]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmalloc.c
mm/vmalloc: pass VM_USERMAP flags directly to __vmalloc_node_range()
[thirdparty/linux.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02 23#include <linux/list.h>
4da56b99 24#include <linux/notifier.h>
db64fe02
NP
25#include <linux/rbtree.h>
26#include <linux/radix-tree.h>
27#include <linux/rcupdate.h>
f0aa6617 28#include <linux/pfn.h>
89219d37 29#include <linux/kmemleak.h>
60063497 30#include <linux/atomic.h>
3b32123d 31#include <linux/compiler.h>
32fcfd40 32#include <linux/llist.h>
0f616be1 33#include <linux/bitops.h>
3b32123d 34
7c0f6ba6 35#include <linux/uaccess.h>
1da177e4 36#include <asm/tlbflush.h>
2dca6999 37#include <asm/shmparam.h>
1da177e4 38
dd56b046
MG
39#include "internal.h"
40
32fcfd40
AV
41struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44};
45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47static void __vunmap(const void *, int);
48
49static void free_work(struct work_struct *w)
50{
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
52 struct llist_node *t, *llnode;
53
54 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
55 __vunmap((void *)llnode, 1);
32fcfd40
AV
56}
57
db64fe02 58/*** Page table manipulation functions ***/
b221385b 59
1da177e4
LT
60static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
61{
62 pte_t *pte;
63
64 pte = pte_offset_kernel(pmd, addr);
65 do {
66 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
67 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
68 } while (pte++, addr += PAGE_SIZE, addr != end);
69}
70
db64fe02 71static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
72{
73 pmd_t *pmd;
74 unsigned long next;
75
76 pmd = pmd_offset(pud, addr);
77 do {
78 next = pmd_addr_end(addr, end);
b9820d8f
TK
79 if (pmd_clear_huge(pmd))
80 continue;
1da177e4
LT
81 if (pmd_none_or_clear_bad(pmd))
82 continue;
83 vunmap_pte_range(pmd, addr, next);
84 } while (pmd++, addr = next, addr != end);
85}
86
c2febafc 87static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
88{
89 pud_t *pud;
90 unsigned long next;
91
c2febafc 92 pud = pud_offset(p4d, addr);
1da177e4
LT
93 do {
94 next = pud_addr_end(addr, end);
b9820d8f
TK
95 if (pud_clear_huge(pud))
96 continue;
1da177e4
LT
97 if (pud_none_or_clear_bad(pud))
98 continue;
99 vunmap_pmd_range(pud, addr, next);
100 } while (pud++, addr = next, addr != end);
101}
102
c2febafc
KS
103static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
104{
105 p4d_t *p4d;
106 unsigned long next;
107
108 p4d = p4d_offset(pgd, addr);
109 do {
110 next = p4d_addr_end(addr, end);
111 if (p4d_clear_huge(p4d))
112 continue;
113 if (p4d_none_or_clear_bad(p4d))
114 continue;
115 vunmap_pud_range(p4d, addr, next);
116 } while (p4d++, addr = next, addr != end);
117}
118
db64fe02 119static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
120{
121 pgd_t *pgd;
122 unsigned long next;
1da177e4
LT
123
124 BUG_ON(addr >= end);
125 pgd = pgd_offset_k(addr);
1da177e4
LT
126 do {
127 next = pgd_addr_end(addr, end);
128 if (pgd_none_or_clear_bad(pgd))
129 continue;
c2febafc 130 vunmap_p4d_range(pgd, addr, next);
1da177e4 131 } while (pgd++, addr = next, addr != end);
1da177e4
LT
132}
133
134static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 135 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
136{
137 pte_t *pte;
138
db64fe02
NP
139 /*
140 * nr is a running index into the array which helps higher level
141 * callers keep track of where we're up to.
142 */
143
872fec16 144 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
145 if (!pte)
146 return -ENOMEM;
147 do {
db64fe02
NP
148 struct page *page = pages[*nr];
149
150 if (WARN_ON(!pte_none(*pte)))
151 return -EBUSY;
152 if (WARN_ON(!page))
1da177e4
LT
153 return -ENOMEM;
154 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 155 (*nr)++;
1da177e4
LT
156 } while (pte++, addr += PAGE_SIZE, addr != end);
157 return 0;
158}
159
db64fe02
NP
160static int vmap_pmd_range(pud_t *pud, unsigned long addr,
161 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
162{
163 pmd_t *pmd;
164 unsigned long next;
165
166 pmd = pmd_alloc(&init_mm, pud, addr);
167 if (!pmd)
168 return -ENOMEM;
169 do {
170 next = pmd_addr_end(addr, end);
db64fe02 171 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
172 return -ENOMEM;
173 } while (pmd++, addr = next, addr != end);
174 return 0;
175}
176
c2febafc 177static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 178 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
179{
180 pud_t *pud;
181 unsigned long next;
182
c2febafc 183 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
184 if (!pud)
185 return -ENOMEM;
186 do {
187 next = pud_addr_end(addr, end);
db64fe02 188 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
189 return -ENOMEM;
190 } while (pud++, addr = next, addr != end);
191 return 0;
192}
193
c2febafc
KS
194static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
195 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
196{
197 p4d_t *p4d;
198 unsigned long next;
199
200 p4d = p4d_alloc(&init_mm, pgd, addr);
201 if (!p4d)
202 return -ENOMEM;
203 do {
204 next = p4d_addr_end(addr, end);
205 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
206 return -ENOMEM;
207 } while (p4d++, addr = next, addr != end);
208 return 0;
209}
210
db64fe02
NP
211/*
212 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
213 * will have pfns corresponding to the "pages" array.
214 *
215 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
216 */
8fc48985
TH
217static int vmap_page_range_noflush(unsigned long start, unsigned long end,
218 pgprot_t prot, struct page **pages)
1da177e4
LT
219{
220 pgd_t *pgd;
221 unsigned long next;
2e4e27c7 222 unsigned long addr = start;
db64fe02
NP
223 int err = 0;
224 int nr = 0;
1da177e4
LT
225
226 BUG_ON(addr >= end);
227 pgd = pgd_offset_k(addr);
1da177e4
LT
228 do {
229 next = pgd_addr_end(addr, end);
c2febafc 230 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 231 if (err)
bf88c8c8 232 return err;
1da177e4 233 } while (pgd++, addr = next, addr != end);
db64fe02 234
db64fe02 235 return nr;
1da177e4
LT
236}
237
8fc48985
TH
238static int vmap_page_range(unsigned long start, unsigned long end,
239 pgprot_t prot, struct page **pages)
240{
241 int ret;
242
243 ret = vmap_page_range_noflush(start, end, prot, pages);
244 flush_cache_vmap(start, end);
245 return ret;
246}
247
81ac3ad9 248int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
249{
250 /*
ab4f2ee1 251 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
252 * and fall back on vmalloc() if that fails. Others
253 * just put it in the vmalloc space.
254 */
255#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
256 unsigned long addr = (unsigned long)x;
257 if (addr >= MODULES_VADDR && addr < MODULES_END)
258 return 1;
259#endif
260 return is_vmalloc_addr(x);
261}
262
48667e7a 263/*
add688fb 264 * Walk a vmap address to the struct page it maps.
48667e7a 265 */
add688fb 266struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
267{
268 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 269 struct page *page = NULL;
48667e7a 270 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
271 p4d_t *p4d;
272 pud_t *pud;
273 pmd_t *pmd;
274 pte_t *ptep, pte;
48667e7a 275
7aa413de
IM
276 /*
277 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
278 * architectures that do not vmalloc module space
279 */
73bdf0a6 280 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 281
c2febafc
KS
282 if (pgd_none(*pgd))
283 return NULL;
284 p4d = p4d_offset(pgd, addr);
285 if (p4d_none(*p4d))
286 return NULL;
287 pud = pud_offset(p4d, addr);
029c54b0
AB
288
289 /*
290 * Don't dereference bad PUD or PMD (below) entries. This will also
291 * identify huge mappings, which we may encounter on architectures
292 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
293 * identified as vmalloc addresses by is_vmalloc_addr(), but are
294 * not [unambiguously] associated with a struct page, so there is
295 * no correct value to return for them.
296 */
297 WARN_ON_ONCE(pud_bad(*pud));
298 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
299 return NULL;
300 pmd = pmd_offset(pud, addr);
029c54b0
AB
301 WARN_ON_ONCE(pmd_bad(*pmd));
302 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
303 return NULL;
304
305 ptep = pte_offset_map(pmd, addr);
306 pte = *ptep;
307 if (pte_present(pte))
308 page = pte_page(pte);
309 pte_unmap(ptep);
add688fb 310 return page;
48667e7a 311}
add688fb 312EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
313
314/*
add688fb 315 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 316 */
add688fb 317unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 318{
add688fb 319 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 320}
add688fb 321EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 322
db64fe02
NP
323
324/*** Global kva allocator ***/
325
78c72746 326#define VM_LAZY_FREE 0x02
db64fe02
NP
327#define VM_VM_AREA 0x04
328
db64fe02 329static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
330/* Export for kexec only */
331LIST_HEAD(vmap_area_list);
80c4bd7a 332static LLIST_HEAD(vmap_purge_list);
89699605
NP
333static struct rb_root vmap_area_root = RB_ROOT;
334
335/* The vmap cache globals are protected by vmap_area_lock */
336static struct rb_node *free_vmap_cache;
337static unsigned long cached_hole_size;
338static unsigned long cached_vstart;
339static unsigned long cached_align;
340
ca23e405 341static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
342
343static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 344{
db64fe02
NP
345 struct rb_node *n = vmap_area_root.rb_node;
346
347 while (n) {
348 struct vmap_area *va;
349
350 va = rb_entry(n, struct vmap_area, rb_node);
351 if (addr < va->va_start)
352 n = n->rb_left;
cef2ac3f 353 else if (addr >= va->va_end)
db64fe02
NP
354 n = n->rb_right;
355 else
356 return va;
357 }
358
359 return NULL;
360}
361
362static void __insert_vmap_area(struct vmap_area *va)
363{
364 struct rb_node **p = &vmap_area_root.rb_node;
365 struct rb_node *parent = NULL;
366 struct rb_node *tmp;
367
368 while (*p) {
170168d0 369 struct vmap_area *tmp_va;
db64fe02
NP
370
371 parent = *p;
170168d0
NK
372 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
373 if (va->va_start < tmp_va->va_end)
db64fe02 374 p = &(*p)->rb_left;
170168d0 375 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
376 p = &(*p)->rb_right;
377 else
378 BUG();
379 }
380
381 rb_link_node(&va->rb_node, parent, p);
382 rb_insert_color(&va->rb_node, &vmap_area_root);
383
4341fa45 384 /* address-sort this list */
db64fe02
NP
385 tmp = rb_prev(&va->rb_node);
386 if (tmp) {
387 struct vmap_area *prev;
388 prev = rb_entry(tmp, struct vmap_area, rb_node);
389 list_add_rcu(&va->list, &prev->list);
390 } else
391 list_add_rcu(&va->list, &vmap_area_list);
392}
393
394static void purge_vmap_area_lazy(void);
395
4da56b99
CW
396static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
397
db64fe02
NP
398/*
399 * Allocate a region of KVA of the specified size and alignment, within the
400 * vstart and vend.
401 */
402static struct vmap_area *alloc_vmap_area(unsigned long size,
403 unsigned long align,
404 unsigned long vstart, unsigned long vend,
405 int node, gfp_t gfp_mask)
406{
407 struct vmap_area *va;
408 struct rb_node *n;
1da177e4 409 unsigned long addr;
db64fe02 410 int purged = 0;
89699605 411 struct vmap_area *first;
db64fe02 412
7766970c 413 BUG_ON(!size);
891c49ab 414 BUG_ON(offset_in_page(size));
89699605 415 BUG_ON(!is_power_of_2(align));
db64fe02 416
5803ed29 417 might_sleep();
4da56b99 418
db64fe02
NP
419 va = kmalloc_node(sizeof(struct vmap_area),
420 gfp_mask & GFP_RECLAIM_MASK, node);
421 if (unlikely(!va))
422 return ERR_PTR(-ENOMEM);
423
7f88f88f
CM
424 /*
425 * Only scan the relevant parts containing pointers to other objects
426 * to avoid false negatives.
427 */
428 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
429
db64fe02
NP
430retry:
431 spin_lock(&vmap_area_lock);
89699605
NP
432 /*
433 * Invalidate cache if we have more permissive parameters.
434 * cached_hole_size notes the largest hole noticed _below_
435 * the vmap_area cached in free_vmap_cache: if size fits
436 * into that hole, we want to scan from vstart to reuse
437 * the hole instead of allocating above free_vmap_cache.
438 * Note that __free_vmap_area may update free_vmap_cache
439 * without updating cached_hole_size or cached_align.
440 */
441 if (!free_vmap_cache ||
442 size < cached_hole_size ||
443 vstart < cached_vstart ||
444 align < cached_align) {
445nocache:
446 cached_hole_size = 0;
447 free_vmap_cache = NULL;
448 }
449 /* record if we encounter less permissive parameters */
450 cached_vstart = vstart;
451 cached_align = align;
452
453 /* find starting point for our search */
454 if (free_vmap_cache) {
455 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 456 addr = ALIGN(first->va_end, align);
89699605
NP
457 if (addr < vstart)
458 goto nocache;
bcb615a8 459 if (addr + size < addr)
89699605
NP
460 goto overflow;
461
462 } else {
463 addr = ALIGN(vstart, align);
bcb615a8 464 if (addr + size < addr)
89699605
NP
465 goto overflow;
466
467 n = vmap_area_root.rb_node;
468 first = NULL;
469
470 while (n) {
db64fe02
NP
471 struct vmap_area *tmp;
472 tmp = rb_entry(n, struct vmap_area, rb_node);
473 if (tmp->va_end >= addr) {
db64fe02 474 first = tmp;
89699605
NP
475 if (tmp->va_start <= addr)
476 break;
477 n = n->rb_left;
478 } else
db64fe02 479 n = n->rb_right;
89699605 480 }
db64fe02
NP
481
482 if (!first)
483 goto found;
db64fe02 484 }
89699605
NP
485
486 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 487 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
488 if (addr + cached_hole_size < first->va_start)
489 cached_hole_size = first->va_start - addr;
248ac0e1 490 addr = ALIGN(first->va_end, align);
bcb615a8 491 if (addr + size < addr)
89699605
NP
492 goto overflow;
493
92ca922f 494 if (list_is_last(&first->list, &vmap_area_list))
89699605 495 goto found;
92ca922f 496
6219c2a2 497 first = list_next_entry(first, list);
db64fe02
NP
498 }
499
89699605
NP
500found:
501 if (addr + size > vend)
502 goto overflow;
db64fe02
NP
503
504 va->va_start = addr;
505 va->va_end = addr + size;
506 va->flags = 0;
507 __insert_vmap_area(va);
89699605 508 free_vmap_cache = &va->rb_node;
db64fe02
NP
509 spin_unlock(&vmap_area_lock);
510
61e16557 511 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
512 BUG_ON(va->va_start < vstart);
513 BUG_ON(va->va_end > vend);
514
db64fe02 515 return va;
89699605
NP
516
517overflow:
518 spin_unlock(&vmap_area_lock);
519 if (!purged) {
520 purge_vmap_area_lazy();
521 purged = 1;
522 goto retry;
523 }
4da56b99
CW
524
525 if (gfpflags_allow_blocking(gfp_mask)) {
526 unsigned long freed = 0;
527 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
528 if (freed > 0) {
529 purged = 0;
530 goto retry;
531 }
532 }
533
03497d76 534 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
535 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
536 size);
89699605
NP
537 kfree(va);
538 return ERR_PTR(-EBUSY);
db64fe02
NP
539}
540
4da56b99
CW
541int register_vmap_purge_notifier(struct notifier_block *nb)
542{
543 return blocking_notifier_chain_register(&vmap_notify_list, nb);
544}
545EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
546
547int unregister_vmap_purge_notifier(struct notifier_block *nb)
548{
549 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
550}
551EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
552
db64fe02
NP
553static void __free_vmap_area(struct vmap_area *va)
554{
555 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
556
557 if (free_vmap_cache) {
558 if (va->va_end < cached_vstart) {
559 free_vmap_cache = NULL;
560 } else {
561 struct vmap_area *cache;
562 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
563 if (va->va_start <= cache->va_start) {
564 free_vmap_cache = rb_prev(&va->rb_node);
565 /*
566 * We don't try to update cached_hole_size or
567 * cached_align, but it won't go very wrong.
568 */
569 }
570 }
571 }
db64fe02
NP
572 rb_erase(&va->rb_node, &vmap_area_root);
573 RB_CLEAR_NODE(&va->rb_node);
574 list_del_rcu(&va->list);
575
ca23e405
TH
576 /*
577 * Track the highest possible candidate for pcpu area
578 * allocation. Areas outside of vmalloc area can be returned
579 * here too, consider only end addresses which fall inside
580 * vmalloc area proper.
581 */
582 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
583 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
584
14769de9 585 kfree_rcu(va, rcu_head);
db64fe02
NP
586}
587
588/*
589 * Free a region of KVA allocated by alloc_vmap_area
590 */
591static void free_vmap_area(struct vmap_area *va)
592{
593 spin_lock(&vmap_area_lock);
594 __free_vmap_area(va);
595 spin_unlock(&vmap_area_lock);
596}
597
598/*
599 * Clear the pagetable entries of a given vmap_area
600 */
601static void unmap_vmap_area(struct vmap_area *va)
602{
603 vunmap_page_range(va->va_start, va->va_end);
604}
605
606/*
607 * lazy_max_pages is the maximum amount of virtual address space we gather up
608 * before attempting to purge with a TLB flush.
609 *
610 * There is a tradeoff here: a larger number will cover more kernel page tables
611 * and take slightly longer to purge, but it will linearly reduce the number of
612 * global TLB flushes that must be performed. It would seem natural to scale
613 * this number up linearly with the number of CPUs (because vmapping activity
614 * could also scale linearly with the number of CPUs), however it is likely
615 * that in practice, workloads might be constrained in other ways that mean
616 * vmap activity will not scale linearly with CPUs. Also, I want to be
617 * conservative and not introduce a big latency on huge systems, so go with
618 * a less aggressive log scale. It will still be an improvement over the old
619 * code, and it will be simple to change the scale factor if we find that it
620 * becomes a problem on bigger systems.
621 */
622static unsigned long lazy_max_pages(void)
623{
624 unsigned int log;
625
626 log = fls(num_online_cpus());
627
628 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
629}
630
631static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
632
0574ecd1
CH
633/*
634 * Serialize vmap purging. There is no actual criticial section protected
635 * by this look, but we want to avoid concurrent calls for performance
636 * reasons and to make the pcpu_get_vm_areas more deterministic.
637 */
f9e09977 638static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 639
02b709df
NP
640/* for per-CPU blocks */
641static void purge_fragmented_blocks_allcpus(void);
642
3ee48b6a
CW
643/*
644 * called before a call to iounmap() if the caller wants vm_area_struct's
645 * immediately freed.
646 */
647void set_iounmap_nonlazy(void)
648{
649 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
650}
651
db64fe02
NP
652/*
653 * Purges all lazily-freed vmap areas.
db64fe02 654 */
0574ecd1 655static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 656{
80c4bd7a 657 struct llist_node *valist;
db64fe02 658 struct vmap_area *va;
cbb76676 659 struct vmap_area *n_va;
763b218d 660 bool do_free = false;
db64fe02 661
0574ecd1 662 lockdep_assert_held(&vmap_purge_lock);
02b709df 663
80c4bd7a
CW
664 valist = llist_del_all(&vmap_purge_list);
665 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
666 if (va->va_start < start)
667 start = va->va_start;
668 if (va->va_end > end)
669 end = va->va_end;
763b218d 670 do_free = true;
db64fe02 671 }
db64fe02 672
763b218d 673 if (!do_free)
0574ecd1 674 return false;
db64fe02 675
0574ecd1 676 flush_tlb_kernel_range(start, end);
db64fe02 677
0574ecd1 678 spin_lock(&vmap_area_lock);
763b218d
JF
679 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
680 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
681
0574ecd1 682 __free_vmap_area(va);
763b218d
JF
683 atomic_sub(nr, &vmap_lazy_nr);
684 cond_resched_lock(&vmap_area_lock);
685 }
0574ecd1
CH
686 spin_unlock(&vmap_area_lock);
687 return true;
db64fe02
NP
688}
689
496850e5
NP
690/*
691 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
692 * is already purging.
693 */
694static void try_purge_vmap_area_lazy(void)
695{
f9e09977 696 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 697 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 698 mutex_unlock(&vmap_purge_lock);
0574ecd1 699 }
496850e5
NP
700}
701
db64fe02
NP
702/*
703 * Kick off a purge of the outstanding lazy areas.
704 */
705static void purge_vmap_area_lazy(void)
706{
f9e09977 707 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
708 purge_fragmented_blocks_allcpus();
709 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 710 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
711}
712
713/*
64141da5
JF
714 * Free a vmap area, caller ensuring that the area has been unmapped
715 * and flush_cache_vunmap had been called for the correct range
716 * previously.
db64fe02 717 */
64141da5 718static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 719{
80c4bd7a
CW
720 int nr_lazy;
721
722 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
723 &vmap_lazy_nr);
724
725 /* After this point, we may free va at any time */
726 llist_add(&va->purge_list, &vmap_purge_list);
727
728 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 729 try_purge_vmap_area_lazy();
db64fe02
NP
730}
731
b29acbdc
NP
732/*
733 * Free and unmap a vmap area
734 */
735static void free_unmap_vmap_area(struct vmap_area *va)
736{
737 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 738 unmap_vmap_area(va);
82a2e924
CP
739 if (debug_pagealloc_enabled())
740 flush_tlb_kernel_range(va->va_start, va->va_end);
741
c8eef01e 742 free_vmap_area_noflush(va);
b29acbdc
NP
743}
744
db64fe02
NP
745static struct vmap_area *find_vmap_area(unsigned long addr)
746{
747 struct vmap_area *va;
748
749 spin_lock(&vmap_area_lock);
750 va = __find_vmap_area(addr);
751 spin_unlock(&vmap_area_lock);
752
753 return va;
754}
755
db64fe02
NP
756/*** Per cpu kva allocator ***/
757
758/*
759 * vmap space is limited especially on 32 bit architectures. Ensure there is
760 * room for at least 16 percpu vmap blocks per CPU.
761 */
762/*
763 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
764 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
765 * instead (we just need a rough idea)
766 */
767#if BITS_PER_LONG == 32
768#define VMALLOC_SPACE (128UL*1024*1024)
769#else
770#define VMALLOC_SPACE (128UL*1024*1024*1024)
771#endif
772
773#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
774#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
775#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
776#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
777#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
778#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
779#define VMAP_BBMAP_BITS \
780 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
781 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
782 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
783
784#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
785
9b463334
JF
786static bool vmap_initialized __read_mostly = false;
787
db64fe02
NP
788struct vmap_block_queue {
789 spinlock_t lock;
790 struct list_head free;
db64fe02
NP
791};
792
793struct vmap_block {
794 spinlock_t lock;
795 struct vmap_area *va;
db64fe02 796 unsigned long free, dirty;
7d61bfe8 797 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
798 struct list_head free_list;
799 struct rcu_head rcu_head;
02b709df 800 struct list_head purge;
db64fe02
NP
801};
802
803/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
804static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
805
806/*
807 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
808 * in the free path. Could get rid of this if we change the API to return a
809 * "cookie" from alloc, to be passed to free. But no big deal yet.
810 */
811static DEFINE_SPINLOCK(vmap_block_tree_lock);
812static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
813
814/*
815 * We should probably have a fallback mechanism to allocate virtual memory
816 * out of partially filled vmap blocks. However vmap block sizing should be
817 * fairly reasonable according to the vmalloc size, so it shouldn't be a
818 * big problem.
819 */
820
821static unsigned long addr_to_vb_idx(unsigned long addr)
822{
823 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
824 addr /= VMAP_BLOCK_SIZE;
825 return addr;
826}
827
cf725ce2
RP
828static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
829{
830 unsigned long addr;
831
832 addr = va_start + (pages_off << PAGE_SHIFT);
833 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
834 return (void *)addr;
835}
836
837/**
838 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
839 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
840 * @order: how many 2^order pages should be occupied in newly allocated block
841 * @gfp_mask: flags for the page level allocator
842 *
843 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
844 */
845static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
846{
847 struct vmap_block_queue *vbq;
848 struct vmap_block *vb;
849 struct vmap_area *va;
850 unsigned long vb_idx;
851 int node, err;
cf725ce2 852 void *vaddr;
db64fe02
NP
853
854 node = numa_node_id();
855
856 vb = kmalloc_node(sizeof(struct vmap_block),
857 gfp_mask & GFP_RECLAIM_MASK, node);
858 if (unlikely(!vb))
859 return ERR_PTR(-ENOMEM);
860
861 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
862 VMALLOC_START, VMALLOC_END,
863 node, gfp_mask);
ddf9c6d4 864 if (IS_ERR(va)) {
db64fe02 865 kfree(vb);
e7d86340 866 return ERR_CAST(va);
db64fe02
NP
867 }
868
869 err = radix_tree_preload(gfp_mask);
870 if (unlikely(err)) {
871 kfree(vb);
872 free_vmap_area(va);
873 return ERR_PTR(err);
874 }
875
cf725ce2 876 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
877 spin_lock_init(&vb->lock);
878 vb->va = va;
cf725ce2
RP
879 /* At least something should be left free */
880 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
881 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 882 vb->dirty = 0;
7d61bfe8
RP
883 vb->dirty_min = VMAP_BBMAP_BITS;
884 vb->dirty_max = 0;
db64fe02 885 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
886
887 vb_idx = addr_to_vb_idx(va->va_start);
888 spin_lock(&vmap_block_tree_lock);
889 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
890 spin_unlock(&vmap_block_tree_lock);
891 BUG_ON(err);
892 radix_tree_preload_end();
893
894 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 895 spin_lock(&vbq->lock);
68ac546f 896 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 897 spin_unlock(&vbq->lock);
3f04ba85 898 put_cpu_var(vmap_block_queue);
db64fe02 899
cf725ce2 900 return vaddr;
db64fe02
NP
901}
902
db64fe02
NP
903static void free_vmap_block(struct vmap_block *vb)
904{
905 struct vmap_block *tmp;
906 unsigned long vb_idx;
907
db64fe02
NP
908 vb_idx = addr_to_vb_idx(vb->va->va_start);
909 spin_lock(&vmap_block_tree_lock);
910 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
911 spin_unlock(&vmap_block_tree_lock);
912 BUG_ON(tmp != vb);
913
64141da5 914 free_vmap_area_noflush(vb->va);
22a3c7d1 915 kfree_rcu(vb, rcu_head);
db64fe02
NP
916}
917
02b709df
NP
918static void purge_fragmented_blocks(int cpu)
919{
920 LIST_HEAD(purge);
921 struct vmap_block *vb;
922 struct vmap_block *n_vb;
923 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
924
925 rcu_read_lock();
926 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
927
928 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
929 continue;
930
931 spin_lock(&vb->lock);
932 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
933 vb->free = 0; /* prevent further allocs after releasing lock */
934 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
935 vb->dirty_min = 0;
936 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
937 spin_lock(&vbq->lock);
938 list_del_rcu(&vb->free_list);
939 spin_unlock(&vbq->lock);
940 spin_unlock(&vb->lock);
941 list_add_tail(&vb->purge, &purge);
942 } else
943 spin_unlock(&vb->lock);
944 }
945 rcu_read_unlock();
946
947 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
948 list_del(&vb->purge);
949 free_vmap_block(vb);
950 }
951}
952
02b709df
NP
953static void purge_fragmented_blocks_allcpus(void)
954{
955 int cpu;
956
957 for_each_possible_cpu(cpu)
958 purge_fragmented_blocks(cpu);
959}
960
db64fe02
NP
961static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
962{
963 struct vmap_block_queue *vbq;
964 struct vmap_block *vb;
cf725ce2 965 void *vaddr = NULL;
db64fe02
NP
966 unsigned int order;
967
891c49ab 968 BUG_ON(offset_in_page(size));
db64fe02 969 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
970 if (WARN_ON(size == 0)) {
971 /*
972 * Allocating 0 bytes isn't what caller wants since
973 * get_order(0) returns funny result. Just warn and terminate
974 * early.
975 */
976 return NULL;
977 }
db64fe02
NP
978 order = get_order(size);
979
db64fe02
NP
980 rcu_read_lock();
981 vbq = &get_cpu_var(vmap_block_queue);
982 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 983 unsigned long pages_off;
db64fe02
NP
984
985 spin_lock(&vb->lock);
cf725ce2
RP
986 if (vb->free < (1UL << order)) {
987 spin_unlock(&vb->lock);
988 continue;
989 }
02b709df 990
cf725ce2
RP
991 pages_off = VMAP_BBMAP_BITS - vb->free;
992 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
993 vb->free -= 1UL << order;
994 if (vb->free == 0) {
995 spin_lock(&vbq->lock);
996 list_del_rcu(&vb->free_list);
997 spin_unlock(&vbq->lock);
998 }
cf725ce2 999
02b709df
NP
1000 spin_unlock(&vb->lock);
1001 break;
db64fe02 1002 }
02b709df 1003
3f04ba85 1004 put_cpu_var(vmap_block_queue);
db64fe02
NP
1005 rcu_read_unlock();
1006
cf725ce2
RP
1007 /* Allocate new block if nothing was found */
1008 if (!vaddr)
1009 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1010
cf725ce2 1011 return vaddr;
db64fe02
NP
1012}
1013
1014static void vb_free(const void *addr, unsigned long size)
1015{
1016 unsigned long offset;
1017 unsigned long vb_idx;
1018 unsigned int order;
1019 struct vmap_block *vb;
1020
891c49ab 1021 BUG_ON(offset_in_page(size));
db64fe02 1022 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1023
1024 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1025
db64fe02
NP
1026 order = get_order(size);
1027
1028 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1029 offset >>= PAGE_SHIFT;
db64fe02
NP
1030
1031 vb_idx = addr_to_vb_idx((unsigned long)addr);
1032 rcu_read_lock();
1033 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1034 rcu_read_unlock();
1035 BUG_ON(!vb);
1036
64141da5
JF
1037 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1038
82a2e924
CP
1039 if (debug_pagealloc_enabled())
1040 flush_tlb_kernel_range((unsigned long)addr,
1041 (unsigned long)addr + size);
1042
db64fe02 1043 spin_lock(&vb->lock);
7d61bfe8
RP
1044
1045 /* Expand dirty range */
1046 vb->dirty_min = min(vb->dirty_min, offset);
1047 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1048
db64fe02
NP
1049 vb->dirty += 1UL << order;
1050 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1051 BUG_ON(vb->free);
db64fe02
NP
1052 spin_unlock(&vb->lock);
1053 free_vmap_block(vb);
1054 } else
1055 spin_unlock(&vb->lock);
1056}
1057
1058/**
1059 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1060 *
1061 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1062 * to amortize TLB flushing overheads. What this means is that any page you
1063 * have now, may, in a former life, have been mapped into kernel virtual
1064 * address by the vmap layer and so there might be some CPUs with TLB entries
1065 * still referencing that page (additional to the regular 1:1 kernel mapping).
1066 *
1067 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1068 * be sure that none of the pages we have control over will have any aliases
1069 * from the vmap layer.
1070 */
1071void vm_unmap_aliases(void)
1072{
1073 unsigned long start = ULONG_MAX, end = 0;
1074 int cpu;
1075 int flush = 0;
1076
9b463334
JF
1077 if (unlikely(!vmap_initialized))
1078 return;
1079
5803ed29
CH
1080 might_sleep();
1081
db64fe02
NP
1082 for_each_possible_cpu(cpu) {
1083 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1084 struct vmap_block *vb;
1085
1086 rcu_read_lock();
1087 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1088 spin_lock(&vb->lock);
7d61bfe8
RP
1089 if (vb->dirty) {
1090 unsigned long va_start = vb->va->va_start;
db64fe02 1091 unsigned long s, e;
b136be5e 1092
7d61bfe8
RP
1093 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1094 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1095
7d61bfe8
RP
1096 start = min(s, start);
1097 end = max(e, end);
db64fe02 1098
7d61bfe8 1099 flush = 1;
db64fe02
NP
1100 }
1101 spin_unlock(&vb->lock);
1102 }
1103 rcu_read_unlock();
1104 }
1105
f9e09977 1106 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1107 purge_fragmented_blocks_allcpus();
1108 if (!__purge_vmap_area_lazy(start, end) && flush)
1109 flush_tlb_kernel_range(start, end);
f9e09977 1110 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1111}
1112EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1113
1114/**
1115 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1116 * @mem: the pointer returned by vm_map_ram
1117 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1118 */
1119void vm_unmap_ram(const void *mem, unsigned int count)
1120{
65ee03c4 1121 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1122 unsigned long addr = (unsigned long)mem;
9c3acf60 1123 struct vmap_area *va;
db64fe02 1124
5803ed29 1125 might_sleep();
db64fe02
NP
1126 BUG_ON(!addr);
1127 BUG_ON(addr < VMALLOC_START);
1128 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1129 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1130
9c3acf60 1131 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1132 debug_check_no_locks_freed(mem, size);
db64fe02 1133 vb_free(mem, size);
9c3acf60
CH
1134 return;
1135 }
1136
1137 va = find_vmap_area(addr);
1138 BUG_ON(!va);
05e3ff95
CP
1139 debug_check_no_locks_freed((void *)va->va_start,
1140 (va->va_end - va->va_start));
9c3acf60 1141 free_unmap_vmap_area(va);
db64fe02
NP
1142}
1143EXPORT_SYMBOL(vm_unmap_ram);
1144
1145/**
1146 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1147 * @pages: an array of pointers to the pages to be mapped
1148 * @count: number of pages
1149 * @node: prefer to allocate data structures on this node
1150 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1151 *
36437638
GK
1152 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1153 * faster than vmap so it's good. But if you mix long-life and short-life
1154 * objects with vm_map_ram(), it could consume lots of address space through
1155 * fragmentation (especially on a 32bit machine). You could see failures in
1156 * the end. Please use this function for short-lived objects.
1157 *
e99c97ad 1158 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1159 */
1160void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1161{
65ee03c4 1162 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1163 unsigned long addr;
1164 void *mem;
1165
1166 if (likely(count <= VMAP_MAX_ALLOC)) {
1167 mem = vb_alloc(size, GFP_KERNEL);
1168 if (IS_ERR(mem))
1169 return NULL;
1170 addr = (unsigned long)mem;
1171 } else {
1172 struct vmap_area *va;
1173 va = alloc_vmap_area(size, PAGE_SIZE,
1174 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1175 if (IS_ERR(va))
1176 return NULL;
1177
1178 addr = va->va_start;
1179 mem = (void *)addr;
1180 }
1181 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1182 vm_unmap_ram(mem, count);
1183 return NULL;
1184 }
1185 return mem;
1186}
1187EXPORT_SYMBOL(vm_map_ram);
1188
4341fa45 1189static struct vm_struct *vmlist __initdata;
be9b7335
NP
1190/**
1191 * vm_area_add_early - add vmap area early during boot
1192 * @vm: vm_struct to add
1193 *
1194 * This function is used to add fixed kernel vm area to vmlist before
1195 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1196 * should contain proper values and the other fields should be zero.
1197 *
1198 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1199 */
1200void __init vm_area_add_early(struct vm_struct *vm)
1201{
1202 struct vm_struct *tmp, **p;
1203
1204 BUG_ON(vmap_initialized);
1205 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1206 if (tmp->addr >= vm->addr) {
1207 BUG_ON(tmp->addr < vm->addr + vm->size);
1208 break;
1209 } else
1210 BUG_ON(tmp->addr + tmp->size > vm->addr);
1211 }
1212 vm->next = *p;
1213 *p = vm;
1214}
1215
f0aa6617
TH
1216/**
1217 * vm_area_register_early - register vmap area early during boot
1218 * @vm: vm_struct to register
c0c0a293 1219 * @align: requested alignment
f0aa6617
TH
1220 *
1221 * This function is used to register kernel vm area before
1222 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1223 * proper values on entry and other fields should be zero. On return,
1224 * vm->addr contains the allocated address.
1225 *
1226 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1227 */
c0c0a293 1228void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1229{
1230 static size_t vm_init_off __initdata;
c0c0a293
TH
1231 unsigned long addr;
1232
1233 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1234 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1235
c0c0a293 1236 vm->addr = (void *)addr;
f0aa6617 1237
be9b7335 1238 vm_area_add_early(vm);
f0aa6617
TH
1239}
1240
db64fe02
NP
1241void __init vmalloc_init(void)
1242{
822c18f2
IK
1243 struct vmap_area *va;
1244 struct vm_struct *tmp;
db64fe02
NP
1245 int i;
1246
1247 for_each_possible_cpu(i) {
1248 struct vmap_block_queue *vbq;
32fcfd40 1249 struct vfree_deferred *p;
db64fe02
NP
1250
1251 vbq = &per_cpu(vmap_block_queue, i);
1252 spin_lock_init(&vbq->lock);
1253 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1254 p = &per_cpu(vfree_deferred, i);
1255 init_llist_head(&p->list);
1256 INIT_WORK(&p->wq, free_work);
db64fe02 1257 }
9b463334 1258
822c18f2
IK
1259 /* Import existing vmlist entries. */
1260 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1261 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1262 va->flags = VM_VM_AREA;
822c18f2
IK
1263 va->va_start = (unsigned long)tmp->addr;
1264 va->va_end = va->va_start + tmp->size;
dbda591d 1265 va->vm = tmp;
822c18f2
IK
1266 __insert_vmap_area(va);
1267 }
ca23e405
TH
1268
1269 vmap_area_pcpu_hole = VMALLOC_END;
1270
9b463334 1271 vmap_initialized = true;
db64fe02
NP
1272}
1273
8fc48985
TH
1274/**
1275 * map_kernel_range_noflush - map kernel VM area with the specified pages
1276 * @addr: start of the VM area to map
1277 * @size: size of the VM area to map
1278 * @prot: page protection flags to use
1279 * @pages: pages to map
1280 *
1281 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1282 * specify should have been allocated using get_vm_area() and its
1283 * friends.
1284 *
1285 * NOTE:
1286 * This function does NOT do any cache flushing. The caller is
1287 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1288 * before calling this function.
1289 *
1290 * RETURNS:
1291 * The number of pages mapped on success, -errno on failure.
1292 */
1293int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1294 pgprot_t prot, struct page **pages)
1295{
1296 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1297}
1298
1299/**
1300 * unmap_kernel_range_noflush - unmap kernel VM area
1301 * @addr: start of the VM area to unmap
1302 * @size: size of the VM area to unmap
1303 *
1304 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1305 * specify should have been allocated using get_vm_area() and its
1306 * friends.
1307 *
1308 * NOTE:
1309 * This function does NOT do any cache flushing. The caller is
1310 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1311 * before calling this function and flush_tlb_kernel_range() after.
1312 */
1313void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1314{
1315 vunmap_page_range(addr, addr + size);
1316}
81e88fdc 1317EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1318
1319/**
1320 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1321 * @addr: start of the VM area to unmap
1322 * @size: size of the VM area to unmap
1323 *
1324 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1325 * the unmapping and tlb after.
1326 */
db64fe02
NP
1327void unmap_kernel_range(unsigned long addr, unsigned long size)
1328{
1329 unsigned long end = addr + size;
f6fcba70
TH
1330
1331 flush_cache_vunmap(addr, end);
db64fe02
NP
1332 vunmap_page_range(addr, end);
1333 flush_tlb_kernel_range(addr, end);
1334}
93ef6d6c 1335EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1336
f6f8ed47 1337int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1338{
1339 unsigned long addr = (unsigned long)area->addr;
762216ab 1340 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1341 int err;
1342
f6f8ed47 1343 err = vmap_page_range(addr, end, prot, pages);
db64fe02 1344
f6f8ed47 1345 return err > 0 ? 0 : err;
db64fe02
NP
1346}
1347EXPORT_SYMBOL_GPL(map_vm_area);
1348
f5252e00 1349static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1350 unsigned long flags, const void *caller)
cf88c790 1351{
c69480ad 1352 spin_lock(&vmap_area_lock);
cf88c790
TH
1353 vm->flags = flags;
1354 vm->addr = (void *)va->va_start;
1355 vm->size = va->va_end - va->va_start;
1356 vm->caller = caller;
db1aecaf 1357 va->vm = vm;
cf88c790 1358 va->flags |= VM_VM_AREA;
c69480ad 1359 spin_unlock(&vmap_area_lock);
f5252e00 1360}
cf88c790 1361
20fc02b4 1362static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1363{
d4033afd 1364 /*
20fc02b4 1365 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1366 * we should make sure that vm has proper values.
1367 * Pair with smp_rmb() in show_numa_info().
1368 */
1369 smp_wmb();
20fc02b4 1370 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1371}
1372
db64fe02 1373static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1374 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1375 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1376{
0006526d 1377 struct vmap_area *va;
db64fe02 1378 struct vm_struct *area;
1da177e4 1379
52fd24ca 1380 BUG_ON(in_interrupt());
1da177e4 1381 size = PAGE_ALIGN(size);
31be8309
OH
1382 if (unlikely(!size))
1383 return NULL;
1da177e4 1384
252e5c6e 1385 if (flags & VM_IOREMAP)
1386 align = 1ul << clamp_t(int, get_count_order_long(size),
1387 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1388
cf88c790 1389 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1390 if (unlikely(!area))
1391 return NULL;
1392
71394fe5
AR
1393 if (!(flags & VM_NO_GUARD))
1394 size += PAGE_SIZE;
1da177e4 1395
db64fe02
NP
1396 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1397 if (IS_ERR(va)) {
1398 kfree(area);
1399 return NULL;
1da177e4 1400 }
1da177e4 1401
d82b1d85 1402 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1403
1da177e4 1404 return area;
1da177e4
LT
1405}
1406
930fc45a
CL
1407struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1408 unsigned long start, unsigned long end)
1409{
00ef2d2f
DR
1410 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1411 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1412}
5992b6da 1413EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1414
c2968612
BH
1415struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1416 unsigned long start, unsigned long end,
5e6cafc8 1417 const void *caller)
c2968612 1418{
00ef2d2f
DR
1419 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1420 GFP_KERNEL, caller);
c2968612
BH
1421}
1422
1da177e4 1423/**
183ff22b 1424 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1425 * @size: size of the area
1426 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1427 *
1428 * Search an area of @size in the kernel virtual mapping area,
1429 * and reserved it for out purposes. Returns the area descriptor
1430 * on success or %NULL on failure.
1431 */
1432struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1433{
2dca6999 1434 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1435 NUMA_NO_NODE, GFP_KERNEL,
1436 __builtin_return_address(0));
23016969
CL
1437}
1438
1439struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1440 const void *caller)
23016969 1441{
2dca6999 1442 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1443 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1444}
1445
e9da6e99
MS
1446/**
1447 * find_vm_area - find a continuous kernel virtual area
1448 * @addr: base address
1449 *
1450 * Search for the kernel VM area starting at @addr, and return it.
1451 * It is up to the caller to do all required locking to keep the returned
1452 * pointer valid.
1453 */
1454struct vm_struct *find_vm_area(const void *addr)
83342314 1455{
db64fe02 1456 struct vmap_area *va;
83342314 1457
db64fe02
NP
1458 va = find_vmap_area((unsigned long)addr);
1459 if (va && va->flags & VM_VM_AREA)
db1aecaf 1460 return va->vm;
1da177e4 1461
1da177e4 1462 return NULL;
1da177e4
LT
1463}
1464
7856dfeb 1465/**
183ff22b 1466 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1467 * @addr: base address
1468 *
1469 * Search for the kernel VM area starting at @addr, and remove it.
1470 * This function returns the found VM area, but using it is NOT safe
1471 * on SMP machines, except for its size or flags.
1472 */
b3bdda02 1473struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1474{
db64fe02
NP
1475 struct vmap_area *va;
1476
5803ed29
CH
1477 might_sleep();
1478
db64fe02
NP
1479 va = find_vmap_area((unsigned long)addr);
1480 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1481 struct vm_struct *vm = va->vm;
f5252e00 1482
c69480ad
JK
1483 spin_lock(&vmap_area_lock);
1484 va->vm = NULL;
1485 va->flags &= ~VM_VM_AREA;
78c72746 1486 va->flags |= VM_LAZY_FREE;
c69480ad
JK
1487 spin_unlock(&vmap_area_lock);
1488
a5af5aa8 1489 kasan_free_shadow(vm);
dd32c279 1490 free_unmap_vmap_area(va);
dd32c279 1491
db64fe02
NP
1492 return vm;
1493 }
1494 return NULL;
7856dfeb
AK
1495}
1496
b3bdda02 1497static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1498{
1499 struct vm_struct *area;
1500
1501 if (!addr)
1502 return;
1503
e69e9d4a 1504 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 1505 addr))
1da177e4 1506 return;
1da177e4 1507
6ade2032 1508 area = find_vm_area(addr);
1da177e4 1509 if (unlikely(!area)) {
4c8573e2 1510 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1511 addr);
1da177e4
LT
1512 return;
1513 }
1514
05e3ff95
CP
1515 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
1516 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 1517
f3c01d2f 1518 remove_vm_area(addr);
1da177e4
LT
1519 if (deallocate_pages) {
1520 int i;
1521
1522 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1523 struct page *page = area->pages[i];
1524
1525 BUG_ON(!page);
4949148a 1526 __free_pages(page, 0);
1da177e4
LT
1527 }
1528
244d63ee 1529 kvfree(area->pages);
1da177e4
LT
1530 }
1531
1532 kfree(area);
1533 return;
1534}
bf22e37a
AR
1535
1536static inline void __vfree_deferred(const void *addr)
1537{
1538 /*
1539 * Use raw_cpu_ptr() because this can be called from preemptible
1540 * context. Preemption is absolutely fine here, because the llist_add()
1541 * implementation is lockless, so it works even if we are adding to
1542 * nother cpu's list. schedule_work() should be fine with this too.
1543 */
1544 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1545
1546 if (llist_add((struct llist_node *)addr, &p->list))
1547 schedule_work(&p->wq);
1548}
1549
1550/**
1551 * vfree_atomic - release memory allocated by vmalloc()
1552 * @addr: memory base address
1553 *
1554 * This one is just like vfree() but can be called in any atomic context
1555 * except NMIs.
1556 */
1557void vfree_atomic(const void *addr)
1558{
1559 BUG_ON(in_nmi());
1560
1561 kmemleak_free(addr);
1562
1563 if (!addr)
1564 return;
1565 __vfree_deferred(addr);
1566}
1567
c67dc624
RP
1568static void __vfree(const void *addr)
1569{
1570 if (unlikely(in_interrupt()))
1571 __vfree_deferred(addr);
1572 else
1573 __vunmap(addr, 1);
1574}
1575
1da177e4
LT
1576/**
1577 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1578 * @addr: memory base address
1579 *
183ff22b 1580 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1581 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1582 * NULL, no operation is performed.
1da177e4 1583 *
32fcfd40
AV
1584 * Must not be called in NMI context (strictly speaking, only if we don't
1585 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1586 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 1587 *
3ca4ea3a
AR
1588 * May sleep if called *not* from interrupt context.
1589 *
0e056eb5 1590 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 1591 */
b3bdda02 1592void vfree(const void *addr)
1da177e4 1593{
32fcfd40 1594 BUG_ON(in_nmi());
89219d37
CM
1595
1596 kmemleak_free(addr);
1597
a8dda165
AR
1598 might_sleep_if(!in_interrupt());
1599
32fcfd40
AV
1600 if (!addr)
1601 return;
c67dc624
RP
1602
1603 __vfree(addr);
1da177e4 1604}
1da177e4
LT
1605EXPORT_SYMBOL(vfree);
1606
1607/**
1608 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1609 * @addr: memory base address
1610 *
1611 * Free the virtually contiguous memory area starting at @addr,
1612 * which was created from the page array passed to vmap().
1613 *
80e93eff 1614 * Must not be called in interrupt context.
1da177e4 1615 */
b3bdda02 1616void vunmap(const void *addr)
1da177e4
LT
1617{
1618 BUG_ON(in_interrupt());
34754b69 1619 might_sleep();
32fcfd40
AV
1620 if (addr)
1621 __vunmap(addr, 0);
1da177e4 1622}
1da177e4
LT
1623EXPORT_SYMBOL(vunmap);
1624
1625/**
1626 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1627 * @pages: array of page pointers
1628 * @count: number of pages to map
1629 * @flags: vm_area->flags
1630 * @prot: page protection for the mapping
1631 *
1632 * Maps @count pages from @pages into contiguous kernel virtual
1633 * space.
1634 */
1635void *vmap(struct page **pages, unsigned int count,
1636 unsigned long flags, pgprot_t prot)
1637{
1638 struct vm_struct *area;
65ee03c4 1639 unsigned long size; /* In bytes */
1da177e4 1640
34754b69
PZ
1641 might_sleep();
1642
ca79b0c2 1643 if (count > totalram_pages())
1da177e4
LT
1644 return NULL;
1645
65ee03c4
GJM
1646 size = (unsigned long)count << PAGE_SHIFT;
1647 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
1648 if (!area)
1649 return NULL;
23016969 1650
f6f8ed47 1651 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
1652 vunmap(area->addr);
1653 return NULL;
1654 }
1655
1656 return area->addr;
1657}
1da177e4
LT
1658EXPORT_SYMBOL(vmap);
1659
8594a21c
MH
1660static void *__vmalloc_node(unsigned long size, unsigned long align,
1661 gfp_t gfp_mask, pgprot_t prot,
1662 int node, const void *caller);
e31d9eb5 1663static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 1664 pgprot_t prot, int node)
1da177e4
LT
1665{
1666 struct page **pages;
1667 unsigned int nr_pages, array_size, i;
930f036b 1668 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
1669 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1670 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1671 0 :
1672 __GFP_HIGHMEM;
1da177e4 1673
762216ab 1674 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
1675 array_size = (nr_pages * sizeof(struct page *));
1676
1677 area->nr_pages = nr_pages;
1678 /* Please note that the recursion is strictly bounded. */
8757d5fa 1679 if (array_size > PAGE_SIZE) {
704b862f 1680 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 1681 PAGE_KERNEL, node, area->caller);
286e1ea3 1682 } else {
976d6dfb 1683 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1684 }
1da177e4
LT
1685 area->pages = pages;
1686 if (!area->pages) {
1687 remove_vm_area(area->addr);
1688 kfree(area);
1689 return NULL;
1690 }
1da177e4
LT
1691
1692 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1693 struct page *page;
1694
4b90951c 1695 if (node == NUMA_NO_NODE)
704b862f 1696 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 1697 else
704b862f 1698 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
1699
1700 if (unlikely(!page)) {
1da177e4
LT
1701 /* Successfully allocated i pages, free them in __vunmap() */
1702 area->nr_pages = i;
1703 goto fail;
1704 }
bf53d6f8 1705 area->pages[i] = page;
704b862f 1706 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
660654f9 1707 cond_resched();
1da177e4
LT
1708 }
1709
f6f8ed47 1710 if (map_vm_area(area, prot, pages))
1da177e4
LT
1711 goto fail;
1712 return area->addr;
1713
1714fail:
a8e99259 1715 warn_alloc(gfp_mask, NULL,
7877cdcc 1716 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 1717 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 1718 __vfree(area->addr);
1da177e4
LT
1719 return NULL;
1720}
1721
1722/**
d0a21265 1723 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1724 * @size: allocation size
2dca6999 1725 * @align: desired alignment
d0a21265
DR
1726 * @start: vm area range start
1727 * @end: vm area range end
1da177e4
LT
1728 * @gfp_mask: flags for the page level allocator
1729 * @prot: protection mask for the allocated pages
cb9e3c29 1730 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
00ef2d2f 1731 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1732 * @caller: caller's return address
1da177e4
LT
1733 *
1734 * Allocate enough pages to cover @size from the page level
1735 * allocator with @gfp_mask flags. Map them into contiguous
1736 * kernel virtual space, using a pagetable protection of @prot.
1737 */
d0a21265
DR
1738void *__vmalloc_node_range(unsigned long size, unsigned long align,
1739 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
1740 pgprot_t prot, unsigned long vm_flags, int node,
1741 const void *caller)
1da177e4
LT
1742{
1743 struct vm_struct *area;
89219d37
CM
1744 void *addr;
1745 unsigned long real_size = size;
1da177e4
LT
1746
1747 size = PAGE_ALIGN(size);
ca79b0c2 1748 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 1749 goto fail;
1da177e4 1750
cb9e3c29
AR
1751 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1752 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 1753 if (!area)
de7d2b56 1754 goto fail;
1da177e4 1755
3722e13c 1756 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 1757 if (!addr)
b82225f3 1758 return NULL;
89219d37 1759
f5252e00 1760 /*
20fc02b4
ZY
1761 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1762 * flag. It means that vm_struct is not fully initialized.
4341fa45 1763 * Now, it is fully initialized, so remove this flag here.
f5252e00 1764 */
20fc02b4 1765 clear_vm_uninitialized_flag(area);
f5252e00 1766
94f4a161 1767 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
1768
1769 return addr;
de7d2b56
JP
1770
1771fail:
a8e99259 1772 warn_alloc(gfp_mask, NULL,
7877cdcc 1773 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 1774 return NULL;
1da177e4
LT
1775}
1776
d0a21265
DR
1777/**
1778 * __vmalloc_node - allocate virtually contiguous memory
1779 * @size: allocation size
1780 * @align: desired alignment
1781 * @gfp_mask: flags for the page level allocator
1782 * @prot: protection mask for the allocated pages
00ef2d2f 1783 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1784 * @caller: caller's return address
1785 *
1786 * Allocate enough pages to cover @size from the page level
1787 * allocator with @gfp_mask flags. Map them into contiguous
1788 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 1789 *
dcda9b04 1790 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
a7c3e901
MH
1791 * and __GFP_NOFAIL are not supported
1792 *
1793 * Any use of gfp flags outside of GFP_KERNEL should be consulted
1794 * with mm people.
1795 *
d0a21265 1796 */
8594a21c 1797static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 1798 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1799 int node, const void *caller)
d0a21265
DR
1800{
1801 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 1802 gfp_mask, prot, 0, node, caller);
d0a21265
DR
1803}
1804
930fc45a
CL
1805void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1806{
00ef2d2f 1807 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1808 __builtin_return_address(0));
930fc45a 1809}
1da177e4
LT
1810EXPORT_SYMBOL(__vmalloc);
1811
8594a21c
MH
1812static inline void *__vmalloc_node_flags(unsigned long size,
1813 int node, gfp_t flags)
1814{
1815 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1816 node, __builtin_return_address(0));
1817}
1818
1819
1820void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1821 void *caller)
1822{
1823 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1824}
1825
1da177e4
LT
1826/**
1827 * vmalloc - allocate virtually contiguous memory
1da177e4 1828 * @size: allocation size
1da177e4
LT
1829 * Allocate enough pages to cover @size from the page level
1830 * allocator and map them into contiguous kernel virtual space.
1831 *
c1c8897f 1832 * For tight control over page level allocator and protection flags
1da177e4
LT
1833 * use __vmalloc() instead.
1834 */
1835void *vmalloc(unsigned long size)
1836{
00ef2d2f 1837 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 1838 GFP_KERNEL);
1da177e4 1839}
1da177e4
LT
1840EXPORT_SYMBOL(vmalloc);
1841
e1ca7788
DY
1842/**
1843 * vzalloc - allocate virtually contiguous memory with zero fill
1844 * @size: allocation size
1845 * Allocate enough pages to cover @size from the page level
1846 * allocator and map them into contiguous kernel virtual space.
1847 * The memory allocated is set to zero.
1848 *
1849 * For tight control over page level allocator and protection flags
1850 * use __vmalloc() instead.
1851 */
1852void *vzalloc(unsigned long size)
1853{
00ef2d2f 1854 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 1855 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
1856}
1857EXPORT_SYMBOL(vzalloc);
1858
83342314 1859/**
ead04089
REB
1860 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1861 * @size: allocation size
83342314 1862 *
ead04089
REB
1863 * The resulting memory area is zeroed so it can be mapped to userspace
1864 * without leaking data.
83342314
NP
1865 */
1866void *vmalloc_user(unsigned long size)
1867{
bc84c535
RP
1868 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
1869 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
1870 VM_USERMAP, NUMA_NO_NODE,
1871 __builtin_return_address(0));
83342314
NP
1872}
1873EXPORT_SYMBOL(vmalloc_user);
1874
930fc45a
CL
1875/**
1876 * vmalloc_node - allocate memory on a specific node
930fc45a 1877 * @size: allocation size
d44e0780 1878 * @node: numa node
930fc45a
CL
1879 *
1880 * Allocate enough pages to cover @size from the page level
1881 * allocator and map them into contiguous kernel virtual space.
1882 *
c1c8897f 1883 * For tight control over page level allocator and protection flags
930fc45a
CL
1884 * use __vmalloc() instead.
1885 */
1886void *vmalloc_node(unsigned long size, int node)
1887{
19809c2d 1888 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 1889 node, __builtin_return_address(0));
930fc45a
CL
1890}
1891EXPORT_SYMBOL(vmalloc_node);
1892
e1ca7788
DY
1893/**
1894 * vzalloc_node - allocate memory on a specific node with zero fill
1895 * @size: allocation size
1896 * @node: numa node
1897 *
1898 * Allocate enough pages to cover @size from the page level
1899 * allocator and map them into contiguous kernel virtual space.
1900 * The memory allocated is set to zero.
1901 *
1902 * For tight control over page level allocator and protection flags
1903 * use __vmalloc_node() instead.
1904 */
1905void *vzalloc_node(unsigned long size, int node)
1906{
1907 return __vmalloc_node_flags(size, node,
19809c2d 1908 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
1909}
1910EXPORT_SYMBOL(vzalloc_node);
1911
1da177e4
LT
1912/**
1913 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1914 * @size: allocation size
1915 *
1916 * Kernel-internal function to allocate enough pages to cover @size
1917 * the page level allocator and map them into contiguous and
1918 * executable kernel virtual space.
1919 *
c1c8897f 1920 * For tight control over page level allocator and protection flags
1da177e4
LT
1921 * use __vmalloc() instead.
1922 */
1923
1da177e4
LT
1924void *vmalloc_exec(unsigned long size)
1925{
19809c2d 1926 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
00ef2d2f 1927 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1928}
1929
0d08e0d3 1930#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 1931#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 1932#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 1933#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 1934#else
698d0831
MH
1935/*
1936 * 64b systems should always have either DMA or DMA32 zones. For others
1937 * GFP_DMA32 should do the right thing and use the normal zone.
1938 */
1939#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
1940#endif
1941
1da177e4
LT
1942/**
1943 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1944 * @size: allocation size
1945 *
1946 * Allocate enough 32bit PA addressable pages to cover @size from the
1947 * page level allocator and map them into contiguous kernel virtual space.
1948 */
1949void *vmalloc_32(unsigned long size)
1950{
2dca6999 1951 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1952 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1953}
1da177e4
LT
1954EXPORT_SYMBOL(vmalloc_32);
1955
83342314 1956/**
ead04089 1957 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1958 * @size: allocation size
ead04089
REB
1959 *
1960 * The resulting memory area is 32bit addressable and zeroed so it can be
1961 * mapped to userspace without leaking data.
83342314
NP
1962 */
1963void *vmalloc_32_user(unsigned long size)
1964{
bc84c535
RP
1965 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
1966 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1967 VM_USERMAP, NUMA_NO_NODE,
1968 __builtin_return_address(0));
83342314
NP
1969}
1970EXPORT_SYMBOL(vmalloc_32_user);
1971
d0107eb0
KH
1972/*
1973 * small helper routine , copy contents to buf from addr.
1974 * If the page is not present, fill zero.
1975 */
1976
1977static int aligned_vread(char *buf, char *addr, unsigned long count)
1978{
1979 struct page *p;
1980 int copied = 0;
1981
1982 while (count) {
1983 unsigned long offset, length;
1984
891c49ab 1985 offset = offset_in_page(addr);
d0107eb0
KH
1986 length = PAGE_SIZE - offset;
1987 if (length > count)
1988 length = count;
1989 p = vmalloc_to_page(addr);
1990 /*
1991 * To do safe access to this _mapped_ area, we need
1992 * lock. But adding lock here means that we need to add
1993 * overhead of vmalloc()/vfree() calles for this _debug_
1994 * interface, rarely used. Instead of that, we'll use
1995 * kmap() and get small overhead in this access function.
1996 */
1997 if (p) {
1998 /*
1999 * we can expect USER0 is not used (see vread/vwrite's
2000 * function description)
2001 */
9b04c5fe 2002 void *map = kmap_atomic(p);
d0107eb0 2003 memcpy(buf, map + offset, length);
9b04c5fe 2004 kunmap_atomic(map);
d0107eb0
KH
2005 } else
2006 memset(buf, 0, length);
2007
2008 addr += length;
2009 buf += length;
2010 copied += length;
2011 count -= length;
2012 }
2013 return copied;
2014}
2015
2016static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2017{
2018 struct page *p;
2019 int copied = 0;
2020
2021 while (count) {
2022 unsigned long offset, length;
2023
891c49ab 2024 offset = offset_in_page(addr);
d0107eb0
KH
2025 length = PAGE_SIZE - offset;
2026 if (length > count)
2027 length = count;
2028 p = vmalloc_to_page(addr);
2029 /*
2030 * To do safe access to this _mapped_ area, we need
2031 * lock. But adding lock here means that we need to add
2032 * overhead of vmalloc()/vfree() calles for this _debug_
2033 * interface, rarely used. Instead of that, we'll use
2034 * kmap() and get small overhead in this access function.
2035 */
2036 if (p) {
2037 /*
2038 * we can expect USER0 is not used (see vread/vwrite's
2039 * function description)
2040 */
9b04c5fe 2041 void *map = kmap_atomic(p);
d0107eb0 2042 memcpy(map + offset, buf, length);
9b04c5fe 2043 kunmap_atomic(map);
d0107eb0
KH
2044 }
2045 addr += length;
2046 buf += length;
2047 copied += length;
2048 count -= length;
2049 }
2050 return copied;
2051}
2052
2053/**
2054 * vread() - read vmalloc area in a safe way.
2055 * @buf: buffer for reading data
2056 * @addr: vm address.
2057 * @count: number of bytes to be read.
2058 *
2059 * Returns # of bytes which addr and buf should be increased.
2060 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2061 * includes any intersect with alive vmalloc area.
2062 *
2063 * This function checks that addr is a valid vmalloc'ed area, and
2064 * copy data from that area to a given buffer. If the given memory range
2065 * of [addr...addr+count) includes some valid address, data is copied to
2066 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2067 * IOREMAP area is treated as memory hole and no copy is done.
2068 *
2069 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2070 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2071 *
2072 * Note: In usual ops, vread() is never necessary because the caller
2073 * should know vmalloc() area is valid and can use memcpy().
2074 * This is for routines which have to access vmalloc area without
2075 * any informaion, as /dev/kmem.
2076 *
2077 */
2078
1da177e4
LT
2079long vread(char *buf, char *addr, unsigned long count)
2080{
e81ce85f
JK
2081 struct vmap_area *va;
2082 struct vm_struct *vm;
1da177e4 2083 char *vaddr, *buf_start = buf;
d0107eb0 2084 unsigned long buflen = count;
1da177e4
LT
2085 unsigned long n;
2086
2087 /* Don't allow overflow */
2088 if ((unsigned long) addr + count < count)
2089 count = -(unsigned long) addr;
2090
e81ce85f
JK
2091 spin_lock(&vmap_area_lock);
2092 list_for_each_entry(va, &vmap_area_list, list) {
2093 if (!count)
2094 break;
2095
2096 if (!(va->flags & VM_VM_AREA))
2097 continue;
2098
2099 vm = va->vm;
2100 vaddr = (char *) vm->addr;
762216ab 2101 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2102 continue;
2103 while (addr < vaddr) {
2104 if (count == 0)
2105 goto finished;
2106 *buf = '\0';
2107 buf++;
2108 addr++;
2109 count--;
2110 }
762216ab 2111 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2112 if (n > count)
2113 n = count;
e81ce85f 2114 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2115 aligned_vread(buf, addr, n);
2116 else /* IOREMAP area is treated as memory hole */
2117 memset(buf, 0, n);
2118 buf += n;
2119 addr += n;
2120 count -= n;
1da177e4
LT
2121 }
2122finished:
e81ce85f 2123 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2124
2125 if (buf == buf_start)
2126 return 0;
2127 /* zero-fill memory holes */
2128 if (buf != buf_start + buflen)
2129 memset(buf, 0, buflen - (buf - buf_start));
2130
2131 return buflen;
1da177e4
LT
2132}
2133
d0107eb0
KH
2134/**
2135 * vwrite() - write vmalloc area in a safe way.
2136 * @buf: buffer for source data
2137 * @addr: vm address.
2138 * @count: number of bytes to be read.
2139 *
2140 * Returns # of bytes which addr and buf should be incresed.
2141 * (same number to @count).
2142 * If [addr...addr+count) doesn't includes any intersect with valid
2143 * vmalloc area, returns 0.
2144 *
2145 * This function checks that addr is a valid vmalloc'ed area, and
2146 * copy data from a buffer to the given addr. If specified range of
2147 * [addr...addr+count) includes some valid address, data is copied from
2148 * proper area of @buf. If there are memory holes, no copy to hole.
2149 * IOREMAP area is treated as memory hole and no copy is done.
2150 *
2151 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2152 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2153 *
2154 * Note: In usual ops, vwrite() is never necessary because the caller
2155 * should know vmalloc() area is valid and can use memcpy().
2156 * This is for routines which have to access vmalloc area without
2157 * any informaion, as /dev/kmem.
d0107eb0
KH
2158 */
2159
1da177e4
LT
2160long vwrite(char *buf, char *addr, unsigned long count)
2161{
e81ce85f
JK
2162 struct vmap_area *va;
2163 struct vm_struct *vm;
d0107eb0
KH
2164 char *vaddr;
2165 unsigned long n, buflen;
2166 int copied = 0;
1da177e4
LT
2167
2168 /* Don't allow overflow */
2169 if ((unsigned long) addr + count < count)
2170 count = -(unsigned long) addr;
d0107eb0 2171 buflen = count;
1da177e4 2172
e81ce85f
JK
2173 spin_lock(&vmap_area_lock);
2174 list_for_each_entry(va, &vmap_area_list, list) {
2175 if (!count)
2176 break;
2177
2178 if (!(va->flags & VM_VM_AREA))
2179 continue;
2180
2181 vm = va->vm;
2182 vaddr = (char *) vm->addr;
762216ab 2183 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2184 continue;
2185 while (addr < vaddr) {
2186 if (count == 0)
2187 goto finished;
2188 buf++;
2189 addr++;
2190 count--;
2191 }
762216ab 2192 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2193 if (n > count)
2194 n = count;
e81ce85f 2195 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2196 aligned_vwrite(buf, addr, n);
2197 copied++;
2198 }
2199 buf += n;
2200 addr += n;
2201 count -= n;
1da177e4
LT
2202 }
2203finished:
e81ce85f 2204 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2205 if (!copied)
2206 return 0;
2207 return buflen;
1da177e4 2208}
83342314
NP
2209
2210/**
e69e9d4a
HD
2211 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2212 * @vma: vma to cover
2213 * @uaddr: target user address to start at
2214 * @kaddr: virtual address of vmalloc kernel memory
2215 * @size: size of map area
7682486b
RD
2216 *
2217 * Returns: 0 for success, -Exxx on failure
83342314 2218 *
e69e9d4a
HD
2219 * This function checks that @kaddr is a valid vmalloc'ed area,
2220 * and that it is big enough to cover the range starting at
2221 * @uaddr in @vma. Will return failure if that criteria isn't
2222 * met.
83342314 2223 *
72fd4a35 2224 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2225 */
e69e9d4a
HD
2226int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2227 void *kaddr, unsigned long size)
83342314
NP
2228{
2229 struct vm_struct *area;
83342314 2230
e69e9d4a
HD
2231 size = PAGE_ALIGN(size);
2232
2233 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2234 return -EINVAL;
2235
e69e9d4a 2236 area = find_vm_area(kaddr);
83342314 2237 if (!area)
db64fe02 2238 return -EINVAL;
83342314
NP
2239
2240 if (!(area->flags & VM_USERMAP))
db64fe02 2241 return -EINVAL;
83342314 2242
401592d2 2243 if (kaddr + size > area->addr + get_vm_area_size(area))
db64fe02 2244 return -EINVAL;
83342314 2245
83342314 2246 do {
e69e9d4a 2247 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2248 int ret;
2249
83342314
NP
2250 ret = vm_insert_page(vma, uaddr, page);
2251 if (ret)
2252 return ret;
2253
2254 uaddr += PAGE_SIZE;
e69e9d4a
HD
2255 kaddr += PAGE_SIZE;
2256 size -= PAGE_SIZE;
2257 } while (size > 0);
83342314 2258
314e51b9 2259 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2260
db64fe02 2261 return 0;
83342314 2262}
e69e9d4a
HD
2263EXPORT_SYMBOL(remap_vmalloc_range_partial);
2264
2265/**
2266 * remap_vmalloc_range - map vmalloc pages to userspace
2267 * @vma: vma to cover (map full range of vma)
2268 * @addr: vmalloc memory
2269 * @pgoff: number of pages into addr before first page to map
2270 *
2271 * Returns: 0 for success, -Exxx on failure
2272 *
2273 * This function checks that addr is a valid vmalloc'ed area, and
2274 * that it is big enough to cover the vma. Will return failure if
2275 * that criteria isn't met.
2276 *
2277 * Similar to remap_pfn_range() (see mm/memory.c)
2278 */
2279int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2280 unsigned long pgoff)
2281{
2282 return remap_vmalloc_range_partial(vma, vma->vm_start,
2283 addr + (pgoff << PAGE_SHIFT),
2284 vma->vm_end - vma->vm_start);
2285}
83342314
NP
2286EXPORT_SYMBOL(remap_vmalloc_range);
2287
1eeb66a1
CH
2288/*
2289 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2290 * have one.
2291 */
3b32123d 2292void __weak vmalloc_sync_all(void)
1eeb66a1
CH
2293{
2294}
5f4352fb
JF
2295
2296
2f569afd 2297static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2298{
cd12909c
DV
2299 pte_t ***p = data;
2300
2301 if (p) {
2302 *(*p) = pte;
2303 (*p)++;
2304 }
5f4352fb
JF
2305 return 0;
2306}
2307
2308/**
2309 * alloc_vm_area - allocate a range of kernel address space
2310 * @size: size of the area
cd12909c 2311 * @ptes: returns the PTEs for the address space
7682486b
RD
2312 *
2313 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2314 *
2315 * This function reserves a range of kernel address space, and
2316 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2317 * are created.
2318 *
2319 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2320 * allocated for the VM area are returned.
5f4352fb 2321 */
cd12909c 2322struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2323{
2324 struct vm_struct *area;
2325
23016969
CL
2326 area = get_vm_area_caller(size, VM_IOREMAP,
2327 __builtin_return_address(0));
5f4352fb
JF
2328 if (area == NULL)
2329 return NULL;
2330
2331 /*
2332 * This ensures that page tables are constructed for this region
2333 * of kernel virtual address space and mapped into init_mm.
2334 */
2335 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2336 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2337 free_vm_area(area);
2338 return NULL;
2339 }
2340
5f4352fb
JF
2341 return area;
2342}
2343EXPORT_SYMBOL_GPL(alloc_vm_area);
2344
2345void free_vm_area(struct vm_struct *area)
2346{
2347 struct vm_struct *ret;
2348 ret = remove_vm_area(area->addr);
2349 BUG_ON(ret != area);
2350 kfree(area);
2351}
2352EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2353
4f8b02b4 2354#ifdef CONFIG_SMP
ca23e405
TH
2355static struct vmap_area *node_to_va(struct rb_node *n)
2356{
4583e773 2357 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
2358}
2359
2360/**
2361 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2362 * @end: target address
2363 * @pnext: out arg for the next vmap_area
2364 * @pprev: out arg for the previous vmap_area
2365 *
2366 * Returns: %true if either or both of next and prev are found,
2367 * %false if no vmap_area exists
2368 *
2369 * Find vmap_areas end addresses of which enclose @end. ie. if not
2370 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2371 */
2372static bool pvm_find_next_prev(unsigned long end,
2373 struct vmap_area **pnext,
2374 struct vmap_area **pprev)
2375{
2376 struct rb_node *n = vmap_area_root.rb_node;
2377 struct vmap_area *va = NULL;
2378
2379 while (n) {
2380 va = rb_entry(n, struct vmap_area, rb_node);
2381 if (end < va->va_end)
2382 n = n->rb_left;
2383 else if (end > va->va_end)
2384 n = n->rb_right;
2385 else
2386 break;
2387 }
2388
2389 if (!va)
2390 return false;
2391
2392 if (va->va_end > end) {
2393 *pnext = va;
2394 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2395 } else {
2396 *pprev = va;
2397 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2398 }
2399 return true;
2400}
2401
2402/**
2403 * pvm_determine_end - find the highest aligned address between two vmap_areas
2404 * @pnext: in/out arg for the next vmap_area
2405 * @pprev: in/out arg for the previous vmap_area
2406 * @align: alignment
2407 *
2408 * Returns: determined end address
2409 *
2410 * Find the highest aligned address between *@pnext and *@pprev below
2411 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2412 * down address is between the end addresses of the two vmap_areas.
2413 *
2414 * Please note that the address returned by this function may fall
2415 * inside *@pnext vmap_area. The caller is responsible for checking
2416 * that.
2417 */
2418static unsigned long pvm_determine_end(struct vmap_area **pnext,
2419 struct vmap_area **pprev,
2420 unsigned long align)
2421{
2422 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2423 unsigned long addr;
2424
2425 if (*pnext)
2426 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2427 else
2428 addr = vmalloc_end;
2429
2430 while (*pprev && (*pprev)->va_end > addr) {
2431 *pnext = *pprev;
2432 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2433 }
2434
2435 return addr;
2436}
2437
2438/**
2439 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2440 * @offsets: array containing offset of each area
2441 * @sizes: array containing size of each area
2442 * @nr_vms: the number of areas to allocate
2443 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2444 *
2445 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2446 * vm_structs on success, %NULL on failure
2447 *
2448 * Percpu allocator wants to use congruent vm areas so that it can
2449 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2450 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2451 * be scattered pretty far, distance between two areas easily going up
2452 * to gigabytes. To avoid interacting with regular vmallocs, these
2453 * areas are allocated from top.
ca23e405
TH
2454 *
2455 * Despite its complicated look, this allocator is rather simple. It
2456 * does everything top-down and scans areas from the end looking for
2457 * matching slot. While scanning, if any of the areas overlaps with
2458 * existing vmap_area, the base address is pulled down to fit the
2459 * area. Scanning is repeated till all the areas fit and then all
c568da28 2460 * necessary data structures are inserted and the result is returned.
ca23e405
TH
2461 */
2462struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2463 const size_t *sizes, int nr_vms,
ec3f64fc 2464 size_t align)
ca23e405
TH
2465{
2466 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2467 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2468 struct vmap_area **vas, *prev, *next;
2469 struct vm_struct **vms;
2470 int area, area2, last_area, term_area;
2471 unsigned long base, start, end, last_end;
2472 bool purged = false;
2473
ca23e405 2474 /* verify parameters and allocate data structures */
891c49ab 2475 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
2476 for (last_area = 0, area = 0; area < nr_vms; area++) {
2477 start = offsets[area];
2478 end = start + sizes[area];
2479
2480 /* is everything aligned properly? */
2481 BUG_ON(!IS_ALIGNED(offsets[area], align));
2482 BUG_ON(!IS_ALIGNED(sizes[area], align));
2483
2484 /* detect the area with the highest address */
2485 if (start > offsets[last_area])
2486 last_area = area;
2487
c568da28 2488 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
2489 unsigned long start2 = offsets[area2];
2490 unsigned long end2 = start2 + sizes[area2];
2491
c568da28 2492 BUG_ON(start2 < end && start < end2);
ca23e405
TH
2493 }
2494 }
2495 last_end = offsets[last_area] + sizes[last_area];
2496
2497 if (vmalloc_end - vmalloc_start < last_end) {
2498 WARN_ON(true);
2499 return NULL;
2500 }
2501
4d67d860
TM
2502 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2503 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2504 if (!vas || !vms)
f1db7afd 2505 goto err_free2;
ca23e405
TH
2506
2507 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2508 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2509 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2510 if (!vas[area] || !vms[area])
2511 goto err_free;
2512 }
2513retry:
2514 spin_lock(&vmap_area_lock);
2515
2516 /* start scanning - we scan from the top, begin with the last area */
2517 area = term_area = last_area;
2518 start = offsets[area];
2519 end = start + sizes[area];
2520
2521 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2522 base = vmalloc_end - last_end;
2523 goto found;
2524 }
2525 base = pvm_determine_end(&next, &prev, align) - end;
2526
2527 while (true) {
2528 BUG_ON(next && next->va_end <= base + end);
2529 BUG_ON(prev && prev->va_end > base + end);
2530
2531 /*
2532 * base might have underflowed, add last_end before
2533 * comparing.
2534 */
2535 if (base + last_end < vmalloc_start + last_end) {
2536 spin_unlock(&vmap_area_lock);
2537 if (!purged) {
2538 purge_vmap_area_lazy();
2539 purged = true;
2540 goto retry;
2541 }
2542 goto err_free;
2543 }
2544
2545 /*
2546 * If next overlaps, move base downwards so that it's
2547 * right below next and then recheck.
2548 */
2549 if (next && next->va_start < base + end) {
2550 base = pvm_determine_end(&next, &prev, align) - end;
2551 term_area = area;
2552 continue;
2553 }
2554
2555 /*
2556 * If prev overlaps, shift down next and prev and move
2557 * base so that it's right below new next and then
2558 * recheck.
2559 */
2560 if (prev && prev->va_end > base + start) {
2561 next = prev;
2562 prev = node_to_va(rb_prev(&next->rb_node));
2563 base = pvm_determine_end(&next, &prev, align) - end;
2564 term_area = area;
2565 continue;
2566 }
2567
2568 /*
2569 * This area fits, move on to the previous one. If
2570 * the previous one is the terminal one, we're done.
2571 */
2572 area = (area + nr_vms - 1) % nr_vms;
2573 if (area == term_area)
2574 break;
2575 start = offsets[area];
2576 end = start + sizes[area];
2577 pvm_find_next_prev(base + end, &next, &prev);
2578 }
2579found:
2580 /* we've found a fitting base, insert all va's */
2581 for (area = 0; area < nr_vms; area++) {
2582 struct vmap_area *va = vas[area];
2583
2584 va->va_start = base + offsets[area];
2585 va->va_end = va->va_start + sizes[area];
2586 __insert_vmap_area(va);
2587 }
2588
2589 vmap_area_pcpu_hole = base + offsets[last_area];
2590
2591 spin_unlock(&vmap_area_lock);
2592
2593 /* insert all vm's */
2594 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
2595 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2596 pcpu_get_vm_areas);
ca23e405
TH
2597
2598 kfree(vas);
2599 return vms;
2600
2601err_free:
2602 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2603 kfree(vas[area]);
2604 kfree(vms[area]);
ca23e405 2605 }
f1db7afd 2606err_free2:
ca23e405
TH
2607 kfree(vas);
2608 kfree(vms);
2609 return NULL;
2610}
2611
2612/**
2613 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2614 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2615 * @nr_vms: the number of allocated areas
2616 *
2617 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2618 */
2619void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2620{
2621 int i;
2622
2623 for (i = 0; i < nr_vms; i++)
2624 free_vm_area(vms[i]);
2625 kfree(vms);
2626}
4f8b02b4 2627#endif /* CONFIG_SMP */
a10aa579
CL
2628
2629#ifdef CONFIG_PROC_FS
2630static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2631 __acquires(&vmap_area_lock)
a10aa579 2632{
d4033afd 2633 spin_lock(&vmap_area_lock);
3f500069 2634 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
2635}
2636
2637static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2638{
3f500069 2639 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
2640}
2641
2642static void s_stop(struct seq_file *m, void *p)
d4033afd 2643 __releases(&vmap_area_lock)
a10aa579 2644{
d4033afd 2645 spin_unlock(&vmap_area_lock);
a10aa579
CL
2646}
2647
a47a126a
ED
2648static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2649{
e5adfffc 2650 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2651 unsigned int nr, *counters = m->private;
2652
2653 if (!counters)
2654 return;
2655
af12346c
WL
2656 if (v->flags & VM_UNINITIALIZED)
2657 return;
7e5b528b
DV
2658 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2659 smp_rmb();
af12346c 2660
a47a126a
ED
2661 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2662
2663 for (nr = 0; nr < v->nr_pages; nr++)
2664 counters[page_to_nid(v->pages[nr])]++;
2665
2666 for_each_node_state(nr, N_HIGH_MEMORY)
2667 if (counters[nr])
2668 seq_printf(m, " N%u=%u", nr, counters[nr]);
2669 }
2670}
2671
a10aa579
CL
2672static int s_show(struct seq_file *m, void *p)
2673{
3f500069 2674 struct vmap_area *va;
d4033afd
JK
2675 struct vm_struct *v;
2676
3f500069 2677 va = list_entry(p, struct vmap_area, list);
2678
c2ce8c14
WL
2679 /*
2680 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2681 * behalf of vmap area is being tear down or vm_map_ram allocation.
2682 */
78c72746
YX
2683 if (!(va->flags & VM_VM_AREA)) {
2684 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2685 (void *)va->va_start, (void *)va->va_end,
2686 va->va_end - va->va_start,
2687 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2688
d4033afd 2689 return 0;
78c72746 2690 }
d4033afd
JK
2691
2692 v = va->vm;
a10aa579 2693
45ec1690 2694 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2695 v->addr, v->addr + v->size, v->size);
2696
62c70bce
JP
2697 if (v->caller)
2698 seq_printf(m, " %pS", v->caller);
23016969 2699
a10aa579
CL
2700 if (v->nr_pages)
2701 seq_printf(m, " pages=%d", v->nr_pages);
2702
2703 if (v->phys_addr)
199eaa05 2704 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
2705
2706 if (v->flags & VM_IOREMAP)
f4527c90 2707 seq_puts(m, " ioremap");
a10aa579
CL
2708
2709 if (v->flags & VM_ALLOC)
f4527c90 2710 seq_puts(m, " vmalloc");
a10aa579
CL
2711
2712 if (v->flags & VM_MAP)
f4527c90 2713 seq_puts(m, " vmap");
a10aa579
CL
2714
2715 if (v->flags & VM_USERMAP)
f4527c90 2716 seq_puts(m, " user");
a10aa579 2717
244d63ee 2718 if (is_vmalloc_addr(v->pages))
f4527c90 2719 seq_puts(m, " vpages");
a10aa579 2720
a47a126a 2721 show_numa_info(m, v);
a10aa579
CL
2722 seq_putc(m, '\n');
2723 return 0;
2724}
2725
5f6a6a9c 2726static const struct seq_operations vmalloc_op = {
a10aa579
CL
2727 .start = s_start,
2728 .next = s_next,
2729 .stop = s_stop,
2730 .show = s_show,
2731};
5f6a6a9c 2732
5f6a6a9c
AD
2733static int __init proc_vmalloc_init(void)
2734{
fddda2b7 2735 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 2736 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
2737 &vmalloc_op,
2738 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 2739 else
0825a6f9 2740 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
2741 return 0;
2742}
2743module_init(proc_vmalloc_init);
db3808c1 2744
a10aa579
CL
2745#endif
2746