]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmalloc.c
mm, vmalloc: export vmap_area_list, instead of vmlist
[thirdparty/linux.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02
NP
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
f0aa6617 27#include <linux/pfn.h>
89219d37 28#include <linux/kmemleak.h>
60063497 29#include <linux/atomic.h>
1da177e4
LT
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
2dca6999 32#include <asm/shmparam.h>
1da177e4 33
db64fe02 34/*** Page table manipulation functions ***/
b221385b 35
1da177e4
LT
36static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37{
38 pte_t *pte;
39
40 pte = pte_offset_kernel(pmd, addr);
41 do {
42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 } while (pte++, addr += PAGE_SIZE, addr != end);
45}
46
db64fe02 47static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
48{
49 pmd_t *pmd;
50 unsigned long next;
51
52 pmd = pmd_offset(pud, addr);
53 do {
54 next = pmd_addr_end(addr, end);
55 if (pmd_none_or_clear_bad(pmd))
56 continue;
57 vunmap_pte_range(pmd, addr, next);
58 } while (pmd++, addr = next, addr != end);
59}
60
db64fe02 61static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
62{
63 pud_t *pud;
64 unsigned long next;
65
66 pud = pud_offset(pgd, addr);
67 do {
68 next = pud_addr_end(addr, end);
69 if (pud_none_or_clear_bad(pud))
70 continue;
71 vunmap_pmd_range(pud, addr, next);
72 } while (pud++, addr = next, addr != end);
73}
74
db64fe02 75static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
76{
77 pgd_t *pgd;
78 unsigned long next;
1da177e4
LT
79
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
1da177e4
LT
82 do {
83 next = pgd_addr_end(addr, end);
84 if (pgd_none_or_clear_bad(pgd))
85 continue;
86 vunmap_pud_range(pgd, addr, next);
87 } while (pgd++, addr = next, addr != end);
1da177e4
LT
88}
89
90static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
92{
93 pte_t *pte;
94
db64fe02
NP
95 /*
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
98 */
99
872fec16 100 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
101 if (!pte)
102 return -ENOMEM;
103 do {
db64fe02
NP
104 struct page *page = pages[*nr];
105
106 if (WARN_ON(!pte_none(*pte)))
107 return -EBUSY;
108 if (WARN_ON(!page))
1da177e4
LT
109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 111 (*nr)++;
1da177e4
LT
112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
114}
115
db64fe02
NP
116static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
118{
119 pmd_t *pmd;
120 unsigned long next;
121
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
db64fe02 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
131}
132
db64fe02
NP
133static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
135{
136 pud_t *pud;
137 unsigned long next;
138
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
db64fe02 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
148}
149
db64fe02
NP
150/*
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
153 *
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 */
8fc48985
TH
156static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 pgprot_t prot, struct page **pages)
1da177e4
LT
158{
159 pgd_t *pgd;
160 unsigned long next;
2e4e27c7 161 unsigned long addr = start;
db64fe02
NP
162 int err = 0;
163 int nr = 0;
1da177e4
LT
164
165 BUG_ON(addr >= end);
166 pgd = pgd_offset_k(addr);
1da177e4
LT
167 do {
168 next = pgd_addr_end(addr, end);
db64fe02 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 170 if (err)
bf88c8c8 171 return err;
1da177e4 172 } while (pgd++, addr = next, addr != end);
db64fe02 173
db64fe02 174 return nr;
1da177e4
LT
175}
176
8fc48985
TH
177static int vmap_page_range(unsigned long start, unsigned long end,
178 pgprot_t prot, struct page **pages)
179{
180 int ret;
181
182 ret = vmap_page_range_noflush(start, end, prot, pages);
183 flush_cache_vmap(start, end);
184 return ret;
185}
186
81ac3ad9 187int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
188{
189 /*
ab4f2ee1 190 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
191 * and fall back on vmalloc() if that fails. Others
192 * just put it in the vmalloc space.
193 */
194#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 unsigned long addr = (unsigned long)x;
196 if (addr >= MODULES_VADDR && addr < MODULES_END)
197 return 1;
198#endif
199 return is_vmalloc_addr(x);
200}
201
48667e7a 202/*
db64fe02 203 * Walk a vmap address to the struct page it maps.
48667e7a 204 */
b3bdda02 205struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
206{
207 unsigned long addr = (unsigned long) vmalloc_addr;
208 struct page *page = NULL;
209 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 210
7aa413de
IM
211 /*
212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 * architectures that do not vmalloc module space
214 */
73bdf0a6 215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 216
48667e7a 217 if (!pgd_none(*pgd)) {
db64fe02 218 pud_t *pud = pud_offset(pgd, addr);
48667e7a 219 if (!pud_none(*pud)) {
db64fe02 220 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 221 if (!pmd_none(*pmd)) {
db64fe02
NP
222 pte_t *ptep, pte;
223
48667e7a
CL
224 ptep = pte_offset_map(pmd, addr);
225 pte = *ptep;
226 if (pte_present(pte))
227 page = pte_page(pte);
228 pte_unmap(ptep);
229 }
230 }
231 }
232 return page;
233}
234EXPORT_SYMBOL(vmalloc_to_page);
235
236/*
237 * Map a vmalloc()-space virtual address to the physical page frame number.
238 */
b3bdda02 239unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
240{
241 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
242}
243EXPORT_SYMBOL(vmalloc_to_pfn);
244
db64fe02
NP
245
246/*** Global kva allocator ***/
247
248#define VM_LAZY_FREE 0x01
249#define VM_LAZY_FREEING 0x02
250#define VM_VM_AREA 0x04
251
252struct vmap_area {
253 unsigned long va_start;
254 unsigned long va_end;
255 unsigned long flags;
256 struct rb_node rb_node; /* address sorted rbtree */
257 struct list_head list; /* address sorted list */
258 struct list_head purge_list; /* "lazy purge" list */
db1aecaf 259 struct vm_struct *vm;
db64fe02
NP
260 struct rcu_head rcu_head;
261};
262
263static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
264/* Export for kexec only */
265LIST_HEAD(vmap_area_list);
89699605
NP
266static struct rb_root vmap_area_root = RB_ROOT;
267
268/* The vmap cache globals are protected by vmap_area_lock */
269static struct rb_node *free_vmap_cache;
270static unsigned long cached_hole_size;
271static unsigned long cached_vstart;
272static unsigned long cached_align;
273
ca23e405 274static unsigned long vmap_area_pcpu_hole;
db64fe02 275
f1c4069e
JK
276/*** Old vmalloc interfaces ***/
277static DEFINE_RWLOCK(vmlist_lock);
278static struct vm_struct *vmlist;
279
db64fe02 280static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 281{
db64fe02
NP
282 struct rb_node *n = vmap_area_root.rb_node;
283
284 while (n) {
285 struct vmap_area *va;
286
287 va = rb_entry(n, struct vmap_area, rb_node);
288 if (addr < va->va_start)
289 n = n->rb_left;
290 else if (addr > va->va_start)
291 n = n->rb_right;
292 else
293 return va;
294 }
295
296 return NULL;
297}
298
299static void __insert_vmap_area(struct vmap_area *va)
300{
301 struct rb_node **p = &vmap_area_root.rb_node;
302 struct rb_node *parent = NULL;
303 struct rb_node *tmp;
304
305 while (*p) {
170168d0 306 struct vmap_area *tmp_va;
db64fe02
NP
307
308 parent = *p;
170168d0
NK
309 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
310 if (va->va_start < tmp_va->va_end)
db64fe02 311 p = &(*p)->rb_left;
170168d0 312 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
313 p = &(*p)->rb_right;
314 else
315 BUG();
316 }
317
318 rb_link_node(&va->rb_node, parent, p);
319 rb_insert_color(&va->rb_node, &vmap_area_root);
320
321 /* address-sort this list so it is usable like the vmlist */
322 tmp = rb_prev(&va->rb_node);
323 if (tmp) {
324 struct vmap_area *prev;
325 prev = rb_entry(tmp, struct vmap_area, rb_node);
326 list_add_rcu(&va->list, &prev->list);
327 } else
328 list_add_rcu(&va->list, &vmap_area_list);
329}
330
331static void purge_vmap_area_lazy(void);
332
333/*
334 * Allocate a region of KVA of the specified size and alignment, within the
335 * vstart and vend.
336 */
337static struct vmap_area *alloc_vmap_area(unsigned long size,
338 unsigned long align,
339 unsigned long vstart, unsigned long vend,
340 int node, gfp_t gfp_mask)
341{
342 struct vmap_area *va;
343 struct rb_node *n;
1da177e4 344 unsigned long addr;
db64fe02 345 int purged = 0;
89699605 346 struct vmap_area *first;
db64fe02 347
7766970c 348 BUG_ON(!size);
db64fe02 349 BUG_ON(size & ~PAGE_MASK);
89699605 350 BUG_ON(!is_power_of_2(align));
db64fe02 351
db64fe02
NP
352 va = kmalloc_node(sizeof(struct vmap_area),
353 gfp_mask & GFP_RECLAIM_MASK, node);
354 if (unlikely(!va))
355 return ERR_PTR(-ENOMEM);
356
357retry:
358 spin_lock(&vmap_area_lock);
89699605
NP
359 /*
360 * Invalidate cache if we have more permissive parameters.
361 * cached_hole_size notes the largest hole noticed _below_
362 * the vmap_area cached in free_vmap_cache: if size fits
363 * into that hole, we want to scan from vstart to reuse
364 * the hole instead of allocating above free_vmap_cache.
365 * Note that __free_vmap_area may update free_vmap_cache
366 * without updating cached_hole_size or cached_align.
367 */
368 if (!free_vmap_cache ||
369 size < cached_hole_size ||
370 vstart < cached_vstart ||
371 align < cached_align) {
372nocache:
373 cached_hole_size = 0;
374 free_vmap_cache = NULL;
375 }
376 /* record if we encounter less permissive parameters */
377 cached_vstart = vstart;
378 cached_align = align;
379
380 /* find starting point for our search */
381 if (free_vmap_cache) {
382 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 383 addr = ALIGN(first->va_end, align);
89699605
NP
384 if (addr < vstart)
385 goto nocache;
386 if (addr + size - 1 < addr)
387 goto overflow;
388
389 } else {
390 addr = ALIGN(vstart, align);
391 if (addr + size - 1 < addr)
392 goto overflow;
393
394 n = vmap_area_root.rb_node;
395 first = NULL;
396
397 while (n) {
db64fe02
NP
398 struct vmap_area *tmp;
399 tmp = rb_entry(n, struct vmap_area, rb_node);
400 if (tmp->va_end >= addr) {
db64fe02 401 first = tmp;
89699605
NP
402 if (tmp->va_start <= addr)
403 break;
404 n = n->rb_left;
405 } else
db64fe02 406 n = n->rb_right;
89699605 407 }
db64fe02
NP
408
409 if (!first)
410 goto found;
db64fe02 411 }
89699605
NP
412
413 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 414 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
415 if (addr + cached_hole_size < first->va_start)
416 cached_hole_size = first->va_start - addr;
248ac0e1 417 addr = ALIGN(first->va_end, align);
89699605
NP
418 if (addr + size - 1 < addr)
419 goto overflow;
420
92ca922f 421 if (list_is_last(&first->list, &vmap_area_list))
89699605 422 goto found;
92ca922f
H
423
424 first = list_entry(first->list.next,
425 struct vmap_area, list);
db64fe02
NP
426 }
427
89699605
NP
428found:
429 if (addr + size > vend)
430 goto overflow;
db64fe02
NP
431
432 va->va_start = addr;
433 va->va_end = addr + size;
434 va->flags = 0;
435 __insert_vmap_area(va);
89699605 436 free_vmap_cache = &va->rb_node;
db64fe02
NP
437 spin_unlock(&vmap_area_lock);
438
89699605
NP
439 BUG_ON(va->va_start & (align-1));
440 BUG_ON(va->va_start < vstart);
441 BUG_ON(va->va_end > vend);
442
db64fe02 443 return va;
89699605
NP
444
445overflow:
446 spin_unlock(&vmap_area_lock);
447 if (!purged) {
448 purge_vmap_area_lazy();
449 purged = 1;
450 goto retry;
451 }
452 if (printk_ratelimit())
453 printk(KERN_WARNING
454 "vmap allocation for size %lu failed: "
455 "use vmalloc=<size> to increase size.\n", size);
456 kfree(va);
457 return ERR_PTR(-EBUSY);
db64fe02
NP
458}
459
db64fe02
NP
460static void __free_vmap_area(struct vmap_area *va)
461{
462 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
463
464 if (free_vmap_cache) {
465 if (va->va_end < cached_vstart) {
466 free_vmap_cache = NULL;
467 } else {
468 struct vmap_area *cache;
469 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
470 if (va->va_start <= cache->va_start) {
471 free_vmap_cache = rb_prev(&va->rb_node);
472 /*
473 * We don't try to update cached_hole_size or
474 * cached_align, but it won't go very wrong.
475 */
476 }
477 }
478 }
db64fe02
NP
479 rb_erase(&va->rb_node, &vmap_area_root);
480 RB_CLEAR_NODE(&va->rb_node);
481 list_del_rcu(&va->list);
482
ca23e405
TH
483 /*
484 * Track the highest possible candidate for pcpu area
485 * allocation. Areas outside of vmalloc area can be returned
486 * here too, consider only end addresses which fall inside
487 * vmalloc area proper.
488 */
489 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
490 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
491
14769de9 492 kfree_rcu(va, rcu_head);
db64fe02
NP
493}
494
495/*
496 * Free a region of KVA allocated by alloc_vmap_area
497 */
498static void free_vmap_area(struct vmap_area *va)
499{
500 spin_lock(&vmap_area_lock);
501 __free_vmap_area(va);
502 spin_unlock(&vmap_area_lock);
503}
504
505/*
506 * Clear the pagetable entries of a given vmap_area
507 */
508static void unmap_vmap_area(struct vmap_area *va)
509{
510 vunmap_page_range(va->va_start, va->va_end);
511}
512
cd52858c
NP
513static void vmap_debug_free_range(unsigned long start, unsigned long end)
514{
515 /*
516 * Unmap page tables and force a TLB flush immediately if
517 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
518 * bugs similarly to those in linear kernel virtual address
519 * space after a page has been freed.
520 *
521 * All the lazy freeing logic is still retained, in order to
522 * minimise intrusiveness of this debugging feature.
523 *
524 * This is going to be *slow* (linear kernel virtual address
525 * debugging doesn't do a broadcast TLB flush so it is a lot
526 * faster).
527 */
528#ifdef CONFIG_DEBUG_PAGEALLOC
529 vunmap_page_range(start, end);
530 flush_tlb_kernel_range(start, end);
531#endif
532}
533
db64fe02
NP
534/*
535 * lazy_max_pages is the maximum amount of virtual address space we gather up
536 * before attempting to purge with a TLB flush.
537 *
538 * There is a tradeoff here: a larger number will cover more kernel page tables
539 * and take slightly longer to purge, but it will linearly reduce the number of
540 * global TLB flushes that must be performed. It would seem natural to scale
541 * this number up linearly with the number of CPUs (because vmapping activity
542 * could also scale linearly with the number of CPUs), however it is likely
543 * that in practice, workloads might be constrained in other ways that mean
544 * vmap activity will not scale linearly with CPUs. Also, I want to be
545 * conservative and not introduce a big latency on huge systems, so go with
546 * a less aggressive log scale. It will still be an improvement over the old
547 * code, and it will be simple to change the scale factor if we find that it
548 * becomes a problem on bigger systems.
549 */
550static unsigned long lazy_max_pages(void)
551{
552 unsigned int log;
553
554 log = fls(num_online_cpus());
555
556 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
557}
558
559static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
560
02b709df
NP
561/* for per-CPU blocks */
562static void purge_fragmented_blocks_allcpus(void);
563
3ee48b6a
CW
564/*
565 * called before a call to iounmap() if the caller wants vm_area_struct's
566 * immediately freed.
567 */
568void set_iounmap_nonlazy(void)
569{
570 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
571}
572
db64fe02
NP
573/*
574 * Purges all lazily-freed vmap areas.
575 *
576 * If sync is 0 then don't purge if there is already a purge in progress.
577 * If force_flush is 1, then flush kernel TLBs between *start and *end even
578 * if we found no lazy vmap areas to unmap (callers can use this to optimise
579 * their own TLB flushing).
580 * Returns with *start = min(*start, lowest purged address)
581 * *end = max(*end, highest purged address)
582 */
583static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
584 int sync, int force_flush)
585{
46666d8a 586 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
587 LIST_HEAD(valist);
588 struct vmap_area *va;
cbb76676 589 struct vmap_area *n_va;
db64fe02
NP
590 int nr = 0;
591
592 /*
593 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
594 * should not expect such behaviour. This just simplifies locking for
595 * the case that isn't actually used at the moment anyway.
596 */
597 if (!sync && !force_flush) {
46666d8a 598 if (!spin_trylock(&purge_lock))
db64fe02
NP
599 return;
600 } else
46666d8a 601 spin_lock(&purge_lock);
db64fe02 602
02b709df
NP
603 if (sync)
604 purge_fragmented_blocks_allcpus();
605
db64fe02
NP
606 rcu_read_lock();
607 list_for_each_entry_rcu(va, &vmap_area_list, list) {
608 if (va->flags & VM_LAZY_FREE) {
609 if (va->va_start < *start)
610 *start = va->va_start;
611 if (va->va_end > *end)
612 *end = va->va_end;
613 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
db64fe02
NP
614 list_add_tail(&va->purge_list, &valist);
615 va->flags |= VM_LAZY_FREEING;
616 va->flags &= ~VM_LAZY_FREE;
617 }
618 }
619 rcu_read_unlock();
620
88f50044 621 if (nr)
db64fe02 622 atomic_sub(nr, &vmap_lazy_nr);
db64fe02
NP
623
624 if (nr || force_flush)
625 flush_tlb_kernel_range(*start, *end);
626
627 if (nr) {
628 spin_lock(&vmap_area_lock);
cbb76676 629 list_for_each_entry_safe(va, n_va, &valist, purge_list)
db64fe02
NP
630 __free_vmap_area(va);
631 spin_unlock(&vmap_area_lock);
632 }
46666d8a 633 spin_unlock(&purge_lock);
db64fe02
NP
634}
635
496850e5
NP
636/*
637 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
638 * is already purging.
639 */
640static void try_purge_vmap_area_lazy(void)
641{
642 unsigned long start = ULONG_MAX, end = 0;
643
644 __purge_vmap_area_lazy(&start, &end, 0, 0);
645}
646
db64fe02
NP
647/*
648 * Kick off a purge of the outstanding lazy areas.
649 */
650static void purge_vmap_area_lazy(void)
651{
652 unsigned long start = ULONG_MAX, end = 0;
653
496850e5 654 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
655}
656
657/*
64141da5
JF
658 * Free a vmap area, caller ensuring that the area has been unmapped
659 * and flush_cache_vunmap had been called for the correct range
660 * previously.
db64fe02 661 */
64141da5 662static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
663{
664 va->flags |= VM_LAZY_FREE;
665 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
666 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 667 try_purge_vmap_area_lazy();
db64fe02
NP
668}
669
64141da5
JF
670/*
671 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
672 * called for the correct range previously.
673 */
674static void free_unmap_vmap_area_noflush(struct vmap_area *va)
675{
676 unmap_vmap_area(va);
677 free_vmap_area_noflush(va);
678}
679
b29acbdc
NP
680/*
681 * Free and unmap a vmap area
682 */
683static void free_unmap_vmap_area(struct vmap_area *va)
684{
685 flush_cache_vunmap(va->va_start, va->va_end);
686 free_unmap_vmap_area_noflush(va);
687}
688
db64fe02
NP
689static struct vmap_area *find_vmap_area(unsigned long addr)
690{
691 struct vmap_area *va;
692
693 spin_lock(&vmap_area_lock);
694 va = __find_vmap_area(addr);
695 spin_unlock(&vmap_area_lock);
696
697 return va;
698}
699
700static void free_unmap_vmap_area_addr(unsigned long addr)
701{
702 struct vmap_area *va;
703
704 va = find_vmap_area(addr);
705 BUG_ON(!va);
706 free_unmap_vmap_area(va);
707}
708
709
710/*** Per cpu kva allocator ***/
711
712/*
713 * vmap space is limited especially on 32 bit architectures. Ensure there is
714 * room for at least 16 percpu vmap blocks per CPU.
715 */
716/*
717 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
718 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
719 * instead (we just need a rough idea)
720 */
721#if BITS_PER_LONG == 32
722#define VMALLOC_SPACE (128UL*1024*1024)
723#else
724#define VMALLOC_SPACE (128UL*1024*1024*1024)
725#endif
726
727#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
728#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
729#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
730#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
731#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
732#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
733#define VMAP_BBMAP_BITS \
734 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
735 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
736 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
737
738#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
739
9b463334
JF
740static bool vmap_initialized __read_mostly = false;
741
db64fe02
NP
742struct vmap_block_queue {
743 spinlock_t lock;
744 struct list_head free;
db64fe02
NP
745};
746
747struct vmap_block {
748 spinlock_t lock;
749 struct vmap_area *va;
750 struct vmap_block_queue *vbq;
751 unsigned long free, dirty;
752 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
753 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
de560423
NP
754 struct list_head free_list;
755 struct rcu_head rcu_head;
02b709df 756 struct list_head purge;
db64fe02
NP
757};
758
759/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
760static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
761
762/*
763 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
764 * in the free path. Could get rid of this if we change the API to return a
765 * "cookie" from alloc, to be passed to free. But no big deal yet.
766 */
767static DEFINE_SPINLOCK(vmap_block_tree_lock);
768static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
769
770/*
771 * We should probably have a fallback mechanism to allocate virtual memory
772 * out of partially filled vmap blocks. However vmap block sizing should be
773 * fairly reasonable according to the vmalloc size, so it shouldn't be a
774 * big problem.
775 */
776
777static unsigned long addr_to_vb_idx(unsigned long addr)
778{
779 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
780 addr /= VMAP_BLOCK_SIZE;
781 return addr;
782}
783
784static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
785{
786 struct vmap_block_queue *vbq;
787 struct vmap_block *vb;
788 struct vmap_area *va;
789 unsigned long vb_idx;
790 int node, err;
791
792 node = numa_node_id();
793
794 vb = kmalloc_node(sizeof(struct vmap_block),
795 gfp_mask & GFP_RECLAIM_MASK, node);
796 if (unlikely(!vb))
797 return ERR_PTR(-ENOMEM);
798
799 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
800 VMALLOC_START, VMALLOC_END,
801 node, gfp_mask);
ddf9c6d4 802 if (IS_ERR(va)) {
db64fe02 803 kfree(vb);
e7d86340 804 return ERR_CAST(va);
db64fe02
NP
805 }
806
807 err = radix_tree_preload(gfp_mask);
808 if (unlikely(err)) {
809 kfree(vb);
810 free_vmap_area(va);
811 return ERR_PTR(err);
812 }
813
814 spin_lock_init(&vb->lock);
815 vb->va = va;
816 vb->free = VMAP_BBMAP_BITS;
817 vb->dirty = 0;
818 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
819 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
820 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
821
822 vb_idx = addr_to_vb_idx(va->va_start);
823 spin_lock(&vmap_block_tree_lock);
824 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
825 spin_unlock(&vmap_block_tree_lock);
826 BUG_ON(err);
827 radix_tree_preload_end();
828
829 vbq = &get_cpu_var(vmap_block_queue);
830 vb->vbq = vbq;
831 spin_lock(&vbq->lock);
de560423 832 list_add_rcu(&vb->free_list, &vbq->free);
db64fe02 833 spin_unlock(&vbq->lock);
3f04ba85 834 put_cpu_var(vmap_block_queue);
db64fe02
NP
835
836 return vb;
837}
838
db64fe02
NP
839static void free_vmap_block(struct vmap_block *vb)
840{
841 struct vmap_block *tmp;
842 unsigned long vb_idx;
843
db64fe02
NP
844 vb_idx = addr_to_vb_idx(vb->va->va_start);
845 spin_lock(&vmap_block_tree_lock);
846 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
847 spin_unlock(&vmap_block_tree_lock);
848 BUG_ON(tmp != vb);
849
64141da5 850 free_vmap_area_noflush(vb->va);
22a3c7d1 851 kfree_rcu(vb, rcu_head);
db64fe02
NP
852}
853
02b709df
NP
854static void purge_fragmented_blocks(int cpu)
855{
856 LIST_HEAD(purge);
857 struct vmap_block *vb;
858 struct vmap_block *n_vb;
859 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
860
861 rcu_read_lock();
862 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
863
864 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
865 continue;
866
867 spin_lock(&vb->lock);
868 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
869 vb->free = 0; /* prevent further allocs after releasing lock */
870 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
871 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
872 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
873 spin_lock(&vbq->lock);
874 list_del_rcu(&vb->free_list);
875 spin_unlock(&vbq->lock);
876 spin_unlock(&vb->lock);
877 list_add_tail(&vb->purge, &purge);
878 } else
879 spin_unlock(&vb->lock);
880 }
881 rcu_read_unlock();
882
883 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
884 list_del(&vb->purge);
885 free_vmap_block(vb);
886 }
887}
888
889static void purge_fragmented_blocks_thiscpu(void)
890{
891 purge_fragmented_blocks(smp_processor_id());
892}
893
894static void purge_fragmented_blocks_allcpus(void)
895{
896 int cpu;
897
898 for_each_possible_cpu(cpu)
899 purge_fragmented_blocks(cpu);
900}
901
db64fe02
NP
902static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
903{
904 struct vmap_block_queue *vbq;
905 struct vmap_block *vb;
906 unsigned long addr = 0;
907 unsigned int order;
02b709df 908 int purge = 0;
db64fe02
NP
909
910 BUG_ON(size & ~PAGE_MASK);
911 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
912 if (WARN_ON(size == 0)) {
913 /*
914 * Allocating 0 bytes isn't what caller wants since
915 * get_order(0) returns funny result. Just warn and terminate
916 * early.
917 */
918 return NULL;
919 }
db64fe02
NP
920 order = get_order(size);
921
922again:
923 rcu_read_lock();
924 vbq = &get_cpu_var(vmap_block_queue);
925 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
926 int i;
927
928 spin_lock(&vb->lock);
02b709df
NP
929 if (vb->free < 1UL << order)
930 goto next;
931
db64fe02
NP
932 i = bitmap_find_free_region(vb->alloc_map,
933 VMAP_BBMAP_BITS, order);
934
02b709df
NP
935 if (i < 0) {
936 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
937 /* fragmented and no outstanding allocations */
938 BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
939 purge = 1;
db64fe02 940 }
02b709df 941 goto next;
db64fe02 942 }
02b709df
NP
943 addr = vb->va->va_start + (i << PAGE_SHIFT);
944 BUG_ON(addr_to_vb_idx(addr) !=
945 addr_to_vb_idx(vb->va->va_start));
946 vb->free -= 1UL << order;
947 if (vb->free == 0) {
948 spin_lock(&vbq->lock);
949 list_del_rcu(&vb->free_list);
950 spin_unlock(&vbq->lock);
951 }
952 spin_unlock(&vb->lock);
953 break;
954next:
db64fe02
NP
955 spin_unlock(&vb->lock);
956 }
02b709df
NP
957
958 if (purge)
959 purge_fragmented_blocks_thiscpu();
960
3f04ba85 961 put_cpu_var(vmap_block_queue);
db64fe02
NP
962 rcu_read_unlock();
963
964 if (!addr) {
965 vb = new_vmap_block(gfp_mask);
966 if (IS_ERR(vb))
967 return vb;
968 goto again;
969 }
970
971 return (void *)addr;
972}
973
974static void vb_free(const void *addr, unsigned long size)
975{
976 unsigned long offset;
977 unsigned long vb_idx;
978 unsigned int order;
979 struct vmap_block *vb;
980
981 BUG_ON(size & ~PAGE_MASK);
982 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
983
984 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
985
db64fe02
NP
986 order = get_order(size);
987
988 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
989
990 vb_idx = addr_to_vb_idx((unsigned long)addr);
991 rcu_read_lock();
992 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
993 rcu_read_unlock();
994 BUG_ON(!vb);
995
64141da5
JF
996 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
997
db64fe02 998 spin_lock(&vb->lock);
de560423 999 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
d086817d 1000
db64fe02
NP
1001 vb->dirty += 1UL << order;
1002 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1003 BUG_ON(vb->free);
db64fe02
NP
1004 spin_unlock(&vb->lock);
1005 free_vmap_block(vb);
1006 } else
1007 spin_unlock(&vb->lock);
1008}
1009
1010/**
1011 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1012 *
1013 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1014 * to amortize TLB flushing overheads. What this means is that any page you
1015 * have now, may, in a former life, have been mapped into kernel virtual
1016 * address by the vmap layer and so there might be some CPUs with TLB entries
1017 * still referencing that page (additional to the regular 1:1 kernel mapping).
1018 *
1019 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1020 * be sure that none of the pages we have control over will have any aliases
1021 * from the vmap layer.
1022 */
1023void vm_unmap_aliases(void)
1024{
1025 unsigned long start = ULONG_MAX, end = 0;
1026 int cpu;
1027 int flush = 0;
1028
9b463334
JF
1029 if (unlikely(!vmap_initialized))
1030 return;
1031
db64fe02
NP
1032 for_each_possible_cpu(cpu) {
1033 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1034 struct vmap_block *vb;
1035
1036 rcu_read_lock();
1037 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1038 int i;
1039
1040 spin_lock(&vb->lock);
1041 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1042 while (i < VMAP_BBMAP_BITS) {
1043 unsigned long s, e;
1044 int j;
1045 j = find_next_zero_bit(vb->dirty_map,
1046 VMAP_BBMAP_BITS, i);
1047
1048 s = vb->va->va_start + (i << PAGE_SHIFT);
1049 e = vb->va->va_start + (j << PAGE_SHIFT);
db64fe02
NP
1050 flush = 1;
1051
1052 if (s < start)
1053 start = s;
1054 if (e > end)
1055 end = e;
1056
1057 i = j;
1058 i = find_next_bit(vb->dirty_map,
1059 VMAP_BBMAP_BITS, i);
1060 }
1061 spin_unlock(&vb->lock);
1062 }
1063 rcu_read_unlock();
1064 }
1065
1066 __purge_vmap_area_lazy(&start, &end, 1, flush);
1067}
1068EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1069
1070/**
1071 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1072 * @mem: the pointer returned by vm_map_ram
1073 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1074 */
1075void vm_unmap_ram(const void *mem, unsigned int count)
1076{
1077 unsigned long size = count << PAGE_SHIFT;
1078 unsigned long addr = (unsigned long)mem;
1079
1080 BUG_ON(!addr);
1081 BUG_ON(addr < VMALLOC_START);
1082 BUG_ON(addr > VMALLOC_END);
1083 BUG_ON(addr & (PAGE_SIZE-1));
1084
1085 debug_check_no_locks_freed(mem, size);
cd52858c 1086 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
1087
1088 if (likely(count <= VMAP_MAX_ALLOC))
1089 vb_free(mem, size);
1090 else
1091 free_unmap_vmap_area_addr(addr);
1092}
1093EXPORT_SYMBOL(vm_unmap_ram);
1094
1095/**
1096 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1097 * @pages: an array of pointers to the pages to be mapped
1098 * @count: number of pages
1099 * @node: prefer to allocate data structures on this node
1100 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad
RD
1101 *
1102 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1103 */
1104void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1105{
1106 unsigned long size = count << PAGE_SHIFT;
1107 unsigned long addr;
1108 void *mem;
1109
1110 if (likely(count <= VMAP_MAX_ALLOC)) {
1111 mem = vb_alloc(size, GFP_KERNEL);
1112 if (IS_ERR(mem))
1113 return NULL;
1114 addr = (unsigned long)mem;
1115 } else {
1116 struct vmap_area *va;
1117 va = alloc_vmap_area(size, PAGE_SIZE,
1118 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1119 if (IS_ERR(va))
1120 return NULL;
1121
1122 addr = va->va_start;
1123 mem = (void *)addr;
1124 }
1125 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1126 vm_unmap_ram(mem, count);
1127 return NULL;
1128 }
1129 return mem;
1130}
1131EXPORT_SYMBOL(vm_map_ram);
1132
be9b7335
NP
1133/**
1134 * vm_area_add_early - add vmap area early during boot
1135 * @vm: vm_struct to add
1136 *
1137 * This function is used to add fixed kernel vm area to vmlist before
1138 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1139 * should contain proper values and the other fields should be zero.
1140 *
1141 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1142 */
1143void __init vm_area_add_early(struct vm_struct *vm)
1144{
1145 struct vm_struct *tmp, **p;
1146
1147 BUG_ON(vmap_initialized);
1148 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1149 if (tmp->addr >= vm->addr) {
1150 BUG_ON(tmp->addr < vm->addr + vm->size);
1151 break;
1152 } else
1153 BUG_ON(tmp->addr + tmp->size > vm->addr);
1154 }
1155 vm->next = *p;
1156 *p = vm;
1157}
1158
f0aa6617
TH
1159/**
1160 * vm_area_register_early - register vmap area early during boot
1161 * @vm: vm_struct to register
c0c0a293 1162 * @align: requested alignment
f0aa6617
TH
1163 *
1164 * This function is used to register kernel vm area before
1165 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1166 * proper values on entry and other fields should be zero. On return,
1167 * vm->addr contains the allocated address.
1168 *
1169 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1170 */
c0c0a293 1171void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1172{
1173 static size_t vm_init_off __initdata;
c0c0a293
TH
1174 unsigned long addr;
1175
1176 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1177 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1178
c0c0a293 1179 vm->addr = (void *)addr;
f0aa6617 1180
be9b7335 1181 vm_area_add_early(vm);
f0aa6617
TH
1182}
1183
db64fe02
NP
1184void __init vmalloc_init(void)
1185{
822c18f2
IK
1186 struct vmap_area *va;
1187 struct vm_struct *tmp;
db64fe02
NP
1188 int i;
1189
1190 for_each_possible_cpu(i) {
1191 struct vmap_block_queue *vbq;
1192
1193 vbq = &per_cpu(vmap_block_queue, i);
1194 spin_lock_init(&vbq->lock);
1195 INIT_LIST_HEAD(&vbq->free);
db64fe02 1196 }
9b463334 1197
822c18f2
IK
1198 /* Import existing vmlist entries. */
1199 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1200 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1201 va->flags = VM_VM_AREA;
822c18f2
IK
1202 va->va_start = (unsigned long)tmp->addr;
1203 va->va_end = va->va_start + tmp->size;
dbda591d 1204 va->vm = tmp;
822c18f2
IK
1205 __insert_vmap_area(va);
1206 }
ca23e405
TH
1207
1208 vmap_area_pcpu_hole = VMALLOC_END;
1209
9b463334 1210 vmap_initialized = true;
db64fe02
NP
1211}
1212
8fc48985
TH
1213/**
1214 * map_kernel_range_noflush - map kernel VM area with the specified pages
1215 * @addr: start of the VM area to map
1216 * @size: size of the VM area to map
1217 * @prot: page protection flags to use
1218 * @pages: pages to map
1219 *
1220 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1221 * specify should have been allocated using get_vm_area() and its
1222 * friends.
1223 *
1224 * NOTE:
1225 * This function does NOT do any cache flushing. The caller is
1226 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1227 * before calling this function.
1228 *
1229 * RETURNS:
1230 * The number of pages mapped on success, -errno on failure.
1231 */
1232int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1233 pgprot_t prot, struct page **pages)
1234{
1235 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1236}
1237
1238/**
1239 * unmap_kernel_range_noflush - unmap kernel VM area
1240 * @addr: start of the VM area to unmap
1241 * @size: size of the VM area to unmap
1242 *
1243 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1244 * specify should have been allocated using get_vm_area() and its
1245 * friends.
1246 *
1247 * NOTE:
1248 * This function does NOT do any cache flushing. The caller is
1249 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1250 * before calling this function and flush_tlb_kernel_range() after.
1251 */
1252void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1253{
1254 vunmap_page_range(addr, addr + size);
1255}
81e88fdc 1256EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1257
1258/**
1259 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1260 * @addr: start of the VM area to unmap
1261 * @size: size of the VM area to unmap
1262 *
1263 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1264 * the unmapping and tlb after.
1265 */
db64fe02
NP
1266void unmap_kernel_range(unsigned long addr, unsigned long size)
1267{
1268 unsigned long end = addr + size;
f6fcba70
TH
1269
1270 flush_cache_vunmap(addr, end);
db64fe02
NP
1271 vunmap_page_range(addr, end);
1272 flush_tlb_kernel_range(addr, end);
1273}
1274
1275int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1276{
1277 unsigned long addr = (unsigned long)area->addr;
1278 unsigned long end = addr + area->size - PAGE_SIZE;
1279 int err;
1280
1281 err = vmap_page_range(addr, end, prot, *pages);
1282 if (err > 0) {
1283 *pages += err;
1284 err = 0;
1285 }
1286
1287 return err;
1288}
1289EXPORT_SYMBOL_GPL(map_vm_area);
1290
f5252e00 1291static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1292 unsigned long flags, const void *caller)
cf88c790 1293{
c69480ad 1294 spin_lock(&vmap_area_lock);
cf88c790
TH
1295 vm->flags = flags;
1296 vm->addr = (void *)va->va_start;
1297 vm->size = va->va_end - va->va_start;
1298 vm->caller = caller;
db1aecaf 1299 va->vm = vm;
cf88c790 1300 va->flags |= VM_VM_AREA;
c69480ad 1301 spin_unlock(&vmap_area_lock);
f5252e00 1302}
cf88c790 1303
f5252e00
MH
1304static void insert_vmalloc_vmlist(struct vm_struct *vm)
1305{
1306 struct vm_struct *tmp, **p;
1307
d4033afd
JK
1308 /*
1309 * Before removing VM_UNLIST,
1310 * we should make sure that vm has proper values.
1311 * Pair with smp_rmb() in show_numa_info().
1312 */
1313 smp_wmb();
f5252e00 1314 vm->flags &= ~VM_UNLIST;
d4033afd 1315
cf88c790
TH
1316 write_lock(&vmlist_lock);
1317 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1318 if (tmp->addr >= vm->addr)
1319 break;
1320 }
1321 vm->next = *p;
1322 *p = vm;
1323 write_unlock(&vmlist_lock);
1324}
1325
f5252e00 1326static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1327 unsigned long flags, const void *caller)
f5252e00
MH
1328{
1329 setup_vmalloc_vm(vm, va, flags, caller);
1330 insert_vmalloc_vmlist(vm);
1331}
1332
db64fe02 1333static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1334 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1335 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1336{
0006526d 1337 struct vmap_area *va;
db64fe02 1338 struct vm_struct *area;
1da177e4 1339
52fd24ca 1340 BUG_ON(in_interrupt());
1da177e4
LT
1341 if (flags & VM_IOREMAP) {
1342 int bit = fls(size);
1343
1344 if (bit > IOREMAP_MAX_ORDER)
1345 bit = IOREMAP_MAX_ORDER;
1346 else if (bit < PAGE_SHIFT)
1347 bit = PAGE_SHIFT;
1348
1349 align = 1ul << bit;
1350 }
db64fe02 1351
1da177e4 1352 size = PAGE_ALIGN(size);
31be8309
OH
1353 if (unlikely(!size))
1354 return NULL;
1da177e4 1355
cf88c790 1356 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1357 if (unlikely(!area))
1358 return NULL;
1359
1da177e4
LT
1360 /*
1361 * We always allocate a guard page.
1362 */
1363 size += PAGE_SIZE;
1364
db64fe02
NP
1365 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1366 if (IS_ERR(va)) {
1367 kfree(area);
1368 return NULL;
1da177e4 1369 }
1da177e4 1370
f5252e00
MH
1371 /*
1372 * When this function is called from __vmalloc_node_range,
1373 * we do not add vm_struct to vmlist here to avoid
1374 * accessing uninitialized members of vm_struct such as
1375 * pages and nr_pages fields. They will be set later.
1376 * To distinguish it from others, we use a VM_UNLIST flag.
1377 */
1378 if (flags & VM_UNLIST)
1379 setup_vmalloc_vm(area, va, flags, caller);
1380 else
1381 insert_vmalloc_vm(area, va, flags, caller);
1382
1da177e4 1383 return area;
1da177e4
LT
1384}
1385
930fc45a
CL
1386struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1387 unsigned long start, unsigned long end)
1388{
00ef2d2f
DR
1389 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1390 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1391}
5992b6da 1392EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1393
c2968612
BH
1394struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1395 unsigned long start, unsigned long end,
5e6cafc8 1396 const void *caller)
c2968612 1397{
00ef2d2f
DR
1398 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1399 GFP_KERNEL, caller);
c2968612
BH
1400}
1401
1da177e4 1402/**
183ff22b 1403 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1404 * @size: size of the area
1405 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1406 *
1407 * Search an area of @size in the kernel virtual mapping area,
1408 * and reserved it for out purposes. Returns the area descriptor
1409 * on success or %NULL on failure.
1410 */
1411struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1412{
2dca6999 1413 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1414 NUMA_NO_NODE, GFP_KERNEL,
1415 __builtin_return_address(0));
23016969
CL
1416}
1417
1418struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1419 const void *caller)
23016969 1420{
2dca6999 1421 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1422 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1423}
1424
e9da6e99
MS
1425/**
1426 * find_vm_area - find a continuous kernel virtual area
1427 * @addr: base address
1428 *
1429 * Search for the kernel VM area starting at @addr, and return it.
1430 * It is up to the caller to do all required locking to keep the returned
1431 * pointer valid.
1432 */
1433struct vm_struct *find_vm_area(const void *addr)
83342314 1434{
db64fe02 1435 struct vmap_area *va;
83342314 1436
db64fe02
NP
1437 va = find_vmap_area((unsigned long)addr);
1438 if (va && va->flags & VM_VM_AREA)
db1aecaf 1439 return va->vm;
1da177e4 1440
1da177e4 1441 return NULL;
1da177e4
LT
1442}
1443
7856dfeb 1444/**
183ff22b 1445 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1446 * @addr: base address
1447 *
1448 * Search for the kernel VM area starting at @addr, and remove it.
1449 * This function returns the found VM area, but using it is NOT safe
1450 * on SMP machines, except for its size or flags.
1451 */
b3bdda02 1452struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1453{
db64fe02
NP
1454 struct vmap_area *va;
1455
1456 va = find_vmap_area((unsigned long)addr);
1457 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1458 struct vm_struct *vm = va->vm;
f5252e00 1459
c69480ad
JK
1460 spin_lock(&vmap_area_lock);
1461 va->vm = NULL;
1462 va->flags &= ~VM_VM_AREA;
1463 spin_unlock(&vmap_area_lock);
1464
f5252e00
MH
1465 if (!(vm->flags & VM_UNLIST)) {
1466 struct vm_struct *tmp, **p;
1467 /*
1468 * remove from list and disallow access to
1469 * this vm_struct before unmap. (address range
1470 * confliction is maintained by vmap.)
1471 */
1472 write_lock(&vmlist_lock);
1473 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1474 ;
1475 *p = tmp->next;
1476 write_unlock(&vmlist_lock);
1477 }
db64fe02 1478
dd32c279
KH
1479 vmap_debug_free_range(va->va_start, va->va_end);
1480 free_unmap_vmap_area(va);
1481 vm->size -= PAGE_SIZE;
1482
db64fe02
NP
1483 return vm;
1484 }
1485 return NULL;
7856dfeb
AK
1486}
1487
b3bdda02 1488static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1489{
1490 struct vm_struct *area;
1491
1492 if (!addr)
1493 return;
1494
1495 if ((PAGE_SIZE-1) & (unsigned long)addr) {
4c8573e2 1496 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1da177e4
LT
1497 return;
1498 }
1499
1500 area = remove_vm_area(addr);
1501 if (unlikely(!area)) {
4c8573e2 1502 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1503 addr);
1da177e4
LT
1504 return;
1505 }
1506
9a11b49a 1507 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1508 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1509
1da177e4
LT
1510 if (deallocate_pages) {
1511 int i;
1512
1513 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1514 struct page *page = area->pages[i];
1515
1516 BUG_ON(!page);
1517 __free_page(page);
1da177e4
LT
1518 }
1519
8757d5fa 1520 if (area->flags & VM_VPAGES)
1da177e4
LT
1521 vfree(area->pages);
1522 else
1523 kfree(area->pages);
1524 }
1525
1526 kfree(area);
1527 return;
1528}
1529
1530/**
1531 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1532 * @addr: memory base address
1533 *
183ff22b 1534 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1535 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1536 * NULL, no operation is performed.
1da177e4 1537 *
80e93eff 1538 * Must not be called in interrupt context.
1da177e4 1539 */
b3bdda02 1540void vfree(const void *addr)
1da177e4
LT
1541{
1542 BUG_ON(in_interrupt());
89219d37
CM
1543
1544 kmemleak_free(addr);
1545
1da177e4
LT
1546 __vunmap(addr, 1);
1547}
1da177e4
LT
1548EXPORT_SYMBOL(vfree);
1549
1550/**
1551 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1552 * @addr: memory base address
1553 *
1554 * Free the virtually contiguous memory area starting at @addr,
1555 * which was created from the page array passed to vmap().
1556 *
80e93eff 1557 * Must not be called in interrupt context.
1da177e4 1558 */
b3bdda02 1559void vunmap(const void *addr)
1da177e4
LT
1560{
1561 BUG_ON(in_interrupt());
34754b69 1562 might_sleep();
1da177e4
LT
1563 __vunmap(addr, 0);
1564}
1da177e4
LT
1565EXPORT_SYMBOL(vunmap);
1566
1567/**
1568 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1569 * @pages: array of page pointers
1570 * @count: number of pages to map
1571 * @flags: vm_area->flags
1572 * @prot: page protection for the mapping
1573 *
1574 * Maps @count pages from @pages into contiguous kernel virtual
1575 * space.
1576 */
1577void *vmap(struct page **pages, unsigned int count,
1578 unsigned long flags, pgprot_t prot)
1579{
1580 struct vm_struct *area;
1581
34754b69
PZ
1582 might_sleep();
1583
4481374c 1584 if (count > totalram_pages)
1da177e4
LT
1585 return NULL;
1586
23016969
CL
1587 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1588 __builtin_return_address(0));
1da177e4
LT
1589 if (!area)
1590 return NULL;
23016969 1591
1da177e4
LT
1592 if (map_vm_area(area, prot, &pages)) {
1593 vunmap(area->addr);
1594 return NULL;
1595 }
1596
1597 return area->addr;
1598}
1da177e4
LT
1599EXPORT_SYMBOL(vmap);
1600
2dca6999
DM
1601static void *__vmalloc_node(unsigned long size, unsigned long align,
1602 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1603 int node, const void *caller);
e31d9eb5 1604static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
5e6cafc8 1605 pgprot_t prot, int node, const void *caller)
1da177e4 1606{
22943ab1 1607 const int order = 0;
1da177e4
LT
1608 struct page **pages;
1609 unsigned int nr_pages, array_size, i;
976d6dfb 1610 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1da177e4
LT
1611
1612 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1613 array_size = (nr_pages * sizeof(struct page *));
1614
1615 area->nr_pages = nr_pages;
1616 /* Please note that the recursion is strictly bounded. */
8757d5fa 1617 if (array_size > PAGE_SIZE) {
976d6dfb 1618 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
23016969 1619 PAGE_KERNEL, node, caller);
8757d5fa 1620 area->flags |= VM_VPAGES;
286e1ea3 1621 } else {
976d6dfb 1622 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1623 }
1da177e4 1624 area->pages = pages;
23016969 1625 area->caller = caller;
1da177e4
LT
1626 if (!area->pages) {
1627 remove_vm_area(area->addr);
1628 kfree(area);
1629 return NULL;
1630 }
1da177e4
LT
1631
1632 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8 1633 struct page *page;
22943ab1 1634 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
bf53d6f8 1635
930fc45a 1636 if (node < 0)
22943ab1 1637 page = alloc_page(tmp_mask);
930fc45a 1638 else
22943ab1 1639 page = alloc_pages_node(node, tmp_mask, order);
bf53d6f8
CL
1640
1641 if (unlikely(!page)) {
1da177e4
LT
1642 /* Successfully allocated i pages, free them in __vunmap() */
1643 area->nr_pages = i;
1644 goto fail;
1645 }
bf53d6f8 1646 area->pages[i] = page;
1da177e4
LT
1647 }
1648
1649 if (map_vm_area(area, prot, &pages))
1650 goto fail;
1651 return area->addr;
1652
1653fail:
3ee9a4f0
JP
1654 warn_alloc_failed(gfp_mask, order,
1655 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
22943ab1 1656 (area->nr_pages*PAGE_SIZE), area->size);
1da177e4
LT
1657 vfree(area->addr);
1658 return NULL;
1659}
1660
1661/**
d0a21265 1662 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1663 * @size: allocation size
2dca6999 1664 * @align: desired alignment
d0a21265
DR
1665 * @start: vm area range start
1666 * @end: vm area range end
1da177e4
LT
1667 * @gfp_mask: flags for the page level allocator
1668 * @prot: protection mask for the allocated pages
00ef2d2f 1669 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1670 * @caller: caller's return address
1da177e4
LT
1671 *
1672 * Allocate enough pages to cover @size from the page level
1673 * allocator with @gfp_mask flags. Map them into contiguous
1674 * kernel virtual space, using a pagetable protection of @prot.
1675 */
d0a21265
DR
1676void *__vmalloc_node_range(unsigned long size, unsigned long align,
1677 unsigned long start, unsigned long end, gfp_t gfp_mask,
5e6cafc8 1678 pgprot_t prot, int node, const void *caller)
1da177e4
LT
1679{
1680 struct vm_struct *area;
89219d37
CM
1681 void *addr;
1682 unsigned long real_size = size;
1da177e4
LT
1683
1684 size = PAGE_ALIGN(size);
4481374c 1685 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
de7d2b56 1686 goto fail;
1da177e4 1687
f5252e00
MH
1688 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
1689 start, end, node, gfp_mask, caller);
1da177e4 1690 if (!area)
de7d2b56 1691 goto fail;
1da177e4 1692
89219d37 1693 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1368edf0
MG
1694 if (!addr)
1695 return NULL;
89219d37 1696
f5252e00
MH
1697 /*
1698 * In this function, newly allocated vm_struct is not added
1699 * to vmlist at __get_vm_area_node(). so, it is added here.
1700 */
1701 insert_vmalloc_vmlist(area);
1702
89219d37
CM
1703 /*
1704 * A ref_count = 3 is needed because the vm_struct and vmap_area
1705 * structures allocated in the __get_vm_area_node() function contain
1706 * references to the virtual address of the vmalloc'ed block.
1707 */
1708 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1709
1710 return addr;
de7d2b56
JP
1711
1712fail:
1713 warn_alloc_failed(gfp_mask, 0,
1714 "vmalloc: allocation failure: %lu bytes\n",
1715 real_size);
1716 return NULL;
1da177e4
LT
1717}
1718
d0a21265
DR
1719/**
1720 * __vmalloc_node - allocate virtually contiguous memory
1721 * @size: allocation size
1722 * @align: desired alignment
1723 * @gfp_mask: flags for the page level allocator
1724 * @prot: protection mask for the allocated pages
00ef2d2f 1725 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1726 * @caller: caller's return address
1727 *
1728 * Allocate enough pages to cover @size from the page level
1729 * allocator with @gfp_mask flags. Map them into contiguous
1730 * kernel virtual space, using a pagetable protection of @prot.
1731 */
1732static void *__vmalloc_node(unsigned long size, unsigned long align,
1733 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1734 int node, const void *caller)
d0a21265
DR
1735{
1736 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1737 gfp_mask, prot, node, caller);
1738}
1739
930fc45a
CL
1740void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1741{
00ef2d2f 1742 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1743 __builtin_return_address(0));
930fc45a 1744}
1da177e4
LT
1745EXPORT_SYMBOL(__vmalloc);
1746
e1ca7788
DY
1747static inline void *__vmalloc_node_flags(unsigned long size,
1748 int node, gfp_t flags)
1749{
1750 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1751 node, __builtin_return_address(0));
1752}
1753
1da177e4
LT
1754/**
1755 * vmalloc - allocate virtually contiguous memory
1da177e4 1756 * @size: allocation size
1da177e4
LT
1757 * Allocate enough pages to cover @size from the page level
1758 * allocator and map them into contiguous kernel virtual space.
1759 *
c1c8897f 1760 * For tight control over page level allocator and protection flags
1da177e4
LT
1761 * use __vmalloc() instead.
1762 */
1763void *vmalloc(unsigned long size)
1764{
00ef2d2f
DR
1765 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1766 GFP_KERNEL | __GFP_HIGHMEM);
1da177e4 1767}
1da177e4
LT
1768EXPORT_SYMBOL(vmalloc);
1769
e1ca7788
DY
1770/**
1771 * vzalloc - allocate virtually contiguous memory with zero fill
1772 * @size: allocation size
1773 * Allocate enough pages to cover @size from the page level
1774 * allocator and map them into contiguous kernel virtual space.
1775 * The memory allocated is set to zero.
1776 *
1777 * For tight control over page level allocator and protection flags
1778 * use __vmalloc() instead.
1779 */
1780void *vzalloc(unsigned long size)
1781{
00ef2d2f 1782 return __vmalloc_node_flags(size, NUMA_NO_NODE,
e1ca7788
DY
1783 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1784}
1785EXPORT_SYMBOL(vzalloc);
1786
83342314 1787/**
ead04089
REB
1788 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1789 * @size: allocation size
83342314 1790 *
ead04089
REB
1791 * The resulting memory area is zeroed so it can be mapped to userspace
1792 * without leaking data.
83342314
NP
1793 */
1794void *vmalloc_user(unsigned long size)
1795{
1796 struct vm_struct *area;
1797 void *ret;
1798
2dca6999
DM
1799 ret = __vmalloc_node(size, SHMLBA,
1800 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
00ef2d2f
DR
1801 PAGE_KERNEL, NUMA_NO_NODE,
1802 __builtin_return_address(0));
2b4ac44e 1803 if (ret) {
db64fe02 1804 area = find_vm_area(ret);
2b4ac44e 1805 area->flags |= VM_USERMAP;
2b4ac44e 1806 }
83342314
NP
1807 return ret;
1808}
1809EXPORT_SYMBOL(vmalloc_user);
1810
930fc45a
CL
1811/**
1812 * vmalloc_node - allocate memory on a specific node
930fc45a 1813 * @size: allocation size
d44e0780 1814 * @node: numa node
930fc45a
CL
1815 *
1816 * Allocate enough pages to cover @size from the page level
1817 * allocator and map them into contiguous kernel virtual space.
1818 *
c1c8897f 1819 * For tight control over page level allocator and protection flags
930fc45a
CL
1820 * use __vmalloc() instead.
1821 */
1822void *vmalloc_node(unsigned long size, int node)
1823{
2dca6999 1824 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1825 node, __builtin_return_address(0));
930fc45a
CL
1826}
1827EXPORT_SYMBOL(vmalloc_node);
1828
e1ca7788
DY
1829/**
1830 * vzalloc_node - allocate memory on a specific node with zero fill
1831 * @size: allocation size
1832 * @node: numa node
1833 *
1834 * Allocate enough pages to cover @size from the page level
1835 * allocator and map them into contiguous kernel virtual space.
1836 * The memory allocated is set to zero.
1837 *
1838 * For tight control over page level allocator and protection flags
1839 * use __vmalloc_node() instead.
1840 */
1841void *vzalloc_node(unsigned long size, int node)
1842{
1843 return __vmalloc_node_flags(size, node,
1844 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1845}
1846EXPORT_SYMBOL(vzalloc_node);
1847
4dc3b16b
PP
1848#ifndef PAGE_KERNEL_EXEC
1849# define PAGE_KERNEL_EXEC PAGE_KERNEL
1850#endif
1851
1da177e4
LT
1852/**
1853 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1854 * @size: allocation size
1855 *
1856 * Kernel-internal function to allocate enough pages to cover @size
1857 * the page level allocator and map them into contiguous and
1858 * executable kernel virtual space.
1859 *
c1c8897f 1860 * For tight control over page level allocator and protection flags
1da177e4
LT
1861 * use __vmalloc() instead.
1862 */
1863
1da177e4
LT
1864void *vmalloc_exec(unsigned long size)
1865{
2dca6999 1866 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
00ef2d2f 1867 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1868}
1869
0d08e0d3 1870#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1871#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1872#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1873#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1874#else
1875#define GFP_VMALLOC32 GFP_KERNEL
1876#endif
1877
1da177e4
LT
1878/**
1879 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1880 * @size: allocation size
1881 *
1882 * Allocate enough 32bit PA addressable pages to cover @size from the
1883 * page level allocator and map them into contiguous kernel virtual space.
1884 */
1885void *vmalloc_32(unsigned long size)
1886{
2dca6999 1887 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1888 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1889}
1da177e4
LT
1890EXPORT_SYMBOL(vmalloc_32);
1891
83342314 1892/**
ead04089 1893 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1894 * @size: allocation size
ead04089
REB
1895 *
1896 * The resulting memory area is 32bit addressable and zeroed so it can be
1897 * mapped to userspace without leaking data.
83342314
NP
1898 */
1899void *vmalloc_32_user(unsigned long size)
1900{
1901 struct vm_struct *area;
1902 void *ret;
1903
2dca6999 1904 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
00ef2d2f 1905 NUMA_NO_NODE, __builtin_return_address(0));
2b4ac44e 1906 if (ret) {
db64fe02 1907 area = find_vm_area(ret);
2b4ac44e 1908 area->flags |= VM_USERMAP;
2b4ac44e 1909 }
83342314
NP
1910 return ret;
1911}
1912EXPORT_SYMBOL(vmalloc_32_user);
1913
d0107eb0
KH
1914/*
1915 * small helper routine , copy contents to buf from addr.
1916 * If the page is not present, fill zero.
1917 */
1918
1919static int aligned_vread(char *buf, char *addr, unsigned long count)
1920{
1921 struct page *p;
1922 int copied = 0;
1923
1924 while (count) {
1925 unsigned long offset, length;
1926
1927 offset = (unsigned long)addr & ~PAGE_MASK;
1928 length = PAGE_SIZE - offset;
1929 if (length > count)
1930 length = count;
1931 p = vmalloc_to_page(addr);
1932 /*
1933 * To do safe access to this _mapped_ area, we need
1934 * lock. But adding lock here means that we need to add
1935 * overhead of vmalloc()/vfree() calles for this _debug_
1936 * interface, rarely used. Instead of that, we'll use
1937 * kmap() and get small overhead in this access function.
1938 */
1939 if (p) {
1940 /*
1941 * we can expect USER0 is not used (see vread/vwrite's
1942 * function description)
1943 */
9b04c5fe 1944 void *map = kmap_atomic(p);
d0107eb0 1945 memcpy(buf, map + offset, length);
9b04c5fe 1946 kunmap_atomic(map);
d0107eb0
KH
1947 } else
1948 memset(buf, 0, length);
1949
1950 addr += length;
1951 buf += length;
1952 copied += length;
1953 count -= length;
1954 }
1955 return copied;
1956}
1957
1958static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1959{
1960 struct page *p;
1961 int copied = 0;
1962
1963 while (count) {
1964 unsigned long offset, length;
1965
1966 offset = (unsigned long)addr & ~PAGE_MASK;
1967 length = PAGE_SIZE - offset;
1968 if (length > count)
1969 length = count;
1970 p = vmalloc_to_page(addr);
1971 /*
1972 * To do safe access to this _mapped_ area, we need
1973 * lock. But adding lock here means that we need to add
1974 * overhead of vmalloc()/vfree() calles for this _debug_
1975 * interface, rarely used. Instead of that, we'll use
1976 * kmap() and get small overhead in this access function.
1977 */
1978 if (p) {
1979 /*
1980 * we can expect USER0 is not used (see vread/vwrite's
1981 * function description)
1982 */
9b04c5fe 1983 void *map = kmap_atomic(p);
d0107eb0 1984 memcpy(map + offset, buf, length);
9b04c5fe 1985 kunmap_atomic(map);
d0107eb0
KH
1986 }
1987 addr += length;
1988 buf += length;
1989 copied += length;
1990 count -= length;
1991 }
1992 return copied;
1993}
1994
1995/**
1996 * vread() - read vmalloc area in a safe way.
1997 * @buf: buffer for reading data
1998 * @addr: vm address.
1999 * @count: number of bytes to be read.
2000 *
2001 * Returns # of bytes which addr and buf should be increased.
2002 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2003 * includes any intersect with alive vmalloc area.
2004 *
2005 * This function checks that addr is a valid vmalloc'ed area, and
2006 * copy data from that area to a given buffer. If the given memory range
2007 * of [addr...addr+count) includes some valid address, data is copied to
2008 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2009 * IOREMAP area is treated as memory hole and no copy is done.
2010 *
2011 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2012 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2013 *
2014 * Note: In usual ops, vread() is never necessary because the caller
2015 * should know vmalloc() area is valid and can use memcpy().
2016 * This is for routines which have to access vmalloc area without
2017 * any informaion, as /dev/kmem.
2018 *
2019 */
2020
1da177e4
LT
2021long vread(char *buf, char *addr, unsigned long count)
2022{
e81ce85f
JK
2023 struct vmap_area *va;
2024 struct vm_struct *vm;
1da177e4 2025 char *vaddr, *buf_start = buf;
d0107eb0 2026 unsigned long buflen = count;
1da177e4
LT
2027 unsigned long n;
2028
2029 /* Don't allow overflow */
2030 if ((unsigned long) addr + count < count)
2031 count = -(unsigned long) addr;
2032
e81ce85f
JK
2033 spin_lock(&vmap_area_lock);
2034 list_for_each_entry(va, &vmap_area_list, list) {
2035 if (!count)
2036 break;
2037
2038 if (!(va->flags & VM_VM_AREA))
2039 continue;
2040
2041 vm = va->vm;
2042 vaddr = (char *) vm->addr;
2043 if (addr >= vaddr + vm->size - PAGE_SIZE)
1da177e4
LT
2044 continue;
2045 while (addr < vaddr) {
2046 if (count == 0)
2047 goto finished;
2048 *buf = '\0';
2049 buf++;
2050 addr++;
2051 count--;
2052 }
e81ce85f 2053 n = vaddr + vm->size - PAGE_SIZE - addr;
d0107eb0
KH
2054 if (n > count)
2055 n = count;
e81ce85f 2056 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2057 aligned_vread(buf, addr, n);
2058 else /* IOREMAP area is treated as memory hole */
2059 memset(buf, 0, n);
2060 buf += n;
2061 addr += n;
2062 count -= n;
1da177e4
LT
2063 }
2064finished:
e81ce85f 2065 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2066
2067 if (buf == buf_start)
2068 return 0;
2069 /* zero-fill memory holes */
2070 if (buf != buf_start + buflen)
2071 memset(buf, 0, buflen - (buf - buf_start));
2072
2073 return buflen;
1da177e4
LT
2074}
2075
d0107eb0
KH
2076/**
2077 * vwrite() - write vmalloc area in a safe way.
2078 * @buf: buffer for source data
2079 * @addr: vm address.
2080 * @count: number of bytes to be read.
2081 *
2082 * Returns # of bytes which addr and buf should be incresed.
2083 * (same number to @count).
2084 * If [addr...addr+count) doesn't includes any intersect with valid
2085 * vmalloc area, returns 0.
2086 *
2087 * This function checks that addr is a valid vmalloc'ed area, and
2088 * copy data from a buffer to the given addr. If specified range of
2089 * [addr...addr+count) includes some valid address, data is copied from
2090 * proper area of @buf. If there are memory holes, no copy to hole.
2091 * IOREMAP area is treated as memory hole and no copy is done.
2092 *
2093 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2094 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2095 *
2096 * Note: In usual ops, vwrite() is never necessary because the caller
2097 * should know vmalloc() area is valid and can use memcpy().
2098 * This is for routines which have to access vmalloc area without
2099 * any informaion, as /dev/kmem.
d0107eb0
KH
2100 */
2101
1da177e4
LT
2102long vwrite(char *buf, char *addr, unsigned long count)
2103{
e81ce85f
JK
2104 struct vmap_area *va;
2105 struct vm_struct *vm;
d0107eb0
KH
2106 char *vaddr;
2107 unsigned long n, buflen;
2108 int copied = 0;
1da177e4
LT
2109
2110 /* Don't allow overflow */
2111 if ((unsigned long) addr + count < count)
2112 count = -(unsigned long) addr;
d0107eb0 2113 buflen = count;
1da177e4 2114
e81ce85f
JK
2115 spin_lock(&vmap_area_lock);
2116 list_for_each_entry(va, &vmap_area_list, list) {
2117 if (!count)
2118 break;
2119
2120 if (!(va->flags & VM_VM_AREA))
2121 continue;
2122
2123 vm = va->vm;
2124 vaddr = (char *) vm->addr;
2125 if (addr >= vaddr + vm->size - PAGE_SIZE)
1da177e4
LT
2126 continue;
2127 while (addr < vaddr) {
2128 if (count == 0)
2129 goto finished;
2130 buf++;
2131 addr++;
2132 count--;
2133 }
e81ce85f 2134 n = vaddr + vm->size - PAGE_SIZE - addr;
d0107eb0
KH
2135 if (n > count)
2136 n = count;
e81ce85f 2137 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2138 aligned_vwrite(buf, addr, n);
2139 copied++;
2140 }
2141 buf += n;
2142 addr += n;
2143 count -= n;
1da177e4
LT
2144 }
2145finished:
e81ce85f 2146 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2147 if (!copied)
2148 return 0;
2149 return buflen;
1da177e4 2150}
83342314
NP
2151
2152/**
2153 * remap_vmalloc_range - map vmalloc pages to userspace
83342314
NP
2154 * @vma: vma to cover (map full range of vma)
2155 * @addr: vmalloc memory
2156 * @pgoff: number of pages into addr before first page to map
7682486b
RD
2157 *
2158 * Returns: 0 for success, -Exxx on failure
83342314
NP
2159 *
2160 * This function checks that addr is a valid vmalloc'ed area, and
2161 * that it is big enough to cover the vma. Will return failure if
2162 * that criteria isn't met.
2163 *
72fd4a35 2164 * Similar to remap_pfn_range() (see mm/memory.c)
83342314
NP
2165 */
2166int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2167 unsigned long pgoff)
2168{
2169 struct vm_struct *area;
2170 unsigned long uaddr = vma->vm_start;
2171 unsigned long usize = vma->vm_end - vma->vm_start;
83342314
NP
2172
2173 if ((PAGE_SIZE-1) & (unsigned long)addr)
2174 return -EINVAL;
2175
db64fe02 2176 area = find_vm_area(addr);
83342314 2177 if (!area)
db64fe02 2178 return -EINVAL;
83342314
NP
2179
2180 if (!(area->flags & VM_USERMAP))
db64fe02 2181 return -EINVAL;
83342314
NP
2182
2183 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
db64fe02 2184 return -EINVAL;
83342314
NP
2185
2186 addr += pgoff << PAGE_SHIFT;
2187 do {
2188 struct page *page = vmalloc_to_page(addr);
db64fe02
NP
2189 int ret;
2190
83342314
NP
2191 ret = vm_insert_page(vma, uaddr, page);
2192 if (ret)
2193 return ret;
2194
2195 uaddr += PAGE_SIZE;
2196 addr += PAGE_SIZE;
2197 usize -= PAGE_SIZE;
2198 } while (usize > 0);
2199
314e51b9 2200 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2201
db64fe02 2202 return 0;
83342314
NP
2203}
2204EXPORT_SYMBOL(remap_vmalloc_range);
2205
1eeb66a1
CH
2206/*
2207 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2208 * have one.
2209 */
2210void __attribute__((weak)) vmalloc_sync_all(void)
2211{
2212}
5f4352fb
JF
2213
2214
2f569afd 2215static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2216{
cd12909c
DV
2217 pte_t ***p = data;
2218
2219 if (p) {
2220 *(*p) = pte;
2221 (*p)++;
2222 }
5f4352fb
JF
2223 return 0;
2224}
2225
2226/**
2227 * alloc_vm_area - allocate a range of kernel address space
2228 * @size: size of the area
cd12909c 2229 * @ptes: returns the PTEs for the address space
7682486b
RD
2230 *
2231 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2232 *
2233 * This function reserves a range of kernel address space, and
2234 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2235 * are created.
2236 *
2237 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2238 * allocated for the VM area are returned.
5f4352fb 2239 */
cd12909c 2240struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2241{
2242 struct vm_struct *area;
2243
23016969
CL
2244 area = get_vm_area_caller(size, VM_IOREMAP,
2245 __builtin_return_address(0));
5f4352fb
JF
2246 if (area == NULL)
2247 return NULL;
2248
2249 /*
2250 * This ensures that page tables are constructed for this region
2251 * of kernel virtual address space and mapped into init_mm.
2252 */
2253 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2254 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2255 free_vm_area(area);
2256 return NULL;
2257 }
2258
5f4352fb
JF
2259 return area;
2260}
2261EXPORT_SYMBOL_GPL(alloc_vm_area);
2262
2263void free_vm_area(struct vm_struct *area)
2264{
2265 struct vm_struct *ret;
2266 ret = remove_vm_area(area->addr);
2267 BUG_ON(ret != area);
2268 kfree(area);
2269}
2270EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2271
4f8b02b4 2272#ifdef CONFIG_SMP
ca23e405
TH
2273static struct vmap_area *node_to_va(struct rb_node *n)
2274{
2275 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2276}
2277
2278/**
2279 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2280 * @end: target address
2281 * @pnext: out arg for the next vmap_area
2282 * @pprev: out arg for the previous vmap_area
2283 *
2284 * Returns: %true if either or both of next and prev are found,
2285 * %false if no vmap_area exists
2286 *
2287 * Find vmap_areas end addresses of which enclose @end. ie. if not
2288 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2289 */
2290static bool pvm_find_next_prev(unsigned long end,
2291 struct vmap_area **pnext,
2292 struct vmap_area **pprev)
2293{
2294 struct rb_node *n = vmap_area_root.rb_node;
2295 struct vmap_area *va = NULL;
2296
2297 while (n) {
2298 va = rb_entry(n, struct vmap_area, rb_node);
2299 if (end < va->va_end)
2300 n = n->rb_left;
2301 else if (end > va->va_end)
2302 n = n->rb_right;
2303 else
2304 break;
2305 }
2306
2307 if (!va)
2308 return false;
2309
2310 if (va->va_end > end) {
2311 *pnext = va;
2312 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2313 } else {
2314 *pprev = va;
2315 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2316 }
2317 return true;
2318}
2319
2320/**
2321 * pvm_determine_end - find the highest aligned address between two vmap_areas
2322 * @pnext: in/out arg for the next vmap_area
2323 * @pprev: in/out arg for the previous vmap_area
2324 * @align: alignment
2325 *
2326 * Returns: determined end address
2327 *
2328 * Find the highest aligned address between *@pnext and *@pprev below
2329 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2330 * down address is between the end addresses of the two vmap_areas.
2331 *
2332 * Please note that the address returned by this function may fall
2333 * inside *@pnext vmap_area. The caller is responsible for checking
2334 * that.
2335 */
2336static unsigned long pvm_determine_end(struct vmap_area **pnext,
2337 struct vmap_area **pprev,
2338 unsigned long align)
2339{
2340 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2341 unsigned long addr;
2342
2343 if (*pnext)
2344 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2345 else
2346 addr = vmalloc_end;
2347
2348 while (*pprev && (*pprev)->va_end > addr) {
2349 *pnext = *pprev;
2350 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2351 }
2352
2353 return addr;
2354}
2355
2356/**
2357 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2358 * @offsets: array containing offset of each area
2359 * @sizes: array containing size of each area
2360 * @nr_vms: the number of areas to allocate
2361 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2362 *
2363 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2364 * vm_structs on success, %NULL on failure
2365 *
2366 * Percpu allocator wants to use congruent vm areas so that it can
2367 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2368 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2369 * be scattered pretty far, distance between two areas easily going up
2370 * to gigabytes. To avoid interacting with regular vmallocs, these
2371 * areas are allocated from top.
ca23e405
TH
2372 *
2373 * Despite its complicated look, this allocator is rather simple. It
2374 * does everything top-down and scans areas from the end looking for
2375 * matching slot. While scanning, if any of the areas overlaps with
2376 * existing vmap_area, the base address is pulled down to fit the
2377 * area. Scanning is repeated till all the areas fit and then all
2378 * necessary data structres are inserted and the result is returned.
2379 */
2380struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2381 const size_t *sizes, int nr_vms,
ec3f64fc 2382 size_t align)
ca23e405
TH
2383{
2384 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2385 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2386 struct vmap_area **vas, *prev, *next;
2387 struct vm_struct **vms;
2388 int area, area2, last_area, term_area;
2389 unsigned long base, start, end, last_end;
2390 bool purged = false;
2391
ca23e405
TH
2392 /* verify parameters and allocate data structures */
2393 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2394 for (last_area = 0, area = 0; area < nr_vms; area++) {
2395 start = offsets[area];
2396 end = start + sizes[area];
2397
2398 /* is everything aligned properly? */
2399 BUG_ON(!IS_ALIGNED(offsets[area], align));
2400 BUG_ON(!IS_ALIGNED(sizes[area], align));
2401
2402 /* detect the area with the highest address */
2403 if (start > offsets[last_area])
2404 last_area = area;
2405
2406 for (area2 = 0; area2 < nr_vms; area2++) {
2407 unsigned long start2 = offsets[area2];
2408 unsigned long end2 = start2 + sizes[area2];
2409
2410 if (area2 == area)
2411 continue;
2412
2413 BUG_ON(start2 >= start && start2 < end);
2414 BUG_ON(end2 <= end && end2 > start);
2415 }
2416 }
2417 last_end = offsets[last_area] + sizes[last_area];
2418
2419 if (vmalloc_end - vmalloc_start < last_end) {
2420 WARN_ON(true);
2421 return NULL;
2422 }
2423
4d67d860
TM
2424 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2425 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2426 if (!vas || !vms)
f1db7afd 2427 goto err_free2;
ca23e405
TH
2428
2429 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2430 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2431 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2432 if (!vas[area] || !vms[area])
2433 goto err_free;
2434 }
2435retry:
2436 spin_lock(&vmap_area_lock);
2437
2438 /* start scanning - we scan from the top, begin with the last area */
2439 area = term_area = last_area;
2440 start = offsets[area];
2441 end = start + sizes[area];
2442
2443 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2444 base = vmalloc_end - last_end;
2445 goto found;
2446 }
2447 base = pvm_determine_end(&next, &prev, align) - end;
2448
2449 while (true) {
2450 BUG_ON(next && next->va_end <= base + end);
2451 BUG_ON(prev && prev->va_end > base + end);
2452
2453 /*
2454 * base might have underflowed, add last_end before
2455 * comparing.
2456 */
2457 if (base + last_end < vmalloc_start + last_end) {
2458 spin_unlock(&vmap_area_lock);
2459 if (!purged) {
2460 purge_vmap_area_lazy();
2461 purged = true;
2462 goto retry;
2463 }
2464 goto err_free;
2465 }
2466
2467 /*
2468 * If next overlaps, move base downwards so that it's
2469 * right below next and then recheck.
2470 */
2471 if (next && next->va_start < base + end) {
2472 base = pvm_determine_end(&next, &prev, align) - end;
2473 term_area = area;
2474 continue;
2475 }
2476
2477 /*
2478 * If prev overlaps, shift down next and prev and move
2479 * base so that it's right below new next and then
2480 * recheck.
2481 */
2482 if (prev && prev->va_end > base + start) {
2483 next = prev;
2484 prev = node_to_va(rb_prev(&next->rb_node));
2485 base = pvm_determine_end(&next, &prev, align) - end;
2486 term_area = area;
2487 continue;
2488 }
2489
2490 /*
2491 * This area fits, move on to the previous one. If
2492 * the previous one is the terminal one, we're done.
2493 */
2494 area = (area + nr_vms - 1) % nr_vms;
2495 if (area == term_area)
2496 break;
2497 start = offsets[area];
2498 end = start + sizes[area];
2499 pvm_find_next_prev(base + end, &next, &prev);
2500 }
2501found:
2502 /* we've found a fitting base, insert all va's */
2503 for (area = 0; area < nr_vms; area++) {
2504 struct vmap_area *va = vas[area];
2505
2506 va->va_start = base + offsets[area];
2507 va->va_end = va->va_start + sizes[area];
2508 __insert_vmap_area(va);
2509 }
2510
2511 vmap_area_pcpu_hole = base + offsets[last_area];
2512
2513 spin_unlock(&vmap_area_lock);
2514
2515 /* insert all vm's */
2516 for (area = 0; area < nr_vms; area++)
2517 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2518 pcpu_get_vm_areas);
2519
2520 kfree(vas);
2521 return vms;
2522
2523err_free:
2524 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2525 kfree(vas[area]);
2526 kfree(vms[area]);
ca23e405 2527 }
f1db7afd 2528err_free2:
ca23e405
TH
2529 kfree(vas);
2530 kfree(vms);
2531 return NULL;
2532}
2533
2534/**
2535 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2536 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2537 * @nr_vms: the number of allocated areas
2538 *
2539 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2540 */
2541void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2542{
2543 int i;
2544
2545 for (i = 0; i < nr_vms; i++)
2546 free_vm_area(vms[i]);
2547 kfree(vms);
2548}
4f8b02b4 2549#endif /* CONFIG_SMP */
a10aa579
CL
2550
2551#ifdef CONFIG_PROC_FS
2552static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2553 __acquires(&vmap_area_lock)
a10aa579
CL
2554{
2555 loff_t n = *pos;
d4033afd 2556 struct vmap_area *va;
a10aa579 2557
d4033afd
JK
2558 spin_lock(&vmap_area_lock);
2559 va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2560 while (n > 0 && &va->list != &vmap_area_list) {
a10aa579 2561 n--;
d4033afd 2562 va = list_entry(va->list.next, typeof(*va), list);
a10aa579 2563 }
d4033afd
JK
2564 if (!n && &va->list != &vmap_area_list)
2565 return va;
a10aa579
CL
2566
2567 return NULL;
2568
2569}
2570
2571static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2572{
d4033afd 2573 struct vmap_area *va = p, *next;
a10aa579
CL
2574
2575 ++*pos;
d4033afd
JK
2576 next = list_entry(va->list.next, typeof(*va), list);
2577 if (&next->list != &vmap_area_list)
2578 return next;
2579
2580 return NULL;
a10aa579
CL
2581}
2582
2583static void s_stop(struct seq_file *m, void *p)
d4033afd 2584 __releases(&vmap_area_lock)
a10aa579 2585{
d4033afd 2586 spin_unlock(&vmap_area_lock);
a10aa579
CL
2587}
2588
a47a126a
ED
2589static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2590{
e5adfffc 2591 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2592 unsigned int nr, *counters = m->private;
2593
2594 if (!counters)
2595 return;
2596
d4033afd
JK
2597 /* Pair with smp_wmb() in insert_vmalloc_vmlist() */
2598 smp_rmb();
2599 if (v->flags & VM_UNLIST)
2600 return;
2601
a47a126a
ED
2602 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2603
2604 for (nr = 0; nr < v->nr_pages; nr++)
2605 counters[page_to_nid(v->pages[nr])]++;
2606
2607 for_each_node_state(nr, N_HIGH_MEMORY)
2608 if (counters[nr])
2609 seq_printf(m, " N%u=%u", nr, counters[nr]);
2610 }
2611}
2612
a10aa579
CL
2613static int s_show(struct seq_file *m, void *p)
2614{
d4033afd
JK
2615 struct vmap_area *va = p;
2616 struct vm_struct *v;
2617
2618 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2619 return 0;
2620
2621 if (!(va->flags & VM_VM_AREA)) {
2622 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
2623 (void *)va->va_start, (void *)va->va_end,
2624 va->va_end - va->va_start);
2625 return 0;
2626 }
2627
2628 v = va->vm;
a10aa579 2629
45ec1690 2630 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2631 v->addr, v->addr + v->size, v->size);
2632
62c70bce
JP
2633 if (v->caller)
2634 seq_printf(m, " %pS", v->caller);
23016969 2635
a10aa579
CL
2636 if (v->nr_pages)
2637 seq_printf(m, " pages=%d", v->nr_pages);
2638
2639 if (v->phys_addr)
ffa71f33 2640 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
a10aa579
CL
2641
2642 if (v->flags & VM_IOREMAP)
2643 seq_printf(m, " ioremap");
2644
2645 if (v->flags & VM_ALLOC)
2646 seq_printf(m, " vmalloc");
2647
2648 if (v->flags & VM_MAP)
2649 seq_printf(m, " vmap");
2650
2651 if (v->flags & VM_USERMAP)
2652 seq_printf(m, " user");
2653
2654 if (v->flags & VM_VPAGES)
2655 seq_printf(m, " vpages");
2656
a47a126a 2657 show_numa_info(m, v);
a10aa579
CL
2658 seq_putc(m, '\n');
2659 return 0;
2660}
2661
5f6a6a9c 2662static const struct seq_operations vmalloc_op = {
a10aa579
CL
2663 .start = s_start,
2664 .next = s_next,
2665 .stop = s_stop,
2666 .show = s_show,
2667};
5f6a6a9c
AD
2668
2669static int vmalloc_open(struct inode *inode, struct file *file)
2670{
2671 unsigned int *ptr = NULL;
2672 int ret;
2673
e5adfffc 2674 if (IS_ENABLED(CONFIG_NUMA)) {
5f6a6a9c 2675 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
51980ac9
KV
2676 if (ptr == NULL)
2677 return -ENOMEM;
2678 }
5f6a6a9c
AD
2679 ret = seq_open(file, &vmalloc_op);
2680 if (!ret) {
2681 struct seq_file *m = file->private_data;
2682 m->private = ptr;
2683 } else
2684 kfree(ptr);
2685 return ret;
2686}
2687
2688static const struct file_operations proc_vmalloc_operations = {
2689 .open = vmalloc_open,
2690 .read = seq_read,
2691 .llseek = seq_lseek,
2692 .release = seq_release_private,
2693};
2694
2695static int __init proc_vmalloc_init(void)
2696{
2697 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2698 return 0;
2699}
2700module_init(proc_vmalloc_init);
db3808c1
JK
2701
2702void get_vmalloc_info(struct vmalloc_info *vmi)
2703{
f98782dd 2704 struct vmap_area *va;
db3808c1
JK
2705 unsigned long free_area_size;
2706 unsigned long prev_end;
2707
2708 vmi->used = 0;
f98782dd 2709 vmi->largest_chunk = 0;
db3808c1 2710
f98782dd 2711 prev_end = VMALLOC_START;
db3808c1 2712
f98782dd 2713 spin_lock(&vmap_area_lock);
db3808c1 2714
f98782dd
JK
2715 if (list_empty(&vmap_area_list)) {
2716 vmi->largest_chunk = VMALLOC_TOTAL;
2717 goto out;
2718 }
db3808c1 2719
f98782dd
JK
2720 list_for_each_entry(va, &vmap_area_list, list) {
2721 unsigned long addr = va->va_start;
db3808c1 2722
f98782dd
JK
2723 /*
2724 * Some archs keep another range for modules in vmalloc space
2725 */
2726 if (addr < VMALLOC_START)
2727 continue;
2728 if (addr >= VMALLOC_END)
2729 break;
db3808c1 2730
f98782dd
JK
2731 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2732 continue;
db3808c1 2733
f98782dd 2734 vmi->used += (va->va_end - va->va_start);
db3808c1 2735
f98782dd
JK
2736 free_area_size = addr - prev_end;
2737 if (vmi->largest_chunk < free_area_size)
2738 vmi->largest_chunk = free_area_size;
db3808c1 2739
f98782dd 2740 prev_end = va->va_end;
db3808c1 2741 }
f98782dd
JK
2742
2743 if (VMALLOC_END - prev_end > vmi->largest_chunk)
2744 vmi->largest_chunk = VMALLOC_END - prev_end;
2745
2746out:
2747 spin_unlock(&vmap_area_lock);
db3808c1 2748}
a10aa579
CL
2749#endif
2750