, va->va_end);
dd3b8353 1778
4d36e6f8 1779 atomic_long_sub(nr, &vmap_lazy_nr);
6030fd5f 1780 num_purged_areas++;
68571be9 1781
4d36e6f8 1782 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1783 cond_resched_lock(&free_vmap_area_lock);
763b218d 1784 }
e36176be 1785 spin_unlock(&free_vmap_area_lock);
6030fd5f
URS
1786
1787out:
1788 trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1789 return num_purged_areas > 0;
db64fe02
NP
1790}
1791
1792/*
1793 * Kick off a purge of the outstanding lazy areas.
1794 */
1795static void purge_vmap_area_lazy(void)
1796{
f9e09977 1797 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1798 purge_fragmented_blocks_allcpus();
1799 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1800 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1801}
1802
690467c8
URS
1803static void drain_vmap_area_work(struct work_struct *work)
1804{
1805 unsigned long nr_lazy;
1806
1807 do {
1808 mutex_lock(&vmap_purge_lock);
1809 __purge_vmap_area_lazy(ULONG_MAX, 0);
1810 mutex_unlock(&vmap_purge_lock);
1811
1812 /* Recheck if further work is required. */
1813 nr_lazy = atomic_long_read(&vmap_lazy_nr);
1814 } while (nr_lazy > lazy_max_pages());
1815}
1816
db64fe02 1817/*
64141da5
JF
1818 * Free a vmap area, caller ensuring that the area has been unmapped
1819 * and flush_cache_vunmap had been called for the correct range
1820 * previously.
db64fe02 1821 */
64141da5 1822static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1823{
8c4196fe
URS
1824 unsigned long nr_lazy_max = lazy_max_pages();
1825 unsigned long va_start = va->va_start;
4d36e6f8 1826 unsigned long nr_lazy;
80c4bd7a 1827
dd3b8353
URS
1828 spin_lock(&vmap_area_lock);
1829 unlink_va(va, &vmap_area_root);
1830 spin_unlock(&vmap_area_lock);
1831
4d36e6f8
URS
1832 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1833 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a 1834
96e2db45
URS
1835 /*
1836 * Merge or place it to the purge tree/list.
1837 */
1838 spin_lock(&purge_vmap_area_lock);
1839 merge_or_add_vmap_area(va,
1840 &purge_vmap_area_root, &purge_vmap_area_list);
1841 spin_unlock(&purge_vmap_area_lock);
80c4bd7a 1842
8c4196fe
URS
1843 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1844
96e2db45 1845 /* After this point, we may free va at any time */
8c4196fe 1846 if (unlikely(nr_lazy > nr_lazy_max))
690467c8 1847 schedule_work(&drain_vmap_work);
db64fe02
NP
1848}
1849
b29acbdc
NP
1850/*
1851 * Free and unmap a vmap area
1852 */
1853static void free_unmap_vmap_area(struct vmap_area *va)
1854{
1855 flush_cache_vunmap(va->va_start, va->va_end);
4ad0ae8c 1856 vunmap_range_noflush(va->va_start, va->va_end);
8e57f8ac 1857 if (debug_pagealloc_enabled_static())
82a2e924
CP
1858 flush_tlb_kernel_range(va->va_start, va->va_end);
1859
c8eef01e 1860 free_vmap_area_noflush(va);
b29acbdc
NP
1861}
1862
993d0b28 1863struct vmap_area *find_vmap_area(unsigned long addr)
db64fe02
NP
1864{
1865 struct vmap_area *va;
1866
1867 spin_lock(&vmap_area_lock);
899c6efe 1868 va = __find_vmap_area(addr, &vmap_area_root);
db64fe02
NP
1869 spin_unlock(&vmap_area_lock);
1870
1871 return va;
1872}
1873
db64fe02
NP
1874/*** Per cpu kva allocator ***/
1875
1876/*
1877 * vmap space is limited especially on 32 bit architectures. Ensure there is
1878 * room for at least 16 percpu vmap blocks per CPU.
1879 */
1880/*
1881 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1882 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1883 * instead (we just need a rough idea)
1884 */
1885#if BITS_PER_LONG == 32
1886#define VMALLOC_SPACE (128UL*1024*1024)
1887#else
1888#define VMALLOC_SPACE (128UL*1024*1024*1024)
1889#endif
1890
1891#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1892#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1893#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1894#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1895#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1896#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1897#define VMAP_BBMAP_BITS \
1898 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1899 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1900 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1901
1902#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1903
1904struct vmap_block_queue {
1905 spinlock_t lock;
1906 struct list_head free;
db64fe02
NP
1907};
1908
1909struct vmap_block {
1910 spinlock_t lock;
1911 struct vmap_area *va;
db64fe02 1912 unsigned long free, dirty;
7d61bfe8 1913 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1914 struct list_head free_list;
1915 struct rcu_head rcu_head;
02b709df 1916 struct list_head purge;
db64fe02
NP
1917};
1918
1919/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1920static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1921
1922/*
0f14599c 1923 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
db64fe02
NP
1924 * in the free path. Could get rid of this if we change the API to return a
1925 * "cookie" from alloc, to be passed to free. But no big deal yet.
1926 */
0f14599c 1927static DEFINE_XARRAY(vmap_blocks);
db64fe02
NP
1928
1929/*
1930 * We should probably have a fallback mechanism to allocate virtual memory
1931 * out of partially filled vmap blocks. However vmap block sizing should be
1932 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1933 * big problem.
1934 */
1935
1936static unsigned long addr_to_vb_idx(unsigned long addr)
1937{
1938 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1939 addr /= VMAP_BLOCK_SIZE;
1940 return addr;
1941}
1942
cf725ce2
RP
1943static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1944{
1945 unsigned long addr;
1946
1947 addr = va_start + (pages_off << PAGE_SHIFT);
1948 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1949 return (void *)addr;
1950}
1951
1952/**
1953 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1954 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1955 * @order: how many 2^order pages should be occupied in newly allocated block
1956 * @gfp_mask: flags for the page level allocator
1957 *
a862f68a 1958 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1959 */
1960static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1961{
1962 struct vmap_block_queue *vbq;
1963 struct vmap_block *vb;
1964 struct vmap_area *va;
1965 unsigned long vb_idx;
1966 int node, err;
cf725ce2 1967 void *vaddr;
db64fe02
NP
1968
1969 node = numa_node_id();
1970
1971 vb = kmalloc_node(sizeof(struct vmap_block),
1972 gfp_mask & GFP_RECLAIM_MASK, node);
1973 if (unlikely(!vb))
1974 return ERR_PTR(-ENOMEM);
1975
1976 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1977 VMALLOC_START, VMALLOC_END,
1978 node, gfp_mask);
ddf9c6d4 1979 if (IS_ERR(va)) {
db64fe02 1980 kfree(vb);
e7d86340 1981 return ERR_CAST(va);
db64fe02
NP
1982 }
1983
cf725ce2 1984 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1985 spin_lock_init(&vb->lock);
1986 vb->va = va;
cf725ce2
RP
1987 /* At least something should be left free */
1988 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1989 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1990 vb->dirty = 0;
7d61bfe8
RP
1991 vb->dirty_min = VMAP_BBMAP_BITS;
1992 vb->dirty_max = 0;
db64fe02 1993 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1994
1995 vb_idx = addr_to_vb_idx(va->va_start);
0f14599c
MWO
1996 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1997 if (err) {
1998 kfree(vb);
1999 free_vmap_area(va);
2000 return ERR_PTR(err);
2001 }
db64fe02 2002
3f804920 2003 vbq = raw_cpu_ptr(&vmap_block_queue);
db64fe02 2004 spin_lock(&vbq->lock);
68ac546f 2005 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 2006 spin_unlock(&vbq->lock);
db64fe02 2007
cf725ce2 2008 return vaddr;
db64fe02
NP
2009}
2010
db64fe02
NP
2011static void free_vmap_block(struct vmap_block *vb)
2012{
2013 struct vmap_block *tmp;
db64fe02 2014
0f14599c 2015 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
2016 BUG_ON(tmp != vb);
2017
64141da5 2018 free_vmap_area_noflush(vb->va);
22a3c7d1 2019 kfree_rcu(vb, rcu_head);
db64fe02
NP
2020}
2021
02b709df
NP
2022static void purge_fragmented_blocks(int cpu)
2023{
2024 LIST_HEAD(purge);
2025 struct vmap_block *vb;
2026 struct vmap_block *n_vb;
2027 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2028
2029 rcu_read_lock();
2030 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2031
2032 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
2033 continue;
2034
2035 spin_lock(&vb->lock);
2036 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
2037 vb->free = 0; /* prevent further allocs after releasing lock */
2038 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
2039 vb->dirty_min = 0;
2040 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
2041 spin_lock(&vbq->lock);
2042 list_del_rcu(&vb->free_list);
2043 spin_unlock(&vbq->lock);
2044 spin_unlock(&vb->lock);
2045 list_add_tail(&vb->purge, &purge);
2046 } else
2047 spin_unlock(&vb->lock);
2048 }
2049 rcu_read_unlock();
2050
2051 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2052 list_del(&vb->purge);
2053 free_vmap_block(vb);
2054 }
2055}
2056
02b709df
NP
2057static void purge_fragmented_blocks_allcpus(void)
2058{
2059 int cpu;
2060
2061 for_each_possible_cpu(cpu)
2062 purge_fragmented_blocks(cpu);
2063}
2064
db64fe02
NP
2065static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2066{
2067 struct vmap_block_queue *vbq;
2068 struct vmap_block *vb;
cf725ce2 2069 void *vaddr = NULL;
db64fe02
NP
2070 unsigned int order;
2071
891c49ab 2072 BUG_ON(offset_in_page(size));
db64fe02 2073 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
2074 if (WARN_ON(size == 0)) {
2075 /*
2076 * Allocating 0 bytes isn't what caller wants since
2077 * get_order(0) returns funny result. Just warn and terminate
2078 * early.
2079 */
2080 return NULL;
2081 }
db64fe02
NP
2082 order = get_order(size);
2083
db64fe02 2084 rcu_read_lock();
3f804920 2085 vbq = raw_cpu_ptr(&vmap_block_queue);
db64fe02 2086 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 2087 unsigned long pages_off;
db64fe02
NP
2088
2089 spin_lock(&vb->lock);
cf725ce2
RP
2090 if (vb->free < (1UL << order)) {
2091 spin_unlock(&vb->lock);
2092 continue;
2093 }
02b709df 2094
cf725ce2
RP
2095 pages_off = VMAP_BBMAP_BITS - vb->free;
2096 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
2097 vb->free -= 1UL << order;
2098 if (vb->free == 0) {
2099 spin_lock(&vbq->lock);
2100 list_del_rcu(&vb->free_list);
2101 spin_unlock(&vbq->lock);
2102 }
cf725ce2 2103
02b709df
NP
2104 spin_unlock(&vb->lock);
2105 break;
db64fe02 2106 }
02b709df 2107
db64fe02
NP
2108 rcu_read_unlock();
2109
cf725ce2
RP
2110 /* Allocate new block if nothing was found */
2111 if (!vaddr)
2112 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 2113
cf725ce2 2114 return vaddr;
db64fe02
NP
2115}
2116
78a0e8c4 2117static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
2118{
2119 unsigned long offset;
db64fe02
NP
2120 unsigned int order;
2121 struct vmap_block *vb;
2122
891c49ab 2123 BUG_ON(offset_in_page(size));
db64fe02 2124 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 2125
78a0e8c4 2126 flush_cache_vunmap(addr, addr + size);
b29acbdc 2127
db64fe02 2128 order = get_order(size);
78a0e8c4 2129 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
0f14599c 2130 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
db64fe02 2131
4ad0ae8c 2132 vunmap_range_noflush(addr, addr + size);
64141da5 2133
8e57f8ac 2134 if (debug_pagealloc_enabled_static())
78a0e8c4 2135 flush_tlb_kernel_range(addr, addr + size);
82a2e924 2136
db64fe02 2137 spin_lock(&vb->lock);
7d61bfe8
RP
2138
2139 /* Expand dirty range */
2140 vb->dirty_min = min(vb->dirty_min, offset);
2141 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 2142
db64fe02
NP
2143 vb->dirty += 1UL << order;
2144 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 2145 BUG_ON(vb->free);
db64fe02
NP
2146 spin_unlock(&vb->lock);
2147 free_vmap_block(vb);
2148 } else
2149 spin_unlock(&vb->lock);
2150}
2151
868b104d 2152static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 2153{
db64fe02 2154 int cpu;
db64fe02 2155
9b463334
JF
2156 if (unlikely(!vmap_initialized))
2157 return;
2158
5803ed29
CH
2159 might_sleep();
2160
db64fe02
NP
2161 for_each_possible_cpu(cpu) {
2162 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2163 struct vmap_block *vb;
2164
2165 rcu_read_lock();
2166 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 2167 spin_lock(&vb->lock);
ad216c03 2168 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
7d61bfe8 2169 unsigned long va_start = vb->va->va_start;
db64fe02 2170 unsigned long s, e;
b136be5e 2171
7d61bfe8
RP
2172 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2173 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 2174
7d61bfe8
RP
2175 start = min(s, start);
2176 end = max(e, end);
db64fe02 2177
7d61bfe8 2178 flush = 1;
db64fe02
NP
2179 }
2180 spin_unlock(&vb->lock);
2181 }
2182 rcu_read_unlock();
2183 }
2184
f9e09977 2185 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
2186 purge_fragmented_blocks_allcpus();
2187 if (!__purge_vmap_area_lazy(start, end) && flush)
2188 flush_tlb_kernel_range(start, end);
f9e09977 2189 mutex_unlock(&vmap_purge_lock);
db64fe02 2190}
868b104d
RE
2191
2192/**
2193 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2194 *
2195 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2196 * to amortize TLB flushing overheads. What this means is that any page you
2197 * have now, may, in a former life, have been mapped into kernel virtual
2198 * address by the vmap layer and so there might be some CPUs with TLB entries
2199 * still referencing that page (additional to the regular 1:1 kernel mapping).
2200 *
2201 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2202 * be sure that none of the pages we have control over will have any aliases
2203 * from the vmap layer.
2204 */
2205void vm_unmap_aliases(void)
2206{
2207 unsigned long start = ULONG_MAX, end = 0;
2208 int flush = 0;
2209
2210 _vm_unmap_aliases(start, end, flush);
2211}
db64fe02
NP
2212EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2213
2214/**
2215 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2216 * @mem: the pointer returned by vm_map_ram
2217 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2218 */
2219void vm_unmap_ram(const void *mem, unsigned int count)
2220{
65ee03c4 2221 unsigned long size = (unsigned long)count << PAGE_SHIFT;
4aff1dc4 2222 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
9c3acf60 2223 struct vmap_area *va;
db64fe02 2224
5803ed29 2225 might_sleep();
db64fe02
NP
2226 BUG_ON(!addr);
2227 BUG_ON(addr < VMALLOC_START);
2228 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 2229 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 2230
d98c9e83
AR
2231 kasan_poison_vmalloc(mem, size);
2232
9c3acf60 2233 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 2234 debug_check_no_locks_freed(mem, size);
78a0e8c4 2235 vb_free(addr, size);
9c3acf60
CH
2236 return;
2237 }
2238
2239 va = find_vmap_area(addr);
2240 BUG_ON(!va);
05e3ff95
CP
2241 debug_check_no_locks_freed((void *)va->va_start,
2242 (va->va_end - va->va_start));
9c3acf60 2243 free_unmap_vmap_area(va);
db64fe02
NP
2244}
2245EXPORT_SYMBOL(vm_unmap_ram);
2246
2247/**
2248 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2249 * @pages: an array of pointers to the pages to be mapped
2250 * @count: number of pages
2251 * @node: prefer to allocate data structures on this node
e99c97ad 2252 *
36437638
GK
2253 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2254 * faster than vmap so it's good. But if you mix long-life and short-life
2255 * objects with vm_map_ram(), it could consume lots of address space through
2256 * fragmentation (especially on a 32bit machine). You could see failures in
2257 * the end. Please use this function for short-lived objects.
2258 *
e99c97ad 2259 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 2260 */
d4efd79a 2261void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 2262{
65ee03c4 2263 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
2264 unsigned long addr;
2265 void *mem;
2266
2267 if (likely(count <= VMAP_MAX_ALLOC)) {
2268 mem = vb_alloc(size, GFP_KERNEL);
2269 if (IS_ERR(mem))
2270 return NULL;
2271 addr = (unsigned long)mem;
2272 } else {
2273 struct vmap_area *va;
2274 va = alloc_vmap_area(size, PAGE_SIZE,
2275 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2276 if (IS_ERR(va))
2277 return NULL;
2278
2279 addr = va->va_start;
2280 mem = (void *)addr;
2281 }
d98c9e83 2282
b67177ec
NP
2283 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2284 pages, PAGE_SHIFT) < 0) {
db64fe02
NP
2285 vm_unmap_ram(mem, count);
2286 return NULL;
2287 }
b67177ec 2288
23689e91
AK
2289 /*
2290 * Mark the pages as accessible, now that they are mapped.
2291 * With hardware tag-based KASAN, marking is skipped for
2292 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2293 */
f6e39794 2294 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
19f1c3ac 2295
db64fe02
NP
2296 return mem;
2297}
2298EXPORT_SYMBOL(vm_map_ram);
2299
4341fa45 2300static struct vm_struct *vmlist __initdata;
92eac168 2301
121e6f32
NP
2302static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2303{
2304#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2305 return vm->page_order;
2306#else
2307 return 0;
2308#endif
2309}
2310
2311static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2312{
2313#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2314 vm->page_order = order;
2315#else
2316 BUG_ON(order != 0);
2317#endif
2318}
2319
be9b7335
NP
2320/**
2321 * vm_area_add_early - add vmap area early during boot
2322 * @vm: vm_struct to add
2323 *
2324 * This function is used to add fixed kernel vm area to vmlist before
2325 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2326 * should contain proper values and the other fields should be zero.
2327 *
2328 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2329 */
2330void __init vm_area_add_early(struct vm_struct *vm)
2331{
2332 struct vm_struct *tmp, **p;
2333
2334 BUG_ON(vmap_initialized);
2335 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2336 if (tmp->addr >= vm->addr) {
2337 BUG_ON(tmp->addr < vm->addr + vm->size);
2338 break;
2339 } else
2340 BUG_ON(tmp->addr + tmp->size > vm->addr);
2341 }
2342 vm->next = *p;
2343 *p = vm;
2344}
2345
f0aa6617
TH
2346/**
2347 * vm_area_register_early - register vmap area early during boot
2348 * @vm: vm_struct to register
c0c0a293 2349 * @align: requested alignment
f0aa6617
TH
2350 *
2351 * This function is used to register kernel vm area before
2352 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2353 * proper values on entry and other fields should be zero. On return,
2354 * vm->addr contains the allocated address.
2355 *
2356 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2357 */
c0c0a293 2358void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617 2359{
0eb68437
KW
2360 unsigned long addr = ALIGN(VMALLOC_START, align);
2361 struct vm_struct *cur, **p;
c0c0a293 2362
0eb68437 2363 BUG_ON(vmap_initialized);
f0aa6617 2364
0eb68437
KW
2365 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2366 if ((unsigned long)cur->addr - addr >= vm->size)
2367 break;
2368 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2369 }
f0aa6617 2370
0eb68437
KW
2371 BUG_ON(addr > VMALLOC_END - vm->size);
2372 vm->addr = (void *)addr;
2373 vm->next = *p;
2374 *p = vm;
3252b1d8 2375 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
f0aa6617
TH
2376}
2377
68ad4a33
URS
2378static void vmap_init_free_space(void)
2379{
2380 unsigned long vmap_start = 1;
2381 const unsigned long vmap_end = ULONG_MAX;
2382 struct vmap_area *busy, *free;
2383
2384 /*
2385 * B F B B B F
2386 * -|-----|.....|-----|-----|-----|.....|-
2387 * | The KVA space |
2388 * |<--------------------------------->|
2389 */
2390 list_for_each_entry(busy, &vmap_area_list, list) {
2391 if (busy->va_start - vmap_start > 0) {
2392 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2393 if (!WARN_ON_ONCE(!free)) {
2394 free->va_start = vmap_start;
2395 free->va_end = busy->va_start;
2396
2397 insert_vmap_area_augment(free, NULL,
2398 &free_vmap_area_root,
2399 &free_vmap_area_list);
2400 }
2401 }
2402
2403 vmap_start = busy->va_end;
2404 }
2405
2406 if (vmap_end - vmap_start > 0) {
2407 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2408 if (!WARN_ON_ONCE(!free)) {
2409 free->va_start = vmap_start;
2410 free->va_end = vmap_end;
2411
2412 insert_vmap_area_augment(free, NULL,
2413 &free_vmap_area_root,
2414 &free_vmap_area_list);
2415 }
2416 }
2417}
2418
db64fe02
NP
2419void __init vmalloc_init(void)
2420{
822c18f2
IK
2421 struct vmap_area *va;
2422 struct vm_struct *tmp;
db64fe02
NP
2423 int i;
2424
68ad4a33
URS
2425 /*
2426 * Create the cache for vmap_area objects.
2427 */
2428 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2429
db64fe02
NP
2430 for_each_possible_cpu(i) {
2431 struct vmap_block_queue *vbq;
32fcfd40 2432 struct vfree_deferred *p;
db64fe02
NP
2433
2434 vbq = &per_cpu(vmap_block_queue, i);
2435 spin_lock_init(&vbq->lock);
2436 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
2437 p = &per_cpu(vfree_deferred, i);
2438 init_llist_head(&p->list);
2439 INIT_WORK(&p->wq, free_work);
db64fe02 2440 }
9b463334 2441
822c18f2
IK
2442 /* Import existing vmlist entries. */
2443 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
2444 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2445 if (WARN_ON_ONCE(!va))
2446 continue;
2447
822c18f2
IK
2448 va->va_start = (unsigned long)tmp->addr;
2449 va->va_end = va->va_start + tmp->size;
dbda591d 2450 va->vm = tmp;
68ad4a33 2451 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 2452 }
ca23e405 2453
68ad4a33
URS
2454 /*
2455 * Now we can initialize a free vmap space.
2456 */
2457 vmap_init_free_space();
9b463334 2458 vmap_initialized = true;
db64fe02
NP
2459}
2460
e36176be
URS
2461static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2462 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2463{
cf88c790
TH
2464 vm->flags = flags;
2465 vm->addr = (void *)va->va_start;
2466 vm->size = va->va_end - va->va_start;
2467 vm->caller = caller;
db1aecaf 2468 va->vm = vm;
e36176be
URS
2469}
2470
2471static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2472 unsigned long flags, const void *caller)
2473{
2474 spin_lock(&vmap_area_lock);
2475 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2476 spin_unlock(&vmap_area_lock);
f5252e00 2477}
cf88c790 2478
20fc02b4 2479static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2480{
d4033afd 2481 /*
20fc02b4 2482 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2483 * we should make sure that vm has proper values.
2484 * Pair with smp_rmb() in show_numa_info().
2485 */
2486 smp_wmb();
20fc02b4 2487 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2488}
2489
db64fe02 2490static struct vm_struct *__get_vm_area_node(unsigned long size,
7ca3027b
DA
2491 unsigned long align, unsigned long shift, unsigned long flags,
2492 unsigned long start, unsigned long end, int node,
2493 gfp_t gfp_mask, const void *caller)
db64fe02 2494{
0006526d 2495 struct vmap_area *va;
db64fe02 2496 struct vm_struct *area;
d98c9e83 2497 unsigned long requested_size = size;
1da177e4 2498
52fd24ca 2499 BUG_ON(in_interrupt());
7ca3027b 2500 size = ALIGN(size, 1ul << shift);
31be8309
OH
2501 if (unlikely(!size))
2502 return NULL;
1da177e4 2503
252e5c6e 2504 if (flags & VM_IOREMAP)
2505 align = 1ul << clamp_t(int, get_count_order_long(size),
2506 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2507
cf88c790 2508 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2509 if (unlikely(!area))
2510 return NULL;
2511
71394fe5
AR
2512 if (!(flags & VM_NO_GUARD))
2513 size += PAGE_SIZE;
1da177e4 2514
db64fe02
NP
2515 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2516 if (IS_ERR(va)) {
2517 kfree(area);
2518 return NULL;
1da177e4 2519 }
1da177e4 2520
d98c9e83 2521 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2522
19f1c3ac
AK
2523 /*
2524 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2525 * best-effort approach, as they can be mapped outside of vmalloc code.
2526 * For VM_ALLOC mappings, the pages are marked as accessible after
2527 * getting mapped in __vmalloc_node_range().
23689e91
AK
2528 * With hardware tag-based KASAN, marking is skipped for
2529 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
19f1c3ac
AK
2530 */
2531 if (!(flags & VM_ALLOC))
23689e91 2532 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
f6e39794 2533 KASAN_VMALLOC_PROT_NORMAL);
1d96320f 2534
1da177e4 2535 return area;
1da177e4
LT
2536}
2537
c2968612
BH
2538struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2539 unsigned long start, unsigned long end,
5e6cafc8 2540 const void *caller)
c2968612 2541{
7ca3027b
DA
2542 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2543 NUMA_NO_NODE, GFP_KERNEL, caller);
c2968612
BH
2544}
2545
1da177e4 2546/**
92eac168
MR
2547 * get_vm_area - reserve a contiguous kernel virtual area
2548 * @size: size of the area
2549 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2550 *
92eac168
MR
2551 * Search an area of @size in the kernel virtual mapping area,
2552 * and reserved it for out purposes. Returns the area descriptor
2553 * on success or %NULL on failure.
a862f68a
MR
2554 *
2555 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2556 */
2557struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2558{
7ca3027b
DA
2559 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2560 VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2561 NUMA_NO_NODE, GFP_KERNEL,
2562 __builtin_return_address(0));
23016969
CL
2563}
2564
2565struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2566 const void *caller)
23016969 2567{
7ca3027b
DA
2568 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2569 VMALLOC_START, VMALLOC_END,
00ef2d2f 2570 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2571}
2572
e9da6e99 2573/**
92eac168
MR
2574 * find_vm_area - find a continuous kernel virtual area
2575 * @addr: base address
e9da6e99 2576 *
92eac168
MR
2577 * Search for the kernel VM area starting at @addr, and return it.
2578 * It is up to the caller to do all required locking to keep the returned
2579 * pointer valid.
a862f68a 2580 *
74640617 2581 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
2582 */
2583struct vm_struct *find_vm_area(const void *addr)
83342314 2584{
db64fe02 2585 struct vmap_area *va;
83342314 2586
db64fe02 2587 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2588 if (!va)
2589 return NULL;
1da177e4 2590
688fcbfc 2591 return va->vm;
1da177e4
LT
2592}
2593
7856dfeb 2594/**
92eac168
MR
2595 * remove_vm_area - find and remove a continuous kernel virtual area
2596 * @addr: base address
7856dfeb 2597 *
92eac168
MR
2598 * Search for the kernel VM area starting at @addr, and remove it.
2599 * This function returns the found VM area, but using it is NOT safe
2600 * on SMP machines, except for its size or flags.
a862f68a 2601 *
74640617 2602 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 2603 */
b3bdda02 2604struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2605{
db64fe02
NP
2606 struct vmap_area *va;
2607
5803ed29
CH
2608 might_sleep();
2609
dd3b8353 2610 spin_lock(&vmap_area_lock);
899c6efe 2611 va = __find_vmap_area((unsigned long)addr, &vmap_area_root);
688fcbfc 2612 if (va && va->vm) {
db1aecaf 2613 struct vm_struct *vm = va->vm;
f5252e00 2614
c69480ad 2615 va->vm = NULL;
c69480ad
JK
2616 spin_unlock(&vmap_area_lock);
2617
63840de2 2618 kasan_free_module_shadow(vm);
dd32c279 2619 free_unmap_vmap_area(va);
dd32c279 2620
db64fe02
NP
2621 return vm;
2622 }
dd3b8353
URS
2623
2624 spin_unlock(&vmap_area_lock);
db64fe02 2625 return NULL;
7856dfeb
AK
2626}
2627
868b104d
RE
2628static inline void set_area_direct_map(const struct vm_struct *area,
2629 int (*set_direct_map)(struct page *page))
2630{
2631 int i;
2632
121e6f32 2633 /* HUGE_VMALLOC passes small pages to set_direct_map */
868b104d
RE
2634 for (i = 0; i < area->nr_pages; i++)
2635 if (page_address(area->pages[i]))
2636 set_direct_map(area->pages[i]);
2637}
2638
2639/* Handle removing and resetting vm mappings related to the vm_struct. */
2640static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2641{
868b104d 2642 unsigned long start = ULONG_MAX, end = 0;
121e6f32 2643 unsigned int page_order = vm_area_page_order(area);
868b104d 2644 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2645 int flush_dmap = 0;
868b104d
RE
2646 int i;
2647
868b104d
RE
2648 remove_vm_area(area->addr);
2649
2650 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2651 if (!flush_reset)
2652 return;
2653
2654 /*
2655 * If not deallocating pages, just do the flush of the VM area and
2656 * return.
2657 */
2658 if (!deallocate_pages) {
2659 vm_unmap_aliases();
2660 return;
2661 }
2662
2663 /*
2664 * If execution gets here, flush the vm mapping and reset the direct
2665 * map. Find the start and end range of the direct mappings to make sure
2666 * the vm_unmap_aliases() flush includes the direct map.
2667 */
121e6f32 2668 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
8e41f872
RE
2669 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2670 if (addr) {
121e6f32
NP
2671 unsigned long page_size;
2672
2673 page_size = PAGE_SIZE << page_order;
868b104d 2674 start = min(addr, start);
121e6f32 2675 end = max(addr + page_size, end);
31e67340 2676 flush_dmap = 1;
868b104d
RE
2677 }
2678 }
2679
2680 /*
2681 * Set direct map to something invalid so that it won't be cached if
2682 * there are any accesses after the TLB flush, then flush the TLB and
2683 * reset the direct map permissions to the default.
2684 */
2685 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2686 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2687 set_area_direct_map(area, set_direct_map_default_noflush);
2688}
2689
b3bdda02 2690static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2691{
2692 struct vm_struct *area;
2693
2694 if (!addr)
2695 return;
2696
e69e9d4a 2697 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2698 addr))
1da177e4 2699 return;
1da177e4 2700
6ade2032 2701 area = find_vm_area(addr);
1da177e4 2702 if (unlikely(!area)) {
4c8573e2 2703 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2704 addr);
1da177e4
LT
2705 return;
2706 }
2707
05e3ff95
CP
2708 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2709 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2710
c041098c 2711 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
3c5c3cfb 2712
868b104d
RE
2713 vm_remove_mappings(area, deallocate_pages);
2714
1da177e4 2715 if (deallocate_pages) {
3b8000ae 2716 int i;
1da177e4 2717
3b8000ae 2718 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2719 struct page *page = area->pages[i];
2720
2721 BUG_ON(!page);
3b8000ae
NP
2722 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2723 /*
2724 * High-order allocs for huge vmallocs are split, so
2725 * can be freed as an array of order-0 allocations
2726 */
2727 __free_pages(page, 0);
a850e932 2728 cond_resched();
1da177e4 2729 }
97105f0a 2730 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2731
244d63ee 2732 kvfree(area->pages);
1da177e4
LT
2733 }
2734
2735 kfree(area);
1da177e4 2736}
bf22e37a
AR
2737
2738static inline void __vfree_deferred(const void *addr)
2739{
2740 /*
2741 * Use raw_cpu_ptr() because this can be called from preemptible
2742 * context. Preemption is absolutely fine here, because the llist_add()
2743 * implementation is lockless, so it works even if we are adding to
73221d88 2744 * another cpu's list. schedule_work() should be fine with this too.
bf22e37a
AR
2745 */
2746 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2747
2748 if (llist_add((struct llist_node *)addr, &p->list))
2749 schedule_work(&p->wq);
2750}
2751
2752/**
92eac168
MR
2753 * vfree_atomic - release memory allocated by vmalloc()
2754 * @addr: memory base address
bf22e37a 2755 *
92eac168
MR
2756 * This one is just like vfree() but can be called in any atomic context
2757 * except NMIs.
bf22e37a
AR
2758 */
2759void vfree_atomic(const void *addr)
2760{
2761 BUG_ON(in_nmi());
2762
2763 kmemleak_free(addr);
2764
2765 if (!addr)
2766 return;
2767 __vfree_deferred(addr);
2768}
2769
c67dc624
RP
2770static void __vfree(const void *addr)
2771{
2772 if (unlikely(in_interrupt()))
2773 __vfree_deferred(addr);
2774 else
2775 __vunmap(addr, 1);
2776}
2777
1da177e4 2778/**
fa307474
MWO
2779 * vfree - Release memory allocated by vmalloc()
2780 * @addr: Memory base address
1da177e4 2781 *
fa307474
MWO
2782 * Free the virtually continuous memory area starting at @addr, as obtained
2783 * from one of the vmalloc() family of APIs. This will usually also free the
2784 * physical memory underlying the virtual allocation, but that memory is
2785 * reference counted, so it will not be freed until the last user goes away.
1da177e4 2786 *
fa307474 2787 * If @addr is NULL, no operation is performed.
c9fcee51 2788 *
fa307474 2789 * Context:
92eac168 2790 * May sleep if called *not* from interrupt context.
fa307474
MWO
2791 * Must not be called in NMI context (strictly speaking, it could be
2792 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
f0953a1b 2793 * conventions for vfree() arch-dependent would be a really bad idea).
1da177e4 2794 */
b3bdda02 2795void vfree(const void *addr)
1da177e4 2796{
32fcfd40 2797 BUG_ON(in_nmi());
89219d37
CM
2798
2799 kmemleak_free(addr);
2800
a8dda165
AR
2801 might_sleep_if(!in_interrupt());
2802
32fcfd40
AV
2803 if (!addr)
2804 return;
c67dc624
RP
2805
2806 __vfree(addr);
1da177e4 2807}
1da177e4
LT
2808EXPORT_SYMBOL(vfree);
2809
2810/**
92eac168
MR
2811 * vunmap - release virtual mapping obtained by vmap()
2812 * @addr: memory base address
1da177e4 2813 *
92eac168
MR
2814 * Free the virtually contiguous memory area starting at @addr,
2815 * which was created from the page array passed to vmap().
1da177e4 2816 *
92eac168 2817 * Must not be called in interrupt context.
1da177e4 2818 */
b3bdda02 2819void vunmap(const void *addr)
1da177e4
LT
2820{
2821 BUG_ON(in_interrupt());
34754b69 2822 might_sleep();
32fcfd40
AV
2823 if (addr)
2824 __vunmap(addr, 0);
1da177e4 2825}
1da177e4
LT
2826EXPORT_SYMBOL(vunmap);
2827
2828/**
92eac168
MR
2829 * vmap - map an array of pages into virtually contiguous space
2830 * @pages: array of page pointers
2831 * @count: number of pages to map
2832 * @flags: vm_area->flags
2833 * @prot: page protection for the mapping
2834 *
b944afc9
CH
2835 * Maps @count pages from @pages into contiguous kernel virtual space.
2836 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2837 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2838 * are transferred from the caller to vmap(), and will be freed / dropped when
2839 * vfree() is called on the return value.
a862f68a
MR
2840 *
2841 * Return: the address of the area or %NULL on failure
1da177e4
LT
2842 */
2843void *vmap(struct page **pages, unsigned int count,
92eac168 2844 unsigned long flags, pgprot_t prot)
1da177e4
LT
2845{
2846 struct vm_struct *area;
b67177ec 2847 unsigned long addr;
65ee03c4 2848 unsigned long size; /* In bytes */
1da177e4 2849
34754b69
PZ
2850 might_sleep();
2851
bd1a8fb2
PZ
2852 /*
2853 * Your top guard is someone else's bottom guard. Not having a top
2854 * guard compromises someone else's mappings too.
2855 */
2856 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2857 flags &= ~VM_NO_GUARD;
2858
ca79b0c2 2859 if (count > totalram_pages())
1da177e4
LT
2860 return NULL;
2861
65ee03c4
GJM
2862 size = (unsigned long)count << PAGE_SHIFT;
2863 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2864 if (!area)
2865 return NULL;
23016969 2866
b67177ec
NP
2867 addr = (unsigned long)area->addr;
2868 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2869 pages, PAGE_SHIFT) < 0) {
1da177e4
LT
2870 vunmap(area->addr);
2871 return NULL;
2872 }
2873
c22ee528 2874 if (flags & VM_MAP_PUT_PAGES) {
b944afc9 2875 area->pages = pages;
c22ee528
ML
2876 area->nr_pages = count;
2877 }
1da177e4
LT
2878 return area->addr;
2879}
1da177e4
LT
2880EXPORT_SYMBOL(vmap);
2881
3e9a9e25
CH
2882#ifdef CONFIG_VMAP_PFN
2883struct vmap_pfn_data {
2884 unsigned long *pfns;
2885 pgprot_t prot;
2886 unsigned int idx;
2887};
2888
2889static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2890{
2891 struct vmap_pfn_data *data = private;
2892
2893 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2894 return -EINVAL;
2895 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2896 return 0;
2897}
2898
2899/**
2900 * vmap_pfn - map an array of PFNs into virtually contiguous space
2901 * @pfns: array of PFNs
2902 * @count: number of pages to map
2903 * @prot: page protection for the mapping
2904 *
2905 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2906 * the start address of the mapping.
2907 */
2908void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2909{
2910 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2911 struct vm_struct *area;
2912
2913 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2914 __builtin_return_address(0));
2915 if (!area)
2916 return NULL;
2917 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2918 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2919 free_vm_area(area);
2920 return NULL;
2921 }
2922 return area->addr;
2923}
2924EXPORT_SYMBOL_GPL(vmap_pfn);
2925#endif /* CONFIG_VMAP_PFN */
2926
12b9f873
UR
2927static inline unsigned int
2928vm_area_alloc_pages(gfp_t gfp, int nid,
343ab817 2929 unsigned int order, unsigned int nr_pages, struct page **pages)
12b9f873
UR
2930{
2931 unsigned int nr_allocated = 0;
ffb29b1c
CW
2932 struct page *page;
2933 int i;
12b9f873
UR
2934
2935 /*
2936 * For order-0 pages we make use of bulk allocator, if
2937 * the page array is partly or not at all populated due
2938 * to fails, fallback to a single page allocator that is
2939 * more permissive.
2940 */
c00b6b96 2941 if (!order) {
9376130c
MH
2942 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2943
343ab817
URS
2944 while (nr_allocated < nr_pages) {
2945 unsigned int nr, nr_pages_request;
2946
2947 /*
2948 * A maximum allowed request is hard-coded and is 100
2949 * pages per call. That is done in order to prevent a
2950 * long preemption off scenario in the bulk-allocator
2951 * so the range is [1:100].
2952 */
2953 nr_pages_request = min(100U, nr_pages - nr_allocated);
2954
c00b6b96
CW
2955 /* memory allocation should consider mempolicy, we can't
2956 * wrongly use nearest node when nid == NUMA_NO_NODE,
2957 * otherwise memory may be allocated in only one node,
98af39d5 2958 * but mempolicy wants to alloc memory by interleaving.
c00b6b96
CW
2959 */
2960 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
9376130c 2961 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
c00b6b96
CW
2962 nr_pages_request,
2963 pages + nr_allocated);
2964
2965 else
9376130c 2966 nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
c00b6b96
CW
2967 nr_pages_request,
2968 pages + nr_allocated);
343ab817
URS
2969
2970 nr_allocated += nr;
2971 cond_resched();
2972
2973 /*
2974 * If zero or pages were obtained partly,
2975 * fallback to a single page allocator.
2976 */
2977 if (nr != nr_pages_request)
2978 break;
2979 }
3b8000ae 2980 }
12b9f873
UR
2981
2982 /* High-order pages or fallback path if "bulk" fails. */
12b9f873 2983
ffb29b1c 2984 while (nr_allocated < nr_pages) {
dd544141
VA
2985 if (fatal_signal_pending(current))
2986 break;
2987
ffb29b1c
CW
2988 if (nid == NUMA_NO_NODE)
2989 page = alloc_pages(gfp, order);
2990 else
2991 page = alloc_pages_node(nid, gfp, order);
12b9f873
UR
2992 if (unlikely(!page))
2993 break;
3b8000ae
NP
2994 /*
2995 * Higher order allocations must be able to be treated as
2996 * indepdenent small pages by callers (as they can with
2997 * small-page vmallocs). Some drivers do their own refcounting
2998 * on vmalloc_to_page() pages, some use page->mapping,
2999 * page->lru, etc.
3000 */
3001 if (order)
3002 split_page(page, order);
12b9f873
UR
3003
3004 /*
3005 * Careful, we allocate and map page-order pages, but
3006 * tracking is done per PAGE_SIZE page so as to keep the
3007 * vm_struct APIs independent of the physical/mapped size.
3008 */
3009 for (i = 0; i < (1U << order); i++)
3010 pages[nr_allocated + i] = page + i;
3011
12e376a6 3012 cond_resched();
12b9f873
UR
3013 nr_allocated += 1U << order;
3014 }
3015
3016 return nr_allocated;
3017}
3018
e31d9eb5 3019static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
121e6f32
NP
3020 pgprot_t prot, unsigned int page_shift,
3021 int node)
1da177e4 3022{
930f036b 3023 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
9376130c 3024 bool nofail = gfp_mask & __GFP_NOFAIL;
121e6f32
NP
3025 unsigned long addr = (unsigned long)area->addr;
3026 unsigned long size = get_vm_area_size(area);
34fe6537 3027 unsigned long array_size;
121e6f32
NP
3028 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3029 unsigned int page_order;
451769eb
MH
3030 unsigned int flags;
3031 int ret;
1da177e4 3032
121e6f32 3033 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
f255935b
CH
3034 gfp_mask |= __GFP_NOWARN;
3035 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3036 gfp_mask |= __GFP_HIGHMEM;
1da177e4 3037
1da177e4 3038 /* Please note that the recursion is strictly bounded. */
8757d5fa 3039 if (array_size > PAGE_SIZE) {
5c1f4e69 3040 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
f255935b 3041 area->caller);
286e1ea3 3042 } else {
5c1f4e69 3043 area->pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 3044 }
7ea36242 3045
5c1f4e69 3046 if (!area->pages) {
c3d77172 3047 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3048 "vmalloc error: size %lu, failed to allocated page array size %lu",
3049 nr_small_pages * PAGE_SIZE, array_size);
cd61413b 3050 free_vm_area(area);
1da177e4
LT
3051 return NULL;
3052 }
1da177e4 3053
121e6f32 3054 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
121e6f32 3055 page_order = vm_area_page_order(area);
bf53d6f8 3056
c3d77172
URS
3057 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3058 node, page_order, nr_small_pages, area->pages);
5c1f4e69 3059
97105f0a 3060 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
4e5aa1f4 3061 if (gfp_mask & __GFP_ACCOUNT) {
3b8000ae 3062 int i;
4e5aa1f4 3063
3b8000ae
NP
3064 for (i = 0; i < area->nr_pages; i++)
3065 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
4e5aa1f4 3066 }
1da177e4 3067
5c1f4e69
URS
3068 /*
3069 * If not enough pages were obtained to accomplish an
3070 * allocation request, free them via __vfree() if any.
3071 */
3072 if (area->nr_pages != nr_small_pages) {
c3d77172 3073 warn_alloc(gfp_mask, NULL,
f4bdfeaf 3074 "vmalloc error: size %lu, page order %u, failed to allocate pages",
5c1f4e69
URS
3075 area->nr_pages * PAGE_SIZE, page_order);
3076 goto fail;
3077 }
3078
451769eb
MH
3079 /*
3080 * page tables allocations ignore external gfp mask, enforce it
3081 * by the scope API
3082 */
3083 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3084 flags = memalloc_nofs_save();
3085 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3086 flags = memalloc_noio_save();
3087
9376130c
MH
3088 do {
3089 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
451769eb 3090 page_shift);
9376130c
MH
3091 if (nofail && (ret < 0))
3092 schedule_timeout_uninterruptible(1);
3093 } while (nofail && (ret < 0));
451769eb
MH
3094
3095 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3096 memalloc_nofs_restore(flags);
3097 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3098 memalloc_noio_restore(flags);
3099
3100 if (ret < 0) {
c3d77172 3101 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3102 "vmalloc error: size %lu, failed to map pages",
3103 area->nr_pages * PAGE_SIZE);
1da177e4 3104 goto fail;
d70bec8c 3105 }
ed1f324c 3106
1da177e4
LT
3107 return area->addr;
3108
3109fail:
c67dc624 3110 __vfree(area->addr);
1da177e4
LT
3111 return NULL;
3112}
3113
3114/**
92eac168
MR
3115 * __vmalloc_node_range - allocate virtually contiguous memory
3116 * @size: allocation size
3117 * @align: desired alignment
3118 * @start: vm area range start
3119 * @end: vm area range end
3120 * @gfp_mask: flags for the page level allocator
3121 * @prot: protection mask for the allocated pages
3122 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3123 * @node: node to use for allocation or NUMA_NO_NODE
3124 * @caller: caller's return address
3125 *
3126 * Allocate enough pages to cover @size from the page level
b7d90e7a 3127 * allocator with @gfp_mask flags. Please note that the full set of gfp
30d3f011
MH
3128 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3129 * supported.
3130 * Zone modifiers are not supported. From the reclaim modifiers
3131 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3132 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3133 * __GFP_RETRY_MAYFAIL are not supported).
3134 *
3135 * __GFP_NOWARN can be used to suppress failures messages.
b7d90e7a
MH
3136 *
3137 * Map them into contiguous kernel virtual space, using a pagetable
3138 * protection of @prot.
a862f68a
MR
3139 *
3140 * Return: the address of the area or %NULL on failure
1da177e4 3141 */
d0a21265
DR
3142void *__vmalloc_node_range(unsigned long size, unsigned long align,
3143 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
3144 pgprot_t prot, unsigned long vm_flags, int node,
3145 const void *caller)
1da177e4
LT
3146{
3147 struct vm_struct *area;
19f1c3ac 3148 void *ret;
f6e39794 3149 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
89219d37 3150 unsigned long real_size = size;
121e6f32
NP
3151 unsigned long real_align = align;
3152 unsigned int shift = PAGE_SHIFT;
1da177e4 3153
d70bec8c
NP
3154 if (WARN_ON_ONCE(!size))
3155 return NULL;
3156
3157 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3158 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3159 "vmalloc error: size %lu, exceeds total pages",
3160 real_size);
d70bec8c 3161 return NULL;
121e6f32
NP
3162 }
3163
559089e0 3164 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
121e6f32 3165 unsigned long size_per_node;
1da177e4 3166
121e6f32
NP
3167 /*
3168 * Try huge pages. Only try for PAGE_KERNEL allocations,
3169 * others like modules don't yet expect huge pages in
3170 * their allocations due to apply_to_page_range not
3171 * supporting them.
3172 */
3173
3174 size_per_node = size;
3175 if (node == NUMA_NO_NODE)
3176 size_per_node /= num_online_nodes();
3382bbee 3177 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
121e6f32 3178 shift = PMD_SHIFT;
3382bbee
CL
3179 else
3180 shift = arch_vmap_pte_supported_shift(size_per_node);
3181
3182 align = max(real_align, 1UL << shift);
3183 size = ALIGN(real_size, 1UL << shift);
121e6f32
NP
3184 }
3185
3186again:
7ca3027b
DA
3187 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3188 VM_UNINITIALIZED | vm_flags, start, end, node,
3189 gfp_mask, caller);
d70bec8c 3190 if (!area) {
9376130c 3191 bool nofail = gfp_mask & __GFP_NOFAIL;
d70bec8c 3192 warn_alloc(gfp_mask, NULL,
9376130c
MH
3193 "vmalloc error: size %lu, vm_struct allocation failed%s",
3194 real_size, (nofail) ? ". Retrying." : "");
3195 if (nofail) {
3196 schedule_timeout_uninterruptible(1);
3197 goto again;
3198 }
de7d2b56 3199 goto fail;
d70bec8c 3200 }
1da177e4 3201
f6e39794
AK
3202 /*
3203 * Prepare arguments for __vmalloc_area_node() and
3204 * kasan_unpoison_vmalloc().
3205 */
3206 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3207 if (kasan_hw_tags_enabled()) {
3208 /*
3209 * Modify protection bits to allow tagging.
3210 * This must be done before mapping.
3211 */
3212 prot = arch_vmap_pgprot_tagged(prot);
01d92c7f 3213
f6e39794
AK
3214 /*
3215 * Skip page_alloc poisoning and zeroing for physical
3216 * pages backing VM_ALLOC mapping. Memory is instead
3217 * poisoned and zeroed by kasan_unpoison_vmalloc().
3218 */
3219 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3220 }
3221
3222 /* Take note that the mapping is PAGE_KERNEL. */
3223 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
23689e91
AK
3224 }
3225
01d92c7f 3226 /* Allocate physical pages and map them into vmalloc space. */
19f1c3ac
AK
3227 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3228 if (!ret)
121e6f32 3229 goto fail;
89219d37 3230
23689e91
AK
3231 /*
3232 * Mark the pages as accessible, now that they are mapped.
6c2f761d
AK
3233 * The condition for setting KASAN_VMALLOC_INIT should complement the
3234 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3235 * to make sure that memory is initialized under the same conditions.
f6e39794
AK
3236 * Tag-based KASAN modes only assign tags to normal non-executable
3237 * allocations, see __kasan_unpoison_vmalloc().
23689e91 3238 */
f6e39794 3239 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
6c2f761d
AK
3240 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3241 (gfp_mask & __GFP_SKIP_ZERO))
23689e91 3242 kasan_flags |= KASAN_VMALLOC_INIT;
f6e39794 3243 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
23689e91 3244 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
19f1c3ac 3245
f5252e00 3246 /*
20fc02b4
ZY
3247 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3248 * flag. It means that vm_struct is not fully initialized.
4341fa45 3249 * Now, it is fully initialized, so remove this flag here.
f5252e00 3250 */
20fc02b4 3251 clear_vm_uninitialized_flag(area);
f5252e00 3252
7ca3027b 3253 size = PAGE_ALIGN(size);
60115fa5
KW
3254 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3255 kmemleak_vmalloc(area, size, gfp_mask);
89219d37 3256
19f1c3ac 3257 return area->addr;
de7d2b56
JP
3258
3259fail:
121e6f32
NP
3260 if (shift > PAGE_SHIFT) {
3261 shift = PAGE_SHIFT;
3262 align = real_align;
3263 size = real_size;
3264 goto again;
3265 }
3266
de7d2b56 3267 return NULL;
1da177e4
LT
3268}
3269
d0a21265 3270/**
92eac168
MR
3271 * __vmalloc_node - allocate virtually contiguous memory
3272 * @size: allocation size
3273 * @align: desired alignment
3274 * @gfp_mask: flags for the page level allocator
92eac168
MR
3275 * @node: node to use for allocation or NUMA_NO_NODE
3276 * @caller: caller's return address
a7c3e901 3277 *
f38fcb9c
CH
3278 * Allocate enough pages to cover @size from the page level allocator with
3279 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 3280 *
92eac168
MR
3281 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3282 * and __GFP_NOFAIL are not supported
a7c3e901 3283 *
92eac168
MR
3284 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3285 * with mm people.
a862f68a
MR
3286 *
3287 * Return: pointer to the allocated memory or %NULL on error
d0a21265 3288 */
2b905948 3289void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 3290 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
3291{
3292 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 3293 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 3294}
c3f896dc
CH
3295/*
3296 * This is only for performance analysis of vmalloc and stress purpose.
3297 * It is required by vmalloc test module, therefore do not use it other
3298 * than that.
3299 */
3300#ifdef CONFIG_TEST_VMALLOC_MODULE
3301EXPORT_SYMBOL_GPL(__vmalloc_node);
3302#endif
d0a21265 3303
88dca4ca 3304void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 3305{
f38fcb9c 3306 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 3307 __builtin_return_address(0));
930fc45a 3308}
1da177e4
LT
3309EXPORT_SYMBOL(__vmalloc);
3310
3311/**
92eac168
MR
3312 * vmalloc - allocate virtually contiguous memory
3313 * @size: allocation size
3314 *
3315 * Allocate enough pages to cover @size from the page level
3316 * allocator and map them into contiguous kernel virtual space.
1da177e4 3317 *
92eac168
MR
3318 * For tight control over page level allocator and protection flags
3319 * use __vmalloc() instead.
a862f68a
MR
3320 *
3321 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3322 */
3323void *vmalloc(unsigned long size)
3324{
4d39d728
CH
3325 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3326 __builtin_return_address(0));
1da177e4 3327}
1da177e4
LT
3328EXPORT_SYMBOL(vmalloc);
3329
15a64f5a 3330/**
559089e0
SL
3331 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3332 * @size: allocation size
3333 * @gfp_mask: flags for the page level allocator
15a64f5a 3334 *
559089e0 3335 * Allocate enough pages to cover @size from the page level
15a64f5a 3336 * allocator and map them into contiguous kernel virtual space.
559089e0
SL
3337 * If @size is greater than or equal to PMD_SIZE, allow using
3338 * huge pages for the memory
15a64f5a
CI
3339 *
3340 * Return: pointer to the allocated memory or %NULL on error
3341 */
559089e0 3342void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
15a64f5a
CI
3343{
3344 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
559089e0 3345 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
15a64f5a
CI
3346 NUMA_NO_NODE, __builtin_return_address(0));
3347}
559089e0 3348EXPORT_SYMBOL_GPL(vmalloc_huge);
15a64f5a 3349
e1ca7788 3350/**
92eac168
MR
3351 * vzalloc - allocate virtually contiguous memory with zero fill
3352 * @size: allocation size
3353 *
3354 * Allocate enough pages to cover @size from the page level
3355 * allocator and map them into contiguous kernel virtual space.
3356 * The memory allocated is set to zero.
3357 *
3358 * For tight control over page level allocator and protection flags
3359 * use __vmalloc() instead.
a862f68a
MR
3360 *
3361 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3362 */
3363void *vzalloc(unsigned long size)
3364{
4d39d728
CH
3365 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3366 __builtin_return_address(0));
e1ca7788
DY
3367}
3368EXPORT_SYMBOL(vzalloc);
3369
83342314 3370/**
ead04089
REB
3371 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3372 * @size: allocation size
83342314 3373 *
ead04089
REB
3374 * The resulting memory area is zeroed so it can be mapped to userspace
3375 * without leaking data.
a862f68a
MR
3376 *
3377 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3378 */
3379void *vmalloc_user(unsigned long size)
3380{
bc84c535
RP
3381 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3382 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3383 VM_USERMAP, NUMA_NO_NODE,
3384 __builtin_return_address(0));
83342314
NP
3385}
3386EXPORT_SYMBOL(vmalloc_user);
3387
930fc45a 3388/**
92eac168
MR
3389 * vmalloc_node - allocate memory on a specific node
3390 * @size: allocation size
3391 * @node: numa node
930fc45a 3392 *
92eac168
MR
3393 * Allocate enough pages to cover @size from the page level
3394 * allocator and map them into contiguous kernel virtual space.
930fc45a 3395 *
92eac168
MR
3396 * For tight control over page level allocator and protection flags
3397 * use __vmalloc() instead.
a862f68a
MR
3398 *
3399 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
3400 */
3401void *vmalloc_node(unsigned long size, int node)
3402{
f38fcb9c
CH
3403 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3404 __builtin_return_address(0));
930fc45a
CL
3405}
3406EXPORT_SYMBOL(vmalloc_node);
3407
e1ca7788
DY
3408/**
3409 * vzalloc_node - allocate memory on a specific node with zero fill
3410 * @size: allocation size
3411 * @node: numa node
3412 *
3413 * Allocate enough pages to cover @size from the page level
3414 * allocator and map them into contiguous kernel virtual space.
3415 * The memory allocated is set to zero.
3416 *
a862f68a 3417 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3418 */
3419void *vzalloc_node(unsigned long size, int node)
3420{
4d39d728
CH
3421 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3422 __builtin_return_address(0));
e1ca7788
DY
3423}
3424EXPORT_SYMBOL(vzalloc_node);
3425
0d08e0d3 3426#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 3427#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 3428#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 3429#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 3430#else
698d0831
MH
3431/*
3432 * 64b systems should always have either DMA or DMA32 zones. For others
3433 * GFP_DMA32 should do the right thing and use the normal zone.
3434 */
68d68ff6 3435#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3
AK
3436#endif
3437
1da177e4 3438/**
92eac168
MR
3439 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3440 * @size: allocation size
1da177e4 3441 *
92eac168
MR
3442 * Allocate enough 32bit PA addressable pages to cover @size from the
3443 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
3444 *
3445 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3446 */
3447void *vmalloc_32(unsigned long size)
3448{
f38fcb9c
CH
3449 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3450 __builtin_return_address(0));
1da177e4 3451}
1da177e4
LT
3452EXPORT_SYMBOL(vmalloc_32);
3453
83342314 3454/**
ead04089 3455 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 3456 * @size: allocation size
ead04089
REB
3457 *
3458 * The resulting memory area is 32bit addressable and zeroed so it can be
3459 * mapped to userspace without leaking data.
a862f68a
MR
3460 *
3461 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3462 */
3463void *vmalloc_32_user(unsigned long size)
3464{
bc84c535
RP
3465 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3466 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3467 VM_USERMAP, NUMA_NO_NODE,
3468 __builtin_return_address(0));
83342314
NP
3469}
3470EXPORT_SYMBOL(vmalloc_32_user);
3471
d0107eb0
KH
3472/*
3473 * small helper routine , copy contents to buf from addr.
3474 * If the page is not present, fill zero.
3475 */
3476
3477static int aligned_vread(char *buf, char *addr, unsigned long count)
3478{
3479 struct page *p;
3480 int copied = 0;
3481
3482 while (count) {
3483 unsigned long offset, length;
3484
891c49ab 3485 offset = offset_in_page(addr);
d0107eb0
KH
3486 length = PAGE_SIZE - offset;
3487 if (length > count)
3488 length = count;
3489 p = vmalloc_to_page(addr);
3490 /*
3491 * To do safe access to this _mapped_ area, we need
3492 * lock. But adding lock here means that we need to add
f0953a1b 3493 * overhead of vmalloc()/vfree() calls for this _debug_
d0107eb0
KH
3494 * interface, rarely used. Instead of that, we'll use
3495 * kmap() and get small overhead in this access function.
3496 */
3497 if (p) {
f7c8ce44 3498 /* We can expect USER0 is not used -- see vread() */
9b04c5fe 3499 void *map = kmap_atomic(p);
d0107eb0 3500 memcpy(buf, map + offset, length);
9b04c5fe 3501 kunmap_atomic(map);
d0107eb0
KH
3502 } else
3503 memset(buf, 0, length);
3504
3505 addr += length;
3506 buf += length;
3507 copied += length;
3508 count -= length;
3509 }
3510 return copied;
3511}
3512
d0107eb0 3513/**
92eac168
MR
3514 * vread() - read vmalloc area in a safe way.
3515 * @buf: buffer for reading data
3516 * @addr: vm address.
3517 * @count: number of bytes to be read.
3518 *
92eac168
MR
3519 * This function checks that addr is a valid vmalloc'ed area, and
3520 * copy data from that area to a given buffer. If the given memory range
3521 * of [addr...addr+count) includes some valid address, data is copied to
3522 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3523 * IOREMAP area is treated as memory hole and no copy is done.
3524 *
3525 * If [addr...addr+count) doesn't includes any intersects with alive
3526 * vm_struct area, returns 0. @buf should be kernel's buffer.
3527 *
3528 * Note: In usual ops, vread() is never necessary because the caller
3529 * should know vmalloc() area is valid and can use memcpy().
3530 * This is for routines which have to access vmalloc area without
bbcd53c9 3531 * any information, as /proc/kcore.
a862f68a
MR
3532 *
3533 * Return: number of bytes for which addr and buf should be increased
3534 * (same number as @count) or %0 if [addr...addr+count) doesn't
3535 * include any intersection with valid vmalloc area
d0107eb0 3536 */
1da177e4
LT
3537long vread(char *buf, char *addr, unsigned long count)
3538{
e81ce85f
JK
3539 struct vmap_area *va;
3540 struct vm_struct *vm;
1da177e4 3541 char *vaddr, *buf_start = buf;
d0107eb0 3542 unsigned long buflen = count;
1da177e4
LT
3543 unsigned long n;
3544
4aff1dc4
AK
3545 addr = kasan_reset_tag(addr);
3546
1da177e4
LT
3547 /* Don't allow overflow */
3548 if ((unsigned long) addr + count < count)
3549 count = -(unsigned long) addr;
3550
e81ce85f 3551 spin_lock(&vmap_area_lock);
f181234a 3552 va = find_vmap_area_exceed_addr((unsigned long)addr);
f608788c
SD
3553 if (!va)
3554 goto finished;
f181234a
CW
3555
3556 /* no intersects with alive vmap_area */
3557 if ((unsigned long)addr + count <= va->va_start)
3558 goto finished;
3559
f608788c 3560 list_for_each_entry_from(va, &vmap_area_list, list) {
e81ce85f
JK
3561 if (!count)
3562 break;
3563
688fcbfc 3564 if (!va->vm)
e81ce85f
JK
3565 continue;
3566
3567 vm = va->vm;
3568 vaddr = (char *) vm->addr;
762216ab 3569 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
3570 continue;
3571 while (addr < vaddr) {
3572 if (count == 0)
3573 goto finished;
3574 *buf = '\0';
3575 buf++;
3576 addr++;
3577 count--;
3578 }
762216ab 3579 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
3580 if (n > count)
3581 n = count;
e81ce85f 3582 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
3583 aligned_vread(buf, addr, n);
3584 else /* IOREMAP area is treated as memory hole */
3585 memset(buf, 0, n);
3586 buf += n;
3587 addr += n;
3588 count -= n;
1da177e4
LT
3589 }
3590finished:
e81ce85f 3591 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3592
3593 if (buf == buf_start)
3594 return 0;
3595 /* zero-fill memory holes */
3596 if (buf != buf_start + buflen)
3597 memset(buf, 0, buflen - (buf - buf_start));
3598
3599 return buflen;
1da177e4
LT
3600}
3601
83342314 3602/**
92eac168
MR
3603 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3604 * @vma: vma to cover
3605 * @uaddr: target user address to start at
3606 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3607 * @pgoff: offset from @kaddr to start at
92eac168 3608 * @size: size of map area
7682486b 3609 *
92eac168 3610 * Returns: 0 for success, -Exxx on failure
83342314 3611 *
92eac168
MR
3612 * This function checks that @kaddr is a valid vmalloc'ed area,
3613 * and that it is big enough to cover the range starting at
3614 * @uaddr in @vma. Will return failure if that criteria isn't
3615 * met.
83342314 3616 *
92eac168 3617 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3618 */
e69e9d4a 3619int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3620 void *kaddr, unsigned long pgoff,
3621 unsigned long size)
83342314
NP
3622{
3623 struct vm_struct *area;
bdebd6a2
JH
3624 unsigned long off;
3625 unsigned long end_index;
3626
3627 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3628 return -EINVAL;
83342314 3629
e69e9d4a
HD
3630 size = PAGE_ALIGN(size);
3631
3632 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3633 return -EINVAL;
3634
e69e9d4a 3635 area = find_vm_area(kaddr);
83342314 3636 if (!area)
db64fe02 3637 return -EINVAL;
83342314 3638
fe9041c2 3639 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3640 return -EINVAL;
83342314 3641
bdebd6a2
JH
3642 if (check_add_overflow(size, off, &end_index) ||
3643 end_index > get_vm_area_size(area))
db64fe02 3644 return -EINVAL;
bdebd6a2 3645 kaddr += off;
83342314 3646
83342314 3647 do {
e69e9d4a 3648 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3649 int ret;
3650
83342314
NP
3651 ret = vm_insert_page(vma, uaddr, page);
3652 if (ret)
3653 return ret;
3654
3655 uaddr += PAGE_SIZE;
e69e9d4a
HD
3656 kaddr += PAGE_SIZE;
3657 size -= PAGE_SIZE;
3658 } while (size > 0);
83342314 3659
314e51b9 3660 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3661
db64fe02 3662 return 0;
83342314 3663}
e69e9d4a
HD
3664
3665/**
92eac168
MR
3666 * remap_vmalloc_range - map vmalloc pages to userspace
3667 * @vma: vma to cover (map full range of vma)
3668 * @addr: vmalloc memory
3669 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3670 *
92eac168 3671 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3672 *
92eac168
MR
3673 * This function checks that addr is a valid vmalloc'ed area, and
3674 * that it is big enough to cover the vma. Will return failure if
3675 * that criteria isn't met.
e69e9d4a 3676 *
92eac168 3677 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3678 */
3679int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3680 unsigned long pgoff)
3681{
3682 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3683 addr, pgoff,
e69e9d4a
HD
3684 vma->vm_end - vma->vm_start);
3685}
83342314
NP
3686EXPORT_SYMBOL(remap_vmalloc_range);
3687
5f4352fb
JF
3688void free_vm_area(struct vm_struct *area)
3689{
3690 struct vm_struct *ret;
3691 ret = remove_vm_area(area->addr);
3692 BUG_ON(ret != area);
3693 kfree(area);
3694}
3695EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3696
4f8b02b4 3697#ifdef CONFIG_SMP
ca23e405
TH
3698static struct vmap_area *node_to_va(struct rb_node *n)
3699{
4583e773 3700 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3701}
3702
3703/**
68ad4a33
URS
3704 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3705 * @addr: target address
ca23e405 3706 *
68ad4a33
URS
3707 * Returns: vmap_area if it is found. If there is no such area
3708 * the first highest(reverse order) vmap_area is returned
3709 * i.e. va->va_start < addr && va->va_end < addr or NULL
3710 * if there are no any areas before @addr.
ca23e405 3711 */
68ad4a33
URS
3712static struct vmap_area *
3713pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3714{
68ad4a33
URS
3715 struct vmap_area *va, *tmp;
3716 struct rb_node *n;
3717
3718 n = free_vmap_area_root.rb_node;
3719 va = NULL;
ca23e405
TH
3720
3721 while (n) {
68ad4a33
URS
3722 tmp = rb_entry(n, struct vmap_area, rb_node);
3723 if (tmp->va_start <= addr) {
3724 va = tmp;
3725 if (tmp->va_end >= addr)
3726 break;
3727
ca23e405 3728 n = n->rb_right;
68ad4a33
URS
3729 } else {
3730 n = n->rb_left;
3731 }
ca23e405
TH
3732 }
3733
68ad4a33 3734 return va;
ca23e405
TH
3735}
3736
3737/**
68ad4a33
URS
3738 * pvm_determine_end_from_reverse - find the highest aligned address
3739 * of free block below VMALLOC_END
3740 * @va:
3741 * in - the VA we start the search(reverse order);
3742 * out - the VA with the highest aligned end address.
799fa85d 3743 * @align: alignment for required highest address
ca23e405 3744 *
68ad4a33 3745 * Returns: determined end address within vmap_area
ca23e405 3746 */
68ad4a33
URS
3747static unsigned long
3748pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3749{
68ad4a33 3750 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3751 unsigned long addr;
3752
68ad4a33
URS
3753 if (likely(*va)) {
3754 list_for_each_entry_from_reverse((*va),
3755 &free_vmap_area_list, list) {
3756 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3757 if ((*va)->va_start < addr)
3758 return addr;
3759 }
ca23e405
TH
3760 }
3761
68ad4a33 3762 return 0;
ca23e405
TH
3763}
3764
3765/**
3766 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3767 * @offsets: array containing offset of each area
3768 * @sizes: array containing size of each area
3769 * @nr_vms: the number of areas to allocate
3770 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3771 *
3772 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3773 * vm_structs on success, %NULL on failure
3774 *
3775 * Percpu allocator wants to use congruent vm areas so that it can
3776 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3777 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3778 * be scattered pretty far, distance between two areas easily going up
3779 * to gigabytes. To avoid interacting with regular vmallocs, these
3780 * areas are allocated from top.
ca23e405 3781 *
68ad4a33
URS
3782 * Despite its complicated look, this allocator is rather simple. It
3783 * does everything top-down and scans free blocks from the end looking
3784 * for matching base. While scanning, if any of the areas do not fit the
3785 * base address is pulled down to fit the area. Scanning is repeated till
3786 * all the areas fit and then all necessary data structures are inserted
3787 * and the result is returned.
ca23e405
TH
3788 */
3789struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3790 const size_t *sizes, int nr_vms,
ec3f64fc 3791 size_t align)
ca23e405
TH
3792{
3793 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3794 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3795 struct vmap_area **vas, *va;
ca23e405
TH
3796 struct vm_struct **vms;
3797 int area, area2, last_area, term_area;
253a496d 3798 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405
TH
3799 bool purged = false;
3800
ca23e405 3801 /* verify parameters and allocate data structures */
891c49ab 3802 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3803 for (last_area = 0, area = 0; area < nr_vms; area++) {
3804 start = offsets[area];
3805 end = start + sizes[area];
3806
3807 /* is everything aligned properly? */
3808 BUG_ON(!IS_ALIGNED(offsets[area], align));
3809 BUG_ON(!IS_ALIGNED(sizes[area], align));
3810
3811 /* detect the area with the highest address */
3812 if (start > offsets[last_area])
3813 last_area = area;
3814
c568da28 3815 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3816 unsigned long start2 = offsets[area2];
3817 unsigned long end2 = start2 + sizes[area2];
3818
c568da28 3819 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3820 }
3821 }
3822 last_end = offsets[last_area] + sizes[last_area];
3823
3824 if (vmalloc_end - vmalloc_start < last_end) {
3825 WARN_ON(true);
3826 return NULL;
3827 }
3828
4d67d860
TM
3829 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3830 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3831 if (!vas || !vms)
f1db7afd 3832 goto err_free2;
ca23e405
TH
3833
3834 for (area = 0; area < nr_vms; area++) {
68ad4a33 3835 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3836 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3837 if (!vas[area] || !vms[area])
3838 goto err_free;
3839 }
3840retry:
e36176be 3841 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3842
3843 /* start scanning - we scan from the top, begin with the last area */
3844 area = term_area = last_area;
3845 start = offsets[area];
3846 end = start + sizes[area];
3847
68ad4a33
URS
3848 va = pvm_find_va_enclose_addr(vmalloc_end);
3849 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3850
3851 while (true) {
ca23e405
TH
3852 /*
3853 * base might have underflowed, add last_end before
3854 * comparing.
3855 */
68ad4a33
URS
3856 if (base + last_end < vmalloc_start + last_end)
3857 goto overflow;
ca23e405
TH
3858
3859 /*
68ad4a33 3860 * Fitting base has not been found.
ca23e405 3861 */
68ad4a33
URS
3862 if (va == NULL)
3863 goto overflow;
ca23e405 3864
5336e52c 3865 /*
d8cc323d 3866 * If required width exceeds current VA block, move
5336e52c
KS
3867 * base downwards and then recheck.
3868 */
3869 if (base + end > va->va_end) {
3870 base = pvm_determine_end_from_reverse(&va, align) - end;
3871 term_area = area;
3872 continue;
3873 }
3874
ca23e405 3875 /*
68ad4a33 3876 * If this VA does not fit, move base downwards and recheck.
ca23e405 3877 */
5336e52c 3878 if (base + start < va->va_start) {
68ad4a33
URS
3879 va = node_to_va(rb_prev(&va->rb_node));
3880 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3881 term_area = area;
3882 continue;
3883 }
3884
3885 /*
3886 * This area fits, move on to the previous one. If
3887 * the previous one is the terminal one, we're done.
3888 */
3889 area = (area + nr_vms - 1) % nr_vms;
3890 if (area == term_area)
3891 break;
68ad4a33 3892
ca23e405
TH
3893 start = offsets[area];
3894 end = start + sizes[area];
68ad4a33 3895 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3896 }
68ad4a33 3897
ca23e405
TH
3898 /* we've found a fitting base, insert all va's */
3899 for (area = 0; area < nr_vms; area++) {
68ad4a33 3900 int ret;
ca23e405 3901
68ad4a33
URS
3902 start = base + offsets[area];
3903 size = sizes[area];
ca23e405 3904
68ad4a33
URS
3905 va = pvm_find_va_enclose_addr(start);
3906 if (WARN_ON_ONCE(va == NULL))
3907 /* It is a BUG(), but trigger recovery instead. */
3908 goto recovery;
3909
f9863be4
URS
3910 ret = adjust_va_to_fit_type(&free_vmap_area_root,
3911 &free_vmap_area_list,
3912 va, start, size);
1b23ff80 3913 if (WARN_ON_ONCE(unlikely(ret)))
68ad4a33
URS
3914 /* It is a BUG(), but trigger recovery instead. */
3915 goto recovery;
3916
68ad4a33
URS
3917 /* Allocated area. */
3918 va = vas[area];
3919 va->va_start = start;
3920 va->va_end = start + size;
68ad4a33 3921 }
ca23e405 3922
e36176be 3923 spin_unlock(&free_vmap_area_lock);
ca23e405 3924
253a496d
DA
3925 /* populate the kasan shadow space */
3926 for (area = 0; area < nr_vms; area++) {
3927 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3928 goto err_free_shadow;
253a496d
DA
3929 }
3930
ca23e405 3931 /* insert all vm's */
e36176be
URS
3932 spin_lock(&vmap_area_lock);
3933 for (area = 0; area < nr_vms; area++) {
3934 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3935
3936 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3937 pcpu_get_vm_areas);
e36176be
URS
3938 }
3939 spin_unlock(&vmap_area_lock);
ca23e405 3940
19f1c3ac
AK
3941 /*
3942 * Mark allocated areas as accessible. Do it now as a best-effort
3943 * approach, as they can be mapped outside of vmalloc code.
23689e91
AK
3944 * With hardware tag-based KASAN, marking is skipped for
3945 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
19f1c3ac 3946 */
1d96320f
AK
3947 for (area = 0; area < nr_vms; area++)
3948 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
f6e39794 3949 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
1d96320f 3950
ca23e405
TH
3951 kfree(vas);
3952 return vms;
3953
68ad4a33 3954recovery:
e36176be
URS
3955 /*
3956 * Remove previously allocated areas. There is no
3957 * need in removing these areas from the busy tree,
3958 * because they are inserted only on the final step
3959 * and when pcpu_get_vm_areas() is success.
3960 */
68ad4a33 3961 while (area--) {
253a496d
DA
3962 orig_start = vas[area]->va_start;
3963 orig_end = vas[area]->va_end;
96e2db45
URS
3964 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3965 &free_vmap_area_list);
9c801f61
URS
3966 if (va)
3967 kasan_release_vmalloc(orig_start, orig_end,
3968 va->va_start, va->va_end);
68ad4a33
URS
3969 vas[area] = NULL;
3970 }
3971
3972overflow:
e36176be 3973 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3974 if (!purged) {
3975 purge_vmap_area_lazy();
3976 purged = true;
3977
3978 /* Before "retry", check if we recover. */
3979 for (area = 0; area < nr_vms; area++) {
3980 if (vas[area])
3981 continue;
3982
3983 vas[area] = kmem_cache_zalloc(
3984 vmap_area_cachep, GFP_KERNEL);
3985 if (!vas[area])
3986 goto err_free;
3987 }
3988
3989 goto retry;
3990 }
3991
ca23e405
TH
3992err_free:
3993 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3994 if (vas[area])
3995 kmem_cache_free(vmap_area_cachep, vas[area]);
3996
f1db7afd 3997 kfree(vms[area]);
ca23e405 3998 }
f1db7afd 3999err_free2:
ca23e405
TH
4000 kfree(vas);
4001 kfree(vms);
4002 return NULL;
253a496d
DA
4003
4004err_free_shadow:
4005 spin_lock(&free_vmap_area_lock);
4006 /*
4007 * We release all the vmalloc shadows, even the ones for regions that
4008 * hadn't been successfully added. This relies on kasan_release_vmalloc
4009 * being able to tolerate this case.
4010 */
4011 for (area = 0; area < nr_vms; area++) {
4012 orig_start = vas[area]->va_start;
4013 orig_end = vas[area]->va_end;
96e2db45
URS
4014 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4015 &free_vmap_area_list);
9c801f61
URS
4016 if (va)
4017 kasan_release_vmalloc(orig_start, orig_end,
4018 va->va_start, va->va_end);
253a496d
DA
4019 vas[area] = NULL;
4020 kfree(vms[area]);
4021 }
4022 spin_unlock(&free_vmap_area_lock);
4023 kfree(vas);
4024 kfree(vms);
4025 return NULL;
ca23e405
TH
4026}
4027
4028/**
4029 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4030 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4031 * @nr_vms: the number of allocated areas
4032 *
4033 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4034 */
4035void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4036{
4037 int i;
4038
4039 for (i = 0; i < nr_vms; i++)
4040 free_vm_area(vms[i]);
4041 kfree(vms);
4042}
4f8b02b4 4043#endif /* CONFIG_SMP */
a10aa579 4044
5bb1bb35 4045#ifdef CONFIG_PRINTK
98f18083
PM
4046bool vmalloc_dump_obj(void *object)
4047{
4048 struct vm_struct *vm;
4049 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4050
4051 vm = find_vm_area(objp);
4052 if (!vm)
4053 return false;
bd34dcd4
PM
4054 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4055 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
98f18083
PM
4056 return true;
4057}
5bb1bb35 4058#endif
98f18083 4059
a10aa579
CL
4060#ifdef CONFIG_PROC_FS
4061static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 4062 __acquires(&vmap_purge_lock)
d4033afd 4063 __acquires(&vmap_area_lock)
a10aa579 4064{
e36176be 4065 mutex_lock(&vmap_purge_lock);
d4033afd 4066 spin_lock(&vmap_area_lock);
e36176be 4067
3f500069 4068 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
4069}
4070
4071static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4072{
3f500069 4073 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
4074}
4075
4076static void s_stop(struct seq_file *m, void *p)
d4033afd 4077 __releases(&vmap_area_lock)
0a7dd4e9 4078 __releases(&vmap_purge_lock)
a10aa579 4079{
d4033afd 4080 spin_unlock(&vmap_area_lock);
0a7dd4e9 4081 mutex_unlock(&vmap_purge_lock);
a10aa579
CL
4082}
4083
a47a126a
ED
4084static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4085{
e5adfffc 4086 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a 4087 unsigned int nr, *counters = m->private;
51e50b3a 4088 unsigned int step = 1U << vm_area_page_order(v);
a47a126a
ED
4089
4090 if (!counters)
4091 return;
4092
af12346c
WL
4093 if (v->flags & VM_UNINITIALIZED)
4094 return;
7e5b528b
DV
4095 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4096 smp_rmb();
af12346c 4097
a47a126a
ED
4098 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4099
51e50b3a
ED
4100 for (nr = 0; nr < v->nr_pages; nr += step)
4101 counters[page_to_nid(v->pages[nr])] += step;
a47a126a
ED
4102 for_each_node_state(nr, N_HIGH_MEMORY)
4103 if (counters[nr])
4104 seq_printf(m, " N%u=%u", nr, counters[nr]);
4105 }
4106}
4107
dd3b8353
URS
4108static void show_purge_info(struct seq_file *m)
4109{
dd3b8353
URS
4110 struct vmap_area *va;
4111
96e2db45
URS
4112 spin_lock(&purge_vmap_area_lock);
4113 list_for_each_entry(va, &purge_vmap_area_list, list) {
dd3b8353
URS
4114 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4115 (void *)va->va_start, (void *)va->va_end,
4116 va->va_end - va->va_start);
4117 }
96e2db45 4118 spin_unlock(&purge_vmap_area_lock);
dd3b8353
URS
4119}
4120
a10aa579
CL
4121static int s_show(struct seq_file *m, void *p)
4122{
3f500069 4123 struct vmap_area *va;
d4033afd
JK
4124 struct vm_struct *v;
4125
3f500069 4126 va = list_entry(p, struct vmap_area, list);
4127
c2ce8c14 4128 /*
688fcbfc
PL
4129 * s_show can encounter race with remove_vm_area, !vm on behalf
4130 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 4131 */
688fcbfc 4132 if (!va->vm) {
dd3b8353 4133 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 4134 (void *)va->va_start, (void *)va->va_end,
dd3b8353 4135 va->va_end - va->va_start);
78c72746 4136
7cc7913e 4137 goto final;
78c72746 4138 }
d4033afd
JK
4139
4140 v = va->vm;
a10aa579 4141
45ec1690 4142 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
4143 v->addr, v->addr + v->size, v->size);
4144
62c70bce
JP
4145 if (v->caller)
4146 seq_printf(m, " %pS", v->caller);
23016969 4147
a10aa579
CL
4148 if (v->nr_pages)
4149 seq_printf(m, " pages=%d", v->nr_pages);
4150
4151 if (v->phys_addr)
199eaa05 4152 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
4153
4154 if (v->flags & VM_IOREMAP)
f4527c90 4155 seq_puts(m, " ioremap");
a10aa579
CL
4156
4157 if (v->flags & VM_ALLOC)
f4527c90 4158 seq_puts(m, " vmalloc");
a10aa579
CL
4159
4160 if (v->flags & VM_MAP)
f4527c90 4161 seq_puts(m, " vmap");
a10aa579
CL
4162
4163 if (v->flags & VM_USERMAP)
f4527c90 4164 seq_puts(m, " user");
a10aa579 4165
fe9041c2
CH
4166 if (v->flags & VM_DMA_COHERENT)
4167 seq_puts(m, " dma-coherent");
4168
244d63ee 4169 if (is_vmalloc_addr(v->pages))
f4527c90 4170 seq_puts(m, " vpages");
a10aa579 4171
a47a126a 4172 show_numa_info(m, v);
a10aa579 4173 seq_putc(m, '\n');
dd3b8353
URS
4174
4175 /*
96e2db45 4176 * As a final step, dump "unpurged" areas.
dd3b8353 4177 */
7cc7913e 4178final:
dd3b8353
URS
4179 if (list_is_last(&va->list, &vmap_area_list))
4180 show_purge_info(m);
4181
a10aa579
CL
4182 return 0;
4183}
4184
5f6a6a9c 4185static const struct seq_operations vmalloc_op = {
a10aa579
CL
4186 .start = s_start,
4187 .next = s_next,
4188 .stop = s_stop,
4189 .show = s_show,
4190};
5f6a6a9c 4191
5f6a6a9c
AD
4192static int __init proc_vmalloc_init(void)
4193{
fddda2b7 4194 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 4195 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
4196 &vmalloc_op,
4197 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 4198 else
0825a6f9 4199 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
4200 return 0;
4201}
4202module_init(proc_vmalloc_init);
db3808c1 4203
a10aa579 4204#endif