]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
mm: vmscan: harmonize writeback congestion tracking for nodes & memcgs
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
64e3d12f 49#include <linux/pagevec.h>
268bb0ce 50#include <linux/prefetch.h>
b1de0d13 51#include <linux/printk.h>
f9fe48be 52#include <linux/dax.h>
eb414681 53#include <linux/psi.h>
1da177e4
LT
54
55#include <asm/tlbflush.h>
56#include <asm/div64.h>
57
58#include <linux/swapops.h>
117aad1e 59#include <linux/balloon_compaction.h>
1da177e4 60
0f8053a5
NP
61#include "internal.h"
62
33906bc5
MG
63#define CREATE_TRACE_POINTS
64#include <trace/events/vmscan.h>
65
1da177e4 66struct scan_control {
22fba335
KM
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
ee814fe2
JW
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
9e3b2f8c 75
f16015fb
JW
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
66e1707b 81
1276ad68 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
83 unsigned int may_writepage:1;
84
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
87
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
90
d6622f63
YX
91 /*
92 * Cgroups are not reclaimed below their configured memory.low,
93 * unless we threaten to OOM. If any cgroups are skipped due to
94 * memory.low and nothing was reclaimed, go back for memory.low.
95 */
96 unsigned int memcg_low_reclaim:1;
97 unsigned int memcg_low_skipped:1;
241994ed 98
ee814fe2
JW
99 unsigned int hibernation_mode:1;
100
101 /* One of the zones is ready for compaction */
102 unsigned int compaction_ready:1;
103
bb451fdf
GT
104 /* Allocation order */
105 s8 order;
106
107 /* Scan (total_size >> priority) pages at once */
108 s8 priority;
109
110 /* The highest zone to isolate pages for reclaim from */
111 s8 reclaim_idx;
112
113 /* This context's GFP mask */
114 gfp_t gfp_mask;
115
ee814fe2
JW
116 /* Incremented by the number of inactive pages that were scanned */
117 unsigned long nr_scanned;
118
119 /* Number of pages freed so far during a call to shrink_zones() */
120 unsigned long nr_reclaimed;
d108c772
AR
121
122 struct {
123 unsigned int dirty;
124 unsigned int unqueued_dirty;
125 unsigned int congested;
126 unsigned int writeback;
127 unsigned int immediate;
128 unsigned int file_taken;
129 unsigned int taken;
130 } nr;
e5ca8071
YS
131
132 /* for recording the reclaimed slab by now */
133 struct reclaim_state reclaim_state;
1da177e4
LT
134};
135
1da177e4
LT
136#ifdef ARCH_HAS_PREFETCH
137#define prefetch_prev_lru_page(_page, _base, _field) \
138 do { \
139 if ((_page)->lru.prev != _base) { \
140 struct page *prev; \
141 \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
144 } \
145 } while (0)
146#else
147#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148#endif
149
150#ifdef ARCH_HAS_PREFETCHW
151#define prefetchw_prev_lru_page(_page, _base, _field) \
152 do { \
153 if ((_page)->lru.prev != _base) { \
154 struct page *prev; \
155 \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
158 } \
159 } while (0)
160#else
161#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162#endif
163
164/*
165 * From 0 .. 100. Higher means more swappy.
166 */
167int vm_swappiness = 60;
d0480be4
WSH
168/*
169 * The total number of pages which are beyond the high watermark within all
170 * zones.
171 */
172unsigned long vm_total_pages;
1da177e4 173
0a432dcb
YS
174static void set_task_reclaim_state(struct task_struct *task,
175 struct reclaim_state *rs)
176{
177 /* Check for an overwrite */
178 WARN_ON_ONCE(rs && task->reclaim_state);
179
180 /* Check for the nulling of an already-nulled member */
181 WARN_ON_ONCE(!rs && !task->reclaim_state);
182
183 task->reclaim_state = rs;
184}
185
1da177e4
LT
186static LIST_HEAD(shrinker_list);
187static DECLARE_RWSEM(shrinker_rwsem);
188
0a432dcb 189#ifdef CONFIG_MEMCG
7e010df5
KT
190/*
191 * We allow subsystems to populate their shrinker-related
192 * LRU lists before register_shrinker_prepared() is called
193 * for the shrinker, since we don't want to impose
194 * restrictions on their internal registration order.
195 * In this case shrink_slab_memcg() may find corresponding
196 * bit is set in the shrinkers map.
197 *
198 * This value is used by the function to detect registering
199 * shrinkers and to skip do_shrink_slab() calls for them.
200 */
201#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
202
b4c2b231
KT
203static DEFINE_IDR(shrinker_idr);
204static int shrinker_nr_max;
205
206static int prealloc_memcg_shrinker(struct shrinker *shrinker)
207{
208 int id, ret = -ENOMEM;
209
210 down_write(&shrinker_rwsem);
211 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 212 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
213 if (id < 0)
214 goto unlock;
215
0a4465d3
KT
216 if (id >= shrinker_nr_max) {
217 if (memcg_expand_shrinker_maps(id)) {
218 idr_remove(&shrinker_idr, id);
219 goto unlock;
220 }
221
b4c2b231 222 shrinker_nr_max = id + 1;
0a4465d3 223 }
b4c2b231
KT
224 shrinker->id = id;
225 ret = 0;
226unlock:
227 up_write(&shrinker_rwsem);
228 return ret;
229}
230
231static void unregister_memcg_shrinker(struct shrinker *shrinker)
232{
233 int id = shrinker->id;
234
235 BUG_ON(id < 0);
236
237 down_write(&shrinker_rwsem);
238 idr_remove(&shrinker_idr, id);
239 up_write(&shrinker_rwsem);
240}
b4c2b231 241
b5ead35e 242static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 243{
b5ead35e 244 return sc->target_mem_cgroup;
89b5fae5 245}
97c9341f
TH
246
247/**
b5ead35e 248 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
249 * @sc: scan_control in question
250 *
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
256 *
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
259 */
b5ead35e 260static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 261{
b5ead35e 262 if (!cgroup_reclaim(sc))
97c9341f
TH
263 return true;
264#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 265 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
266 return true;
267#endif
268 return false;
269}
91a45470 270#else
0a432dcb
YS
271static int prealloc_memcg_shrinker(struct shrinker *shrinker)
272{
273 return 0;
274}
275
276static void unregister_memcg_shrinker(struct shrinker *shrinker)
277{
278}
279
b5ead35e 280static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 281{
b5ead35e 282 return false;
89b5fae5 283}
97c9341f 284
b5ead35e 285static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
286{
287 return true;
288}
91a45470
KH
289#endif
290
5a1c84b4
MG
291/*
292 * This misses isolated pages which are not accounted for to save counters.
293 * As the data only determines if reclaim or compaction continues, it is
294 * not expected that isolated pages will be a dominating factor.
295 */
296unsigned long zone_reclaimable_pages(struct zone *zone)
297{
298 unsigned long nr;
299
300 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
301 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
302 if (get_nr_swap_pages() > 0)
303 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
304 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
305
306 return nr;
307}
308
fd538803
MH
309/**
310 * lruvec_lru_size - Returns the number of pages on the given LRU list.
311 * @lruvec: lru vector
312 * @lru: lru to use
313 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
314 */
315unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 316{
de3b0150 317 unsigned long size = 0;
fd538803
MH
318 int zid;
319
de3b0150 320 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 321 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 322
fd538803
MH
323 if (!managed_zone(zone))
324 continue;
325
326 if (!mem_cgroup_disabled())
de3b0150 327 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 328 else
de3b0150 329 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 330 }
de3b0150 331 return size;
b4536f0c
MH
332}
333
1da177e4 334/*
1d3d4437 335 * Add a shrinker callback to be called from the vm.
1da177e4 336 */
8e04944f 337int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 338{
b9726c26 339 unsigned int size = sizeof(*shrinker->nr_deferred);
1d3d4437 340
1d3d4437
GC
341 if (shrinker->flags & SHRINKER_NUMA_AWARE)
342 size *= nr_node_ids;
343
344 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
345 if (!shrinker->nr_deferred)
346 return -ENOMEM;
b4c2b231
KT
347
348 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
349 if (prealloc_memcg_shrinker(shrinker))
350 goto free_deferred;
351 }
352
8e04944f 353 return 0;
b4c2b231
KT
354
355free_deferred:
356 kfree(shrinker->nr_deferred);
357 shrinker->nr_deferred = NULL;
358 return -ENOMEM;
8e04944f
TH
359}
360
361void free_prealloced_shrinker(struct shrinker *shrinker)
362{
b4c2b231
KT
363 if (!shrinker->nr_deferred)
364 return;
365
366 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
367 unregister_memcg_shrinker(shrinker);
368
8e04944f
TH
369 kfree(shrinker->nr_deferred);
370 shrinker->nr_deferred = NULL;
371}
1d3d4437 372
8e04944f
TH
373void register_shrinker_prepared(struct shrinker *shrinker)
374{
8e1f936b
RR
375 down_write(&shrinker_rwsem);
376 list_add_tail(&shrinker->list, &shrinker_list);
7e010df5 377#ifdef CONFIG_MEMCG_KMEM
8df4a44c
KT
378 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
379 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 380#endif
8e1f936b 381 up_write(&shrinker_rwsem);
8e04944f
TH
382}
383
384int register_shrinker(struct shrinker *shrinker)
385{
386 int err = prealloc_shrinker(shrinker);
387
388 if (err)
389 return err;
390 register_shrinker_prepared(shrinker);
1d3d4437 391 return 0;
1da177e4 392}
8e1f936b 393EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
394
395/*
396 * Remove one
397 */
8e1f936b 398void unregister_shrinker(struct shrinker *shrinker)
1da177e4 399{
bb422a73
TH
400 if (!shrinker->nr_deferred)
401 return;
b4c2b231
KT
402 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
403 unregister_memcg_shrinker(shrinker);
1da177e4
LT
404 down_write(&shrinker_rwsem);
405 list_del(&shrinker->list);
406 up_write(&shrinker_rwsem);
ae393321 407 kfree(shrinker->nr_deferred);
bb422a73 408 shrinker->nr_deferred = NULL;
1da177e4 409}
8e1f936b 410EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
411
412#define SHRINK_BATCH 128
1d3d4437 413
cb731d6c 414static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 415 struct shrinker *shrinker, int priority)
1d3d4437
GC
416{
417 unsigned long freed = 0;
418 unsigned long long delta;
419 long total_scan;
d5bc5fd3 420 long freeable;
1d3d4437
GC
421 long nr;
422 long new_nr;
423 int nid = shrinkctl->nid;
424 long batch_size = shrinker->batch ? shrinker->batch
425 : SHRINK_BATCH;
5f33a080 426 long scanned = 0, next_deferred;
1d3d4437 427
ac7fb3ad
KT
428 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
429 nid = 0;
430
d5bc5fd3 431 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
432 if (freeable == 0 || freeable == SHRINK_EMPTY)
433 return freeable;
1d3d4437
GC
434
435 /*
436 * copy the current shrinker scan count into a local variable
437 * and zero it so that other concurrent shrinker invocations
438 * don't also do this scanning work.
439 */
440 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
441
442 total_scan = nr;
4b85afbd
JW
443 if (shrinker->seeks) {
444 delta = freeable >> priority;
445 delta *= 4;
446 do_div(delta, shrinker->seeks);
447 } else {
448 /*
449 * These objects don't require any IO to create. Trim
450 * them aggressively under memory pressure to keep
451 * them from causing refetches in the IO caches.
452 */
453 delta = freeable / 2;
454 }
172b06c3 455
1d3d4437
GC
456 total_scan += delta;
457 if (total_scan < 0) {
d75f773c 458 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
a0b02131 459 shrinker->scan_objects, total_scan);
d5bc5fd3 460 total_scan = freeable;
5f33a080
SL
461 next_deferred = nr;
462 } else
463 next_deferred = total_scan;
1d3d4437
GC
464
465 /*
466 * We need to avoid excessive windup on filesystem shrinkers
467 * due to large numbers of GFP_NOFS allocations causing the
468 * shrinkers to return -1 all the time. This results in a large
469 * nr being built up so when a shrink that can do some work
470 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 471 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
472 * memory.
473 *
474 * Hence only allow the shrinker to scan the entire cache when
475 * a large delta change is calculated directly.
476 */
d5bc5fd3
VD
477 if (delta < freeable / 4)
478 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
479
480 /*
481 * Avoid risking looping forever due to too large nr value:
482 * never try to free more than twice the estimate number of
483 * freeable entries.
484 */
d5bc5fd3
VD
485 if (total_scan > freeable * 2)
486 total_scan = freeable * 2;
1d3d4437
GC
487
488 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 489 freeable, delta, total_scan, priority);
1d3d4437 490
0b1fb40a
VD
491 /*
492 * Normally, we should not scan less than batch_size objects in one
493 * pass to avoid too frequent shrinker calls, but if the slab has less
494 * than batch_size objects in total and we are really tight on memory,
495 * we will try to reclaim all available objects, otherwise we can end
496 * up failing allocations although there are plenty of reclaimable
497 * objects spread over several slabs with usage less than the
498 * batch_size.
499 *
500 * We detect the "tight on memory" situations by looking at the total
501 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 502 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
503 * scanning at high prio and therefore should try to reclaim as much as
504 * possible.
505 */
506 while (total_scan >= batch_size ||
d5bc5fd3 507 total_scan >= freeable) {
a0b02131 508 unsigned long ret;
0b1fb40a 509 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 510
0b1fb40a 511 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 512 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
513 ret = shrinker->scan_objects(shrinker, shrinkctl);
514 if (ret == SHRINK_STOP)
515 break;
516 freed += ret;
1d3d4437 517
d460acb5
CW
518 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
519 total_scan -= shrinkctl->nr_scanned;
520 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
521
522 cond_resched();
523 }
524
5f33a080
SL
525 if (next_deferred >= scanned)
526 next_deferred -= scanned;
527 else
528 next_deferred = 0;
1d3d4437
GC
529 /*
530 * move the unused scan count back into the shrinker in a
531 * manner that handles concurrent updates. If we exhausted the
532 * scan, there is no need to do an update.
533 */
5f33a080
SL
534 if (next_deferred > 0)
535 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
536 &shrinker->nr_deferred[nid]);
537 else
538 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
539
df9024a8 540 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 541 return freed;
1495f230
YH
542}
543
0a432dcb 544#ifdef CONFIG_MEMCG
b0dedc49
KT
545static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
546 struct mem_cgroup *memcg, int priority)
547{
548 struct memcg_shrinker_map *map;
b8e57efa
KT
549 unsigned long ret, freed = 0;
550 int i;
b0dedc49 551
0a432dcb 552 if (!mem_cgroup_online(memcg))
b0dedc49
KT
553 return 0;
554
555 if (!down_read_trylock(&shrinker_rwsem))
556 return 0;
557
558 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
559 true);
560 if (unlikely(!map))
561 goto unlock;
562
563 for_each_set_bit(i, map->map, shrinker_nr_max) {
564 struct shrink_control sc = {
565 .gfp_mask = gfp_mask,
566 .nid = nid,
567 .memcg = memcg,
568 };
569 struct shrinker *shrinker;
570
571 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
572 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
573 if (!shrinker)
574 clear_bit(i, map->map);
b0dedc49
KT
575 continue;
576 }
577
0a432dcb
YS
578 /* Call non-slab shrinkers even though kmem is disabled */
579 if (!memcg_kmem_enabled() &&
580 !(shrinker->flags & SHRINKER_NONSLAB))
581 continue;
582
b0dedc49 583 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6
KT
584 if (ret == SHRINK_EMPTY) {
585 clear_bit(i, map->map);
586 /*
587 * After the shrinker reported that it had no objects to
588 * free, but before we cleared the corresponding bit in
589 * the memcg shrinker map, a new object might have been
590 * added. To make sure, we have the bit set in this
591 * case, we invoke the shrinker one more time and reset
592 * the bit if it reports that it is not empty anymore.
593 * The memory barrier here pairs with the barrier in
594 * memcg_set_shrinker_bit():
595 *
596 * list_lru_add() shrink_slab_memcg()
597 * list_add_tail() clear_bit()
598 * <MB> <MB>
599 * set_bit() do_shrink_slab()
600 */
601 smp_mb__after_atomic();
602 ret = do_shrink_slab(&sc, shrinker, priority);
603 if (ret == SHRINK_EMPTY)
604 ret = 0;
605 else
606 memcg_set_shrinker_bit(memcg, nid, i);
607 }
b0dedc49
KT
608 freed += ret;
609
610 if (rwsem_is_contended(&shrinker_rwsem)) {
611 freed = freed ? : 1;
612 break;
613 }
614 }
615unlock:
616 up_read(&shrinker_rwsem);
617 return freed;
618}
0a432dcb 619#else /* CONFIG_MEMCG */
b0dedc49
KT
620static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
621 struct mem_cgroup *memcg, int priority)
622{
623 return 0;
624}
0a432dcb 625#endif /* CONFIG_MEMCG */
b0dedc49 626
6b4f7799 627/**
cb731d6c 628 * shrink_slab - shrink slab caches
6b4f7799
JW
629 * @gfp_mask: allocation context
630 * @nid: node whose slab caches to target
cb731d6c 631 * @memcg: memory cgroup whose slab caches to target
9092c71b 632 * @priority: the reclaim priority
1da177e4 633 *
6b4f7799 634 * Call the shrink functions to age shrinkable caches.
1da177e4 635 *
6b4f7799
JW
636 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
637 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 638 *
aeed1d32
VD
639 * @memcg specifies the memory cgroup to target. Unaware shrinkers
640 * are called only if it is the root cgroup.
cb731d6c 641 *
9092c71b
JB
642 * @priority is sc->priority, we take the number of objects and >> by priority
643 * in order to get the scan target.
b15e0905 644 *
6b4f7799 645 * Returns the number of reclaimed slab objects.
1da177e4 646 */
cb731d6c
VD
647static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
648 struct mem_cgroup *memcg,
9092c71b 649 int priority)
1da177e4 650{
b8e57efa 651 unsigned long ret, freed = 0;
1da177e4
LT
652 struct shrinker *shrinker;
653
fa1e512f
YS
654 /*
655 * The root memcg might be allocated even though memcg is disabled
656 * via "cgroup_disable=memory" boot parameter. This could make
657 * mem_cgroup_is_root() return false, then just run memcg slab
658 * shrink, but skip global shrink. This may result in premature
659 * oom.
660 */
661 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 662 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 663
e830c63a 664 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 665 goto out;
1da177e4
LT
666
667 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
668 struct shrink_control sc = {
669 .gfp_mask = gfp_mask,
670 .nid = nid,
cb731d6c 671 .memcg = memcg,
6b4f7799 672 };
ec97097b 673
9b996468
KT
674 ret = do_shrink_slab(&sc, shrinker, priority);
675 if (ret == SHRINK_EMPTY)
676 ret = 0;
677 freed += ret;
e496612c
MK
678 /*
679 * Bail out if someone want to register a new shrinker to
680 * prevent the regsitration from being stalled for long periods
681 * by parallel ongoing shrinking.
682 */
683 if (rwsem_is_contended(&shrinker_rwsem)) {
684 freed = freed ? : 1;
685 break;
686 }
1da177e4 687 }
6b4f7799 688
1da177e4 689 up_read(&shrinker_rwsem);
f06590bd
MK
690out:
691 cond_resched();
24f7c6b9 692 return freed;
1da177e4
LT
693}
694
cb731d6c
VD
695void drop_slab_node(int nid)
696{
697 unsigned long freed;
698
699 do {
700 struct mem_cgroup *memcg = NULL;
701
702 freed = 0;
aeed1d32 703 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 704 do {
9092c71b 705 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
706 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
707 } while (freed > 10);
708}
709
710void drop_slab(void)
711{
712 int nid;
713
714 for_each_online_node(nid)
715 drop_slab_node(nid);
716}
717
1da177e4
LT
718static inline int is_page_cache_freeable(struct page *page)
719{
ceddc3a5
JW
720 /*
721 * A freeable page cache page is referenced only by the caller
67891fff
MW
722 * that isolated the page, the page cache and optional buffer
723 * heads at page->private.
ceddc3a5 724 */
67891fff 725 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
bd4c82c2 726 HPAGE_PMD_NR : 1;
67891fff 727 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
728}
729
cb16556d 730static int may_write_to_inode(struct inode *inode)
1da177e4 731{
930d9152 732 if (current->flags & PF_SWAPWRITE)
1da177e4 733 return 1;
703c2708 734 if (!inode_write_congested(inode))
1da177e4 735 return 1;
703c2708 736 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
737 return 1;
738 return 0;
739}
740
741/*
742 * We detected a synchronous write error writing a page out. Probably
743 * -ENOSPC. We need to propagate that into the address_space for a subsequent
744 * fsync(), msync() or close().
745 *
746 * The tricky part is that after writepage we cannot touch the mapping: nothing
747 * prevents it from being freed up. But we have a ref on the page and once
748 * that page is locked, the mapping is pinned.
749 *
750 * We're allowed to run sleeping lock_page() here because we know the caller has
751 * __GFP_FS.
752 */
753static void handle_write_error(struct address_space *mapping,
754 struct page *page, int error)
755{
7eaceacc 756 lock_page(page);
3e9f45bd
GC
757 if (page_mapping(page) == mapping)
758 mapping_set_error(mapping, error);
1da177e4
LT
759 unlock_page(page);
760}
761
04e62a29
CL
762/* possible outcome of pageout() */
763typedef enum {
764 /* failed to write page out, page is locked */
765 PAGE_KEEP,
766 /* move page to the active list, page is locked */
767 PAGE_ACTIVATE,
768 /* page has been sent to the disk successfully, page is unlocked */
769 PAGE_SUCCESS,
770 /* page is clean and locked */
771 PAGE_CLEAN,
772} pageout_t;
773
1da177e4 774/*
1742f19f
AM
775 * pageout is called by shrink_page_list() for each dirty page.
776 * Calls ->writepage().
1da177e4 777 */
cb16556d 778static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
779{
780 /*
781 * If the page is dirty, only perform writeback if that write
782 * will be non-blocking. To prevent this allocation from being
783 * stalled by pagecache activity. But note that there may be
784 * stalls if we need to run get_block(). We could test
785 * PagePrivate for that.
786 *
8174202b 787 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
788 * this page's queue, we can perform writeback even if that
789 * will block.
790 *
791 * If the page is swapcache, write it back even if that would
792 * block, for some throttling. This happens by accident, because
793 * swap_backing_dev_info is bust: it doesn't reflect the
794 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
795 */
796 if (!is_page_cache_freeable(page))
797 return PAGE_KEEP;
798 if (!mapping) {
799 /*
800 * Some data journaling orphaned pages can have
801 * page->mapping == NULL while being dirty with clean buffers.
802 */
266cf658 803 if (page_has_private(page)) {
1da177e4
LT
804 if (try_to_free_buffers(page)) {
805 ClearPageDirty(page);
b1de0d13 806 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
807 return PAGE_CLEAN;
808 }
809 }
810 return PAGE_KEEP;
811 }
812 if (mapping->a_ops->writepage == NULL)
813 return PAGE_ACTIVATE;
cb16556d 814 if (!may_write_to_inode(mapping->host))
1da177e4
LT
815 return PAGE_KEEP;
816
817 if (clear_page_dirty_for_io(page)) {
818 int res;
819 struct writeback_control wbc = {
820 .sync_mode = WB_SYNC_NONE,
821 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
822 .range_start = 0,
823 .range_end = LLONG_MAX,
1da177e4
LT
824 .for_reclaim = 1,
825 };
826
827 SetPageReclaim(page);
828 res = mapping->a_ops->writepage(page, &wbc);
829 if (res < 0)
830 handle_write_error(mapping, page, res);
994fc28c 831 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
832 ClearPageReclaim(page);
833 return PAGE_ACTIVATE;
834 }
c661b078 835
1da177e4
LT
836 if (!PageWriteback(page)) {
837 /* synchronous write or broken a_ops? */
838 ClearPageReclaim(page);
839 }
3aa23851 840 trace_mm_vmscan_writepage(page);
c4a25635 841 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
842 return PAGE_SUCCESS;
843 }
844
845 return PAGE_CLEAN;
846}
847
a649fd92 848/*
e286781d
NP
849 * Same as remove_mapping, but if the page is removed from the mapping, it
850 * gets returned with a refcount of 0.
a649fd92 851 */
a528910e
JW
852static int __remove_mapping(struct address_space *mapping, struct page *page,
853 bool reclaimed)
49d2e9cc 854{
c4843a75 855 unsigned long flags;
bd4c82c2 856 int refcount;
c4843a75 857
28e4d965
NP
858 BUG_ON(!PageLocked(page));
859 BUG_ON(mapping != page_mapping(page));
49d2e9cc 860
b93b0163 861 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 862 /*
0fd0e6b0
NP
863 * The non racy check for a busy page.
864 *
865 * Must be careful with the order of the tests. When someone has
866 * a ref to the page, it may be possible that they dirty it then
867 * drop the reference. So if PageDirty is tested before page_count
868 * here, then the following race may occur:
869 *
870 * get_user_pages(&page);
871 * [user mapping goes away]
872 * write_to(page);
873 * !PageDirty(page) [good]
874 * SetPageDirty(page);
875 * put_page(page);
876 * !page_count(page) [good, discard it]
877 *
878 * [oops, our write_to data is lost]
879 *
880 * Reversing the order of the tests ensures such a situation cannot
881 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 882 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
883 *
884 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 885 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 886 */
906d278d 887 refcount = 1 + compound_nr(page);
bd4c82c2 888 if (!page_ref_freeze(page, refcount))
49d2e9cc 889 goto cannot_free;
1c4c3b99 890 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 891 if (unlikely(PageDirty(page))) {
bd4c82c2 892 page_ref_unfreeze(page, refcount);
49d2e9cc 893 goto cannot_free;
e286781d 894 }
49d2e9cc
CL
895
896 if (PageSwapCache(page)) {
897 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 898 mem_cgroup_swapout(page, swap);
4e17ec25 899 __delete_from_swap_cache(page, swap);
b93b0163 900 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 901 put_swap_page(page, swap);
e286781d 902 } else {
6072d13c 903 void (*freepage)(struct page *);
a528910e 904 void *shadow = NULL;
6072d13c
LT
905
906 freepage = mapping->a_ops->freepage;
a528910e
JW
907 /*
908 * Remember a shadow entry for reclaimed file cache in
909 * order to detect refaults, thus thrashing, later on.
910 *
911 * But don't store shadows in an address space that is
912 * already exiting. This is not just an optizimation,
913 * inode reclaim needs to empty out the radix tree or
914 * the nodes are lost. Don't plant shadows behind its
915 * back.
f9fe48be
RZ
916 *
917 * We also don't store shadows for DAX mappings because the
918 * only page cache pages found in these are zero pages
919 * covering holes, and because we don't want to mix DAX
920 * exceptional entries and shadow exceptional entries in the
b93b0163 921 * same address_space.
a528910e
JW
922 */
923 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 924 !mapping_exiting(mapping) && !dax_mapping(mapping))
a7ca12f9 925 shadow = workingset_eviction(page);
62cccb8c 926 __delete_from_page_cache(page, shadow);
b93b0163 927 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
928
929 if (freepage != NULL)
930 freepage(page);
49d2e9cc
CL
931 }
932
49d2e9cc
CL
933 return 1;
934
935cannot_free:
b93b0163 936 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
937 return 0;
938}
939
e286781d
NP
940/*
941 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
942 * someone else has a ref on the page, abort and return 0. If it was
943 * successfully detached, return 1. Assumes the caller has a single ref on
944 * this page.
945 */
946int remove_mapping(struct address_space *mapping, struct page *page)
947{
a528910e 948 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
949 /*
950 * Unfreezing the refcount with 1 rather than 2 effectively
951 * drops the pagecache ref for us without requiring another
952 * atomic operation.
953 */
fe896d18 954 page_ref_unfreeze(page, 1);
e286781d
NP
955 return 1;
956 }
957 return 0;
958}
959
894bc310
LS
960/**
961 * putback_lru_page - put previously isolated page onto appropriate LRU list
962 * @page: page to be put back to appropriate lru list
963 *
964 * Add previously isolated @page to appropriate LRU list.
965 * Page may still be unevictable for other reasons.
966 *
967 * lru_lock must not be held, interrupts must be enabled.
968 */
894bc310
LS
969void putback_lru_page(struct page *page)
970{
9c4e6b1a 971 lru_cache_add(page);
894bc310
LS
972 put_page(page); /* drop ref from isolate */
973}
974
dfc8d636
JW
975enum page_references {
976 PAGEREF_RECLAIM,
977 PAGEREF_RECLAIM_CLEAN,
64574746 978 PAGEREF_KEEP,
dfc8d636
JW
979 PAGEREF_ACTIVATE,
980};
981
982static enum page_references page_check_references(struct page *page,
983 struct scan_control *sc)
984{
64574746 985 int referenced_ptes, referenced_page;
dfc8d636 986 unsigned long vm_flags;
dfc8d636 987
c3ac9a8a
JW
988 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
989 &vm_flags);
64574746 990 referenced_page = TestClearPageReferenced(page);
dfc8d636 991
dfc8d636
JW
992 /*
993 * Mlock lost the isolation race with us. Let try_to_unmap()
994 * move the page to the unevictable list.
995 */
996 if (vm_flags & VM_LOCKED)
997 return PAGEREF_RECLAIM;
998
64574746 999 if (referenced_ptes) {
e4898273 1000 if (PageSwapBacked(page))
64574746
JW
1001 return PAGEREF_ACTIVATE;
1002 /*
1003 * All mapped pages start out with page table
1004 * references from the instantiating fault, so we need
1005 * to look twice if a mapped file page is used more
1006 * than once.
1007 *
1008 * Mark it and spare it for another trip around the
1009 * inactive list. Another page table reference will
1010 * lead to its activation.
1011 *
1012 * Note: the mark is set for activated pages as well
1013 * so that recently deactivated but used pages are
1014 * quickly recovered.
1015 */
1016 SetPageReferenced(page);
1017
34dbc67a 1018 if (referenced_page || referenced_ptes > 1)
64574746
JW
1019 return PAGEREF_ACTIVATE;
1020
c909e993
KK
1021 /*
1022 * Activate file-backed executable pages after first usage.
1023 */
1024 if (vm_flags & VM_EXEC)
1025 return PAGEREF_ACTIVATE;
1026
64574746
JW
1027 return PAGEREF_KEEP;
1028 }
dfc8d636
JW
1029
1030 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1031 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1032 return PAGEREF_RECLAIM_CLEAN;
1033
1034 return PAGEREF_RECLAIM;
dfc8d636
JW
1035}
1036
e2be15f6
MG
1037/* Check if a page is dirty or under writeback */
1038static void page_check_dirty_writeback(struct page *page,
1039 bool *dirty, bool *writeback)
1040{
b4597226
MG
1041 struct address_space *mapping;
1042
e2be15f6
MG
1043 /*
1044 * Anonymous pages are not handled by flushers and must be written
1045 * from reclaim context. Do not stall reclaim based on them
1046 */
802a3a92
SL
1047 if (!page_is_file_cache(page) ||
1048 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1049 *dirty = false;
1050 *writeback = false;
1051 return;
1052 }
1053
1054 /* By default assume that the page flags are accurate */
1055 *dirty = PageDirty(page);
1056 *writeback = PageWriteback(page);
b4597226
MG
1057
1058 /* Verify dirty/writeback state if the filesystem supports it */
1059 if (!page_has_private(page))
1060 return;
1061
1062 mapping = page_mapping(page);
1063 if (mapping && mapping->a_ops->is_dirty_writeback)
1064 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1065}
1066
1da177e4 1067/*
1742f19f 1068 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1069 */
1742f19f 1070static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 1071 struct pglist_data *pgdat,
f84f6e2b 1072 struct scan_control *sc,
02c6de8d 1073 enum ttu_flags ttu_flags,
3c710c1a 1074 struct reclaim_stat *stat,
8940b34a 1075 bool ignore_references)
1da177e4
LT
1076{
1077 LIST_HEAD(ret_pages);
abe4c3b5 1078 LIST_HEAD(free_pages);
3c710c1a 1079 unsigned nr_reclaimed = 0;
886cf190 1080 unsigned pgactivate = 0;
1da177e4 1081
060f005f 1082 memset(stat, 0, sizeof(*stat));
1da177e4
LT
1083 cond_resched();
1084
1da177e4
LT
1085 while (!list_empty(page_list)) {
1086 struct address_space *mapping;
1087 struct page *page;
1088 int may_enter_fs;
8940b34a 1089 enum page_references references = PAGEREF_RECLAIM;
e2be15f6 1090 bool dirty, writeback;
98879b3b 1091 unsigned int nr_pages;
1da177e4
LT
1092
1093 cond_resched();
1094
1095 page = lru_to_page(page_list);
1096 list_del(&page->lru);
1097
529ae9aa 1098 if (!trylock_page(page))
1da177e4
LT
1099 goto keep;
1100
309381fe 1101 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1102
d8c6546b 1103 nr_pages = compound_nr(page);
98879b3b
YS
1104
1105 /* Account the number of base pages even though THP */
1106 sc->nr_scanned += nr_pages;
80e43426 1107
39b5f29a 1108 if (unlikely(!page_evictable(page)))
ad6b6704 1109 goto activate_locked;
894bc310 1110
a6dc60f8 1111 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1112 goto keep_locked;
1113
c661b078
AW
1114 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1115 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1116
e2be15f6 1117 /*
894befec 1118 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1119 * reclaim_congested which affects wait_iff_congested. kswapd
1120 * will stall and start writing pages if the tail of the LRU
1121 * is all dirty unqueued pages.
1122 */
1123 page_check_dirty_writeback(page, &dirty, &writeback);
1124 if (dirty || writeback)
060f005f 1125 stat->nr_dirty++;
e2be15f6
MG
1126
1127 if (dirty && !writeback)
060f005f 1128 stat->nr_unqueued_dirty++;
e2be15f6 1129
d04e8acd
MG
1130 /*
1131 * Treat this page as congested if the underlying BDI is or if
1132 * pages are cycling through the LRU so quickly that the
1133 * pages marked for immediate reclaim are making it to the
1134 * end of the LRU a second time.
1135 */
e2be15f6 1136 mapping = page_mapping(page);
1da58ee2 1137 if (((dirty || writeback) && mapping &&
703c2708 1138 inode_write_congested(mapping->host)) ||
d04e8acd 1139 (writeback && PageReclaim(page)))
060f005f 1140 stat->nr_congested++;
e2be15f6 1141
283aba9f
MG
1142 /*
1143 * If a page at the tail of the LRU is under writeback, there
1144 * are three cases to consider.
1145 *
1146 * 1) If reclaim is encountering an excessive number of pages
1147 * under writeback and this page is both under writeback and
1148 * PageReclaim then it indicates that pages are being queued
1149 * for IO but are being recycled through the LRU before the
1150 * IO can complete. Waiting on the page itself risks an
1151 * indefinite stall if it is impossible to writeback the
1152 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1153 * note that the LRU is being scanned too quickly and the
1154 * caller can stall after page list has been processed.
283aba9f 1155 *
97c9341f 1156 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1157 * not marked for immediate reclaim, or the caller does not
1158 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1159 * not to fs). In this case mark the page for immediate
97c9341f 1160 * reclaim and continue scanning.
283aba9f 1161 *
ecf5fc6e
MH
1162 * Require may_enter_fs because we would wait on fs, which
1163 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1164 * enter reclaim, and deadlock if it waits on a page for
1165 * which it is needed to do the write (loop masks off
1166 * __GFP_IO|__GFP_FS for this reason); but more thought
1167 * would probably show more reasons.
1168 *
7fadc820 1169 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1170 * PageReclaim. memcg does not have any dirty pages
1171 * throttling so we could easily OOM just because too many
1172 * pages are in writeback and there is nothing else to
1173 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1174 *
1175 * In cases 1) and 2) we activate the pages to get them out of
1176 * the way while we continue scanning for clean pages on the
1177 * inactive list and refilling from the active list. The
1178 * observation here is that waiting for disk writes is more
1179 * expensive than potentially causing reloads down the line.
1180 * Since they're marked for immediate reclaim, they won't put
1181 * memory pressure on the cache working set any longer than it
1182 * takes to write them to disk.
283aba9f 1183 */
c661b078 1184 if (PageWriteback(page)) {
283aba9f
MG
1185 /* Case 1 above */
1186 if (current_is_kswapd() &&
1187 PageReclaim(page) &&
599d0c95 1188 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1189 stat->nr_immediate++;
c55e8d03 1190 goto activate_locked;
283aba9f
MG
1191
1192 /* Case 2 above */
b5ead35e 1193 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1194 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1195 /*
1196 * This is slightly racy - end_page_writeback()
1197 * might have just cleared PageReclaim, then
1198 * setting PageReclaim here end up interpreted
1199 * as PageReadahead - but that does not matter
1200 * enough to care. What we do want is for this
1201 * page to have PageReclaim set next time memcg
1202 * reclaim reaches the tests above, so it will
1203 * then wait_on_page_writeback() to avoid OOM;
1204 * and it's also appropriate in global reclaim.
1205 */
1206 SetPageReclaim(page);
060f005f 1207 stat->nr_writeback++;
c55e8d03 1208 goto activate_locked;
283aba9f
MG
1209
1210 /* Case 3 above */
1211 } else {
7fadc820 1212 unlock_page(page);
283aba9f 1213 wait_on_page_writeback(page);
7fadc820
HD
1214 /* then go back and try same page again */
1215 list_add_tail(&page->lru, page_list);
1216 continue;
e62e384e 1217 }
c661b078 1218 }
1da177e4 1219
8940b34a 1220 if (!ignore_references)
02c6de8d
MK
1221 references = page_check_references(page, sc);
1222
dfc8d636
JW
1223 switch (references) {
1224 case PAGEREF_ACTIVATE:
1da177e4 1225 goto activate_locked;
64574746 1226 case PAGEREF_KEEP:
98879b3b 1227 stat->nr_ref_keep += nr_pages;
64574746 1228 goto keep_locked;
dfc8d636
JW
1229 case PAGEREF_RECLAIM:
1230 case PAGEREF_RECLAIM_CLEAN:
1231 ; /* try to reclaim the page below */
1232 }
1da177e4 1233
1da177e4
LT
1234 /*
1235 * Anonymous process memory has backing store?
1236 * Try to allocate it some swap space here.
802a3a92 1237 * Lazyfree page could be freed directly
1da177e4 1238 */
bd4c82c2
HY
1239 if (PageAnon(page) && PageSwapBacked(page)) {
1240 if (!PageSwapCache(page)) {
1241 if (!(sc->gfp_mask & __GFP_IO))
1242 goto keep_locked;
1243 if (PageTransHuge(page)) {
1244 /* cannot split THP, skip it */
1245 if (!can_split_huge_page(page, NULL))
1246 goto activate_locked;
1247 /*
1248 * Split pages without a PMD map right
1249 * away. Chances are some or all of the
1250 * tail pages can be freed without IO.
1251 */
1252 if (!compound_mapcount(page) &&
1253 split_huge_page_to_list(page,
1254 page_list))
1255 goto activate_locked;
1256 }
1257 if (!add_to_swap(page)) {
1258 if (!PageTransHuge(page))
98879b3b 1259 goto activate_locked_split;
bd4c82c2
HY
1260 /* Fallback to swap normal pages */
1261 if (split_huge_page_to_list(page,
1262 page_list))
1263 goto activate_locked;
fe490cc0
HY
1264#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1265 count_vm_event(THP_SWPOUT_FALLBACK);
1266#endif
bd4c82c2 1267 if (!add_to_swap(page))
98879b3b 1268 goto activate_locked_split;
bd4c82c2 1269 }
0f074658 1270
bd4c82c2 1271 may_enter_fs = 1;
1da177e4 1272
bd4c82c2
HY
1273 /* Adding to swap updated mapping */
1274 mapping = page_mapping(page);
1275 }
7751b2da
KS
1276 } else if (unlikely(PageTransHuge(page))) {
1277 /* Split file THP */
1278 if (split_huge_page_to_list(page, page_list))
1279 goto keep_locked;
e2be15f6 1280 }
1da177e4 1281
98879b3b
YS
1282 /*
1283 * THP may get split above, need minus tail pages and update
1284 * nr_pages to avoid accounting tail pages twice.
1285 *
1286 * The tail pages that are added into swap cache successfully
1287 * reach here.
1288 */
1289 if ((nr_pages > 1) && !PageTransHuge(page)) {
1290 sc->nr_scanned -= (nr_pages - 1);
1291 nr_pages = 1;
1292 }
1293
1da177e4
LT
1294 /*
1295 * The page is mapped into the page tables of one or more
1296 * processes. Try to unmap it here.
1297 */
802a3a92 1298 if (page_mapped(page)) {
bd4c82c2
HY
1299 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1300
1301 if (unlikely(PageTransHuge(page)))
1302 flags |= TTU_SPLIT_HUGE_PMD;
1303 if (!try_to_unmap(page, flags)) {
98879b3b 1304 stat->nr_unmap_fail += nr_pages;
1da177e4 1305 goto activate_locked;
1da177e4
LT
1306 }
1307 }
1308
1309 if (PageDirty(page)) {
ee72886d 1310 /*
4eda4823
JW
1311 * Only kswapd can writeback filesystem pages
1312 * to avoid risk of stack overflow. But avoid
1313 * injecting inefficient single-page IO into
1314 * flusher writeback as much as possible: only
1315 * write pages when we've encountered many
1316 * dirty pages, and when we've already scanned
1317 * the rest of the LRU for clean pages and see
1318 * the same dirty pages again (PageReclaim).
ee72886d 1319 */
f84f6e2b 1320 if (page_is_file_cache(page) &&
4eda4823
JW
1321 (!current_is_kswapd() || !PageReclaim(page) ||
1322 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1323 /*
1324 * Immediately reclaim when written back.
1325 * Similar in principal to deactivate_page()
1326 * except we already have the page isolated
1327 * and know it's dirty
1328 */
c4a25635 1329 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1330 SetPageReclaim(page);
1331
c55e8d03 1332 goto activate_locked;
ee72886d
MG
1333 }
1334
dfc8d636 1335 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1336 goto keep_locked;
4dd4b920 1337 if (!may_enter_fs)
1da177e4 1338 goto keep_locked;
52a8363e 1339 if (!sc->may_writepage)
1da177e4
LT
1340 goto keep_locked;
1341
d950c947
MG
1342 /*
1343 * Page is dirty. Flush the TLB if a writable entry
1344 * potentially exists to avoid CPU writes after IO
1345 * starts and then write it out here.
1346 */
1347 try_to_unmap_flush_dirty();
cb16556d 1348 switch (pageout(page, mapping)) {
1da177e4
LT
1349 case PAGE_KEEP:
1350 goto keep_locked;
1351 case PAGE_ACTIVATE:
1352 goto activate_locked;
1353 case PAGE_SUCCESS:
7d3579e8 1354 if (PageWriteback(page))
41ac1999 1355 goto keep;
7d3579e8 1356 if (PageDirty(page))
1da177e4 1357 goto keep;
7d3579e8 1358
1da177e4
LT
1359 /*
1360 * A synchronous write - probably a ramdisk. Go
1361 * ahead and try to reclaim the page.
1362 */
529ae9aa 1363 if (!trylock_page(page))
1da177e4
LT
1364 goto keep;
1365 if (PageDirty(page) || PageWriteback(page))
1366 goto keep_locked;
1367 mapping = page_mapping(page);
1368 case PAGE_CLEAN:
1369 ; /* try to free the page below */
1370 }
1371 }
1372
1373 /*
1374 * If the page has buffers, try to free the buffer mappings
1375 * associated with this page. If we succeed we try to free
1376 * the page as well.
1377 *
1378 * We do this even if the page is PageDirty().
1379 * try_to_release_page() does not perform I/O, but it is
1380 * possible for a page to have PageDirty set, but it is actually
1381 * clean (all its buffers are clean). This happens if the
1382 * buffers were written out directly, with submit_bh(). ext3
894bc310 1383 * will do this, as well as the blockdev mapping.
1da177e4
LT
1384 * try_to_release_page() will discover that cleanness and will
1385 * drop the buffers and mark the page clean - it can be freed.
1386 *
1387 * Rarely, pages can have buffers and no ->mapping. These are
1388 * the pages which were not successfully invalidated in
1389 * truncate_complete_page(). We try to drop those buffers here
1390 * and if that worked, and the page is no longer mapped into
1391 * process address space (page_count == 1) it can be freed.
1392 * Otherwise, leave the page on the LRU so it is swappable.
1393 */
266cf658 1394 if (page_has_private(page)) {
1da177e4
LT
1395 if (!try_to_release_page(page, sc->gfp_mask))
1396 goto activate_locked;
e286781d
NP
1397 if (!mapping && page_count(page) == 1) {
1398 unlock_page(page);
1399 if (put_page_testzero(page))
1400 goto free_it;
1401 else {
1402 /*
1403 * rare race with speculative reference.
1404 * the speculative reference will free
1405 * this page shortly, so we may
1406 * increment nr_reclaimed here (and
1407 * leave it off the LRU).
1408 */
1409 nr_reclaimed++;
1410 continue;
1411 }
1412 }
1da177e4
LT
1413 }
1414
802a3a92
SL
1415 if (PageAnon(page) && !PageSwapBacked(page)) {
1416 /* follow __remove_mapping for reference */
1417 if (!page_ref_freeze(page, 1))
1418 goto keep_locked;
1419 if (PageDirty(page)) {
1420 page_ref_unfreeze(page, 1);
1421 goto keep_locked;
1422 }
1da177e4 1423
802a3a92 1424 count_vm_event(PGLAZYFREED);
2262185c 1425 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1426 } else if (!mapping || !__remove_mapping(mapping, page, true))
1427 goto keep_locked;
9a1ea439
HD
1428
1429 unlock_page(page);
e286781d 1430free_it:
98879b3b
YS
1431 /*
1432 * THP may get swapped out in a whole, need account
1433 * all base pages.
1434 */
1435 nr_reclaimed += nr_pages;
abe4c3b5
MG
1436
1437 /*
1438 * Is there need to periodically free_page_list? It would
1439 * appear not as the counts should be low
1440 */
7ae88534 1441 if (unlikely(PageTransHuge(page)))
bd4c82c2 1442 (*get_compound_page_dtor(page))(page);
7ae88534 1443 else
bd4c82c2 1444 list_add(&page->lru, &free_pages);
1da177e4
LT
1445 continue;
1446
98879b3b
YS
1447activate_locked_split:
1448 /*
1449 * The tail pages that are failed to add into swap cache
1450 * reach here. Fixup nr_scanned and nr_pages.
1451 */
1452 if (nr_pages > 1) {
1453 sc->nr_scanned -= (nr_pages - 1);
1454 nr_pages = 1;
1455 }
1da177e4 1456activate_locked:
68a22394 1457 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1458 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1459 PageMlocked(page)))
a2c43eed 1460 try_to_free_swap(page);
309381fe 1461 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1462 if (!PageMlocked(page)) {
886cf190 1463 int type = page_is_file_cache(page);
ad6b6704 1464 SetPageActive(page);
98879b3b 1465 stat->nr_activate[type] += nr_pages;
2262185c 1466 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1467 }
1da177e4
LT
1468keep_locked:
1469 unlock_page(page);
1470keep:
1471 list_add(&page->lru, &ret_pages);
309381fe 1472 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1473 }
abe4c3b5 1474
98879b3b
YS
1475 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1476
747db954 1477 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1478 try_to_unmap_flush();
2d4894b5 1479 free_unref_page_list(&free_pages);
abe4c3b5 1480
1da177e4 1481 list_splice(&ret_pages, page_list);
886cf190 1482 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1483
05ff5137 1484 return nr_reclaimed;
1da177e4
LT
1485}
1486
02c6de8d
MK
1487unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1488 struct list_head *page_list)
1489{
1490 struct scan_control sc = {
1491 .gfp_mask = GFP_KERNEL,
1492 .priority = DEF_PRIORITY,
1493 .may_unmap = 1,
1494 };
060f005f 1495 struct reclaim_stat dummy_stat;
3c710c1a 1496 unsigned long ret;
02c6de8d
MK
1497 struct page *page, *next;
1498 LIST_HEAD(clean_pages);
1499
1500 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1501 if (page_is_file_cache(page) && !PageDirty(page) &&
a58f2cef 1502 !__PageMovable(page) && !PageUnevictable(page)) {
02c6de8d
MK
1503 ClearPageActive(page);
1504 list_move(&page->lru, &clean_pages);
1505 }
1506 }
1507
599d0c95 1508 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
060f005f 1509 TTU_IGNORE_ACCESS, &dummy_stat, true);
02c6de8d 1510 list_splice(&clean_pages, page_list);
599d0c95 1511 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1512 return ret;
1513}
1514
5ad333eb
AW
1515/*
1516 * Attempt to remove the specified page from its LRU. Only take this page
1517 * if it is of the appropriate PageActive status. Pages which are being
1518 * freed elsewhere are also ignored.
1519 *
1520 * page: page to consider
1521 * mode: one of the LRU isolation modes defined above
1522 *
1523 * returns 0 on success, -ve errno on failure.
1524 */
f3fd4a61 1525int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1526{
1527 int ret = -EINVAL;
1528
1529 /* Only take pages on the LRU. */
1530 if (!PageLRU(page))
1531 return ret;
1532
e46a2879
MK
1533 /* Compaction should not handle unevictable pages but CMA can do so */
1534 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1535 return ret;
1536
5ad333eb 1537 ret = -EBUSY;
08e552c6 1538
c8244935
MG
1539 /*
1540 * To minimise LRU disruption, the caller can indicate that it only
1541 * wants to isolate pages it will be able to operate on without
1542 * blocking - clean pages for the most part.
1543 *
c8244935
MG
1544 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1545 * that it is possible to migrate without blocking
1546 */
1276ad68 1547 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1548 /* All the caller can do on PageWriteback is block */
1549 if (PageWriteback(page))
1550 return ret;
1551
1552 if (PageDirty(page)) {
1553 struct address_space *mapping;
69d763fc 1554 bool migrate_dirty;
c8244935 1555
c8244935
MG
1556 /*
1557 * Only pages without mappings or that have a
1558 * ->migratepage callback are possible to migrate
69d763fc
MG
1559 * without blocking. However, we can be racing with
1560 * truncation so it's necessary to lock the page
1561 * to stabilise the mapping as truncation holds
1562 * the page lock until after the page is removed
1563 * from the page cache.
c8244935 1564 */
69d763fc
MG
1565 if (!trylock_page(page))
1566 return ret;
1567
c8244935 1568 mapping = page_mapping(page);
145e1a71 1569 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1570 unlock_page(page);
1571 if (!migrate_dirty)
c8244935
MG
1572 return ret;
1573 }
1574 }
39deaf85 1575
f80c0673
MK
1576 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1577 return ret;
1578
5ad333eb
AW
1579 if (likely(get_page_unless_zero(page))) {
1580 /*
1581 * Be careful not to clear PageLRU until after we're
1582 * sure the page is not being freed elsewhere -- the
1583 * page release code relies on it.
1584 */
1585 ClearPageLRU(page);
1586 ret = 0;
1587 }
1588
1589 return ret;
1590}
1591
7ee36a14
MG
1592
1593/*
1594 * Update LRU sizes after isolating pages. The LRU size updates must
1595 * be complete before mem_cgroup_update_lru_size due to a santity check.
1596 */
1597static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1598 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1599{
7ee36a14
MG
1600 int zid;
1601
7ee36a14
MG
1602 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1603 if (!nr_zone_taken[zid])
1604 continue;
1605
1606 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1607#ifdef CONFIG_MEMCG
b4536f0c 1608 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1609#endif
b4536f0c
MH
1610 }
1611
7ee36a14
MG
1612}
1613
f4b7e272
AR
1614/**
1615 * pgdat->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1616 * shrink the lists perform better by taking out a batch of pages
1617 * and working on them outside the LRU lock.
1618 *
1619 * For pagecache intensive workloads, this function is the hottest
1620 * spot in the kernel (apart from copy_*_user functions).
1621 *
1622 * Appropriate locks must be held before calling this function.
1623 *
791b48b6 1624 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1625 * @lruvec: The LRU vector to pull pages from.
1da177e4 1626 * @dst: The temp list to put pages on to.
f626012d 1627 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1628 * @sc: The scan_control struct for this reclaim session
5ad333eb 1629 * @mode: One of the LRU isolation modes
3cb99451 1630 * @lru: LRU list id for isolating
1da177e4
LT
1631 *
1632 * returns how many pages were moved onto *@dst.
1633 */
69e05944 1634static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1635 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1636 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1637 enum lru_list lru)
1da177e4 1638{
75b00af7 1639 struct list_head *src = &lruvec->lists[lru];
69e05944 1640 unsigned long nr_taken = 0;
599d0c95 1641 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1642 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1643 unsigned long skipped = 0;
791b48b6 1644 unsigned long scan, total_scan, nr_pages;
b2e18757 1645 LIST_HEAD(pages_skipped);
a9e7c39f 1646 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1647
98879b3b 1648 total_scan = 0;
791b48b6 1649 scan = 0;
98879b3b 1650 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1651 struct page *page;
5ad333eb 1652
1da177e4
LT
1653 page = lru_to_page(src);
1654 prefetchw_prev_lru_page(page, src, flags);
1655
309381fe 1656 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1657
d8c6546b 1658 nr_pages = compound_nr(page);
98879b3b
YS
1659 total_scan += nr_pages;
1660
b2e18757
MG
1661 if (page_zonenum(page) > sc->reclaim_idx) {
1662 list_move(&page->lru, &pages_skipped);
98879b3b 1663 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1664 continue;
1665 }
1666
791b48b6
MK
1667 /*
1668 * Do not count skipped pages because that makes the function
1669 * return with no isolated pages if the LRU mostly contains
1670 * ineligible pages. This causes the VM to not reclaim any
1671 * pages, triggering a premature OOM.
98879b3b
YS
1672 *
1673 * Account all tail pages of THP. This would not cause
1674 * premature OOM since __isolate_lru_page() returns -EBUSY
1675 * only when the page is being freed somewhere else.
791b48b6 1676 */
98879b3b 1677 scan += nr_pages;
f3fd4a61 1678 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1679 case 0:
599d0c95
MG
1680 nr_taken += nr_pages;
1681 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1682 list_move(&page->lru, dst);
5ad333eb
AW
1683 break;
1684
1685 case -EBUSY:
1686 /* else it is being freed elsewhere */
1687 list_move(&page->lru, src);
1688 continue;
46453a6e 1689
5ad333eb
AW
1690 default:
1691 BUG();
1692 }
1da177e4
LT
1693 }
1694
b2e18757
MG
1695 /*
1696 * Splice any skipped pages to the start of the LRU list. Note that
1697 * this disrupts the LRU order when reclaiming for lower zones but
1698 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1699 * scanning would soon rescan the same pages to skip and put the
1700 * system at risk of premature OOM.
1701 */
7cc30fcf
MG
1702 if (!list_empty(&pages_skipped)) {
1703 int zid;
1704
3db65812 1705 list_splice(&pages_skipped, src);
7cc30fcf
MG
1706 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1707 if (!nr_skipped[zid])
1708 continue;
1709
1710 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1711 skipped += nr_skipped[zid];
7cc30fcf
MG
1712 }
1713 }
791b48b6 1714 *nr_scanned = total_scan;
1265e3a6 1715 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1716 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1717 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1718 return nr_taken;
1719}
1720
62695a84
NP
1721/**
1722 * isolate_lru_page - tries to isolate a page from its LRU list
1723 * @page: page to isolate from its LRU list
1724 *
1725 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1726 * vmstat statistic corresponding to whatever LRU list the page was on.
1727 *
1728 * Returns 0 if the page was removed from an LRU list.
1729 * Returns -EBUSY if the page was not on an LRU list.
1730 *
1731 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1732 * the active list, it will have PageActive set. If it was found on
1733 * the unevictable list, it will have the PageUnevictable bit set. That flag
1734 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1735 *
1736 * The vmstat statistic corresponding to the list on which the page was
1737 * found will be decremented.
1738 *
1739 * Restrictions:
a5d09bed 1740 *
62695a84
NP
1741 * (1) Must be called with an elevated refcount on the page. This is a
1742 * fundamentnal difference from isolate_lru_pages (which is called
1743 * without a stable reference).
1744 * (2) the lru_lock must not be held.
1745 * (3) interrupts must be enabled.
1746 */
1747int isolate_lru_page(struct page *page)
1748{
1749 int ret = -EBUSY;
1750
309381fe 1751 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1752 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1753
62695a84 1754 if (PageLRU(page)) {
f4b7e272 1755 pg_data_t *pgdat = page_pgdat(page);
fa9add64 1756 struct lruvec *lruvec;
62695a84 1757
f4b7e272
AR
1758 spin_lock_irq(&pgdat->lru_lock);
1759 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0c917313 1760 if (PageLRU(page)) {
894bc310 1761 int lru = page_lru(page);
0c917313 1762 get_page(page);
62695a84 1763 ClearPageLRU(page);
fa9add64
HD
1764 del_page_from_lru_list(page, lruvec, lru);
1765 ret = 0;
62695a84 1766 }
f4b7e272 1767 spin_unlock_irq(&pgdat->lru_lock);
62695a84
NP
1768 }
1769 return ret;
1770}
1771
35cd7815 1772/*
d37dd5dc
FW
1773 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1774 * then get resheduled. When there are massive number of tasks doing page
1775 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1776 * the LRU list will go small and be scanned faster than necessary, leading to
1777 * unnecessary swapping, thrashing and OOM.
35cd7815 1778 */
599d0c95 1779static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1780 struct scan_control *sc)
1781{
1782 unsigned long inactive, isolated;
1783
1784 if (current_is_kswapd())
1785 return 0;
1786
b5ead35e 1787 if (!writeback_throttling_sane(sc))
35cd7815
RR
1788 return 0;
1789
1790 if (file) {
599d0c95
MG
1791 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1792 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1793 } else {
599d0c95
MG
1794 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1795 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1796 }
1797
3cf23841
FW
1798 /*
1799 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1800 * won't get blocked by normal direct-reclaimers, forming a circular
1801 * deadlock.
1802 */
d0164adc 1803 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1804 inactive >>= 3;
1805
35cd7815
RR
1806 return isolated > inactive;
1807}
1808
a222f341
KT
1809/*
1810 * This moves pages from @list to corresponding LRU list.
1811 *
1812 * We move them the other way if the page is referenced by one or more
1813 * processes, from rmap.
1814 *
1815 * If the pages are mostly unmapped, the processing is fast and it is
1816 * appropriate to hold zone_lru_lock across the whole operation. But if
1817 * the pages are mapped, the processing is slow (page_referenced()) so we
1818 * should drop zone_lru_lock around each page. It's impossible to balance
1819 * this, so instead we remove the pages from the LRU while processing them.
1820 * It is safe to rely on PG_active against the non-LRU pages in here because
1821 * nobody will play with that bit on a non-LRU page.
1822 *
1823 * The downside is that we have to touch page->_refcount against each page.
1824 * But we had to alter page->flags anyway.
1825 *
1826 * Returns the number of pages moved to the given lruvec.
1827 */
1828
1829static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1830 struct list_head *list)
66635629 1831{
599d0c95 1832 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
a222f341 1833 int nr_pages, nr_moved = 0;
3f79768f 1834 LIST_HEAD(pages_to_free);
a222f341
KT
1835 struct page *page;
1836 enum lru_list lru;
66635629 1837
a222f341
KT
1838 while (!list_empty(list)) {
1839 page = lru_to_page(list);
309381fe 1840 VM_BUG_ON_PAGE(PageLRU(page), page);
39b5f29a 1841 if (unlikely(!page_evictable(page))) {
a222f341 1842 list_del(&page->lru);
599d0c95 1843 spin_unlock_irq(&pgdat->lru_lock);
66635629 1844 putback_lru_page(page);
599d0c95 1845 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1846 continue;
1847 }
599d0c95 1848 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1849
7a608572 1850 SetPageLRU(page);
66635629 1851 lru = page_lru(page);
a222f341
KT
1852
1853 nr_pages = hpage_nr_pages(page);
1854 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1855 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1856
2bcf8879
HD
1857 if (put_page_testzero(page)) {
1858 __ClearPageLRU(page);
1859 __ClearPageActive(page);
fa9add64 1860 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1861
1862 if (unlikely(PageCompound(page))) {
599d0c95 1863 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 1864 (*get_compound_page_dtor(page))(page);
599d0c95 1865 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1866 } else
1867 list_add(&page->lru, &pages_to_free);
a222f341
KT
1868 } else {
1869 nr_moved += nr_pages;
66635629
MG
1870 }
1871 }
66635629 1872
3f79768f
HD
1873 /*
1874 * To save our caller's stack, now use input list for pages to free.
1875 */
a222f341
KT
1876 list_splice(&pages_to_free, list);
1877
1878 return nr_moved;
66635629
MG
1879}
1880
399ba0b9
N
1881/*
1882 * If a kernel thread (such as nfsd for loop-back mounts) services
1883 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1884 * In that case we should only throttle if the backing device it is
1885 * writing to is congested. In other cases it is safe to throttle.
1886 */
1887static int current_may_throttle(void)
1888{
1889 return !(current->flags & PF_LESS_THROTTLE) ||
1890 current->backing_dev_info == NULL ||
1891 bdi_write_congested(current->backing_dev_info);
1892}
1893
1da177e4 1894/*
b2e18757 1895 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1896 * of reclaimed pages
1da177e4 1897 */
66635629 1898static noinline_for_stack unsigned long
1a93be0e 1899shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1900 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1901{
1902 LIST_HEAD(page_list);
e247dbce 1903 unsigned long nr_scanned;
05ff5137 1904 unsigned long nr_reclaimed = 0;
e247dbce 1905 unsigned long nr_taken;
060f005f 1906 struct reclaim_stat stat;
3cb99451 1907 int file = is_file_lru(lru);
f46b7912 1908 enum vm_event_item item;
599d0c95 1909 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1910 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1911 bool stalled = false;
78dc583d 1912
599d0c95 1913 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1914 if (stalled)
1915 return 0;
1916
1917 /* wait a bit for the reclaimer. */
1918 msleep(100);
1919 stalled = true;
35cd7815
RR
1920
1921 /* We are about to die and free our memory. Return now. */
1922 if (fatal_signal_pending(current))
1923 return SWAP_CLUSTER_MAX;
1924 }
1925
1da177e4 1926 lru_add_drain();
f80c0673 1927
599d0c95 1928 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1929
5dc35979 1930 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 1931 &nr_scanned, sc, lru);
95d918fc 1932
599d0c95 1933 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1934 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1935
f46b7912 1936 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 1937 if (!cgroup_reclaim(sc))
f46b7912
KT
1938 __count_vm_events(item, nr_scanned);
1939 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
599d0c95 1940 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1941
d563c050 1942 if (nr_taken == 0)
66635629 1943 return 0;
5ad333eb 1944
a128ca71 1945 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1946 &stat, false);
c661b078 1947
599d0c95 1948 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1949
f46b7912 1950 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 1951 if (!cgroup_reclaim(sc))
f46b7912
KT
1952 __count_vm_events(item, nr_reclaimed);
1953 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
b17f18af
KT
1954 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1955 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
a74609fa 1956
a222f341 1957 move_pages_to_lru(lruvec, &page_list);
3f79768f 1958
599d0c95 1959 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1960
599d0c95 1961 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1962
747db954 1963 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1964 free_unref_page_list(&page_list);
e11da5b4 1965
1c610d5f
AR
1966 /*
1967 * If dirty pages are scanned that are not queued for IO, it
1968 * implies that flushers are not doing their job. This can
1969 * happen when memory pressure pushes dirty pages to the end of
1970 * the LRU before the dirty limits are breached and the dirty
1971 * data has expired. It can also happen when the proportion of
1972 * dirty pages grows not through writes but through memory
1973 * pressure reclaiming all the clean cache. And in some cases,
1974 * the flushers simply cannot keep up with the allocation
1975 * rate. Nudge the flusher threads in case they are asleep.
1976 */
1977 if (stat.nr_unqueued_dirty == nr_taken)
1978 wakeup_flusher_threads(WB_REASON_VMSCAN);
1979
d108c772
AR
1980 sc->nr.dirty += stat.nr_dirty;
1981 sc->nr.congested += stat.nr_congested;
1982 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1983 sc->nr.writeback += stat.nr_writeback;
1984 sc->nr.immediate += stat.nr_immediate;
1985 sc->nr.taken += nr_taken;
1986 if (file)
1987 sc->nr.file_taken += nr_taken;
8e950282 1988
599d0c95 1989 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 1990 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 1991 return nr_reclaimed;
1da177e4
LT
1992}
1993
f626012d 1994static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1995 struct lruvec *lruvec,
f16015fb 1996 struct scan_control *sc,
9e3b2f8c 1997 enum lru_list lru)
1da177e4 1998{
44c241f1 1999 unsigned long nr_taken;
f626012d 2000 unsigned long nr_scanned;
6fe6b7e3 2001 unsigned long vm_flags;
1da177e4 2002 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2003 LIST_HEAD(l_active);
b69408e8 2004 LIST_HEAD(l_inactive);
1da177e4 2005 struct page *page;
1a93be0e 2006 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
2007 unsigned nr_deactivate, nr_activate;
2008 unsigned nr_rotated = 0;
3cb99451 2009 int file = is_file_lru(lru);
599d0c95 2010 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2011
2012 lru_add_drain();
f80c0673 2013
599d0c95 2014 spin_lock_irq(&pgdat->lru_lock);
925b7673 2015
5dc35979 2016 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2017 &nr_scanned, sc, lru);
89b5fae5 2018
599d0c95 2019 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2020 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2021
599d0c95 2022 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2023 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2024
599d0c95 2025 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2026
1da177e4
LT
2027 while (!list_empty(&l_hold)) {
2028 cond_resched();
2029 page = lru_to_page(&l_hold);
2030 list_del(&page->lru);
7e9cd484 2031
39b5f29a 2032 if (unlikely(!page_evictable(page))) {
894bc310
LS
2033 putback_lru_page(page);
2034 continue;
2035 }
2036
cc715d99
MG
2037 if (unlikely(buffer_heads_over_limit)) {
2038 if (page_has_private(page) && trylock_page(page)) {
2039 if (page_has_private(page))
2040 try_to_release_page(page, 0);
2041 unlock_page(page);
2042 }
2043 }
2044
c3ac9a8a
JW
2045 if (page_referenced(page, 0, sc->target_mem_cgroup,
2046 &vm_flags)) {
9992af10 2047 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2048 /*
2049 * Identify referenced, file-backed active pages and
2050 * give them one more trip around the active list. So
2051 * that executable code get better chances to stay in
2052 * memory under moderate memory pressure. Anon pages
2053 * are not likely to be evicted by use-once streaming
2054 * IO, plus JVM can create lots of anon VM_EXEC pages,
2055 * so we ignore them here.
2056 */
41e20983 2057 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2058 list_add(&page->lru, &l_active);
2059 continue;
2060 }
2061 }
7e9cd484 2062
5205e56e 2063 ClearPageActive(page); /* we are de-activating */
1899ad18 2064 SetPageWorkingset(page);
1da177e4
LT
2065 list_add(&page->lru, &l_inactive);
2066 }
2067
b555749a 2068 /*
8cab4754 2069 * Move pages back to the lru list.
b555749a 2070 */
599d0c95 2071 spin_lock_irq(&pgdat->lru_lock);
556adecb 2072 /*
8cab4754
WF
2073 * Count referenced pages from currently used mappings as rotated,
2074 * even though only some of them are actually re-activated. This
2075 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2076 * get_scan_count.
7e9cd484 2077 */
b7c46d15 2078 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2079
a222f341
KT
2080 nr_activate = move_pages_to_lru(lruvec, &l_active);
2081 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2082 /* Keep all free pages in l_active list */
2083 list_splice(&l_inactive, &l_active);
9851ac13
KT
2084
2085 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2086 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2087
599d0c95
MG
2088 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2089 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2090
f372d89e
KT
2091 mem_cgroup_uncharge_list(&l_active);
2092 free_unref_page_list(&l_active);
9d998b4f
MH
2093 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2094 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2095}
2096
1a4e58cc
MK
2097unsigned long reclaim_pages(struct list_head *page_list)
2098{
2099 int nid = -1;
2100 unsigned long nr_reclaimed = 0;
2101 LIST_HEAD(node_page_list);
2102 struct reclaim_stat dummy_stat;
2103 struct page *page;
2104 struct scan_control sc = {
2105 .gfp_mask = GFP_KERNEL,
2106 .priority = DEF_PRIORITY,
2107 .may_writepage = 1,
2108 .may_unmap = 1,
2109 .may_swap = 1,
2110 };
2111
2112 while (!list_empty(page_list)) {
2113 page = lru_to_page(page_list);
2114 if (nid == -1) {
2115 nid = page_to_nid(page);
2116 INIT_LIST_HEAD(&node_page_list);
2117 }
2118
2119 if (nid == page_to_nid(page)) {
2120 ClearPageActive(page);
2121 list_move(&page->lru, &node_page_list);
2122 continue;
2123 }
2124
2125 nr_reclaimed += shrink_page_list(&node_page_list,
2126 NODE_DATA(nid),
2127 &sc, 0,
2128 &dummy_stat, false);
2129 while (!list_empty(&node_page_list)) {
2130 page = lru_to_page(&node_page_list);
2131 list_del(&page->lru);
2132 putback_lru_page(page);
2133 }
2134
2135 nid = -1;
2136 }
2137
2138 if (!list_empty(&node_page_list)) {
2139 nr_reclaimed += shrink_page_list(&node_page_list,
2140 NODE_DATA(nid),
2141 &sc, 0,
2142 &dummy_stat, false);
2143 while (!list_empty(&node_page_list)) {
2144 page = lru_to_page(&node_page_list);
2145 list_del(&page->lru);
2146 putback_lru_page(page);
2147 }
2148 }
2149
2150 return nr_reclaimed;
2151}
2152
59dc76b0
RR
2153/*
2154 * The inactive anon list should be small enough that the VM never has
2155 * to do too much work.
14797e23 2156 *
59dc76b0
RR
2157 * The inactive file list should be small enough to leave most memory
2158 * to the established workingset on the scan-resistant active list,
2159 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2160 *
59dc76b0
RR
2161 * Both inactive lists should also be large enough that each inactive
2162 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2163 *
2a2e4885
JW
2164 * If that fails and refaulting is observed, the inactive list grows.
2165 *
59dc76b0 2166 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2167 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2168 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2169 *
59dc76b0
RR
2170 * total target max
2171 * memory ratio inactive
2172 * -------------------------------------
2173 * 10MB 1 5MB
2174 * 100MB 1 50MB
2175 * 1GB 3 250MB
2176 * 10GB 10 0.9GB
2177 * 100GB 31 3GB
2178 * 1TB 101 10GB
2179 * 10TB 320 32GB
56e49d21 2180 */
f8d1a311 2181static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2c012a4a 2182 struct scan_control *sc, bool trace)
56e49d21 2183{
fd538803 2184 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2185 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2186 enum lru_list inactive_lru = file * LRU_FILE;
2187 unsigned long inactive, active;
2188 unsigned long inactive_ratio;
2189 unsigned long refaults;
59dc76b0 2190 unsigned long gb;
e3790144 2191
fd538803
MH
2192 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2193 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2194
2a2e4885
JW
2195 /*
2196 * When refaults are being observed, it means a new workingset
2197 * is being established. Disable active list protection to get
2198 * rid of the stale workingset quickly.
2199 */
205b20cc 2200 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2c012a4a 2201 if (file && lruvec->refaults != refaults) {
2a2e4885
JW
2202 inactive_ratio = 0;
2203 } else {
2204 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2205 if (gb)
2206 inactive_ratio = int_sqrt(10 * gb);
2207 else
2208 inactive_ratio = 1;
2209 }
59dc76b0 2210
2c012a4a 2211 if (trace)
2a2e4885
JW
2212 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2213 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2214 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2215 inactive_ratio, file);
fd538803 2216
59dc76b0 2217 return inactive * inactive_ratio < active;
b39415b2
RR
2218}
2219
4f98a2fe 2220static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
3b991208 2221 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 2222{
b39415b2 2223 if (is_active_lru(lru)) {
3b991208 2224 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
1a93be0e 2225 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2226 return 0;
2227 }
2228
1a93be0e 2229 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2230}
2231
9a265114
JW
2232enum scan_balance {
2233 SCAN_EQUAL,
2234 SCAN_FRACT,
2235 SCAN_ANON,
2236 SCAN_FILE,
2237};
2238
4f98a2fe
RR
2239/*
2240 * Determine how aggressively the anon and file LRU lists should be
2241 * scanned. The relative value of each set of LRU lists is determined
2242 * by looking at the fraction of the pages scanned we did rotate back
2243 * onto the active list instead of evict.
2244 *
be7bd59d
WL
2245 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2246 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2247 */
afaf07a6
JW
2248static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2249 unsigned long *nr)
4f98a2fe 2250{
afaf07a6 2251 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
33377678 2252 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2253 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2254 u64 fraction[2];
2255 u64 denominator = 0; /* gcc */
599d0c95 2256 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2257 unsigned long anon_prio, file_prio;
9a265114 2258 enum scan_balance scan_balance;
0bf1457f 2259 unsigned long anon, file;
4f98a2fe 2260 unsigned long ap, fp;
4111304d 2261 enum lru_list lru;
76a33fc3
SL
2262
2263 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2264 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2265 scan_balance = SCAN_FILE;
76a33fc3
SL
2266 goto out;
2267 }
4f98a2fe 2268
10316b31
JW
2269 /*
2270 * Global reclaim will swap to prevent OOM even with no
2271 * swappiness, but memcg users want to use this knob to
2272 * disable swapping for individual groups completely when
2273 * using the memory controller's swap limit feature would be
2274 * too expensive.
2275 */
b5ead35e 2276 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2277 scan_balance = SCAN_FILE;
10316b31
JW
2278 goto out;
2279 }
2280
2281 /*
2282 * Do not apply any pressure balancing cleverness when the
2283 * system is close to OOM, scan both anon and file equally
2284 * (unless the swappiness setting disagrees with swapping).
2285 */
02695175 2286 if (!sc->priority && swappiness) {
9a265114 2287 scan_balance = SCAN_EQUAL;
10316b31
JW
2288 goto out;
2289 }
2290
62376251
JW
2291 /*
2292 * Prevent the reclaimer from falling into the cache trap: as
2293 * cache pages start out inactive, every cache fault will tip
2294 * the scan balance towards the file LRU. And as the file LRU
2295 * shrinks, so does the window for rotation from references.
2296 * This means we have a runaway feedback loop where a tiny
2297 * thrashing file LRU becomes infinitely more attractive than
2298 * anon pages. Try to detect this based on file LRU size.
2299 */
b5ead35e 2300 if (!cgroup_reclaim(sc)) {
599d0c95
MG
2301 unsigned long pgdatfile;
2302 unsigned long pgdatfree;
2303 int z;
2304 unsigned long total_high_wmark = 0;
2ab051e1 2305
599d0c95
MG
2306 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2307 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2308 node_page_state(pgdat, NR_INACTIVE_FILE);
2309
2310 for (z = 0; z < MAX_NR_ZONES; z++) {
2311 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2312 if (!managed_zone(zone))
599d0c95
MG
2313 continue;
2314
2315 total_high_wmark += high_wmark_pages(zone);
2316 }
62376251 2317
599d0c95 2318 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2319 /*
2320 * Force SCAN_ANON if there are enough inactive
2321 * anonymous pages on the LRU in eligible zones.
2322 * Otherwise, the small LRU gets thrashed.
2323 */
3b991208 2324 if (!inactive_list_is_low(lruvec, false, sc, false) &&
06226226
DR
2325 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2326 >> sc->priority) {
2327 scan_balance = SCAN_ANON;
2328 goto out;
2329 }
62376251
JW
2330 }
2331 }
2332
7c5bd705 2333 /*
316bda0e
VD
2334 * If there is enough inactive page cache, i.e. if the size of the
2335 * inactive list is greater than that of the active list *and* the
2336 * inactive list actually has some pages to scan on this priority, we
2337 * do not reclaim anything from the anonymous working set right now.
2338 * Without the second condition we could end up never scanning an
2339 * lruvec even if it has plenty of old anonymous pages unless the
2340 * system is under heavy pressure.
7c5bd705 2341 */
3b991208 2342 if (!inactive_list_is_low(lruvec, true, sc, false) &&
71ab6cfe 2343 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2344 scan_balance = SCAN_FILE;
7c5bd705
JW
2345 goto out;
2346 }
2347
9a265114
JW
2348 scan_balance = SCAN_FRACT;
2349
58c37f6e
KM
2350 /*
2351 * With swappiness at 100, anonymous and file have the same priority.
2352 * This scanning priority is essentially the inverse of IO cost.
2353 */
02695175 2354 anon_prio = swappiness;
75b00af7 2355 file_prio = 200 - anon_prio;
58c37f6e 2356
4f98a2fe
RR
2357 /*
2358 * OK, so we have swap space and a fair amount of page cache
2359 * pages. We use the recently rotated / recently scanned
2360 * ratios to determine how valuable each cache is.
2361 *
2362 * Because workloads change over time (and to avoid overflow)
2363 * we keep these statistics as a floating average, which ends
2364 * up weighing recent references more than old ones.
2365 *
2366 * anon in [0], file in [1]
2367 */
2ab051e1 2368
fd538803
MH
2369 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2370 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2371 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2372 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2373
599d0c95 2374 spin_lock_irq(&pgdat->lru_lock);
6e901571 2375 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2376 reclaim_stat->recent_scanned[0] /= 2;
2377 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2378 }
2379
6e901571 2380 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2381 reclaim_stat->recent_scanned[1] /= 2;
2382 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2383 }
2384
4f98a2fe 2385 /*
00d8089c
RR
2386 * The amount of pressure on anon vs file pages is inversely
2387 * proportional to the fraction of recently scanned pages on
2388 * each list that were recently referenced and in active use.
4f98a2fe 2389 */
fe35004f 2390 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2391 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2392
fe35004f 2393 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2394 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2395 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2396
76a33fc3
SL
2397 fraction[0] = ap;
2398 fraction[1] = fp;
2399 denominator = ap + fp + 1;
2400out:
688035f7
JW
2401 for_each_evictable_lru(lru) {
2402 int file = is_file_lru(lru);
9783aa99 2403 unsigned long lruvec_size;
688035f7 2404 unsigned long scan;
1bc63fb1 2405 unsigned long protection;
9783aa99
CD
2406
2407 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
1bc63fb1
CD
2408 protection = mem_cgroup_protection(memcg,
2409 sc->memcg_low_reclaim);
9783aa99 2410
1bc63fb1 2411 if (protection) {
9783aa99
CD
2412 /*
2413 * Scale a cgroup's reclaim pressure by proportioning
2414 * its current usage to its memory.low or memory.min
2415 * setting.
2416 *
2417 * This is important, as otherwise scanning aggression
2418 * becomes extremely binary -- from nothing as we
2419 * approach the memory protection threshold, to totally
2420 * nominal as we exceed it. This results in requiring
2421 * setting extremely liberal protection thresholds. It
2422 * also means we simply get no protection at all if we
2423 * set it too low, which is not ideal.
1bc63fb1
CD
2424 *
2425 * If there is any protection in place, we reduce scan
2426 * pressure by how much of the total memory used is
2427 * within protection thresholds.
9783aa99 2428 *
9de7ca46
CD
2429 * There is one special case: in the first reclaim pass,
2430 * we skip over all groups that are within their low
2431 * protection. If that fails to reclaim enough pages to
2432 * satisfy the reclaim goal, we come back and override
2433 * the best-effort low protection. However, we still
2434 * ideally want to honor how well-behaved groups are in
2435 * that case instead of simply punishing them all
2436 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2437 * memory they are using, reducing the scan pressure
2438 * again by how much of the total memory used is under
2439 * hard protection.
9783aa99 2440 */
1bc63fb1
CD
2441 unsigned long cgroup_size = mem_cgroup_size(memcg);
2442
2443 /* Avoid TOCTOU with earlier protection check */
2444 cgroup_size = max(cgroup_size, protection);
2445
2446 scan = lruvec_size - lruvec_size * protection /
2447 cgroup_size;
9783aa99
CD
2448
2449 /*
1bc63fb1 2450 * Minimally target SWAP_CLUSTER_MAX pages to keep
9de7ca46
CD
2451 * reclaim moving forwards, avoiding decremeting
2452 * sc->priority further than desirable.
9783aa99 2453 */
1bc63fb1 2454 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2455 } else {
2456 scan = lruvec_size;
2457 }
2458
2459 scan >>= sc->priority;
6b4f7799 2460
688035f7
JW
2461 /*
2462 * If the cgroup's already been deleted, make sure to
2463 * scrape out the remaining cache.
2464 */
2465 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2466 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2467
688035f7
JW
2468 switch (scan_balance) {
2469 case SCAN_EQUAL:
2470 /* Scan lists relative to size */
2471 break;
2472 case SCAN_FRACT:
9a265114 2473 /*
688035f7
JW
2474 * Scan types proportional to swappiness and
2475 * their relative recent reclaim efficiency.
68600f62
RG
2476 * Make sure we don't miss the last page
2477 * because of a round-off error.
9a265114 2478 */
68600f62
RG
2479 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2480 denominator);
688035f7
JW
2481 break;
2482 case SCAN_FILE:
2483 case SCAN_ANON:
2484 /* Scan one type exclusively */
2485 if ((scan_balance == SCAN_FILE) != file) {
9783aa99 2486 lruvec_size = 0;
688035f7
JW
2487 scan = 0;
2488 }
2489 break;
2490 default:
2491 /* Look ma, no brain */
2492 BUG();
9a265114 2493 }
688035f7 2494
688035f7 2495 nr[lru] = scan;
76a33fc3 2496 }
6e08a369 2497}
4f98a2fe 2498
afaf07a6 2499static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2500{
2501 unsigned long nr[NR_LRU_LISTS];
e82e0561 2502 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2503 unsigned long nr_to_scan;
2504 enum lru_list lru;
2505 unsigned long nr_reclaimed = 0;
2506 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2507 struct blk_plug plug;
1a501907 2508 bool scan_adjusted;
9b4f98cd 2509
afaf07a6 2510 get_scan_count(lruvec, sc, nr);
9b4f98cd 2511
e82e0561
MG
2512 /* Record the original scan target for proportional adjustments later */
2513 memcpy(targets, nr, sizeof(nr));
2514
1a501907
MG
2515 /*
2516 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2517 * event that can occur when there is little memory pressure e.g.
2518 * multiple streaming readers/writers. Hence, we do not abort scanning
2519 * when the requested number of pages are reclaimed when scanning at
2520 * DEF_PRIORITY on the assumption that the fact we are direct
2521 * reclaiming implies that kswapd is not keeping up and it is best to
2522 * do a batch of work at once. For memcg reclaim one check is made to
2523 * abort proportional reclaim if either the file or anon lru has already
2524 * dropped to zero at the first pass.
2525 */
b5ead35e 2526 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2527 sc->priority == DEF_PRIORITY);
2528
9b4f98cd
JW
2529 blk_start_plug(&plug);
2530 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2531 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2532 unsigned long nr_anon, nr_file, percentage;
2533 unsigned long nr_scanned;
2534
9b4f98cd
JW
2535 for_each_evictable_lru(lru) {
2536 if (nr[lru]) {
2537 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2538 nr[lru] -= nr_to_scan;
2539
2540 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2541 lruvec, sc);
9b4f98cd
JW
2542 }
2543 }
e82e0561 2544
bd041733
MH
2545 cond_resched();
2546
e82e0561
MG
2547 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2548 continue;
2549
e82e0561
MG
2550 /*
2551 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2552 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2553 * proportionally what was requested by get_scan_count(). We
2554 * stop reclaiming one LRU and reduce the amount scanning
2555 * proportional to the original scan target.
2556 */
2557 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2558 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2559
1a501907
MG
2560 /*
2561 * It's just vindictive to attack the larger once the smaller
2562 * has gone to zero. And given the way we stop scanning the
2563 * smaller below, this makes sure that we only make one nudge
2564 * towards proportionality once we've got nr_to_reclaim.
2565 */
2566 if (!nr_file || !nr_anon)
2567 break;
2568
e82e0561
MG
2569 if (nr_file > nr_anon) {
2570 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2571 targets[LRU_ACTIVE_ANON] + 1;
2572 lru = LRU_BASE;
2573 percentage = nr_anon * 100 / scan_target;
2574 } else {
2575 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2576 targets[LRU_ACTIVE_FILE] + 1;
2577 lru = LRU_FILE;
2578 percentage = nr_file * 100 / scan_target;
2579 }
2580
2581 /* Stop scanning the smaller of the LRU */
2582 nr[lru] = 0;
2583 nr[lru + LRU_ACTIVE] = 0;
2584
2585 /*
2586 * Recalculate the other LRU scan count based on its original
2587 * scan target and the percentage scanning already complete
2588 */
2589 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2590 nr_scanned = targets[lru] - nr[lru];
2591 nr[lru] = targets[lru] * (100 - percentage) / 100;
2592 nr[lru] -= min(nr[lru], nr_scanned);
2593
2594 lru += LRU_ACTIVE;
2595 nr_scanned = targets[lru] - nr[lru];
2596 nr[lru] = targets[lru] * (100 - percentage) / 100;
2597 nr[lru] -= min(nr[lru], nr_scanned);
2598
2599 scan_adjusted = true;
9b4f98cd
JW
2600 }
2601 blk_finish_plug(&plug);
2602 sc->nr_reclaimed += nr_reclaimed;
2603
2604 /*
2605 * Even if we did not try to evict anon pages at all, we want to
2606 * rebalance the anon lru active/inactive ratio.
2607 */
a1086291 2608 if (total_swap_pages && inactive_list_is_low(lruvec, false, sc, true))
9b4f98cd
JW
2609 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2610 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2611}
2612
23b9da55 2613/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2614static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2615{
d84da3f9 2616 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2617 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2618 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2619 return true;
2620
2621 return false;
2622}
2623
3e7d3449 2624/*
23b9da55
MG
2625 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2626 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2627 * true if more pages should be reclaimed such that when the page allocator
2628 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2629 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2630 */
a9dd0a83 2631static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 2632 unsigned long nr_reclaimed,
3e7d3449
MG
2633 struct scan_control *sc)
2634{
2635 unsigned long pages_for_compaction;
2636 unsigned long inactive_lru_pages;
a9dd0a83 2637 int z;
3e7d3449
MG
2638
2639 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2640 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2641 return false;
2642
5ee04716
VB
2643 /*
2644 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2645 * number of pages that were scanned. This will return to the caller
2646 * with the risk reclaim/compaction and the resulting allocation attempt
2647 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2648 * allocations through requiring that the full LRU list has been scanned
2649 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2650 * scan, but that approximation was wrong, and there were corner cases
2651 * where always a non-zero amount of pages were scanned.
2652 */
2653 if (!nr_reclaimed)
2654 return false;
3e7d3449 2655
3e7d3449 2656 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2657 for (z = 0; z <= sc->reclaim_idx; z++) {
2658 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2659 if (!managed_zone(zone))
a9dd0a83
MG
2660 continue;
2661
2662 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2663 case COMPACT_SUCCESS:
a9dd0a83
MG
2664 case COMPACT_CONTINUE:
2665 return false;
2666 default:
2667 /* check next zone */
2668 ;
2669 }
3e7d3449 2670 }
1c6c1597
HD
2671
2672 /*
2673 * If we have not reclaimed enough pages for compaction and the
2674 * inactive lists are large enough, continue reclaiming
2675 */
2676 pages_for_compaction = compact_gap(sc->order);
2677 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2678 if (get_nr_swap_pages() > 0)
2679 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2680
5ee04716 2681 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
2682}
2683
0f6a5cff 2684static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2685{
0f6a5cff 2686 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 2687 struct mem_cgroup *memcg;
1da177e4 2688
0f6a5cff 2689 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 2690 do {
afaf07a6 2691 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
2692 unsigned long reclaimed;
2693 unsigned long scanned;
5660048c 2694
0f6a5cff 2695 switch (mem_cgroup_protected(target_memcg, memcg)) {
d2af3397
JW
2696 case MEMCG_PROT_MIN:
2697 /*
2698 * Hard protection.
2699 * If there is no reclaimable memory, OOM.
2700 */
2701 continue;
2702 case MEMCG_PROT_LOW:
2703 /*
2704 * Soft protection.
2705 * Respect the protection only as long as
2706 * there is an unprotected supply
2707 * of reclaimable memory from other cgroups.
2708 */
2709 if (!sc->memcg_low_reclaim) {
2710 sc->memcg_low_skipped = 1;
bf8d5d52 2711 continue;
241994ed 2712 }
d2af3397
JW
2713 memcg_memory_event(memcg, MEMCG_LOW);
2714 break;
2715 case MEMCG_PROT_NONE:
2716 /*
2717 * All protection thresholds breached. We may
2718 * still choose to vary the scan pressure
2719 * applied based on by how much the cgroup in
2720 * question has exceeded its protection
2721 * thresholds (see get_scan_count).
2722 */
2723 break;
2724 }
241994ed 2725
d2af3397
JW
2726 reclaimed = sc->nr_reclaimed;
2727 scanned = sc->nr_scanned;
afaf07a6
JW
2728
2729 shrink_lruvec(lruvec, sc);
70ddf637 2730
d2af3397
JW
2731 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2732 sc->priority);
6b4f7799 2733
d2af3397
JW
2734 /* Record the group's reclaim efficiency */
2735 vmpressure(sc->gfp_mask, memcg, false,
2736 sc->nr_scanned - scanned,
2737 sc->nr_reclaimed - reclaimed);
70ddf637 2738
0f6a5cff
JW
2739 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2740}
2741
2742static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2743{
2744 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 2745 unsigned long nr_reclaimed, nr_scanned;
1b05117d 2746 struct lruvec *target_lruvec;
0f6a5cff
JW
2747 bool reclaimable = false;
2748
1b05117d
JW
2749 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2750
0f6a5cff
JW
2751again:
2752 memset(&sc->nr, 0, sizeof(sc->nr));
2753
2754 nr_reclaimed = sc->nr_reclaimed;
2755 nr_scanned = sc->nr_scanned;
2756
2757 shrink_node_memcgs(pgdat, sc);
2344d7e4 2758
d2af3397
JW
2759 if (reclaim_state) {
2760 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2761 reclaim_state->reclaimed_slab = 0;
2762 }
d108c772 2763
d2af3397 2764 /* Record the subtree's reclaim efficiency */
1b05117d 2765 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
2766 sc->nr_scanned - nr_scanned,
2767 sc->nr_reclaimed - nr_reclaimed);
d108c772 2768
d2af3397
JW
2769 if (sc->nr_reclaimed - nr_reclaimed)
2770 reclaimable = true;
d108c772 2771
d2af3397
JW
2772 if (current_is_kswapd()) {
2773 /*
2774 * If reclaim is isolating dirty pages under writeback,
2775 * it implies that the long-lived page allocation rate
2776 * is exceeding the page laundering rate. Either the
2777 * global limits are not being effective at throttling
2778 * processes due to the page distribution throughout
2779 * zones or there is heavy usage of a slow backing
2780 * device. The only option is to throttle from reclaim
2781 * context which is not ideal as there is no guarantee
2782 * the dirtying process is throttled in the same way
2783 * balance_dirty_pages() manages.
2784 *
2785 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2786 * count the number of pages under pages flagged for
2787 * immediate reclaim and stall if any are encountered
2788 * in the nr_immediate check below.
2789 */
2790 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2791 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2792
d2af3397
JW
2793 /* Allow kswapd to start writing pages during reclaim.*/
2794 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2795 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 2796
d108c772 2797 /*
d2af3397
JW
2798 * If kswapd scans pages marked marked for immediate
2799 * reclaim and under writeback (nr_immediate), it
2800 * implies that pages are cycling through the LRU
2801 * faster than they are written so also forcibly stall.
d108c772 2802 */
d2af3397
JW
2803 if (sc->nr.immediate)
2804 congestion_wait(BLK_RW_ASYNC, HZ/10);
2805 }
2806
2807 /*
1b05117d
JW
2808 * Tag a node/memcg as congested if all the dirty pages
2809 * scanned were backed by a congested BDI and
2810 * wait_iff_congested will stall.
2811 *
d2af3397
JW
2812 * Legacy memcg will stall in page writeback so avoid forcibly
2813 * stalling in wait_iff_congested().
2814 */
1b05117d
JW
2815 if ((current_is_kswapd() ||
2816 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 2817 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 2818 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
2819
2820 /*
2821 * Stall direct reclaim for IO completions if underlying BDIs
2822 * and node is congested. Allow kswapd to continue until it
2823 * starts encountering unqueued dirty pages or cycling through
2824 * the LRU too quickly.
2825 */
1b05117d
JW
2826 if (!current_is_kswapd() && current_may_throttle() &&
2827 !sc->hibernation_mode &&
2828 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
d2af3397 2829 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2830
d2af3397
JW
2831 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2832 sc))
2833 goto again;
2344d7e4 2834
c73322d0
JW
2835 /*
2836 * Kswapd gives up on balancing particular nodes after too
2837 * many failures to reclaim anything from them and goes to
2838 * sleep. On reclaim progress, reset the failure counter. A
2839 * successful direct reclaim run will revive a dormant kswapd.
2840 */
2841 if (reclaimable)
2842 pgdat->kswapd_failures = 0;
2843
2344d7e4 2844 return reclaimable;
f16015fb
JW
2845}
2846
53853e2d 2847/*
fdd4c614
VB
2848 * Returns true if compaction should go ahead for a costly-order request, or
2849 * the allocation would already succeed without compaction. Return false if we
2850 * should reclaim first.
53853e2d 2851 */
4f588331 2852static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2853{
31483b6a 2854 unsigned long watermark;
fdd4c614 2855 enum compact_result suitable;
fe4b1b24 2856
fdd4c614
VB
2857 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2858 if (suitable == COMPACT_SUCCESS)
2859 /* Allocation should succeed already. Don't reclaim. */
2860 return true;
2861 if (suitable == COMPACT_SKIPPED)
2862 /* Compaction cannot yet proceed. Do reclaim. */
2863 return false;
fe4b1b24 2864
53853e2d 2865 /*
fdd4c614
VB
2866 * Compaction is already possible, but it takes time to run and there
2867 * are potentially other callers using the pages just freed. So proceed
2868 * with reclaim to make a buffer of free pages available to give
2869 * compaction a reasonable chance of completing and allocating the page.
2870 * Note that we won't actually reclaim the whole buffer in one attempt
2871 * as the target watermark in should_continue_reclaim() is lower. But if
2872 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2873 */
fdd4c614 2874 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2875
fdd4c614 2876 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2877}
2878
1da177e4
LT
2879/*
2880 * This is the direct reclaim path, for page-allocating processes. We only
2881 * try to reclaim pages from zones which will satisfy the caller's allocation
2882 * request.
2883 *
1da177e4
LT
2884 * If a zone is deemed to be full of pinned pages then just give it a light
2885 * scan then give up on it.
2886 */
0a0337e0 2887static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2888{
dd1a239f 2889 struct zoneref *z;
54a6eb5c 2890 struct zone *zone;
0608f43d
AM
2891 unsigned long nr_soft_reclaimed;
2892 unsigned long nr_soft_scanned;
619d0d76 2893 gfp_t orig_mask;
79dafcdc 2894 pg_data_t *last_pgdat = NULL;
1cfb419b 2895
cc715d99
MG
2896 /*
2897 * If the number of buffer_heads in the machine exceeds the maximum
2898 * allowed level, force direct reclaim to scan the highmem zone as
2899 * highmem pages could be pinning lowmem pages storing buffer_heads
2900 */
619d0d76 2901 orig_mask = sc->gfp_mask;
b2e18757 2902 if (buffer_heads_over_limit) {
cc715d99 2903 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2904 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2905 }
cc715d99 2906
d4debc66 2907 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2908 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2909 /*
2910 * Take care memory controller reclaiming has small influence
2911 * to global LRU.
2912 */
b5ead35e 2913 if (!cgroup_reclaim(sc)) {
344736f2
VD
2914 if (!cpuset_zone_allowed(zone,
2915 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2916 continue;
65ec02cb 2917
0b06496a
JW
2918 /*
2919 * If we already have plenty of memory free for
2920 * compaction in this zone, don't free any more.
2921 * Even though compaction is invoked for any
2922 * non-zero order, only frequent costly order
2923 * reclamation is disruptive enough to become a
2924 * noticeable problem, like transparent huge
2925 * page allocations.
2926 */
2927 if (IS_ENABLED(CONFIG_COMPACTION) &&
2928 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2929 compaction_ready(zone, sc)) {
0b06496a
JW
2930 sc->compaction_ready = true;
2931 continue;
e0887c19 2932 }
0b06496a 2933
79dafcdc
MG
2934 /*
2935 * Shrink each node in the zonelist once. If the
2936 * zonelist is ordered by zone (not the default) then a
2937 * node may be shrunk multiple times but in that case
2938 * the user prefers lower zones being preserved.
2939 */
2940 if (zone->zone_pgdat == last_pgdat)
2941 continue;
2942
0608f43d
AM
2943 /*
2944 * This steals pages from memory cgroups over softlimit
2945 * and returns the number of reclaimed pages and
2946 * scanned pages. This works for global memory pressure
2947 * and balancing, not for a memcg's limit.
2948 */
2949 nr_soft_scanned = 0;
ef8f2327 2950 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2951 sc->order, sc->gfp_mask,
2952 &nr_soft_scanned);
2953 sc->nr_reclaimed += nr_soft_reclaimed;
2954 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2955 /* need some check for avoid more shrink_zone() */
1cfb419b 2956 }
408d8544 2957
79dafcdc
MG
2958 /* See comment about same check for global reclaim above */
2959 if (zone->zone_pgdat == last_pgdat)
2960 continue;
2961 last_pgdat = zone->zone_pgdat;
970a39a3 2962 shrink_node(zone->zone_pgdat, sc);
1da177e4 2963 }
e0c23279 2964
619d0d76
WY
2965 /*
2966 * Restore to original mask to avoid the impact on the caller if we
2967 * promoted it to __GFP_HIGHMEM.
2968 */
2969 sc->gfp_mask = orig_mask;
1da177e4 2970}
4f98a2fe 2971
2a2e4885
JW
2972static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2973{
2974 struct mem_cgroup *memcg;
2975
2976 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2977 do {
2978 unsigned long refaults;
2979 struct lruvec *lruvec;
2980
867e5e1d 2981 lruvec = mem_cgroup_lruvec(memcg, pgdat);
205b20cc 2982 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2a2e4885
JW
2983 lruvec->refaults = refaults;
2984 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2985}
2986
1da177e4
LT
2987/*
2988 * This is the main entry point to direct page reclaim.
2989 *
2990 * If a full scan of the inactive list fails to free enough memory then we
2991 * are "out of memory" and something needs to be killed.
2992 *
2993 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2994 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2995 * caller can't do much about. We kick the writeback threads and take explicit
2996 * naps in the hope that some of these pages can be written. But if the
2997 * allocating task holds filesystem locks which prevent writeout this might not
2998 * work, and the allocation attempt will fail.
a41f24ea
NA
2999 *
3000 * returns: 0, if no pages reclaimed
3001 * else, the number of pages reclaimed
1da177e4 3002 */
dac1d27b 3003static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3004 struct scan_control *sc)
1da177e4 3005{
241994ed 3006 int initial_priority = sc->priority;
2a2e4885
JW
3007 pg_data_t *last_pgdat;
3008 struct zoneref *z;
3009 struct zone *zone;
241994ed 3010retry:
873b4771
KK
3011 delayacct_freepages_start();
3012
b5ead35e 3013 if (!cgroup_reclaim(sc))
7cc30fcf 3014 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3015
9e3b2f8c 3016 do {
70ddf637
AV
3017 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3018 sc->priority);
66e1707b 3019 sc->nr_scanned = 0;
0a0337e0 3020 shrink_zones(zonelist, sc);
c6a8a8c5 3021
bb21c7ce 3022 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3023 break;
3024
3025 if (sc->compaction_ready)
3026 break;
1da177e4 3027
0e50ce3b
MK
3028 /*
3029 * If we're getting trouble reclaiming, start doing
3030 * writepage even in laptop mode.
3031 */
3032 if (sc->priority < DEF_PRIORITY - 2)
3033 sc->may_writepage = 1;
0b06496a 3034 } while (--sc->priority >= 0);
bb21c7ce 3035
2a2e4885
JW
3036 last_pgdat = NULL;
3037 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3038 sc->nodemask) {
3039 if (zone->zone_pgdat == last_pgdat)
3040 continue;
3041 last_pgdat = zone->zone_pgdat;
1b05117d 3042
2a2e4885 3043 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3044
3045 if (cgroup_reclaim(sc)) {
3046 struct lruvec *lruvec;
3047
3048 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3049 zone->zone_pgdat);
3050 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3051 }
2a2e4885
JW
3052 }
3053
873b4771
KK
3054 delayacct_freepages_end();
3055
bb21c7ce
KM
3056 if (sc->nr_reclaimed)
3057 return sc->nr_reclaimed;
3058
0cee34fd 3059 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3060 if (sc->compaction_ready)
7335084d
MG
3061 return 1;
3062
241994ed 3063 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3064 if (sc->memcg_low_skipped) {
241994ed 3065 sc->priority = initial_priority;
d6622f63
YX
3066 sc->memcg_low_reclaim = 1;
3067 sc->memcg_low_skipped = 0;
241994ed
JW
3068 goto retry;
3069 }
3070
bb21c7ce 3071 return 0;
1da177e4
LT
3072}
3073
c73322d0 3074static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3075{
3076 struct zone *zone;
3077 unsigned long pfmemalloc_reserve = 0;
3078 unsigned long free_pages = 0;
3079 int i;
3080 bool wmark_ok;
3081
c73322d0
JW
3082 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3083 return true;
3084
5515061d
MG
3085 for (i = 0; i <= ZONE_NORMAL; i++) {
3086 zone = &pgdat->node_zones[i];
d450abd8
JW
3087 if (!managed_zone(zone))
3088 continue;
3089
3090 if (!zone_reclaimable_pages(zone))
675becce
MG
3091 continue;
3092
5515061d
MG
3093 pfmemalloc_reserve += min_wmark_pages(zone);
3094 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3095 }
3096
675becce
MG
3097 /* If there are no reserves (unexpected config) then do not throttle */
3098 if (!pfmemalloc_reserve)
3099 return true;
3100
5515061d
MG
3101 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3102
3103 /* kswapd must be awake if processes are being throttled */
3104 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 3105 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
3106 (enum zone_type)ZONE_NORMAL);
3107 wake_up_interruptible(&pgdat->kswapd_wait);
3108 }
3109
3110 return wmark_ok;
3111}
3112
3113/*
3114 * Throttle direct reclaimers if backing storage is backed by the network
3115 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3116 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3117 * when the low watermark is reached.
3118 *
3119 * Returns true if a fatal signal was delivered during throttling. If this
3120 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3121 */
50694c28 3122static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3123 nodemask_t *nodemask)
3124{
675becce 3125 struct zoneref *z;
5515061d 3126 struct zone *zone;
675becce 3127 pg_data_t *pgdat = NULL;
5515061d
MG
3128
3129 /*
3130 * Kernel threads should not be throttled as they may be indirectly
3131 * responsible for cleaning pages necessary for reclaim to make forward
3132 * progress. kjournald for example may enter direct reclaim while
3133 * committing a transaction where throttling it could forcing other
3134 * processes to block on log_wait_commit().
3135 */
3136 if (current->flags & PF_KTHREAD)
50694c28
MG
3137 goto out;
3138
3139 /*
3140 * If a fatal signal is pending, this process should not throttle.
3141 * It should return quickly so it can exit and free its memory
3142 */
3143 if (fatal_signal_pending(current))
3144 goto out;
5515061d 3145
675becce
MG
3146 /*
3147 * Check if the pfmemalloc reserves are ok by finding the first node
3148 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3149 * GFP_KERNEL will be required for allocating network buffers when
3150 * swapping over the network so ZONE_HIGHMEM is unusable.
3151 *
3152 * Throttling is based on the first usable node and throttled processes
3153 * wait on a queue until kswapd makes progress and wakes them. There
3154 * is an affinity then between processes waking up and where reclaim
3155 * progress has been made assuming the process wakes on the same node.
3156 * More importantly, processes running on remote nodes will not compete
3157 * for remote pfmemalloc reserves and processes on different nodes
3158 * should make reasonable progress.
3159 */
3160 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3161 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3162 if (zone_idx(zone) > ZONE_NORMAL)
3163 continue;
3164
3165 /* Throttle based on the first usable node */
3166 pgdat = zone->zone_pgdat;
c73322d0 3167 if (allow_direct_reclaim(pgdat))
675becce
MG
3168 goto out;
3169 break;
3170 }
3171
3172 /* If no zone was usable by the allocation flags then do not throttle */
3173 if (!pgdat)
50694c28 3174 goto out;
5515061d 3175
68243e76
MG
3176 /* Account for the throttling */
3177 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3178
5515061d
MG
3179 /*
3180 * If the caller cannot enter the filesystem, it's possible that it
3181 * is due to the caller holding an FS lock or performing a journal
3182 * transaction in the case of a filesystem like ext[3|4]. In this case,
3183 * it is not safe to block on pfmemalloc_wait as kswapd could be
3184 * blocked waiting on the same lock. Instead, throttle for up to a
3185 * second before continuing.
3186 */
3187 if (!(gfp_mask & __GFP_FS)) {
3188 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3189 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3190
3191 goto check_pending;
5515061d
MG
3192 }
3193
3194 /* Throttle until kswapd wakes the process */
3195 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3196 allow_direct_reclaim(pgdat));
50694c28
MG
3197
3198check_pending:
3199 if (fatal_signal_pending(current))
3200 return true;
3201
3202out:
3203 return false;
5515061d
MG
3204}
3205
dac1d27b 3206unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3207 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3208{
33906bc5 3209 unsigned long nr_reclaimed;
66e1707b 3210 struct scan_control sc = {
ee814fe2 3211 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3212 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3213 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3214 .order = order,
3215 .nodemask = nodemask,
3216 .priority = DEF_PRIORITY,
66e1707b 3217 .may_writepage = !laptop_mode,
a6dc60f8 3218 .may_unmap = 1,
2e2e4259 3219 .may_swap = 1,
66e1707b
BS
3220 };
3221
bb451fdf
GT
3222 /*
3223 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3224 * Confirm they are large enough for max values.
3225 */
3226 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3227 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3228 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3229
5515061d 3230 /*
50694c28
MG
3231 * Do not enter reclaim if fatal signal was delivered while throttled.
3232 * 1 is returned so that the page allocator does not OOM kill at this
3233 * point.
5515061d 3234 */
f2f43e56 3235 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3236 return 1;
3237
1732d2b0 3238 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3239 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3240
3115cd91 3241 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3242
3243 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3244 set_task_reclaim_state(current, NULL);
33906bc5
MG
3245
3246 return nr_reclaimed;
66e1707b
BS
3247}
3248
c255a458 3249#ifdef CONFIG_MEMCG
66e1707b 3250
d2e5fb92 3251/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3252unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3253 gfp_t gfp_mask, bool noswap,
ef8f2327 3254 pg_data_t *pgdat,
0ae5e89c 3255 unsigned long *nr_scanned)
4e416953 3256{
afaf07a6 3257 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3258 struct scan_control sc = {
b8f5c566 3259 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3260 .target_mem_cgroup = memcg,
4e416953
BS
3261 .may_writepage = !laptop_mode,
3262 .may_unmap = 1,
b2e18757 3263 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3264 .may_swap = !noswap,
4e416953 3265 };
0ae5e89c 3266
d2e5fb92
MH
3267 WARN_ON_ONCE(!current->reclaim_state);
3268
4e416953
BS
3269 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3270 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3271
9e3b2f8c 3272 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3273 sc.gfp_mask);
bdce6d9e 3274
4e416953
BS
3275 /*
3276 * NOTE: Although we can get the priority field, using it
3277 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3278 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3279 * will pick up pages from other mem cgroup's as well. We hack
3280 * the priority and make it zero.
3281 */
afaf07a6 3282 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3283
3284 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3285
0ae5e89c 3286 *nr_scanned = sc.nr_scanned;
0308f7cf 3287
4e416953
BS
3288 return sc.nr_reclaimed;
3289}
3290
72835c86 3291unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3292 unsigned long nr_pages,
a7885eb8 3293 gfp_t gfp_mask,
b70a2a21 3294 bool may_swap)
66e1707b 3295{
bdce6d9e 3296 unsigned long nr_reclaimed;
eb414681 3297 unsigned long pflags;
499118e9 3298 unsigned int noreclaim_flag;
66e1707b 3299 struct scan_control sc = {
b70a2a21 3300 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3301 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3302 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3303 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3304 .target_mem_cgroup = memcg,
3305 .priority = DEF_PRIORITY,
3306 .may_writepage = !laptop_mode,
3307 .may_unmap = 1,
b70a2a21 3308 .may_swap = may_swap,
a09ed5e0 3309 };
889976db 3310 /*
fa40d1ee
SB
3311 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3312 * equal pressure on all the nodes. This is based on the assumption that
3313 * the reclaim does not bail out early.
889976db 3314 */
fa40d1ee 3315 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3316
fa40d1ee 3317 set_task_reclaim_state(current, &sc.reclaim_state);
bdce6d9e 3318
3481c37f 3319 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
bdce6d9e 3320
eb414681 3321 psi_memstall_enter(&pflags);
499118e9 3322 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3323
3115cd91 3324 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3325
499118e9 3326 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3327 psi_memstall_leave(&pflags);
bdce6d9e
KM
3328
3329 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3330 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3331
3332 return nr_reclaimed;
66e1707b
BS
3333}
3334#endif
3335
1d82de61 3336static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3337 struct scan_control *sc)
f16015fb 3338{
b95a2f2d 3339 struct mem_cgroup *memcg;
f16015fb 3340
b95a2f2d
JW
3341 if (!total_swap_pages)
3342 return;
3343
3344 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3345 do {
867e5e1d 3346 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
b95a2f2d 3347
3b991208 3348 if (inactive_list_is_low(lruvec, false, sc, true))
1a93be0e 3349 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3350 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3351
3352 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3353 } while (memcg);
f16015fb
JW
3354}
3355
1c30844d
MG
3356static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3357{
3358 int i;
3359 struct zone *zone;
3360
3361 /*
3362 * Check for watermark boosts top-down as the higher zones
3363 * are more likely to be boosted. Both watermarks and boosts
3364 * should not be checked at the time time as reclaim would
3365 * start prematurely when there is no boosting and a lower
3366 * zone is balanced.
3367 */
3368 for (i = classzone_idx; i >= 0; i--) {
3369 zone = pgdat->node_zones + i;
3370 if (!managed_zone(zone))
3371 continue;
3372
3373 if (zone->watermark_boost)
3374 return true;
3375 }
3376
3377 return false;
3378}
3379
e716f2eb
MG
3380/*
3381 * Returns true if there is an eligible zone balanced for the request order
3382 * and classzone_idx
3383 */
3384static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3385{
e716f2eb
MG
3386 int i;
3387 unsigned long mark = -1;
3388 struct zone *zone;
60cefed4 3389
1c30844d
MG
3390 /*
3391 * Check watermarks bottom-up as lower zones are more likely to
3392 * meet watermarks.
3393 */
e716f2eb
MG
3394 for (i = 0; i <= classzone_idx; i++) {
3395 zone = pgdat->node_zones + i;
6256c6b4 3396
e716f2eb
MG
3397 if (!managed_zone(zone))
3398 continue;
3399
3400 mark = high_wmark_pages(zone);
3401 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3402 return true;
3403 }
3404
3405 /*
3406 * If a node has no populated zone within classzone_idx, it does not
3407 * need balancing by definition. This can happen if a zone-restricted
3408 * allocation tries to wake a remote kswapd.
3409 */
3410 if (mark == -1)
3411 return true;
3412
3413 return false;
60cefed4
JW
3414}
3415
631b6e08
MG
3416/* Clear pgdat state for congested, dirty or under writeback. */
3417static void clear_pgdat_congested(pg_data_t *pgdat)
3418{
1b05117d
JW
3419 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3420
3421 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3422 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3423 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3424}
3425
5515061d
MG
3426/*
3427 * Prepare kswapd for sleeping. This verifies that there are no processes
3428 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3429 *
3430 * Returns true if kswapd is ready to sleep
3431 */
d9f21d42 3432static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3433{
5515061d 3434 /*
9e5e3661 3435 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3436 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3437 * race between when kswapd checks the watermarks and a process gets
3438 * throttled. There is also a potential race if processes get
3439 * throttled, kswapd wakes, a large process exits thereby balancing the
3440 * zones, which causes kswapd to exit balance_pgdat() before reaching
3441 * the wake up checks. If kswapd is going to sleep, no process should
3442 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3443 * the wake up is premature, processes will wake kswapd and get
3444 * throttled again. The difference from wake ups in balance_pgdat() is
3445 * that here we are under prepare_to_wait().
5515061d 3446 */
9e5e3661
VB
3447 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3448 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3449
c73322d0
JW
3450 /* Hopeless node, leave it to direct reclaim */
3451 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3452 return true;
3453
e716f2eb
MG
3454 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3455 clear_pgdat_congested(pgdat);
3456 return true;
1d82de61
MG
3457 }
3458
333b0a45 3459 return false;
f50de2d3
MG
3460}
3461
75485363 3462/*
1d82de61
MG
3463 * kswapd shrinks a node of pages that are at or below the highest usable
3464 * zone that is currently unbalanced.
b8e83b94
MG
3465 *
3466 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3467 * reclaim or if the lack of progress was due to pages under writeback.
3468 * This is used to determine if the scanning priority needs to be raised.
75485363 3469 */
1d82de61 3470static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3471 struct scan_control *sc)
75485363 3472{
1d82de61
MG
3473 struct zone *zone;
3474 int z;
75485363 3475
1d82de61
MG
3476 /* Reclaim a number of pages proportional to the number of zones */
3477 sc->nr_to_reclaim = 0;
970a39a3 3478 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3479 zone = pgdat->node_zones + z;
6aa303de 3480 if (!managed_zone(zone))
1d82de61 3481 continue;
7c954f6d 3482
1d82de61
MG
3483 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3484 }
7c954f6d
MG
3485
3486 /*
1d82de61
MG
3487 * Historically care was taken to put equal pressure on all zones but
3488 * now pressure is applied based on node LRU order.
7c954f6d 3489 */
970a39a3 3490 shrink_node(pgdat, sc);
283aba9f 3491
7c954f6d 3492 /*
1d82de61
MG
3493 * Fragmentation may mean that the system cannot be rebalanced for
3494 * high-order allocations. If twice the allocation size has been
3495 * reclaimed then recheck watermarks only at order-0 to prevent
3496 * excessive reclaim. Assume that a process requested a high-order
3497 * can direct reclaim/compact.
7c954f6d 3498 */
9861a62c 3499 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3500 sc->order = 0;
7c954f6d 3501
b8e83b94 3502 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3503}
3504
1da177e4 3505/*
1d82de61
MG
3506 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3507 * that are eligible for use by the caller until at least one zone is
3508 * balanced.
1da177e4 3509 *
1d82de61 3510 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3511 *
3512 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3513 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3514 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3515 * or lower is eligible for reclaim until at least one usable zone is
3516 * balanced.
1da177e4 3517 */
accf6242 3518static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3519{
1da177e4 3520 int i;
0608f43d
AM
3521 unsigned long nr_soft_reclaimed;
3522 unsigned long nr_soft_scanned;
eb414681 3523 unsigned long pflags;
1c30844d
MG
3524 unsigned long nr_boost_reclaim;
3525 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3526 bool boosted;
1d82de61 3527 struct zone *zone;
179e9639
AM
3528 struct scan_control sc = {
3529 .gfp_mask = GFP_KERNEL,
ee814fe2 3530 .order = order,
a6dc60f8 3531 .may_unmap = 1,
179e9639 3532 };
93781325 3533
1732d2b0 3534 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 3535 psi_memstall_enter(&pflags);
93781325
OS
3536 __fs_reclaim_acquire();
3537
f8891e5e 3538 count_vm_event(PAGEOUTRUN);
1da177e4 3539
1c30844d
MG
3540 /*
3541 * Account for the reclaim boost. Note that the zone boost is left in
3542 * place so that parallel allocations that are near the watermark will
3543 * stall or direct reclaim until kswapd is finished.
3544 */
3545 nr_boost_reclaim = 0;
3546 for (i = 0; i <= classzone_idx; i++) {
3547 zone = pgdat->node_zones + i;
3548 if (!managed_zone(zone))
3549 continue;
3550
3551 nr_boost_reclaim += zone->watermark_boost;
3552 zone_boosts[i] = zone->watermark_boost;
3553 }
3554 boosted = nr_boost_reclaim;
3555
3556restart:
3557 sc.priority = DEF_PRIORITY;
9e3b2f8c 3558 do {
c73322d0 3559 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3560 bool raise_priority = true;
1c30844d 3561 bool balanced;
93781325 3562 bool ret;
b8e83b94 3563
84c7a777 3564 sc.reclaim_idx = classzone_idx;
1da177e4 3565
86c79f6b 3566 /*
84c7a777
MG
3567 * If the number of buffer_heads exceeds the maximum allowed
3568 * then consider reclaiming from all zones. This has a dual
3569 * purpose -- on 64-bit systems it is expected that
3570 * buffer_heads are stripped during active rotation. On 32-bit
3571 * systems, highmem pages can pin lowmem memory and shrinking
3572 * buffers can relieve lowmem pressure. Reclaim may still not
3573 * go ahead if all eligible zones for the original allocation
3574 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3575 */
3576 if (buffer_heads_over_limit) {
3577 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3578 zone = pgdat->node_zones + i;
6aa303de 3579 if (!managed_zone(zone))
86c79f6b 3580 continue;
cc715d99 3581
970a39a3 3582 sc.reclaim_idx = i;
e1dbeda6 3583 break;
1da177e4 3584 }
1da177e4 3585 }
dafcb73e 3586
86c79f6b 3587 /*
1c30844d
MG
3588 * If the pgdat is imbalanced then ignore boosting and preserve
3589 * the watermarks for a later time and restart. Note that the
3590 * zone watermarks will be still reset at the end of balancing
3591 * on the grounds that the normal reclaim should be enough to
3592 * re-evaluate if boosting is required when kswapd next wakes.
3593 */
3594 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3595 if (!balanced && nr_boost_reclaim) {
3596 nr_boost_reclaim = 0;
3597 goto restart;
3598 }
3599
3600 /*
3601 * If boosting is not active then only reclaim if there are no
3602 * eligible zones. Note that sc.reclaim_idx is not used as
3603 * buffer_heads_over_limit may have adjusted it.
86c79f6b 3604 */
1c30844d 3605 if (!nr_boost_reclaim && balanced)
e716f2eb 3606 goto out;
e1dbeda6 3607
1c30844d
MG
3608 /* Limit the priority of boosting to avoid reclaim writeback */
3609 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3610 raise_priority = false;
3611
3612 /*
3613 * Do not writeback or swap pages for boosted reclaim. The
3614 * intent is to relieve pressure not issue sub-optimal IO
3615 * from reclaim context. If no pages are reclaimed, the
3616 * reclaim will be aborted.
3617 */
3618 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3619 sc.may_swap = !nr_boost_reclaim;
1c30844d 3620
1d82de61
MG
3621 /*
3622 * Do some background aging of the anon list, to give
3623 * pages a chance to be referenced before reclaiming. All
3624 * pages are rotated regardless of classzone as this is
3625 * about consistent aging.
3626 */
ef8f2327 3627 age_active_anon(pgdat, &sc);
1d82de61 3628
b7ea3c41
MG
3629 /*
3630 * If we're getting trouble reclaiming, start doing writepage
3631 * even in laptop mode.
3632 */
047d72c3 3633 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3634 sc.may_writepage = 1;
3635
1d82de61
MG
3636 /* Call soft limit reclaim before calling shrink_node. */
3637 sc.nr_scanned = 0;
3638 nr_soft_scanned = 0;
ef8f2327 3639 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3640 sc.gfp_mask, &nr_soft_scanned);
3641 sc.nr_reclaimed += nr_soft_reclaimed;
3642
1da177e4 3643 /*
1d82de61
MG
3644 * There should be no need to raise the scanning priority if
3645 * enough pages are already being scanned that that high
3646 * watermark would be met at 100% efficiency.
1da177e4 3647 */
970a39a3 3648 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3649 raise_priority = false;
5515061d
MG
3650
3651 /*
3652 * If the low watermark is met there is no need for processes
3653 * to be throttled on pfmemalloc_wait as they should not be
3654 * able to safely make forward progress. Wake them
3655 */
3656 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3657 allow_direct_reclaim(pgdat))
cfc51155 3658 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3659
b8e83b94 3660 /* Check if kswapd should be suspending */
93781325
OS
3661 __fs_reclaim_release();
3662 ret = try_to_freeze();
3663 __fs_reclaim_acquire();
3664 if (ret || kthread_should_stop())
b8e83b94 3665 break;
8357376d 3666
73ce02e9 3667 /*
b8e83b94
MG
3668 * Raise priority if scanning rate is too low or there was no
3669 * progress in reclaiming pages
73ce02e9 3670 */
c73322d0 3671 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
3672 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3673
3674 /*
3675 * If reclaim made no progress for a boost, stop reclaim as
3676 * IO cannot be queued and it could be an infinite loop in
3677 * extreme circumstances.
3678 */
3679 if (nr_boost_reclaim && !nr_reclaimed)
3680 break;
3681
c73322d0 3682 if (raise_priority || !nr_reclaimed)
b8e83b94 3683 sc.priority--;
1d82de61 3684 } while (sc.priority >= 1);
1da177e4 3685
c73322d0
JW
3686 if (!sc.nr_reclaimed)
3687 pgdat->kswapd_failures++;
3688
b8e83b94 3689out:
1c30844d
MG
3690 /* If reclaim was boosted, account for the reclaim done in this pass */
3691 if (boosted) {
3692 unsigned long flags;
3693
3694 for (i = 0; i <= classzone_idx; i++) {
3695 if (!zone_boosts[i])
3696 continue;
3697
3698 /* Increments are under the zone lock */
3699 zone = pgdat->node_zones + i;
3700 spin_lock_irqsave(&zone->lock, flags);
3701 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3702 spin_unlock_irqrestore(&zone->lock, flags);
3703 }
3704
3705 /*
3706 * As there is now likely space, wakeup kcompact to defragment
3707 * pageblocks.
3708 */
3709 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3710 }
3711
2a2e4885 3712 snapshot_refaults(NULL, pgdat);
93781325 3713 __fs_reclaim_release();
eb414681 3714 psi_memstall_leave(&pflags);
1732d2b0 3715 set_task_reclaim_state(current, NULL);
e5ca8071 3716
0abdee2b 3717 /*
1d82de61
MG
3718 * Return the order kswapd stopped reclaiming at as
3719 * prepare_kswapd_sleep() takes it into account. If another caller
3720 * entered the allocator slow path while kswapd was awake, order will
3721 * remain at the higher level.
0abdee2b 3722 */
1d82de61 3723 return sc.order;
1da177e4
LT
3724}
3725
e716f2eb 3726/*
dffcac2c
SB
3727 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3728 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3729 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3730 * after previous reclaim attempt (node is still unbalanced). In that case
3731 * return the zone index of the previous kswapd reclaim cycle.
e716f2eb
MG
3732 */
3733static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
dffcac2c 3734 enum zone_type prev_classzone_idx)
e716f2eb
MG
3735{
3736 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
dffcac2c
SB
3737 return prev_classzone_idx;
3738 return pgdat->kswapd_classzone_idx;
e716f2eb
MG
3739}
3740
38087d9b
MG
3741static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3742 unsigned int classzone_idx)
f0bc0a60
KM
3743{
3744 long remaining = 0;
3745 DEFINE_WAIT(wait);
3746
3747 if (freezing(current) || kthread_should_stop())
3748 return;
3749
3750 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3751
333b0a45
SG
3752 /*
3753 * Try to sleep for a short interval. Note that kcompactd will only be
3754 * woken if it is possible to sleep for a short interval. This is
3755 * deliberate on the assumption that if reclaim cannot keep an
3756 * eligible zone balanced that it's also unlikely that compaction will
3757 * succeed.
3758 */
d9f21d42 3759 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3760 /*
3761 * Compaction records what page blocks it recently failed to
3762 * isolate pages from and skips them in the future scanning.
3763 * When kswapd is going to sleep, it is reasonable to assume
3764 * that pages and compaction may succeed so reset the cache.
3765 */
3766 reset_isolation_suitable(pgdat);
3767
3768 /*
3769 * We have freed the memory, now we should compact it to make
3770 * allocation of the requested order possible.
3771 */
38087d9b 3772 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3773
f0bc0a60 3774 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3775
3776 /*
3777 * If woken prematurely then reset kswapd_classzone_idx and
3778 * order. The values will either be from a wakeup request or
3779 * the previous request that slept prematurely.
3780 */
3781 if (remaining) {
e716f2eb 3782 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3783 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3784 }
3785
f0bc0a60
KM
3786 finish_wait(&pgdat->kswapd_wait, &wait);
3787 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3788 }
3789
3790 /*
3791 * After a short sleep, check if it was a premature sleep. If not, then
3792 * go fully to sleep until explicitly woken up.
3793 */
d9f21d42
MG
3794 if (!remaining &&
3795 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3796 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3797
3798 /*
3799 * vmstat counters are not perfectly accurate and the estimated
3800 * value for counters such as NR_FREE_PAGES can deviate from the
3801 * true value by nr_online_cpus * threshold. To avoid the zone
3802 * watermarks being breached while under pressure, we reduce the
3803 * per-cpu vmstat threshold while kswapd is awake and restore
3804 * them before going back to sleep.
3805 */
3806 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3807
3808 if (!kthread_should_stop())
3809 schedule();
3810
f0bc0a60
KM
3811 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3812 } else {
3813 if (remaining)
3814 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3815 else
3816 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3817 }
3818 finish_wait(&pgdat->kswapd_wait, &wait);
3819}
3820
1da177e4
LT
3821/*
3822 * The background pageout daemon, started as a kernel thread
4f98a2fe 3823 * from the init process.
1da177e4
LT
3824 *
3825 * This basically trickles out pages so that we have _some_
3826 * free memory available even if there is no other activity
3827 * that frees anything up. This is needed for things like routing
3828 * etc, where we otherwise might have all activity going on in
3829 * asynchronous contexts that cannot page things out.
3830 *
3831 * If there are applications that are active memory-allocators
3832 * (most normal use), this basically shouldn't matter.
3833 */
3834static int kswapd(void *p)
3835{
e716f2eb
MG
3836 unsigned int alloc_order, reclaim_order;
3837 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3838 pg_data_t *pgdat = (pg_data_t*)p;
3839 struct task_struct *tsk = current;
a70f7302 3840 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3841
174596a0 3842 if (!cpumask_empty(cpumask))
c5f59f08 3843 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3844
3845 /*
3846 * Tell the memory management that we're a "memory allocator",
3847 * and that if we need more memory we should get access to it
3848 * regardless (see "__alloc_pages()"). "kswapd" should
3849 * never get caught in the normal page freeing logic.
3850 *
3851 * (Kswapd normally doesn't need memory anyway, but sometimes
3852 * you need a small amount of memory in order to be able to
3853 * page out something else, and this flag essentially protects
3854 * us from recursively trying to free more memory as we're
3855 * trying to free the first piece of memory in the first place).
3856 */
930d9152 3857 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3858 set_freezable();
1da177e4 3859
e716f2eb
MG
3860 pgdat->kswapd_order = 0;
3861 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3862 for ( ; ; ) {
6f6313d4 3863 bool ret;
3e1d1d28 3864
e716f2eb
MG
3865 alloc_order = reclaim_order = pgdat->kswapd_order;
3866 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3867
38087d9b
MG
3868kswapd_try_sleep:
3869 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3870 classzone_idx);
215ddd66 3871
38087d9b
MG
3872 /* Read the new order and classzone_idx */
3873 alloc_order = reclaim_order = pgdat->kswapd_order;
dffcac2c 3874 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b 3875 pgdat->kswapd_order = 0;
e716f2eb 3876 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3877
8fe23e05
DR
3878 ret = try_to_freeze();
3879 if (kthread_should_stop())
3880 break;
3881
3882 /*
3883 * We can speed up thawing tasks if we don't call balance_pgdat
3884 * after returning from the refrigerator
3885 */
38087d9b
MG
3886 if (ret)
3887 continue;
3888
3889 /*
3890 * Reclaim begins at the requested order but if a high-order
3891 * reclaim fails then kswapd falls back to reclaiming for
3892 * order-0. If that happens, kswapd will consider sleeping
3893 * for the order it finished reclaiming at (reclaim_order)
3894 * but kcompactd is woken to compact for the original
3895 * request (alloc_order).
3896 */
e5146b12
MG
3897 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3898 alloc_order);
38087d9b
MG
3899 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3900 if (reclaim_order < alloc_order)
3901 goto kswapd_try_sleep;
1da177e4 3902 }
b0a8cc58 3903
71abdc15 3904 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 3905
1da177e4
LT
3906 return 0;
3907}
3908
3909/*
5ecd9d40
DR
3910 * A zone is low on free memory or too fragmented for high-order memory. If
3911 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3912 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3913 * has failed or is not needed, still wake up kcompactd if only compaction is
3914 * needed.
1da177e4 3915 */
5ecd9d40
DR
3916void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3917 enum zone_type classzone_idx)
1da177e4
LT
3918{
3919 pg_data_t *pgdat;
3920
6aa303de 3921 if (!managed_zone(zone))
1da177e4
LT
3922 return;
3923
5ecd9d40 3924 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3925 return;
88f5acf8 3926 pgdat = zone->zone_pgdat;
dffcac2c
SB
3927
3928 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3929 pgdat->kswapd_classzone_idx = classzone_idx;
3930 else
3931 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3932 classzone_idx);
38087d9b 3933 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3934 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3935 return;
e1a55637 3936
5ecd9d40
DR
3937 /* Hopeless node, leave it to direct reclaim if possible */
3938 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
1c30844d
MG
3939 (pgdat_balanced(pgdat, order, classzone_idx) &&
3940 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
5ecd9d40
DR
3941 /*
3942 * There may be plenty of free memory available, but it's too
3943 * fragmented for high-order allocations. Wake up kcompactd
3944 * and rely on compaction_suitable() to determine if it's
3945 * needed. If it fails, it will defer subsequent attempts to
3946 * ratelimit its work.
3947 */
3948 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3949 wakeup_kcompactd(pgdat, order, classzone_idx);
e716f2eb 3950 return;
5ecd9d40 3951 }
88f5acf8 3952
5ecd9d40
DR
3953 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3954 gfp_flags);
8d0986e2 3955 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3956}
3957
c6f37f12 3958#ifdef CONFIG_HIBERNATION
1da177e4 3959/*
7b51755c 3960 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3961 * freed pages.
3962 *
3963 * Rather than trying to age LRUs the aim is to preserve the overall
3964 * LRU order by reclaiming preferentially
3965 * inactive > active > active referenced > active mapped
1da177e4 3966 */
7b51755c 3967unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3968{
d6277db4 3969 struct scan_control sc = {
ee814fe2 3970 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3971 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3972 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3973 .priority = DEF_PRIORITY,
d6277db4 3974 .may_writepage = 1,
ee814fe2
JW
3975 .may_unmap = 1,
3976 .may_swap = 1,
7b51755c 3977 .hibernation_mode = 1,
1da177e4 3978 };
a09ed5e0 3979 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 3980 unsigned long nr_reclaimed;
499118e9 3981 unsigned int noreclaim_flag;
1da177e4 3982
d92a8cfc 3983 fs_reclaim_acquire(sc.gfp_mask);
93781325 3984 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 3985 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 3986
3115cd91 3987 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3988
1732d2b0 3989 set_task_reclaim_state(current, NULL);
499118e9 3990 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3991 fs_reclaim_release(sc.gfp_mask);
d6277db4 3992
7b51755c 3993 return nr_reclaimed;
1da177e4 3994}
c6f37f12 3995#endif /* CONFIG_HIBERNATION */
1da177e4 3996
1da177e4
LT
3997/* It's optimal to keep kswapds on the same CPUs as their memory, but
3998 not required for correctness. So if the last cpu in a node goes
3999 away, we get changed to run anywhere: as the first one comes back,
4000 restore their cpu bindings. */
517bbed9 4001static int kswapd_cpu_online(unsigned int cpu)
1da177e4 4002{
58c0a4a7 4003 int nid;
1da177e4 4004
517bbed9
SAS
4005 for_each_node_state(nid, N_MEMORY) {
4006 pg_data_t *pgdat = NODE_DATA(nid);
4007 const struct cpumask *mask;
a70f7302 4008
517bbed9 4009 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 4010
517bbed9
SAS
4011 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4012 /* One of our CPUs online: restore mask */
4013 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 4014 }
517bbed9 4015 return 0;
1da177e4 4016}
1da177e4 4017
3218ae14
YG
4018/*
4019 * This kswapd start function will be called by init and node-hot-add.
4020 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4021 */
4022int kswapd_run(int nid)
4023{
4024 pg_data_t *pgdat = NODE_DATA(nid);
4025 int ret = 0;
4026
4027 if (pgdat->kswapd)
4028 return 0;
4029
4030 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4031 if (IS_ERR(pgdat->kswapd)) {
4032 /* failure at boot is fatal */
c6202adf 4033 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
4034 pr_err("Failed to start kswapd on node %d\n", nid);
4035 ret = PTR_ERR(pgdat->kswapd);
d72515b8 4036 pgdat->kswapd = NULL;
3218ae14
YG
4037 }
4038 return ret;
4039}
4040
8fe23e05 4041/*
d8adde17 4042 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4043 * hold mem_hotplug_begin/end().
8fe23e05
DR
4044 */
4045void kswapd_stop(int nid)
4046{
4047 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4048
d8adde17 4049 if (kswapd) {
8fe23e05 4050 kthread_stop(kswapd);
d8adde17
JL
4051 NODE_DATA(nid)->kswapd = NULL;
4052 }
8fe23e05
DR
4053}
4054
1da177e4
LT
4055static int __init kswapd_init(void)
4056{
517bbed9 4057 int nid, ret;
69e05944 4058
1da177e4 4059 swap_setup();
48fb2e24 4060 for_each_node_state(nid, N_MEMORY)
3218ae14 4061 kswapd_run(nid);
517bbed9
SAS
4062 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4063 "mm/vmscan:online", kswapd_cpu_online,
4064 NULL);
4065 WARN_ON(ret < 0);
1da177e4
LT
4066 return 0;
4067}
4068
4069module_init(kswapd_init)
9eeff239
CL
4070
4071#ifdef CONFIG_NUMA
4072/*
a5f5f91d 4073 * Node reclaim mode
9eeff239 4074 *
a5f5f91d 4075 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4076 * the watermarks.
9eeff239 4077 */
a5f5f91d 4078int node_reclaim_mode __read_mostly;
9eeff239 4079
1b2ffb78 4080#define RECLAIM_OFF 0
7d03431c 4081#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 4082#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 4083#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 4084
a92f7126 4085/*
a5f5f91d 4086 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4087 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4088 * a zone.
4089 */
a5f5f91d 4090#define NODE_RECLAIM_PRIORITY 4
a92f7126 4091
9614634f 4092/*
a5f5f91d 4093 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4094 * occur.
4095 */
4096int sysctl_min_unmapped_ratio = 1;
4097
0ff38490
CL
4098/*
4099 * If the number of slab pages in a zone grows beyond this percentage then
4100 * slab reclaim needs to occur.
4101 */
4102int sysctl_min_slab_ratio = 5;
4103
11fb9989 4104static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4105{
11fb9989
MG
4106 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4107 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4108 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4109
4110 /*
4111 * It's possible for there to be more file mapped pages than
4112 * accounted for by the pages on the file LRU lists because
4113 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4114 */
4115 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4116}
4117
4118/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4119static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4120{
d031a157
AM
4121 unsigned long nr_pagecache_reclaimable;
4122 unsigned long delta = 0;
90afa5de
MG
4123
4124 /*
95bbc0c7 4125 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4126 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4127 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4128 * a better estimate
4129 */
a5f5f91d
MG
4130 if (node_reclaim_mode & RECLAIM_UNMAP)
4131 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4132 else
a5f5f91d 4133 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4134
4135 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4136 if (!(node_reclaim_mode & RECLAIM_WRITE))
4137 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4138
4139 /* Watch for any possible underflows due to delta */
4140 if (unlikely(delta > nr_pagecache_reclaimable))
4141 delta = nr_pagecache_reclaimable;
4142
4143 return nr_pagecache_reclaimable - delta;
4144}
4145
9eeff239 4146/*
a5f5f91d 4147 * Try to free up some pages from this node through reclaim.
9eeff239 4148 */
a5f5f91d 4149static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4150{
7fb2d46d 4151 /* Minimum pages needed in order to stay on node */
69e05944 4152 const unsigned long nr_pages = 1 << order;
9eeff239 4153 struct task_struct *p = current;
499118e9 4154 unsigned int noreclaim_flag;
179e9639 4155 struct scan_control sc = {
62b726c1 4156 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4157 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4158 .order = order,
a5f5f91d
MG
4159 .priority = NODE_RECLAIM_PRIORITY,
4160 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4161 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4162 .may_swap = 1,
f2f43e56 4163 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4164 };
9eeff239 4165
132bb8cf
YS
4166 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4167 sc.gfp_mask);
4168
9eeff239 4169 cond_resched();
93781325 4170 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4171 /*
95bbc0c7 4172 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4173 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4174 * and RECLAIM_UNMAP.
d4f7796e 4175 */
499118e9
VB
4176 noreclaim_flag = memalloc_noreclaim_save();
4177 p->flags |= PF_SWAPWRITE;
1732d2b0 4178 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4179
a5f5f91d 4180 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4181 /*
894befec 4182 * Free memory by calling shrink node with increasing
0ff38490
CL
4183 * priorities until we have enough memory freed.
4184 */
0ff38490 4185 do {
970a39a3 4186 shrink_node(pgdat, &sc);
9e3b2f8c 4187 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4188 }
c84db23c 4189
1732d2b0 4190 set_task_reclaim_state(p, NULL);
499118e9
VB
4191 current->flags &= ~PF_SWAPWRITE;
4192 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4193 fs_reclaim_release(sc.gfp_mask);
132bb8cf
YS
4194
4195 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4196
a79311c1 4197 return sc.nr_reclaimed >= nr_pages;
9eeff239 4198}
179e9639 4199
a5f5f91d 4200int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4201{
d773ed6b 4202 int ret;
179e9639
AM
4203
4204 /*
a5f5f91d 4205 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4206 * slab pages if we are over the defined limits.
34aa1330 4207 *
9614634f
CL
4208 * A small portion of unmapped file backed pages is needed for
4209 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4210 * thrown out if the node is overallocated. So we do not reclaim
4211 * if less than a specified percentage of the node is used by
9614634f 4212 * unmapped file backed pages.
179e9639 4213 */
a5f5f91d 4214 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 4215 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 4216 return NODE_RECLAIM_FULL;
179e9639
AM
4217
4218 /*
d773ed6b 4219 * Do not scan if the allocation should not be delayed.
179e9639 4220 */
d0164adc 4221 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4222 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4223
4224 /*
a5f5f91d 4225 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4226 * have associated processors. This will favor the local processor
4227 * over remote processors and spread off node memory allocations
4228 * as wide as possible.
4229 */
a5f5f91d
MG
4230 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4231 return NODE_RECLAIM_NOSCAN;
d773ed6b 4232
a5f5f91d
MG
4233 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4234 return NODE_RECLAIM_NOSCAN;
fa5e084e 4235
a5f5f91d
MG
4236 ret = __node_reclaim(pgdat, gfp_mask, order);
4237 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4238
24cf7251
MG
4239 if (!ret)
4240 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4241
d773ed6b 4242 return ret;
179e9639 4243}
9eeff239 4244#endif
894bc310 4245
894bc310
LS
4246/*
4247 * page_evictable - test whether a page is evictable
4248 * @page: the page to test
894bc310
LS
4249 *
4250 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 4251 * lists vs unevictable list.
894bc310
LS
4252 *
4253 * Reasons page might not be evictable:
ba9ddf49 4254 * (1) page's mapping marked unevictable
b291f000 4255 * (2) page is part of an mlocked VMA
ba9ddf49 4256 *
894bc310 4257 */
39b5f29a 4258int page_evictable(struct page *page)
894bc310 4259{
e92bb4dd
HY
4260 int ret;
4261
4262 /* Prevent address_space of inode and swap cache from being freed */
4263 rcu_read_lock();
4264 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4265 rcu_read_unlock();
4266 return ret;
894bc310 4267}
89e004ea
LS
4268
4269/**
64e3d12f
KHY
4270 * check_move_unevictable_pages - check pages for evictability and move to
4271 * appropriate zone lru list
4272 * @pvec: pagevec with lru pages to check
89e004ea 4273 *
64e3d12f
KHY
4274 * Checks pages for evictability, if an evictable page is in the unevictable
4275 * lru list, moves it to the appropriate evictable lru list. This function
4276 * should be only used for lru pages.
89e004ea 4277 */
64e3d12f 4278void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4279{
925b7673 4280 struct lruvec *lruvec;
785b99fe 4281 struct pglist_data *pgdat = NULL;
24513264
HD
4282 int pgscanned = 0;
4283 int pgrescued = 0;
4284 int i;
89e004ea 4285
64e3d12f
KHY
4286 for (i = 0; i < pvec->nr; i++) {
4287 struct page *page = pvec->pages[i];
785b99fe 4288 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4289
24513264 4290 pgscanned++;
785b99fe
MG
4291 if (pagepgdat != pgdat) {
4292 if (pgdat)
4293 spin_unlock_irq(&pgdat->lru_lock);
4294 pgdat = pagepgdat;
4295 spin_lock_irq(&pgdat->lru_lock);
24513264 4296 }
785b99fe 4297 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4298
24513264
HD
4299 if (!PageLRU(page) || !PageUnevictable(page))
4300 continue;
89e004ea 4301
39b5f29a 4302 if (page_evictable(page)) {
24513264
HD
4303 enum lru_list lru = page_lru_base_type(page);
4304
309381fe 4305 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4306 ClearPageUnevictable(page);
fa9add64
HD
4307 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4308 add_page_to_lru_list(page, lruvec, lru);
24513264 4309 pgrescued++;
89e004ea 4310 }
24513264 4311 }
89e004ea 4312
785b99fe 4313 if (pgdat) {
24513264
HD
4314 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4315 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4316 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4317 }
89e004ea 4318}
64e3d12f 4319EXPORT_SYMBOL_GPL(check_move_unevictable_pages);