]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
vmscan: drop page_mapping_inuse()
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
a79311c1
RR
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
22fba335
KM
58 /* How many pages shrink_list() should reclaim */
59 unsigned long nr_to_reclaim;
60
7b51755c
KM
61 unsigned long hibernation_mode;
62
1da177e4 63 /* This context's GFP mask */
6daa0e28 64 gfp_t gfp_mask;
1da177e4
LT
65
66 int may_writepage;
67
a6dc60f8
JW
68 /* Can mapped pages be reclaimed? */
69 int may_unmap;
f1fd1067 70
2e2e4259
KM
71 /* Can pages be swapped as part of reclaim? */
72 int may_swap;
73
d6277db4 74 int swappiness;
408d8544
NP
75
76 int all_unreclaimable;
5ad333eb
AW
77
78 int order;
66e1707b
BS
79
80 /* Which cgroup do we reclaim from */
81 struct mem_cgroup *mem_cgroup;
82
327c0e96
KH
83 /*
84 * Nodemask of nodes allowed by the caller. If NULL, all nodes
85 * are scanned.
86 */
87 nodemask_t *nodemask;
88
66e1707b
BS
89 /* Pluggable isolate pages callback */
90 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
91 unsigned long *scanned, int order, int mode,
92 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 93 int active, int file);
1da177e4
LT
94};
95
1da177e4
LT
96#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
97
98#ifdef ARCH_HAS_PREFETCH
99#define prefetch_prev_lru_page(_page, _base, _field) \
100 do { \
101 if ((_page)->lru.prev != _base) { \
102 struct page *prev; \
103 \
104 prev = lru_to_page(&(_page->lru)); \
105 prefetch(&prev->_field); \
106 } \
107 } while (0)
108#else
109#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
110#endif
111
112#ifdef ARCH_HAS_PREFETCHW
113#define prefetchw_prev_lru_page(_page, _base, _field) \
114 do { \
115 if ((_page)->lru.prev != _base) { \
116 struct page *prev; \
117 \
118 prev = lru_to_page(&(_page->lru)); \
119 prefetchw(&prev->_field); \
120 } \
121 } while (0)
122#else
123#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
124#endif
125
126/*
127 * From 0 .. 100. Higher means more swappy.
128 */
129int vm_swappiness = 60;
bd1e22b8 130long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
131
132static LIST_HEAD(shrinker_list);
133static DECLARE_RWSEM(shrinker_rwsem);
134
00f0b825 135#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 136#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 137#else
e72e2bd6 138#define scanning_global_lru(sc) (1)
91a45470
KH
139#endif
140
6e901571
KM
141static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
142 struct scan_control *sc)
143{
e72e2bd6 144 if (!scanning_global_lru(sc))
3e2f41f1
KM
145 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
146
6e901571
KM
147 return &zone->reclaim_stat;
148}
149
0b217676
VL
150static unsigned long zone_nr_lru_pages(struct zone *zone,
151 struct scan_control *sc, enum lru_list lru)
c9f299d9 152{
e72e2bd6 153 if (!scanning_global_lru(sc))
a3d8e054
KM
154 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
155
c9f299d9
KM
156 return zone_page_state(zone, NR_LRU_BASE + lru);
157}
158
159
1da177e4
LT
160/*
161 * Add a shrinker callback to be called from the vm
162 */
8e1f936b 163void register_shrinker(struct shrinker *shrinker)
1da177e4 164{
8e1f936b
RR
165 shrinker->nr = 0;
166 down_write(&shrinker_rwsem);
167 list_add_tail(&shrinker->list, &shrinker_list);
168 up_write(&shrinker_rwsem);
1da177e4 169}
8e1f936b 170EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
171
172/*
173 * Remove one
174 */
8e1f936b 175void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
176{
177 down_write(&shrinker_rwsem);
178 list_del(&shrinker->list);
179 up_write(&shrinker_rwsem);
1da177e4 180}
8e1f936b 181EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
182
183#define SHRINK_BATCH 128
184/*
185 * Call the shrink functions to age shrinkable caches
186 *
187 * Here we assume it costs one seek to replace a lru page and that it also
188 * takes a seek to recreate a cache object. With this in mind we age equal
189 * percentages of the lru and ageable caches. This should balance the seeks
190 * generated by these structures.
191 *
183ff22b 192 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
193 * slab to avoid swapping.
194 *
195 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
196 *
197 * `lru_pages' represents the number of on-LRU pages in all the zones which
198 * are eligible for the caller's allocation attempt. It is used for balancing
199 * slab reclaim versus page reclaim.
b15e0905 200 *
201 * Returns the number of slab objects which we shrunk.
1da177e4 202 */
69e05944
AM
203unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
204 unsigned long lru_pages)
1da177e4
LT
205{
206 struct shrinker *shrinker;
69e05944 207 unsigned long ret = 0;
1da177e4
LT
208
209 if (scanned == 0)
210 scanned = SWAP_CLUSTER_MAX;
211
212 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 213 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
214
215 list_for_each_entry(shrinker, &shrinker_list, list) {
216 unsigned long long delta;
217 unsigned long total_scan;
8e1f936b 218 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
219
220 delta = (4 * scanned) / shrinker->seeks;
ea164d73 221 delta *= max_pass;
1da177e4
LT
222 do_div(delta, lru_pages + 1);
223 shrinker->nr += delta;
ea164d73 224 if (shrinker->nr < 0) {
88c3bd70
DR
225 printk(KERN_ERR "shrink_slab: %pF negative objects to "
226 "delete nr=%ld\n",
227 shrinker->shrink, shrinker->nr);
ea164d73
AA
228 shrinker->nr = max_pass;
229 }
230
231 /*
232 * Avoid risking looping forever due to too large nr value:
233 * never try to free more than twice the estimate number of
234 * freeable entries.
235 */
236 if (shrinker->nr > max_pass * 2)
237 shrinker->nr = max_pass * 2;
1da177e4
LT
238
239 total_scan = shrinker->nr;
240 shrinker->nr = 0;
241
242 while (total_scan >= SHRINK_BATCH) {
243 long this_scan = SHRINK_BATCH;
244 int shrink_ret;
b15e0905 245 int nr_before;
1da177e4 246
8e1f936b
RR
247 nr_before = (*shrinker->shrink)(0, gfp_mask);
248 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
249 if (shrink_ret == -1)
250 break;
b15e0905 251 if (shrink_ret < nr_before)
252 ret += nr_before - shrink_ret;
f8891e5e 253 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
254 total_scan -= this_scan;
255
256 cond_resched();
257 }
258
259 shrinker->nr += total_scan;
260 }
261 up_read(&shrinker_rwsem);
b15e0905 262 return ret;
1da177e4
LT
263}
264
1da177e4
LT
265static inline int is_page_cache_freeable(struct page *page)
266{
ceddc3a5
JW
267 /*
268 * A freeable page cache page is referenced only by the caller
269 * that isolated the page, the page cache radix tree and
270 * optional buffer heads at page->private.
271 */
edcf4748 272 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
273}
274
275static int may_write_to_queue(struct backing_dev_info *bdi)
276{
930d9152 277 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
278 return 1;
279 if (!bdi_write_congested(bdi))
280 return 1;
281 if (bdi == current->backing_dev_info)
282 return 1;
283 return 0;
284}
285
286/*
287 * We detected a synchronous write error writing a page out. Probably
288 * -ENOSPC. We need to propagate that into the address_space for a subsequent
289 * fsync(), msync() or close().
290 *
291 * The tricky part is that after writepage we cannot touch the mapping: nothing
292 * prevents it from being freed up. But we have a ref on the page and once
293 * that page is locked, the mapping is pinned.
294 *
295 * We're allowed to run sleeping lock_page() here because we know the caller has
296 * __GFP_FS.
297 */
298static void handle_write_error(struct address_space *mapping,
299 struct page *page, int error)
300{
301 lock_page(page);
3e9f45bd
GC
302 if (page_mapping(page) == mapping)
303 mapping_set_error(mapping, error);
1da177e4
LT
304 unlock_page(page);
305}
306
c661b078
AW
307/* Request for sync pageout. */
308enum pageout_io {
309 PAGEOUT_IO_ASYNC,
310 PAGEOUT_IO_SYNC,
311};
312
04e62a29
CL
313/* possible outcome of pageout() */
314typedef enum {
315 /* failed to write page out, page is locked */
316 PAGE_KEEP,
317 /* move page to the active list, page is locked */
318 PAGE_ACTIVATE,
319 /* page has been sent to the disk successfully, page is unlocked */
320 PAGE_SUCCESS,
321 /* page is clean and locked */
322 PAGE_CLEAN,
323} pageout_t;
324
1da177e4 325/*
1742f19f
AM
326 * pageout is called by shrink_page_list() for each dirty page.
327 * Calls ->writepage().
1da177e4 328 */
c661b078
AW
329static pageout_t pageout(struct page *page, struct address_space *mapping,
330 enum pageout_io sync_writeback)
1da177e4
LT
331{
332 /*
333 * If the page is dirty, only perform writeback if that write
334 * will be non-blocking. To prevent this allocation from being
335 * stalled by pagecache activity. But note that there may be
336 * stalls if we need to run get_block(). We could test
337 * PagePrivate for that.
338 *
6aceb53b 339 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
340 * this page's queue, we can perform writeback even if that
341 * will block.
342 *
343 * If the page is swapcache, write it back even if that would
344 * block, for some throttling. This happens by accident, because
345 * swap_backing_dev_info is bust: it doesn't reflect the
346 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
347 */
348 if (!is_page_cache_freeable(page))
349 return PAGE_KEEP;
350 if (!mapping) {
351 /*
352 * Some data journaling orphaned pages can have
353 * page->mapping == NULL while being dirty with clean buffers.
354 */
266cf658 355 if (page_has_private(page)) {
1da177e4
LT
356 if (try_to_free_buffers(page)) {
357 ClearPageDirty(page);
d40cee24 358 printk("%s: orphaned page\n", __func__);
1da177e4
LT
359 return PAGE_CLEAN;
360 }
361 }
362 return PAGE_KEEP;
363 }
364 if (mapping->a_ops->writepage == NULL)
365 return PAGE_ACTIVATE;
366 if (!may_write_to_queue(mapping->backing_dev_info))
367 return PAGE_KEEP;
368
369 if (clear_page_dirty_for_io(page)) {
370 int res;
371 struct writeback_control wbc = {
372 .sync_mode = WB_SYNC_NONE,
373 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
374 .range_start = 0,
375 .range_end = LLONG_MAX,
1da177e4
LT
376 .nonblocking = 1,
377 .for_reclaim = 1,
378 };
379
380 SetPageReclaim(page);
381 res = mapping->a_ops->writepage(page, &wbc);
382 if (res < 0)
383 handle_write_error(mapping, page, res);
994fc28c 384 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
385 ClearPageReclaim(page);
386 return PAGE_ACTIVATE;
387 }
c661b078
AW
388
389 /*
390 * Wait on writeback if requested to. This happens when
391 * direct reclaiming a large contiguous area and the
392 * first attempt to free a range of pages fails.
393 */
394 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
395 wait_on_page_writeback(page);
396
1da177e4
LT
397 if (!PageWriteback(page)) {
398 /* synchronous write or broken a_ops? */
399 ClearPageReclaim(page);
400 }
e129b5c2 401 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
402 return PAGE_SUCCESS;
403 }
404
405 return PAGE_CLEAN;
406}
407
a649fd92 408/*
e286781d
NP
409 * Same as remove_mapping, but if the page is removed from the mapping, it
410 * gets returned with a refcount of 0.
a649fd92 411 */
e286781d 412static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 413{
28e4d965
NP
414 BUG_ON(!PageLocked(page));
415 BUG_ON(mapping != page_mapping(page));
49d2e9cc 416
19fd6231 417 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 418 /*
0fd0e6b0
NP
419 * The non racy check for a busy page.
420 *
421 * Must be careful with the order of the tests. When someone has
422 * a ref to the page, it may be possible that they dirty it then
423 * drop the reference. So if PageDirty is tested before page_count
424 * here, then the following race may occur:
425 *
426 * get_user_pages(&page);
427 * [user mapping goes away]
428 * write_to(page);
429 * !PageDirty(page) [good]
430 * SetPageDirty(page);
431 * put_page(page);
432 * !page_count(page) [good, discard it]
433 *
434 * [oops, our write_to data is lost]
435 *
436 * Reversing the order of the tests ensures such a situation cannot
437 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
438 * load is not satisfied before that of page->_count.
439 *
440 * Note that if SetPageDirty is always performed via set_page_dirty,
441 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 442 */
e286781d 443 if (!page_freeze_refs(page, 2))
49d2e9cc 444 goto cannot_free;
e286781d
NP
445 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
446 if (unlikely(PageDirty(page))) {
447 page_unfreeze_refs(page, 2);
49d2e9cc 448 goto cannot_free;
e286781d 449 }
49d2e9cc
CL
450
451 if (PageSwapCache(page)) {
452 swp_entry_t swap = { .val = page_private(page) };
453 __delete_from_swap_cache(page);
19fd6231 454 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 455 swapcache_free(swap, page);
e286781d
NP
456 } else {
457 __remove_from_page_cache(page);
19fd6231 458 spin_unlock_irq(&mapping->tree_lock);
e767e056 459 mem_cgroup_uncharge_cache_page(page);
49d2e9cc
CL
460 }
461
49d2e9cc
CL
462 return 1;
463
464cannot_free:
19fd6231 465 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
466 return 0;
467}
468
e286781d
NP
469/*
470 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
471 * someone else has a ref on the page, abort and return 0. If it was
472 * successfully detached, return 1. Assumes the caller has a single ref on
473 * this page.
474 */
475int remove_mapping(struct address_space *mapping, struct page *page)
476{
477 if (__remove_mapping(mapping, page)) {
478 /*
479 * Unfreezing the refcount with 1 rather than 2 effectively
480 * drops the pagecache ref for us without requiring another
481 * atomic operation.
482 */
483 page_unfreeze_refs(page, 1);
484 return 1;
485 }
486 return 0;
487}
488
894bc310
LS
489/**
490 * putback_lru_page - put previously isolated page onto appropriate LRU list
491 * @page: page to be put back to appropriate lru list
492 *
493 * Add previously isolated @page to appropriate LRU list.
494 * Page may still be unevictable for other reasons.
495 *
496 * lru_lock must not be held, interrupts must be enabled.
497 */
894bc310
LS
498void putback_lru_page(struct page *page)
499{
500 int lru;
501 int active = !!TestClearPageActive(page);
bbfd28ee 502 int was_unevictable = PageUnevictable(page);
894bc310
LS
503
504 VM_BUG_ON(PageLRU(page));
505
506redo:
507 ClearPageUnevictable(page);
508
509 if (page_evictable(page, NULL)) {
510 /*
511 * For evictable pages, we can use the cache.
512 * In event of a race, worst case is we end up with an
513 * unevictable page on [in]active list.
514 * We know how to handle that.
515 */
401a8e1c 516 lru = active + page_lru_base_type(page);
894bc310
LS
517 lru_cache_add_lru(page, lru);
518 } else {
519 /*
520 * Put unevictable pages directly on zone's unevictable
521 * list.
522 */
523 lru = LRU_UNEVICTABLE;
524 add_page_to_unevictable_list(page);
6a7b9548
JW
525 /*
526 * When racing with an mlock clearing (page is
527 * unlocked), make sure that if the other thread does
528 * not observe our setting of PG_lru and fails
529 * isolation, we see PG_mlocked cleared below and move
530 * the page back to the evictable list.
531 *
532 * The other side is TestClearPageMlocked().
533 */
534 smp_mb();
894bc310 535 }
894bc310
LS
536
537 /*
538 * page's status can change while we move it among lru. If an evictable
539 * page is on unevictable list, it never be freed. To avoid that,
540 * check after we added it to the list, again.
541 */
542 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
543 if (!isolate_lru_page(page)) {
544 put_page(page);
545 goto redo;
546 }
547 /* This means someone else dropped this page from LRU
548 * So, it will be freed or putback to LRU again. There is
549 * nothing to do here.
550 */
551 }
552
bbfd28ee
LS
553 if (was_unevictable && lru != LRU_UNEVICTABLE)
554 count_vm_event(UNEVICTABLE_PGRESCUED);
555 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
556 count_vm_event(UNEVICTABLE_PGCULLED);
557
894bc310
LS
558 put_page(page); /* drop ref from isolate */
559}
560
dfc8d636
JW
561enum page_references {
562 PAGEREF_RECLAIM,
563 PAGEREF_RECLAIM_CLEAN,
564 PAGEREF_ACTIVATE,
565};
566
567static enum page_references page_check_references(struct page *page,
568 struct scan_control *sc)
569{
570 unsigned long vm_flags;
571 int referenced;
572
573 referenced = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
574 if (!referenced)
575 return PAGEREF_RECLAIM;
576
577 /* Lumpy reclaim - ignore references */
578 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
579 return PAGEREF_RECLAIM;
580
581 /*
582 * Mlock lost the isolation race with us. Let try_to_unmap()
583 * move the page to the unevictable list.
584 */
585 if (vm_flags & VM_LOCKED)
586 return PAGEREF_RECLAIM;
587
31c0569c 588 if (page_mapped(page))
dfc8d636
JW
589 return PAGEREF_ACTIVATE;
590
591 /* Reclaim if clean, defer dirty pages to writeback */
592 return PAGEREF_RECLAIM_CLEAN;
593}
594
1da177e4 595/*
1742f19f 596 * shrink_page_list() returns the number of reclaimed pages
1da177e4 597 */
1742f19f 598static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
599 struct scan_control *sc,
600 enum pageout_io sync_writeback)
1da177e4
LT
601{
602 LIST_HEAD(ret_pages);
603 struct pagevec freed_pvec;
604 int pgactivate = 0;
05ff5137 605 unsigned long nr_reclaimed = 0;
1da177e4
LT
606
607 cond_resched();
608
609 pagevec_init(&freed_pvec, 1);
610 while (!list_empty(page_list)) {
dfc8d636 611 enum page_references references;
1da177e4
LT
612 struct address_space *mapping;
613 struct page *page;
614 int may_enter_fs;
1da177e4
LT
615
616 cond_resched();
617
618 page = lru_to_page(page_list);
619 list_del(&page->lru);
620
529ae9aa 621 if (!trylock_page(page))
1da177e4
LT
622 goto keep;
623
725d704e 624 VM_BUG_ON(PageActive(page));
1da177e4
LT
625
626 sc->nr_scanned++;
80e43426 627
b291f000
NP
628 if (unlikely(!page_evictable(page, NULL)))
629 goto cull_mlocked;
894bc310 630
a6dc60f8 631 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
632 goto keep_locked;
633
1da177e4
LT
634 /* Double the slab pressure for mapped and swapcache pages */
635 if (page_mapped(page) || PageSwapCache(page))
636 sc->nr_scanned++;
637
c661b078
AW
638 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
639 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
640
641 if (PageWriteback(page)) {
642 /*
643 * Synchronous reclaim is performed in two passes,
644 * first an asynchronous pass over the list to
645 * start parallel writeback, and a second synchronous
646 * pass to wait for the IO to complete. Wait here
647 * for any page for which writeback has already
648 * started.
649 */
650 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
651 wait_on_page_writeback(page);
4dd4b920 652 else
c661b078
AW
653 goto keep_locked;
654 }
1da177e4 655
dfc8d636
JW
656 references = page_check_references(page, sc);
657 switch (references) {
658 case PAGEREF_ACTIVATE:
1da177e4 659 goto activate_locked;
dfc8d636
JW
660 case PAGEREF_RECLAIM:
661 case PAGEREF_RECLAIM_CLEAN:
662 ; /* try to reclaim the page below */
663 }
1da177e4 664
1da177e4
LT
665 /*
666 * Anonymous process memory has backing store?
667 * Try to allocate it some swap space here.
668 */
b291f000 669 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
670 if (!(sc->gfp_mask & __GFP_IO))
671 goto keep_locked;
ac47b003 672 if (!add_to_swap(page))
1da177e4 673 goto activate_locked;
63eb6b93 674 may_enter_fs = 1;
b291f000 675 }
1da177e4
LT
676
677 mapping = page_mapping(page);
1da177e4
LT
678
679 /*
680 * The page is mapped into the page tables of one or more
681 * processes. Try to unmap it here.
682 */
683 if (page_mapped(page) && mapping) {
14fa31b8 684 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
685 case SWAP_FAIL:
686 goto activate_locked;
687 case SWAP_AGAIN:
688 goto keep_locked;
b291f000
NP
689 case SWAP_MLOCK:
690 goto cull_mlocked;
1da177e4
LT
691 case SWAP_SUCCESS:
692 ; /* try to free the page below */
693 }
694 }
695
696 if (PageDirty(page)) {
dfc8d636 697 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 698 goto keep_locked;
4dd4b920 699 if (!may_enter_fs)
1da177e4 700 goto keep_locked;
52a8363e 701 if (!sc->may_writepage)
1da177e4
LT
702 goto keep_locked;
703
704 /* Page is dirty, try to write it out here */
c661b078 705 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
706 case PAGE_KEEP:
707 goto keep_locked;
708 case PAGE_ACTIVATE:
709 goto activate_locked;
710 case PAGE_SUCCESS:
4dd4b920 711 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
712 goto keep;
713 /*
714 * A synchronous write - probably a ramdisk. Go
715 * ahead and try to reclaim the page.
716 */
529ae9aa 717 if (!trylock_page(page))
1da177e4
LT
718 goto keep;
719 if (PageDirty(page) || PageWriteback(page))
720 goto keep_locked;
721 mapping = page_mapping(page);
722 case PAGE_CLEAN:
723 ; /* try to free the page below */
724 }
725 }
726
727 /*
728 * If the page has buffers, try to free the buffer mappings
729 * associated with this page. If we succeed we try to free
730 * the page as well.
731 *
732 * We do this even if the page is PageDirty().
733 * try_to_release_page() does not perform I/O, but it is
734 * possible for a page to have PageDirty set, but it is actually
735 * clean (all its buffers are clean). This happens if the
736 * buffers were written out directly, with submit_bh(). ext3
894bc310 737 * will do this, as well as the blockdev mapping.
1da177e4
LT
738 * try_to_release_page() will discover that cleanness and will
739 * drop the buffers and mark the page clean - it can be freed.
740 *
741 * Rarely, pages can have buffers and no ->mapping. These are
742 * the pages which were not successfully invalidated in
743 * truncate_complete_page(). We try to drop those buffers here
744 * and if that worked, and the page is no longer mapped into
745 * process address space (page_count == 1) it can be freed.
746 * Otherwise, leave the page on the LRU so it is swappable.
747 */
266cf658 748 if (page_has_private(page)) {
1da177e4
LT
749 if (!try_to_release_page(page, sc->gfp_mask))
750 goto activate_locked;
e286781d
NP
751 if (!mapping && page_count(page) == 1) {
752 unlock_page(page);
753 if (put_page_testzero(page))
754 goto free_it;
755 else {
756 /*
757 * rare race with speculative reference.
758 * the speculative reference will free
759 * this page shortly, so we may
760 * increment nr_reclaimed here (and
761 * leave it off the LRU).
762 */
763 nr_reclaimed++;
764 continue;
765 }
766 }
1da177e4
LT
767 }
768
e286781d 769 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 770 goto keep_locked;
1da177e4 771
a978d6f5
NP
772 /*
773 * At this point, we have no other references and there is
774 * no way to pick any more up (removed from LRU, removed
775 * from pagecache). Can use non-atomic bitops now (and
776 * we obviously don't have to worry about waking up a process
777 * waiting on the page lock, because there are no references.
778 */
779 __clear_page_locked(page);
e286781d 780free_it:
05ff5137 781 nr_reclaimed++;
e286781d
NP
782 if (!pagevec_add(&freed_pvec, page)) {
783 __pagevec_free(&freed_pvec);
784 pagevec_reinit(&freed_pvec);
785 }
1da177e4
LT
786 continue;
787
b291f000 788cull_mlocked:
63d6c5ad
HD
789 if (PageSwapCache(page))
790 try_to_free_swap(page);
b291f000
NP
791 unlock_page(page);
792 putback_lru_page(page);
793 continue;
794
1da177e4 795activate_locked:
68a22394
RR
796 /* Not a candidate for swapping, so reclaim swap space. */
797 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 798 try_to_free_swap(page);
894bc310 799 VM_BUG_ON(PageActive(page));
1da177e4
LT
800 SetPageActive(page);
801 pgactivate++;
802keep_locked:
803 unlock_page(page);
804keep:
805 list_add(&page->lru, &ret_pages);
b291f000 806 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
807 }
808 list_splice(&ret_pages, page_list);
809 if (pagevec_count(&freed_pvec))
e286781d 810 __pagevec_free(&freed_pvec);
f8891e5e 811 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 812 return nr_reclaimed;
1da177e4
LT
813}
814
5ad333eb
AW
815/* LRU Isolation modes. */
816#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
817#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
818#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
819
820/*
821 * Attempt to remove the specified page from its LRU. Only take this page
822 * if it is of the appropriate PageActive status. Pages which are being
823 * freed elsewhere are also ignored.
824 *
825 * page: page to consider
826 * mode: one of the LRU isolation modes defined above
827 *
828 * returns 0 on success, -ve errno on failure.
829 */
4f98a2fe 830int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
831{
832 int ret = -EINVAL;
833
834 /* Only take pages on the LRU. */
835 if (!PageLRU(page))
836 return ret;
837
838 /*
839 * When checking the active state, we need to be sure we are
840 * dealing with comparible boolean values. Take the logical not
841 * of each.
842 */
843 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
844 return ret;
845
6c0b1351 846 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
4f98a2fe
RR
847 return ret;
848
894bc310
LS
849 /*
850 * When this function is being called for lumpy reclaim, we
851 * initially look into all LRU pages, active, inactive and
852 * unevictable; only give shrink_page_list evictable pages.
853 */
854 if (PageUnevictable(page))
855 return ret;
856
5ad333eb 857 ret = -EBUSY;
08e552c6 858
5ad333eb
AW
859 if (likely(get_page_unless_zero(page))) {
860 /*
861 * Be careful not to clear PageLRU until after we're
862 * sure the page is not being freed elsewhere -- the
863 * page release code relies on it.
864 */
865 ClearPageLRU(page);
866 ret = 0;
867 }
868
869 return ret;
870}
871
1da177e4
LT
872/*
873 * zone->lru_lock is heavily contended. Some of the functions that
874 * shrink the lists perform better by taking out a batch of pages
875 * and working on them outside the LRU lock.
876 *
877 * For pagecache intensive workloads, this function is the hottest
878 * spot in the kernel (apart from copy_*_user functions).
879 *
880 * Appropriate locks must be held before calling this function.
881 *
882 * @nr_to_scan: The number of pages to look through on the list.
883 * @src: The LRU list to pull pages off.
884 * @dst: The temp list to put pages on to.
885 * @scanned: The number of pages that were scanned.
5ad333eb
AW
886 * @order: The caller's attempted allocation order
887 * @mode: One of the LRU isolation modes
4f98a2fe 888 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
889 *
890 * returns how many pages were moved onto *@dst.
891 */
69e05944
AM
892static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
893 struct list_head *src, struct list_head *dst,
4f98a2fe 894 unsigned long *scanned, int order, int mode, int file)
1da177e4 895{
69e05944 896 unsigned long nr_taken = 0;
c9b02d97 897 unsigned long scan;
1da177e4 898
c9b02d97 899 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
900 struct page *page;
901 unsigned long pfn;
902 unsigned long end_pfn;
903 unsigned long page_pfn;
904 int zone_id;
905
1da177e4
LT
906 page = lru_to_page(src);
907 prefetchw_prev_lru_page(page, src, flags);
908
725d704e 909 VM_BUG_ON(!PageLRU(page));
8d438f96 910
4f98a2fe 911 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
912 case 0:
913 list_move(&page->lru, dst);
2ffebca6 914 mem_cgroup_del_lru(page);
7c8ee9a8 915 nr_taken++;
5ad333eb
AW
916 break;
917
918 case -EBUSY:
919 /* else it is being freed elsewhere */
920 list_move(&page->lru, src);
2ffebca6 921 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 922 continue;
46453a6e 923
5ad333eb
AW
924 default:
925 BUG();
926 }
927
928 if (!order)
929 continue;
930
931 /*
932 * Attempt to take all pages in the order aligned region
933 * surrounding the tag page. Only take those pages of
934 * the same active state as that tag page. We may safely
935 * round the target page pfn down to the requested order
936 * as the mem_map is guarenteed valid out to MAX_ORDER,
937 * where that page is in a different zone we will detect
938 * it from its zone id and abort this block scan.
939 */
940 zone_id = page_zone_id(page);
941 page_pfn = page_to_pfn(page);
942 pfn = page_pfn & ~((1 << order) - 1);
943 end_pfn = pfn + (1 << order);
944 for (; pfn < end_pfn; pfn++) {
945 struct page *cursor_page;
946
947 /* The target page is in the block, ignore it. */
948 if (unlikely(pfn == page_pfn))
949 continue;
950
951 /* Avoid holes within the zone. */
952 if (unlikely(!pfn_valid_within(pfn)))
953 break;
954
955 cursor_page = pfn_to_page(pfn);
4f98a2fe 956
5ad333eb
AW
957 /* Check that we have not crossed a zone boundary. */
958 if (unlikely(page_zone_id(cursor_page) != zone_id))
959 continue;
de2e7567
MK
960
961 /*
962 * If we don't have enough swap space, reclaiming of
963 * anon page which don't already have a swap slot is
964 * pointless.
965 */
966 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
967 !PageSwapCache(cursor_page))
968 continue;
969
ee993b13 970 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 971 list_move(&cursor_page->lru, dst);
cb4cbcf6 972 mem_cgroup_del_lru(cursor_page);
5ad333eb
AW
973 nr_taken++;
974 scan++;
5ad333eb
AW
975 }
976 }
1da177e4
LT
977 }
978
979 *scanned = scan;
980 return nr_taken;
981}
982
66e1707b
BS
983static unsigned long isolate_pages_global(unsigned long nr,
984 struct list_head *dst,
985 unsigned long *scanned, int order,
986 int mode, struct zone *z,
987 struct mem_cgroup *mem_cont,
4f98a2fe 988 int active, int file)
66e1707b 989{
4f98a2fe 990 int lru = LRU_BASE;
66e1707b 991 if (active)
4f98a2fe
RR
992 lru += LRU_ACTIVE;
993 if (file)
994 lru += LRU_FILE;
995 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 996 mode, file);
66e1707b
BS
997}
998
5ad333eb
AW
999/*
1000 * clear_active_flags() is a helper for shrink_active_list(), clearing
1001 * any active bits from the pages in the list.
1002 */
4f98a2fe
RR
1003static unsigned long clear_active_flags(struct list_head *page_list,
1004 unsigned int *count)
5ad333eb
AW
1005{
1006 int nr_active = 0;
4f98a2fe 1007 int lru;
5ad333eb
AW
1008 struct page *page;
1009
4f98a2fe 1010 list_for_each_entry(page, page_list, lru) {
401a8e1c 1011 lru = page_lru_base_type(page);
5ad333eb 1012 if (PageActive(page)) {
4f98a2fe 1013 lru += LRU_ACTIVE;
5ad333eb
AW
1014 ClearPageActive(page);
1015 nr_active++;
1016 }
4f98a2fe
RR
1017 count[lru]++;
1018 }
5ad333eb
AW
1019
1020 return nr_active;
1021}
1022
62695a84
NP
1023/**
1024 * isolate_lru_page - tries to isolate a page from its LRU list
1025 * @page: page to isolate from its LRU list
1026 *
1027 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1028 * vmstat statistic corresponding to whatever LRU list the page was on.
1029 *
1030 * Returns 0 if the page was removed from an LRU list.
1031 * Returns -EBUSY if the page was not on an LRU list.
1032 *
1033 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1034 * the active list, it will have PageActive set. If it was found on
1035 * the unevictable list, it will have the PageUnevictable bit set. That flag
1036 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1037 *
1038 * The vmstat statistic corresponding to the list on which the page was
1039 * found will be decremented.
1040 *
1041 * Restrictions:
1042 * (1) Must be called with an elevated refcount on the page. This is a
1043 * fundamentnal difference from isolate_lru_pages (which is called
1044 * without a stable reference).
1045 * (2) the lru_lock must not be held.
1046 * (3) interrupts must be enabled.
1047 */
1048int isolate_lru_page(struct page *page)
1049{
1050 int ret = -EBUSY;
1051
1052 if (PageLRU(page)) {
1053 struct zone *zone = page_zone(page);
1054
1055 spin_lock_irq(&zone->lru_lock);
1056 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1057 int lru = page_lru(page);
62695a84
NP
1058 ret = 0;
1059 ClearPageLRU(page);
4f98a2fe 1060
4f98a2fe 1061 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1062 }
1063 spin_unlock_irq(&zone->lru_lock);
1064 }
1065 return ret;
1066}
1067
35cd7815
RR
1068/*
1069 * Are there way too many processes in the direct reclaim path already?
1070 */
1071static int too_many_isolated(struct zone *zone, int file,
1072 struct scan_control *sc)
1073{
1074 unsigned long inactive, isolated;
1075
1076 if (current_is_kswapd())
1077 return 0;
1078
1079 if (!scanning_global_lru(sc))
1080 return 0;
1081
1082 if (file) {
1083 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1084 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1085 } else {
1086 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1087 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1088 }
1089
1090 return isolated > inactive;
1091}
1092
1da177e4 1093/*
1742f19f
AM
1094 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1095 * of reclaimed pages
1da177e4 1096 */
1742f19f 1097static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1098 struct zone *zone, struct scan_control *sc,
1099 int priority, int file)
1da177e4
LT
1100{
1101 LIST_HEAD(page_list);
1102 struct pagevec pvec;
69e05944 1103 unsigned long nr_scanned = 0;
05ff5137 1104 unsigned long nr_reclaimed = 0;
6e901571 1105 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
78dc583d
KM
1106 int lumpy_reclaim = 0;
1107
35cd7815 1108 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1109 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1110
1111 /* We are about to die and free our memory. Return now. */
1112 if (fatal_signal_pending(current))
1113 return SWAP_CLUSTER_MAX;
1114 }
1115
78dc583d
KM
1116 /*
1117 * If we need a large contiguous chunk of memory, or have
1118 * trouble getting a small set of contiguous pages, we
1119 * will reclaim both active and inactive pages.
1120 *
1121 * We use the same threshold as pageout congestion_wait below.
1122 */
1123 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1124 lumpy_reclaim = 1;
1125 else if (sc->order && priority < DEF_PRIORITY - 2)
1126 lumpy_reclaim = 1;
1da177e4
LT
1127
1128 pagevec_init(&pvec, 1);
1129
1130 lru_add_drain();
1131 spin_lock_irq(&zone->lru_lock);
69e05944 1132 do {
1da177e4 1133 struct page *page;
69e05944
AM
1134 unsigned long nr_taken;
1135 unsigned long nr_scan;
1136 unsigned long nr_freed;
5ad333eb 1137 unsigned long nr_active;
4f98a2fe 1138 unsigned int count[NR_LRU_LISTS] = { 0, };
78dc583d 1139 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
a731286d
KM
1140 unsigned long nr_anon;
1141 unsigned long nr_file;
1da177e4 1142
ece74b2e 1143 nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
4f98a2fe
RR
1144 &page_list, &nr_scan, sc->order, mode,
1145 zone, sc->mem_cgroup, 0, file);
b35ea17b
KM
1146
1147 if (scanning_global_lru(sc)) {
1148 zone->pages_scanned += nr_scan;
1149 if (current_is_kswapd())
1150 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1151 nr_scan);
1152 else
1153 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1154 nr_scan);
1155 }
1156
1157 if (nr_taken == 0)
1158 goto done;
1159
4f98a2fe 1160 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1161 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1162
4f98a2fe
RR
1163 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1164 -count[LRU_ACTIVE_FILE]);
1165 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1166 -count[LRU_INACTIVE_FILE]);
1167 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1168 -count[LRU_ACTIVE_ANON]);
1169 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1170 -count[LRU_INACTIVE_ANON]);
1171
a731286d
KM
1172 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1173 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1174 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1175 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
3e2f41f1 1176
62c0c2f1
HS
1177 reclaim_stat->recent_scanned[0] += nr_anon;
1178 reclaim_stat->recent_scanned[1] += nr_file;
3e2f41f1 1179
1da177e4
LT
1180 spin_unlock_irq(&zone->lru_lock);
1181
69e05944 1182 nr_scanned += nr_scan;
c661b078
AW
1183 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1184
1185 /*
1186 * If we are direct reclaiming for contiguous pages and we do
1187 * not reclaim everything in the list, try again and wait
1188 * for IO to complete. This will stall high-order allocations
1189 * but that should be acceptable to the caller
1190 */
1191 if (nr_freed < nr_taken && !current_is_kswapd() &&
78dc583d 1192 lumpy_reclaim) {
8aa7e847 1193 congestion_wait(BLK_RW_ASYNC, HZ/10);
c661b078
AW
1194
1195 /*
1196 * The attempt at page out may have made some
1197 * of the pages active, mark them inactive again.
1198 */
4f98a2fe 1199 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1200 count_vm_events(PGDEACTIVATE, nr_active);
1201
1202 nr_freed += shrink_page_list(&page_list, sc,
1203 PAGEOUT_IO_SYNC);
1204 }
1205
05ff5137 1206 nr_reclaimed += nr_freed;
b35ea17b 1207
a74609fa 1208 local_irq_disable();
b35ea17b 1209 if (current_is_kswapd())
f8891e5e 1210 __count_vm_events(KSWAPD_STEAL, nr_freed);
918d3f90 1211 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa
NP
1212
1213 spin_lock(&zone->lru_lock);
1da177e4
LT
1214 /*
1215 * Put back any unfreeable pages.
1216 */
1217 while (!list_empty(&page_list)) {
894bc310 1218 int lru;
1da177e4 1219 page = lru_to_page(&page_list);
725d704e 1220 VM_BUG_ON(PageLRU(page));
1da177e4 1221 list_del(&page->lru);
894bc310
LS
1222 if (unlikely(!page_evictable(page, NULL))) {
1223 spin_unlock_irq(&zone->lru_lock);
1224 putback_lru_page(page);
1225 spin_lock_irq(&zone->lru_lock);
1226 continue;
1227 }
1228 SetPageLRU(page);
1229 lru = page_lru(page);
1230 add_page_to_lru_list(zone, page, lru);
74a1c48f 1231 if (is_active_lru(lru)) {
b7c46d15 1232 int file = is_file_lru(lru);
6e901571 1233 reclaim_stat->recent_rotated[file]++;
4f98a2fe 1234 }
1da177e4
LT
1235 if (!pagevec_add(&pvec, page)) {
1236 spin_unlock_irq(&zone->lru_lock);
1237 __pagevec_release(&pvec);
1238 spin_lock_irq(&zone->lru_lock);
1239 }
1240 }
a731286d
KM
1241 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1242 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1243
69e05944 1244 } while (nr_scanned < max_scan);
b35ea17b 1245
1da177e4 1246done:
b35ea17b 1247 spin_unlock_irq(&zone->lru_lock);
1da177e4 1248 pagevec_release(&pvec);
05ff5137 1249 return nr_reclaimed;
1da177e4
LT
1250}
1251
3bb1a852
MB
1252/*
1253 * We are about to scan this zone at a certain priority level. If that priority
1254 * level is smaller (ie: more urgent) than the previous priority, then note
1255 * that priority level within the zone. This is done so that when the next
1256 * process comes in to scan this zone, it will immediately start out at this
1257 * priority level rather than having to build up its own scanning priority.
1258 * Here, this priority affects only the reclaim-mapped threshold.
1259 */
1260static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1261{
1262 if (priority < zone->prev_priority)
1263 zone->prev_priority = priority;
1264}
1265
1da177e4
LT
1266/*
1267 * This moves pages from the active list to the inactive list.
1268 *
1269 * We move them the other way if the page is referenced by one or more
1270 * processes, from rmap.
1271 *
1272 * If the pages are mostly unmapped, the processing is fast and it is
1273 * appropriate to hold zone->lru_lock across the whole operation. But if
1274 * the pages are mapped, the processing is slow (page_referenced()) so we
1275 * should drop zone->lru_lock around each page. It's impossible to balance
1276 * this, so instead we remove the pages from the LRU while processing them.
1277 * It is safe to rely on PG_active against the non-LRU pages in here because
1278 * nobody will play with that bit on a non-LRU page.
1279 *
1280 * The downside is that we have to touch page->_count against each page.
1281 * But we had to alter page->flags anyway.
1282 */
1cfb419b 1283
3eb4140f
WF
1284static void move_active_pages_to_lru(struct zone *zone,
1285 struct list_head *list,
1286 enum lru_list lru)
1287{
1288 unsigned long pgmoved = 0;
1289 struct pagevec pvec;
1290 struct page *page;
1291
1292 pagevec_init(&pvec, 1);
1293
1294 while (!list_empty(list)) {
1295 page = lru_to_page(list);
3eb4140f
WF
1296
1297 VM_BUG_ON(PageLRU(page));
1298 SetPageLRU(page);
1299
3eb4140f
WF
1300 list_move(&page->lru, &zone->lru[lru].list);
1301 mem_cgroup_add_lru_list(page, lru);
1302 pgmoved++;
1303
1304 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1305 spin_unlock_irq(&zone->lru_lock);
1306 if (buffer_heads_over_limit)
1307 pagevec_strip(&pvec);
1308 __pagevec_release(&pvec);
1309 spin_lock_irq(&zone->lru_lock);
1310 }
1311 }
1312 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1313 if (!is_active_lru(lru))
1314 __count_vm_events(PGDEACTIVATE, pgmoved);
1315}
1cfb419b 1316
1742f19f 1317static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1318 struct scan_control *sc, int priority, int file)
1da177e4 1319{
44c241f1 1320 unsigned long nr_taken;
69e05944 1321 unsigned long pgscanned;
6fe6b7e3 1322 unsigned long vm_flags;
1da177e4 1323 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1324 LIST_HEAD(l_active);
b69408e8 1325 LIST_HEAD(l_inactive);
1da177e4 1326 struct page *page;
6e901571 1327 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1328 unsigned long nr_rotated = 0;
1da177e4
LT
1329
1330 lru_add_drain();
1331 spin_lock_irq(&zone->lru_lock);
44c241f1 1332 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
66e1707b 1333 ISOLATE_ACTIVE, zone,
4f98a2fe 1334 sc->mem_cgroup, 1, file);
1cfb419b
KH
1335 /*
1336 * zone->pages_scanned is used for detect zone's oom
1337 * mem_cgroup remembers nr_scan by itself.
1338 */
e72e2bd6 1339 if (scanning_global_lru(sc)) {
1cfb419b 1340 zone->pages_scanned += pgscanned;
4f98a2fe 1341 }
b7c46d15 1342 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1343
3eb4140f 1344 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1345 if (file)
44c241f1 1346 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1347 else
44c241f1 1348 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1349 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1350 spin_unlock_irq(&zone->lru_lock);
1351
1da177e4
LT
1352 while (!list_empty(&l_hold)) {
1353 cond_resched();
1354 page = lru_to_page(&l_hold);
1355 list_del(&page->lru);
7e9cd484 1356
894bc310
LS
1357 if (unlikely(!page_evictable(page, NULL))) {
1358 putback_lru_page(page);
1359 continue;
1360 }
1361
7e9cd484 1362 /* page_referenced clears PageReferenced */
31c0569c 1363 if (page_mapped(page) &&
8cab4754 1364 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
44c241f1 1365 nr_rotated++;
8cab4754
WF
1366 /*
1367 * Identify referenced, file-backed active pages and
1368 * give them one more trip around the active list. So
1369 * that executable code get better chances to stay in
1370 * memory under moderate memory pressure. Anon pages
1371 * are not likely to be evicted by use-once streaming
1372 * IO, plus JVM can create lots of anon VM_EXEC pages,
1373 * so we ignore them here.
1374 */
41e20983 1375 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1376 list_add(&page->lru, &l_active);
1377 continue;
1378 }
1379 }
7e9cd484 1380
5205e56e 1381 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1382 list_add(&page->lru, &l_inactive);
1383 }
1384
b555749a 1385 /*
8cab4754 1386 * Move pages back to the lru list.
b555749a 1387 */
2a1dc509 1388 spin_lock_irq(&zone->lru_lock);
556adecb 1389 /*
8cab4754
WF
1390 * Count referenced pages from currently used mappings as rotated,
1391 * even though only some of them are actually re-activated. This
1392 * helps balance scan pressure between file and anonymous pages in
1393 * get_scan_ratio.
7e9cd484 1394 */
b7c46d15 1395 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1396
3eb4140f
WF
1397 move_active_pages_to_lru(zone, &l_active,
1398 LRU_ACTIVE + file * LRU_FILE);
1399 move_active_pages_to_lru(zone, &l_inactive,
1400 LRU_BASE + file * LRU_FILE);
a731286d 1401 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1402 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1403}
1404
14797e23 1405static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1406{
1407 unsigned long active, inactive;
1408
1409 active = zone_page_state(zone, NR_ACTIVE_ANON);
1410 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1411
1412 if (inactive * zone->inactive_ratio < active)
1413 return 1;
1414
1415 return 0;
1416}
1417
14797e23
KM
1418/**
1419 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1420 * @zone: zone to check
1421 * @sc: scan control of this context
1422 *
1423 * Returns true if the zone does not have enough inactive anon pages,
1424 * meaning some active anon pages need to be deactivated.
1425 */
1426static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1427{
1428 int low;
1429
e72e2bd6 1430 if (scanning_global_lru(sc))
14797e23
KM
1431 low = inactive_anon_is_low_global(zone);
1432 else
c772be93 1433 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1434 return low;
1435}
1436
56e49d21
RR
1437static int inactive_file_is_low_global(struct zone *zone)
1438{
1439 unsigned long active, inactive;
1440
1441 active = zone_page_state(zone, NR_ACTIVE_FILE);
1442 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1443
1444 return (active > inactive);
1445}
1446
1447/**
1448 * inactive_file_is_low - check if file pages need to be deactivated
1449 * @zone: zone to check
1450 * @sc: scan control of this context
1451 *
1452 * When the system is doing streaming IO, memory pressure here
1453 * ensures that active file pages get deactivated, until more
1454 * than half of the file pages are on the inactive list.
1455 *
1456 * Once we get to that situation, protect the system's working
1457 * set from being evicted by disabling active file page aging.
1458 *
1459 * This uses a different ratio than the anonymous pages, because
1460 * the page cache uses a use-once replacement algorithm.
1461 */
1462static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1463{
1464 int low;
1465
1466 if (scanning_global_lru(sc))
1467 low = inactive_file_is_low_global(zone);
1468 else
1469 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1470 return low;
1471}
1472
b39415b2
RR
1473static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1474 int file)
1475{
1476 if (file)
1477 return inactive_file_is_low(zone, sc);
1478 else
1479 return inactive_anon_is_low(zone, sc);
1480}
1481
4f98a2fe 1482static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1483 struct zone *zone, struct scan_control *sc, int priority)
1484{
4f98a2fe
RR
1485 int file = is_file_lru(lru);
1486
b39415b2
RR
1487 if (is_active_lru(lru)) {
1488 if (inactive_list_is_low(zone, sc, file))
1489 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1490 return 0;
1491 }
1492
33c120ed 1493 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1494}
1495
1496/*
1497 * Determine how aggressively the anon and file LRU lists should be
1498 * scanned. The relative value of each set of LRU lists is determined
1499 * by looking at the fraction of the pages scanned we did rotate back
1500 * onto the active list instead of evict.
1501 *
1502 * percent[0] specifies how much pressure to put on ram/swap backed
1503 * memory, while percent[1] determines pressure on the file LRUs.
1504 */
1505static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1506 unsigned long *percent)
1507{
1508 unsigned long anon, file, free;
1509 unsigned long anon_prio, file_prio;
1510 unsigned long ap, fp;
6e901571 1511 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
4f98a2fe 1512
84b18490
KM
1513 /* If we have no swap space, do not bother scanning anon pages. */
1514 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1515 percent[0] = 0;
1516 percent[1] = 100;
1517 return;
1518 }
1519
0b217676
VL
1520 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1521 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1522 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1523 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1524
e72e2bd6 1525 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1526 free = zone_page_state(zone, NR_FREE_PAGES);
1527 /* If we have very few page cache pages,
1528 force-scan anon pages. */
41858966 1529 if (unlikely(file + free <= high_wmark_pages(zone))) {
eeee9a8c
KM
1530 percent[0] = 100;
1531 percent[1] = 0;
1532 return;
1533 }
4f98a2fe
RR
1534 }
1535
1536 /*
1537 * OK, so we have swap space and a fair amount of page cache
1538 * pages. We use the recently rotated / recently scanned
1539 * ratios to determine how valuable each cache is.
1540 *
1541 * Because workloads change over time (and to avoid overflow)
1542 * we keep these statistics as a floating average, which ends
1543 * up weighing recent references more than old ones.
1544 *
1545 * anon in [0], file in [1]
1546 */
6e901571 1547 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
4f98a2fe 1548 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1549 reclaim_stat->recent_scanned[0] /= 2;
1550 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1551 spin_unlock_irq(&zone->lru_lock);
1552 }
1553
6e901571 1554 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
4f98a2fe 1555 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1556 reclaim_stat->recent_scanned[1] /= 2;
1557 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1558 spin_unlock_irq(&zone->lru_lock);
1559 }
1560
1561 /*
1562 * With swappiness at 100, anonymous and file have the same priority.
1563 * This scanning priority is essentially the inverse of IO cost.
1564 */
1565 anon_prio = sc->swappiness;
1566 file_prio = 200 - sc->swappiness;
1567
1568 /*
00d8089c
RR
1569 * The amount of pressure on anon vs file pages is inversely
1570 * proportional to the fraction of recently scanned pages on
1571 * each list that were recently referenced and in active use.
4f98a2fe 1572 */
6e901571
KM
1573 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1574 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1575
6e901571
KM
1576 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1577 fp /= reclaim_stat->recent_rotated[1] + 1;
4f98a2fe
RR
1578
1579 /* Normalize to percentages */
1580 percent[0] = 100 * ap / (ap + fp + 1);
1581 percent[1] = 100 - percent[0];
b69408e8
CL
1582}
1583
6e08a369
WF
1584/*
1585 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1586 * until we collected @swap_cluster_max pages to scan.
1587 */
1588static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
ece74b2e 1589 unsigned long *nr_saved_scan)
6e08a369
WF
1590{
1591 unsigned long nr;
1592
1593 *nr_saved_scan += nr_to_scan;
1594 nr = *nr_saved_scan;
1595
ece74b2e 1596 if (nr >= SWAP_CLUSTER_MAX)
6e08a369
WF
1597 *nr_saved_scan = 0;
1598 else
1599 nr = 0;
1600
1601 return nr;
1602}
4f98a2fe 1603
1da177e4
LT
1604/*
1605 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1606 */
a79311c1 1607static void shrink_zone(int priority, struct zone *zone,
05ff5137 1608 struct scan_control *sc)
1da177e4 1609{
b69408e8 1610 unsigned long nr[NR_LRU_LISTS];
8695949a 1611 unsigned long nr_to_scan;
4f98a2fe 1612 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1613 enum lru_list l;
01dbe5c9 1614 unsigned long nr_reclaimed = sc->nr_reclaimed;
22fba335 1615 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
f8629631 1616 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1da177e4 1617
84b18490 1618 get_scan_ratio(zone, sc, percent);
4f98a2fe 1619
894bc310 1620 for_each_evictable_lru(l) {
9439c1c9 1621 int file = is_file_lru(l);
8713e012 1622 unsigned long scan;
e0f79b8f 1623
84b18490
KM
1624 if (percent[file] == 0) {
1625 nr[l] = 0;
1626 continue;
1627 }
1628
0b217676 1629 scan = zone_nr_lru_pages(zone, sc, l);
84b18490 1630 if (priority) {
9439c1c9
KM
1631 scan >>= priority;
1632 scan = (scan * percent[file]) / 100;
1633 }
f8629631 1634 nr[l] = nr_scan_try_batch(scan,
ece74b2e 1635 &reclaim_stat->nr_saved_scan[l]);
1cfb419b 1636 }
1da177e4 1637
556adecb
RR
1638 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1639 nr[LRU_INACTIVE_FILE]) {
894bc310 1640 for_each_evictable_lru(l) {
b69408e8 1641 if (nr[l]) {
ece74b2e
KM
1642 nr_to_scan = min_t(unsigned long,
1643 nr[l], SWAP_CLUSTER_MAX);
b69408e8 1644 nr[l] -= nr_to_scan;
1da177e4 1645
01dbe5c9
KM
1646 nr_reclaimed += shrink_list(l, nr_to_scan,
1647 zone, sc, priority);
b69408e8 1648 }
1da177e4 1649 }
a79311c1
RR
1650 /*
1651 * On large memory systems, scan >> priority can become
1652 * really large. This is fine for the starting priority;
1653 * we want to put equal scanning pressure on each zone.
1654 * However, if the VM has a harder time of freeing pages,
1655 * with multiple processes reclaiming pages, the total
1656 * freeing target can get unreasonably large.
1657 */
338fde90 1658 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 1659 break;
1da177e4
LT
1660 }
1661
01dbe5c9
KM
1662 sc->nr_reclaimed = nr_reclaimed;
1663
556adecb
RR
1664 /*
1665 * Even if we did not try to evict anon pages at all, we want to
1666 * rebalance the anon lru active/inactive ratio.
1667 */
69c85481 1668 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
556adecb
RR
1669 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1670
232ea4d6 1671 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1672}
1673
1674/*
1675 * This is the direct reclaim path, for page-allocating processes. We only
1676 * try to reclaim pages from zones which will satisfy the caller's allocation
1677 * request.
1678 *
41858966
MG
1679 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1680 * Because:
1da177e4
LT
1681 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1682 * allocation or
41858966
MG
1683 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1684 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1685 * zone defense algorithm.
1da177e4 1686 *
1da177e4
LT
1687 * If a zone is deemed to be full of pinned pages then just give it a light
1688 * scan then give up on it.
1689 */
a79311c1 1690static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1691 struct scan_control *sc)
1da177e4 1692{
54a6eb5c 1693 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
dd1a239f 1694 struct zoneref *z;
54a6eb5c 1695 struct zone *zone;
1cfb419b 1696
408d8544 1697 sc->all_unreclaimable = 1;
327c0e96
KH
1698 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1699 sc->nodemask) {
f3fe6512 1700 if (!populated_zone(zone))
1da177e4 1701 continue;
1cfb419b
KH
1702 /*
1703 * Take care memory controller reclaiming has small influence
1704 * to global LRU.
1705 */
e72e2bd6 1706 if (scanning_global_lru(sc)) {
1cfb419b
KH
1707 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1708 continue;
1709 note_zone_scanning_priority(zone, priority);
1da177e4 1710
93e4a89a 1711 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b
KH
1712 continue; /* Let kswapd poll it */
1713 sc->all_unreclaimable = 0;
1714 } else {
1715 /*
1716 * Ignore cpuset limitation here. We just want to reduce
1717 * # of used pages by us regardless of memory shortage.
1718 */
1719 sc->all_unreclaimable = 0;
1720 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1721 priority);
1722 }
408d8544 1723
a79311c1 1724 shrink_zone(priority, zone, sc);
1da177e4
LT
1725 }
1726}
4f98a2fe 1727
1da177e4
LT
1728/*
1729 * This is the main entry point to direct page reclaim.
1730 *
1731 * If a full scan of the inactive list fails to free enough memory then we
1732 * are "out of memory" and something needs to be killed.
1733 *
1734 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1735 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
1736 * caller can't do much about. We kick the writeback threads and take explicit
1737 * naps in the hope that some of these pages can be written. But if the
1738 * allocating task holds filesystem locks which prevent writeout this might not
1739 * work, and the allocation attempt will fail.
a41f24ea
NA
1740 *
1741 * returns: 0, if no pages reclaimed
1742 * else, the number of pages reclaimed
1da177e4 1743 */
dac1d27b 1744static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1745 struct scan_control *sc)
1da177e4
LT
1746{
1747 int priority;
c700be3d 1748 unsigned long ret = 0;
69e05944 1749 unsigned long total_scanned = 0;
1da177e4 1750 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1751 unsigned long lru_pages = 0;
dd1a239f 1752 struct zoneref *z;
54a6eb5c 1753 struct zone *zone;
dd1a239f 1754 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
22fba335 1755 unsigned long writeback_threshold;
1da177e4 1756
873b4771
KK
1757 delayacct_freepages_start();
1758
e72e2bd6 1759 if (scanning_global_lru(sc))
1cfb419b
KH
1760 count_vm_event(ALLOCSTALL);
1761 /*
1762 * mem_cgroup will not do shrink_slab.
1763 */
e72e2bd6 1764 if (scanning_global_lru(sc)) {
54a6eb5c 1765 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1766
1cfb419b
KH
1767 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1768 continue;
1da177e4 1769
adea02a1 1770 lru_pages += zone_reclaimable_pages(zone);
1cfb419b 1771 }
1da177e4
LT
1772 }
1773
1774 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1775 sc->nr_scanned = 0;
f7b7fd8f
RR
1776 if (!priority)
1777 disable_swap_token();
a79311c1 1778 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1779 /*
1780 * Don't shrink slabs when reclaiming memory from
1781 * over limit cgroups
1782 */
e72e2bd6 1783 if (scanning_global_lru(sc)) {
dd1a239f 1784 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1785 if (reclaim_state) {
a79311c1 1786 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1787 reclaim_state->reclaimed_slab = 0;
1788 }
1da177e4 1789 }
66e1707b 1790 total_scanned += sc->nr_scanned;
22fba335 1791 if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
a79311c1 1792 ret = sc->nr_reclaimed;
1da177e4
LT
1793 goto out;
1794 }
1795
1796 /*
1797 * Try to write back as many pages as we just scanned. This
1798 * tends to cause slow streaming writers to write data to the
1799 * disk smoothly, at the dirtying rate, which is nice. But
1800 * that's undesirable in laptop mode, where we *want* lumpy
1801 * writeout. So in laptop mode, write out the whole world.
1802 */
22fba335
KM
1803 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1804 if (total_scanned > writeback_threshold) {
03ba3782 1805 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 1806 sc->may_writepage = 1;
1da177e4
LT
1807 }
1808
1809 /* Take a nap, wait for some writeback to complete */
7b51755c
KM
1810 if (!sc->hibernation_mode && sc->nr_scanned &&
1811 priority < DEF_PRIORITY - 2)
8aa7e847 1812 congestion_wait(BLK_RW_ASYNC, HZ/10);
1da177e4 1813 }
87547ee9 1814 /* top priority shrink_zones still had more to do? don't OOM, then */
e72e2bd6 1815 if (!sc->all_unreclaimable && scanning_global_lru(sc))
a79311c1 1816 ret = sc->nr_reclaimed;
1da177e4 1817out:
3bb1a852
MB
1818 /*
1819 * Now that we've scanned all the zones at this priority level, note
1820 * that level within the zone so that the next thread which performs
1821 * scanning of this zone will immediately start out at this priority
1822 * level. This affects only the decision whether or not to bring
1823 * mapped pages onto the inactive list.
1824 */
1825 if (priority < 0)
1826 priority = 0;
1da177e4 1827
e72e2bd6 1828 if (scanning_global_lru(sc)) {
54a6eb5c 1829 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1830
1831 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1832 continue;
1833
1834 zone->prev_priority = priority;
1835 }
1836 } else
1837 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1838
873b4771
KK
1839 delayacct_freepages_end();
1840
1da177e4
LT
1841 return ret;
1842}
1843
dac1d27b 1844unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 1845 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b
BS
1846{
1847 struct scan_control sc = {
1848 .gfp_mask = gfp_mask,
1849 .may_writepage = !laptop_mode,
22fba335 1850 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 1851 .may_unmap = 1,
2e2e4259 1852 .may_swap = 1,
66e1707b
BS
1853 .swappiness = vm_swappiness,
1854 .order = order,
1855 .mem_cgroup = NULL,
1856 .isolate_pages = isolate_pages_global,
327c0e96 1857 .nodemask = nodemask,
66e1707b
BS
1858 };
1859
dd1a239f 1860 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1861}
1862
00f0b825 1863#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1864
4e416953
BS
1865unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1866 gfp_t gfp_mask, bool noswap,
1867 unsigned int swappiness,
1868 struct zone *zone, int nid)
1869{
1870 struct scan_control sc = {
1871 .may_writepage = !laptop_mode,
1872 .may_unmap = 1,
1873 .may_swap = !noswap,
4e416953
BS
1874 .swappiness = swappiness,
1875 .order = 0,
1876 .mem_cgroup = mem,
1877 .isolate_pages = mem_cgroup_isolate_pages,
1878 };
1879 nodemask_t nm = nodemask_of_node(nid);
1880
1881 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1882 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1883 sc.nodemask = &nm;
1884 sc.nr_reclaimed = 0;
1885 sc.nr_scanned = 0;
1886 /*
1887 * NOTE: Although we can get the priority field, using it
1888 * here is not a good idea, since it limits the pages we can scan.
1889 * if we don't reclaim here, the shrink_zone from balance_pgdat
1890 * will pick up pages from other mem cgroup's as well. We hack
1891 * the priority and make it zero.
1892 */
1893 shrink_zone(0, zone, &sc);
1894 return sc.nr_reclaimed;
1895}
1896
e1a1cd59 1897unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
1898 gfp_t gfp_mask,
1899 bool noswap,
1900 unsigned int swappiness)
66e1707b 1901{
4e416953 1902 struct zonelist *zonelist;
66e1707b 1903 struct scan_control sc = {
66e1707b 1904 .may_writepage = !laptop_mode,
a6dc60f8 1905 .may_unmap = 1,
2e2e4259 1906 .may_swap = !noswap,
22fba335 1907 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a7885eb8 1908 .swappiness = swappiness,
66e1707b
BS
1909 .order = 0,
1910 .mem_cgroup = mem_cont,
1911 .isolate_pages = mem_cgroup_isolate_pages,
327c0e96 1912 .nodemask = NULL, /* we don't care the placement */
66e1707b 1913 };
66e1707b 1914
dd1a239f
MG
1915 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1916 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1917 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1918 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1919}
1920#endif
1921
f50de2d3 1922/* is kswapd sleeping prematurely? */
bb3ab596 1923static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
f50de2d3 1924{
bb3ab596 1925 int i;
f50de2d3
MG
1926
1927 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1928 if (remaining)
1929 return 1;
1930
1931 /* If after HZ/10, a zone is below the high mark, it's premature */
bb3ab596
KM
1932 for (i = 0; i < pgdat->nr_zones; i++) {
1933 struct zone *zone = pgdat->node_zones + i;
1934
1935 if (!populated_zone(zone))
1936 continue;
1937
93e4a89a 1938 if (zone->all_unreclaimable)
de3fab39
KM
1939 continue;
1940
f50de2d3
MG
1941 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1942 0, 0))
1943 return 1;
bb3ab596 1944 }
f50de2d3
MG
1945
1946 return 0;
1947}
1948
1da177e4
LT
1949/*
1950 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 1951 * they are all at high_wmark_pages(zone).
1da177e4 1952 *
1da177e4
LT
1953 * Returns the number of pages which were actually freed.
1954 *
1955 * There is special handling here for zones which are full of pinned pages.
1956 * This can happen if the pages are all mlocked, or if they are all used by
1957 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1958 * What we do is to detect the case where all pages in the zone have been
1959 * scanned twice and there has been zero successful reclaim. Mark the zone as
1960 * dead and from now on, only perform a short scan. Basically we're polling
1961 * the zone for when the problem goes away.
1962 *
1963 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
1964 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1965 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1966 * lower zones regardless of the number of free pages in the lower zones. This
1967 * interoperates with the page allocator fallback scheme to ensure that aging
1968 * of pages is balanced across the zones.
1da177e4 1969 */
d6277db4 1970static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1971{
1da177e4
LT
1972 int all_zones_ok;
1973 int priority;
1974 int i;
69e05944 1975 unsigned long total_scanned;
1da177e4 1976 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1977 struct scan_control sc = {
1978 .gfp_mask = GFP_KERNEL,
a6dc60f8 1979 .may_unmap = 1,
2e2e4259 1980 .may_swap = 1,
22fba335
KM
1981 /*
1982 * kswapd doesn't want to be bailed out while reclaim. because
1983 * we want to put equal scanning pressure on each zone.
1984 */
1985 .nr_to_reclaim = ULONG_MAX,
d6277db4 1986 .swappiness = vm_swappiness,
5ad333eb 1987 .order = order,
66e1707b
BS
1988 .mem_cgroup = NULL,
1989 .isolate_pages = isolate_pages_global,
179e9639 1990 };
3bb1a852
MB
1991 /*
1992 * temp_priority is used to remember the scanning priority at which
41858966
MG
1993 * this zone was successfully refilled to
1994 * free_pages == high_wmark_pages(zone).
3bb1a852
MB
1995 */
1996 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1997
1998loop_again:
1999 total_scanned = 0;
a79311c1 2000 sc.nr_reclaimed = 0;
c0bbbc73 2001 sc.may_writepage = !laptop_mode;
f8891e5e 2002 count_vm_event(PAGEOUTRUN);
1da177e4 2003
3bb1a852
MB
2004 for (i = 0; i < pgdat->nr_zones; i++)
2005 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
2006
2007 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2008 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2009 unsigned long lru_pages = 0;
bb3ab596 2010 int has_under_min_watermark_zone = 0;
1da177e4 2011
f7b7fd8f
RR
2012 /* The swap token gets in the way of swapout... */
2013 if (!priority)
2014 disable_swap_token();
2015
1da177e4
LT
2016 all_zones_ok = 1;
2017
d6277db4
RW
2018 /*
2019 * Scan in the highmem->dma direction for the highest
2020 * zone which needs scanning
2021 */
2022 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2023 struct zone *zone = pgdat->node_zones + i;
1da177e4 2024
d6277db4
RW
2025 if (!populated_zone(zone))
2026 continue;
1da177e4 2027
93e4a89a 2028 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2029 continue;
1da177e4 2030
556adecb
RR
2031 /*
2032 * Do some background aging of the anon list, to give
2033 * pages a chance to be referenced before reclaiming.
2034 */
14797e23 2035 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2036 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2037 &sc, priority, 0);
2038
41858966
MG
2039 if (!zone_watermark_ok(zone, order,
2040 high_wmark_pages(zone), 0, 0)) {
d6277db4 2041 end_zone = i;
e1dbeda6 2042 break;
1da177e4 2043 }
1da177e4 2044 }
e1dbeda6
AM
2045 if (i < 0)
2046 goto out;
2047
1da177e4
LT
2048 for (i = 0; i <= end_zone; i++) {
2049 struct zone *zone = pgdat->node_zones + i;
2050
adea02a1 2051 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2052 }
2053
2054 /*
2055 * Now scan the zone in the dma->highmem direction, stopping
2056 * at the last zone which needs scanning.
2057 *
2058 * We do this because the page allocator works in the opposite
2059 * direction. This prevents the page allocator from allocating
2060 * pages behind kswapd's direction of progress, which would
2061 * cause too much scanning of the lower zones.
2062 */
2063 for (i = 0; i <= end_zone; i++) {
2064 struct zone *zone = pgdat->node_zones + i;
b15e0905 2065 int nr_slab;
4e416953 2066 int nid, zid;
1da177e4 2067
f3fe6512 2068 if (!populated_zone(zone))
1da177e4
LT
2069 continue;
2070
93e4a89a 2071 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2072 continue;
2073
3bb1a852 2074 temp_priority[i] = priority;
1da177e4 2075 sc.nr_scanned = 0;
3bb1a852 2076 note_zone_scanning_priority(zone, priority);
4e416953
BS
2077
2078 nid = pgdat->node_id;
2079 zid = zone_idx(zone);
2080 /*
2081 * Call soft limit reclaim before calling shrink_zone.
2082 * For now we ignore the return value
2083 */
2084 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2085 nid, zid);
32a4330d
RR
2086 /*
2087 * We put equal pressure on every zone, unless one
2088 * zone has way too many pages free already.
2089 */
41858966
MG
2090 if (!zone_watermark_ok(zone, order,
2091 8*high_wmark_pages(zone), end_zone, 0))
a79311c1 2092 shrink_zone(priority, zone, &sc);
1da177e4 2093 reclaim_state->reclaimed_slab = 0;
b15e0905 2094 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2095 lru_pages);
a79311c1 2096 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 2097 total_scanned += sc.nr_scanned;
93e4a89a 2098 if (zone->all_unreclaimable)
1da177e4 2099 continue;
93e4a89a
KM
2100 if (nr_slab == 0 &&
2101 zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2102 zone->all_unreclaimable = 1;
1da177e4
LT
2103 /*
2104 * If we've done a decent amount of scanning and
2105 * the reclaim ratio is low, start doing writepage
2106 * even in laptop mode
2107 */
2108 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2109 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2110 sc.may_writepage = 1;
bb3ab596 2111
45973d74
MK
2112 if (!zone_watermark_ok(zone, order,
2113 high_wmark_pages(zone), end_zone, 0)) {
2114 all_zones_ok = 0;
2115 /*
2116 * We are still under min water mark. This
2117 * means that we have a GFP_ATOMIC allocation
2118 * failure risk. Hurry up!
2119 */
2120 if (!zone_watermark_ok(zone, order,
2121 min_wmark_pages(zone), end_zone, 0))
2122 has_under_min_watermark_zone = 1;
2123 }
bb3ab596 2124
1da177e4 2125 }
1da177e4
LT
2126 if (all_zones_ok)
2127 break; /* kswapd: all done */
2128 /*
2129 * OK, kswapd is getting into trouble. Take a nap, then take
2130 * another pass across the zones.
2131 */
bb3ab596
KM
2132 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2133 if (has_under_min_watermark_zone)
2134 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2135 else
2136 congestion_wait(BLK_RW_ASYNC, HZ/10);
2137 }
1da177e4
LT
2138
2139 /*
2140 * We do this so kswapd doesn't build up large priorities for
2141 * example when it is freeing in parallel with allocators. It
2142 * matches the direct reclaim path behaviour in terms of impact
2143 * on zone->*_priority.
2144 */
a79311c1 2145 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2146 break;
2147 }
2148out:
3bb1a852
MB
2149 /*
2150 * Note within each zone the priority level at which this zone was
2151 * brought into a happy state. So that the next thread which scans this
2152 * zone will start out at that priority level.
2153 */
1da177e4
LT
2154 for (i = 0; i < pgdat->nr_zones; i++) {
2155 struct zone *zone = pgdat->node_zones + i;
2156
3bb1a852 2157 zone->prev_priority = temp_priority[i];
1da177e4
LT
2158 }
2159 if (!all_zones_ok) {
2160 cond_resched();
8357376d
RW
2161
2162 try_to_freeze();
2163
73ce02e9
KM
2164 /*
2165 * Fragmentation may mean that the system cannot be
2166 * rebalanced for high-order allocations in all zones.
2167 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2168 * it means the zones have been fully scanned and are still
2169 * not balanced. For high-order allocations, there is
2170 * little point trying all over again as kswapd may
2171 * infinite loop.
2172 *
2173 * Instead, recheck all watermarks at order-0 as they
2174 * are the most important. If watermarks are ok, kswapd will go
2175 * back to sleep. High-order users can still perform direct
2176 * reclaim if they wish.
2177 */
2178 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2179 order = sc.order = 0;
2180
1da177e4
LT
2181 goto loop_again;
2182 }
2183
a79311c1 2184 return sc.nr_reclaimed;
1da177e4
LT
2185}
2186
2187/*
2188 * The background pageout daemon, started as a kernel thread
4f98a2fe 2189 * from the init process.
1da177e4
LT
2190 *
2191 * This basically trickles out pages so that we have _some_
2192 * free memory available even if there is no other activity
2193 * that frees anything up. This is needed for things like routing
2194 * etc, where we otherwise might have all activity going on in
2195 * asynchronous contexts that cannot page things out.
2196 *
2197 * If there are applications that are active memory-allocators
2198 * (most normal use), this basically shouldn't matter.
2199 */
2200static int kswapd(void *p)
2201{
2202 unsigned long order;
2203 pg_data_t *pgdat = (pg_data_t*)p;
2204 struct task_struct *tsk = current;
2205 DEFINE_WAIT(wait);
2206 struct reclaim_state reclaim_state = {
2207 .reclaimed_slab = 0,
2208 };
a70f7302 2209 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2210
cf40bd16
NP
2211 lockdep_set_current_reclaim_state(GFP_KERNEL);
2212
174596a0 2213 if (!cpumask_empty(cpumask))
c5f59f08 2214 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2215 current->reclaim_state = &reclaim_state;
2216
2217 /*
2218 * Tell the memory management that we're a "memory allocator",
2219 * and that if we need more memory we should get access to it
2220 * regardless (see "__alloc_pages()"). "kswapd" should
2221 * never get caught in the normal page freeing logic.
2222 *
2223 * (Kswapd normally doesn't need memory anyway, but sometimes
2224 * you need a small amount of memory in order to be able to
2225 * page out something else, and this flag essentially protects
2226 * us from recursively trying to free more memory as we're
2227 * trying to free the first piece of memory in the first place).
2228 */
930d9152 2229 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2230 set_freezable();
1da177e4
LT
2231
2232 order = 0;
2233 for ( ; ; ) {
2234 unsigned long new_order;
8fe23e05 2235 int ret;
3e1d1d28 2236
1da177e4
LT
2237 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2238 new_order = pgdat->kswapd_max_order;
2239 pgdat->kswapd_max_order = 0;
2240 if (order < new_order) {
2241 /*
2242 * Don't sleep if someone wants a larger 'order'
2243 * allocation
2244 */
2245 order = new_order;
2246 } else {
f50de2d3
MG
2247 if (!freezing(current) && !kthread_should_stop()) {
2248 long remaining = 0;
2249
2250 /* Try to sleep for a short interval */
bb3ab596 2251 if (!sleeping_prematurely(pgdat, order, remaining)) {
f50de2d3
MG
2252 remaining = schedule_timeout(HZ/10);
2253 finish_wait(&pgdat->kswapd_wait, &wait);
2254 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2255 }
2256
2257 /*
2258 * After a short sleep, check if it was a
2259 * premature sleep. If not, then go fully
2260 * to sleep until explicitly woken up
2261 */
bb3ab596 2262 if (!sleeping_prematurely(pgdat, order, remaining))
f50de2d3
MG
2263 schedule();
2264 else {
2265 if (remaining)
bb3ab596 2266 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
f50de2d3 2267 else
bb3ab596 2268 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
f50de2d3
MG
2269 }
2270 }
b1296cc4 2271
1da177e4
LT
2272 order = pgdat->kswapd_max_order;
2273 }
2274 finish_wait(&pgdat->kswapd_wait, &wait);
2275
8fe23e05
DR
2276 ret = try_to_freeze();
2277 if (kthread_should_stop())
2278 break;
2279
2280 /*
2281 * We can speed up thawing tasks if we don't call balance_pgdat
2282 * after returning from the refrigerator
2283 */
2284 if (!ret)
b1296cc4 2285 balance_pgdat(pgdat, order);
1da177e4
LT
2286 }
2287 return 0;
2288}
2289
2290/*
2291 * A zone is low on free memory, so wake its kswapd task to service it.
2292 */
2293void wakeup_kswapd(struct zone *zone, int order)
2294{
2295 pg_data_t *pgdat;
2296
f3fe6512 2297 if (!populated_zone(zone))
1da177e4
LT
2298 return;
2299
2300 pgdat = zone->zone_pgdat;
41858966 2301 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
1da177e4
LT
2302 return;
2303 if (pgdat->kswapd_max_order < order)
2304 pgdat->kswapd_max_order = order;
02a0e53d 2305 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2306 return;
8d0986e2 2307 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2308 return;
8d0986e2 2309 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2310}
2311
adea02a1
WF
2312/*
2313 * The reclaimable count would be mostly accurate.
2314 * The less reclaimable pages may be
2315 * - mlocked pages, which will be moved to unevictable list when encountered
2316 * - mapped pages, which may require several travels to be reclaimed
2317 * - dirty pages, which is not "instantly" reclaimable
2318 */
2319unsigned long global_reclaimable_pages(void)
4f98a2fe 2320{
adea02a1
WF
2321 int nr;
2322
2323 nr = global_page_state(NR_ACTIVE_FILE) +
2324 global_page_state(NR_INACTIVE_FILE);
2325
2326 if (nr_swap_pages > 0)
2327 nr += global_page_state(NR_ACTIVE_ANON) +
2328 global_page_state(NR_INACTIVE_ANON);
2329
2330 return nr;
2331}
2332
2333unsigned long zone_reclaimable_pages(struct zone *zone)
2334{
2335 int nr;
2336
2337 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2338 zone_page_state(zone, NR_INACTIVE_FILE);
2339
2340 if (nr_swap_pages > 0)
2341 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2342 zone_page_state(zone, NR_INACTIVE_ANON);
2343
2344 return nr;
4f98a2fe
RR
2345}
2346
c6f37f12 2347#ifdef CONFIG_HIBERNATION
1da177e4 2348/*
7b51755c 2349 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2350 * freed pages.
2351 *
2352 * Rather than trying to age LRUs the aim is to preserve the overall
2353 * LRU order by reclaiming preferentially
2354 * inactive > active > active referenced > active mapped
1da177e4 2355 */
7b51755c 2356unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2357{
d6277db4 2358 struct reclaim_state reclaim_state;
d6277db4 2359 struct scan_control sc = {
7b51755c
KM
2360 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2361 .may_swap = 1,
2362 .may_unmap = 1,
d6277db4 2363 .may_writepage = 1,
7b51755c
KM
2364 .nr_to_reclaim = nr_to_reclaim,
2365 .hibernation_mode = 1,
2366 .swappiness = vm_swappiness,
2367 .order = 0,
66e1707b 2368 .isolate_pages = isolate_pages_global,
1da177e4 2369 };
7b51755c
KM
2370 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2371 struct task_struct *p = current;
2372 unsigned long nr_reclaimed;
1da177e4 2373
7b51755c
KM
2374 p->flags |= PF_MEMALLOC;
2375 lockdep_set_current_reclaim_state(sc.gfp_mask);
2376 reclaim_state.reclaimed_slab = 0;
2377 p->reclaim_state = &reclaim_state;
d6277db4 2378
7b51755c 2379 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 2380
7b51755c
KM
2381 p->reclaim_state = NULL;
2382 lockdep_clear_current_reclaim_state();
2383 p->flags &= ~PF_MEMALLOC;
d6277db4 2384
7b51755c 2385 return nr_reclaimed;
1da177e4 2386}
c6f37f12 2387#endif /* CONFIG_HIBERNATION */
1da177e4 2388
1da177e4
LT
2389/* It's optimal to keep kswapds on the same CPUs as their memory, but
2390 not required for correctness. So if the last cpu in a node goes
2391 away, we get changed to run anywhere: as the first one comes back,
2392 restore their cpu bindings. */
9c7b216d 2393static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2394 unsigned long action, void *hcpu)
1da177e4 2395{
58c0a4a7 2396 int nid;
1da177e4 2397
8bb78442 2398 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2399 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2400 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2401 const struct cpumask *mask;
2402
2403 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2404
3e597945 2405 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2406 /* One of our CPUs online: restore mask */
c5f59f08 2407 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2408 }
2409 }
2410 return NOTIFY_OK;
2411}
1da177e4 2412
3218ae14
YG
2413/*
2414 * This kswapd start function will be called by init and node-hot-add.
2415 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2416 */
2417int kswapd_run(int nid)
2418{
2419 pg_data_t *pgdat = NODE_DATA(nid);
2420 int ret = 0;
2421
2422 if (pgdat->kswapd)
2423 return 0;
2424
2425 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2426 if (IS_ERR(pgdat->kswapd)) {
2427 /* failure at boot is fatal */
2428 BUG_ON(system_state == SYSTEM_BOOTING);
2429 printk("Failed to start kswapd on node %d\n",nid);
2430 ret = -1;
2431 }
2432 return ret;
2433}
2434
8fe23e05
DR
2435/*
2436 * Called by memory hotplug when all memory in a node is offlined.
2437 */
2438void kswapd_stop(int nid)
2439{
2440 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2441
2442 if (kswapd)
2443 kthread_stop(kswapd);
2444}
2445
1da177e4
LT
2446static int __init kswapd_init(void)
2447{
3218ae14 2448 int nid;
69e05944 2449
1da177e4 2450 swap_setup();
9422ffba 2451 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2452 kswapd_run(nid);
1da177e4
LT
2453 hotcpu_notifier(cpu_callback, 0);
2454 return 0;
2455}
2456
2457module_init(kswapd_init)
9eeff239
CL
2458
2459#ifdef CONFIG_NUMA
2460/*
2461 * Zone reclaim mode
2462 *
2463 * If non-zero call zone_reclaim when the number of free pages falls below
2464 * the watermarks.
9eeff239
CL
2465 */
2466int zone_reclaim_mode __read_mostly;
2467
1b2ffb78 2468#define RECLAIM_OFF 0
7d03431c 2469#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2470#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2471#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2472
a92f7126
CL
2473/*
2474 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2475 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2476 * a zone.
2477 */
2478#define ZONE_RECLAIM_PRIORITY 4
2479
9614634f
CL
2480/*
2481 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2482 * occur.
2483 */
2484int sysctl_min_unmapped_ratio = 1;
2485
0ff38490
CL
2486/*
2487 * If the number of slab pages in a zone grows beyond this percentage then
2488 * slab reclaim needs to occur.
2489 */
2490int sysctl_min_slab_ratio = 5;
2491
90afa5de
MG
2492static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2493{
2494 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2495 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2496 zone_page_state(zone, NR_ACTIVE_FILE);
2497
2498 /*
2499 * It's possible for there to be more file mapped pages than
2500 * accounted for by the pages on the file LRU lists because
2501 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2502 */
2503 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2504}
2505
2506/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2507static long zone_pagecache_reclaimable(struct zone *zone)
2508{
2509 long nr_pagecache_reclaimable;
2510 long delta = 0;
2511
2512 /*
2513 * If RECLAIM_SWAP is set, then all file pages are considered
2514 * potentially reclaimable. Otherwise, we have to worry about
2515 * pages like swapcache and zone_unmapped_file_pages() provides
2516 * a better estimate
2517 */
2518 if (zone_reclaim_mode & RECLAIM_SWAP)
2519 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2520 else
2521 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2522
2523 /* If we can't clean pages, remove dirty pages from consideration */
2524 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2525 delta += zone_page_state(zone, NR_FILE_DIRTY);
2526
2527 /* Watch for any possible underflows due to delta */
2528 if (unlikely(delta > nr_pagecache_reclaimable))
2529 delta = nr_pagecache_reclaimable;
2530
2531 return nr_pagecache_reclaimable - delta;
2532}
2533
9eeff239
CL
2534/*
2535 * Try to free up some pages from this zone through reclaim.
2536 */
179e9639 2537static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2538{
7fb2d46d 2539 /* Minimum pages needed in order to stay on node */
69e05944 2540 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2541 struct task_struct *p = current;
2542 struct reclaim_state reclaim_state;
8695949a 2543 int priority;
179e9639
AM
2544 struct scan_control sc = {
2545 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2546 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 2547 .may_swap = 1,
22fba335
KM
2548 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2549 SWAP_CLUSTER_MAX),
179e9639 2550 .gfp_mask = gfp_mask,
d6277db4 2551 .swappiness = vm_swappiness,
bd2f6199 2552 .order = order,
66e1707b 2553 .isolate_pages = isolate_pages_global,
179e9639 2554 };
83e33a47 2555 unsigned long slab_reclaimable;
9eeff239
CL
2556
2557 disable_swap_token();
9eeff239 2558 cond_resched();
d4f7796e
CL
2559 /*
2560 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2561 * and we also need to be able to write out pages for RECLAIM_WRITE
2562 * and RECLAIM_SWAP.
2563 */
2564 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 2565 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
2566 reclaim_state.reclaimed_slab = 0;
2567 p->reclaim_state = &reclaim_state;
c84db23c 2568
90afa5de 2569 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
2570 /*
2571 * Free memory by calling shrink zone with increasing
2572 * priorities until we have enough memory freed.
2573 */
2574 priority = ZONE_RECLAIM_PRIORITY;
2575 do {
3bb1a852 2576 note_zone_scanning_priority(zone, priority);
a79311c1 2577 shrink_zone(priority, zone, &sc);
0ff38490 2578 priority--;
a79311c1 2579 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2580 }
c84db23c 2581
83e33a47
CL
2582 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2583 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2584 /*
7fb2d46d 2585 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2586 * many pages were freed in this zone. So we take the current
2587 * number of slab pages and shake the slab until it is reduced
2588 * by the same nr_pages that we used for reclaiming unmapped
2589 * pages.
2a16e3f4 2590 *
0ff38490
CL
2591 * Note that shrink_slab will free memory on all zones and may
2592 * take a long time.
2a16e3f4 2593 */
0ff38490 2594 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2595 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2596 slab_reclaimable - nr_pages)
0ff38490 2597 ;
83e33a47
CL
2598
2599 /*
2600 * Update nr_reclaimed by the number of slab pages we
2601 * reclaimed from this zone.
2602 */
a79311c1 2603 sc.nr_reclaimed += slab_reclaimable -
83e33a47 2604 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2605 }
2606
9eeff239 2607 p->reclaim_state = NULL;
d4f7796e 2608 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 2609 lockdep_clear_current_reclaim_state();
a79311c1 2610 return sc.nr_reclaimed >= nr_pages;
9eeff239 2611}
179e9639
AM
2612
2613int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2614{
179e9639 2615 int node_id;
d773ed6b 2616 int ret;
179e9639
AM
2617
2618 /*
0ff38490
CL
2619 * Zone reclaim reclaims unmapped file backed pages and
2620 * slab pages if we are over the defined limits.
34aa1330 2621 *
9614634f
CL
2622 * A small portion of unmapped file backed pages is needed for
2623 * file I/O otherwise pages read by file I/O will be immediately
2624 * thrown out if the zone is overallocated. So we do not reclaim
2625 * if less than a specified percentage of the zone is used by
2626 * unmapped file backed pages.
179e9639 2627 */
90afa5de
MG
2628 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2629 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 2630 return ZONE_RECLAIM_FULL;
179e9639 2631
93e4a89a 2632 if (zone->all_unreclaimable)
fa5e084e 2633 return ZONE_RECLAIM_FULL;
d773ed6b 2634
179e9639 2635 /*
d773ed6b 2636 * Do not scan if the allocation should not be delayed.
179e9639 2637 */
d773ed6b 2638 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 2639 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
2640
2641 /*
2642 * Only run zone reclaim on the local zone or on zones that do not
2643 * have associated processors. This will favor the local processor
2644 * over remote processors and spread off node memory allocations
2645 * as wide as possible.
2646 */
89fa3024 2647 node_id = zone_to_nid(zone);
37c0708d 2648 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 2649 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
2650
2651 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
2652 return ZONE_RECLAIM_NOSCAN;
2653
d773ed6b
DR
2654 ret = __zone_reclaim(zone, gfp_mask, order);
2655 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2656
24cf7251
MG
2657 if (!ret)
2658 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2659
d773ed6b 2660 return ret;
179e9639 2661}
9eeff239 2662#endif
894bc310 2663
894bc310
LS
2664/*
2665 * page_evictable - test whether a page is evictable
2666 * @page: the page to test
2667 * @vma: the VMA in which the page is or will be mapped, may be NULL
2668 *
2669 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2670 * lists vs unevictable list. The vma argument is !NULL when called from the
2671 * fault path to determine how to instantate a new page.
894bc310
LS
2672 *
2673 * Reasons page might not be evictable:
ba9ddf49 2674 * (1) page's mapping marked unevictable
b291f000 2675 * (2) page is part of an mlocked VMA
ba9ddf49 2676 *
894bc310
LS
2677 */
2678int page_evictable(struct page *page, struct vm_area_struct *vma)
2679{
2680
ba9ddf49
LS
2681 if (mapping_unevictable(page_mapping(page)))
2682 return 0;
2683
b291f000
NP
2684 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2685 return 0;
894bc310
LS
2686
2687 return 1;
2688}
89e004ea
LS
2689
2690/**
2691 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2692 * @page: page to check evictability and move to appropriate lru list
2693 * @zone: zone page is in
2694 *
2695 * Checks a page for evictability and moves the page to the appropriate
2696 * zone lru list.
2697 *
2698 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2699 * have PageUnevictable set.
2700 */
2701static void check_move_unevictable_page(struct page *page, struct zone *zone)
2702{
2703 VM_BUG_ON(PageActive(page));
2704
2705retry:
2706 ClearPageUnevictable(page);
2707 if (page_evictable(page, NULL)) {
401a8e1c 2708 enum lru_list l = page_lru_base_type(page);
af936a16 2709
89e004ea
LS
2710 __dec_zone_state(zone, NR_UNEVICTABLE);
2711 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2712 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2713 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2714 __count_vm_event(UNEVICTABLE_PGRESCUED);
2715 } else {
2716 /*
2717 * rotate unevictable list
2718 */
2719 SetPageUnevictable(page);
2720 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2721 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2722 if (page_evictable(page, NULL))
2723 goto retry;
2724 }
2725}
2726
2727/**
2728 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2729 * @mapping: struct address_space to scan for evictable pages
2730 *
2731 * Scan all pages in mapping. Check unevictable pages for
2732 * evictability and move them to the appropriate zone lru list.
2733 */
2734void scan_mapping_unevictable_pages(struct address_space *mapping)
2735{
2736 pgoff_t next = 0;
2737 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2738 PAGE_CACHE_SHIFT;
2739 struct zone *zone;
2740 struct pagevec pvec;
2741
2742 if (mapping->nrpages == 0)
2743 return;
2744
2745 pagevec_init(&pvec, 0);
2746 while (next < end &&
2747 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2748 int i;
2749 int pg_scanned = 0;
2750
2751 zone = NULL;
2752
2753 for (i = 0; i < pagevec_count(&pvec); i++) {
2754 struct page *page = pvec.pages[i];
2755 pgoff_t page_index = page->index;
2756 struct zone *pagezone = page_zone(page);
2757
2758 pg_scanned++;
2759 if (page_index > next)
2760 next = page_index;
2761 next++;
2762
2763 if (pagezone != zone) {
2764 if (zone)
2765 spin_unlock_irq(&zone->lru_lock);
2766 zone = pagezone;
2767 spin_lock_irq(&zone->lru_lock);
2768 }
2769
2770 if (PageLRU(page) && PageUnevictable(page))
2771 check_move_unevictable_page(page, zone);
2772 }
2773 if (zone)
2774 spin_unlock_irq(&zone->lru_lock);
2775 pagevec_release(&pvec);
2776
2777 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2778 }
2779
2780}
af936a16
LS
2781
2782/**
2783 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2784 * @zone - zone of which to scan the unevictable list
2785 *
2786 * Scan @zone's unevictable LRU lists to check for pages that have become
2787 * evictable. Move those that have to @zone's inactive list where they
2788 * become candidates for reclaim, unless shrink_inactive_zone() decides
2789 * to reactivate them. Pages that are still unevictable are rotated
2790 * back onto @zone's unevictable list.
2791 */
2792#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2793static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2794{
2795 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2796 unsigned long scan;
2797 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2798
2799 while (nr_to_scan > 0) {
2800 unsigned long batch_size = min(nr_to_scan,
2801 SCAN_UNEVICTABLE_BATCH_SIZE);
2802
2803 spin_lock_irq(&zone->lru_lock);
2804 for (scan = 0; scan < batch_size; scan++) {
2805 struct page *page = lru_to_page(l_unevictable);
2806
2807 if (!trylock_page(page))
2808 continue;
2809
2810 prefetchw_prev_lru_page(page, l_unevictable, flags);
2811
2812 if (likely(PageLRU(page) && PageUnevictable(page)))
2813 check_move_unevictable_page(page, zone);
2814
2815 unlock_page(page);
2816 }
2817 spin_unlock_irq(&zone->lru_lock);
2818
2819 nr_to_scan -= batch_size;
2820 }
2821}
2822
2823
2824/**
2825 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2826 *
2827 * A really big hammer: scan all zones' unevictable LRU lists to check for
2828 * pages that have become evictable. Move those back to the zones'
2829 * inactive list where they become candidates for reclaim.
2830 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2831 * and we add swap to the system. As such, it runs in the context of a task
2832 * that has possibly/probably made some previously unevictable pages
2833 * evictable.
2834 */
ff30153b 2835static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2836{
2837 struct zone *zone;
2838
2839 for_each_zone(zone) {
2840 scan_zone_unevictable_pages(zone);
2841 }
2842}
2843
2844/*
2845 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2846 * all nodes' unevictable lists for evictable pages
2847 */
2848unsigned long scan_unevictable_pages;
2849
2850int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 2851 void __user *buffer,
af936a16
LS
2852 size_t *length, loff_t *ppos)
2853{
8d65af78 2854 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
2855
2856 if (write && *(unsigned long *)table->data)
2857 scan_all_zones_unevictable_pages();
2858
2859 scan_unevictable_pages = 0;
2860 return 0;
2861}
2862
2863/*
2864 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2865 * a specified node's per zone unevictable lists for evictable pages.
2866 */
2867
2868static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2869 struct sysdev_attribute *attr,
2870 char *buf)
2871{
2872 return sprintf(buf, "0\n"); /* always zero; should fit... */
2873}
2874
2875static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2876 struct sysdev_attribute *attr,
2877 const char *buf, size_t count)
2878{
2879 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2880 struct zone *zone;
2881 unsigned long res;
2882 unsigned long req = strict_strtoul(buf, 10, &res);
2883
2884 if (!req)
2885 return 1; /* zero is no-op */
2886
2887 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2888 if (!populated_zone(zone))
2889 continue;
2890 scan_zone_unevictable_pages(zone);
2891 }
2892 return 1;
2893}
2894
2895
2896static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2897 read_scan_unevictable_node,
2898 write_scan_unevictable_node);
2899
2900int scan_unevictable_register_node(struct node *node)
2901{
2902 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2903}
2904
2905void scan_unevictable_unregister_node(struct node *node)
2906{
2907 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2908}
2909