]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
mm, memcg: avoid stale protection values when cgroup is above protection
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
64e3d12f 49#include <linux/pagevec.h>
268bb0ce 50#include <linux/prefetch.h>
b1de0d13 51#include <linux/printk.h>
f9fe48be 52#include <linux/dax.h>
eb414681 53#include <linux/psi.h>
1da177e4
LT
54
55#include <asm/tlbflush.h>
56#include <asm/div64.h>
57
58#include <linux/swapops.h>
117aad1e 59#include <linux/balloon_compaction.h>
1da177e4 60
0f8053a5
NP
61#include "internal.h"
62
33906bc5
MG
63#define CREATE_TRACE_POINTS
64#include <trace/events/vmscan.h>
65
1da177e4 66struct scan_control {
22fba335
KM
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
ee814fe2
JW
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
9e3b2f8c 75
f16015fb
JW
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
66e1707b 81
7cf111bc
JW
82 /*
83 * Scan pressure balancing between anon and file LRUs
84 */
85 unsigned long anon_cost;
86 unsigned long file_cost;
87
b91ac374
JW
88 /* Can active pages be deactivated as part of reclaim? */
89#define DEACTIVATE_ANON 1
90#define DEACTIVATE_FILE 2
91 unsigned int may_deactivate:2;
92 unsigned int force_deactivate:1;
93 unsigned int skipped_deactivate:1;
94
1276ad68 95 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
96 unsigned int may_writepage:1;
97
98 /* Can mapped pages be reclaimed? */
99 unsigned int may_unmap:1;
100
101 /* Can pages be swapped as part of reclaim? */
102 unsigned int may_swap:1;
103
d6622f63
YX
104 /*
105 * Cgroups are not reclaimed below their configured memory.low,
106 * unless we threaten to OOM. If any cgroups are skipped due to
107 * memory.low and nothing was reclaimed, go back for memory.low.
108 */
109 unsigned int memcg_low_reclaim:1;
110 unsigned int memcg_low_skipped:1;
241994ed 111
ee814fe2
JW
112 unsigned int hibernation_mode:1;
113
114 /* One of the zones is ready for compaction */
115 unsigned int compaction_ready:1;
116
b91ac374
JW
117 /* There is easily reclaimable cold cache in the current node */
118 unsigned int cache_trim_mode:1;
119
53138cea
JW
120 /* The file pages on the current node are dangerously low */
121 unsigned int file_is_tiny:1;
122
bb451fdf
GT
123 /* Allocation order */
124 s8 order;
125
126 /* Scan (total_size >> priority) pages at once */
127 s8 priority;
128
129 /* The highest zone to isolate pages for reclaim from */
130 s8 reclaim_idx;
131
132 /* This context's GFP mask */
133 gfp_t gfp_mask;
134
ee814fe2
JW
135 /* Incremented by the number of inactive pages that were scanned */
136 unsigned long nr_scanned;
137
138 /* Number of pages freed so far during a call to shrink_zones() */
139 unsigned long nr_reclaimed;
d108c772
AR
140
141 struct {
142 unsigned int dirty;
143 unsigned int unqueued_dirty;
144 unsigned int congested;
145 unsigned int writeback;
146 unsigned int immediate;
147 unsigned int file_taken;
148 unsigned int taken;
149 } nr;
e5ca8071
YS
150
151 /* for recording the reclaimed slab by now */
152 struct reclaim_state reclaim_state;
1da177e4
LT
153};
154
1da177e4
LT
155#ifdef ARCH_HAS_PREFETCHW
156#define prefetchw_prev_lru_page(_page, _base, _field) \
157 do { \
158 if ((_page)->lru.prev != _base) { \
159 struct page *prev; \
160 \
161 prev = lru_to_page(&(_page->lru)); \
162 prefetchw(&prev->_field); \
163 } \
164 } while (0)
165#else
166#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
167#endif
168
169/*
c843966c 170 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
171 */
172int vm_swappiness = 60;
d0480be4
WSH
173/*
174 * The total number of pages which are beyond the high watermark within all
175 * zones.
176 */
177unsigned long vm_total_pages;
1da177e4 178
0a432dcb
YS
179static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
181{
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
184
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
187
188 task->reclaim_state = rs;
189}
190
1da177e4
LT
191static LIST_HEAD(shrinker_list);
192static DECLARE_RWSEM(shrinker_rwsem);
193
0a432dcb 194#ifdef CONFIG_MEMCG
7e010df5
KT
195/*
196 * We allow subsystems to populate their shrinker-related
197 * LRU lists before register_shrinker_prepared() is called
198 * for the shrinker, since we don't want to impose
199 * restrictions on their internal registration order.
200 * In this case shrink_slab_memcg() may find corresponding
201 * bit is set in the shrinkers map.
202 *
203 * This value is used by the function to detect registering
204 * shrinkers and to skip do_shrink_slab() calls for them.
205 */
206#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
207
b4c2b231
KT
208static DEFINE_IDR(shrinker_idr);
209static int shrinker_nr_max;
210
211static int prealloc_memcg_shrinker(struct shrinker *shrinker)
212{
213 int id, ret = -ENOMEM;
214
215 down_write(&shrinker_rwsem);
216 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 217 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
218 if (id < 0)
219 goto unlock;
220
0a4465d3
KT
221 if (id >= shrinker_nr_max) {
222 if (memcg_expand_shrinker_maps(id)) {
223 idr_remove(&shrinker_idr, id);
224 goto unlock;
225 }
226
b4c2b231 227 shrinker_nr_max = id + 1;
0a4465d3 228 }
b4c2b231
KT
229 shrinker->id = id;
230 ret = 0;
231unlock:
232 up_write(&shrinker_rwsem);
233 return ret;
234}
235
236static void unregister_memcg_shrinker(struct shrinker *shrinker)
237{
238 int id = shrinker->id;
239
240 BUG_ON(id < 0);
241
242 down_write(&shrinker_rwsem);
243 idr_remove(&shrinker_idr, id);
244 up_write(&shrinker_rwsem);
245}
b4c2b231 246
b5ead35e 247static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 248{
b5ead35e 249 return sc->target_mem_cgroup;
89b5fae5 250}
97c9341f
TH
251
252/**
b5ead35e 253 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
254 * @sc: scan_control in question
255 *
256 * The normal page dirty throttling mechanism in balance_dirty_pages() is
257 * completely broken with the legacy memcg and direct stalling in
258 * shrink_page_list() is used for throttling instead, which lacks all the
259 * niceties such as fairness, adaptive pausing, bandwidth proportional
260 * allocation and configurability.
261 *
262 * This function tests whether the vmscan currently in progress can assume
263 * that the normal dirty throttling mechanism is operational.
264 */
b5ead35e 265static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 266{
b5ead35e 267 if (!cgroup_reclaim(sc))
97c9341f
TH
268 return true;
269#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 270 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
271 return true;
272#endif
273 return false;
274}
91a45470 275#else
0a432dcb
YS
276static int prealloc_memcg_shrinker(struct shrinker *shrinker)
277{
278 return 0;
279}
280
281static void unregister_memcg_shrinker(struct shrinker *shrinker)
282{
283}
284
b5ead35e 285static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 286{
b5ead35e 287 return false;
89b5fae5 288}
97c9341f 289
b5ead35e 290static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
291{
292 return true;
293}
91a45470
KH
294#endif
295
5a1c84b4
MG
296/*
297 * This misses isolated pages which are not accounted for to save counters.
298 * As the data only determines if reclaim or compaction continues, it is
299 * not expected that isolated pages will be a dominating factor.
300 */
301unsigned long zone_reclaimable_pages(struct zone *zone)
302{
303 unsigned long nr;
304
305 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
306 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
307 if (get_nr_swap_pages() > 0)
308 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
309 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
310
311 return nr;
312}
313
fd538803
MH
314/**
315 * lruvec_lru_size - Returns the number of pages on the given LRU list.
316 * @lruvec: lru vector
317 * @lru: lru to use
318 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
319 */
320unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 321{
de3b0150 322 unsigned long size = 0;
fd538803
MH
323 int zid;
324
de3b0150 325 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 326 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 327
fd538803
MH
328 if (!managed_zone(zone))
329 continue;
330
331 if (!mem_cgroup_disabled())
de3b0150 332 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 333 else
de3b0150 334 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 335 }
de3b0150 336 return size;
b4536f0c
MH
337}
338
1da177e4 339/*
1d3d4437 340 * Add a shrinker callback to be called from the vm.
1da177e4 341 */
8e04944f 342int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 343{
b9726c26 344 unsigned int size = sizeof(*shrinker->nr_deferred);
1d3d4437 345
1d3d4437
GC
346 if (shrinker->flags & SHRINKER_NUMA_AWARE)
347 size *= nr_node_ids;
348
349 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
350 if (!shrinker->nr_deferred)
351 return -ENOMEM;
b4c2b231
KT
352
353 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
354 if (prealloc_memcg_shrinker(shrinker))
355 goto free_deferred;
356 }
357
8e04944f 358 return 0;
b4c2b231
KT
359
360free_deferred:
361 kfree(shrinker->nr_deferred);
362 shrinker->nr_deferred = NULL;
363 return -ENOMEM;
8e04944f
TH
364}
365
366void free_prealloced_shrinker(struct shrinker *shrinker)
367{
b4c2b231
KT
368 if (!shrinker->nr_deferred)
369 return;
370
371 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
372 unregister_memcg_shrinker(shrinker);
373
8e04944f
TH
374 kfree(shrinker->nr_deferred);
375 shrinker->nr_deferred = NULL;
376}
1d3d4437 377
8e04944f
TH
378void register_shrinker_prepared(struct shrinker *shrinker)
379{
8e1f936b
RR
380 down_write(&shrinker_rwsem);
381 list_add_tail(&shrinker->list, &shrinker_list);
42a9a53b 382#ifdef CONFIG_MEMCG
8df4a44c
KT
383 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
384 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 385#endif
8e1f936b 386 up_write(&shrinker_rwsem);
8e04944f
TH
387}
388
389int register_shrinker(struct shrinker *shrinker)
390{
391 int err = prealloc_shrinker(shrinker);
392
393 if (err)
394 return err;
395 register_shrinker_prepared(shrinker);
1d3d4437 396 return 0;
1da177e4 397}
8e1f936b 398EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
399
400/*
401 * Remove one
402 */
8e1f936b 403void unregister_shrinker(struct shrinker *shrinker)
1da177e4 404{
bb422a73
TH
405 if (!shrinker->nr_deferred)
406 return;
b4c2b231
KT
407 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
408 unregister_memcg_shrinker(shrinker);
1da177e4
LT
409 down_write(&shrinker_rwsem);
410 list_del(&shrinker->list);
411 up_write(&shrinker_rwsem);
ae393321 412 kfree(shrinker->nr_deferred);
bb422a73 413 shrinker->nr_deferred = NULL;
1da177e4 414}
8e1f936b 415EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
416
417#define SHRINK_BATCH 128
1d3d4437 418
cb731d6c 419static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 420 struct shrinker *shrinker, int priority)
1d3d4437
GC
421{
422 unsigned long freed = 0;
423 unsigned long long delta;
424 long total_scan;
d5bc5fd3 425 long freeable;
1d3d4437
GC
426 long nr;
427 long new_nr;
428 int nid = shrinkctl->nid;
429 long batch_size = shrinker->batch ? shrinker->batch
430 : SHRINK_BATCH;
5f33a080 431 long scanned = 0, next_deferred;
1d3d4437 432
ac7fb3ad
KT
433 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
434 nid = 0;
435
d5bc5fd3 436 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
437 if (freeable == 0 || freeable == SHRINK_EMPTY)
438 return freeable;
1d3d4437
GC
439
440 /*
441 * copy the current shrinker scan count into a local variable
442 * and zero it so that other concurrent shrinker invocations
443 * don't also do this scanning work.
444 */
445 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
446
447 total_scan = nr;
4b85afbd
JW
448 if (shrinker->seeks) {
449 delta = freeable >> priority;
450 delta *= 4;
451 do_div(delta, shrinker->seeks);
452 } else {
453 /*
454 * These objects don't require any IO to create. Trim
455 * them aggressively under memory pressure to keep
456 * them from causing refetches in the IO caches.
457 */
458 delta = freeable / 2;
459 }
172b06c3 460
1d3d4437
GC
461 total_scan += delta;
462 if (total_scan < 0) {
d75f773c 463 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
a0b02131 464 shrinker->scan_objects, total_scan);
d5bc5fd3 465 total_scan = freeable;
5f33a080
SL
466 next_deferred = nr;
467 } else
468 next_deferred = total_scan;
1d3d4437
GC
469
470 /*
471 * We need to avoid excessive windup on filesystem shrinkers
472 * due to large numbers of GFP_NOFS allocations causing the
473 * shrinkers to return -1 all the time. This results in a large
474 * nr being built up so when a shrink that can do some work
475 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 476 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
477 * memory.
478 *
479 * Hence only allow the shrinker to scan the entire cache when
480 * a large delta change is calculated directly.
481 */
d5bc5fd3
VD
482 if (delta < freeable / 4)
483 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
484
485 /*
486 * Avoid risking looping forever due to too large nr value:
487 * never try to free more than twice the estimate number of
488 * freeable entries.
489 */
d5bc5fd3
VD
490 if (total_scan > freeable * 2)
491 total_scan = freeable * 2;
1d3d4437
GC
492
493 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 494 freeable, delta, total_scan, priority);
1d3d4437 495
0b1fb40a
VD
496 /*
497 * Normally, we should not scan less than batch_size objects in one
498 * pass to avoid too frequent shrinker calls, but if the slab has less
499 * than batch_size objects in total and we are really tight on memory,
500 * we will try to reclaim all available objects, otherwise we can end
501 * up failing allocations although there are plenty of reclaimable
502 * objects spread over several slabs with usage less than the
503 * batch_size.
504 *
505 * We detect the "tight on memory" situations by looking at the total
506 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 507 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
508 * scanning at high prio and therefore should try to reclaim as much as
509 * possible.
510 */
511 while (total_scan >= batch_size ||
d5bc5fd3 512 total_scan >= freeable) {
a0b02131 513 unsigned long ret;
0b1fb40a 514 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 515
0b1fb40a 516 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 517 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
518 ret = shrinker->scan_objects(shrinker, shrinkctl);
519 if (ret == SHRINK_STOP)
520 break;
521 freed += ret;
1d3d4437 522
d460acb5
CW
523 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
524 total_scan -= shrinkctl->nr_scanned;
525 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
526
527 cond_resched();
528 }
529
5f33a080
SL
530 if (next_deferred >= scanned)
531 next_deferred -= scanned;
532 else
533 next_deferred = 0;
1d3d4437
GC
534 /*
535 * move the unused scan count back into the shrinker in a
536 * manner that handles concurrent updates. If we exhausted the
537 * scan, there is no need to do an update.
538 */
5f33a080
SL
539 if (next_deferred > 0)
540 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
541 &shrinker->nr_deferred[nid]);
542 else
543 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
544
df9024a8 545 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 546 return freed;
1495f230
YH
547}
548
0a432dcb 549#ifdef CONFIG_MEMCG
b0dedc49
KT
550static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
551 struct mem_cgroup *memcg, int priority)
552{
553 struct memcg_shrinker_map *map;
b8e57efa
KT
554 unsigned long ret, freed = 0;
555 int i;
b0dedc49 556
0a432dcb 557 if (!mem_cgroup_online(memcg))
b0dedc49
KT
558 return 0;
559
560 if (!down_read_trylock(&shrinker_rwsem))
561 return 0;
562
563 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
564 true);
565 if (unlikely(!map))
566 goto unlock;
567
568 for_each_set_bit(i, map->map, shrinker_nr_max) {
569 struct shrink_control sc = {
570 .gfp_mask = gfp_mask,
571 .nid = nid,
572 .memcg = memcg,
573 };
574 struct shrinker *shrinker;
575
576 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
577 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
578 if (!shrinker)
579 clear_bit(i, map->map);
b0dedc49
KT
580 continue;
581 }
582
0a432dcb
YS
583 /* Call non-slab shrinkers even though kmem is disabled */
584 if (!memcg_kmem_enabled() &&
585 !(shrinker->flags & SHRINKER_NONSLAB))
586 continue;
587
b0dedc49 588 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6
KT
589 if (ret == SHRINK_EMPTY) {
590 clear_bit(i, map->map);
591 /*
592 * After the shrinker reported that it had no objects to
593 * free, but before we cleared the corresponding bit in
594 * the memcg shrinker map, a new object might have been
595 * added. To make sure, we have the bit set in this
596 * case, we invoke the shrinker one more time and reset
597 * the bit if it reports that it is not empty anymore.
598 * The memory barrier here pairs with the barrier in
599 * memcg_set_shrinker_bit():
600 *
601 * list_lru_add() shrink_slab_memcg()
602 * list_add_tail() clear_bit()
603 * <MB> <MB>
604 * set_bit() do_shrink_slab()
605 */
606 smp_mb__after_atomic();
607 ret = do_shrink_slab(&sc, shrinker, priority);
608 if (ret == SHRINK_EMPTY)
609 ret = 0;
610 else
611 memcg_set_shrinker_bit(memcg, nid, i);
612 }
b0dedc49
KT
613 freed += ret;
614
615 if (rwsem_is_contended(&shrinker_rwsem)) {
616 freed = freed ? : 1;
617 break;
618 }
619 }
620unlock:
621 up_read(&shrinker_rwsem);
622 return freed;
623}
0a432dcb 624#else /* CONFIG_MEMCG */
b0dedc49
KT
625static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
626 struct mem_cgroup *memcg, int priority)
627{
628 return 0;
629}
0a432dcb 630#endif /* CONFIG_MEMCG */
b0dedc49 631
6b4f7799 632/**
cb731d6c 633 * shrink_slab - shrink slab caches
6b4f7799
JW
634 * @gfp_mask: allocation context
635 * @nid: node whose slab caches to target
cb731d6c 636 * @memcg: memory cgroup whose slab caches to target
9092c71b 637 * @priority: the reclaim priority
1da177e4 638 *
6b4f7799 639 * Call the shrink functions to age shrinkable caches.
1da177e4 640 *
6b4f7799
JW
641 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
642 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 643 *
aeed1d32
VD
644 * @memcg specifies the memory cgroup to target. Unaware shrinkers
645 * are called only if it is the root cgroup.
cb731d6c 646 *
9092c71b
JB
647 * @priority is sc->priority, we take the number of objects and >> by priority
648 * in order to get the scan target.
b15e0905 649 *
6b4f7799 650 * Returns the number of reclaimed slab objects.
1da177e4 651 */
cb731d6c
VD
652static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
653 struct mem_cgroup *memcg,
9092c71b 654 int priority)
1da177e4 655{
b8e57efa 656 unsigned long ret, freed = 0;
1da177e4
LT
657 struct shrinker *shrinker;
658
fa1e512f
YS
659 /*
660 * The root memcg might be allocated even though memcg is disabled
661 * via "cgroup_disable=memory" boot parameter. This could make
662 * mem_cgroup_is_root() return false, then just run memcg slab
663 * shrink, but skip global shrink. This may result in premature
664 * oom.
665 */
666 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 667 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 668
e830c63a 669 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 670 goto out;
1da177e4
LT
671
672 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
673 struct shrink_control sc = {
674 .gfp_mask = gfp_mask,
675 .nid = nid,
cb731d6c 676 .memcg = memcg,
6b4f7799 677 };
ec97097b 678
9b996468
KT
679 ret = do_shrink_slab(&sc, shrinker, priority);
680 if (ret == SHRINK_EMPTY)
681 ret = 0;
682 freed += ret;
e496612c
MK
683 /*
684 * Bail out if someone want to register a new shrinker to
55b65a57 685 * prevent the registration from being stalled for long periods
e496612c
MK
686 * by parallel ongoing shrinking.
687 */
688 if (rwsem_is_contended(&shrinker_rwsem)) {
689 freed = freed ? : 1;
690 break;
691 }
1da177e4 692 }
6b4f7799 693
1da177e4 694 up_read(&shrinker_rwsem);
f06590bd
MK
695out:
696 cond_resched();
24f7c6b9 697 return freed;
1da177e4
LT
698}
699
cb731d6c
VD
700void drop_slab_node(int nid)
701{
702 unsigned long freed;
703
704 do {
705 struct mem_cgroup *memcg = NULL;
706
707 freed = 0;
aeed1d32 708 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 709 do {
9092c71b 710 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
711 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
712 } while (freed > 10);
713}
714
715void drop_slab(void)
716{
717 int nid;
718
719 for_each_online_node(nid)
720 drop_slab_node(nid);
721}
722
1da177e4
LT
723static inline int is_page_cache_freeable(struct page *page)
724{
ceddc3a5
JW
725 /*
726 * A freeable page cache page is referenced only by the caller
67891fff
MW
727 * that isolated the page, the page cache and optional buffer
728 * heads at page->private.
ceddc3a5 729 */
67891fff 730 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
bd4c82c2 731 HPAGE_PMD_NR : 1;
67891fff 732 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
733}
734
cb16556d 735static int may_write_to_inode(struct inode *inode)
1da177e4 736{
930d9152 737 if (current->flags & PF_SWAPWRITE)
1da177e4 738 return 1;
703c2708 739 if (!inode_write_congested(inode))
1da177e4 740 return 1;
703c2708 741 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
742 return 1;
743 return 0;
744}
745
746/*
747 * We detected a synchronous write error writing a page out. Probably
748 * -ENOSPC. We need to propagate that into the address_space for a subsequent
749 * fsync(), msync() or close().
750 *
751 * The tricky part is that after writepage we cannot touch the mapping: nothing
752 * prevents it from being freed up. But we have a ref on the page and once
753 * that page is locked, the mapping is pinned.
754 *
755 * We're allowed to run sleeping lock_page() here because we know the caller has
756 * __GFP_FS.
757 */
758static void handle_write_error(struct address_space *mapping,
759 struct page *page, int error)
760{
7eaceacc 761 lock_page(page);
3e9f45bd
GC
762 if (page_mapping(page) == mapping)
763 mapping_set_error(mapping, error);
1da177e4
LT
764 unlock_page(page);
765}
766
04e62a29
CL
767/* possible outcome of pageout() */
768typedef enum {
769 /* failed to write page out, page is locked */
770 PAGE_KEEP,
771 /* move page to the active list, page is locked */
772 PAGE_ACTIVATE,
773 /* page has been sent to the disk successfully, page is unlocked */
774 PAGE_SUCCESS,
775 /* page is clean and locked */
776 PAGE_CLEAN,
777} pageout_t;
778
1da177e4 779/*
1742f19f
AM
780 * pageout is called by shrink_page_list() for each dirty page.
781 * Calls ->writepage().
1da177e4 782 */
cb16556d 783static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
784{
785 /*
786 * If the page is dirty, only perform writeback if that write
787 * will be non-blocking. To prevent this allocation from being
788 * stalled by pagecache activity. But note that there may be
789 * stalls if we need to run get_block(). We could test
790 * PagePrivate for that.
791 *
8174202b 792 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
793 * this page's queue, we can perform writeback even if that
794 * will block.
795 *
796 * If the page is swapcache, write it back even if that would
797 * block, for some throttling. This happens by accident, because
798 * swap_backing_dev_info is bust: it doesn't reflect the
799 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
800 */
801 if (!is_page_cache_freeable(page))
802 return PAGE_KEEP;
803 if (!mapping) {
804 /*
805 * Some data journaling orphaned pages can have
806 * page->mapping == NULL while being dirty with clean buffers.
807 */
266cf658 808 if (page_has_private(page)) {
1da177e4
LT
809 if (try_to_free_buffers(page)) {
810 ClearPageDirty(page);
b1de0d13 811 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
812 return PAGE_CLEAN;
813 }
814 }
815 return PAGE_KEEP;
816 }
817 if (mapping->a_ops->writepage == NULL)
818 return PAGE_ACTIVATE;
cb16556d 819 if (!may_write_to_inode(mapping->host))
1da177e4
LT
820 return PAGE_KEEP;
821
822 if (clear_page_dirty_for_io(page)) {
823 int res;
824 struct writeback_control wbc = {
825 .sync_mode = WB_SYNC_NONE,
826 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
827 .range_start = 0,
828 .range_end = LLONG_MAX,
1da177e4
LT
829 .for_reclaim = 1,
830 };
831
832 SetPageReclaim(page);
833 res = mapping->a_ops->writepage(page, &wbc);
834 if (res < 0)
835 handle_write_error(mapping, page, res);
994fc28c 836 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
837 ClearPageReclaim(page);
838 return PAGE_ACTIVATE;
839 }
c661b078 840
1da177e4
LT
841 if (!PageWriteback(page)) {
842 /* synchronous write or broken a_ops? */
843 ClearPageReclaim(page);
844 }
3aa23851 845 trace_mm_vmscan_writepage(page);
c4a25635 846 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
847 return PAGE_SUCCESS;
848 }
849
850 return PAGE_CLEAN;
851}
852
a649fd92 853/*
e286781d
NP
854 * Same as remove_mapping, but if the page is removed from the mapping, it
855 * gets returned with a refcount of 0.
a649fd92 856 */
a528910e 857static int __remove_mapping(struct address_space *mapping, struct page *page,
b910718a 858 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 859{
c4843a75 860 unsigned long flags;
bd4c82c2 861 int refcount;
c4843a75 862
28e4d965
NP
863 BUG_ON(!PageLocked(page));
864 BUG_ON(mapping != page_mapping(page));
49d2e9cc 865
b93b0163 866 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 867 /*
0fd0e6b0
NP
868 * The non racy check for a busy page.
869 *
870 * Must be careful with the order of the tests. When someone has
871 * a ref to the page, it may be possible that they dirty it then
872 * drop the reference. So if PageDirty is tested before page_count
873 * here, then the following race may occur:
874 *
875 * get_user_pages(&page);
876 * [user mapping goes away]
877 * write_to(page);
878 * !PageDirty(page) [good]
879 * SetPageDirty(page);
880 * put_page(page);
881 * !page_count(page) [good, discard it]
882 *
883 * [oops, our write_to data is lost]
884 *
885 * Reversing the order of the tests ensures such a situation cannot
886 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 887 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
888 *
889 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 890 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 891 */
906d278d 892 refcount = 1 + compound_nr(page);
bd4c82c2 893 if (!page_ref_freeze(page, refcount))
49d2e9cc 894 goto cannot_free;
1c4c3b99 895 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 896 if (unlikely(PageDirty(page))) {
bd4c82c2 897 page_ref_unfreeze(page, refcount);
49d2e9cc 898 goto cannot_free;
e286781d 899 }
49d2e9cc
CL
900
901 if (PageSwapCache(page)) {
902 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 903 mem_cgroup_swapout(page, swap);
4e17ec25 904 __delete_from_swap_cache(page, swap);
b93b0163 905 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 906 put_swap_page(page, swap);
31d8fcac 907 workingset_eviction(page, target_memcg);
e286781d 908 } else {
6072d13c 909 void (*freepage)(struct page *);
a528910e 910 void *shadow = NULL;
6072d13c
LT
911
912 freepage = mapping->a_ops->freepage;
a528910e
JW
913 /*
914 * Remember a shadow entry for reclaimed file cache in
915 * order to detect refaults, thus thrashing, later on.
916 *
917 * But don't store shadows in an address space that is
918 * already exiting. This is not just an optizimation,
919 * inode reclaim needs to empty out the radix tree or
920 * the nodes are lost. Don't plant shadows behind its
921 * back.
f9fe48be
RZ
922 *
923 * We also don't store shadows for DAX mappings because the
924 * only page cache pages found in these are zero pages
925 * covering holes, and because we don't want to mix DAX
926 * exceptional entries and shadow exceptional entries in the
b93b0163 927 * same address_space.
a528910e 928 */
9de4f22a 929 if (reclaimed && page_is_file_lru(page) &&
f9fe48be 930 !mapping_exiting(mapping) && !dax_mapping(mapping))
b910718a 931 shadow = workingset_eviction(page, target_memcg);
62cccb8c 932 __delete_from_page_cache(page, shadow);
b93b0163 933 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
934
935 if (freepage != NULL)
936 freepage(page);
49d2e9cc
CL
937 }
938
49d2e9cc
CL
939 return 1;
940
941cannot_free:
b93b0163 942 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
943 return 0;
944}
945
e286781d
NP
946/*
947 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
948 * someone else has a ref on the page, abort and return 0. If it was
949 * successfully detached, return 1. Assumes the caller has a single ref on
950 * this page.
951 */
952int remove_mapping(struct address_space *mapping, struct page *page)
953{
b910718a 954 if (__remove_mapping(mapping, page, false, NULL)) {
e286781d
NP
955 /*
956 * Unfreezing the refcount with 1 rather than 2 effectively
957 * drops the pagecache ref for us without requiring another
958 * atomic operation.
959 */
fe896d18 960 page_ref_unfreeze(page, 1);
e286781d
NP
961 return 1;
962 }
963 return 0;
964}
965
894bc310
LS
966/**
967 * putback_lru_page - put previously isolated page onto appropriate LRU list
968 * @page: page to be put back to appropriate lru list
969 *
970 * Add previously isolated @page to appropriate LRU list.
971 * Page may still be unevictable for other reasons.
972 *
973 * lru_lock must not be held, interrupts must be enabled.
974 */
894bc310
LS
975void putback_lru_page(struct page *page)
976{
9c4e6b1a 977 lru_cache_add(page);
894bc310
LS
978 put_page(page); /* drop ref from isolate */
979}
980
dfc8d636
JW
981enum page_references {
982 PAGEREF_RECLAIM,
983 PAGEREF_RECLAIM_CLEAN,
64574746 984 PAGEREF_KEEP,
dfc8d636
JW
985 PAGEREF_ACTIVATE,
986};
987
988static enum page_references page_check_references(struct page *page,
989 struct scan_control *sc)
990{
64574746 991 int referenced_ptes, referenced_page;
dfc8d636 992 unsigned long vm_flags;
dfc8d636 993
c3ac9a8a
JW
994 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
995 &vm_flags);
64574746 996 referenced_page = TestClearPageReferenced(page);
dfc8d636 997
dfc8d636
JW
998 /*
999 * Mlock lost the isolation race with us. Let try_to_unmap()
1000 * move the page to the unevictable list.
1001 */
1002 if (vm_flags & VM_LOCKED)
1003 return PAGEREF_RECLAIM;
1004
64574746 1005 if (referenced_ptes) {
e4898273 1006 if (PageSwapBacked(page))
64574746
JW
1007 return PAGEREF_ACTIVATE;
1008 /*
1009 * All mapped pages start out with page table
1010 * references from the instantiating fault, so we need
1011 * to look twice if a mapped file page is used more
1012 * than once.
1013 *
1014 * Mark it and spare it for another trip around the
1015 * inactive list. Another page table reference will
1016 * lead to its activation.
1017 *
1018 * Note: the mark is set for activated pages as well
1019 * so that recently deactivated but used pages are
1020 * quickly recovered.
1021 */
1022 SetPageReferenced(page);
1023
34dbc67a 1024 if (referenced_page || referenced_ptes > 1)
64574746
JW
1025 return PAGEREF_ACTIVATE;
1026
c909e993
KK
1027 /*
1028 * Activate file-backed executable pages after first usage.
1029 */
1030 if (vm_flags & VM_EXEC)
1031 return PAGEREF_ACTIVATE;
1032
64574746
JW
1033 return PAGEREF_KEEP;
1034 }
dfc8d636
JW
1035
1036 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1037 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1038 return PAGEREF_RECLAIM_CLEAN;
1039
1040 return PAGEREF_RECLAIM;
dfc8d636
JW
1041}
1042
e2be15f6
MG
1043/* Check if a page is dirty or under writeback */
1044static void page_check_dirty_writeback(struct page *page,
1045 bool *dirty, bool *writeback)
1046{
b4597226
MG
1047 struct address_space *mapping;
1048
e2be15f6
MG
1049 /*
1050 * Anonymous pages are not handled by flushers and must be written
1051 * from reclaim context. Do not stall reclaim based on them
1052 */
9de4f22a 1053 if (!page_is_file_lru(page) ||
802a3a92 1054 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1055 *dirty = false;
1056 *writeback = false;
1057 return;
1058 }
1059
1060 /* By default assume that the page flags are accurate */
1061 *dirty = PageDirty(page);
1062 *writeback = PageWriteback(page);
b4597226
MG
1063
1064 /* Verify dirty/writeback state if the filesystem supports it */
1065 if (!page_has_private(page))
1066 return;
1067
1068 mapping = page_mapping(page);
1069 if (mapping && mapping->a_ops->is_dirty_writeback)
1070 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1071}
1072
1da177e4 1073/*
1742f19f 1074 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1075 */
730ec8c0
MS
1076static unsigned int shrink_page_list(struct list_head *page_list,
1077 struct pglist_data *pgdat,
1078 struct scan_control *sc,
1079 enum ttu_flags ttu_flags,
1080 struct reclaim_stat *stat,
1081 bool ignore_references)
1da177e4
LT
1082{
1083 LIST_HEAD(ret_pages);
abe4c3b5 1084 LIST_HEAD(free_pages);
730ec8c0
MS
1085 unsigned int nr_reclaimed = 0;
1086 unsigned int pgactivate = 0;
1da177e4 1087
060f005f 1088 memset(stat, 0, sizeof(*stat));
1da177e4
LT
1089 cond_resched();
1090
1da177e4
LT
1091 while (!list_empty(page_list)) {
1092 struct address_space *mapping;
1093 struct page *page;
8940b34a 1094 enum page_references references = PAGEREF_RECLAIM;
4b793062 1095 bool dirty, writeback, may_enter_fs;
98879b3b 1096 unsigned int nr_pages;
1da177e4
LT
1097
1098 cond_resched();
1099
1100 page = lru_to_page(page_list);
1101 list_del(&page->lru);
1102
529ae9aa 1103 if (!trylock_page(page))
1da177e4
LT
1104 goto keep;
1105
309381fe 1106 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1107
d8c6546b 1108 nr_pages = compound_nr(page);
98879b3b
YS
1109
1110 /* Account the number of base pages even though THP */
1111 sc->nr_scanned += nr_pages;
80e43426 1112
39b5f29a 1113 if (unlikely(!page_evictable(page)))
ad6b6704 1114 goto activate_locked;
894bc310 1115
a6dc60f8 1116 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1117 goto keep_locked;
1118
c661b078
AW
1119 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1120 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1121
e2be15f6 1122 /*
894befec 1123 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1124 * reclaim_congested which affects wait_iff_congested. kswapd
1125 * will stall and start writing pages if the tail of the LRU
1126 * is all dirty unqueued pages.
1127 */
1128 page_check_dirty_writeback(page, &dirty, &writeback);
1129 if (dirty || writeback)
060f005f 1130 stat->nr_dirty++;
e2be15f6
MG
1131
1132 if (dirty && !writeback)
060f005f 1133 stat->nr_unqueued_dirty++;
e2be15f6 1134
d04e8acd
MG
1135 /*
1136 * Treat this page as congested if the underlying BDI is or if
1137 * pages are cycling through the LRU so quickly that the
1138 * pages marked for immediate reclaim are making it to the
1139 * end of the LRU a second time.
1140 */
e2be15f6 1141 mapping = page_mapping(page);
1da58ee2 1142 if (((dirty || writeback) && mapping &&
703c2708 1143 inode_write_congested(mapping->host)) ||
d04e8acd 1144 (writeback && PageReclaim(page)))
060f005f 1145 stat->nr_congested++;
e2be15f6 1146
283aba9f
MG
1147 /*
1148 * If a page at the tail of the LRU is under writeback, there
1149 * are three cases to consider.
1150 *
1151 * 1) If reclaim is encountering an excessive number of pages
1152 * under writeback and this page is both under writeback and
1153 * PageReclaim then it indicates that pages are being queued
1154 * for IO but are being recycled through the LRU before the
1155 * IO can complete. Waiting on the page itself risks an
1156 * indefinite stall if it is impossible to writeback the
1157 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1158 * note that the LRU is being scanned too quickly and the
1159 * caller can stall after page list has been processed.
283aba9f 1160 *
97c9341f 1161 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1162 * not marked for immediate reclaim, or the caller does not
1163 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1164 * not to fs). In this case mark the page for immediate
97c9341f 1165 * reclaim and continue scanning.
283aba9f 1166 *
ecf5fc6e
MH
1167 * Require may_enter_fs because we would wait on fs, which
1168 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1169 * enter reclaim, and deadlock if it waits on a page for
1170 * which it is needed to do the write (loop masks off
1171 * __GFP_IO|__GFP_FS for this reason); but more thought
1172 * would probably show more reasons.
1173 *
7fadc820 1174 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1175 * PageReclaim. memcg does not have any dirty pages
1176 * throttling so we could easily OOM just because too many
1177 * pages are in writeback and there is nothing else to
1178 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1179 *
1180 * In cases 1) and 2) we activate the pages to get them out of
1181 * the way while we continue scanning for clean pages on the
1182 * inactive list and refilling from the active list. The
1183 * observation here is that waiting for disk writes is more
1184 * expensive than potentially causing reloads down the line.
1185 * Since they're marked for immediate reclaim, they won't put
1186 * memory pressure on the cache working set any longer than it
1187 * takes to write them to disk.
283aba9f 1188 */
c661b078 1189 if (PageWriteback(page)) {
283aba9f
MG
1190 /* Case 1 above */
1191 if (current_is_kswapd() &&
1192 PageReclaim(page) &&
599d0c95 1193 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1194 stat->nr_immediate++;
c55e8d03 1195 goto activate_locked;
283aba9f
MG
1196
1197 /* Case 2 above */
b5ead35e 1198 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1199 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1200 /*
1201 * This is slightly racy - end_page_writeback()
1202 * might have just cleared PageReclaim, then
1203 * setting PageReclaim here end up interpreted
1204 * as PageReadahead - but that does not matter
1205 * enough to care. What we do want is for this
1206 * page to have PageReclaim set next time memcg
1207 * reclaim reaches the tests above, so it will
1208 * then wait_on_page_writeback() to avoid OOM;
1209 * and it's also appropriate in global reclaim.
1210 */
1211 SetPageReclaim(page);
060f005f 1212 stat->nr_writeback++;
c55e8d03 1213 goto activate_locked;
283aba9f
MG
1214
1215 /* Case 3 above */
1216 } else {
7fadc820 1217 unlock_page(page);
283aba9f 1218 wait_on_page_writeback(page);
7fadc820
HD
1219 /* then go back and try same page again */
1220 list_add_tail(&page->lru, page_list);
1221 continue;
e62e384e 1222 }
c661b078 1223 }
1da177e4 1224
8940b34a 1225 if (!ignore_references)
02c6de8d
MK
1226 references = page_check_references(page, sc);
1227
dfc8d636
JW
1228 switch (references) {
1229 case PAGEREF_ACTIVATE:
1da177e4 1230 goto activate_locked;
64574746 1231 case PAGEREF_KEEP:
98879b3b 1232 stat->nr_ref_keep += nr_pages;
64574746 1233 goto keep_locked;
dfc8d636
JW
1234 case PAGEREF_RECLAIM:
1235 case PAGEREF_RECLAIM_CLEAN:
1236 ; /* try to reclaim the page below */
1237 }
1da177e4 1238
1da177e4
LT
1239 /*
1240 * Anonymous process memory has backing store?
1241 * Try to allocate it some swap space here.
802a3a92 1242 * Lazyfree page could be freed directly
1da177e4 1243 */
bd4c82c2
HY
1244 if (PageAnon(page) && PageSwapBacked(page)) {
1245 if (!PageSwapCache(page)) {
1246 if (!(sc->gfp_mask & __GFP_IO))
1247 goto keep_locked;
1248 if (PageTransHuge(page)) {
1249 /* cannot split THP, skip it */
1250 if (!can_split_huge_page(page, NULL))
1251 goto activate_locked;
1252 /*
1253 * Split pages without a PMD map right
1254 * away. Chances are some or all of the
1255 * tail pages can be freed without IO.
1256 */
1257 if (!compound_mapcount(page) &&
1258 split_huge_page_to_list(page,
1259 page_list))
1260 goto activate_locked;
1261 }
1262 if (!add_to_swap(page)) {
1263 if (!PageTransHuge(page))
98879b3b 1264 goto activate_locked_split;
bd4c82c2
HY
1265 /* Fallback to swap normal pages */
1266 if (split_huge_page_to_list(page,
1267 page_list))
1268 goto activate_locked;
fe490cc0
HY
1269#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1270 count_vm_event(THP_SWPOUT_FALLBACK);
1271#endif
bd4c82c2 1272 if (!add_to_swap(page))
98879b3b 1273 goto activate_locked_split;
bd4c82c2 1274 }
0f074658 1275
4b793062 1276 may_enter_fs = true;
1da177e4 1277
bd4c82c2
HY
1278 /* Adding to swap updated mapping */
1279 mapping = page_mapping(page);
1280 }
7751b2da
KS
1281 } else if (unlikely(PageTransHuge(page))) {
1282 /* Split file THP */
1283 if (split_huge_page_to_list(page, page_list))
1284 goto keep_locked;
e2be15f6 1285 }
1da177e4 1286
98879b3b
YS
1287 /*
1288 * THP may get split above, need minus tail pages and update
1289 * nr_pages to avoid accounting tail pages twice.
1290 *
1291 * The tail pages that are added into swap cache successfully
1292 * reach here.
1293 */
1294 if ((nr_pages > 1) && !PageTransHuge(page)) {
1295 sc->nr_scanned -= (nr_pages - 1);
1296 nr_pages = 1;
1297 }
1298
1da177e4
LT
1299 /*
1300 * The page is mapped into the page tables of one or more
1301 * processes. Try to unmap it here.
1302 */
802a3a92 1303 if (page_mapped(page)) {
bd4c82c2 1304 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1f318a9b 1305 bool was_swapbacked = PageSwapBacked(page);
bd4c82c2
HY
1306
1307 if (unlikely(PageTransHuge(page)))
1308 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1309
bd4c82c2 1310 if (!try_to_unmap(page, flags)) {
98879b3b 1311 stat->nr_unmap_fail += nr_pages;
1f318a9b
JK
1312 if (!was_swapbacked && PageSwapBacked(page))
1313 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1314 goto activate_locked;
1da177e4
LT
1315 }
1316 }
1317
1318 if (PageDirty(page)) {
ee72886d 1319 /*
4eda4823
JW
1320 * Only kswapd can writeback filesystem pages
1321 * to avoid risk of stack overflow. But avoid
1322 * injecting inefficient single-page IO into
1323 * flusher writeback as much as possible: only
1324 * write pages when we've encountered many
1325 * dirty pages, and when we've already scanned
1326 * the rest of the LRU for clean pages and see
1327 * the same dirty pages again (PageReclaim).
ee72886d 1328 */
9de4f22a 1329 if (page_is_file_lru(page) &&
4eda4823
JW
1330 (!current_is_kswapd() || !PageReclaim(page) ||
1331 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1332 /*
1333 * Immediately reclaim when written back.
1334 * Similar in principal to deactivate_page()
1335 * except we already have the page isolated
1336 * and know it's dirty
1337 */
c4a25635 1338 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1339 SetPageReclaim(page);
1340
c55e8d03 1341 goto activate_locked;
ee72886d
MG
1342 }
1343
dfc8d636 1344 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1345 goto keep_locked;
4dd4b920 1346 if (!may_enter_fs)
1da177e4 1347 goto keep_locked;
52a8363e 1348 if (!sc->may_writepage)
1da177e4
LT
1349 goto keep_locked;
1350
d950c947
MG
1351 /*
1352 * Page is dirty. Flush the TLB if a writable entry
1353 * potentially exists to avoid CPU writes after IO
1354 * starts and then write it out here.
1355 */
1356 try_to_unmap_flush_dirty();
cb16556d 1357 switch (pageout(page, mapping)) {
1da177e4
LT
1358 case PAGE_KEEP:
1359 goto keep_locked;
1360 case PAGE_ACTIVATE:
1361 goto activate_locked;
1362 case PAGE_SUCCESS:
96f8bf4f
JW
1363 stat->nr_pageout += hpage_nr_pages(page);
1364
7d3579e8 1365 if (PageWriteback(page))
41ac1999 1366 goto keep;
7d3579e8 1367 if (PageDirty(page))
1da177e4 1368 goto keep;
7d3579e8 1369
1da177e4
LT
1370 /*
1371 * A synchronous write - probably a ramdisk. Go
1372 * ahead and try to reclaim the page.
1373 */
529ae9aa 1374 if (!trylock_page(page))
1da177e4
LT
1375 goto keep;
1376 if (PageDirty(page) || PageWriteback(page))
1377 goto keep_locked;
1378 mapping = page_mapping(page);
1379 case PAGE_CLEAN:
1380 ; /* try to free the page below */
1381 }
1382 }
1383
1384 /*
1385 * If the page has buffers, try to free the buffer mappings
1386 * associated with this page. If we succeed we try to free
1387 * the page as well.
1388 *
1389 * We do this even if the page is PageDirty().
1390 * try_to_release_page() does not perform I/O, but it is
1391 * possible for a page to have PageDirty set, but it is actually
1392 * clean (all its buffers are clean). This happens if the
1393 * buffers were written out directly, with submit_bh(). ext3
894bc310 1394 * will do this, as well as the blockdev mapping.
1da177e4
LT
1395 * try_to_release_page() will discover that cleanness and will
1396 * drop the buffers and mark the page clean - it can be freed.
1397 *
1398 * Rarely, pages can have buffers and no ->mapping. These are
1399 * the pages which were not successfully invalidated in
1400 * truncate_complete_page(). We try to drop those buffers here
1401 * and if that worked, and the page is no longer mapped into
1402 * process address space (page_count == 1) it can be freed.
1403 * Otherwise, leave the page on the LRU so it is swappable.
1404 */
266cf658 1405 if (page_has_private(page)) {
1da177e4
LT
1406 if (!try_to_release_page(page, sc->gfp_mask))
1407 goto activate_locked;
e286781d
NP
1408 if (!mapping && page_count(page) == 1) {
1409 unlock_page(page);
1410 if (put_page_testzero(page))
1411 goto free_it;
1412 else {
1413 /*
1414 * rare race with speculative reference.
1415 * the speculative reference will free
1416 * this page shortly, so we may
1417 * increment nr_reclaimed here (and
1418 * leave it off the LRU).
1419 */
1420 nr_reclaimed++;
1421 continue;
1422 }
1423 }
1da177e4
LT
1424 }
1425
802a3a92
SL
1426 if (PageAnon(page) && !PageSwapBacked(page)) {
1427 /* follow __remove_mapping for reference */
1428 if (!page_ref_freeze(page, 1))
1429 goto keep_locked;
1430 if (PageDirty(page)) {
1431 page_ref_unfreeze(page, 1);
1432 goto keep_locked;
1433 }
1da177e4 1434
802a3a92 1435 count_vm_event(PGLAZYFREED);
2262185c 1436 count_memcg_page_event(page, PGLAZYFREED);
b910718a
JW
1437 } else if (!mapping || !__remove_mapping(mapping, page, true,
1438 sc->target_mem_cgroup))
802a3a92 1439 goto keep_locked;
9a1ea439
HD
1440
1441 unlock_page(page);
e286781d 1442free_it:
98879b3b
YS
1443 /*
1444 * THP may get swapped out in a whole, need account
1445 * all base pages.
1446 */
1447 nr_reclaimed += nr_pages;
abe4c3b5
MG
1448
1449 /*
1450 * Is there need to periodically free_page_list? It would
1451 * appear not as the counts should be low
1452 */
7ae88534 1453 if (unlikely(PageTransHuge(page)))
ff45fc3c 1454 destroy_compound_page(page);
7ae88534 1455 else
bd4c82c2 1456 list_add(&page->lru, &free_pages);
1da177e4
LT
1457 continue;
1458
98879b3b
YS
1459activate_locked_split:
1460 /*
1461 * The tail pages that are failed to add into swap cache
1462 * reach here. Fixup nr_scanned and nr_pages.
1463 */
1464 if (nr_pages > 1) {
1465 sc->nr_scanned -= (nr_pages - 1);
1466 nr_pages = 1;
1467 }
1da177e4 1468activate_locked:
68a22394 1469 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1470 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1471 PageMlocked(page)))
a2c43eed 1472 try_to_free_swap(page);
309381fe 1473 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1474 if (!PageMlocked(page)) {
9de4f22a 1475 int type = page_is_file_lru(page);
ad6b6704 1476 SetPageActive(page);
98879b3b 1477 stat->nr_activate[type] += nr_pages;
2262185c 1478 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1479 }
1da177e4
LT
1480keep_locked:
1481 unlock_page(page);
1482keep:
1483 list_add(&page->lru, &ret_pages);
309381fe 1484 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1485 }
abe4c3b5 1486
98879b3b
YS
1487 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1488
747db954 1489 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1490 try_to_unmap_flush();
2d4894b5 1491 free_unref_page_list(&free_pages);
abe4c3b5 1492
1da177e4 1493 list_splice(&ret_pages, page_list);
886cf190 1494 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1495
05ff5137 1496 return nr_reclaimed;
1da177e4
LT
1497}
1498
730ec8c0 1499unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1500 struct list_head *page_list)
1501{
1502 struct scan_control sc = {
1503 .gfp_mask = GFP_KERNEL,
1504 .priority = DEF_PRIORITY,
1505 .may_unmap = 1,
1506 };
1f318a9b 1507 struct reclaim_stat stat;
730ec8c0 1508 unsigned int nr_reclaimed;
02c6de8d
MK
1509 struct page *page, *next;
1510 LIST_HEAD(clean_pages);
1511
1512 list_for_each_entry_safe(page, next, page_list, lru) {
9de4f22a 1513 if (page_is_file_lru(page) && !PageDirty(page) &&
a58f2cef 1514 !__PageMovable(page) && !PageUnevictable(page)) {
02c6de8d
MK
1515 ClearPageActive(page);
1516 list_move(&page->lru, &clean_pages);
1517 }
1518 }
1519
1f318a9b
JK
1520 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1521 TTU_IGNORE_ACCESS, &stat, true);
02c6de8d 1522 list_splice(&clean_pages, page_list);
1f318a9b
JK
1523 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed);
1524 /*
1525 * Since lazyfree pages are isolated from file LRU from the beginning,
1526 * they will rotate back to anonymous LRU in the end if it failed to
1527 * discard so isolated count will be mismatched.
1528 * Compensate the isolated count for both LRU lists.
1529 */
1530 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1531 stat.nr_lazyfree_fail);
1532 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1533 -stat.nr_lazyfree_fail);
1534 return nr_reclaimed;
02c6de8d
MK
1535}
1536
5ad333eb
AW
1537/*
1538 * Attempt to remove the specified page from its LRU. Only take this page
1539 * if it is of the appropriate PageActive status. Pages which are being
1540 * freed elsewhere are also ignored.
1541 *
1542 * page: page to consider
1543 * mode: one of the LRU isolation modes defined above
1544 *
1545 * returns 0 on success, -ve errno on failure.
1546 */
f3fd4a61 1547int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1548{
1549 int ret = -EINVAL;
1550
1551 /* Only take pages on the LRU. */
1552 if (!PageLRU(page))
1553 return ret;
1554
e46a2879
MK
1555 /* Compaction should not handle unevictable pages but CMA can do so */
1556 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1557 return ret;
1558
5ad333eb 1559 ret = -EBUSY;
08e552c6 1560
c8244935
MG
1561 /*
1562 * To minimise LRU disruption, the caller can indicate that it only
1563 * wants to isolate pages it will be able to operate on without
1564 * blocking - clean pages for the most part.
1565 *
c8244935
MG
1566 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1567 * that it is possible to migrate without blocking
1568 */
1276ad68 1569 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1570 /* All the caller can do on PageWriteback is block */
1571 if (PageWriteback(page))
1572 return ret;
1573
1574 if (PageDirty(page)) {
1575 struct address_space *mapping;
69d763fc 1576 bool migrate_dirty;
c8244935 1577
c8244935
MG
1578 /*
1579 * Only pages without mappings or that have a
1580 * ->migratepage callback are possible to migrate
69d763fc
MG
1581 * without blocking. However, we can be racing with
1582 * truncation so it's necessary to lock the page
1583 * to stabilise the mapping as truncation holds
1584 * the page lock until after the page is removed
1585 * from the page cache.
c8244935 1586 */
69d763fc
MG
1587 if (!trylock_page(page))
1588 return ret;
1589
c8244935 1590 mapping = page_mapping(page);
145e1a71 1591 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1592 unlock_page(page);
1593 if (!migrate_dirty)
c8244935
MG
1594 return ret;
1595 }
1596 }
39deaf85 1597
f80c0673
MK
1598 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1599 return ret;
1600
5ad333eb
AW
1601 if (likely(get_page_unless_zero(page))) {
1602 /*
1603 * Be careful not to clear PageLRU until after we're
1604 * sure the page is not being freed elsewhere -- the
1605 * page release code relies on it.
1606 */
1607 ClearPageLRU(page);
1608 ret = 0;
1609 }
1610
1611 return ret;
1612}
1613
7ee36a14
MG
1614
1615/*
1616 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 1617 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
1618 */
1619static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1620 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1621{
7ee36a14
MG
1622 int zid;
1623
7ee36a14
MG
1624 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1625 if (!nr_zone_taken[zid])
1626 continue;
1627
a892cb6b 1628 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
1629 }
1630
7ee36a14
MG
1631}
1632
f4b7e272
AR
1633/**
1634 * pgdat->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1635 * shrink the lists perform better by taking out a batch of pages
1636 * and working on them outside the LRU lock.
1637 *
1638 * For pagecache intensive workloads, this function is the hottest
1639 * spot in the kernel (apart from copy_*_user functions).
1640 *
1641 * Appropriate locks must be held before calling this function.
1642 *
791b48b6 1643 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1644 * @lruvec: The LRU vector to pull pages from.
1da177e4 1645 * @dst: The temp list to put pages on to.
f626012d 1646 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1647 * @sc: The scan_control struct for this reclaim session
3cb99451 1648 * @lru: LRU list id for isolating
1da177e4
LT
1649 *
1650 * returns how many pages were moved onto *@dst.
1651 */
69e05944 1652static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1653 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1654 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1655 enum lru_list lru)
1da177e4 1656{
75b00af7 1657 struct list_head *src = &lruvec->lists[lru];
69e05944 1658 unsigned long nr_taken = 0;
599d0c95 1659 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1660 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1661 unsigned long skipped = 0;
791b48b6 1662 unsigned long scan, total_scan, nr_pages;
b2e18757 1663 LIST_HEAD(pages_skipped);
a9e7c39f 1664 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1665
98879b3b 1666 total_scan = 0;
791b48b6 1667 scan = 0;
98879b3b 1668 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1669 struct page *page;
5ad333eb 1670
1da177e4
LT
1671 page = lru_to_page(src);
1672 prefetchw_prev_lru_page(page, src, flags);
1673
309381fe 1674 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1675
d8c6546b 1676 nr_pages = compound_nr(page);
98879b3b
YS
1677 total_scan += nr_pages;
1678
b2e18757
MG
1679 if (page_zonenum(page) > sc->reclaim_idx) {
1680 list_move(&page->lru, &pages_skipped);
98879b3b 1681 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1682 continue;
1683 }
1684
791b48b6
MK
1685 /*
1686 * Do not count skipped pages because that makes the function
1687 * return with no isolated pages if the LRU mostly contains
1688 * ineligible pages. This causes the VM to not reclaim any
1689 * pages, triggering a premature OOM.
98879b3b
YS
1690 *
1691 * Account all tail pages of THP. This would not cause
1692 * premature OOM since __isolate_lru_page() returns -EBUSY
1693 * only when the page is being freed somewhere else.
791b48b6 1694 */
98879b3b 1695 scan += nr_pages;
f3fd4a61 1696 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1697 case 0:
599d0c95
MG
1698 nr_taken += nr_pages;
1699 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1700 list_move(&page->lru, dst);
5ad333eb
AW
1701 break;
1702
1703 case -EBUSY:
1704 /* else it is being freed elsewhere */
1705 list_move(&page->lru, src);
1706 continue;
46453a6e 1707
5ad333eb
AW
1708 default:
1709 BUG();
1710 }
1da177e4
LT
1711 }
1712
b2e18757
MG
1713 /*
1714 * Splice any skipped pages to the start of the LRU list. Note that
1715 * this disrupts the LRU order when reclaiming for lower zones but
1716 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1717 * scanning would soon rescan the same pages to skip and put the
1718 * system at risk of premature OOM.
1719 */
7cc30fcf
MG
1720 if (!list_empty(&pages_skipped)) {
1721 int zid;
1722
3db65812 1723 list_splice(&pages_skipped, src);
7cc30fcf
MG
1724 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1725 if (!nr_skipped[zid])
1726 continue;
1727
1728 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1729 skipped += nr_skipped[zid];
7cc30fcf
MG
1730 }
1731 }
791b48b6 1732 *nr_scanned = total_scan;
1265e3a6 1733 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1734 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1735 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1736 return nr_taken;
1737}
1738
62695a84
NP
1739/**
1740 * isolate_lru_page - tries to isolate a page from its LRU list
1741 * @page: page to isolate from its LRU list
1742 *
1743 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1744 * vmstat statistic corresponding to whatever LRU list the page was on.
1745 *
1746 * Returns 0 if the page was removed from an LRU list.
1747 * Returns -EBUSY if the page was not on an LRU list.
1748 *
1749 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1750 * the active list, it will have PageActive set. If it was found on
1751 * the unevictable list, it will have the PageUnevictable bit set. That flag
1752 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1753 *
1754 * The vmstat statistic corresponding to the list on which the page was
1755 * found will be decremented.
1756 *
1757 * Restrictions:
a5d09bed 1758 *
62695a84
NP
1759 * (1) Must be called with an elevated refcount on the page. This is a
1760 * fundamentnal difference from isolate_lru_pages (which is called
1761 * without a stable reference).
1762 * (2) the lru_lock must not be held.
1763 * (3) interrupts must be enabled.
1764 */
1765int isolate_lru_page(struct page *page)
1766{
1767 int ret = -EBUSY;
1768
309381fe 1769 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1770 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1771
62695a84 1772 if (PageLRU(page)) {
f4b7e272 1773 pg_data_t *pgdat = page_pgdat(page);
fa9add64 1774 struct lruvec *lruvec;
62695a84 1775
f4b7e272
AR
1776 spin_lock_irq(&pgdat->lru_lock);
1777 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0c917313 1778 if (PageLRU(page)) {
894bc310 1779 int lru = page_lru(page);
0c917313 1780 get_page(page);
62695a84 1781 ClearPageLRU(page);
fa9add64
HD
1782 del_page_from_lru_list(page, lruvec, lru);
1783 ret = 0;
62695a84 1784 }
f4b7e272 1785 spin_unlock_irq(&pgdat->lru_lock);
62695a84
NP
1786 }
1787 return ret;
1788}
1789
35cd7815 1790/*
d37dd5dc 1791 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 1792 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
1793 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1794 * the LRU list will go small and be scanned faster than necessary, leading to
1795 * unnecessary swapping, thrashing and OOM.
35cd7815 1796 */
599d0c95 1797static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1798 struct scan_control *sc)
1799{
1800 unsigned long inactive, isolated;
1801
1802 if (current_is_kswapd())
1803 return 0;
1804
b5ead35e 1805 if (!writeback_throttling_sane(sc))
35cd7815
RR
1806 return 0;
1807
1808 if (file) {
599d0c95
MG
1809 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1810 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1811 } else {
599d0c95
MG
1812 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1813 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1814 }
1815
3cf23841
FW
1816 /*
1817 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1818 * won't get blocked by normal direct-reclaimers, forming a circular
1819 * deadlock.
1820 */
d0164adc 1821 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1822 inactive >>= 3;
1823
35cd7815
RR
1824 return isolated > inactive;
1825}
1826
a222f341
KT
1827/*
1828 * This moves pages from @list to corresponding LRU list.
1829 *
1830 * We move them the other way if the page is referenced by one or more
1831 * processes, from rmap.
1832 *
1833 * If the pages are mostly unmapped, the processing is fast and it is
1834 * appropriate to hold zone_lru_lock across the whole operation. But if
1835 * the pages are mapped, the processing is slow (page_referenced()) so we
1836 * should drop zone_lru_lock around each page. It's impossible to balance
1837 * this, so instead we remove the pages from the LRU while processing them.
1838 * It is safe to rely on PG_active against the non-LRU pages in here because
1839 * nobody will play with that bit on a non-LRU page.
1840 *
1841 * The downside is that we have to touch page->_refcount against each page.
1842 * But we had to alter page->flags anyway.
1843 *
1844 * Returns the number of pages moved to the given lruvec.
1845 */
1846
1847static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1848 struct list_head *list)
66635629 1849{
599d0c95 1850 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
a222f341 1851 int nr_pages, nr_moved = 0;
3f79768f 1852 LIST_HEAD(pages_to_free);
a222f341
KT
1853 struct page *page;
1854 enum lru_list lru;
66635629 1855
a222f341
KT
1856 while (!list_empty(list)) {
1857 page = lru_to_page(list);
309381fe 1858 VM_BUG_ON_PAGE(PageLRU(page), page);
39b5f29a 1859 if (unlikely(!page_evictable(page))) {
a222f341 1860 list_del(&page->lru);
599d0c95 1861 spin_unlock_irq(&pgdat->lru_lock);
66635629 1862 putback_lru_page(page);
599d0c95 1863 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1864 continue;
1865 }
599d0c95 1866 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1867
7a608572 1868 SetPageLRU(page);
66635629 1869 lru = page_lru(page);
a222f341
KT
1870
1871 nr_pages = hpage_nr_pages(page);
1872 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1873 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1874
2bcf8879
HD
1875 if (put_page_testzero(page)) {
1876 __ClearPageLRU(page);
1877 __ClearPageActive(page);
fa9add64 1878 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1879
1880 if (unlikely(PageCompound(page))) {
599d0c95 1881 spin_unlock_irq(&pgdat->lru_lock);
ff45fc3c 1882 destroy_compound_page(page);
599d0c95 1883 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1884 } else
1885 list_add(&page->lru, &pages_to_free);
a222f341
KT
1886 } else {
1887 nr_moved += nr_pages;
31d8fcac
JW
1888 if (PageActive(page))
1889 workingset_age_nonresident(lruvec, nr_pages);
66635629
MG
1890 }
1891 }
66635629 1892
3f79768f
HD
1893 /*
1894 * To save our caller's stack, now use input list for pages to free.
1895 */
a222f341
KT
1896 list_splice(&pages_to_free, list);
1897
1898 return nr_moved;
66635629
MG
1899}
1900
399ba0b9
N
1901/*
1902 * If a kernel thread (such as nfsd for loop-back mounts) services
a37b0715 1903 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
399ba0b9
N
1904 * In that case we should only throttle if the backing device it is
1905 * writing to is congested. In other cases it is safe to throttle.
1906 */
1907static int current_may_throttle(void)
1908{
a37b0715 1909 return !(current->flags & PF_LOCAL_THROTTLE) ||
399ba0b9
N
1910 current->backing_dev_info == NULL ||
1911 bdi_write_congested(current->backing_dev_info);
1912}
1913
1da177e4 1914/*
b2e18757 1915 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1916 * of reclaimed pages
1da177e4 1917 */
66635629 1918static noinline_for_stack unsigned long
1a93be0e 1919shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1920 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1921{
1922 LIST_HEAD(page_list);
e247dbce 1923 unsigned long nr_scanned;
730ec8c0 1924 unsigned int nr_reclaimed = 0;
e247dbce 1925 unsigned long nr_taken;
060f005f 1926 struct reclaim_stat stat;
497a6c1b 1927 bool file = is_file_lru(lru);
f46b7912 1928 enum vm_event_item item;
599d0c95 1929 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 1930 bool stalled = false;
78dc583d 1931
599d0c95 1932 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1933 if (stalled)
1934 return 0;
1935
1936 /* wait a bit for the reclaimer. */
1937 msleep(100);
1938 stalled = true;
35cd7815
RR
1939
1940 /* We are about to die and free our memory. Return now. */
1941 if (fatal_signal_pending(current))
1942 return SWAP_CLUSTER_MAX;
1943 }
1944
1da177e4 1945 lru_add_drain();
f80c0673 1946
599d0c95 1947 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1948
5dc35979 1949 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 1950 &nr_scanned, sc, lru);
95d918fc 1951
599d0c95 1952 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 1953 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 1954 if (!cgroup_reclaim(sc))
f46b7912
KT
1955 __count_vm_events(item, nr_scanned);
1956 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
1957 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1958
599d0c95 1959 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1960
d563c050 1961 if (nr_taken == 0)
66635629 1962 return 0;
5ad333eb 1963
a128ca71 1964 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1965 &stat, false);
c661b078 1966
599d0c95 1967 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1968
497a6c1b
JW
1969 move_pages_to_lru(lruvec, &page_list);
1970
1971 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
96f8bf4f 1972 lru_note_cost(lruvec, file, stat.nr_pageout);
f46b7912 1973 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 1974 if (!cgroup_reclaim(sc))
f46b7912
KT
1975 __count_vm_events(item, nr_reclaimed);
1976 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 1977 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
3f79768f 1978
599d0c95 1979 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1980
747db954 1981 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1982 free_unref_page_list(&page_list);
e11da5b4 1983
1c610d5f
AR
1984 /*
1985 * If dirty pages are scanned that are not queued for IO, it
1986 * implies that flushers are not doing their job. This can
1987 * happen when memory pressure pushes dirty pages to the end of
1988 * the LRU before the dirty limits are breached and the dirty
1989 * data has expired. It can also happen when the proportion of
1990 * dirty pages grows not through writes but through memory
1991 * pressure reclaiming all the clean cache. And in some cases,
1992 * the flushers simply cannot keep up with the allocation
1993 * rate. Nudge the flusher threads in case they are asleep.
1994 */
1995 if (stat.nr_unqueued_dirty == nr_taken)
1996 wakeup_flusher_threads(WB_REASON_VMSCAN);
1997
d108c772
AR
1998 sc->nr.dirty += stat.nr_dirty;
1999 sc->nr.congested += stat.nr_congested;
2000 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2001 sc->nr.writeback += stat.nr_writeback;
2002 sc->nr.immediate += stat.nr_immediate;
2003 sc->nr.taken += nr_taken;
2004 if (file)
2005 sc->nr.file_taken += nr_taken;
8e950282 2006
599d0c95 2007 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2008 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2009 return nr_reclaimed;
1da177e4
LT
2010}
2011
f626012d 2012static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2013 struct lruvec *lruvec,
f16015fb 2014 struct scan_control *sc,
9e3b2f8c 2015 enum lru_list lru)
1da177e4 2016{
44c241f1 2017 unsigned long nr_taken;
f626012d 2018 unsigned long nr_scanned;
6fe6b7e3 2019 unsigned long vm_flags;
1da177e4 2020 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2021 LIST_HEAD(l_active);
b69408e8 2022 LIST_HEAD(l_inactive);
1da177e4 2023 struct page *page;
9d998b4f
MH
2024 unsigned nr_deactivate, nr_activate;
2025 unsigned nr_rotated = 0;
3cb99451 2026 int file = is_file_lru(lru);
599d0c95 2027 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2028
2029 lru_add_drain();
f80c0673 2030
599d0c95 2031 spin_lock_irq(&pgdat->lru_lock);
925b7673 2032
5dc35979 2033 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2034 &nr_scanned, sc, lru);
89b5fae5 2035
599d0c95 2036 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2037
599d0c95 2038 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2039 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2040
599d0c95 2041 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2042
1da177e4
LT
2043 while (!list_empty(&l_hold)) {
2044 cond_resched();
2045 page = lru_to_page(&l_hold);
2046 list_del(&page->lru);
7e9cd484 2047
39b5f29a 2048 if (unlikely(!page_evictable(page))) {
894bc310
LS
2049 putback_lru_page(page);
2050 continue;
2051 }
2052
cc715d99
MG
2053 if (unlikely(buffer_heads_over_limit)) {
2054 if (page_has_private(page) && trylock_page(page)) {
2055 if (page_has_private(page))
2056 try_to_release_page(page, 0);
2057 unlock_page(page);
2058 }
2059 }
2060
c3ac9a8a
JW
2061 if (page_referenced(page, 0, sc->target_mem_cgroup,
2062 &vm_flags)) {
8cab4754
WF
2063 /*
2064 * Identify referenced, file-backed active pages and
2065 * give them one more trip around the active list. So
2066 * that executable code get better chances to stay in
2067 * memory under moderate memory pressure. Anon pages
2068 * are not likely to be evicted by use-once streaming
2069 * IO, plus JVM can create lots of anon VM_EXEC pages,
2070 * so we ignore them here.
2071 */
9de4f22a 2072 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
264e90cc 2073 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2074 list_add(&page->lru, &l_active);
2075 continue;
2076 }
2077 }
7e9cd484 2078
5205e56e 2079 ClearPageActive(page); /* we are de-activating */
1899ad18 2080 SetPageWorkingset(page);
1da177e4
LT
2081 list_add(&page->lru, &l_inactive);
2082 }
2083
b555749a 2084 /*
8cab4754 2085 * Move pages back to the lru list.
b555749a 2086 */
599d0c95 2087 spin_lock_irq(&pgdat->lru_lock);
556adecb 2088
a222f341
KT
2089 nr_activate = move_pages_to_lru(lruvec, &l_active);
2090 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2091 /* Keep all free pages in l_active list */
2092 list_splice(&l_inactive, &l_active);
9851ac13
KT
2093
2094 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2095 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2096
599d0c95
MG
2097 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2098 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2099
f372d89e
KT
2100 mem_cgroup_uncharge_list(&l_active);
2101 free_unref_page_list(&l_active);
9d998b4f
MH
2102 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2103 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2104}
2105
1a4e58cc
MK
2106unsigned long reclaim_pages(struct list_head *page_list)
2107{
f661d007 2108 int nid = NUMA_NO_NODE;
730ec8c0 2109 unsigned int nr_reclaimed = 0;
1a4e58cc
MK
2110 LIST_HEAD(node_page_list);
2111 struct reclaim_stat dummy_stat;
2112 struct page *page;
2113 struct scan_control sc = {
2114 .gfp_mask = GFP_KERNEL,
2115 .priority = DEF_PRIORITY,
2116 .may_writepage = 1,
2117 .may_unmap = 1,
2118 .may_swap = 1,
2119 };
2120
2121 while (!list_empty(page_list)) {
2122 page = lru_to_page(page_list);
f661d007 2123 if (nid == NUMA_NO_NODE) {
1a4e58cc
MK
2124 nid = page_to_nid(page);
2125 INIT_LIST_HEAD(&node_page_list);
2126 }
2127
2128 if (nid == page_to_nid(page)) {
2129 ClearPageActive(page);
2130 list_move(&page->lru, &node_page_list);
2131 continue;
2132 }
2133
2134 nr_reclaimed += shrink_page_list(&node_page_list,
2135 NODE_DATA(nid),
2136 &sc, 0,
2137 &dummy_stat, false);
2138 while (!list_empty(&node_page_list)) {
2139 page = lru_to_page(&node_page_list);
2140 list_del(&page->lru);
2141 putback_lru_page(page);
2142 }
2143
f661d007 2144 nid = NUMA_NO_NODE;
1a4e58cc
MK
2145 }
2146
2147 if (!list_empty(&node_page_list)) {
2148 nr_reclaimed += shrink_page_list(&node_page_list,
2149 NODE_DATA(nid),
2150 &sc, 0,
2151 &dummy_stat, false);
2152 while (!list_empty(&node_page_list)) {
2153 page = lru_to_page(&node_page_list);
2154 list_del(&page->lru);
2155 putback_lru_page(page);
2156 }
2157 }
2158
2159 return nr_reclaimed;
2160}
2161
b91ac374
JW
2162static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2163 struct lruvec *lruvec, struct scan_control *sc)
2164{
2165 if (is_active_lru(lru)) {
2166 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2167 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2168 else
2169 sc->skipped_deactivate = 1;
2170 return 0;
2171 }
2172
2173 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2174}
2175
59dc76b0
RR
2176/*
2177 * The inactive anon list should be small enough that the VM never has
2178 * to do too much work.
14797e23 2179 *
59dc76b0
RR
2180 * The inactive file list should be small enough to leave most memory
2181 * to the established workingset on the scan-resistant active list,
2182 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2183 *
59dc76b0
RR
2184 * Both inactive lists should also be large enough that each inactive
2185 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2186 *
2a2e4885
JW
2187 * If that fails and refaulting is observed, the inactive list grows.
2188 *
59dc76b0 2189 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2190 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2191 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2192 *
59dc76b0
RR
2193 * total target max
2194 * memory ratio inactive
2195 * -------------------------------------
2196 * 10MB 1 5MB
2197 * 100MB 1 50MB
2198 * 1GB 3 250MB
2199 * 10GB 10 0.9GB
2200 * 100GB 31 3GB
2201 * 1TB 101 10GB
2202 * 10TB 320 32GB
56e49d21 2203 */
b91ac374 2204static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2205{
b91ac374 2206 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2207 unsigned long inactive, active;
2208 unsigned long inactive_ratio;
59dc76b0 2209 unsigned long gb;
e3790144 2210
b91ac374
JW
2211 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2212 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2213
b91ac374
JW
2214 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2215 if (gb)
2216 inactive_ratio = int_sqrt(10 * gb);
2217 else
2218 inactive_ratio = 1;
fd538803 2219
59dc76b0 2220 return inactive * inactive_ratio < active;
b39415b2
RR
2221}
2222
9a265114
JW
2223enum scan_balance {
2224 SCAN_EQUAL,
2225 SCAN_FRACT,
2226 SCAN_ANON,
2227 SCAN_FILE,
2228};
2229
4f98a2fe
RR
2230/*
2231 * Determine how aggressively the anon and file LRU lists should be
2232 * scanned. The relative value of each set of LRU lists is determined
2233 * by looking at the fraction of the pages scanned we did rotate back
2234 * onto the active list instead of evict.
2235 *
be7bd59d
WL
2236 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2237 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2238 */
afaf07a6
JW
2239static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2240 unsigned long *nr)
4f98a2fe 2241{
afaf07a6 2242 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2243 unsigned long anon_cost, file_cost, total_cost;
33377678 2244 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2245 u64 fraction[2];
2246 u64 denominator = 0; /* gcc */
9a265114 2247 enum scan_balance scan_balance;
4f98a2fe 2248 unsigned long ap, fp;
4111304d 2249 enum lru_list lru;
76a33fc3
SL
2250
2251 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2252 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2253 scan_balance = SCAN_FILE;
76a33fc3
SL
2254 goto out;
2255 }
4f98a2fe 2256
10316b31
JW
2257 /*
2258 * Global reclaim will swap to prevent OOM even with no
2259 * swappiness, but memcg users want to use this knob to
2260 * disable swapping for individual groups completely when
2261 * using the memory controller's swap limit feature would be
2262 * too expensive.
2263 */
b5ead35e 2264 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2265 scan_balance = SCAN_FILE;
10316b31
JW
2266 goto out;
2267 }
2268
2269 /*
2270 * Do not apply any pressure balancing cleverness when the
2271 * system is close to OOM, scan both anon and file equally
2272 * (unless the swappiness setting disagrees with swapping).
2273 */
02695175 2274 if (!sc->priority && swappiness) {
9a265114 2275 scan_balance = SCAN_EQUAL;
10316b31
JW
2276 goto out;
2277 }
2278
62376251 2279 /*
53138cea 2280 * If the system is almost out of file pages, force-scan anon.
62376251 2281 */
b91ac374 2282 if (sc->file_is_tiny) {
53138cea
JW
2283 scan_balance = SCAN_ANON;
2284 goto out;
62376251
JW
2285 }
2286
7c5bd705 2287 /*
b91ac374
JW
2288 * If there is enough inactive page cache, we do not reclaim
2289 * anything from the anonymous working right now.
7c5bd705 2290 */
b91ac374 2291 if (sc->cache_trim_mode) {
9a265114 2292 scan_balance = SCAN_FILE;
7c5bd705
JW
2293 goto out;
2294 }
2295
9a265114 2296 scan_balance = SCAN_FRACT;
58c37f6e 2297 /*
314b57fb
JW
2298 * Calculate the pressure balance between anon and file pages.
2299 *
2300 * The amount of pressure we put on each LRU is inversely
2301 * proportional to the cost of reclaiming each list, as
2302 * determined by the share of pages that are refaulting, times
2303 * the relative IO cost of bringing back a swapped out
2304 * anonymous page vs reloading a filesystem page (swappiness).
2305 *
d483a5dd
JW
2306 * Although we limit that influence to ensure no list gets
2307 * left behind completely: at least a third of the pressure is
2308 * applied, before swappiness.
2309 *
314b57fb 2310 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2311 */
d483a5dd
JW
2312 total_cost = sc->anon_cost + sc->file_cost;
2313 anon_cost = total_cost + sc->anon_cost;
2314 file_cost = total_cost + sc->file_cost;
2315 total_cost = anon_cost + file_cost;
58c37f6e 2316
d483a5dd
JW
2317 ap = swappiness * (total_cost + 1);
2318 ap /= anon_cost + 1;
4f98a2fe 2319
d483a5dd
JW
2320 fp = (200 - swappiness) * (total_cost + 1);
2321 fp /= file_cost + 1;
4f98a2fe 2322
76a33fc3
SL
2323 fraction[0] = ap;
2324 fraction[1] = fp;
a4fe1631 2325 denominator = ap + fp;
76a33fc3 2326out:
688035f7
JW
2327 for_each_evictable_lru(lru) {
2328 int file = is_file_lru(lru);
9783aa99 2329 unsigned long lruvec_size;
688035f7 2330 unsigned long scan;
1bc63fb1 2331 unsigned long protection;
9783aa99
CD
2332
2333 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
22f7496f
YS
2334 protection = mem_cgroup_protection(sc->target_mem_cgroup,
2335 memcg,
1bc63fb1 2336 sc->memcg_low_reclaim);
9783aa99 2337
1bc63fb1 2338 if (protection) {
9783aa99
CD
2339 /*
2340 * Scale a cgroup's reclaim pressure by proportioning
2341 * its current usage to its memory.low or memory.min
2342 * setting.
2343 *
2344 * This is important, as otherwise scanning aggression
2345 * becomes extremely binary -- from nothing as we
2346 * approach the memory protection threshold, to totally
2347 * nominal as we exceed it. This results in requiring
2348 * setting extremely liberal protection thresholds. It
2349 * also means we simply get no protection at all if we
2350 * set it too low, which is not ideal.
1bc63fb1
CD
2351 *
2352 * If there is any protection in place, we reduce scan
2353 * pressure by how much of the total memory used is
2354 * within protection thresholds.
9783aa99 2355 *
9de7ca46
CD
2356 * There is one special case: in the first reclaim pass,
2357 * we skip over all groups that are within their low
2358 * protection. If that fails to reclaim enough pages to
2359 * satisfy the reclaim goal, we come back and override
2360 * the best-effort low protection. However, we still
2361 * ideally want to honor how well-behaved groups are in
2362 * that case instead of simply punishing them all
2363 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2364 * memory they are using, reducing the scan pressure
2365 * again by how much of the total memory used is under
2366 * hard protection.
9783aa99 2367 */
1bc63fb1
CD
2368 unsigned long cgroup_size = mem_cgroup_size(memcg);
2369
2370 /* Avoid TOCTOU with earlier protection check */
2371 cgroup_size = max(cgroup_size, protection);
2372
2373 scan = lruvec_size - lruvec_size * protection /
2374 cgroup_size;
9783aa99
CD
2375
2376 /*
1bc63fb1 2377 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2378 * reclaim moving forwards, avoiding decrementing
9de7ca46 2379 * sc->priority further than desirable.
9783aa99 2380 */
1bc63fb1 2381 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2382 } else {
2383 scan = lruvec_size;
2384 }
2385
2386 scan >>= sc->priority;
6b4f7799 2387
688035f7
JW
2388 /*
2389 * If the cgroup's already been deleted, make sure to
2390 * scrape out the remaining cache.
2391 */
2392 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2393 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2394
688035f7
JW
2395 switch (scan_balance) {
2396 case SCAN_EQUAL:
2397 /* Scan lists relative to size */
2398 break;
2399 case SCAN_FRACT:
9a265114 2400 /*
688035f7
JW
2401 * Scan types proportional to swappiness and
2402 * their relative recent reclaim efficiency.
76073c64
GS
2403 * Make sure we don't miss the last page on
2404 * the offlined memory cgroups because of a
2405 * round-off error.
9a265114 2406 */
76073c64
GS
2407 scan = mem_cgroup_online(memcg) ?
2408 div64_u64(scan * fraction[file], denominator) :
2409 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2410 denominator);
688035f7
JW
2411 break;
2412 case SCAN_FILE:
2413 case SCAN_ANON:
2414 /* Scan one type exclusively */
e072bff6 2415 if ((scan_balance == SCAN_FILE) != file)
688035f7 2416 scan = 0;
688035f7
JW
2417 break;
2418 default:
2419 /* Look ma, no brain */
2420 BUG();
9a265114 2421 }
688035f7 2422
688035f7 2423 nr[lru] = scan;
76a33fc3 2424 }
6e08a369 2425}
4f98a2fe 2426
afaf07a6 2427static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2428{
2429 unsigned long nr[NR_LRU_LISTS];
e82e0561 2430 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2431 unsigned long nr_to_scan;
2432 enum lru_list lru;
2433 unsigned long nr_reclaimed = 0;
2434 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2435 struct blk_plug plug;
1a501907 2436 bool scan_adjusted;
9b4f98cd 2437
afaf07a6 2438 get_scan_count(lruvec, sc, nr);
9b4f98cd 2439
e82e0561
MG
2440 /* Record the original scan target for proportional adjustments later */
2441 memcpy(targets, nr, sizeof(nr));
2442
1a501907
MG
2443 /*
2444 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2445 * event that can occur when there is little memory pressure e.g.
2446 * multiple streaming readers/writers. Hence, we do not abort scanning
2447 * when the requested number of pages are reclaimed when scanning at
2448 * DEF_PRIORITY on the assumption that the fact we are direct
2449 * reclaiming implies that kswapd is not keeping up and it is best to
2450 * do a batch of work at once. For memcg reclaim one check is made to
2451 * abort proportional reclaim if either the file or anon lru has already
2452 * dropped to zero at the first pass.
2453 */
b5ead35e 2454 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2455 sc->priority == DEF_PRIORITY);
2456
9b4f98cd
JW
2457 blk_start_plug(&plug);
2458 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2459 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2460 unsigned long nr_anon, nr_file, percentage;
2461 unsigned long nr_scanned;
2462
9b4f98cd
JW
2463 for_each_evictable_lru(lru) {
2464 if (nr[lru]) {
2465 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2466 nr[lru] -= nr_to_scan;
2467
2468 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2469 lruvec, sc);
9b4f98cd
JW
2470 }
2471 }
e82e0561 2472
bd041733
MH
2473 cond_resched();
2474
e82e0561
MG
2475 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2476 continue;
2477
e82e0561
MG
2478 /*
2479 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2480 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2481 * proportionally what was requested by get_scan_count(). We
2482 * stop reclaiming one LRU and reduce the amount scanning
2483 * proportional to the original scan target.
2484 */
2485 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2486 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2487
1a501907
MG
2488 /*
2489 * It's just vindictive to attack the larger once the smaller
2490 * has gone to zero. And given the way we stop scanning the
2491 * smaller below, this makes sure that we only make one nudge
2492 * towards proportionality once we've got nr_to_reclaim.
2493 */
2494 if (!nr_file || !nr_anon)
2495 break;
2496
e82e0561
MG
2497 if (nr_file > nr_anon) {
2498 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2499 targets[LRU_ACTIVE_ANON] + 1;
2500 lru = LRU_BASE;
2501 percentage = nr_anon * 100 / scan_target;
2502 } else {
2503 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2504 targets[LRU_ACTIVE_FILE] + 1;
2505 lru = LRU_FILE;
2506 percentage = nr_file * 100 / scan_target;
2507 }
2508
2509 /* Stop scanning the smaller of the LRU */
2510 nr[lru] = 0;
2511 nr[lru + LRU_ACTIVE] = 0;
2512
2513 /*
2514 * Recalculate the other LRU scan count based on its original
2515 * scan target and the percentage scanning already complete
2516 */
2517 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2518 nr_scanned = targets[lru] - nr[lru];
2519 nr[lru] = targets[lru] * (100 - percentage) / 100;
2520 nr[lru] -= min(nr[lru], nr_scanned);
2521
2522 lru += LRU_ACTIVE;
2523 nr_scanned = targets[lru] - nr[lru];
2524 nr[lru] = targets[lru] * (100 - percentage) / 100;
2525 nr[lru] -= min(nr[lru], nr_scanned);
2526
2527 scan_adjusted = true;
9b4f98cd
JW
2528 }
2529 blk_finish_plug(&plug);
2530 sc->nr_reclaimed += nr_reclaimed;
2531
2532 /*
2533 * Even if we did not try to evict anon pages at all, we want to
2534 * rebalance the anon lru active/inactive ratio.
2535 */
b91ac374 2536 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
2537 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2538 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2539}
2540
23b9da55 2541/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2542static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2543{
d84da3f9 2544 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2545 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2546 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2547 return true;
2548
2549 return false;
2550}
2551
3e7d3449 2552/*
23b9da55
MG
2553 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2554 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2555 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 2556 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 2557 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2558 */
a9dd0a83 2559static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 2560 unsigned long nr_reclaimed,
3e7d3449
MG
2561 struct scan_control *sc)
2562{
2563 unsigned long pages_for_compaction;
2564 unsigned long inactive_lru_pages;
a9dd0a83 2565 int z;
3e7d3449
MG
2566
2567 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2568 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2569 return false;
2570
5ee04716
VB
2571 /*
2572 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2573 * number of pages that were scanned. This will return to the caller
2574 * with the risk reclaim/compaction and the resulting allocation attempt
2575 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2576 * allocations through requiring that the full LRU list has been scanned
2577 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2578 * scan, but that approximation was wrong, and there were corner cases
2579 * where always a non-zero amount of pages were scanned.
2580 */
2581 if (!nr_reclaimed)
2582 return false;
3e7d3449 2583
3e7d3449 2584 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2585 for (z = 0; z <= sc->reclaim_idx; z++) {
2586 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2587 if (!managed_zone(zone))
a9dd0a83
MG
2588 continue;
2589
2590 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2591 case COMPACT_SUCCESS:
a9dd0a83
MG
2592 case COMPACT_CONTINUE:
2593 return false;
2594 default:
2595 /* check next zone */
2596 ;
2597 }
3e7d3449 2598 }
1c6c1597
HD
2599
2600 /*
2601 * If we have not reclaimed enough pages for compaction and the
2602 * inactive lists are large enough, continue reclaiming
2603 */
2604 pages_for_compaction = compact_gap(sc->order);
2605 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2606 if (get_nr_swap_pages() > 0)
2607 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2608
5ee04716 2609 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
2610}
2611
0f6a5cff 2612static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2613{
0f6a5cff 2614 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 2615 struct mem_cgroup *memcg;
1da177e4 2616
0f6a5cff 2617 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 2618 do {
afaf07a6 2619 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
2620 unsigned long reclaimed;
2621 unsigned long scanned;
5660048c 2622
0f6a5cff 2623 switch (mem_cgroup_protected(target_memcg, memcg)) {
d2af3397
JW
2624 case MEMCG_PROT_MIN:
2625 /*
2626 * Hard protection.
2627 * If there is no reclaimable memory, OOM.
2628 */
2629 continue;
2630 case MEMCG_PROT_LOW:
2631 /*
2632 * Soft protection.
2633 * Respect the protection only as long as
2634 * there is an unprotected supply
2635 * of reclaimable memory from other cgroups.
2636 */
2637 if (!sc->memcg_low_reclaim) {
2638 sc->memcg_low_skipped = 1;
bf8d5d52 2639 continue;
241994ed 2640 }
d2af3397
JW
2641 memcg_memory_event(memcg, MEMCG_LOW);
2642 break;
2643 case MEMCG_PROT_NONE:
2644 /*
2645 * All protection thresholds breached. We may
2646 * still choose to vary the scan pressure
2647 * applied based on by how much the cgroup in
2648 * question has exceeded its protection
2649 * thresholds (see get_scan_count).
2650 */
2651 break;
2652 }
241994ed 2653
d2af3397
JW
2654 reclaimed = sc->nr_reclaimed;
2655 scanned = sc->nr_scanned;
afaf07a6
JW
2656
2657 shrink_lruvec(lruvec, sc);
70ddf637 2658
d2af3397
JW
2659 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2660 sc->priority);
6b4f7799 2661
d2af3397
JW
2662 /* Record the group's reclaim efficiency */
2663 vmpressure(sc->gfp_mask, memcg, false,
2664 sc->nr_scanned - scanned,
2665 sc->nr_reclaimed - reclaimed);
70ddf637 2666
0f6a5cff
JW
2667 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2668}
2669
6c9e0907 2670static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
2671{
2672 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 2673 unsigned long nr_reclaimed, nr_scanned;
1b05117d 2674 struct lruvec *target_lruvec;
0f6a5cff 2675 bool reclaimable = false;
b91ac374 2676 unsigned long file;
0f6a5cff 2677
1b05117d
JW
2678 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2679
0f6a5cff
JW
2680again:
2681 memset(&sc->nr, 0, sizeof(sc->nr));
2682
2683 nr_reclaimed = sc->nr_reclaimed;
2684 nr_scanned = sc->nr_scanned;
2685
7cf111bc
JW
2686 /*
2687 * Determine the scan balance between anon and file LRUs.
2688 */
2689 spin_lock_irq(&pgdat->lru_lock);
2690 sc->anon_cost = target_lruvec->anon_cost;
2691 sc->file_cost = target_lruvec->file_cost;
2692 spin_unlock_irq(&pgdat->lru_lock);
2693
b91ac374
JW
2694 /*
2695 * Target desirable inactive:active list ratios for the anon
2696 * and file LRU lists.
2697 */
2698 if (!sc->force_deactivate) {
2699 unsigned long refaults;
2700
2701 if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2702 sc->may_deactivate |= DEACTIVATE_ANON;
2703 else
2704 sc->may_deactivate &= ~DEACTIVATE_ANON;
2705
2706 /*
2707 * When refaults are being observed, it means a new
2708 * workingset is being established. Deactivate to get
2709 * rid of any stale active pages quickly.
2710 */
2711 refaults = lruvec_page_state(target_lruvec,
2712 WORKINGSET_ACTIVATE);
2713 if (refaults != target_lruvec->refaults ||
2714 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2715 sc->may_deactivate |= DEACTIVATE_FILE;
2716 else
2717 sc->may_deactivate &= ~DEACTIVATE_FILE;
2718 } else
2719 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2720
2721 /*
2722 * If we have plenty of inactive file pages that aren't
2723 * thrashing, try to reclaim those first before touching
2724 * anonymous pages.
2725 */
2726 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2727 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2728 sc->cache_trim_mode = 1;
2729 else
2730 sc->cache_trim_mode = 0;
2731
53138cea
JW
2732 /*
2733 * Prevent the reclaimer from falling into the cache trap: as
2734 * cache pages start out inactive, every cache fault will tip
2735 * the scan balance towards the file LRU. And as the file LRU
2736 * shrinks, so does the window for rotation from references.
2737 * This means we have a runaway feedback loop where a tiny
2738 * thrashing file LRU becomes infinitely more attractive than
2739 * anon pages. Try to detect this based on file LRU size.
2740 */
2741 if (!cgroup_reclaim(sc)) {
53138cea 2742 unsigned long total_high_wmark = 0;
b91ac374
JW
2743 unsigned long free, anon;
2744 int z;
53138cea
JW
2745
2746 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2747 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2748 node_page_state(pgdat, NR_INACTIVE_FILE);
2749
2750 for (z = 0; z < MAX_NR_ZONES; z++) {
2751 struct zone *zone = &pgdat->node_zones[z];
2752 if (!managed_zone(zone))
2753 continue;
2754
2755 total_high_wmark += high_wmark_pages(zone);
2756 }
2757
b91ac374
JW
2758 /*
2759 * Consider anon: if that's low too, this isn't a
2760 * runaway file reclaim problem, but rather just
2761 * extreme pressure. Reclaim as per usual then.
2762 */
2763 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2764
2765 sc->file_is_tiny =
2766 file + free <= total_high_wmark &&
2767 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2768 anon >> sc->priority;
53138cea
JW
2769 }
2770
0f6a5cff 2771 shrink_node_memcgs(pgdat, sc);
2344d7e4 2772
d2af3397
JW
2773 if (reclaim_state) {
2774 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2775 reclaim_state->reclaimed_slab = 0;
2776 }
d108c772 2777
d2af3397 2778 /* Record the subtree's reclaim efficiency */
1b05117d 2779 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
2780 sc->nr_scanned - nr_scanned,
2781 sc->nr_reclaimed - nr_reclaimed);
d108c772 2782
d2af3397
JW
2783 if (sc->nr_reclaimed - nr_reclaimed)
2784 reclaimable = true;
d108c772 2785
d2af3397
JW
2786 if (current_is_kswapd()) {
2787 /*
2788 * If reclaim is isolating dirty pages under writeback,
2789 * it implies that the long-lived page allocation rate
2790 * is exceeding the page laundering rate. Either the
2791 * global limits are not being effective at throttling
2792 * processes due to the page distribution throughout
2793 * zones or there is heavy usage of a slow backing
2794 * device. The only option is to throttle from reclaim
2795 * context which is not ideal as there is no guarantee
2796 * the dirtying process is throttled in the same way
2797 * balance_dirty_pages() manages.
2798 *
2799 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2800 * count the number of pages under pages flagged for
2801 * immediate reclaim and stall if any are encountered
2802 * in the nr_immediate check below.
2803 */
2804 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2805 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2806
d2af3397
JW
2807 /* Allow kswapd to start writing pages during reclaim.*/
2808 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2809 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 2810
d108c772 2811 /*
d2af3397
JW
2812 * If kswapd scans pages marked marked for immediate
2813 * reclaim and under writeback (nr_immediate), it
2814 * implies that pages are cycling through the LRU
2815 * faster than they are written so also forcibly stall.
d108c772 2816 */
d2af3397
JW
2817 if (sc->nr.immediate)
2818 congestion_wait(BLK_RW_ASYNC, HZ/10);
2819 }
2820
2821 /*
1b05117d
JW
2822 * Tag a node/memcg as congested if all the dirty pages
2823 * scanned were backed by a congested BDI and
2824 * wait_iff_congested will stall.
2825 *
d2af3397
JW
2826 * Legacy memcg will stall in page writeback so avoid forcibly
2827 * stalling in wait_iff_congested().
2828 */
1b05117d
JW
2829 if ((current_is_kswapd() ||
2830 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 2831 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 2832 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
2833
2834 /*
2835 * Stall direct reclaim for IO completions if underlying BDIs
2836 * and node is congested. Allow kswapd to continue until it
2837 * starts encountering unqueued dirty pages or cycling through
2838 * the LRU too quickly.
2839 */
1b05117d
JW
2840 if (!current_is_kswapd() && current_may_throttle() &&
2841 !sc->hibernation_mode &&
2842 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
d2af3397 2843 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2844
d2af3397
JW
2845 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2846 sc))
2847 goto again;
2344d7e4 2848
c73322d0
JW
2849 /*
2850 * Kswapd gives up on balancing particular nodes after too
2851 * many failures to reclaim anything from them and goes to
2852 * sleep. On reclaim progress, reset the failure counter. A
2853 * successful direct reclaim run will revive a dormant kswapd.
2854 */
2855 if (reclaimable)
2856 pgdat->kswapd_failures = 0;
f16015fb
JW
2857}
2858
53853e2d 2859/*
fdd4c614
VB
2860 * Returns true if compaction should go ahead for a costly-order request, or
2861 * the allocation would already succeed without compaction. Return false if we
2862 * should reclaim first.
53853e2d 2863 */
4f588331 2864static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2865{
31483b6a 2866 unsigned long watermark;
fdd4c614 2867 enum compact_result suitable;
fe4b1b24 2868
fdd4c614
VB
2869 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2870 if (suitable == COMPACT_SUCCESS)
2871 /* Allocation should succeed already. Don't reclaim. */
2872 return true;
2873 if (suitable == COMPACT_SKIPPED)
2874 /* Compaction cannot yet proceed. Do reclaim. */
2875 return false;
fe4b1b24 2876
53853e2d 2877 /*
fdd4c614
VB
2878 * Compaction is already possible, but it takes time to run and there
2879 * are potentially other callers using the pages just freed. So proceed
2880 * with reclaim to make a buffer of free pages available to give
2881 * compaction a reasonable chance of completing and allocating the page.
2882 * Note that we won't actually reclaim the whole buffer in one attempt
2883 * as the target watermark in should_continue_reclaim() is lower. But if
2884 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2885 */
fdd4c614 2886 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2887
fdd4c614 2888 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2889}
2890
1da177e4
LT
2891/*
2892 * This is the direct reclaim path, for page-allocating processes. We only
2893 * try to reclaim pages from zones which will satisfy the caller's allocation
2894 * request.
2895 *
1da177e4
LT
2896 * If a zone is deemed to be full of pinned pages then just give it a light
2897 * scan then give up on it.
2898 */
0a0337e0 2899static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2900{
dd1a239f 2901 struct zoneref *z;
54a6eb5c 2902 struct zone *zone;
0608f43d
AM
2903 unsigned long nr_soft_reclaimed;
2904 unsigned long nr_soft_scanned;
619d0d76 2905 gfp_t orig_mask;
79dafcdc 2906 pg_data_t *last_pgdat = NULL;
1cfb419b 2907
cc715d99
MG
2908 /*
2909 * If the number of buffer_heads in the machine exceeds the maximum
2910 * allowed level, force direct reclaim to scan the highmem zone as
2911 * highmem pages could be pinning lowmem pages storing buffer_heads
2912 */
619d0d76 2913 orig_mask = sc->gfp_mask;
b2e18757 2914 if (buffer_heads_over_limit) {
cc715d99 2915 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2916 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2917 }
cc715d99 2918
d4debc66 2919 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2920 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2921 /*
2922 * Take care memory controller reclaiming has small influence
2923 * to global LRU.
2924 */
b5ead35e 2925 if (!cgroup_reclaim(sc)) {
344736f2
VD
2926 if (!cpuset_zone_allowed(zone,
2927 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2928 continue;
65ec02cb 2929
0b06496a
JW
2930 /*
2931 * If we already have plenty of memory free for
2932 * compaction in this zone, don't free any more.
2933 * Even though compaction is invoked for any
2934 * non-zero order, only frequent costly order
2935 * reclamation is disruptive enough to become a
2936 * noticeable problem, like transparent huge
2937 * page allocations.
2938 */
2939 if (IS_ENABLED(CONFIG_COMPACTION) &&
2940 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2941 compaction_ready(zone, sc)) {
0b06496a
JW
2942 sc->compaction_ready = true;
2943 continue;
e0887c19 2944 }
0b06496a 2945
79dafcdc
MG
2946 /*
2947 * Shrink each node in the zonelist once. If the
2948 * zonelist is ordered by zone (not the default) then a
2949 * node may be shrunk multiple times but in that case
2950 * the user prefers lower zones being preserved.
2951 */
2952 if (zone->zone_pgdat == last_pgdat)
2953 continue;
2954
0608f43d
AM
2955 /*
2956 * This steals pages from memory cgroups over softlimit
2957 * and returns the number of reclaimed pages and
2958 * scanned pages. This works for global memory pressure
2959 * and balancing, not for a memcg's limit.
2960 */
2961 nr_soft_scanned = 0;
ef8f2327 2962 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2963 sc->order, sc->gfp_mask,
2964 &nr_soft_scanned);
2965 sc->nr_reclaimed += nr_soft_reclaimed;
2966 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2967 /* need some check for avoid more shrink_zone() */
1cfb419b 2968 }
408d8544 2969
79dafcdc
MG
2970 /* See comment about same check for global reclaim above */
2971 if (zone->zone_pgdat == last_pgdat)
2972 continue;
2973 last_pgdat = zone->zone_pgdat;
970a39a3 2974 shrink_node(zone->zone_pgdat, sc);
1da177e4 2975 }
e0c23279 2976
619d0d76
WY
2977 /*
2978 * Restore to original mask to avoid the impact on the caller if we
2979 * promoted it to __GFP_HIGHMEM.
2980 */
2981 sc->gfp_mask = orig_mask;
1da177e4 2982}
4f98a2fe 2983
b910718a 2984static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 2985{
b910718a
JW
2986 struct lruvec *target_lruvec;
2987 unsigned long refaults;
2a2e4885 2988
b910718a
JW
2989 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2990 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE);
2991 target_lruvec->refaults = refaults;
2a2e4885
JW
2992}
2993
1da177e4
LT
2994/*
2995 * This is the main entry point to direct page reclaim.
2996 *
2997 * If a full scan of the inactive list fails to free enough memory then we
2998 * are "out of memory" and something needs to be killed.
2999 *
3000 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3001 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3002 * caller can't do much about. We kick the writeback threads and take explicit
3003 * naps in the hope that some of these pages can be written. But if the
3004 * allocating task holds filesystem locks which prevent writeout this might not
3005 * work, and the allocation attempt will fail.
a41f24ea
NA
3006 *
3007 * returns: 0, if no pages reclaimed
3008 * else, the number of pages reclaimed
1da177e4 3009 */
dac1d27b 3010static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3011 struct scan_control *sc)
1da177e4 3012{
241994ed 3013 int initial_priority = sc->priority;
2a2e4885
JW
3014 pg_data_t *last_pgdat;
3015 struct zoneref *z;
3016 struct zone *zone;
241994ed 3017retry:
873b4771
KK
3018 delayacct_freepages_start();
3019
b5ead35e 3020 if (!cgroup_reclaim(sc))
7cc30fcf 3021 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3022
9e3b2f8c 3023 do {
70ddf637
AV
3024 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3025 sc->priority);
66e1707b 3026 sc->nr_scanned = 0;
0a0337e0 3027 shrink_zones(zonelist, sc);
c6a8a8c5 3028
bb21c7ce 3029 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3030 break;
3031
3032 if (sc->compaction_ready)
3033 break;
1da177e4 3034
0e50ce3b
MK
3035 /*
3036 * If we're getting trouble reclaiming, start doing
3037 * writepage even in laptop mode.
3038 */
3039 if (sc->priority < DEF_PRIORITY - 2)
3040 sc->may_writepage = 1;
0b06496a 3041 } while (--sc->priority >= 0);
bb21c7ce 3042
2a2e4885
JW
3043 last_pgdat = NULL;
3044 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3045 sc->nodemask) {
3046 if (zone->zone_pgdat == last_pgdat)
3047 continue;
3048 last_pgdat = zone->zone_pgdat;
1b05117d 3049
2a2e4885 3050 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3051
3052 if (cgroup_reclaim(sc)) {
3053 struct lruvec *lruvec;
3054
3055 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3056 zone->zone_pgdat);
3057 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3058 }
2a2e4885
JW
3059 }
3060
873b4771
KK
3061 delayacct_freepages_end();
3062
bb21c7ce
KM
3063 if (sc->nr_reclaimed)
3064 return sc->nr_reclaimed;
3065
0cee34fd 3066 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3067 if (sc->compaction_ready)
7335084d
MG
3068 return 1;
3069
b91ac374
JW
3070 /*
3071 * We make inactive:active ratio decisions based on the node's
3072 * composition of memory, but a restrictive reclaim_idx or a
3073 * memory.low cgroup setting can exempt large amounts of
3074 * memory from reclaim. Neither of which are very common, so
3075 * instead of doing costly eligibility calculations of the
3076 * entire cgroup subtree up front, we assume the estimates are
3077 * good, and retry with forcible deactivation if that fails.
3078 */
3079 if (sc->skipped_deactivate) {
3080 sc->priority = initial_priority;
3081 sc->force_deactivate = 1;
3082 sc->skipped_deactivate = 0;
3083 goto retry;
3084 }
3085
241994ed 3086 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3087 if (sc->memcg_low_skipped) {
241994ed 3088 sc->priority = initial_priority;
b91ac374 3089 sc->force_deactivate = 0;
d6622f63
YX
3090 sc->memcg_low_reclaim = 1;
3091 sc->memcg_low_skipped = 0;
241994ed
JW
3092 goto retry;
3093 }
3094
bb21c7ce 3095 return 0;
1da177e4
LT
3096}
3097
c73322d0 3098static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3099{
3100 struct zone *zone;
3101 unsigned long pfmemalloc_reserve = 0;
3102 unsigned long free_pages = 0;
3103 int i;
3104 bool wmark_ok;
3105
c73322d0
JW
3106 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3107 return true;
3108
5515061d
MG
3109 for (i = 0; i <= ZONE_NORMAL; i++) {
3110 zone = &pgdat->node_zones[i];
d450abd8
JW
3111 if (!managed_zone(zone))
3112 continue;
3113
3114 if (!zone_reclaimable_pages(zone))
675becce
MG
3115 continue;
3116
5515061d
MG
3117 pfmemalloc_reserve += min_wmark_pages(zone);
3118 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3119 }
3120
675becce
MG
3121 /* If there are no reserves (unexpected config) then do not throttle */
3122 if (!pfmemalloc_reserve)
3123 return true;
3124
5515061d
MG
3125 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3126
3127 /* kswapd must be awake if processes are being throttled */
3128 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3129 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3130 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3131
5515061d
MG
3132 wake_up_interruptible(&pgdat->kswapd_wait);
3133 }
3134
3135 return wmark_ok;
3136}
3137
3138/*
3139 * Throttle direct reclaimers if backing storage is backed by the network
3140 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3141 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3142 * when the low watermark is reached.
3143 *
3144 * Returns true if a fatal signal was delivered during throttling. If this
3145 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3146 */
50694c28 3147static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3148 nodemask_t *nodemask)
3149{
675becce 3150 struct zoneref *z;
5515061d 3151 struct zone *zone;
675becce 3152 pg_data_t *pgdat = NULL;
5515061d
MG
3153
3154 /*
3155 * Kernel threads should not be throttled as they may be indirectly
3156 * responsible for cleaning pages necessary for reclaim to make forward
3157 * progress. kjournald for example may enter direct reclaim while
3158 * committing a transaction where throttling it could forcing other
3159 * processes to block on log_wait_commit().
3160 */
3161 if (current->flags & PF_KTHREAD)
50694c28
MG
3162 goto out;
3163
3164 /*
3165 * If a fatal signal is pending, this process should not throttle.
3166 * It should return quickly so it can exit and free its memory
3167 */
3168 if (fatal_signal_pending(current))
3169 goto out;
5515061d 3170
675becce
MG
3171 /*
3172 * Check if the pfmemalloc reserves are ok by finding the first node
3173 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3174 * GFP_KERNEL will be required for allocating network buffers when
3175 * swapping over the network so ZONE_HIGHMEM is unusable.
3176 *
3177 * Throttling is based on the first usable node and throttled processes
3178 * wait on a queue until kswapd makes progress and wakes them. There
3179 * is an affinity then between processes waking up and where reclaim
3180 * progress has been made assuming the process wakes on the same node.
3181 * More importantly, processes running on remote nodes will not compete
3182 * for remote pfmemalloc reserves and processes on different nodes
3183 * should make reasonable progress.
3184 */
3185 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3186 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3187 if (zone_idx(zone) > ZONE_NORMAL)
3188 continue;
3189
3190 /* Throttle based on the first usable node */
3191 pgdat = zone->zone_pgdat;
c73322d0 3192 if (allow_direct_reclaim(pgdat))
675becce
MG
3193 goto out;
3194 break;
3195 }
3196
3197 /* If no zone was usable by the allocation flags then do not throttle */
3198 if (!pgdat)
50694c28 3199 goto out;
5515061d 3200
68243e76
MG
3201 /* Account for the throttling */
3202 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3203
5515061d
MG
3204 /*
3205 * If the caller cannot enter the filesystem, it's possible that it
3206 * is due to the caller holding an FS lock or performing a journal
3207 * transaction in the case of a filesystem like ext[3|4]. In this case,
3208 * it is not safe to block on pfmemalloc_wait as kswapd could be
3209 * blocked waiting on the same lock. Instead, throttle for up to a
3210 * second before continuing.
3211 */
3212 if (!(gfp_mask & __GFP_FS)) {
3213 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3214 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3215
3216 goto check_pending;
5515061d
MG
3217 }
3218
3219 /* Throttle until kswapd wakes the process */
3220 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3221 allow_direct_reclaim(pgdat));
50694c28
MG
3222
3223check_pending:
3224 if (fatal_signal_pending(current))
3225 return true;
3226
3227out:
3228 return false;
5515061d
MG
3229}
3230
dac1d27b 3231unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3232 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3233{
33906bc5 3234 unsigned long nr_reclaimed;
66e1707b 3235 struct scan_control sc = {
ee814fe2 3236 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3237 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3238 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3239 .order = order,
3240 .nodemask = nodemask,
3241 .priority = DEF_PRIORITY,
66e1707b 3242 .may_writepage = !laptop_mode,
a6dc60f8 3243 .may_unmap = 1,
2e2e4259 3244 .may_swap = 1,
66e1707b
BS
3245 };
3246
bb451fdf
GT
3247 /*
3248 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3249 * Confirm they are large enough for max values.
3250 */
3251 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3252 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3253 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3254
5515061d 3255 /*
50694c28
MG
3256 * Do not enter reclaim if fatal signal was delivered while throttled.
3257 * 1 is returned so that the page allocator does not OOM kill at this
3258 * point.
5515061d 3259 */
f2f43e56 3260 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3261 return 1;
3262
1732d2b0 3263 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3264 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3265
3115cd91 3266 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3267
3268 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3269 set_task_reclaim_state(current, NULL);
33906bc5
MG
3270
3271 return nr_reclaimed;
66e1707b
BS
3272}
3273
c255a458 3274#ifdef CONFIG_MEMCG
66e1707b 3275
d2e5fb92 3276/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3277unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3278 gfp_t gfp_mask, bool noswap,
ef8f2327 3279 pg_data_t *pgdat,
0ae5e89c 3280 unsigned long *nr_scanned)
4e416953 3281{
afaf07a6 3282 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3283 struct scan_control sc = {
b8f5c566 3284 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3285 .target_mem_cgroup = memcg,
4e416953
BS
3286 .may_writepage = !laptop_mode,
3287 .may_unmap = 1,
b2e18757 3288 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3289 .may_swap = !noswap,
4e416953 3290 };
0ae5e89c 3291
d2e5fb92
MH
3292 WARN_ON_ONCE(!current->reclaim_state);
3293
4e416953
BS
3294 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3295 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3296
9e3b2f8c 3297 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3298 sc.gfp_mask);
bdce6d9e 3299
4e416953
BS
3300 /*
3301 * NOTE: Although we can get the priority field, using it
3302 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3303 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3304 * will pick up pages from other mem cgroup's as well. We hack
3305 * the priority and make it zero.
3306 */
afaf07a6 3307 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3308
3309 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3310
0ae5e89c 3311 *nr_scanned = sc.nr_scanned;
0308f7cf 3312
4e416953
BS
3313 return sc.nr_reclaimed;
3314}
3315
72835c86 3316unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3317 unsigned long nr_pages,
a7885eb8 3318 gfp_t gfp_mask,
b70a2a21 3319 bool may_swap)
66e1707b 3320{
bdce6d9e 3321 unsigned long nr_reclaimed;
eb414681 3322 unsigned long pflags;
499118e9 3323 unsigned int noreclaim_flag;
66e1707b 3324 struct scan_control sc = {
b70a2a21 3325 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3326 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3327 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3328 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3329 .target_mem_cgroup = memcg,
3330 .priority = DEF_PRIORITY,
3331 .may_writepage = !laptop_mode,
3332 .may_unmap = 1,
b70a2a21 3333 .may_swap = may_swap,
a09ed5e0 3334 };
889976db 3335 /*
fa40d1ee
SB
3336 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3337 * equal pressure on all the nodes. This is based on the assumption that
3338 * the reclaim does not bail out early.
889976db 3339 */
fa40d1ee 3340 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3341
fa40d1ee 3342 set_task_reclaim_state(current, &sc.reclaim_state);
bdce6d9e 3343
3481c37f 3344 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
bdce6d9e 3345
eb414681 3346 psi_memstall_enter(&pflags);
499118e9 3347 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3348
3115cd91 3349 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3350
499118e9 3351 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3352 psi_memstall_leave(&pflags);
bdce6d9e
KM
3353
3354 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3355 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3356
3357 return nr_reclaimed;
66e1707b
BS
3358}
3359#endif
3360
1d82de61 3361static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3362 struct scan_control *sc)
f16015fb 3363{
b95a2f2d 3364 struct mem_cgroup *memcg;
b91ac374 3365 struct lruvec *lruvec;
f16015fb 3366
b95a2f2d
JW
3367 if (!total_swap_pages)
3368 return;
3369
b91ac374
JW
3370 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3371 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3372 return;
3373
b95a2f2d
JW
3374 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3375 do {
b91ac374
JW
3376 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3377 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3378 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3379 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3380 } while (memcg);
f16015fb
JW
3381}
3382
97a225e6 3383static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3384{
3385 int i;
3386 struct zone *zone;
3387
3388 /*
3389 * Check for watermark boosts top-down as the higher zones
3390 * are more likely to be boosted. Both watermarks and boosts
3391 * should not be checked at the time time as reclaim would
3392 * start prematurely when there is no boosting and a lower
3393 * zone is balanced.
3394 */
97a225e6 3395 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3396 zone = pgdat->node_zones + i;
3397 if (!managed_zone(zone))
3398 continue;
3399
3400 if (zone->watermark_boost)
3401 return true;
3402 }
3403
3404 return false;
3405}
3406
e716f2eb
MG
3407/*
3408 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3409 * and highest_zoneidx
e716f2eb 3410 */
97a225e6 3411static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3412{
e716f2eb
MG
3413 int i;
3414 unsigned long mark = -1;
3415 struct zone *zone;
60cefed4 3416
1c30844d
MG
3417 /*
3418 * Check watermarks bottom-up as lower zones are more likely to
3419 * meet watermarks.
3420 */
97a225e6 3421 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3422 zone = pgdat->node_zones + i;
6256c6b4 3423
e716f2eb
MG
3424 if (!managed_zone(zone))
3425 continue;
3426
3427 mark = high_wmark_pages(zone);
97a225e6 3428 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3429 return true;
3430 }
3431
3432 /*
97a225e6 3433 * If a node has no populated zone within highest_zoneidx, it does not
e716f2eb
MG
3434 * need balancing by definition. This can happen if a zone-restricted
3435 * allocation tries to wake a remote kswapd.
3436 */
3437 if (mark == -1)
3438 return true;
3439
3440 return false;
60cefed4
JW
3441}
3442
631b6e08
MG
3443/* Clear pgdat state for congested, dirty or under writeback. */
3444static void clear_pgdat_congested(pg_data_t *pgdat)
3445{
1b05117d
JW
3446 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3447
3448 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3449 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3450 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3451}
3452
5515061d
MG
3453/*
3454 * Prepare kswapd for sleeping. This verifies that there are no processes
3455 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3456 *
3457 * Returns true if kswapd is ready to sleep
3458 */
97a225e6
JK
3459static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3460 int highest_zoneidx)
f50de2d3 3461{
5515061d 3462 /*
9e5e3661 3463 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3464 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3465 * race between when kswapd checks the watermarks and a process gets
3466 * throttled. There is also a potential race if processes get
3467 * throttled, kswapd wakes, a large process exits thereby balancing the
3468 * zones, which causes kswapd to exit balance_pgdat() before reaching
3469 * the wake up checks. If kswapd is going to sleep, no process should
3470 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3471 * the wake up is premature, processes will wake kswapd and get
3472 * throttled again. The difference from wake ups in balance_pgdat() is
3473 * that here we are under prepare_to_wait().
5515061d 3474 */
9e5e3661
VB
3475 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3476 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3477
c73322d0
JW
3478 /* Hopeless node, leave it to direct reclaim */
3479 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3480 return true;
3481
97a225e6 3482 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
3483 clear_pgdat_congested(pgdat);
3484 return true;
1d82de61
MG
3485 }
3486
333b0a45 3487 return false;
f50de2d3
MG
3488}
3489
75485363 3490/*
1d82de61
MG
3491 * kswapd shrinks a node of pages that are at or below the highest usable
3492 * zone that is currently unbalanced.
b8e83b94
MG
3493 *
3494 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3495 * reclaim or if the lack of progress was due to pages under writeback.
3496 * This is used to determine if the scanning priority needs to be raised.
75485363 3497 */
1d82de61 3498static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3499 struct scan_control *sc)
75485363 3500{
1d82de61
MG
3501 struct zone *zone;
3502 int z;
75485363 3503
1d82de61
MG
3504 /* Reclaim a number of pages proportional to the number of zones */
3505 sc->nr_to_reclaim = 0;
970a39a3 3506 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3507 zone = pgdat->node_zones + z;
6aa303de 3508 if (!managed_zone(zone))
1d82de61 3509 continue;
7c954f6d 3510
1d82de61
MG
3511 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3512 }
7c954f6d
MG
3513
3514 /*
1d82de61
MG
3515 * Historically care was taken to put equal pressure on all zones but
3516 * now pressure is applied based on node LRU order.
7c954f6d 3517 */
970a39a3 3518 shrink_node(pgdat, sc);
283aba9f 3519
7c954f6d 3520 /*
1d82de61
MG
3521 * Fragmentation may mean that the system cannot be rebalanced for
3522 * high-order allocations. If twice the allocation size has been
3523 * reclaimed then recheck watermarks only at order-0 to prevent
3524 * excessive reclaim. Assume that a process requested a high-order
3525 * can direct reclaim/compact.
7c954f6d 3526 */
9861a62c 3527 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3528 sc->order = 0;
7c954f6d 3529
b8e83b94 3530 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3531}
3532
1da177e4 3533/*
1d82de61
MG
3534 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3535 * that are eligible for use by the caller until at least one zone is
3536 * balanced.
1da177e4 3537 *
1d82de61 3538 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3539 *
3540 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3541 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3542 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3543 * or lower is eligible for reclaim until at least one usable zone is
3544 * balanced.
1da177e4 3545 */
97a225e6 3546static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 3547{
1da177e4 3548 int i;
0608f43d
AM
3549 unsigned long nr_soft_reclaimed;
3550 unsigned long nr_soft_scanned;
eb414681 3551 unsigned long pflags;
1c30844d
MG
3552 unsigned long nr_boost_reclaim;
3553 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3554 bool boosted;
1d82de61 3555 struct zone *zone;
179e9639
AM
3556 struct scan_control sc = {
3557 .gfp_mask = GFP_KERNEL,
ee814fe2 3558 .order = order,
a6dc60f8 3559 .may_unmap = 1,
179e9639 3560 };
93781325 3561
1732d2b0 3562 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 3563 psi_memstall_enter(&pflags);
93781325
OS
3564 __fs_reclaim_acquire();
3565
f8891e5e 3566 count_vm_event(PAGEOUTRUN);
1da177e4 3567
1c30844d
MG
3568 /*
3569 * Account for the reclaim boost. Note that the zone boost is left in
3570 * place so that parallel allocations that are near the watermark will
3571 * stall or direct reclaim until kswapd is finished.
3572 */
3573 nr_boost_reclaim = 0;
97a225e6 3574 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3575 zone = pgdat->node_zones + i;
3576 if (!managed_zone(zone))
3577 continue;
3578
3579 nr_boost_reclaim += zone->watermark_boost;
3580 zone_boosts[i] = zone->watermark_boost;
3581 }
3582 boosted = nr_boost_reclaim;
3583
3584restart:
3585 sc.priority = DEF_PRIORITY;
9e3b2f8c 3586 do {
c73322d0 3587 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3588 bool raise_priority = true;
1c30844d 3589 bool balanced;
93781325 3590 bool ret;
b8e83b94 3591
97a225e6 3592 sc.reclaim_idx = highest_zoneidx;
1da177e4 3593
86c79f6b 3594 /*
84c7a777
MG
3595 * If the number of buffer_heads exceeds the maximum allowed
3596 * then consider reclaiming from all zones. This has a dual
3597 * purpose -- on 64-bit systems it is expected that
3598 * buffer_heads are stripped during active rotation. On 32-bit
3599 * systems, highmem pages can pin lowmem memory and shrinking
3600 * buffers can relieve lowmem pressure. Reclaim may still not
3601 * go ahead if all eligible zones for the original allocation
3602 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3603 */
3604 if (buffer_heads_over_limit) {
3605 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3606 zone = pgdat->node_zones + i;
6aa303de 3607 if (!managed_zone(zone))
86c79f6b 3608 continue;
cc715d99 3609
970a39a3 3610 sc.reclaim_idx = i;
e1dbeda6 3611 break;
1da177e4 3612 }
1da177e4 3613 }
dafcb73e 3614
86c79f6b 3615 /*
1c30844d
MG
3616 * If the pgdat is imbalanced then ignore boosting and preserve
3617 * the watermarks for a later time and restart. Note that the
3618 * zone watermarks will be still reset at the end of balancing
3619 * on the grounds that the normal reclaim should be enough to
3620 * re-evaluate if boosting is required when kswapd next wakes.
3621 */
97a225e6 3622 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
3623 if (!balanced && nr_boost_reclaim) {
3624 nr_boost_reclaim = 0;
3625 goto restart;
3626 }
3627
3628 /*
3629 * If boosting is not active then only reclaim if there are no
3630 * eligible zones. Note that sc.reclaim_idx is not used as
3631 * buffer_heads_over_limit may have adjusted it.
86c79f6b 3632 */
1c30844d 3633 if (!nr_boost_reclaim && balanced)
e716f2eb 3634 goto out;
e1dbeda6 3635
1c30844d
MG
3636 /* Limit the priority of boosting to avoid reclaim writeback */
3637 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3638 raise_priority = false;
3639
3640 /*
3641 * Do not writeback or swap pages for boosted reclaim. The
3642 * intent is to relieve pressure not issue sub-optimal IO
3643 * from reclaim context. If no pages are reclaimed, the
3644 * reclaim will be aborted.
3645 */
3646 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3647 sc.may_swap = !nr_boost_reclaim;
1c30844d 3648
1d82de61
MG
3649 /*
3650 * Do some background aging of the anon list, to give
3651 * pages a chance to be referenced before reclaiming. All
3652 * pages are rotated regardless of classzone as this is
3653 * about consistent aging.
3654 */
ef8f2327 3655 age_active_anon(pgdat, &sc);
1d82de61 3656
b7ea3c41
MG
3657 /*
3658 * If we're getting trouble reclaiming, start doing writepage
3659 * even in laptop mode.
3660 */
047d72c3 3661 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3662 sc.may_writepage = 1;
3663
1d82de61
MG
3664 /* Call soft limit reclaim before calling shrink_node. */
3665 sc.nr_scanned = 0;
3666 nr_soft_scanned = 0;
ef8f2327 3667 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3668 sc.gfp_mask, &nr_soft_scanned);
3669 sc.nr_reclaimed += nr_soft_reclaimed;
3670
1da177e4 3671 /*
1d82de61
MG
3672 * There should be no need to raise the scanning priority if
3673 * enough pages are already being scanned that that high
3674 * watermark would be met at 100% efficiency.
1da177e4 3675 */
970a39a3 3676 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3677 raise_priority = false;
5515061d
MG
3678
3679 /*
3680 * If the low watermark is met there is no need for processes
3681 * to be throttled on pfmemalloc_wait as they should not be
3682 * able to safely make forward progress. Wake them
3683 */
3684 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3685 allow_direct_reclaim(pgdat))
cfc51155 3686 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3687
b8e83b94 3688 /* Check if kswapd should be suspending */
93781325
OS
3689 __fs_reclaim_release();
3690 ret = try_to_freeze();
3691 __fs_reclaim_acquire();
3692 if (ret || kthread_should_stop())
b8e83b94 3693 break;
8357376d 3694
73ce02e9 3695 /*
b8e83b94
MG
3696 * Raise priority if scanning rate is too low or there was no
3697 * progress in reclaiming pages
73ce02e9 3698 */
c73322d0 3699 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
3700 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3701
3702 /*
3703 * If reclaim made no progress for a boost, stop reclaim as
3704 * IO cannot be queued and it could be an infinite loop in
3705 * extreme circumstances.
3706 */
3707 if (nr_boost_reclaim && !nr_reclaimed)
3708 break;
3709
c73322d0 3710 if (raise_priority || !nr_reclaimed)
b8e83b94 3711 sc.priority--;
1d82de61 3712 } while (sc.priority >= 1);
1da177e4 3713
c73322d0
JW
3714 if (!sc.nr_reclaimed)
3715 pgdat->kswapd_failures++;
3716
b8e83b94 3717out:
1c30844d
MG
3718 /* If reclaim was boosted, account for the reclaim done in this pass */
3719 if (boosted) {
3720 unsigned long flags;
3721
97a225e6 3722 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3723 if (!zone_boosts[i])
3724 continue;
3725
3726 /* Increments are under the zone lock */
3727 zone = pgdat->node_zones + i;
3728 spin_lock_irqsave(&zone->lock, flags);
3729 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3730 spin_unlock_irqrestore(&zone->lock, flags);
3731 }
3732
3733 /*
3734 * As there is now likely space, wakeup kcompact to defragment
3735 * pageblocks.
3736 */
97a225e6 3737 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
3738 }
3739
2a2e4885 3740 snapshot_refaults(NULL, pgdat);
93781325 3741 __fs_reclaim_release();
eb414681 3742 psi_memstall_leave(&pflags);
1732d2b0 3743 set_task_reclaim_state(current, NULL);
e5ca8071 3744
0abdee2b 3745 /*
1d82de61
MG
3746 * Return the order kswapd stopped reclaiming at as
3747 * prepare_kswapd_sleep() takes it into account. If another caller
3748 * entered the allocator slow path while kswapd was awake, order will
3749 * remain at the higher level.
0abdee2b 3750 */
1d82de61 3751 return sc.order;
1da177e4
LT
3752}
3753
e716f2eb 3754/*
97a225e6
JK
3755 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3756 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3757 * not a valid index then either kswapd runs for first time or kswapd couldn't
3758 * sleep after previous reclaim attempt (node is still unbalanced). In that
3759 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 3760 */
97a225e6
JK
3761static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3762 enum zone_type prev_highest_zoneidx)
e716f2eb 3763{
97a225e6 3764 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 3765
97a225e6 3766 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
3767}
3768
38087d9b 3769static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 3770 unsigned int highest_zoneidx)
f0bc0a60
KM
3771{
3772 long remaining = 0;
3773 DEFINE_WAIT(wait);
3774
3775 if (freezing(current) || kthread_should_stop())
3776 return;
3777
3778 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3779
333b0a45
SG
3780 /*
3781 * Try to sleep for a short interval. Note that kcompactd will only be
3782 * woken if it is possible to sleep for a short interval. This is
3783 * deliberate on the assumption that if reclaim cannot keep an
3784 * eligible zone balanced that it's also unlikely that compaction will
3785 * succeed.
3786 */
97a225e6 3787 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
3788 /*
3789 * Compaction records what page blocks it recently failed to
3790 * isolate pages from and skips them in the future scanning.
3791 * When kswapd is going to sleep, it is reasonable to assume
3792 * that pages and compaction may succeed so reset the cache.
3793 */
3794 reset_isolation_suitable(pgdat);
3795
3796 /*
3797 * We have freed the memory, now we should compact it to make
3798 * allocation of the requested order possible.
3799 */
97a225e6 3800 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 3801
f0bc0a60 3802 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3803
3804 /*
97a225e6 3805 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
3806 * order. The values will either be from a wakeup request or
3807 * the previous request that slept prematurely.
3808 */
3809 if (remaining) {
97a225e6
JK
3810 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3811 kswapd_highest_zoneidx(pgdat,
3812 highest_zoneidx));
5644e1fb
QC
3813
3814 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3815 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
3816 }
3817
f0bc0a60
KM
3818 finish_wait(&pgdat->kswapd_wait, &wait);
3819 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3820 }
3821
3822 /*
3823 * After a short sleep, check if it was a premature sleep. If not, then
3824 * go fully to sleep until explicitly woken up.
3825 */
d9f21d42 3826 if (!remaining &&
97a225e6 3827 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
3828 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3829
3830 /*
3831 * vmstat counters are not perfectly accurate and the estimated
3832 * value for counters such as NR_FREE_PAGES can deviate from the
3833 * true value by nr_online_cpus * threshold. To avoid the zone
3834 * watermarks being breached while under pressure, we reduce the
3835 * per-cpu vmstat threshold while kswapd is awake and restore
3836 * them before going back to sleep.
3837 */
3838 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3839
3840 if (!kthread_should_stop())
3841 schedule();
3842
f0bc0a60
KM
3843 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3844 } else {
3845 if (remaining)
3846 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3847 else
3848 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3849 }
3850 finish_wait(&pgdat->kswapd_wait, &wait);
3851}
3852
1da177e4
LT
3853/*
3854 * The background pageout daemon, started as a kernel thread
4f98a2fe 3855 * from the init process.
1da177e4
LT
3856 *
3857 * This basically trickles out pages so that we have _some_
3858 * free memory available even if there is no other activity
3859 * that frees anything up. This is needed for things like routing
3860 * etc, where we otherwise might have all activity going on in
3861 * asynchronous contexts that cannot page things out.
3862 *
3863 * If there are applications that are active memory-allocators
3864 * (most normal use), this basically shouldn't matter.
3865 */
3866static int kswapd(void *p)
3867{
e716f2eb 3868 unsigned int alloc_order, reclaim_order;
97a225e6 3869 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
1da177e4
LT
3870 pg_data_t *pgdat = (pg_data_t*)p;
3871 struct task_struct *tsk = current;
a70f7302 3872 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3873
174596a0 3874 if (!cpumask_empty(cpumask))
c5f59f08 3875 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3876
3877 /*
3878 * Tell the memory management that we're a "memory allocator",
3879 * and that if we need more memory we should get access to it
3880 * regardless (see "__alloc_pages()"). "kswapd" should
3881 * never get caught in the normal page freeing logic.
3882 *
3883 * (Kswapd normally doesn't need memory anyway, but sometimes
3884 * you need a small amount of memory in order to be able to
3885 * page out something else, and this flag essentially protects
3886 * us from recursively trying to free more memory as we're
3887 * trying to free the first piece of memory in the first place).
3888 */
930d9152 3889 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3890 set_freezable();
1da177e4 3891
5644e1fb 3892 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 3893 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 3894 for ( ; ; ) {
6f6313d4 3895 bool ret;
3e1d1d28 3896
5644e1fb 3897 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
3898 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3899 highest_zoneidx);
e716f2eb 3900
38087d9b
MG
3901kswapd_try_sleep:
3902 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 3903 highest_zoneidx);
215ddd66 3904
97a225e6 3905 /* Read the new order and highest_zoneidx */
5644e1fb 3906 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
3907 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3908 highest_zoneidx);
5644e1fb 3909 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 3910 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 3911
8fe23e05
DR
3912 ret = try_to_freeze();
3913 if (kthread_should_stop())
3914 break;
3915
3916 /*
3917 * We can speed up thawing tasks if we don't call balance_pgdat
3918 * after returning from the refrigerator
3919 */
38087d9b
MG
3920 if (ret)
3921 continue;
3922
3923 /*
3924 * Reclaim begins at the requested order but if a high-order
3925 * reclaim fails then kswapd falls back to reclaiming for
3926 * order-0. If that happens, kswapd will consider sleeping
3927 * for the order it finished reclaiming at (reclaim_order)
3928 * but kcompactd is woken to compact for the original
3929 * request (alloc_order).
3930 */
97a225e6 3931 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 3932 alloc_order);
97a225e6
JK
3933 reclaim_order = balance_pgdat(pgdat, alloc_order,
3934 highest_zoneidx);
38087d9b
MG
3935 if (reclaim_order < alloc_order)
3936 goto kswapd_try_sleep;
1da177e4 3937 }
b0a8cc58 3938
71abdc15 3939 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 3940
1da177e4
LT
3941 return 0;
3942}
3943
3944/*
5ecd9d40
DR
3945 * A zone is low on free memory or too fragmented for high-order memory. If
3946 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3947 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3948 * has failed or is not needed, still wake up kcompactd if only compaction is
3949 * needed.
1da177e4 3950 */
5ecd9d40 3951void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 3952 enum zone_type highest_zoneidx)
1da177e4
LT
3953{
3954 pg_data_t *pgdat;
5644e1fb 3955 enum zone_type curr_idx;
1da177e4 3956
6aa303de 3957 if (!managed_zone(zone))
1da177e4
LT
3958 return;
3959
5ecd9d40 3960 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3961 return;
5644e1fb 3962
88f5acf8 3963 pgdat = zone->zone_pgdat;
97a225e6 3964 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 3965
97a225e6
JK
3966 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3967 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
3968
3969 if (READ_ONCE(pgdat->kswapd_order) < order)
3970 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 3971
8d0986e2 3972 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3973 return;
e1a55637 3974
5ecd9d40
DR
3975 /* Hopeless node, leave it to direct reclaim if possible */
3976 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
3977 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3978 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
3979 /*
3980 * There may be plenty of free memory available, but it's too
3981 * fragmented for high-order allocations. Wake up kcompactd
3982 * and rely on compaction_suitable() to determine if it's
3983 * needed. If it fails, it will defer subsequent attempts to
3984 * ratelimit its work.
3985 */
3986 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 3987 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 3988 return;
5ecd9d40 3989 }
88f5acf8 3990
97a225e6 3991 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 3992 gfp_flags);
8d0986e2 3993 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3994}
3995
c6f37f12 3996#ifdef CONFIG_HIBERNATION
1da177e4 3997/*
7b51755c 3998 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3999 * freed pages.
4000 *
4001 * Rather than trying to age LRUs the aim is to preserve the overall
4002 * LRU order by reclaiming preferentially
4003 * inactive > active > active referenced > active mapped
1da177e4 4004 */
7b51755c 4005unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4006{
d6277db4 4007 struct scan_control sc = {
ee814fe2 4008 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4009 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4010 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4011 .priority = DEF_PRIORITY,
d6277db4 4012 .may_writepage = 1,
ee814fe2
JW
4013 .may_unmap = 1,
4014 .may_swap = 1,
7b51755c 4015 .hibernation_mode = 1,
1da177e4 4016 };
a09ed5e0 4017 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4018 unsigned long nr_reclaimed;
499118e9 4019 unsigned int noreclaim_flag;
1da177e4 4020
d92a8cfc 4021 fs_reclaim_acquire(sc.gfp_mask);
93781325 4022 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4023 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4024
3115cd91 4025 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4026
1732d2b0 4027 set_task_reclaim_state(current, NULL);
499118e9 4028 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4029 fs_reclaim_release(sc.gfp_mask);
d6277db4 4030
7b51755c 4031 return nr_reclaimed;
1da177e4 4032}
c6f37f12 4033#endif /* CONFIG_HIBERNATION */
1da177e4 4034
3218ae14
YG
4035/*
4036 * This kswapd start function will be called by init and node-hot-add.
4037 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4038 */
4039int kswapd_run(int nid)
4040{
4041 pg_data_t *pgdat = NODE_DATA(nid);
4042 int ret = 0;
4043
4044 if (pgdat->kswapd)
4045 return 0;
4046
4047 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4048 if (IS_ERR(pgdat->kswapd)) {
4049 /* failure at boot is fatal */
c6202adf 4050 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
4051 pr_err("Failed to start kswapd on node %d\n", nid);
4052 ret = PTR_ERR(pgdat->kswapd);
d72515b8 4053 pgdat->kswapd = NULL;
3218ae14
YG
4054 }
4055 return ret;
4056}
4057
8fe23e05 4058/*
d8adde17 4059 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4060 * hold mem_hotplug_begin/end().
8fe23e05
DR
4061 */
4062void kswapd_stop(int nid)
4063{
4064 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4065
d8adde17 4066 if (kswapd) {
8fe23e05 4067 kthread_stop(kswapd);
d8adde17
JL
4068 NODE_DATA(nid)->kswapd = NULL;
4069 }
8fe23e05
DR
4070}
4071
1da177e4
LT
4072static int __init kswapd_init(void)
4073{
6b700b5b 4074 int nid;
69e05944 4075
1da177e4 4076 swap_setup();
48fb2e24 4077 for_each_node_state(nid, N_MEMORY)
3218ae14 4078 kswapd_run(nid);
1da177e4
LT
4079 return 0;
4080}
4081
4082module_init(kswapd_init)
9eeff239
CL
4083
4084#ifdef CONFIG_NUMA
4085/*
a5f5f91d 4086 * Node reclaim mode
9eeff239 4087 *
a5f5f91d 4088 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4089 * the watermarks.
9eeff239 4090 */
a5f5f91d 4091int node_reclaim_mode __read_mostly;
9eeff239 4092
648b5cf3
AS
4093#define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */
4094#define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */
1b2ffb78 4095
a92f7126 4096/*
a5f5f91d 4097 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4098 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4099 * a zone.
4100 */
a5f5f91d 4101#define NODE_RECLAIM_PRIORITY 4
a92f7126 4102
9614634f 4103/*
a5f5f91d 4104 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4105 * occur.
4106 */
4107int sysctl_min_unmapped_ratio = 1;
4108
0ff38490
CL
4109/*
4110 * If the number of slab pages in a zone grows beyond this percentage then
4111 * slab reclaim needs to occur.
4112 */
4113int sysctl_min_slab_ratio = 5;
4114
11fb9989 4115static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4116{
11fb9989
MG
4117 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4118 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4119 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4120
4121 /*
4122 * It's possible for there to be more file mapped pages than
4123 * accounted for by the pages on the file LRU lists because
4124 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4125 */
4126 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4127}
4128
4129/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4130static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4131{
d031a157
AM
4132 unsigned long nr_pagecache_reclaimable;
4133 unsigned long delta = 0;
90afa5de
MG
4134
4135 /*
95bbc0c7 4136 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4137 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4138 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4139 * a better estimate
4140 */
a5f5f91d
MG
4141 if (node_reclaim_mode & RECLAIM_UNMAP)
4142 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4143 else
a5f5f91d 4144 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4145
4146 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4147 if (!(node_reclaim_mode & RECLAIM_WRITE))
4148 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4149
4150 /* Watch for any possible underflows due to delta */
4151 if (unlikely(delta > nr_pagecache_reclaimable))
4152 delta = nr_pagecache_reclaimable;
4153
4154 return nr_pagecache_reclaimable - delta;
4155}
4156
9eeff239 4157/*
a5f5f91d 4158 * Try to free up some pages from this node through reclaim.
9eeff239 4159 */
a5f5f91d 4160static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4161{
7fb2d46d 4162 /* Minimum pages needed in order to stay on node */
69e05944 4163 const unsigned long nr_pages = 1 << order;
9eeff239 4164 struct task_struct *p = current;
499118e9 4165 unsigned int noreclaim_flag;
179e9639 4166 struct scan_control sc = {
62b726c1 4167 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4168 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4169 .order = order,
a5f5f91d
MG
4170 .priority = NODE_RECLAIM_PRIORITY,
4171 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4172 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4173 .may_swap = 1,
f2f43e56 4174 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4175 };
9eeff239 4176
132bb8cf
YS
4177 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4178 sc.gfp_mask);
4179
9eeff239 4180 cond_resched();
93781325 4181 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4182 /*
95bbc0c7 4183 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4184 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4185 * and RECLAIM_UNMAP.
d4f7796e 4186 */
499118e9
VB
4187 noreclaim_flag = memalloc_noreclaim_save();
4188 p->flags |= PF_SWAPWRITE;
1732d2b0 4189 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4190
a5f5f91d 4191 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4192 /*
894befec 4193 * Free memory by calling shrink node with increasing
0ff38490
CL
4194 * priorities until we have enough memory freed.
4195 */
0ff38490 4196 do {
970a39a3 4197 shrink_node(pgdat, &sc);
9e3b2f8c 4198 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4199 }
c84db23c 4200
1732d2b0 4201 set_task_reclaim_state(p, NULL);
499118e9
VB
4202 current->flags &= ~PF_SWAPWRITE;
4203 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4204 fs_reclaim_release(sc.gfp_mask);
132bb8cf
YS
4205
4206 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4207
a79311c1 4208 return sc.nr_reclaimed >= nr_pages;
9eeff239 4209}
179e9639 4210
a5f5f91d 4211int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4212{
d773ed6b 4213 int ret;
179e9639
AM
4214
4215 /*
a5f5f91d 4216 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4217 * slab pages if we are over the defined limits.
34aa1330 4218 *
9614634f
CL
4219 * A small portion of unmapped file backed pages is needed for
4220 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4221 * thrown out if the node is overallocated. So we do not reclaim
4222 * if less than a specified percentage of the node is used by
9614634f 4223 * unmapped file backed pages.
179e9639 4224 */
a5f5f91d 4225 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4226 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4227 pgdat->min_slab_pages)
a5f5f91d 4228 return NODE_RECLAIM_FULL;
179e9639
AM
4229
4230 /*
d773ed6b 4231 * Do not scan if the allocation should not be delayed.
179e9639 4232 */
d0164adc 4233 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4234 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4235
4236 /*
a5f5f91d 4237 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4238 * have associated processors. This will favor the local processor
4239 * over remote processors and spread off node memory allocations
4240 * as wide as possible.
4241 */
a5f5f91d
MG
4242 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4243 return NODE_RECLAIM_NOSCAN;
d773ed6b 4244
a5f5f91d
MG
4245 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4246 return NODE_RECLAIM_NOSCAN;
fa5e084e 4247
a5f5f91d
MG
4248 ret = __node_reclaim(pgdat, gfp_mask, order);
4249 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4250
24cf7251
MG
4251 if (!ret)
4252 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4253
d773ed6b 4254 return ret;
179e9639 4255}
9eeff239 4256#endif
894bc310 4257
89e004ea 4258/**
64e3d12f
KHY
4259 * check_move_unevictable_pages - check pages for evictability and move to
4260 * appropriate zone lru list
4261 * @pvec: pagevec with lru pages to check
89e004ea 4262 *
64e3d12f
KHY
4263 * Checks pages for evictability, if an evictable page is in the unevictable
4264 * lru list, moves it to the appropriate evictable lru list. This function
4265 * should be only used for lru pages.
89e004ea 4266 */
64e3d12f 4267void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4268{
925b7673 4269 struct lruvec *lruvec;
785b99fe 4270 struct pglist_data *pgdat = NULL;
24513264
HD
4271 int pgscanned = 0;
4272 int pgrescued = 0;
4273 int i;
89e004ea 4274
64e3d12f
KHY
4275 for (i = 0; i < pvec->nr; i++) {
4276 struct page *page = pvec->pages[i];
785b99fe 4277 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4278
24513264 4279 pgscanned++;
785b99fe
MG
4280 if (pagepgdat != pgdat) {
4281 if (pgdat)
4282 spin_unlock_irq(&pgdat->lru_lock);
4283 pgdat = pagepgdat;
4284 spin_lock_irq(&pgdat->lru_lock);
24513264 4285 }
785b99fe 4286 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4287
24513264
HD
4288 if (!PageLRU(page) || !PageUnevictable(page))
4289 continue;
89e004ea 4290
39b5f29a 4291 if (page_evictable(page)) {
24513264
HD
4292 enum lru_list lru = page_lru_base_type(page);
4293
309381fe 4294 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4295 ClearPageUnevictable(page);
fa9add64
HD
4296 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4297 add_page_to_lru_list(page, lruvec, lru);
24513264 4298 pgrescued++;
89e004ea 4299 }
24513264 4300 }
89e004ea 4301
785b99fe 4302 if (pgdat) {
24513264
HD
4303 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4304 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4305 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4306 }
89e004ea 4307}
64e3d12f 4308EXPORT_SYMBOL_GPL(check_move_unevictable_pages);