]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
mm: vmscan: Reduce throttling due to a failure to make progress
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
26aa2d19 44#include <linux/migrate.h>
873b4771 45#include <linux/delayacct.h>
af936a16 46#include <linux/sysctl.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
55#include <asm/div64.h>
56
57#include <linux/swapops.h>
117aad1e 58#include <linux/balloon_compaction.h>
1da177e4 59
0f8053a5
NP
60#include "internal.h"
61
33906bc5
MG
62#define CREATE_TRACE_POINTS
63#include <trace/events/vmscan.h>
64
1da177e4 65struct scan_control {
22fba335
KM
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
ee814fe2
JW
69 /*
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 * are scanned.
72 */
73 nodemask_t *nodemask;
9e3b2f8c 74
f16015fb
JW
75 /*
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
78 */
79 struct mem_cgroup *target_mem_cgroup;
66e1707b 80
7cf111bc
JW
81 /*
82 * Scan pressure balancing between anon and file LRUs
83 */
84 unsigned long anon_cost;
85 unsigned long file_cost;
86
b91ac374
JW
87 /* Can active pages be deactivated as part of reclaim? */
88#define DEACTIVATE_ANON 1
89#define DEACTIVATE_FILE 2
90 unsigned int may_deactivate:2;
91 unsigned int force_deactivate:1;
92 unsigned int skipped_deactivate:1;
93
1276ad68 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
95 unsigned int may_writepage:1;
96
97 /* Can mapped pages be reclaimed? */
98 unsigned int may_unmap:1;
99
100 /* Can pages be swapped as part of reclaim? */
101 unsigned int may_swap:1;
102
d6622f63 103 /*
f56ce412
JW
104 * Cgroup memory below memory.low is protected as long as we
105 * don't threaten to OOM. If any cgroup is reclaimed at
106 * reduced force or passed over entirely due to its memory.low
107 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 * result, then go back for one more cycle that reclaims the protected
109 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
110 */
111 unsigned int memcg_low_reclaim:1;
112 unsigned int memcg_low_skipped:1;
241994ed 113
ee814fe2
JW
114 unsigned int hibernation_mode:1;
115
116 /* One of the zones is ready for compaction */
117 unsigned int compaction_ready:1;
118
b91ac374
JW
119 /* There is easily reclaimable cold cache in the current node */
120 unsigned int cache_trim_mode:1;
121
53138cea
JW
122 /* The file pages on the current node are dangerously low */
123 unsigned int file_is_tiny:1;
124
26aa2d19
DH
125 /* Always discard instead of demoting to lower tier memory */
126 unsigned int no_demotion:1;
127
bb451fdf
GT
128 /* Allocation order */
129 s8 order;
130
131 /* Scan (total_size >> priority) pages at once */
132 s8 priority;
133
134 /* The highest zone to isolate pages for reclaim from */
135 s8 reclaim_idx;
136
137 /* This context's GFP mask */
138 gfp_t gfp_mask;
139
ee814fe2
JW
140 /* Incremented by the number of inactive pages that were scanned */
141 unsigned long nr_scanned;
142
143 /* Number of pages freed so far during a call to shrink_zones() */
144 unsigned long nr_reclaimed;
d108c772
AR
145
146 struct {
147 unsigned int dirty;
148 unsigned int unqueued_dirty;
149 unsigned int congested;
150 unsigned int writeback;
151 unsigned int immediate;
152 unsigned int file_taken;
153 unsigned int taken;
154 } nr;
e5ca8071
YS
155
156 /* for recording the reclaimed slab by now */
157 struct reclaim_state reclaim_state;
1da177e4
LT
158};
159
1da177e4
LT
160#ifdef ARCH_HAS_PREFETCHW
161#define prefetchw_prev_lru_page(_page, _base, _field) \
162 do { \
163 if ((_page)->lru.prev != _base) { \
164 struct page *prev; \
165 \
166 prev = lru_to_page(&(_page->lru)); \
167 prefetchw(&prev->_field); \
168 } \
169 } while (0)
170#else
171#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172#endif
173
174/*
c843966c 175 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
176 */
177int vm_swappiness = 60;
1da177e4 178
0a432dcb
YS
179static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
181{
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
184
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
187
188 task->reclaim_state = rs;
189}
190
1da177e4
LT
191static LIST_HEAD(shrinker_list);
192static DECLARE_RWSEM(shrinker_rwsem);
193
0a432dcb 194#ifdef CONFIG_MEMCG
a2fb1261 195static int shrinker_nr_max;
2bfd3637 196
3c6f17e6 197/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
198static inline int shrinker_map_size(int nr_items)
199{
200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201}
2bfd3637 202
3c6f17e6
YS
203static inline int shrinker_defer_size(int nr_items)
204{
205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206}
207
468ab843
YS
208static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 int nid)
210{
211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 lockdep_is_held(&shrinker_rwsem));
213}
214
e4262c4f 215static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
216 int map_size, int defer_size,
217 int old_map_size, int old_defer_size)
2bfd3637 218{
e4262c4f 219 struct shrinker_info *new, *old;
2bfd3637
YS
220 struct mem_cgroup_per_node *pn;
221 int nid;
3c6f17e6 222 int size = map_size + defer_size;
2bfd3637 223
2bfd3637
YS
224 for_each_node(nid) {
225 pn = memcg->nodeinfo[nid];
468ab843 226 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
227 /* Not yet online memcg */
228 if (!old)
229 return 0;
230
231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 if (!new)
233 return -ENOMEM;
234
3c6f17e6
YS
235 new->nr_deferred = (atomic_long_t *)(new + 1);
236 new->map = (void *)new->nr_deferred + defer_size;
237
238 /* map: set all old bits, clear all new bits */
239 memset(new->map, (int)0xff, old_map_size);
240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 /* nr_deferred: copy old values, clear all new values */
242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 memset((void *)new->nr_deferred + old_defer_size, 0,
244 defer_size - old_defer_size);
2bfd3637 245
e4262c4f 246 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 247 kvfree_rcu(old, rcu);
2bfd3637
YS
248 }
249
250 return 0;
251}
252
e4262c4f 253void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
254{
255 struct mem_cgroup_per_node *pn;
e4262c4f 256 struct shrinker_info *info;
2bfd3637
YS
257 int nid;
258
2bfd3637
YS
259 for_each_node(nid) {
260 pn = memcg->nodeinfo[nid];
e4262c4f
YS
261 info = rcu_dereference_protected(pn->shrinker_info, true);
262 kvfree(info);
263 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
264 }
265}
266
e4262c4f 267int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 268{
e4262c4f 269 struct shrinker_info *info;
2bfd3637 270 int nid, size, ret = 0;
3c6f17e6 271 int map_size, defer_size = 0;
2bfd3637 272
d27cf2aa 273 down_write(&shrinker_rwsem);
3c6f17e6
YS
274 map_size = shrinker_map_size(shrinker_nr_max);
275 defer_size = shrinker_defer_size(shrinker_nr_max);
276 size = map_size + defer_size;
2bfd3637 277 for_each_node(nid) {
e4262c4f
YS
278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 if (!info) {
280 free_shrinker_info(memcg);
2bfd3637
YS
281 ret = -ENOMEM;
282 break;
283 }
3c6f17e6
YS
284 info->nr_deferred = (atomic_long_t *)(info + 1);
285 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 287 }
d27cf2aa 288 up_write(&shrinker_rwsem);
2bfd3637
YS
289
290 return ret;
291}
292
3c6f17e6
YS
293static inline bool need_expand(int nr_max)
294{
295 return round_up(nr_max, BITS_PER_LONG) >
296 round_up(shrinker_nr_max, BITS_PER_LONG);
297}
298
e4262c4f 299static int expand_shrinker_info(int new_id)
2bfd3637 300{
3c6f17e6 301 int ret = 0;
a2fb1261 302 int new_nr_max = new_id + 1;
3c6f17e6
YS
303 int map_size, defer_size = 0;
304 int old_map_size, old_defer_size = 0;
2bfd3637
YS
305 struct mem_cgroup *memcg;
306
3c6f17e6 307 if (!need_expand(new_nr_max))
a2fb1261 308 goto out;
2bfd3637 309
2bfd3637 310 if (!root_mem_cgroup)
d27cf2aa
YS
311 goto out;
312
313 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 314
3c6f17e6
YS
315 map_size = shrinker_map_size(new_nr_max);
316 defer_size = shrinker_defer_size(new_nr_max);
317 old_map_size = shrinker_map_size(shrinker_nr_max);
318 old_defer_size = shrinker_defer_size(shrinker_nr_max);
319
2bfd3637
YS
320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 do {
3c6f17e6
YS
322 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 old_map_size, old_defer_size);
2bfd3637
YS
324 if (ret) {
325 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 326 goto out;
2bfd3637
YS
327 }
328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 329out:
2bfd3637 330 if (!ret)
a2fb1261 331 shrinker_nr_max = new_nr_max;
d27cf2aa 332
2bfd3637
YS
333 return ret;
334}
335
336void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337{
338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 339 struct shrinker_info *info;
2bfd3637
YS
340
341 rcu_read_lock();
e4262c4f 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
343 /* Pairs with smp mb in shrink_slab() */
344 smp_mb__before_atomic();
e4262c4f 345 set_bit(shrinker_id, info->map);
2bfd3637
YS
346 rcu_read_unlock();
347 }
348}
349
b4c2b231 350static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
351
352static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353{
354 int id, ret = -ENOMEM;
355
476b30a0
YS
356 if (mem_cgroup_disabled())
357 return -ENOSYS;
358
b4c2b231
KT
359 down_write(&shrinker_rwsem);
360 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
362 if (id < 0)
363 goto unlock;
364
0a4465d3 365 if (id >= shrinker_nr_max) {
e4262c4f 366 if (expand_shrinker_info(id)) {
0a4465d3
KT
367 idr_remove(&shrinker_idr, id);
368 goto unlock;
369 }
0a4465d3 370 }
b4c2b231
KT
371 shrinker->id = id;
372 ret = 0;
373unlock:
374 up_write(&shrinker_rwsem);
375 return ret;
376}
377
378static void unregister_memcg_shrinker(struct shrinker *shrinker)
379{
380 int id = shrinker->id;
381
382 BUG_ON(id < 0);
383
41ca668a
YS
384 lockdep_assert_held(&shrinker_rwsem);
385
b4c2b231 386 idr_remove(&shrinker_idr, id);
b4c2b231 387}
b4c2b231 388
86750830
YS
389static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 struct mem_cgroup *memcg)
391{
392 struct shrinker_info *info;
393
394 info = shrinker_info_protected(memcg, nid);
395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396}
397
398static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 struct mem_cgroup *memcg)
400{
401 struct shrinker_info *info;
402
403 info = shrinker_info_protected(memcg, nid);
404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405}
406
a178015c
YS
407void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408{
409 int i, nid;
410 long nr;
411 struct mem_cgroup *parent;
412 struct shrinker_info *child_info, *parent_info;
413
414 parent = parent_mem_cgroup(memcg);
415 if (!parent)
416 parent = root_mem_cgroup;
417
418 /* Prevent from concurrent shrinker_info expand */
419 down_read(&shrinker_rwsem);
420 for_each_node(nid) {
421 child_info = shrinker_info_protected(memcg, nid);
422 parent_info = shrinker_info_protected(parent, nid);
423 for (i = 0; i < shrinker_nr_max; i++) {
424 nr = atomic_long_read(&child_info->nr_deferred[i]);
425 atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 }
427 }
428 up_read(&shrinker_rwsem);
429}
430
b5ead35e 431static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 432{
b5ead35e 433 return sc->target_mem_cgroup;
89b5fae5 434}
97c9341f
TH
435
436/**
b5ead35e 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
438 * @sc: scan_control in question
439 *
440 * The normal page dirty throttling mechanism in balance_dirty_pages() is
441 * completely broken with the legacy memcg and direct stalling in
442 * shrink_page_list() is used for throttling instead, which lacks all the
443 * niceties such as fairness, adaptive pausing, bandwidth proportional
444 * allocation and configurability.
445 *
446 * This function tests whether the vmscan currently in progress can assume
447 * that the normal dirty throttling mechanism is operational.
448 */
b5ead35e 449static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 450{
b5ead35e 451 if (!cgroup_reclaim(sc))
97c9341f
TH
452 return true;
453#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
455 return true;
456#endif
457 return false;
458}
91a45470 459#else
0a432dcb
YS
460static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461{
476b30a0 462 return -ENOSYS;
0a432dcb
YS
463}
464
465static void unregister_memcg_shrinker(struct shrinker *shrinker)
466{
467}
468
86750830
YS
469static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 struct mem_cgroup *memcg)
471{
472 return 0;
473}
474
475static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 struct mem_cgroup *memcg)
477{
478 return 0;
479}
480
b5ead35e 481static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 482{
b5ead35e 483 return false;
89b5fae5 484}
97c9341f 485
b5ead35e 486static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
487{
488 return true;
489}
91a45470
KH
490#endif
491
86750830
YS
492static long xchg_nr_deferred(struct shrinker *shrinker,
493 struct shrink_control *sc)
494{
495 int nid = sc->nid;
496
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 nid = 0;
499
500 if (sc->memcg &&
501 (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 return xchg_nr_deferred_memcg(nid, shrinker,
503 sc->memcg);
504
505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506}
507
508
509static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 struct shrink_control *sc)
511{
512 int nid = sc->nid;
513
514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 nid = 0;
516
517 if (sc->memcg &&
518 (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 return add_nr_deferred_memcg(nr, nid, shrinker,
520 sc->memcg);
521
522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523}
524
26aa2d19
DH
525static bool can_demote(int nid, struct scan_control *sc)
526{
20b51af1
HY
527 if (!numa_demotion_enabled)
528 return false;
3a235693
DH
529 if (sc) {
530 if (sc->no_demotion)
531 return false;
532 /* It is pointless to do demotion in memcg reclaim */
533 if (cgroup_reclaim(sc))
534 return false;
535 }
26aa2d19
DH
536 if (next_demotion_node(nid) == NUMA_NO_NODE)
537 return false;
538
20b51af1 539 return true;
26aa2d19
DH
540}
541
a2a36488
KB
542static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 int nid,
544 struct scan_control *sc)
545{
546 if (memcg == NULL) {
547 /*
548 * For non-memcg reclaim, is there
549 * space in any swap device?
550 */
551 if (get_nr_swap_pages() > 0)
552 return true;
553 } else {
554 /* Is the memcg below its swap limit? */
555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 return true;
557 }
558
559 /*
560 * The page can not be swapped.
561 *
562 * Can it be reclaimed from this node via demotion?
563 */
564 return can_demote(nid, sc);
565}
566
5a1c84b4
MG
567/*
568 * This misses isolated pages which are not accounted for to save counters.
569 * As the data only determines if reclaim or compaction continues, it is
570 * not expected that isolated pages will be a dominating factor.
571 */
572unsigned long zone_reclaimable_pages(struct zone *zone)
573{
574 unsigned long nr;
575
576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581
582 return nr;
583}
584
fd538803
MH
585/**
586 * lruvec_lru_size - Returns the number of pages on the given LRU list.
587 * @lruvec: lru vector
588 * @lru: lru to use
589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590 */
2091339d
YZ
591static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 int zone_idx)
c9f299d9 593{
de3b0150 594 unsigned long size = 0;
fd538803
MH
595 int zid;
596
de3b0150 597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 599
fd538803
MH
600 if (!managed_zone(zone))
601 continue;
602
603 if (!mem_cgroup_disabled())
de3b0150 604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 605 else
de3b0150 606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 607 }
de3b0150 608 return size;
b4536f0c
MH
609}
610
1da177e4 611/*
1d3d4437 612 * Add a shrinker callback to be called from the vm.
1da177e4 613 */
8e04944f 614int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 615{
476b30a0
YS
616 unsigned int size;
617 int err;
618
619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 err = prealloc_memcg_shrinker(shrinker);
621 if (err != -ENOSYS)
622 return err;
1d3d4437 623
476b30a0
YS
624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 }
626
627 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
628 if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 size *= nr_node_ids;
630
631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 if (!shrinker->nr_deferred)
633 return -ENOMEM;
b4c2b231 634
8e04944f
TH
635 return 0;
636}
637
638void free_prealloced_shrinker(struct shrinker *shrinker)
639{
41ca668a
YS
640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 down_write(&shrinker_rwsem);
b4c2b231 642 unregister_memcg_shrinker(shrinker);
41ca668a 643 up_write(&shrinker_rwsem);
476b30a0 644 return;
41ca668a 645 }
b4c2b231 646
8e04944f
TH
647 kfree(shrinker->nr_deferred);
648 shrinker->nr_deferred = NULL;
649}
1d3d4437 650
8e04944f
TH
651void register_shrinker_prepared(struct shrinker *shrinker)
652{
8e1f936b
RR
653 down_write(&shrinker_rwsem);
654 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 655 shrinker->flags |= SHRINKER_REGISTERED;
8e1f936b 656 up_write(&shrinker_rwsem);
8e04944f
TH
657}
658
659int register_shrinker(struct shrinker *shrinker)
660{
661 int err = prealloc_shrinker(shrinker);
662
663 if (err)
664 return err;
665 register_shrinker_prepared(shrinker);
1d3d4437 666 return 0;
1da177e4 667}
8e1f936b 668EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
669
670/*
671 * Remove one
672 */
8e1f936b 673void unregister_shrinker(struct shrinker *shrinker)
1da177e4 674{
41ca668a 675 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 676 return;
41ca668a 677
1da177e4
LT
678 down_write(&shrinker_rwsem);
679 list_del(&shrinker->list);
41ca668a
YS
680 shrinker->flags &= ~SHRINKER_REGISTERED;
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 unregister_memcg_shrinker(shrinker);
1da177e4 683 up_write(&shrinker_rwsem);
41ca668a 684
ae393321 685 kfree(shrinker->nr_deferred);
bb422a73 686 shrinker->nr_deferred = NULL;
1da177e4 687}
8e1f936b 688EXPORT_SYMBOL(unregister_shrinker);
1da177e4 689
880121be
CK
690/**
691 * synchronize_shrinkers - Wait for all running shrinkers to complete.
692 *
693 * This is equivalent to calling unregister_shrink() and register_shrinker(),
694 * but atomically and with less overhead. This is useful to guarantee that all
695 * shrinker invocations have seen an update, before freeing memory, similar to
696 * rcu.
697 */
698void synchronize_shrinkers(void)
699{
700 down_write(&shrinker_rwsem);
701 up_write(&shrinker_rwsem);
702}
703EXPORT_SYMBOL(synchronize_shrinkers);
704
1da177e4 705#define SHRINK_BATCH 128
1d3d4437 706
cb731d6c 707static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 708 struct shrinker *shrinker, int priority)
1d3d4437
GC
709{
710 unsigned long freed = 0;
711 unsigned long long delta;
712 long total_scan;
d5bc5fd3 713 long freeable;
1d3d4437
GC
714 long nr;
715 long new_nr;
1d3d4437
GC
716 long batch_size = shrinker->batch ? shrinker->batch
717 : SHRINK_BATCH;
5f33a080 718 long scanned = 0, next_deferred;
1d3d4437 719
d5bc5fd3 720 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
721 if (freeable == 0 || freeable == SHRINK_EMPTY)
722 return freeable;
1d3d4437
GC
723
724 /*
725 * copy the current shrinker scan count into a local variable
726 * and zero it so that other concurrent shrinker invocations
727 * don't also do this scanning work.
728 */
86750830 729 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 730
4b85afbd
JW
731 if (shrinker->seeks) {
732 delta = freeable >> priority;
733 delta *= 4;
734 do_div(delta, shrinker->seeks);
735 } else {
736 /*
737 * These objects don't require any IO to create. Trim
738 * them aggressively under memory pressure to keep
739 * them from causing refetches in the IO caches.
740 */
741 delta = freeable / 2;
742 }
172b06c3 743
18bb473e 744 total_scan = nr >> priority;
1d3d4437 745 total_scan += delta;
18bb473e 746 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
747
748 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 749 freeable, delta, total_scan, priority);
1d3d4437 750
0b1fb40a
VD
751 /*
752 * Normally, we should not scan less than batch_size objects in one
753 * pass to avoid too frequent shrinker calls, but if the slab has less
754 * than batch_size objects in total and we are really tight on memory,
755 * we will try to reclaim all available objects, otherwise we can end
756 * up failing allocations although there are plenty of reclaimable
757 * objects spread over several slabs with usage less than the
758 * batch_size.
759 *
760 * We detect the "tight on memory" situations by looking at the total
761 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 762 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
763 * scanning at high prio and therefore should try to reclaim as much as
764 * possible.
765 */
766 while (total_scan >= batch_size ||
d5bc5fd3 767 total_scan >= freeable) {
a0b02131 768 unsigned long ret;
0b1fb40a 769 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 770
0b1fb40a 771 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 772 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
773 ret = shrinker->scan_objects(shrinker, shrinkctl);
774 if (ret == SHRINK_STOP)
775 break;
776 freed += ret;
1d3d4437 777
d460acb5
CW
778 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
779 total_scan -= shrinkctl->nr_scanned;
780 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
781
782 cond_resched();
783 }
784
18bb473e
YS
785 /*
786 * The deferred work is increased by any new work (delta) that wasn't
787 * done, decreased by old deferred work that was done now.
788 *
789 * And it is capped to two times of the freeable items.
790 */
791 next_deferred = max_t(long, (nr + delta - scanned), 0);
792 next_deferred = min(next_deferred, (2 * freeable));
793
1d3d4437
GC
794 /*
795 * move the unused scan count back into the shrinker in a
86750830 796 * manner that handles concurrent updates.
1d3d4437 797 */
86750830 798 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 799
8efb4b59 800 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 801 return freed;
1495f230
YH
802}
803
0a432dcb 804#ifdef CONFIG_MEMCG
b0dedc49
KT
805static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
806 struct mem_cgroup *memcg, int priority)
807{
e4262c4f 808 struct shrinker_info *info;
b8e57efa
KT
809 unsigned long ret, freed = 0;
810 int i;
b0dedc49 811
0a432dcb 812 if (!mem_cgroup_online(memcg))
b0dedc49
KT
813 return 0;
814
815 if (!down_read_trylock(&shrinker_rwsem))
816 return 0;
817
468ab843 818 info = shrinker_info_protected(memcg, nid);
e4262c4f 819 if (unlikely(!info))
b0dedc49
KT
820 goto unlock;
821
e4262c4f 822 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
823 struct shrink_control sc = {
824 .gfp_mask = gfp_mask,
825 .nid = nid,
826 .memcg = memcg,
827 };
828 struct shrinker *shrinker;
829
830 shrinker = idr_find(&shrinker_idr, i);
41ca668a 831 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 832 if (!shrinker)
e4262c4f 833 clear_bit(i, info->map);
b0dedc49
KT
834 continue;
835 }
836
0a432dcb
YS
837 /* Call non-slab shrinkers even though kmem is disabled */
838 if (!memcg_kmem_enabled() &&
839 !(shrinker->flags & SHRINKER_NONSLAB))
840 continue;
841
b0dedc49 842 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 843 if (ret == SHRINK_EMPTY) {
e4262c4f 844 clear_bit(i, info->map);
f90280d6
KT
845 /*
846 * After the shrinker reported that it had no objects to
847 * free, but before we cleared the corresponding bit in
848 * the memcg shrinker map, a new object might have been
849 * added. To make sure, we have the bit set in this
850 * case, we invoke the shrinker one more time and reset
851 * the bit if it reports that it is not empty anymore.
852 * The memory barrier here pairs with the barrier in
2bfd3637 853 * set_shrinker_bit():
f90280d6
KT
854 *
855 * list_lru_add() shrink_slab_memcg()
856 * list_add_tail() clear_bit()
857 * <MB> <MB>
858 * set_bit() do_shrink_slab()
859 */
860 smp_mb__after_atomic();
861 ret = do_shrink_slab(&sc, shrinker, priority);
862 if (ret == SHRINK_EMPTY)
863 ret = 0;
864 else
2bfd3637 865 set_shrinker_bit(memcg, nid, i);
f90280d6 866 }
b0dedc49
KT
867 freed += ret;
868
869 if (rwsem_is_contended(&shrinker_rwsem)) {
870 freed = freed ? : 1;
871 break;
872 }
873 }
874unlock:
875 up_read(&shrinker_rwsem);
876 return freed;
877}
0a432dcb 878#else /* CONFIG_MEMCG */
b0dedc49
KT
879static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 struct mem_cgroup *memcg, int priority)
881{
882 return 0;
883}
0a432dcb 884#endif /* CONFIG_MEMCG */
b0dedc49 885
6b4f7799 886/**
cb731d6c 887 * shrink_slab - shrink slab caches
6b4f7799
JW
888 * @gfp_mask: allocation context
889 * @nid: node whose slab caches to target
cb731d6c 890 * @memcg: memory cgroup whose slab caches to target
9092c71b 891 * @priority: the reclaim priority
1da177e4 892 *
6b4f7799 893 * Call the shrink functions to age shrinkable caches.
1da177e4 894 *
6b4f7799
JW
895 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
896 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 897 *
aeed1d32
VD
898 * @memcg specifies the memory cgroup to target. Unaware shrinkers
899 * are called only if it is the root cgroup.
cb731d6c 900 *
9092c71b
JB
901 * @priority is sc->priority, we take the number of objects and >> by priority
902 * in order to get the scan target.
b15e0905 903 *
6b4f7799 904 * Returns the number of reclaimed slab objects.
1da177e4 905 */
cb731d6c
VD
906static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
907 struct mem_cgroup *memcg,
9092c71b 908 int priority)
1da177e4 909{
b8e57efa 910 unsigned long ret, freed = 0;
1da177e4
LT
911 struct shrinker *shrinker;
912
fa1e512f
YS
913 /*
914 * The root memcg might be allocated even though memcg is disabled
915 * via "cgroup_disable=memory" boot parameter. This could make
916 * mem_cgroup_is_root() return false, then just run memcg slab
917 * shrink, but skip global shrink. This may result in premature
918 * oom.
919 */
920 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 921 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 922
e830c63a 923 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 924 goto out;
1da177e4
LT
925
926 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
927 struct shrink_control sc = {
928 .gfp_mask = gfp_mask,
929 .nid = nid,
cb731d6c 930 .memcg = memcg,
6b4f7799 931 };
ec97097b 932
9b996468
KT
933 ret = do_shrink_slab(&sc, shrinker, priority);
934 if (ret == SHRINK_EMPTY)
935 ret = 0;
936 freed += ret;
e496612c
MK
937 /*
938 * Bail out if someone want to register a new shrinker to
55b65a57 939 * prevent the registration from being stalled for long periods
e496612c
MK
940 * by parallel ongoing shrinking.
941 */
942 if (rwsem_is_contended(&shrinker_rwsem)) {
943 freed = freed ? : 1;
944 break;
945 }
1da177e4 946 }
6b4f7799 947
1da177e4 948 up_read(&shrinker_rwsem);
f06590bd
MK
949out:
950 cond_resched();
24f7c6b9 951 return freed;
1da177e4
LT
952}
953
cb731d6c
VD
954void drop_slab_node(int nid)
955{
956 unsigned long freed;
1399af7e 957 int shift = 0;
cb731d6c
VD
958
959 do {
960 struct mem_cgroup *memcg = NULL;
961
069c411d
CZ
962 if (fatal_signal_pending(current))
963 return;
964
cb731d6c 965 freed = 0;
aeed1d32 966 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 967 do {
9092c71b 968 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c 969 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1399af7e 970 } while ((freed >> shift++) > 1);
cb731d6c
VD
971}
972
973void drop_slab(void)
974{
975 int nid;
976
977 for_each_online_node(nid)
978 drop_slab_node(nid);
979}
980
1da177e4
LT
981static inline int is_page_cache_freeable(struct page *page)
982{
ceddc3a5
JW
983 /*
984 * A freeable page cache page is referenced only by the caller
67891fff
MW
985 * that isolated the page, the page cache and optional buffer
986 * heads at page->private.
ceddc3a5 987 */
3efe62e4 988 int page_cache_pins = thp_nr_pages(page);
67891fff 989 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
990}
991
cb16556d 992static int may_write_to_inode(struct inode *inode)
1da177e4 993{
930d9152 994 if (current->flags & PF_SWAPWRITE)
1da177e4 995 return 1;
703c2708 996 if (!inode_write_congested(inode))
1da177e4 997 return 1;
703c2708 998 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
999 return 1;
1000 return 0;
1001}
1002
1003/*
1004 * We detected a synchronous write error writing a page out. Probably
1005 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1006 * fsync(), msync() or close().
1007 *
1008 * The tricky part is that after writepage we cannot touch the mapping: nothing
1009 * prevents it from being freed up. But we have a ref on the page and once
1010 * that page is locked, the mapping is pinned.
1011 *
1012 * We're allowed to run sleeping lock_page() here because we know the caller has
1013 * __GFP_FS.
1014 */
1015static void handle_write_error(struct address_space *mapping,
1016 struct page *page, int error)
1017{
7eaceacc 1018 lock_page(page);
3e9f45bd
GC
1019 if (page_mapping(page) == mapping)
1020 mapping_set_error(mapping, error);
1da177e4
LT
1021 unlock_page(page);
1022}
1023
1b4e3f26
MG
1024static bool skip_throttle_noprogress(pg_data_t *pgdat)
1025{
1026 int reclaimable = 0, write_pending = 0;
1027 int i;
1028
1029 /*
1030 * If kswapd is disabled, reschedule if necessary but do not
1031 * throttle as the system is likely near OOM.
1032 */
1033 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1034 return true;
1035
1036 /*
1037 * If there are a lot of dirty/writeback pages then do not
1038 * throttle as throttling will occur when the pages cycle
1039 * towards the end of the LRU if still under writeback.
1040 */
1041 for (i = 0; i < MAX_NR_ZONES; i++) {
1042 struct zone *zone = pgdat->node_zones + i;
1043
1044 if (!populated_zone(zone))
1045 continue;
1046
1047 reclaimable += zone_reclaimable_pages(zone);
1048 write_pending += zone_page_state_snapshot(zone,
1049 NR_ZONE_WRITE_PENDING);
1050 }
1051 if (2 * write_pending <= reclaimable)
1052 return true;
1053
1054 return false;
1055}
1056
c3f4a9a2 1057void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
8cd7c588
MG
1058{
1059 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
c3f4a9a2 1060 long timeout, ret;
8cd7c588
MG
1061 DEFINE_WAIT(wait);
1062
1063 /*
1064 * Do not throttle IO workers, kthreads other than kswapd or
1065 * workqueues. They may be required for reclaim to make
1066 * forward progress (e.g. journalling workqueues or kthreads).
1067 */
1068 if (!current_is_kswapd() &&
1069 current->flags & (PF_IO_WORKER|PF_KTHREAD))
1070 return;
1071
c3f4a9a2
MG
1072 /*
1073 * These figures are pulled out of thin air.
1074 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1075 * parallel reclaimers which is a short-lived event so the timeout is
1076 * short. Failing to make progress or waiting on writeback are
1077 * potentially long-lived events so use a longer timeout. This is shaky
1078 * logic as a failure to make progress could be due to anything from
1079 * writeback to a slow device to excessive references pages at the tail
1080 * of the inactive LRU.
1081 */
1082 switch(reason) {
1083 case VMSCAN_THROTTLE_WRITEBACK:
1084 timeout = HZ/10;
1085
1086 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1087 WRITE_ONCE(pgdat->nr_reclaim_start,
1088 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1089 }
1090
1091 break;
1b4e3f26
MG
1092 case VMSCAN_THROTTLE_CONGESTED:
1093 fallthrough;
c3f4a9a2 1094 case VMSCAN_THROTTLE_NOPROGRESS:
1b4e3f26
MG
1095 if (skip_throttle_noprogress(pgdat)) {
1096 cond_resched();
1097 return;
1098 }
1099
1100 timeout = 1;
1101
c3f4a9a2
MG
1102 break;
1103 case VMSCAN_THROTTLE_ISOLATED:
1104 timeout = HZ/50;
1105 break;
1106 default:
1107 WARN_ON_ONCE(1);
1108 timeout = HZ;
1109 break;
8cd7c588
MG
1110 }
1111
1112 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1113 ret = schedule_timeout(timeout);
1114 finish_wait(wqh, &wait);
d818fca1 1115
c3f4a9a2 1116 if (reason == VMSCAN_THROTTLE_WRITEBACK)
d818fca1 1117 atomic_dec(&pgdat->nr_writeback_throttled);
8cd7c588
MG
1118
1119 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1120 jiffies_to_usecs(timeout - ret),
1121 reason);
1122}
1123
1124/*
1125 * Account for pages written if tasks are throttled waiting on dirty
1126 * pages to clean. If enough pages have been cleaned since throttling
1127 * started then wakeup the throttled tasks.
1128 */
512b7931 1129void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
8cd7c588
MG
1130 int nr_throttled)
1131{
1132 unsigned long nr_written;
1133
512b7931 1134 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
8cd7c588
MG
1135
1136 /*
1137 * This is an inaccurate read as the per-cpu deltas may not
1138 * be synchronised. However, given that the system is
1139 * writeback throttled, it is not worth taking the penalty
1140 * of getting an accurate count. At worst, the throttle
1141 * timeout guarantees forward progress.
1142 */
1143 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1144 READ_ONCE(pgdat->nr_reclaim_start);
1145
1146 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1147 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1148}
1149
04e62a29
CL
1150/* possible outcome of pageout() */
1151typedef enum {
1152 /* failed to write page out, page is locked */
1153 PAGE_KEEP,
1154 /* move page to the active list, page is locked */
1155 PAGE_ACTIVATE,
1156 /* page has been sent to the disk successfully, page is unlocked */
1157 PAGE_SUCCESS,
1158 /* page is clean and locked */
1159 PAGE_CLEAN,
1160} pageout_t;
1161
1da177e4 1162/*
1742f19f
AM
1163 * pageout is called by shrink_page_list() for each dirty page.
1164 * Calls ->writepage().
1da177e4 1165 */
cb16556d 1166static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
1167{
1168 /*
1169 * If the page is dirty, only perform writeback if that write
1170 * will be non-blocking. To prevent this allocation from being
1171 * stalled by pagecache activity. But note that there may be
1172 * stalls if we need to run get_block(). We could test
1173 * PagePrivate for that.
1174 *
8174202b 1175 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
1176 * this page's queue, we can perform writeback even if that
1177 * will block.
1178 *
1179 * If the page is swapcache, write it back even if that would
1180 * block, for some throttling. This happens by accident, because
1181 * swap_backing_dev_info is bust: it doesn't reflect the
1182 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
1183 */
1184 if (!is_page_cache_freeable(page))
1185 return PAGE_KEEP;
1186 if (!mapping) {
1187 /*
1188 * Some data journaling orphaned pages can have
1189 * page->mapping == NULL while being dirty with clean buffers.
1190 */
266cf658 1191 if (page_has_private(page)) {
1da177e4
LT
1192 if (try_to_free_buffers(page)) {
1193 ClearPageDirty(page);
b1de0d13 1194 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
1195 return PAGE_CLEAN;
1196 }
1197 }
1198 return PAGE_KEEP;
1199 }
1200 if (mapping->a_ops->writepage == NULL)
1201 return PAGE_ACTIVATE;
cb16556d 1202 if (!may_write_to_inode(mapping->host))
1da177e4
LT
1203 return PAGE_KEEP;
1204
1205 if (clear_page_dirty_for_io(page)) {
1206 int res;
1207 struct writeback_control wbc = {
1208 .sync_mode = WB_SYNC_NONE,
1209 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1210 .range_start = 0,
1211 .range_end = LLONG_MAX,
1da177e4
LT
1212 .for_reclaim = 1,
1213 };
1214
1215 SetPageReclaim(page);
1216 res = mapping->a_ops->writepage(page, &wbc);
1217 if (res < 0)
1218 handle_write_error(mapping, page, res);
994fc28c 1219 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
1220 ClearPageReclaim(page);
1221 return PAGE_ACTIVATE;
1222 }
c661b078 1223
1da177e4
LT
1224 if (!PageWriteback(page)) {
1225 /* synchronous write or broken a_ops? */
1226 ClearPageReclaim(page);
1227 }
3aa23851 1228 trace_mm_vmscan_writepage(page);
c4a25635 1229 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
1230 return PAGE_SUCCESS;
1231 }
1232
1233 return PAGE_CLEAN;
1234}
1235
a649fd92 1236/*
e286781d
NP
1237 * Same as remove_mapping, but if the page is removed from the mapping, it
1238 * gets returned with a refcount of 0.
a649fd92 1239 */
a528910e 1240static int __remove_mapping(struct address_space *mapping, struct page *page,
b910718a 1241 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1242{
bd4c82c2 1243 int refcount;
aae466b0 1244 void *shadow = NULL;
c4843a75 1245
28e4d965
NP
1246 BUG_ON(!PageLocked(page));
1247 BUG_ON(mapping != page_mapping(page));
49d2e9cc 1248
51b8c1fe
JW
1249 if (!PageSwapCache(page))
1250 spin_lock(&mapping->host->i_lock);
30472509 1251 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1252 /*
0fd0e6b0
NP
1253 * The non racy check for a busy page.
1254 *
1255 * Must be careful with the order of the tests. When someone has
1256 * a ref to the page, it may be possible that they dirty it then
1257 * drop the reference. So if PageDirty is tested before page_count
1258 * here, then the following race may occur:
1259 *
1260 * get_user_pages(&page);
1261 * [user mapping goes away]
1262 * write_to(page);
1263 * !PageDirty(page) [good]
1264 * SetPageDirty(page);
1265 * put_page(page);
1266 * !page_count(page) [good, discard it]
1267 *
1268 * [oops, our write_to data is lost]
1269 *
1270 * Reversing the order of the tests ensures such a situation cannot
1271 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1272 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1273 *
1274 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1275 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1276 */
906d278d 1277 refcount = 1 + compound_nr(page);
bd4c82c2 1278 if (!page_ref_freeze(page, refcount))
49d2e9cc 1279 goto cannot_free;
1c4c3b99 1280 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 1281 if (unlikely(PageDirty(page))) {
bd4c82c2 1282 page_ref_unfreeze(page, refcount);
49d2e9cc 1283 goto cannot_free;
e286781d 1284 }
49d2e9cc
CL
1285
1286 if (PageSwapCache(page)) {
1287 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 1288 mem_cgroup_swapout(page, swap);
aae466b0
JK
1289 if (reclaimed && !mapping_exiting(mapping))
1290 shadow = workingset_eviction(page, target_memcg);
1291 __delete_from_swap_cache(page, swap, shadow);
30472509 1292 xa_unlock_irq(&mapping->i_pages);
75f6d6d2 1293 put_swap_page(page, swap);
e286781d 1294 } else {
6072d13c
LT
1295 void (*freepage)(struct page *);
1296
1297 freepage = mapping->a_ops->freepage;
a528910e
JW
1298 /*
1299 * Remember a shadow entry for reclaimed file cache in
1300 * order to detect refaults, thus thrashing, later on.
1301 *
1302 * But don't store shadows in an address space that is
238c3046 1303 * already exiting. This is not just an optimization,
a528910e
JW
1304 * inode reclaim needs to empty out the radix tree or
1305 * the nodes are lost. Don't plant shadows behind its
1306 * back.
f9fe48be
RZ
1307 *
1308 * We also don't store shadows for DAX mappings because the
1309 * only page cache pages found in these are zero pages
1310 * covering holes, and because we don't want to mix DAX
1311 * exceptional entries and shadow exceptional entries in the
b93b0163 1312 * same address_space.
a528910e 1313 */
9de4f22a 1314 if (reclaimed && page_is_file_lru(page) &&
f9fe48be 1315 !mapping_exiting(mapping) && !dax_mapping(mapping))
b910718a 1316 shadow = workingset_eviction(page, target_memcg);
62cccb8c 1317 __delete_from_page_cache(page, shadow);
30472509 1318 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
1319 if (mapping_shrinkable(mapping))
1320 inode_add_lru(mapping->host);
1321 spin_unlock(&mapping->host->i_lock);
6072d13c
LT
1322
1323 if (freepage != NULL)
1324 freepage(page);
49d2e9cc
CL
1325 }
1326
49d2e9cc
CL
1327 return 1;
1328
1329cannot_free:
30472509 1330 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
1331 if (!PageSwapCache(page))
1332 spin_unlock(&mapping->host->i_lock);
49d2e9cc
CL
1333 return 0;
1334}
1335
e286781d
NP
1336/*
1337 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1338 * someone else has a ref on the page, abort and return 0. If it was
1339 * successfully detached, return 1. Assumes the caller has a single ref on
1340 * this page.
1341 */
1342int remove_mapping(struct address_space *mapping, struct page *page)
1343{
b910718a 1344 if (__remove_mapping(mapping, page, false, NULL)) {
e286781d
NP
1345 /*
1346 * Unfreezing the refcount with 1 rather than 2 effectively
1347 * drops the pagecache ref for us without requiring another
1348 * atomic operation.
1349 */
fe896d18 1350 page_ref_unfreeze(page, 1);
e286781d
NP
1351 return 1;
1352 }
1353 return 0;
1354}
1355
894bc310
LS
1356/**
1357 * putback_lru_page - put previously isolated page onto appropriate LRU list
1358 * @page: page to be put back to appropriate lru list
1359 *
1360 * Add previously isolated @page to appropriate LRU list.
1361 * Page may still be unevictable for other reasons.
1362 *
1363 * lru_lock must not be held, interrupts must be enabled.
1364 */
894bc310
LS
1365void putback_lru_page(struct page *page)
1366{
9c4e6b1a 1367 lru_cache_add(page);
894bc310
LS
1368 put_page(page); /* drop ref from isolate */
1369}
1370
dfc8d636
JW
1371enum page_references {
1372 PAGEREF_RECLAIM,
1373 PAGEREF_RECLAIM_CLEAN,
64574746 1374 PAGEREF_KEEP,
dfc8d636
JW
1375 PAGEREF_ACTIVATE,
1376};
1377
1378static enum page_references page_check_references(struct page *page,
1379 struct scan_control *sc)
1380{
64574746 1381 int referenced_ptes, referenced_page;
dfc8d636 1382 unsigned long vm_flags;
dfc8d636 1383
c3ac9a8a
JW
1384 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1385 &vm_flags);
64574746 1386 referenced_page = TestClearPageReferenced(page);
dfc8d636 1387
dfc8d636
JW
1388 /*
1389 * Mlock lost the isolation race with us. Let try_to_unmap()
1390 * move the page to the unevictable list.
1391 */
1392 if (vm_flags & VM_LOCKED)
1393 return PAGEREF_RECLAIM;
1394
64574746 1395 if (referenced_ptes) {
64574746
JW
1396 /*
1397 * All mapped pages start out with page table
1398 * references from the instantiating fault, so we need
1399 * to look twice if a mapped file page is used more
1400 * than once.
1401 *
1402 * Mark it and spare it for another trip around the
1403 * inactive list. Another page table reference will
1404 * lead to its activation.
1405 *
1406 * Note: the mark is set for activated pages as well
1407 * so that recently deactivated but used pages are
1408 * quickly recovered.
1409 */
1410 SetPageReferenced(page);
1411
34dbc67a 1412 if (referenced_page || referenced_ptes > 1)
64574746
JW
1413 return PAGEREF_ACTIVATE;
1414
c909e993
KK
1415 /*
1416 * Activate file-backed executable pages after first usage.
1417 */
b518154e 1418 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
c909e993
KK
1419 return PAGEREF_ACTIVATE;
1420
64574746
JW
1421 return PAGEREF_KEEP;
1422 }
dfc8d636
JW
1423
1424 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1425 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1426 return PAGEREF_RECLAIM_CLEAN;
1427
1428 return PAGEREF_RECLAIM;
dfc8d636
JW
1429}
1430
e2be15f6
MG
1431/* Check if a page is dirty or under writeback */
1432static void page_check_dirty_writeback(struct page *page,
1433 bool *dirty, bool *writeback)
1434{
b4597226
MG
1435 struct address_space *mapping;
1436
e2be15f6
MG
1437 /*
1438 * Anonymous pages are not handled by flushers and must be written
1439 * from reclaim context. Do not stall reclaim based on them
1440 */
9de4f22a 1441 if (!page_is_file_lru(page) ||
802a3a92 1442 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1443 *dirty = false;
1444 *writeback = false;
1445 return;
1446 }
1447
1448 /* By default assume that the page flags are accurate */
1449 *dirty = PageDirty(page);
1450 *writeback = PageWriteback(page);
b4597226
MG
1451
1452 /* Verify dirty/writeback state if the filesystem supports it */
1453 if (!page_has_private(page))
1454 return;
1455
1456 mapping = page_mapping(page);
1457 if (mapping && mapping->a_ops->is_dirty_writeback)
1458 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1459}
1460
26aa2d19
DH
1461static struct page *alloc_demote_page(struct page *page, unsigned long node)
1462{
1463 struct migration_target_control mtc = {
1464 /*
1465 * Allocate from 'node', or fail quickly and quietly.
1466 * When this happens, 'page' will likely just be discarded
1467 * instead of migrated.
1468 */
1469 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1470 __GFP_THISNODE | __GFP_NOWARN |
1471 __GFP_NOMEMALLOC | GFP_NOWAIT,
1472 .nid = node
1473 };
1474
1475 return alloc_migration_target(page, (unsigned long)&mtc);
1476}
1477
1478/*
1479 * Take pages on @demote_list and attempt to demote them to
1480 * another node. Pages which are not demoted are left on
1481 * @demote_pages.
1482 */
1483static unsigned int demote_page_list(struct list_head *demote_pages,
1484 struct pglist_data *pgdat)
1485{
1486 int target_nid = next_demotion_node(pgdat->node_id);
1487 unsigned int nr_succeeded;
26aa2d19
DH
1488
1489 if (list_empty(demote_pages))
1490 return 0;
1491
1492 if (target_nid == NUMA_NO_NODE)
1493 return 0;
1494
1495 /* Demotion ignores all cpuset and mempolicy settings */
cb75463c 1496 migrate_pages(demote_pages, alloc_demote_page, NULL,
26aa2d19
DH
1497 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1498 &nr_succeeded);
1499
668e4147
YS
1500 if (current_is_kswapd())
1501 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1502 else
1503 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1504
26aa2d19
DH
1505 return nr_succeeded;
1506}
1507
1da177e4 1508/*
1742f19f 1509 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1510 */
730ec8c0
MS
1511static unsigned int shrink_page_list(struct list_head *page_list,
1512 struct pglist_data *pgdat,
1513 struct scan_control *sc,
730ec8c0
MS
1514 struct reclaim_stat *stat,
1515 bool ignore_references)
1da177e4
LT
1516{
1517 LIST_HEAD(ret_pages);
abe4c3b5 1518 LIST_HEAD(free_pages);
26aa2d19 1519 LIST_HEAD(demote_pages);
730ec8c0
MS
1520 unsigned int nr_reclaimed = 0;
1521 unsigned int pgactivate = 0;
26aa2d19 1522 bool do_demote_pass;
1da177e4 1523
060f005f 1524 memset(stat, 0, sizeof(*stat));
1da177e4 1525 cond_resched();
26aa2d19 1526 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1527
26aa2d19 1528retry:
1da177e4
LT
1529 while (!list_empty(page_list)) {
1530 struct address_space *mapping;
1531 struct page *page;
8940b34a 1532 enum page_references references = PAGEREF_RECLAIM;
4b793062 1533 bool dirty, writeback, may_enter_fs;
98879b3b 1534 unsigned int nr_pages;
1da177e4
LT
1535
1536 cond_resched();
1537
1538 page = lru_to_page(page_list);
1539 list_del(&page->lru);
1540
529ae9aa 1541 if (!trylock_page(page))
1da177e4
LT
1542 goto keep;
1543
309381fe 1544 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1545
d8c6546b 1546 nr_pages = compound_nr(page);
98879b3b
YS
1547
1548 /* Account the number of base pages even though THP */
1549 sc->nr_scanned += nr_pages;
80e43426 1550
39b5f29a 1551 if (unlikely(!page_evictable(page)))
ad6b6704 1552 goto activate_locked;
894bc310 1553
a6dc60f8 1554 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1555 goto keep_locked;
1556
c661b078
AW
1557 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1558 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1559
e2be15f6 1560 /*
894befec 1561 * The number of dirty pages determines if a node is marked
8cd7c588
MG
1562 * reclaim_congested. kswapd will stall and start writing
1563 * pages if the tail of the LRU is all dirty unqueued pages.
e2be15f6
MG
1564 */
1565 page_check_dirty_writeback(page, &dirty, &writeback);
1566 if (dirty || writeback)
060f005f 1567 stat->nr_dirty++;
e2be15f6
MG
1568
1569 if (dirty && !writeback)
060f005f 1570 stat->nr_unqueued_dirty++;
e2be15f6 1571
d04e8acd
MG
1572 /*
1573 * Treat this page as congested if the underlying BDI is or if
1574 * pages are cycling through the LRU so quickly that the
1575 * pages marked for immediate reclaim are making it to the
1576 * end of the LRU a second time.
1577 */
e2be15f6 1578 mapping = page_mapping(page);
1da58ee2 1579 if (((dirty || writeback) && mapping &&
703c2708 1580 inode_write_congested(mapping->host)) ||
d04e8acd 1581 (writeback && PageReclaim(page)))
060f005f 1582 stat->nr_congested++;
e2be15f6 1583
283aba9f
MG
1584 /*
1585 * If a page at the tail of the LRU is under writeback, there
1586 * are three cases to consider.
1587 *
1588 * 1) If reclaim is encountering an excessive number of pages
1589 * under writeback and this page is both under writeback and
1590 * PageReclaim then it indicates that pages are being queued
1591 * for IO but are being recycled through the LRU before the
1592 * IO can complete. Waiting on the page itself risks an
1593 * indefinite stall if it is impossible to writeback the
1594 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1595 * note that the LRU is being scanned too quickly and the
1596 * caller can stall after page list has been processed.
283aba9f 1597 *
97c9341f 1598 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1599 * not marked for immediate reclaim, or the caller does not
1600 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1601 * not to fs). In this case mark the page for immediate
97c9341f 1602 * reclaim and continue scanning.
283aba9f 1603 *
ecf5fc6e
MH
1604 * Require may_enter_fs because we would wait on fs, which
1605 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1606 * enter reclaim, and deadlock if it waits on a page for
1607 * which it is needed to do the write (loop masks off
1608 * __GFP_IO|__GFP_FS for this reason); but more thought
1609 * would probably show more reasons.
1610 *
7fadc820 1611 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1612 * PageReclaim. memcg does not have any dirty pages
1613 * throttling so we could easily OOM just because too many
1614 * pages are in writeback and there is nothing else to
1615 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1616 *
1617 * In cases 1) and 2) we activate the pages to get them out of
1618 * the way while we continue scanning for clean pages on the
1619 * inactive list and refilling from the active list. The
1620 * observation here is that waiting for disk writes is more
1621 * expensive than potentially causing reloads down the line.
1622 * Since they're marked for immediate reclaim, they won't put
1623 * memory pressure on the cache working set any longer than it
1624 * takes to write them to disk.
283aba9f 1625 */
c661b078 1626 if (PageWriteback(page)) {
283aba9f
MG
1627 /* Case 1 above */
1628 if (current_is_kswapd() &&
1629 PageReclaim(page) &&
599d0c95 1630 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1631 stat->nr_immediate++;
c55e8d03 1632 goto activate_locked;
283aba9f
MG
1633
1634 /* Case 2 above */
b5ead35e 1635 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1636 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1637 /*
1638 * This is slightly racy - end_page_writeback()
1639 * might have just cleared PageReclaim, then
1640 * setting PageReclaim here end up interpreted
1641 * as PageReadahead - but that does not matter
1642 * enough to care. What we do want is for this
1643 * page to have PageReclaim set next time memcg
1644 * reclaim reaches the tests above, so it will
1645 * then wait_on_page_writeback() to avoid OOM;
1646 * and it's also appropriate in global reclaim.
1647 */
1648 SetPageReclaim(page);
060f005f 1649 stat->nr_writeback++;
c55e8d03 1650 goto activate_locked;
283aba9f
MG
1651
1652 /* Case 3 above */
1653 } else {
7fadc820 1654 unlock_page(page);
283aba9f 1655 wait_on_page_writeback(page);
7fadc820
HD
1656 /* then go back and try same page again */
1657 list_add_tail(&page->lru, page_list);
1658 continue;
e62e384e 1659 }
c661b078 1660 }
1da177e4 1661
8940b34a 1662 if (!ignore_references)
02c6de8d
MK
1663 references = page_check_references(page, sc);
1664
dfc8d636
JW
1665 switch (references) {
1666 case PAGEREF_ACTIVATE:
1da177e4 1667 goto activate_locked;
64574746 1668 case PAGEREF_KEEP:
98879b3b 1669 stat->nr_ref_keep += nr_pages;
64574746 1670 goto keep_locked;
dfc8d636
JW
1671 case PAGEREF_RECLAIM:
1672 case PAGEREF_RECLAIM_CLEAN:
1673 ; /* try to reclaim the page below */
1674 }
1da177e4 1675
26aa2d19
DH
1676 /*
1677 * Before reclaiming the page, try to relocate
1678 * its contents to another node.
1679 */
1680 if (do_demote_pass &&
1681 (thp_migration_supported() || !PageTransHuge(page))) {
1682 list_add(&page->lru, &demote_pages);
1683 unlock_page(page);
1684 continue;
1685 }
1686
1da177e4
LT
1687 /*
1688 * Anonymous process memory has backing store?
1689 * Try to allocate it some swap space here.
802a3a92 1690 * Lazyfree page could be freed directly
1da177e4 1691 */
bd4c82c2
HY
1692 if (PageAnon(page) && PageSwapBacked(page)) {
1693 if (!PageSwapCache(page)) {
1694 if (!(sc->gfp_mask & __GFP_IO))
1695 goto keep_locked;
feb889fb
LT
1696 if (page_maybe_dma_pinned(page))
1697 goto keep_locked;
bd4c82c2
HY
1698 if (PageTransHuge(page)) {
1699 /* cannot split THP, skip it */
1700 if (!can_split_huge_page(page, NULL))
1701 goto activate_locked;
1702 /*
1703 * Split pages without a PMD map right
1704 * away. Chances are some or all of the
1705 * tail pages can be freed without IO.
1706 */
1707 if (!compound_mapcount(page) &&
1708 split_huge_page_to_list(page,
1709 page_list))
1710 goto activate_locked;
1711 }
1712 if (!add_to_swap(page)) {
1713 if (!PageTransHuge(page))
98879b3b 1714 goto activate_locked_split;
bd4c82c2
HY
1715 /* Fallback to swap normal pages */
1716 if (split_huge_page_to_list(page,
1717 page_list))
1718 goto activate_locked;
fe490cc0
HY
1719#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1720 count_vm_event(THP_SWPOUT_FALLBACK);
1721#endif
bd4c82c2 1722 if (!add_to_swap(page))
98879b3b 1723 goto activate_locked_split;
bd4c82c2 1724 }
0f074658 1725
4b793062 1726 may_enter_fs = true;
1da177e4 1727
bd4c82c2
HY
1728 /* Adding to swap updated mapping */
1729 mapping = page_mapping(page);
1730 }
7751b2da
KS
1731 } else if (unlikely(PageTransHuge(page))) {
1732 /* Split file THP */
1733 if (split_huge_page_to_list(page, page_list))
1734 goto keep_locked;
e2be15f6 1735 }
1da177e4 1736
98879b3b
YS
1737 /*
1738 * THP may get split above, need minus tail pages and update
1739 * nr_pages to avoid accounting tail pages twice.
1740 *
1741 * The tail pages that are added into swap cache successfully
1742 * reach here.
1743 */
1744 if ((nr_pages > 1) && !PageTransHuge(page)) {
1745 sc->nr_scanned -= (nr_pages - 1);
1746 nr_pages = 1;
1747 }
1748
1da177e4
LT
1749 /*
1750 * The page is mapped into the page tables of one or more
1751 * processes. Try to unmap it here.
1752 */
802a3a92 1753 if (page_mapped(page)) {
013339df 1754 enum ttu_flags flags = TTU_BATCH_FLUSH;
1f318a9b 1755 bool was_swapbacked = PageSwapBacked(page);
bd4c82c2
HY
1756
1757 if (unlikely(PageTransHuge(page)))
1758 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1759
1fb08ac6
YS
1760 try_to_unmap(page, flags);
1761 if (page_mapped(page)) {
98879b3b 1762 stat->nr_unmap_fail += nr_pages;
1f318a9b
JK
1763 if (!was_swapbacked && PageSwapBacked(page))
1764 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1765 goto activate_locked;
1da177e4
LT
1766 }
1767 }
1768
1769 if (PageDirty(page)) {
ee72886d 1770 /*
4eda4823
JW
1771 * Only kswapd can writeback filesystem pages
1772 * to avoid risk of stack overflow. But avoid
1773 * injecting inefficient single-page IO into
1774 * flusher writeback as much as possible: only
1775 * write pages when we've encountered many
1776 * dirty pages, and when we've already scanned
1777 * the rest of the LRU for clean pages and see
1778 * the same dirty pages again (PageReclaim).
ee72886d 1779 */
9de4f22a 1780 if (page_is_file_lru(page) &&
4eda4823
JW
1781 (!current_is_kswapd() || !PageReclaim(page) ||
1782 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1783 /*
1784 * Immediately reclaim when written back.
1785 * Similar in principal to deactivate_page()
1786 * except we already have the page isolated
1787 * and know it's dirty
1788 */
c4a25635 1789 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1790 SetPageReclaim(page);
1791
c55e8d03 1792 goto activate_locked;
ee72886d
MG
1793 }
1794
dfc8d636 1795 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1796 goto keep_locked;
4dd4b920 1797 if (!may_enter_fs)
1da177e4 1798 goto keep_locked;
52a8363e 1799 if (!sc->may_writepage)
1da177e4
LT
1800 goto keep_locked;
1801
d950c947
MG
1802 /*
1803 * Page is dirty. Flush the TLB if a writable entry
1804 * potentially exists to avoid CPU writes after IO
1805 * starts and then write it out here.
1806 */
1807 try_to_unmap_flush_dirty();
cb16556d 1808 switch (pageout(page, mapping)) {
1da177e4
LT
1809 case PAGE_KEEP:
1810 goto keep_locked;
1811 case PAGE_ACTIVATE:
1812 goto activate_locked;
1813 case PAGE_SUCCESS:
6c357848 1814 stat->nr_pageout += thp_nr_pages(page);
96f8bf4f 1815
7d3579e8 1816 if (PageWriteback(page))
41ac1999 1817 goto keep;
7d3579e8 1818 if (PageDirty(page))
1da177e4 1819 goto keep;
7d3579e8 1820
1da177e4
LT
1821 /*
1822 * A synchronous write - probably a ramdisk. Go
1823 * ahead and try to reclaim the page.
1824 */
529ae9aa 1825 if (!trylock_page(page))
1da177e4
LT
1826 goto keep;
1827 if (PageDirty(page) || PageWriteback(page))
1828 goto keep_locked;
1829 mapping = page_mapping(page);
01359eb2 1830 fallthrough;
1da177e4
LT
1831 case PAGE_CLEAN:
1832 ; /* try to free the page below */
1833 }
1834 }
1835
1836 /*
1837 * If the page has buffers, try to free the buffer mappings
1838 * associated with this page. If we succeed we try to free
1839 * the page as well.
1840 *
1841 * We do this even if the page is PageDirty().
1842 * try_to_release_page() does not perform I/O, but it is
1843 * possible for a page to have PageDirty set, but it is actually
1844 * clean (all its buffers are clean). This happens if the
1845 * buffers were written out directly, with submit_bh(). ext3
894bc310 1846 * will do this, as well as the blockdev mapping.
1da177e4
LT
1847 * try_to_release_page() will discover that cleanness and will
1848 * drop the buffers and mark the page clean - it can be freed.
1849 *
1850 * Rarely, pages can have buffers and no ->mapping. These are
1851 * the pages which were not successfully invalidated in
d12b8951 1852 * truncate_cleanup_page(). We try to drop those buffers here
1da177e4
LT
1853 * and if that worked, and the page is no longer mapped into
1854 * process address space (page_count == 1) it can be freed.
1855 * Otherwise, leave the page on the LRU so it is swappable.
1856 */
266cf658 1857 if (page_has_private(page)) {
1da177e4
LT
1858 if (!try_to_release_page(page, sc->gfp_mask))
1859 goto activate_locked;
e286781d
NP
1860 if (!mapping && page_count(page) == 1) {
1861 unlock_page(page);
1862 if (put_page_testzero(page))
1863 goto free_it;
1864 else {
1865 /*
1866 * rare race with speculative reference.
1867 * the speculative reference will free
1868 * this page shortly, so we may
1869 * increment nr_reclaimed here (and
1870 * leave it off the LRU).
1871 */
1872 nr_reclaimed++;
1873 continue;
1874 }
1875 }
1da177e4
LT
1876 }
1877
802a3a92
SL
1878 if (PageAnon(page) && !PageSwapBacked(page)) {
1879 /* follow __remove_mapping for reference */
1880 if (!page_ref_freeze(page, 1))
1881 goto keep_locked;
d17be2d9
ML
1882 /*
1883 * The page has only one reference left, which is
1884 * from the isolation. After the caller puts the
1885 * page back on lru and drops the reference, the
1886 * page will be freed anyway. It doesn't matter
1887 * which lru it goes. So we don't bother checking
1888 * PageDirty here.
1889 */
802a3a92 1890 count_vm_event(PGLAZYFREED);
2262185c 1891 count_memcg_page_event(page, PGLAZYFREED);
b910718a
JW
1892 } else if (!mapping || !__remove_mapping(mapping, page, true,
1893 sc->target_mem_cgroup))
802a3a92 1894 goto keep_locked;
9a1ea439
HD
1895
1896 unlock_page(page);
e286781d 1897free_it:
98879b3b
YS
1898 /*
1899 * THP may get swapped out in a whole, need account
1900 * all base pages.
1901 */
1902 nr_reclaimed += nr_pages;
abe4c3b5
MG
1903
1904 /*
1905 * Is there need to periodically free_page_list? It would
1906 * appear not as the counts should be low
1907 */
7ae88534 1908 if (unlikely(PageTransHuge(page)))
ff45fc3c 1909 destroy_compound_page(page);
7ae88534 1910 else
bd4c82c2 1911 list_add(&page->lru, &free_pages);
1da177e4
LT
1912 continue;
1913
98879b3b
YS
1914activate_locked_split:
1915 /*
1916 * The tail pages that are failed to add into swap cache
1917 * reach here. Fixup nr_scanned and nr_pages.
1918 */
1919 if (nr_pages > 1) {
1920 sc->nr_scanned -= (nr_pages - 1);
1921 nr_pages = 1;
1922 }
1da177e4 1923activate_locked:
68a22394 1924 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1925 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1926 PageMlocked(page)))
a2c43eed 1927 try_to_free_swap(page);
309381fe 1928 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1929 if (!PageMlocked(page)) {
9de4f22a 1930 int type = page_is_file_lru(page);
ad6b6704 1931 SetPageActive(page);
98879b3b 1932 stat->nr_activate[type] += nr_pages;
2262185c 1933 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1934 }
1da177e4
LT
1935keep_locked:
1936 unlock_page(page);
1937keep:
1938 list_add(&page->lru, &ret_pages);
309381fe 1939 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1940 }
26aa2d19
DH
1941 /* 'page_list' is always empty here */
1942
1943 /* Migrate pages selected for demotion */
1944 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1945 /* Pages that could not be demoted are still in @demote_pages */
1946 if (!list_empty(&demote_pages)) {
1947 /* Pages which failed to demoted go back on @page_list for retry: */
1948 list_splice_init(&demote_pages, page_list);
1949 do_demote_pass = false;
1950 goto retry;
1951 }
abe4c3b5 1952
98879b3b
YS
1953 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1954
747db954 1955 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1956 try_to_unmap_flush();
2d4894b5 1957 free_unref_page_list(&free_pages);
abe4c3b5 1958
1da177e4 1959 list_splice(&ret_pages, page_list);
886cf190 1960 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1961
05ff5137 1962 return nr_reclaimed;
1da177e4
LT
1963}
1964
730ec8c0 1965unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1966 struct list_head *page_list)
1967{
1968 struct scan_control sc = {
1969 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
1970 .may_unmap = 1,
1971 };
1f318a9b 1972 struct reclaim_stat stat;
730ec8c0 1973 unsigned int nr_reclaimed;
02c6de8d
MK
1974 struct page *page, *next;
1975 LIST_HEAD(clean_pages);
2d2b8d2b 1976 unsigned int noreclaim_flag;
02c6de8d
MK
1977
1978 list_for_each_entry_safe(page, next, page_list, lru) {
ae37c7ff
OS
1979 if (!PageHuge(page) && page_is_file_lru(page) &&
1980 !PageDirty(page) && !__PageMovable(page) &&
1981 !PageUnevictable(page)) {
02c6de8d
MK
1982 ClearPageActive(page);
1983 list_move(&page->lru, &clean_pages);
1984 }
1985 }
1986
2d2b8d2b
YZ
1987 /*
1988 * We should be safe here since we are only dealing with file pages and
1989 * we are not kswapd and therefore cannot write dirty file pages. But
1990 * call memalloc_noreclaim_save() anyway, just in case these conditions
1991 * change in the future.
1992 */
1993 noreclaim_flag = memalloc_noreclaim_save();
1f318a9b 1994 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
013339df 1995 &stat, true);
2d2b8d2b
YZ
1996 memalloc_noreclaim_restore(noreclaim_flag);
1997
02c6de8d 1998 list_splice(&clean_pages, page_list);
2da9f630
NP
1999 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2000 -(long)nr_reclaimed);
1f318a9b
JK
2001 /*
2002 * Since lazyfree pages are isolated from file LRU from the beginning,
2003 * they will rotate back to anonymous LRU in the end if it failed to
2004 * discard so isolated count will be mismatched.
2005 * Compensate the isolated count for both LRU lists.
2006 */
2007 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2008 stat.nr_lazyfree_fail);
2009 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 2010 -(long)stat.nr_lazyfree_fail);
1f318a9b 2011 return nr_reclaimed;
02c6de8d
MK
2012}
2013
5ad333eb
AW
2014/*
2015 * Attempt to remove the specified page from its LRU. Only take this page
2016 * if it is of the appropriate PageActive status. Pages which are being
2017 * freed elsewhere are also ignored.
2018 *
2019 * page: page to consider
2020 * mode: one of the LRU isolation modes defined above
2021 *
c2135f7c 2022 * returns true on success, false on failure.
5ad333eb 2023 */
c2135f7c 2024bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
5ad333eb 2025{
5ad333eb
AW
2026 /* Only take pages on the LRU. */
2027 if (!PageLRU(page))
c2135f7c 2028 return false;
5ad333eb 2029
e46a2879
MK
2030 /* Compaction should not handle unevictable pages but CMA can do so */
2031 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
c2135f7c 2032 return false;
894bc310 2033
c8244935
MG
2034 /*
2035 * To minimise LRU disruption, the caller can indicate that it only
2036 * wants to isolate pages it will be able to operate on without
2037 * blocking - clean pages for the most part.
2038 *
c8244935
MG
2039 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
2040 * that it is possible to migrate without blocking
2041 */
1276ad68 2042 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
2043 /* All the caller can do on PageWriteback is block */
2044 if (PageWriteback(page))
c2135f7c 2045 return false;
c8244935
MG
2046
2047 if (PageDirty(page)) {
2048 struct address_space *mapping;
69d763fc 2049 bool migrate_dirty;
c8244935 2050
c8244935
MG
2051 /*
2052 * Only pages without mappings or that have a
2053 * ->migratepage callback are possible to migrate
69d763fc
MG
2054 * without blocking. However, we can be racing with
2055 * truncation so it's necessary to lock the page
2056 * to stabilise the mapping as truncation holds
2057 * the page lock until after the page is removed
2058 * from the page cache.
c8244935 2059 */
69d763fc 2060 if (!trylock_page(page))
c2135f7c 2061 return false;
69d763fc 2062
c8244935 2063 mapping = page_mapping(page);
145e1a71 2064 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
2065 unlock_page(page);
2066 if (!migrate_dirty)
c2135f7c 2067 return false;
c8244935
MG
2068 }
2069 }
39deaf85 2070
f80c0673 2071 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
c2135f7c 2072 return false;
f80c0673 2073
c2135f7c 2074 return true;
5ad333eb
AW
2075}
2076
7ee36a14
MG
2077/*
2078 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 2079 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
2080 */
2081static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 2082 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 2083{
7ee36a14
MG
2084 int zid;
2085
7ee36a14
MG
2086 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2087 if (!nr_zone_taken[zid])
2088 continue;
2089
a892cb6b 2090 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
2091 }
2092
7ee36a14
MG
2093}
2094
f611fab7 2095/*
15b44736
HD
2096 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2097 *
2098 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
2099 * shrink the lists perform better by taking out a batch of pages
2100 * and working on them outside the LRU lock.
2101 *
2102 * For pagecache intensive workloads, this function is the hottest
2103 * spot in the kernel (apart from copy_*_user functions).
2104 *
15b44736 2105 * Lru_lock must be held before calling this function.
1da177e4 2106 *
791b48b6 2107 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 2108 * @lruvec: The LRU vector to pull pages from.
1da177e4 2109 * @dst: The temp list to put pages on to.
f626012d 2110 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 2111 * @sc: The scan_control struct for this reclaim session
3cb99451 2112 * @lru: LRU list id for isolating
1da177e4
LT
2113 *
2114 * returns how many pages were moved onto *@dst.
2115 */
69e05944 2116static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 2117 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 2118 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 2119 enum lru_list lru)
1da177e4 2120{
75b00af7 2121 struct list_head *src = &lruvec->lists[lru];
69e05944 2122 unsigned long nr_taken = 0;
599d0c95 2123 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 2124 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 2125 unsigned long skipped = 0;
791b48b6 2126 unsigned long scan, total_scan, nr_pages;
b2e18757 2127 LIST_HEAD(pages_skipped);
a9e7c39f 2128 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 2129
98879b3b 2130 total_scan = 0;
791b48b6 2131 scan = 0;
98879b3b 2132 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 2133 struct page *page;
5ad333eb 2134
1da177e4
LT
2135 page = lru_to_page(src);
2136 prefetchw_prev_lru_page(page, src, flags);
2137
d8c6546b 2138 nr_pages = compound_nr(page);
98879b3b
YS
2139 total_scan += nr_pages;
2140
b2e18757
MG
2141 if (page_zonenum(page) > sc->reclaim_idx) {
2142 list_move(&page->lru, &pages_skipped);
98879b3b 2143 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
2144 continue;
2145 }
2146
791b48b6
MK
2147 /*
2148 * Do not count skipped pages because that makes the function
2149 * return with no isolated pages if the LRU mostly contains
2150 * ineligible pages. This causes the VM to not reclaim any
2151 * pages, triggering a premature OOM.
98879b3b
YS
2152 *
2153 * Account all tail pages of THP. This would not cause
2154 * premature OOM since __isolate_lru_page() returns -EBUSY
2155 * only when the page is being freed somewhere else.
791b48b6 2156 */
98879b3b 2157 scan += nr_pages;
c2135f7c
AS
2158 if (!__isolate_lru_page_prepare(page, mode)) {
2159 /* It is being freed elsewhere */
2160 list_move(&page->lru, src);
2161 continue;
2162 }
2163 /*
2164 * Be careful not to clear PageLRU until after we're
2165 * sure the page is not being freed elsewhere -- the
2166 * page release code relies on it.
2167 */
2168 if (unlikely(!get_page_unless_zero(page))) {
2169 list_move(&page->lru, src);
2170 continue;
2171 }
5ad333eb 2172
c2135f7c
AS
2173 if (!TestClearPageLRU(page)) {
2174 /* Another thread is already isolating this page */
2175 put_page(page);
5ad333eb 2176 list_move(&page->lru, src);
c2135f7c 2177 continue;
5ad333eb 2178 }
c2135f7c
AS
2179
2180 nr_taken += nr_pages;
2181 nr_zone_taken[page_zonenum(page)] += nr_pages;
2182 list_move(&page->lru, dst);
1da177e4
LT
2183 }
2184
b2e18757
MG
2185 /*
2186 * Splice any skipped pages to the start of the LRU list. Note that
2187 * this disrupts the LRU order when reclaiming for lower zones but
2188 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2189 * scanning would soon rescan the same pages to skip and put the
2190 * system at risk of premature OOM.
2191 */
7cc30fcf
MG
2192 if (!list_empty(&pages_skipped)) {
2193 int zid;
2194
3db65812 2195 list_splice(&pages_skipped, src);
7cc30fcf
MG
2196 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2197 if (!nr_skipped[zid])
2198 continue;
2199
2200 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2201 skipped += nr_skipped[zid];
7cc30fcf
MG
2202 }
2203 }
791b48b6 2204 *nr_scanned = total_scan;
1265e3a6 2205 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 2206 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 2207 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2208 return nr_taken;
2209}
2210
62695a84
NP
2211/**
2212 * isolate_lru_page - tries to isolate a page from its LRU list
2213 * @page: page to isolate from its LRU list
2214 *
2215 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2216 * vmstat statistic corresponding to whatever LRU list the page was on.
2217 *
2218 * Returns 0 if the page was removed from an LRU list.
2219 * Returns -EBUSY if the page was not on an LRU list.
2220 *
2221 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
2222 * the active list, it will have PageActive set. If it was found on
2223 * the unevictable list, it will have the PageUnevictable bit set. That flag
2224 * may need to be cleared by the caller before letting the page go.
62695a84
NP
2225 *
2226 * The vmstat statistic corresponding to the list on which the page was
2227 * found will be decremented.
2228 *
2229 * Restrictions:
a5d09bed 2230 *
62695a84 2231 * (1) Must be called with an elevated refcount on the page. This is a
01c4776b 2232 * fundamental difference from isolate_lru_pages (which is called
62695a84
NP
2233 * without a stable reference).
2234 * (2) the lru_lock must not be held.
2235 * (3) interrupts must be enabled.
2236 */
2237int isolate_lru_page(struct page *page)
2238{
e809c3fe 2239 struct folio *folio = page_folio(page);
62695a84
NP
2240 int ret = -EBUSY;
2241
309381fe 2242 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 2243 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 2244
d25b5bd8 2245 if (TestClearPageLRU(page)) {
fa9add64 2246 struct lruvec *lruvec;
62695a84 2247
d25b5bd8 2248 get_page(page);
e809c3fe 2249 lruvec = folio_lruvec_lock_irq(folio);
46ae6b2c 2250 del_page_from_lru_list(page, lruvec);
6168d0da 2251 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2252 ret = 0;
62695a84 2253 }
d25b5bd8 2254
62695a84
NP
2255 return ret;
2256}
2257
35cd7815 2258/*
d37dd5dc 2259 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2260 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2261 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2262 * the LRU list will go small and be scanned faster than necessary, leading to
2263 * unnecessary swapping, thrashing and OOM.
35cd7815 2264 */
599d0c95 2265static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2266 struct scan_control *sc)
2267{
2268 unsigned long inactive, isolated;
d818fca1 2269 bool too_many;
35cd7815
RR
2270
2271 if (current_is_kswapd())
2272 return 0;
2273
b5ead35e 2274 if (!writeback_throttling_sane(sc))
35cd7815
RR
2275 return 0;
2276
2277 if (file) {
599d0c95
MG
2278 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2279 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2280 } else {
599d0c95
MG
2281 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2282 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2283 }
2284
3cf23841
FW
2285 /*
2286 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2287 * won't get blocked by normal direct-reclaimers, forming a circular
2288 * deadlock.
2289 */
d0164adc 2290 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2291 inactive >>= 3;
2292
d818fca1
MG
2293 too_many = isolated > inactive;
2294
2295 /* Wake up tasks throttled due to too_many_isolated. */
2296 if (!too_many)
2297 wake_throttle_isolated(pgdat);
2298
2299 return too_many;
35cd7815
RR
2300}
2301
a222f341 2302/*
15b44736
HD
2303 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2304 * On return, @list is reused as a list of pages to be freed by the caller.
a222f341
KT
2305 *
2306 * Returns the number of pages moved to the given lruvec.
2307 */
9ef56b78
MS
2308static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2309 struct list_head *list)
66635629 2310{
a222f341 2311 int nr_pages, nr_moved = 0;
3f79768f 2312 LIST_HEAD(pages_to_free);
a222f341 2313 struct page *page;
66635629 2314
a222f341
KT
2315 while (!list_empty(list)) {
2316 page = lru_to_page(list);
309381fe 2317 VM_BUG_ON_PAGE(PageLRU(page), page);
3d06afab 2318 list_del(&page->lru);
39b5f29a 2319 if (unlikely(!page_evictable(page))) {
6168d0da 2320 spin_unlock_irq(&lruvec->lru_lock);
66635629 2321 putback_lru_page(page);
6168d0da 2322 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2323 continue;
2324 }
fa9add64 2325
3d06afab
AS
2326 /*
2327 * The SetPageLRU needs to be kept here for list integrity.
2328 * Otherwise:
2329 * #0 move_pages_to_lru #1 release_pages
2330 * if !put_page_testzero
2331 * if (put_page_testzero())
2332 * !PageLRU //skip lru_lock
2333 * SetPageLRU()
2334 * list_add(&page->lru,)
2335 * list_add(&page->lru,)
2336 */
7a608572 2337 SetPageLRU(page);
a222f341 2338
3d06afab 2339 if (unlikely(put_page_testzero(page))) {
87560179 2340 __clear_page_lru_flags(page);
2bcf8879
HD
2341
2342 if (unlikely(PageCompound(page))) {
6168d0da 2343 spin_unlock_irq(&lruvec->lru_lock);
ff45fc3c 2344 destroy_compound_page(page);
6168d0da 2345 spin_lock_irq(&lruvec->lru_lock);
2bcf8879
HD
2346 } else
2347 list_add(&page->lru, &pages_to_free);
3d06afab
AS
2348
2349 continue;
66635629 2350 }
3d06afab 2351
afca9157
AS
2352 /*
2353 * All pages were isolated from the same lruvec (and isolation
2354 * inhibits memcg migration).
2355 */
0de340cb 2356 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
3a9c9788 2357 add_page_to_lru_list(page, lruvec);
3d06afab 2358 nr_pages = thp_nr_pages(page);
3d06afab
AS
2359 nr_moved += nr_pages;
2360 if (PageActive(page))
2361 workingset_age_nonresident(lruvec, nr_pages);
66635629 2362 }
66635629 2363
3f79768f
HD
2364 /*
2365 * To save our caller's stack, now use input list for pages to free.
2366 */
a222f341
KT
2367 list_splice(&pages_to_free, list);
2368
2369 return nr_moved;
66635629
MG
2370}
2371
399ba0b9
N
2372/*
2373 * If a kernel thread (such as nfsd for loop-back mounts) services
a37b0715 2374 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
399ba0b9
N
2375 * In that case we should only throttle if the backing device it is
2376 * writing to is congested. In other cases it is safe to throttle.
2377 */
2378static int current_may_throttle(void)
2379{
a37b0715 2380 return !(current->flags & PF_LOCAL_THROTTLE) ||
399ba0b9
N
2381 current->backing_dev_info == NULL ||
2382 bdi_write_congested(current->backing_dev_info);
2383}
2384
1da177e4 2385/*
b2e18757 2386 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2387 * of reclaimed pages
1da177e4 2388 */
9ef56b78 2389static unsigned long
1a93be0e 2390shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2391 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2392{
2393 LIST_HEAD(page_list);
e247dbce 2394 unsigned long nr_scanned;
730ec8c0 2395 unsigned int nr_reclaimed = 0;
e247dbce 2396 unsigned long nr_taken;
060f005f 2397 struct reclaim_stat stat;
497a6c1b 2398 bool file = is_file_lru(lru);
f46b7912 2399 enum vm_event_item item;
599d0c95 2400 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2401 bool stalled = false;
78dc583d 2402
599d0c95 2403 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2404 if (stalled)
2405 return 0;
2406
2407 /* wait a bit for the reclaimer. */
db73ee0d 2408 stalled = true;
c3f4a9a2 2409 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
35cd7815
RR
2410
2411 /* We are about to die and free our memory. Return now. */
2412 if (fatal_signal_pending(current))
2413 return SWAP_CLUSTER_MAX;
2414 }
2415
1da177e4 2416 lru_add_drain();
f80c0673 2417
6168d0da 2418 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2419
5dc35979 2420 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2421 &nr_scanned, sc, lru);
95d918fc 2422
599d0c95 2423 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2424 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2425 if (!cgroup_reclaim(sc))
f46b7912
KT
2426 __count_vm_events(item, nr_scanned);
2427 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2428 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2429
6168d0da 2430 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2431
d563c050 2432 if (nr_taken == 0)
66635629 2433 return 0;
5ad333eb 2434
013339df 2435 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2436
6168d0da 2437 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2438 move_pages_to_lru(lruvec, &page_list);
2439
2440 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2441 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2442 if (!cgroup_reclaim(sc))
f46b7912
KT
2443 __count_vm_events(item, nr_reclaimed);
2444 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2445 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2446 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2447
75cc3c91 2448 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2449 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2450 free_unref_page_list(&page_list);
e11da5b4 2451
1c610d5f
AR
2452 /*
2453 * If dirty pages are scanned that are not queued for IO, it
2454 * implies that flushers are not doing their job. This can
2455 * happen when memory pressure pushes dirty pages to the end of
2456 * the LRU before the dirty limits are breached and the dirty
2457 * data has expired. It can also happen when the proportion of
2458 * dirty pages grows not through writes but through memory
2459 * pressure reclaiming all the clean cache. And in some cases,
2460 * the flushers simply cannot keep up with the allocation
2461 * rate. Nudge the flusher threads in case they are asleep.
2462 */
2463 if (stat.nr_unqueued_dirty == nr_taken)
2464 wakeup_flusher_threads(WB_REASON_VMSCAN);
2465
d108c772
AR
2466 sc->nr.dirty += stat.nr_dirty;
2467 sc->nr.congested += stat.nr_congested;
2468 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2469 sc->nr.writeback += stat.nr_writeback;
2470 sc->nr.immediate += stat.nr_immediate;
2471 sc->nr.taken += nr_taken;
2472 if (file)
2473 sc->nr.file_taken += nr_taken;
8e950282 2474
599d0c95 2475 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2476 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2477 return nr_reclaimed;
1da177e4
LT
2478}
2479
15b44736
HD
2480/*
2481 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2482 *
2483 * We move them the other way if the page is referenced by one or more
2484 * processes.
2485 *
2486 * If the pages are mostly unmapped, the processing is fast and it is
2487 * appropriate to hold lru_lock across the whole operation. But if
2488 * the pages are mapped, the processing is slow (page_referenced()), so
2489 * we should drop lru_lock around each page. It's impossible to balance
2490 * this, so instead we remove the pages from the LRU while processing them.
2491 * It is safe to rely on PG_active against the non-LRU pages in here because
2492 * nobody will play with that bit on a non-LRU page.
2493 *
2494 * The downside is that we have to touch page->_refcount against each page.
2495 * But we had to alter page->flags anyway.
2496 */
f626012d 2497static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2498 struct lruvec *lruvec,
f16015fb 2499 struct scan_control *sc,
9e3b2f8c 2500 enum lru_list lru)
1da177e4 2501{
44c241f1 2502 unsigned long nr_taken;
f626012d 2503 unsigned long nr_scanned;
6fe6b7e3 2504 unsigned long vm_flags;
1da177e4 2505 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2506 LIST_HEAD(l_active);
b69408e8 2507 LIST_HEAD(l_inactive);
1da177e4 2508 struct page *page;
9d998b4f
MH
2509 unsigned nr_deactivate, nr_activate;
2510 unsigned nr_rotated = 0;
3cb99451 2511 int file = is_file_lru(lru);
599d0c95 2512 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2513
2514 lru_add_drain();
f80c0673 2515
6168d0da 2516 spin_lock_irq(&lruvec->lru_lock);
925b7673 2517
5dc35979 2518 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2519 &nr_scanned, sc, lru);
89b5fae5 2520
599d0c95 2521 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2522
912c0572
SB
2523 if (!cgroup_reclaim(sc))
2524 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2525 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2526
6168d0da 2527 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2528
1da177e4
LT
2529 while (!list_empty(&l_hold)) {
2530 cond_resched();
2531 page = lru_to_page(&l_hold);
2532 list_del(&page->lru);
7e9cd484 2533
39b5f29a 2534 if (unlikely(!page_evictable(page))) {
894bc310
LS
2535 putback_lru_page(page);
2536 continue;
2537 }
2538
cc715d99
MG
2539 if (unlikely(buffer_heads_over_limit)) {
2540 if (page_has_private(page) && trylock_page(page)) {
2541 if (page_has_private(page))
2542 try_to_release_page(page, 0);
2543 unlock_page(page);
2544 }
2545 }
2546
c3ac9a8a
JW
2547 if (page_referenced(page, 0, sc->target_mem_cgroup,
2548 &vm_flags)) {
8cab4754
WF
2549 /*
2550 * Identify referenced, file-backed active pages and
2551 * give them one more trip around the active list. So
2552 * that executable code get better chances to stay in
2553 * memory under moderate memory pressure. Anon pages
2554 * are not likely to be evicted by use-once streaming
2555 * IO, plus JVM can create lots of anon VM_EXEC pages,
2556 * so we ignore them here.
2557 */
9de4f22a 2558 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2559 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2560 list_add(&page->lru, &l_active);
2561 continue;
2562 }
2563 }
7e9cd484 2564
5205e56e 2565 ClearPageActive(page); /* we are de-activating */
1899ad18 2566 SetPageWorkingset(page);
1da177e4
LT
2567 list_add(&page->lru, &l_inactive);
2568 }
2569
b555749a 2570 /*
8cab4754 2571 * Move pages back to the lru list.
b555749a 2572 */
6168d0da 2573 spin_lock_irq(&lruvec->lru_lock);
556adecb 2574
a222f341
KT
2575 nr_activate = move_pages_to_lru(lruvec, &l_active);
2576 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2577 /* Keep all free pages in l_active list */
2578 list_splice(&l_inactive, &l_active);
9851ac13
KT
2579
2580 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2581 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2582
599d0c95 2583 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2584 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2585
f372d89e
KT
2586 mem_cgroup_uncharge_list(&l_active);
2587 free_unref_page_list(&l_active);
9d998b4f
MH
2588 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2589 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2590}
2591
1a4e58cc
MK
2592unsigned long reclaim_pages(struct list_head *page_list)
2593{
f661d007 2594 int nid = NUMA_NO_NODE;
730ec8c0 2595 unsigned int nr_reclaimed = 0;
1a4e58cc
MK
2596 LIST_HEAD(node_page_list);
2597 struct reclaim_stat dummy_stat;
2598 struct page *page;
2d2b8d2b 2599 unsigned int noreclaim_flag;
1a4e58cc
MK
2600 struct scan_control sc = {
2601 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2602 .may_writepage = 1,
2603 .may_unmap = 1,
2604 .may_swap = 1,
26aa2d19 2605 .no_demotion = 1,
1a4e58cc
MK
2606 };
2607
2d2b8d2b
YZ
2608 noreclaim_flag = memalloc_noreclaim_save();
2609
1a4e58cc
MK
2610 while (!list_empty(page_list)) {
2611 page = lru_to_page(page_list);
f661d007 2612 if (nid == NUMA_NO_NODE) {
1a4e58cc
MK
2613 nid = page_to_nid(page);
2614 INIT_LIST_HEAD(&node_page_list);
2615 }
2616
2617 if (nid == page_to_nid(page)) {
2618 ClearPageActive(page);
2619 list_move(&page->lru, &node_page_list);
2620 continue;
2621 }
2622
2623 nr_reclaimed += shrink_page_list(&node_page_list,
2624 NODE_DATA(nid),
013339df 2625 &sc, &dummy_stat, false);
1a4e58cc
MK
2626 while (!list_empty(&node_page_list)) {
2627 page = lru_to_page(&node_page_list);
2628 list_del(&page->lru);
2629 putback_lru_page(page);
2630 }
2631
f661d007 2632 nid = NUMA_NO_NODE;
1a4e58cc
MK
2633 }
2634
2635 if (!list_empty(&node_page_list)) {
2636 nr_reclaimed += shrink_page_list(&node_page_list,
2637 NODE_DATA(nid),
013339df 2638 &sc, &dummy_stat, false);
1a4e58cc
MK
2639 while (!list_empty(&node_page_list)) {
2640 page = lru_to_page(&node_page_list);
2641 list_del(&page->lru);
2642 putback_lru_page(page);
2643 }
2644 }
2645
2d2b8d2b
YZ
2646 memalloc_noreclaim_restore(noreclaim_flag);
2647
1a4e58cc
MK
2648 return nr_reclaimed;
2649}
2650
b91ac374
JW
2651static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2652 struct lruvec *lruvec, struct scan_control *sc)
2653{
2654 if (is_active_lru(lru)) {
2655 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2656 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2657 else
2658 sc->skipped_deactivate = 1;
2659 return 0;
2660 }
2661
2662 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2663}
2664
59dc76b0
RR
2665/*
2666 * The inactive anon list should be small enough that the VM never has
2667 * to do too much work.
14797e23 2668 *
59dc76b0
RR
2669 * The inactive file list should be small enough to leave most memory
2670 * to the established workingset on the scan-resistant active list,
2671 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2672 *
59dc76b0
RR
2673 * Both inactive lists should also be large enough that each inactive
2674 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2675 *
2a2e4885
JW
2676 * If that fails and refaulting is observed, the inactive list grows.
2677 *
59dc76b0 2678 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2679 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2680 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2681 *
59dc76b0
RR
2682 * total target max
2683 * memory ratio inactive
2684 * -------------------------------------
2685 * 10MB 1 5MB
2686 * 100MB 1 50MB
2687 * 1GB 3 250MB
2688 * 10GB 10 0.9GB
2689 * 100GB 31 3GB
2690 * 1TB 101 10GB
2691 * 10TB 320 32GB
56e49d21 2692 */
b91ac374 2693static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2694{
b91ac374 2695 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2696 unsigned long inactive, active;
2697 unsigned long inactive_ratio;
59dc76b0 2698 unsigned long gb;
e3790144 2699
b91ac374
JW
2700 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2701 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2702
b91ac374 2703 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2704 if (gb)
b91ac374
JW
2705 inactive_ratio = int_sqrt(10 * gb);
2706 else
2707 inactive_ratio = 1;
fd538803 2708
59dc76b0 2709 return inactive * inactive_ratio < active;
b39415b2
RR
2710}
2711
9a265114
JW
2712enum scan_balance {
2713 SCAN_EQUAL,
2714 SCAN_FRACT,
2715 SCAN_ANON,
2716 SCAN_FILE,
2717};
2718
4f98a2fe
RR
2719/*
2720 * Determine how aggressively the anon and file LRU lists should be
2721 * scanned. The relative value of each set of LRU lists is determined
2722 * by looking at the fraction of the pages scanned we did rotate back
2723 * onto the active list instead of evict.
2724 *
be7bd59d
WL
2725 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2726 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2727 */
afaf07a6
JW
2728static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2729 unsigned long *nr)
4f98a2fe 2730{
a2a36488 2731 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2732 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2733 unsigned long anon_cost, file_cost, total_cost;
33377678 2734 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2735 u64 fraction[ANON_AND_FILE];
9a265114 2736 u64 denominator = 0; /* gcc */
9a265114 2737 enum scan_balance scan_balance;
4f98a2fe 2738 unsigned long ap, fp;
4111304d 2739 enum lru_list lru;
76a33fc3
SL
2740
2741 /* If we have no swap space, do not bother scanning anon pages. */
a2a36488 2742 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2743 scan_balance = SCAN_FILE;
76a33fc3
SL
2744 goto out;
2745 }
4f98a2fe 2746
10316b31
JW
2747 /*
2748 * Global reclaim will swap to prevent OOM even with no
2749 * swappiness, but memcg users want to use this knob to
2750 * disable swapping for individual groups completely when
2751 * using the memory controller's swap limit feature would be
2752 * too expensive.
2753 */
b5ead35e 2754 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2755 scan_balance = SCAN_FILE;
10316b31
JW
2756 goto out;
2757 }
2758
2759 /*
2760 * Do not apply any pressure balancing cleverness when the
2761 * system is close to OOM, scan both anon and file equally
2762 * (unless the swappiness setting disagrees with swapping).
2763 */
02695175 2764 if (!sc->priority && swappiness) {
9a265114 2765 scan_balance = SCAN_EQUAL;
10316b31
JW
2766 goto out;
2767 }
2768
62376251 2769 /*
53138cea 2770 * If the system is almost out of file pages, force-scan anon.
62376251 2771 */
b91ac374 2772 if (sc->file_is_tiny) {
53138cea
JW
2773 scan_balance = SCAN_ANON;
2774 goto out;
62376251
JW
2775 }
2776
7c5bd705 2777 /*
b91ac374
JW
2778 * If there is enough inactive page cache, we do not reclaim
2779 * anything from the anonymous working right now.
7c5bd705 2780 */
b91ac374 2781 if (sc->cache_trim_mode) {
9a265114 2782 scan_balance = SCAN_FILE;
7c5bd705
JW
2783 goto out;
2784 }
2785
9a265114 2786 scan_balance = SCAN_FRACT;
58c37f6e 2787 /*
314b57fb
JW
2788 * Calculate the pressure balance between anon and file pages.
2789 *
2790 * The amount of pressure we put on each LRU is inversely
2791 * proportional to the cost of reclaiming each list, as
2792 * determined by the share of pages that are refaulting, times
2793 * the relative IO cost of bringing back a swapped out
2794 * anonymous page vs reloading a filesystem page (swappiness).
2795 *
d483a5dd
JW
2796 * Although we limit that influence to ensure no list gets
2797 * left behind completely: at least a third of the pressure is
2798 * applied, before swappiness.
2799 *
314b57fb 2800 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2801 */
d483a5dd
JW
2802 total_cost = sc->anon_cost + sc->file_cost;
2803 anon_cost = total_cost + sc->anon_cost;
2804 file_cost = total_cost + sc->file_cost;
2805 total_cost = anon_cost + file_cost;
58c37f6e 2806
d483a5dd
JW
2807 ap = swappiness * (total_cost + 1);
2808 ap /= anon_cost + 1;
4f98a2fe 2809
d483a5dd
JW
2810 fp = (200 - swappiness) * (total_cost + 1);
2811 fp /= file_cost + 1;
4f98a2fe 2812
76a33fc3
SL
2813 fraction[0] = ap;
2814 fraction[1] = fp;
a4fe1631 2815 denominator = ap + fp;
76a33fc3 2816out:
688035f7
JW
2817 for_each_evictable_lru(lru) {
2818 int file = is_file_lru(lru);
9783aa99 2819 unsigned long lruvec_size;
f56ce412 2820 unsigned long low, min;
688035f7 2821 unsigned long scan;
9783aa99
CD
2822
2823 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2824 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2825 &min, &low);
9783aa99 2826
f56ce412 2827 if (min || low) {
9783aa99
CD
2828 /*
2829 * Scale a cgroup's reclaim pressure by proportioning
2830 * its current usage to its memory.low or memory.min
2831 * setting.
2832 *
2833 * This is important, as otherwise scanning aggression
2834 * becomes extremely binary -- from nothing as we
2835 * approach the memory protection threshold, to totally
2836 * nominal as we exceed it. This results in requiring
2837 * setting extremely liberal protection thresholds. It
2838 * also means we simply get no protection at all if we
2839 * set it too low, which is not ideal.
1bc63fb1
CD
2840 *
2841 * If there is any protection in place, we reduce scan
2842 * pressure by how much of the total memory used is
2843 * within protection thresholds.
9783aa99 2844 *
9de7ca46
CD
2845 * There is one special case: in the first reclaim pass,
2846 * we skip over all groups that are within their low
2847 * protection. If that fails to reclaim enough pages to
2848 * satisfy the reclaim goal, we come back and override
2849 * the best-effort low protection. However, we still
2850 * ideally want to honor how well-behaved groups are in
2851 * that case instead of simply punishing them all
2852 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2853 * memory they are using, reducing the scan pressure
2854 * again by how much of the total memory used is under
2855 * hard protection.
9783aa99 2856 */
1bc63fb1 2857 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
2858 unsigned long protection;
2859
2860 /* memory.low scaling, make sure we retry before OOM */
2861 if (!sc->memcg_low_reclaim && low > min) {
2862 protection = low;
2863 sc->memcg_low_skipped = 1;
2864 } else {
2865 protection = min;
2866 }
1bc63fb1
CD
2867
2868 /* Avoid TOCTOU with earlier protection check */
2869 cgroup_size = max(cgroup_size, protection);
2870
2871 scan = lruvec_size - lruvec_size * protection /
32d4f4b7 2872 (cgroup_size + 1);
9783aa99
CD
2873
2874 /*
1bc63fb1 2875 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2876 * reclaim moving forwards, avoiding decrementing
9de7ca46 2877 * sc->priority further than desirable.
9783aa99 2878 */
1bc63fb1 2879 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2880 } else {
2881 scan = lruvec_size;
2882 }
2883
2884 scan >>= sc->priority;
6b4f7799 2885
688035f7
JW
2886 /*
2887 * If the cgroup's already been deleted, make sure to
2888 * scrape out the remaining cache.
2889 */
2890 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2891 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2892
688035f7
JW
2893 switch (scan_balance) {
2894 case SCAN_EQUAL:
2895 /* Scan lists relative to size */
2896 break;
2897 case SCAN_FRACT:
9a265114 2898 /*
688035f7
JW
2899 * Scan types proportional to swappiness and
2900 * their relative recent reclaim efficiency.
76073c64
GS
2901 * Make sure we don't miss the last page on
2902 * the offlined memory cgroups because of a
2903 * round-off error.
9a265114 2904 */
76073c64
GS
2905 scan = mem_cgroup_online(memcg) ?
2906 div64_u64(scan * fraction[file], denominator) :
2907 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2908 denominator);
688035f7
JW
2909 break;
2910 case SCAN_FILE:
2911 case SCAN_ANON:
2912 /* Scan one type exclusively */
e072bff6 2913 if ((scan_balance == SCAN_FILE) != file)
688035f7 2914 scan = 0;
688035f7
JW
2915 break;
2916 default:
2917 /* Look ma, no brain */
2918 BUG();
9a265114 2919 }
688035f7 2920
688035f7 2921 nr[lru] = scan;
76a33fc3 2922 }
6e08a369 2923}
4f98a2fe 2924
2f368a9f
DH
2925/*
2926 * Anonymous LRU management is a waste if there is
2927 * ultimately no way to reclaim the memory.
2928 */
2929static bool can_age_anon_pages(struct pglist_data *pgdat,
2930 struct scan_control *sc)
2931{
2932 /* Aging the anon LRU is valuable if swap is present: */
2933 if (total_swap_pages > 0)
2934 return true;
2935
2936 /* Also valuable if anon pages can be demoted: */
2937 return can_demote(pgdat->node_id, sc);
2938}
2939
afaf07a6 2940static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2941{
2942 unsigned long nr[NR_LRU_LISTS];
e82e0561 2943 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2944 unsigned long nr_to_scan;
2945 enum lru_list lru;
2946 unsigned long nr_reclaimed = 0;
2947 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2948 struct blk_plug plug;
1a501907 2949 bool scan_adjusted;
9b4f98cd 2950
afaf07a6 2951 get_scan_count(lruvec, sc, nr);
9b4f98cd 2952
e82e0561
MG
2953 /* Record the original scan target for proportional adjustments later */
2954 memcpy(targets, nr, sizeof(nr));
2955
1a501907
MG
2956 /*
2957 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2958 * event that can occur when there is little memory pressure e.g.
2959 * multiple streaming readers/writers. Hence, we do not abort scanning
2960 * when the requested number of pages are reclaimed when scanning at
2961 * DEF_PRIORITY on the assumption that the fact we are direct
2962 * reclaiming implies that kswapd is not keeping up and it is best to
2963 * do a batch of work at once. For memcg reclaim one check is made to
2964 * abort proportional reclaim if either the file or anon lru has already
2965 * dropped to zero at the first pass.
2966 */
b5ead35e 2967 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2968 sc->priority == DEF_PRIORITY);
2969
9b4f98cd
JW
2970 blk_start_plug(&plug);
2971 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2972 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2973 unsigned long nr_anon, nr_file, percentage;
2974 unsigned long nr_scanned;
2975
9b4f98cd
JW
2976 for_each_evictable_lru(lru) {
2977 if (nr[lru]) {
2978 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2979 nr[lru] -= nr_to_scan;
2980
2981 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2982 lruvec, sc);
9b4f98cd
JW
2983 }
2984 }
e82e0561 2985
bd041733
MH
2986 cond_resched();
2987
e82e0561
MG
2988 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2989 continue;
2990
e82e0561
MG
2991 /*
2992 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2993 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2994 * proportionally what was requested by get_scan_count(). We
2995 * stop reclaiming one LRU and reduce the amount scanning
2996 * proportional to the original scan target.
2997 */
2998 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2999 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
3000
1a501907
MG
3001 /*
3002 * It's just vindictive to attack the larger once the smaller
3003 * has gone to zero. And given the way we stop scanning the
3004 * smaller below, this makes sure that we only make one nudge
3005 * towards proportionality once we've got nr_to_reclaim.
3006 */
3007 if (!nr_file || !nr_anon)
3008 break;
3009
e82e0561
MG
3010 if (nr_file > nr_anon) {
3011 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
3012 targets[LRU_ACTIVE_ANON] + 1;
3013 lru = LRU_BASE;
3014 percentage = nr_anon * 100 / scan_target;
3015 } else {
3016 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
3017 targets[LRU_ACTIVE_FILE] + 1;
3018 lru = LRU_FILE;
3019 percentage = nr_file * 100 / scan_target;
3020 }
3021
3022 /* Stop scanning the smaller of the LRU */
3023 nr[lru] = 0;
3024 nr[lru + LRU_ACTIVE] = 0;
3025
3026 /*
3027 * Recalculate the other LRU scan count based on its original
3028 * scan target and the percentage scanning already complete
3029 */
3030 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
3031 nr_scanned = targets[lru] - nr[lru];
3032 nr[lru] = targets[lru] * (100 - percentage) / 100;
3033 nr[lru] -= min(nr[lru], nr_scanned);
3034
3035 lru += LRU_ACTIVE;
3036 nr_scanned = targets[lru] - nr[lru];
3037 nr[lru] = targets[lru] * (100 - percentage) / 100;
3038 nr[lru] -= min(nr[lru], nr_scanned);
3039
3040 scan_adjusted = true;
9b4f98cd
JW
3041 }
3042 blk_finish_plug(&plug);
3043 sc->nr_reclaimed += nr_reclaimed;
3044
3045 /*
3046 * Even if we did not try to evict anon pages at all, we want to
3047 * rebalance the anon lru active/inactive ratio.
3048 */
2f368a9f
DH
3049 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3050 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
3051 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3052 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
3053}
3054
23b9da55 3055/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 3056static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 3057{
d84da3f9 3058 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 3059 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 3060 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
3061 return true;
3062
3063 return false;
3064}
3065
3e7d3449 3066/*
23b9da55
MG
3067 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3068 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3069 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 3070 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 3071 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 3072 */
a9dd0a83 3073static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 3074 unsigned long nr_reclaimed,
3e7d3449
MG
3075 struct scan_control *sc)
3076{
3077 unsigned long pages_for_compaction;
3078 unsigned long inactive_lru_pages;
a9dd0a83 3079 int z;
3e7d3449
MG
3080
3081 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 3082 if (!in_reclaim_compaction(sc))
3e7d3449
MG
3083 return false;
3084
5ee04716
VB
3085 /*
3086 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3087 * number of pages that were scanned. This will return to the caller
3088 * with the risk reclaim/compaction and the resulting allocation attempt
3089 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3090 * allocations through requiring that the full LRU list has been scanned
3091 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3092 * scan, but that approximation was wrong, and there were corner cases
3093 * where always a non-zero amount of pages were scanned.
3094 */
3095 if (!nr_reclaimed)
3096 return false;
3e7d3449 3097
3e7d3449 3098 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
3099 for (z = 0; z <= sc->reclaim_idx; z++) {
3100 struct zone *zone = &pgdat->node_zones[z];
6aa303de 3101 if (!managed_zone(zone))
a9dd0a83
MG
3102 continue;
3103
3104 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 3105 case COMPACT_SUCCESS:
a9dd0a83
MG
3106 case COMPACT_CONTINUE:
3107 return false;
3108 default:
3109 /* check next zone */
3110 ;
3111 }
3e7d3449 3112 }
1c6c1597
HD
3113
3114 /*
3115 * If we have not reclaimed enough pages for compaction and the
3116 * inactive lists are large enough, continue reclaiming
3117 */
3118 pages_for_compaction = compact_gap(sc->order);
3119 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 3120 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
3121 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3122
5ee04716 3123 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
3124}
3125
0f6a5cff 3126static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 3127{
0f6a5cff 3128 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 3129 struct mem_cgroup *memcg;
1da177e4 3130
0f6a5cff 3131 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 3132 do {
afaf07a6 3133 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
3134 unsigned long reclaimed;
3135 unsigned long scanned;
5660048c 3136
e3336cab
XP
3137 /*
3138 * This loop can become CPU-bound when target memcgs
3139 * aren't eligible for reclaim - either because they
3140 * don't have any reclaimable pages, or because their
3141 * memory is explicitly protected. Avoid soft lockups.
3142 */
3143 cond_resched();
3144
45c7f7e1
CD
3145 mem_cgroup_calculate_protection(target_memcg, memcg);
3146
3147 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
3148 /*
3149 * Hard protection.
3150 * If there is no reclaimable memory, OOM.
3151 */
3152 continue;
45c7f7e1 3153 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
3154 /*
3155 * Soft protection.
3156 * Respect the protection only as long as
3157 * there is an unprotected supply
3158 * of reclaimable memory from other cgroups.
3159 */
3160 if (!sc->memcg_low_reclaim) {
3161 sc->memcg_low_skipped = 1;
bf8d5d52 3162 continue;
241994ed 3163 }
d2af3397 3164 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 3165 }
241994ed 3166
d2af3397
JW
3167 reclaimed = sc->nr_reclaimed;
3168 scanned = sc->nr_scanned;
afaf07a6
JW
3169
3170 shrink_lruvec(lruvec, sc);
70ddf637 3171
d2af3397
JW
3172 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3173 sc->priority);
6b4f7799 3174
d2af3397
JW
3175 /* Record the group's reclaim efficiency */
3176 vmpressure(sc->gfp_mask, memcg, false,
3177 sc->nr_scanned - scanned,
3178 sc->nr_reclaimed - reclaimed);
70ddf637 3179
0f6a5cff
JW
3180 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3181}
3182
6c9e0907 3183static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
3184{
3185 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 3186 unsigned long nr_reclaimed, nr_scanned;
1b05117d 3187 struct lruvec *target_lruvec;
0f6a5cff 3188 bool reclaimable = false;
b91ac374 3189 unsigned long file;
0f6a5cff 3190
1b05117d
JW
3191 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3192
0f6a5cff 3193again:
aa48e47e
SB
3194 /*
3195 * Flush the memory cgroup stats, so that we read accurate per-memcg
3196 * lruvec stats for heuristics.
3197 */
3198 mem_cgroup_flush_stats();
3199
0f6a5cff
JW
3200 memset(&sc->nr, 0, sizeof(sc->nr));
3201
3202 nr_reclaimed = sc->nr_reclaimed;
3203 nr_scanned = sc->nr_scanned;
3204
7cf111bc
JW
3205 /*
3206 * Determine the scan balance between anon and file LRUs.
3207 */
6168d0da 3208 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
3209 sc->anon_cost = target_lruvec->anon_cost;
3210 sc->file_cost = target_lruvec->file_cost;
6168d0da 3211 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 3212
b91ac374
JW
3213 /*
3214 * Target desirable inactive:active list ratios for the anon
3215 * and file LRU lists.
3216 */
3217 if (!sc->force_deactivate) {
3218 unsigned long refaults;
3219
170b04b7
JK
3220 refaults = lruvec_page_state(target_lruvec,
3221 WORKINGSET_ACTIVATE_ANON);
3222 if (refaults != target_lruvec->refaults[0] ||
3223 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
3224 sc->may_deactivate |= DEACTIVATE_ANON;
3225 else
3226 sc->may_deactivate &= ~DEACTIVATE_ANON;
3227
3228 /*
3229 * When refaults are being observed, it means a new
3230 * workingset is being established. Deactivate to get
3231 * rid of any stale active pages quickly.
3232 */
3233 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
3234 WORKINGSET_ACTIVATE_FILE);
3235 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
3236 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3237 sc->may_deactivate |= DEACTIVATE_FILE;
3238 else
3239 sc->may_deactivate &= ~DEACTIVATE_FILE;
3240 } else
3241 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3242
3243 /*
3244 * If we have plenty of inactive file pages that aren't
3245 * thrashing, try to reclaim those first before touching
3246 * anonymous pages.
3247 */
3248 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3249 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3250 sc->cache_trim_mode = 1;
3251 else
3252 sc->cache_trim_mode = 0;
3253
53138cea
JW
3254 /*
3255 * Prevent the reclaimer from falling into the cache trap: as
3256 * cache pages start out inactive, every cache fault will tip
3257 * the scan balance towards the file LRU. And as the file LRU
3258 * shrinks, so does the window for rotation from references.
3259 * This means we have a runaway feedback loop where a tiny
3260 * thrashing file LRU becomes infinitely more attractive than
3261 * anon pages. Try to detect this based on file LRU size.
3262 */
3263 if (!cgroup_reclaim(sc)) {
53138cea 3264 unsigned long total_high_wmark = 0;
b91ac374
JW
3265 unsigned long free, anon;
3266 int z;
53138cea
JW
3267
3268 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3269 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3270 node_page_state(pgdat, NR_INACTIVE_FILE);
3271
3272 for (z = 0; z < MAX_NR_ZONES; z++) {
3273 struct zone *zone = &pgdat->node_zones[z];
3274 if (!managed_zone(zone))
3275 continue;
3276
3277 total_high_wmark += high_wmark_pages(zone);
3278 }
3279
b91ac374
JW
3280 /*
3281 * Consider anon: if that's low too, this isn't a
3282 * runaway file reclaim problem, but rather just
3283 * extreme pressure. Reclaim as per usual then.
3284 */
3285 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3286
3287 sc->file_is_tiny =
3288 file + free <= total_high_wmark &&
3289 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3290 anon >> sc->priority;
53138cea
JW
3291 }
3292
0f6a5cff 3293 shrink_node_memcgs(pgdat, sc);
2344d7e4 3294
d2af3397
JW
3295 if (reclaim_state) {
3296 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3297 reclaim_state->reclaimed_slab = 0;
3298 }
d108c772 3299
d2af3397 3300 /* Record the subtree's reclaim efficiency */
1b05117d 3301 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
3302 sc->nr_scanned - nr_scanned,
3303 sc->nr_reclaimed - nr_reclaimed);
d108c772 3304
d2af3397
JW
3305 if (sc->nr_reclaimed - nr_reclaimed)
3306 reclaimable = true;
d108c772 3307
d2af3397
JW
3308 if (current_is_kswapd()) {
3309 /*
3310 * If reclaim is isolating dirty pages under writeback,
3311 * it implies that the long-lived page allocation rate
3312 * is exceeding the page laundering rate. Either the
3313 * global limits are not being effective at throttling
3314 * processes due to the page distribution throughout
3315 * zones or there is heavy usage of a slow backing
3316 * device. The only option is to throttle from reclaim
3317 * context which is not ideal as there is no guarantee
3318 * the dirtying process is throttled in the same way
3319 * balance_dirty_pages() manages.
3320 *
3321 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3322 * count the number of pages under pages flagged for
3323 * immediate reclaim and stall if any are encountered
3324 * in the nr_immediate check below.
3325 */
3326 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3327 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 3328
d2af3397
JW
3329 /* Allow kswapd to start writing pages during reclaim.*/
3330 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3331 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 3332
d108c772 3333 /*
1eba09c1 3334 * If kswapd scans pages marked for immediate
d2af3397
JW
3335 * reclaim and under writeback (nr_immediate), it
3336 * implies that pages are cycling through the LRU
8cd7c588
MG
3337 * faster than they are written so forcibly stall
3338 * until some pages complete writeback.
d108c772 3339 */
d2af3397 3340 if (sc->nr.immediate)
c3f4a9a2 3341 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d2af3397
JW
3342 }
3343
3344 /*
8cd7c588
MG
3345 * Tag a node/memcg as congested if all the dirty pages were marked
3346 * for writeback and immediate reclaim (counted in nr.congested).
1b05117d 3347 *
d2af3397 3348 * Legacy memcg will stall in page writeback so avoid forcibly
8cd7c588 3349 * stalling in reclaim_throttle().
d2af3397 3350 */
1b05117d
JW
3351 if ((current_is_kswapd() ||
3352 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 3353 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 3354 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
3355
3356 /*
8cd7c588
MG
3357 * Stall direct reclaim for IO completions if the lruvec is
3358 * node is congested. Allow kswapd to continue until it
d2af3397
JW
3359 * starts encountering unqueued dirty pages or cycling through
3360 * the LRU too quickly.
3361 */
1b05117d
JW
3362 if (!current_is_kswapd() && current_may_throttle() &&
3363 !sc->hibernation_mode &&
3364 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
1b4e3f26 3365 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
d108c772 3366
d2af3397
JW
3367 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3368 sc))
3369 goto again;
2344d7e4 3370
c73322d0
JW
3371 /*
3372 * Kswapd gives up on balancing particular nodes after too
3373 * many failures to reclaim anything from them and goes to
3374 * sleep. On reclaim progress, reset the failure counter. A
3375 * successful direct reclaim run will revive a dormant kswapd.
3376 */
3377 if (reclaimable)
3378 pgdat->kswapd_failures = 0;
f16015fb
JW
3379}
3380
53853e2d 3381/*
fdd4c614
VB
3382 * Returns true if compaction should go ahead for a costly-order request, or
3383 * the allocation would already succeed without compaction. Return false if we
3384 * should reclaim first.
53853e2d 3385 */
4f588331 3386static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 3387{
31483b6a 3388 unsigned long watermark;
fdd4c614 3389 enum compact_result suitable;
fe4b1b24 3390
fdd4c614
VB
3391 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3392 if (suitable == COMPACT_SUCCESS)
3393 /* Allocation should succeed already. Don't reclaim. */
3394 return true;
3395 if (suitable == COMPACT_SKIPPED)
3396 /* Compaction cannot yet proceed. Do reclaim. */
3397 return false;
fe4b1b24 3398
53853e2d 3399 /*
fdd4c614
VB
3400 * Compaction is already possible, but it takes time to run and there
3401 * are potentially other callers using the pages just freed. So proceed
3402 * with reclaim to make a buffer of free pages available to give
3403 * compaction a reasonable chance of completing and allocating the page.
3404 * Note that we won't actually reclaim the whole buffer in one attempt
3405 * as the target watermark in should_continue_reclaim() is lower. But if
3406 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 3407 */
fdd4c614 3408 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 3409
fdd4c614 3410 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
3411}
3412
69392a40
MG
3413static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3414{
66ce520b
MG
3415 /*
3416 * If reclaim is making progress greater than 12% efficiency then
3417 * wake all the NOPROGRESS throttled tasks.
3418 */
3419 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
69392a40
MG
3420 wait_queue_head_t *wqh;
3421
3422 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3423 if (waitqueue_active(wqh))
3424 wake_up(wqh);
3425
3426 return;
3427 }
3428
3429 /*
1b4e3f26
MG
3430 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3431 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3432 * under writeback and marked for immediate reclaim at the tail of the
3433 * LRU.
69392a40 3434 */
1b4e3f26 3435 if (current_is_kswapd() || cgroup_reclaim(sc))
69392a40
MG
3436 return;
3437
3438 /* Throttle if making no progress at high prioities. */
1b4e3f26 3439 if (sc->priority == 1 && !sc->nr_reclaimed)
c3f4a9a2 3440 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
69392a40
MG
3441}
3442
1da177e4
LT
3443/*
3444 * This is the direct reclaim path, for page-allocating processes. We only
3445 * try to reclaim pages from zones which will satisfy the caller's allocation
3446 * request.
3447 *
1da177e4
LT
3448 * If a zone is deemed to be full of pinned pages then just give it a light
3449 * scan then give up on it.
3450 */
0a0337e0 3451static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 3452{
dd1a239f 3453 struct zoneref *z;
54a6eb5c 3454 struct zone *zone;
0608f43d
AM
3455 unsigned long nr_soft_reclaimed;
3456 unsigned long nr_soft_scanned;
619d0d76 3457 gfp_t orig_mask;
79dafcdc 3458 pg_data_t *last_pgdat = NULL;
1b4e3f26 3459 pg_data_t *first_pgdat = NULL;
1cfb419b 3460
cc715d99
MG
3461 /*
3462 * If the number of buffer_heads in the machine exceeds the maximum
3463 * allowed level, force direct reclaim to scan the highmem zone as
3464 * highmem pages could be pinning lowmem pages storing buffer_heads
3465 */
619d0d76 3466 orig_mask = sc->gfp_mask;
b2e18757 3467 if (buffer_heads_over_limit) {
cc715d99 3468 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 3469 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 3470 }
cc715d99 3471
d4debc66 3472 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 3473 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
3474 /*
3475 * Take care memory controller reclaiming has small influence
3476 * to global LRU.
3477 */
b5ead35e 3478 if (!cgroup_reclaim(sc)) {
344736f2
VD
3479 if (!cpuset_zone_allowed(zone,
3480 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3481 continue;
65ec02cb 3482
0b06496a
JW
3483 /*
3484 * If we already have plenty of memory free for
3485 * compaction in this zone, don't free any more.
3486 * Even though compaction is invoked for any
3487 * non-zero order, only frequent costly order
3488 * reclamation is disruptive enough to become a
3489 * noticeable problem, like transparent huge
3490 * page allocations.
3491 */
3492 if (IS_ENABLED(CONFIG_COMPACTION) &&
3493 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3494 compaction_ready(zone, sc)) {
0b06496a
JW
3495 sc->compaction_ready = true;
3496 continue;
e0887c19 3497 }
0b06496a 3498
79dafcdc
MG
3499 /*
3500 * Shrink each node in the zonelist once. If the
3501 * zonelist is ordered by zone (not the default) then a
3502 * node may be shrunk multiple times but in that case
3503 * the user prefers lower zones being preserved.
3504 */
3505 if (zone->zone_pgdat == last_pgdat)
3506 continue;
3507
0608f43d
AM
3508 /*
3509 * This steals pages from memory cgroups over softlimit
3510 * and returns the number of reclaimed pages and
3511 * scanned pages. This works for global memory pressure
3512 * and balancing, not for a memcg's limit.
3513 */
3514 nr_soft_scanned = 0;
ef8f2327 3515 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3516 sc->order, sc->gfp_mask,
3517 &nr_soft_scanned);
3518 sc->nr_reclaimed += nr_soft_reclaimed;
3519 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3520 /* need some check for avoid more shrink_zone() */
1cfb419b 3521 }
408d8544 3522
1b4e3f26
MG
3523 if (!first_pgdat)
3524 first_pgdat = zone->zone_pgdat;
3525
79dafcdc
MG
3526 /* See comment about same check for global reclaim above */
3527 if (zone->zone_pgdat == last_pgdat)
3528 continue;
3529 last_pgdat = zone->zone_pgdat;
970a39a3 3530 shrink_node(zone->zone_pgdat, sc);
1da177e4 3531 }
e0c23279 3532
1b4e3f26
MG
3533 consider_reclaim_throttle(first_pgdat, sc);
3534
619d0d76
WY
3535 /*
3536 * Restore to original mask to avoid the impact on the caller if we
3537 * promoted it to __GFP_HIGHMEM.
3538 */
3539 sc->gfp_mask = orig_mask;
1da177e4 3540}
4f98a2fe 3541
b910718a 3542static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3543{
b910718a
JW
3544 struct lruvec *target_lruvec;
3545 unsigned long refaults;
2a2e4885 3546
b910718a 3547 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
3548 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3549 target_lruvec->refaults[0] = refaults;
3550 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3551 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
3552}
3553
1da177e4
LT
3554/*
3555 * This is the main entry point to direct page reclaim.
3556 *
3557 * If a full scan of the inactive list fails to free enough memory then we
3558 * are "out of memory" and something needs to be killed.
3559 *
3560 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3561 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3562 * caller can't do much about. We kick the writeback threads and take explicit
3563 * naps in the hope that some of these pages can be written. But if the
3564 * allocating task holds filesystem locks which prevent writeout this might not
3565 * work, and the allocation attempt will fail.
a41f24ea
NA
3566 *
3567 * returns: 0, if no pages reclaimed
3568 * else, the number of pages reclaimed
1da177e4 3569 */
dac1d27b 3570static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3571 struct scan_control *sc)
1da177e4 3572{
241994ed 3573 int initial_priority = sc->priority;
2a2e4885
JW
3574 pg_data_t *last_pgdat;
3575 struct zoneref *z;
3576 struct zone *zone;
241994ed 3577retry:
873b4771
KK
3578 delayacct_freepages_start();
3579
b5ead35e 3580 if (!cgroup_reclaim(sc))
7cc30fcf 3581 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3582
9e3b2f8c 3583 do {
70ddf637
AV
3584 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3585 sc->priority);
66e1707b 3586 sc->nr_scanned = 0;
0a0337e0 3587 shrink_zones(zonelist, sc);
c6a8a8c5 3588
bb21c7ce 3589 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3590 break;
3591
3592 if (sc->compaction_ready)
3593 break;
1da177e4 3594
0e50ce3b
MK
3595 /*
3596 * If we're getting trouble reclaiming, start doing
3597 * writepage even in laptop mode.
3598 */
3599 if (sc->priority < DEF_PRIORITY - 2)
3600 sc->may_writepage = 1;
0b06496a 3601 } while (--sc->priority >= 0);
bb21c7ce 3602
2a2e4885
JW
3603 last_pgdat = NULL;
3604 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3605 sc->nodemask) {
3606 if (zone->zone_pgdat == last_pgdat)
3607 continue;
3608 last_pgdat = zone->zone_pgdat;
1b05117d 3609
2a2e4885 3610 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3611
3612 if (cgroup_reclaim(sc)) {
3613 struct lruvec *lruvec;
3614
3615 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3616 zone->zone_pgdat);
3617 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3618 }
2a2e4885
JW
3619 }
3620
873b4771
KK
3621 delayacct_freepages_end();
3622
bb21c7ce
KM
3623 if (sc->nr_reclaimed)
3624 return sc->nr_reclaimed;
3625
0cee34fd 3626 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3627 if (sc->compaction_ready)
7335084d
MG
3628 return 1;
3629
b91ac374
JW
3630 /*
3631 * We make inactive:active ratio decisions based on the node's
3632 * composition of memory, but a restrictive reclaim_idx or a
3633 * memory.low cgroup setting can exempt large amounts of
3634 * memory from reclaim. Neither of which are very common, so
3635 * instead of doing costly eligibility calculations of the
3636 * entire cgroup subtree up front, we assume the estimates are
3637 * good, and retry with forcible deactivation if that fails.
3638 */
3639 if (sc->skipped_deactivate) {
3640 sc->priority = initial_priority;
3641 sc->force_deactivate = 1;
3642 sc->skipped_deactivate = 0;
3643 goto retry;
3644 }
3645
241994ed 3646 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3647 if (sc->memcg_low_skipped) {
241994ed 3648 sc->priority = initial_priority;
b91ac374 3649 sc->force_deactivate = 0;
d6622f63
YX
3650 sc->memcg_low_reclaim = 1;
3651 sc->memcg_low_skipped = 0;
241994ed
JW
3652 goto retry;
3653 }
3654
bb21c7ce 3655 return 0;
1da177e4
LT
3656}
3657
c73322d0 3658static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3659{
3660 struct zone *zone;
3661 unsigned long pfmemalloc_reserve = 0;
3662 unsigned long free_pages = 0;
3663 int i;
3664 bool wmark_ok;
3665
c73322d0
JW
3666 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3667 return true;
3668
5515061d
MG
3669 for (i = 0; i <= ZONE_NORMAL; i++) {
3670 zone = &pgdat->node_zones[i];
d450abd8
JW
3671 if (!managed_zone(zone))
3672 continue;
3673
3674 if (!zone_reclaimable_pages(zone))
675becce
MG
3675 continue;
3676
5515061d
MG
3677 pfmemalloc_reserve += min_wmark_pages(zone);
3678 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3679 }
3680
675becce
MG
3681 /* If there are no reserves (unexpected config) then do not throttle */
3682 if (!pfmemalloc_reserve)
3683 return true;
3684
5515061d
MG
3685 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3686
3687 /* kswapd must be awake if processes are being throttled */
3688 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3689 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3690 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3691
5515061d
MG
3692 wake_up_interruptible(&pgdat->kswapd_wait);
3693 }
3694
3695 return wmark_ok;
3696}
3697
3698/*
3699 * Throttle direct reclaimers if backing storage is backed by the network
3700 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3701 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3702 * when the low watermark is reached.
3703 *
3704 * Returns true if a fatal signal was delivered during throttling. If this
3705 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3706 */
50694c28 3707static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3708 nodemask_t *nodemask)
3709{
675becce 3710 struct zoneref *z;
5515061d 3711 struct zone *zone;
675becce 3712 pg_data_t *pgdat = NULL;
5515061d
MG
3713
3714 /*
3715 * Kernel threads should not be throttled as they may be indirectly
3716 * responsible for cleaning pages necessary for reclaim to make forward
3717 * progress. kjournald for example may enter direct reclaim while
3718 * committing a transaction where throttling it could forcing other
3719 * processes to block on log_wait_commit().
3720 */
3721 if (current->flags & PF_KTHREAD)
50694c28
MG
3722 goto out;
3723
3724 /*
3725 * If a fatal signal is pending, this process should not throttle.
3726 * It should return quickly so it can exit and free its memory
3727 */
3728 if (fatal_signal_pending(current))
3729 goto out;
5515061d 3730
675becce
MG
3731 /*
3732 * Check if the pfmemalloc reserves are ok by finding the first node
3733 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3734 * GFP_KERNEL will be required for allocating network buffers when
3735 * swapping over the network so ZONE_HIGHMEM is unusable.
3736 *
3737 * Throttling is based on the first usable node and throttled processes
3738 * wait on a queue until kswapd makes progress and wakes them. There
3739 * is an affinity then between processes waking up and where reclaim
3740 * progress has been made assuming the process wakes on the same node.
3741 * More importantly, processes running on remote nodes will not compete
3742 * for remote pfmemalloc reserves and processes on different nodes
3743 * should make reasonable progress.
3744 */
3745 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3746 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3747 if (zone_idx(zone) > ZONE_NORMAL)
3748 continue;
3749
3750 /* Throttle based on the first usable node */
3751 pgdat = zone->zone_pgdat;
c73322d0 3752 if (allow_direct_reclaim(pgdat))
675becce
MG
3753 goto out;
3754 break;
3755 }
3756
3757 /* If no zone was usable by the allocation flags then do not throttle */
3758 if (!pgdat)
50694c28 3759 goto out;
5515061d 3760
68243e76
MG
3761 /* Account for the throttling */
3762 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3763
5515061d
MG
3764 /*
3765 * If the caller cannot enter the filesystem, it's possible that it
3766 * is due to the caller holding an FS lock or performing a journal
3767 * transaction in the case of a filesystem like ext[3|4]. In this case,
3768 * it is not safe to block on pfmemalloc_wait as kswapd could be
3769 * blocked waiting on the same lock. Instead, throttle for up to a
3770 * second before continuing.
3771 */
2e786d9e 3772 if (!(gfp_mask & __GFP_FS))
5515061d 3773 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3774 allow_direct_reclaim(pgdat), HZ);
2e786d9e
ML
3775 else
3776 /* Throttle until kswapd wakes the process */
3777 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3778 allow_direct_reclaim(pgdat));
50694c28 3779
50694c28
MG
3780 if (fatal_signal_pending(current))
3781 return true;
3782
3783out:
3784 return false;
5515061d
MG
3785}
3786
dac1d27b 3787unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3788 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3789{
33906bc5 3790 unsigned long nr_reclaimed;
66e1707b 3791 struct scan_control sc = {
ee814fe2 3792 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3793 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3794 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3795 .order = order,
3796 .nodemask = nodemask,
3797 .priority = DEF_PRIORITY,
66e1707b 3798 .may_writepage = !laptop_mode,
a6dc60f8 3799 .may_unmap = 1,
2e2e4259 3800 .may_swap = 1,
66e1707b
BS
3801 };
3802
bb451fdf
GT
3803 /*
3804 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3805 * Confirm they are large enough for max values.
3806 */
3807 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3808 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3809 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3810
5515061d 3811 /*
50694c28
MG
3812 * Do not enter reclaim if fatal signal was delivered while throttled.
3813 * 1 is returned so that the page allocator does not OOM kill at this
3814 * point.
5515061d 3815 */
f2f43e56 3816 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3817 return 1;
3818
1732d2b0 3819 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3820 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3821
3115cd91 3822 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3823
3824 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3825 set_task_reclaim_state(current, NULL);
33906bc5
MG
3826
3827 return nr_reclaimed;
66e1707b
BS
3828}
3829
c255a458 3830#ifdef CONFIG_MEMCG
66e1707b 3831
d2e5fb92 3832/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3833unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3834 gfp_t gfp_mask, bool noswap,
ef8f2327 3835 pg_data_t *pgdat,
0ae5e89c 3836 unsigned long *nr_scanned)
4e416953 3837{
afaf07a6 3838 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3839 struct scan_control sc = {
b8f5c566 3840 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3841 .target_mem_cgroup = memcg,
4e416953
BS
3842 .may_writepage = !laptop_mode,
3843 .may_unmap = 1,
b2e18757 3844 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3845 .may_swap = !noswap,
4e416953 3846 };
0ae5e89c 3847
d2e5fb92
MH
3848 WARN_ON_ONCE(!current->reclaim_state);
3849
4e416953
BS
3850 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3851 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3852
9e3b2f8c 3853 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3854 sc.gfp_mask);
bdce6d9e 3855
4e416953
BS
3856 /*
3857 * NOTE: Although we can get the priority field, using it
3858 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3859 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3860 * will pick up pages from other mem cgroup's as well. We hack
3861 * the priority and make it zero.
3862 */
afaf07a6 3863 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3864
3865 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3866
0ae5e89c 3867 *nr_scanned = sc.nr_scanned;
0308f7cf 3868
4e416953
BS
3869 return sc.nr_reclaimed;
3870}
3871
72835c86 3872unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3873 unsigned long nr_pages,
a7885eb8 3874 gfp_t gfp_mask,
b70a2a21 3875 bool may_swap)
66e1707b 3876{
bdce6d9e 3877 unsigned long nr_reclaimed;
499118e9 3878 unsigned int noreclaim_flag;
66e1707b 3879 struct scan_control sc = {
b70a2a21 3880 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3881 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3882 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3883 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3884 .target_mem_cgroup = memcg,
3885 .priority = DEF_PRIORITY,
3886 .may_writepage = !laptop_mode,
3887 .may_unmap = 1,
b70a2a21 3888 .may_swap = may_swap,
a09ed5e0 3889 };
889976db 3890 /*
fa40d1ee
SB
3891 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3892 * equal pressure on all the nodes. This is based on the assumption that
3893 * the reclaim does not bail out early.
889976db 3894 */
fa40d1ee 3895 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3896
fa40d1ee 3897 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3898 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3899 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3900
3115cd91 3901 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3902
499118e9 3903 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3904 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3905 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3906
3907 return nr_reclaimed;
66e1707b
BS
3908}
3909#endif
3910
1d82de61 3911static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3912 struct scan_control *sc)
f16015fb 3913{
b95a2f2d 3914 struct mem_cgroup *memcg;
b91ac374 3915 struct lruvec *lruvec;
f16015fb 3916
2f368a9f 3917 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
3918 return;
3919
b91ac374
JW
3920 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3921 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3922 return;
3923
b95a2f2d
JW
3924 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3925 do {
b91ac374
JW
3926 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3927 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3928 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3929 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3930 } while (memcg);
f16015fb
JW
3931}
3932
97a225e6 3933static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3934{
3935 int i;
3936 struct zone *zone;
3937
3938 /*
3939 * Check for watermark boosts top-down as the higher zones
3940 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3941 * should not be checked at the same time as reclaim would
1c30844d
MG
3942 * start prematurely when there is no boosting and a lower
3943 * zone is balanced.
3944 */
97a225e6 3945 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3946 zone = pgdat->node_zones + i;
3947 if (!managed_zone(zone))
3948 continue;
3949
3950 if (zone->watermark_boost)
3951 return true;
3952 }
3953
3954 return false;
3955}
3956
e716f2eb
MG
3957/*
3958 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3959 * and highest_zoneidx
e716f2eb 3960 */
97a225e6 3961static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3962{
e716f2eb
MG
3963 int i;
3964 unsigned long mark = -1;
3965 struct zone *zone;
60cefed4 3966
1c30844d
MG
3967 /*
3968 * Check watermarks bottom-up as lower zones are more likely to
3969 * meet watermarks.
3970 */
97a225e6 3971 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3972 zone = pgdat->node_zones + i;
6256c6b4 3973
e716f2eb
MG
3974 if (!managed_zone(zone))
3975 continue;
3976
3977 mark = high_wmark_pages(zone);
97a225e6 3978 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3979 return true;
3980 }
3981
3982 /*
97a225e6 3983 * If a node has no populated zone within highest_zoneidx, it does not
e716f2eb
MG
3984 * need balancing by definition. This can happen if a zone-restricted
3985 * allocation tries to wake a remote kswapd.
3986 */
3987 if (mark == -1)
3988 return true;
3989
3990 return false;
60cefed4
JW
3991}
3992
631b6e08
MG
3993/* Clear pgdat state for congested, dirty or under writeback. */
3994static void clear_pgdat_congested(pg_data_t *pgdat)
3995{
1b05117d
JW
3996 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3997
3998 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3999 clear_bit(PGDAT_DIRTY, &pgdat->flags);
4000 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
4001}
4002
5515061d
MG
4003/*
4004 * Prepare kswapd for sleeping. This verifies that there are no processes
4005 * waiting in throttle_direct_reclaim() and that watermarks have been met.
4006 *
4007 * Returns true if kswapd is ready to sleep
4008 */
97a225e6
JK
4009static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
4010 int highest_zoneidx)
f50de2d3 4011{
5515061d 4012 /*
9e5e3661 4013 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 4014 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
4015 * race between when kswapd checks the watermarks and a process gets
4016 * throttled. There is also a potential race if processes get
4017 * throttled, kswapd wakes, a large process exits thereby balancing the
4018 * zones, which causes kswapd to exit balance_pgdat() before reaching
4019 * the wake up checks. If kswapd is going to sleep, no process should
4020 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
4021 * the wake up is premature, processes will wake kswapd and get
4022 * throttled again. The difference from wake ups in balance_pgdat() is
4023 * that here we are under prepare_to_wait().
5515061d 4024 */
9e5e3661
VB
4025 if (waitqueue_active(&pgdat->pfmemalloc_wait))
4026 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 4027
c73322d0
JW
4028 /* Hopeless node, leave it to direct reclaim */
4029 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
4030 return true;
4031
97a225e6 4032 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
4033 clear_pgdat_congested(pgdat);
4034 return true;
1d82de61
MG
4035 }
4036
333b0a45 4037 return false;
f50de2d3
MG
4038}
4039
75485363 4040/*
1d82de61
MG
4041 * kswapd shrinks a node of pages that are at or below the highest usable
4042 * zone that is currently unbalanced.
b8e83b94
MG
4043 *
4044 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
4045 * reclaim or if the lack of progress was due to pages under writeback.
4046 * This is used to determine if the scanning priority needs to be raised.
75485363 4047 */
1d82de61 4048static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 4049 struct scan_control *sc)
75485363 4050{
1d82de61
MG
4051 struct zone *zone;
4052 int z;
75485363 4053
1d82de61
MG
4054 /* Reclaim a number of pages proportional to the number of zones */
4055 sc->nr_to_reclaim = 0;
970a39a3 4056 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 4057 zone = pgdat->node_zones + z;
6aa303de 4058 if (!managed_zone(zone))
1d82de61 4059 continue;
7c954f6d 4060
1d82de61
MG
4061 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4062 }
7c954f6d
MG
4063
4064 /*
1d82de61
MG
4065 * Historically care was taken to put equal pressure on all zones but
4066 * now pressure is applied based on node LRU order.
7c954f6d 4067 */
970a39a3 4068 shrink_node(pgdat, sc);
283aba9f 4069
7c954f6d 4070 /*
1d82de61
MG
4071 * Fragmentation may mean that the system cannot be rebalanced for
4072 * high-order allocations. If twice the allocation size has been
4073 * reclaimed then recheck watermarks only at order-0 to prevent
4074 * excessive reclaim. Assume that a process requested a high-order
4075 * can direct reclaim/compact.
7c954f6d 4076 */
9861a62c 4077 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 4078 sc->order = 0;
7c954f6d 4079
b8e83b94 4080 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
4081}
4082
c49c2c47
MG
4083/* Page allocator PCP high watermark is lowered if reclaim is active. */
4084static inline void
4085update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4086{
4087 int i;
4088 struct zone *zone;
4089
4090 for (i = 0; i <= highest_zoneidx; i++) {
4091 zone = pgdat->node_zones + i;
4092
4093 if (!managed_zone(zone))
4094 continue;
4095
4096 if (active)
4097 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4098 else
4099 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4100 }
4101}
4102
4103static inline void
4104set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4105{
4106 update_reclaim_active(pgdat, highest_zoneidx, true);
4107}
4108
4109static inline void
4110clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4111{
4112 update_reclaim_active(pgdat, highest_zoneidx, false);
4113}
4114
1da177e4 4115/*
1d82de61
MG
4116 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4117 * that are eligible for use by the caller until at least one zone is
4118 * balanced.
1da177e4 4119 *
1d82de61 4120 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
4121 *
4122 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 4123 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 4124 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
4125 * or lower is eligible for reclaim until at least one usable zone is
4126 * balanced.
1da177e4 4127 */
97a225e6 4128static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 4129{
1da177e4 4130 int i;
0608f43d
AM
4131 unsigned long nr_soft_reclaimed;
4132 unsigned long nr_soft_scanned;
eb414681 4133 unsigned long pflags;
1c30844d
MG
4134 unsigned long nr_boost_reclaim;
4135 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4136 bool boosted;
1d82de61 4137 struct zone *zone;
179e9639
AM
4138 struct scan_control sc = {
4139 .gfp_mask = GFP_KERNEL,
ee814fe2 4140 .order = order,
a6dc60f8 4141 .may_unmap = 1,
179e9639 4142 };
93781325 4143
1732d2b0 4144 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 4145 psi_memstall_enter(&pflags);
4f3eaf45 4146 __fs_reclaim_acquire(_THIS_IP_);
93781325 4147
f8891e5e 4148 count_vm_event(PAGEOUTRUN);
1da177e4 4149
1c30844d
MG
4150 /*
4151 * Account for the reclaim boost. Note that the zone boost is left in
4152 * place so that parallel allocations that are near the watermark will
4153 * stall or direct reclaim until kswapd is finished.
4154 */
4155 nr_boost_reclaim = 0;
97a225e6 4156 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4157 zone = pgdat->node_zones + i;
4158 if (!managed_zone(zone))
4159 continue;
4160
4161 nr_boost_reclaim += zone->watermark_boost;
4162 zone_boosts[i] = zone->watermark_boost;
4163 }
4164 boosted = nr_boost_reclaim;
4165
4166restart:
c49c2c47 4167 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 4168 sc.priority = DEF_PRIORITY;
9e3b2f8c 4169 do {
c73322d0 4170 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 4171 bool raise_priority = true;
1c30844d 4172 bool balanced;
93781325 4173 bool ret;
b8e83b94 4174
97a225e6 4175 sc.reclaim_idx = highest_zoneidx;
1da177e4 4176
86c79f6b 4177 /*
84c7a777
MG
4178 * If the number of buffer_heads exceeds the maximum allowed
4179 * then consider reclaiming from all zones. This has a dual
4180 * purpose -- on 64-bit systems it is expected that
4181 * buffer_heads are stripped during active rotation. On 32-bit
4182 * systems, highmem pages can pin lowmem memory and shrinking
4183 * buffers can relieve lowmem pressure. Reclaim may still not
4184 * go ahead if all eligible zones for the original allocation
4185 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
4186 */
4187 if (buffer_heads_over_limit) {
4188 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4189 zone = pgdat->node_zones + i;
6aa303de 4190 if (!managed_zone(zone))
86c79f6b 4191 continue;
cc715d99 4192
970a39a3 4193 sc.reclaim_idx = i;
e1dbeda6 4194 break;
1da177e4 4195 }
1da177e4 4196 }
dafcb73e 4197
86c79f6b 4198 /*
1c30844d
MG
4199 * If the pgdat is imbalanced then ignore boosting and preserve
4200 * the watermarks for a later time and restart. Note that the
4201 * zone watermarks will be still reset at the end of balancing
4202 * on the grounds that the normal reclaim should be enough to
4203 * re-evaluate if boosting is required when kswapd next wakes.
4204 */
97a225e6 4205 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
4206 if (!balanced && nr_boost_reclaim) {
4207 nr_boost_reclaim = 0;
4208 goto restart;
4209 }
4210
4211 /*
4212 * If boosting is not active then only reclaim if there are no
4213 * eligible zones. Note that sc.reclaim_idx is not used as
4214 * buffer_heads_over_limit may have adjusted it.
86c79f6b 4215 */
1c30844d 4216 if (!nr_boost_reclaim && balanced)
e716f2eb 4217 goto out;
e1dbeda6 4218
1c30844d
MG
4219 /* Limit the priority of boosting to avoid reclaim writeback */
4220 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4221 raise_priority = false;
4222
4223 /*
4224 * Do not writeback or swap pages for boosted reclaim. The
4225 * intent is to relieve pressure not issue sub-optimal IO
4226 * from reclaim context. If no pages are reclaimed, the
4227 * reclaim will be aborted.
4228 */
4229 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4230 sc.may_swap = !nr_boost_reclaim;
1c30844d 4231
1d82de61
MG
4232 /*
4233 * Do some background aging of the anon list, to give
4234 * pages a chance to be referenced before reclaiming. All
4235 * pages are rotated regardless of classzone as this is
4236 * about consistent aging.
4237 */
ef8f2327 4238 age_active_anon(pgdat, &sc);
1d82de61 4239
b7ea3c41
MG
4240 /*
4241 * If we're getting trouble reclaiming, start doing writepage
4242 * even in laptop mode.
4243 */
047d72c3 4244 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
4245 sc.may_writepage = 1;
4246
1d82de61
MG
4247 /* Call soft limit reclaim before calling shrink_node. */
4248 sc.nr_scanned = 0;
4249 nr_soft_scanned = 0;
ef8f2327 4250 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
4251 sc.gfp_mask, &nr_soft_scanned);
4252 sc.nr_reclaimed += nr_soft_reclaimed;
4253
1da177e4 4254 /*
1d82de61
MG
4255 * There should be no need to raise the scanning priority if
4256 * enough pages are already being scanned that that high
4257 * watermark would be met at 100% efficiency.
1da177e4 4258 */
970a39a3 4259 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 4260 raise_priority = false;
5515061d
MG
4261
4262 /*
4263 * If the low watermark is met there is no need for processes
4264 * to be throttled on pfmemalloc_wait as they should not be
4265 * able to safely make forward progress. Wake them
4266 */
4267 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 4268 allow_direct_reclaim(pgdat))
cfc51155 4269 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 4270
b8e83b94 4271 /* Check if kswapd should be suspending */
4f3eaf45 4272 __fs_reclaim_release(_THIS_IP_);
93781325 4273 ret = try_to_freeze();
4f3eaf45 4274 __fs_reclaim_acquire(_THIS_IP_);
93781325 4275 if (ret || kthread_should_stop())
b8e83b94 4276 break;
8357376d 4277
73ce02e9 4278 /*
b8e83b94
MG
4279 * Raise priority if scanning rate is too low or there was no
4280 * progress in reclaiming pages
73ce02e9 4281 */
c73322d0 4282 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
4283 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4284
4285 /*
4286 * If reclaim made no progress for a boost, stop reclaim as
4287 * IO cannot be queued and it could be an infinite loop in
4288 * extreme circumstances.
4289 */
4290 if (nr_boost_reclaim && !nr_reclaimed)
4291 break;
4292
c73322d0 4293 if (raise_priority || !nr_reclaimed)
b8e83b94 4294 sc.priority--;
1d82de61 4295 } while (sc.priority >= 1);
1da177e4 4296
c73322d0
JW
4297 if (!sc.nr_reclaimed)
4298 pgdat->kswapd_failures++;
4299
b8e83b94 4300out:
c49c2c47
MG
4301 clear_reclaim_active(pgdat, highest_zoneidx);
4302
1c30844d
MG
4303 /* If reclaim was boosted, account for the reclaim done in this pass */
4304 if (boosted) {
4305 unsigned long flags;
4306
97a225e6 4307 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4308 if (!zone_boosts[i])
4309 continue;
4310
4311 /* Increments are under the zone lock */
4312 zone = pgdat->node_zones + i;
4313 spin_lock_irqsave(&zone->lock, flags);
4314 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4315 spin_unlock_irqrestore(&zone->lock, flags);
4316 }
4317
4318 /*
4319 * As there is now likely space, wakeup kcompact to defragment
4320 * pageblocks.
4321 */
97a225e6 4322 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
4323 }
4324
2a2e4885 4325 snapshot_refaults(NULL, pgdat);
4f3eaf45 4326 __fs_reclaim_release(_THIS_IP_);
eb414681 4327 psi_memstall_leave(&pflags);
1732d2b0 4328 set_task_reclaim_state(current, NULL);
e5ca8071 4329
0abdee2b 4330 /*
1d82de61
MG
4331 * Return the order kswapd stopped reclaiming at as
4332 * prepare_kswapd_sleep() takes it into account. If another caller
4333 * entered the allocator slow path while kswapd was awake, order will
4334 * remain at the higher level.
0abdee2b 4335 */
1d82de61 4336 return sc.order;
1da177e4
LT
4337}
4338
e716f2eb 4339/*
97a225e6
JK
4340 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4341 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4342 * not a valid index then either kswapd runs for first time or kswapd couldn't
4343 * sleep after previous reclaim attempt (node is still unbalanced). In that
4344 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 4345 */
97a225e6
JK
4346static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4347 enum zone_type prev_highest_zoneidx)
e716f2eb 4348{
97a225e6 4349 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4350
97a225e6 4351 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
4352}
4353
38087d9b 4354static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 4355 unsigned int highest_zoneidx)
f0bc0a60
KM
4356{
4357 long remaining = 0;
4358 DEFINE_WAIT(wait);
4359
4360 if (freezing(current) || kthread_should_stop())
4361 return;
4362
4363 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4364
333b0a45
SG
4365 /*
4366 * Try to sleep for a short interval. Note that kcompactd will only be
4367 * woken if it is possible to sleep for a short interval. This is
4368 * deliberate on the assumption that if reclaim cannot keep an
4369 * eligible zone balanced that it's also unlikely that compaction will
4370 * succeed.
4371 */
97a225e6 4372 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
4373 /*
4374 * Compaction records what page blocks it recently failed to
4375 * isolate pages from and skips them in the future scanning.
4376 * When kswapd is going to sleep, it is reasonable to assume
4377 * that pages and compaction may succeed so reset the cache.
4378 */
4379 reset_isolation_suitable(pgdat);
4380
4381 /*
4382 * We have freed the memory, now we should compact it to make
4383 * allocation of the requested order possible.
4384 */
97a225e6 4385 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 4386
f0bc0a60 4387 remaining = schedule_timeout(HZ/10);
38087d9b
MG
4388
4389 /*
97a225e6 4390 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
4391 * order. The values will either be from a wakeup request or
4392 * the previous request that slept prematurely.
4393 */
4394 if (remaining) {
97a225e6
JK
4395 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4396 kswapd_highest_zoneidx(pgdat,
4397 highest_zoneidx));
5644e1fb
QC
4398
4399 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4400 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
4401 }
4402
f0bc0a60
KM
4403 finish_wait(&pgdat->kswapd_wait, &wait);
4404 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4405 }
4406
4407 /*
4408 * After a short sleep, check if it was a premature sleep. If not, then
4409 * go fully to sleep until explicitly woken up.
4410 */
d9f21d42 4411 if (!remaining &&
97a225e6 4412 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
4413 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4414
4415 /*
4416 * vmstat counters are not perfectly accurate and the estimated
4417 * value for counters such as NR_FREE_PAGES can deviate from the
4418 * true value by nr_online_cpus * threshold. To avoid the zone
4419 * watermarks being breached while under pressure, we reduce the
4420 * per-cpu vmstat threshold while kswapd is awake and restore
4421 * them before going back to sleep.
4422 */
4423 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
4424
4425 if (!kthread_should_stop())
4426 schedule();
4427
f0bc0a60
KM
4428 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4429 } else {
4430 if (remaining)
4431 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4432 else
4433 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4434 }
4435 finish_wait(&pgdat->kswapd_wait, &wait);
4436}
4437
1da177e4
LT
4438/*
4439 * The background pageout daemon, started as a kernel thread
4f98a2fe 4440 * from the init process.
1da177e4
LT
4441 *
4442 * This basically trickles out pages so that we have _some_
4443 * free memory available even if there is no other activity
4444 * that frees anything up. This is needed for things like routing
4445 * etc, where we otherwise might have all activity going on in
4446 * asynchronous contexts that cannot page things out.
4447 *
4448 * If there are applications that are active memory-allocators
4449 * (most normal use), this basically shouldn't matter.
4450 */
4451static int kswapd(void *p)
4452{
e716f2eb 4453 unsigned int alloc_order, reclaim_order;
97a225e6 4454 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 4455 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 4456 struct task_struct *tsk = current;
a70f7302 4457 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 4458
174596a0 4459 if (!cpumask_empty(cpumask))
c5f59f08 4460 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
4461
4462 /*
4463 * Tell the memory management that we're a "memory allocator",
4464 * and that if we need more memory we should get access to it
4465 * regardless (see "__alloc_pages()"). "kswapd" should
4466 * never get caught in the normal page freeing logic.
4467 *
4468 * (Kswapd normally doesn't need memory anyway, but sometimes
4469 * you need a small amount of memory in order to be able to
4470 * page out something else, and this flag essentially protects
4471 * us from recursively trying to free more memory as we're
4472 * trying to free the first piece of memory in the first place).
4473 */
930d9152 4474 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 4475 set_freezable();
1da177e4 4476
5644e1fb 4477 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4478 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
8cd7c588 4479 atomic_set(&pgdat->nr_writeback_throttled, 0);
1da177e4 4480 for ( ; ; ) {
6f6313d4 4481 bool ret;
3e1d1d28 4482
5644e1fb 4483 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4484 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4485 highest_zoneidx);
e716f2eb 4486
38087d9b
MG
4487kswapd_try_sleep:
4488 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 4489 highest_zoneidx);
215ddd66 4490
97a225e6 4491 /* Read the new order and highest_zoneidx */
2b47a24c 4492 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4493 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4494 highest_zoneidx);
5644e1fb 4495 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4496 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4497
8fe23e05
DR
4498 ret = try_to_freeze();
4499 if (kthread_should_stop())
4500 break;
4501
4502 /*
4503 * We can speed up thawing tasks if we don't call balance_pgdat
4504 * after returning from the refrigerator
4505 */
38087d9b
MG
4506 if (ret)
4507 continue;
4508
4509 /*
4510 * Reclaim begins at the requested order but if a high-order
4511 * reclaim fails then kswapd falls back to reclaiming for
4512 * order-0. If that happens, kswapd will consider sleeping
4513 * for the order it finished reclaiming at (reclaim_order)
4514 * but kcompactd is woken to compact for the original
4515 * request (alloc_order).
4516 */
97a225e6 4517 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 4518 alloc_order);
97a225e6
JK
4519 reclaim_order = balance_pgdat(pgdat, alloc_order,
4520 highest_zoneidx);
38087d9b
MG
4521 if (reclaim_order < alloc_order)
4522 goto kswapd_try_sleep;
1da177e4 4523 }
b0a8cc58 4524
71abdc15 4525 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 4526
1da177e4
LT
4527 return 0;
4528}
4529
4530/*
5ecd9d40
DR
4531 * A zone is low on free memory or too fragmented for high-order memory. If
4532 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4533 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4534 * has failed or is not needed, still wake up kcompactd if only compaction is
4535 * needed.
1da177e4 4536 */
5ecd9d40 4537void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 4538 enum zone_type highest_zoneidx)
1da177e4
LT
4539{
4540 pg_data_t *pgdat;
5644e1fb 4541 enum zone_type curr_idx;
1da177e4 4542
6aa303de 4543 if (!managed_zone(zone))
1da177e4
LT
4544 return;
4545
5ecd9d40 4546 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4547 return;
5644e1fb 4548
88f5acf8 4549 pgdat = zone->zone_pgdat;
97a225e6 4550 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4551
97a225e6
JK
4552 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4553 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
4554
4555 if (READ_ONCE(pgdat->kswapd_order) < order)
4556 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 4557
8d0986e2 4558 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4559 return;
e1a55637 4560
5ecd9d40
DR
4561 /* Hopeless node, leave it to direct reclaim if possible */
4562 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
4563 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4564 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
4565 /*
4566 * There may be plenty of free memory available, but it's too
4567 * fragmented for high-order allocations. Wake up kcompactd
4568 * and rely on compaction_suitable() to determine if it's
4569 * needed. If it fails, it will defer subsequent attempts to
4570 * ratelimit its work.
4571 */
4572 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4573 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4574 return;
5ecd9d40 4575 }
88f5acf8 4576
97a225e6 4577 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4578 gfp_flags);
8d0986e2 4579 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4580}
4581
c6f37f12 4582#ifdef CONFIG_HIBERNATION
1da177e4 4583/*
7b51755c 4584 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4585 * freed pages.
4586 *
4587 * Rather than trying to age LRUs the aim is to preserve the overall
4588 * LRU order by reclaiming preferentially
4589 * inactive > active > active referenced > active mapped
1da177e4 4590 */
7b51755c 4591unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4592{
d6277db4 4593 struct scan_control sc = {
ee814fe2 4594 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4595 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4596 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4597 .priority = DEF_PRIORITY,
d6277db4 4598 .may_writepage = 1,
ee814fe2
JW
4599 .may_unmap = 1,
4600 .may_swap = 1,
7b51755c 4601 .hibernation_mode = 1,
1da177e4 4602 };
a09ed5e0 4603 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4604 unsigned long nr_reclaimed;
499118e9 4605 unsigned int noreclaim_flag;
1da177e4 4606
d92a8cfc 4607 fs_reclaim_acquire(sc.gfp_mask);
93781325 4608 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4609 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4610
3115cd91 4611 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4612
1732d2b0 4613 set_task_reclaim_state(current, NULL);
499118e9 4614 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4615 fs_reclaim_release(sc.gfp_mask);
d6277db4 4616
7b51755c 4617 return nr_reclaimed;
1da177e4 4618}
c6f37f12 4619#endif /* CONFIG_HIBERNATION */
1da177e4 4620
3218ae14
YG
4621/*
4622 * This kswapd start function will be called by init and node-hot-add.
4623 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4624 */
b87c517a 4625void kswapd_run(int nid)
3218ae14
YG
4626{
4627 pg_data_t *pgdat = NODE_DATA(nid);
3218ae14
YG
4628
4629 if (pgdat->kswapd)
b87c517a 4630 return;
3218ae14
YG
4631
4632 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4633 if (IS_ERR(pgdat->kswapd)) {
4634 /* failure at boot is fatal */
c6202adf 4635 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9 4636 pr_err("Failed to start kswapd on node %d\n", nid);
d72515b8 4637 pgdat->kswapd = NULL;
3218ae14 4638 }
3218ae14
YG
4639}
4640
8fe23e05 4641/*
d8adde17 4642 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4643 * hold mem_hotplug_begin/end().
8fe23e05
DR
4644 */
4645void kswapd_stop(int nid)
4646{
4647 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4648
d8adde17 4649 if (kswapd) {
8fe23e05 4650 kthread_stop(kswapd);
d8adde17
JL
4651 NODE_DATA(nid)->kswapd = NULL;
4652 }
8fe23e05
DR
4653}
4654
1da177e4
LT
4655static int __init kswapd_init(void)
4656{
6b700b5b 4657 int nid;
69e05944 4658
1da177e4 4659 swap_setup();
48fb2e24 4660 for_each_node_state(nid, N_MEMORY)
3218ae14 4661 kswapd_run(nid);
1da177e4
LT
4662 return 0;
4663}
4664
4665module_init(kswapd_init)
9eeff239
CL
4666
4667#ifdef CONFIG_NUMA
4668/*
a5f5f91d 4669 * Node reclaim mode
9eeff239 4670 *
a5f5f91d 4671 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4672 * the watermarks.
9eeff239 4673 */
a5f5f91d 4674int node_reclaim_mode __read_mostly;
9eeff239 4675
a92f7126 4676/*
a5f5f91d 4677 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4678 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4679 * a zone.
4680 */
a5f5f91d 4681#define NODE_RECLAIM_PRIORITY 4
a92f7126 4682
9614634f 4683/*
a5f5f91d 4684 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4685 * occur.
4686 */
4687int sysctl_min_unmapped_ratio = 1;
4688
0ff38490
CL
4689/*
4690 * If the number of slab pages in a zone grows beyond this percentage then
4691 * slab reclaim needs to occur.
4692 */
4693int sysctl_min_slab_ratio = 5;
4694
11fb9989 4695static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4696{
11fb9989
MG
4697 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4698 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4699 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4700
4701 /*
4702 * It's possible for there to be more file mapped pages than
4703 * accounted for by the pages on the file LRU lists because
4704 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4705 */
4706 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4707}
4708
4709/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4710static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4711{
d031a157
AM
4712 unsigned long nr_pagecache_reclaimable;
4713 unsigned long delta = 0;
90afa5de
MG
4714
4715 /*
95bbc0c7 4716 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4717 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4718 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4719 * a better estimate
4720 */
a5f5f91d
MG
4721 if (node_reclaim_mode & RECLAIM_UNMAP)
4722 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4723 else
a5f5f91d 4724 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4725
4726 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4727 if (!(node_reclaim_mode & RECLAIM_WRITE))
4728 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4729
4730 /* Watch for any possible underflows due to delta */
4731 if (unlikely(delta > nr_pagecache_reclaimable))
4732 delta = nr_pagecache_reclaimable;
4733
4734 return nr_pagecache_reclaimable - delta;
4735}
4736
9eeff239 4737/*
a5f5f91d 4738 * Try to free up some pages from this node through reclaim.
9eeff239 4739 */
a5f5f91d 4740static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4741{
7fb2d46d 4742 /* Minimum pages needed in order to stay on node */
69e05944 4743 const unsigned long nr_pages = 1 << order;
9eeff239 4744 struct task_struct *p = current;
499118e9 4745 unsigned int noreclaim_flag;
179e9639 4746 struct scan_control sc = {
62b726c1 4747 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4748 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4749 .order = order,
a5f5f91d
MG
4750 .priority = NODE_RECLAIM_PRIORITY,
4751 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4752 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4753 .may_swap = 1,
f2f43e56 4754 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4755 };
57f29762 4756 unsigned long pflags;
9eeff239 4757
132bb8cf
YS
4758 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4759 sc.gfp_mask);
4760
9eeff239 4761 cond_resched();
57f29762 4762 psi_memstall_enter(&pflags);
93781325 4763 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4764 /*
95bbc0c7 4765 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4766 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4767 * and RECLAIM_UNMAP.
d4f7796e 4768 */
499118e9
VB
4769 noreclaim_flag = memalloc_noreclaim_save();
4770 p->flags |= PF_SWAPWRITE;
1732d2b0 4771 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4772
a5f5f91d 4773 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4774 /*
894befec 4775 * Free memory by calling shrink node with increasing
0ff38490
CL
4776 * priorities until we have enough memory freed.
4777 */
0ff38490 4778 do {
970a39a3 4779 shrink_node(pgdat, &sc);
9e3b2f8c 4780 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4781 }
c84db23c 4782
1732d2b0 4783 set_task_reclaim_state(p, NULL);
499118e9
VB
4784 current->flags &= ~PF_SWAPWRITE;
4785 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4786 fs_reclaim_release(sc.gfp_mask);
57f29762 4787 psi_memstall_leave(&pflags);
132bb8cf
YS
4788
4789 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4790
a79311c1 4791 return sc.nr_reclaimed >= nr_pages;
9eeff239 4792}
179e9639 4793
a5f5f91d 4794int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4795{
d773ed6b 4796 int ret;
179e9639
AM
4797
4798 /*
a5f5f91d 4799 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4800 * slab pages if we are over the defined limits.
34aa1330 4801 *
9614634f
CL
4802 * A small portion of unmapped file backed pages is needed for
4803 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4804 * thrown out if the node is overallocated. So we do not reclaim
4805 * if less than a specified percentage of the node is used by
9614634f 4806 * unmapped file backed pages.
179e9639 4807 */
a5f5f91d 4808 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4809 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4810 pgdat->min_slab_pages)
a5f5f91d 4811 return NODE_RECLAIM_FULL;
179e9639
AM
4812
4813 /*
d773ed6b 4814 * Do not scan if the allocation should not be delayed.
179e9639 4815 */
d0164adc 4816 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4817 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4818
4819 /*
a5f5f91d 4820 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4821 * have associated processors. This will favor the local processor
4822 * over remote processors and spread off node memory allocations
4823 * as wide as possible.
4824 */
a5f5f91d
MG
4825 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4826 return NODE_RECLAIM_NOSCAN;
d773ed6b 4827
a5f5f91d
MG
4828 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4829 return NODE_RECLAIM_NOSCAN;
fa5e084e 4830
a5f5f91d
MG
4831 ret = __node_reclaim(pgdat, gfp_mask, order);
4832 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4833
24cf7251
MG
4834 if (!ret)
4835 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4836
d773ed6b 4837 return ret;
179e9639 4838}
9eeff239 4839#endif
894bc310 4840
89e004ea 4841/**
64e3d12f
KHY
4842 * check_move_unevictable_pages - check pages for evictability and move to
4843 * appropriate zone lru list
4844 * @pvec: pagevec with lru pages to check
89e004ea 4845 *
64e3d12f
KHY
4846 * Checks pages for evictability, if an evictable page is in the unevictable
4847 * lru list, moves it to the appropriate evictable lru list. This function
4848 * should be only used for lru pages.
89e004ea 4849 */
64e3d12f 4850void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4851{
6168d0da 4852 struct lruvec *lruvec = NULL;
24513264
HD
4853 int pgscanned = 0;
4854 int pgrescued = 0;
4855 int i;
89e004ea 4856
64e3d12f
KHY
4857 for (i = 0; i < pvec->nr; i++) {
4858 struct page *page = pvec->pages[i];
0de340cb 4859 struct folio *folio = page_folio(page);
8d8869ca
HD
4860 int nr_pages;
4861
4862 if (PageTransTail(page))
4863 continue;
4864
4865 nr_pages = thp_nr_pages(page);
4866 pgscanned += nr_pages;
89e004ea 4867
d25b5bd8
AS
4868 /* block memcg migration during page moving between lru */
4869 if (!TestClearPageLRU(page))
4870 continue;
4871
0de340cb 4872 lruvec = folio_lruvec_relock_irq(folio, lruvec);
d25b5bd8 4873 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4874 del_page_from_lru_list(page, lruvec);
24513264 4875 ClearPageUnevictable(page);
3a9c9788 4876 add_page_to_lru_list(page, lruvec);
8d8869ca 4877 pgrescued += nr_pages;
89e004ea 4878 }
d25b5bd8 4879 SetPageLRU(page);
24513264 4880 }
89e004ea 4881
6168d0da 4882 if (lruvec) {
24513264
HD
4883 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4884 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4885 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4886 } else if (pgscanned) {
4887 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4888 }
89e004ea 4889}
64e3d12f 4890EXPORT_SYMBOL_GPL(check_move_unevictable_pages);