]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/vmscan.c
migration: only migrate_prep() once per move_pages()
[thirdparty/kernel/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
a79311c1
RR
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
1da177e4 58 /* This context's GFP mask */
6daa0e28 59 gfp_t gfp_mask;
1da177e4
LT
60
61 int may_writepage;
62
a6dc60f8
JW
63 /* Can mapped pages be reclaimed? */
64 int may_unmap;
f1fd1067 65
2e2e4259
KM
66 /* Can pages be swapped as part of reclaim? */
67 int may_swap;
68
1da177e4
LT
69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 * In this context, it doesn't matter that we scan the
72 * whole list at once. */
73 int swap_cluster_max;
d6277db4
RW
74
75 int swappiness;
408d8544
NP
76
77 int all_unreclaimable;
5ad333eb
AW
78
79 int order;
66e1707b
BS
80
81 /* Which cgroup do we reclaim from */
82 struct mem_cgroup *mem_cgroup;
83
327c0e96
KH
84 /*
85 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 * are scanned.
87 */
88 nodemask_t *nodemask;
89
66e1707b
BS
90 /* Pluggable isolate pages callback */
91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 unsigned long *scanned, int order, int mode,
93 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 94 int active, int file);
1da177e4
LT
95};
96
1da177e4
LT
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
bd1e22b8 131long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
00f0b825 136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 137#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 138#else
e72e2bd6 139#define scanning_global_lru(sc) (1)
91a45470
KH
140#endif
141
6e901571
KM
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144{
e72e2bd6 145 if (!scanning_global_lru(sc))
3e2f41f1
KM
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
6e901571
KM
148 return &zone->reclaim_stat;
149}
150
c9f299d9
KM
151static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
152 enum lru_list lru)
153{
e72e2bd6 154 if (!scanning_global_lru(sc))
a3d8e054
KM
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
c9f299d9
KM
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
1da177e4
LT
161/*
162 * Add a shrinker callback to be called from the vm
163 */
8e1f936b 164void register_shrinker(struct shrinker *shrinker)
1da177e4 165{
8e1f936b
RR
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
1da177e4 170}
8e1f936b 171EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
172
173/*
174 * Remove one
175 */
8e1f936b 176void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
177{
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
1da177e4 181}
8e1f936b 182EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
183ff22b 193 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
b15e0905 201 *
202 * Returns the number of slab objects which we shrunk.
1da177e4 203 */
69e05944
AM
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
1da177e4
LT
206{
207 struct shrinker *shrinker;
69e05944 208 unsigned long ret = 0;
1da177e4
LT
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 214 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
8e1f936b 219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
220
221 delta = (4 * scanned) / shrinker->seeks;
ea164d73 222 delta *= max_pass;
1da177e4
LT
223 do_div(delta, lru_pages + 1);
224 shrinker->nr += delta;
ea164d73 225 if (shrinker->nr < 0) {
88c3bd70
DR
226 printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 "delete nr=%ld\n",
228 shrinker->shrink, shrinker->nr);
ea164d73
AA
229 shrinker->nr = max_pass;
230 }
231
232 /*
233 * Avoid risking looping forever due to too large nr value:
234 * never try to free more than twice the estimate number of
235 * freeable entries.
236 */
237 if (shrinker->nr > max_pass * 2)
238 shrinker->nr = max_pass * 2;
1da177e4
LT
239
240 total_scan = shrinker->nr;
241 shrinker->nr = 0;
242
243 while (total_scan >= SHRINK_BATCH) {
244 long this_scan = SHRINK_BATCH;
245 int shrink_ret;
b15e0905 246 int nr_before;
1da177e4 247
8e1f936b
RR
248 nr_before = (*shrinker->shrink)(0, gfp_mask);
249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
250 if (shrink_ret == -1)
251 break;
b15e0905 252 if (shrink_ret < nr_before)
253 ret += nr_before - shrink_ret;
f8891e5e 254 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
255 total_scan -= this_scan;
256
257 cond_resched();
258 }
259
260 shrinker->nr += total_scan;
261 }
262 up_read(&shrinker_rwsem);
b15e0905 263 return ret;
1da177e4
LT
264}
265
266/* Called without lock on whether page is mapped, so answer is unstable */
267static inline int page_mapping_inuse(struct page *page)
268{
269 struct address_space *mapping;
270
271 /* Page is in somebody's page tables. */
272 if (page_mapped(page))
273 return 1;
274
275 /* Be more reluctant to reclaim swapcache than pagecache */
276 if (PageSwapCache(page))
277 return 1;
278
279 mapping = page_mapping(page);
280 if (!mapping)
281 return 0;
282
283 /* File is mmap'd by somebody? */
284 return mapping_mapped(mapping);
285}
286
287static inline int is_page_cache_freeable(struct page *page)
288{
266cf658 289 return page_count(page) - !!page_has_private(page) == 2;
1da177e4
LT
290}
291
292static int may_write_to_queue(struct backing_dev_info *bdi)
293{
930d9152 294 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
295 return 1;
296 if (!bdi_write_congested(bdi))
297 return 1;
298 if (bdi == current->backing_dev_info)
299 return 1;
300 return 0;
301}
302
303/*
304 * We detected a synchronous write error writing a page out. Probably
305 * -ENOSPC. We need to propagate that into the address_space for a subsequent
306 * fsync(), msync() or close().
307 *
308 * The tricky part is that after writepage we cannot touch the mapping: nothing
309 * prevents it from being freed up. But we have a ref on the page and once
310 * that page is locked, the mapping is pinned.
311 *
312 * We're allowed to run sleeping lock_page() here because we know the caller has
313 * __GFP_FS.
314 */
315static void handle_write_error(struct address_space *mapping,
316 struct page *page, int error)
317{
318 lock_page(page);
3e9f45bd
GC
319 if (page_mapping(page) == mapping)
320 mapping_set_error(mapping, error);
1da177e4
LT
321 unlock_page(page);
322}
323
c661b078
AW
324/* Request for sync pageout. */
325enum pageout_io {
326 PAGEOUT_IO_ASYNC,
327 PAGEOUT_IO_SYNC,
328};
329
04e62a29
CL
330/* possible outcome of pageout() */
331typedef enum {
332 /* failed to write page out, page is locked */
333 PAGE_KEEP,
334 /* move page to the active list, page is locked */
335 PAGE_ACTIVATE,
336 /* page has been sent to the disk successfully, page is unlocked */
337 PAGE_SUCCESS,
338 /* page is clean and locked */
339 PAGE_CLEAN,
340} pageout_t;
341
1da177e4 342/*
1742f19f
AM
343 * pageout is called by shrink_page_list() for each dirty page.
344 * Calls ->writepage().
1da177e4 345 */
c661b078
AW
346static pageout_t pageout(struct page *page, struct address_space *mapping,
347 enum pageout_io sync_writeback)
1da177e4
LT
348{
349 /*
350 * If the page is dirty, only perform writeback if that write
351 * will be non-blocking. To prevent this allocation from being
352 * stalled by pagecache activity. But note that there may be
353 * stalls if we need to run get_block(). We could test
354 * PagePrivate for that.
355 *
356 * If this process is currently in generic_file_write() against
357 * this page's queue, we can perform writeback even if that
358 * will block.
359 *
360 * If the page is swapcache, write it back even if that would
361 * block, for some throttling. This happens by accident, because
362 * swap_backing_dev_info is bust: it doesn't reflect the
363 * congestion state of the swapdevs. Easy to fix, if needed.
364 * See swapfile.c:page_queue_congested().
365 */
366 if (!is_page_cache_freeable(page))
367 return PAGE_KEEP;
368 if (!mapping) {
369 /*
370 * Some data journaling orphaned pages can have
371 * page->mapping == NULL while being dirty with clean buffers.
372 */
266cf658 373 if (page_has_private(page)) {
1da177e4
LT
374 if (try_to_free_buffers(page)) {
375 ClearPageDirty(page);
d40cee24 376 printk("%s: orphaned page\n", __func__);
1da177e4
LT
377 return PAGE_CLEAN;
378 }
379 }
380 return PAGE_KEEP;
381 }
382 if (mapping->a_ops->writepage == NULL)
383 return PAGE_ACTIVATE;
384 if (!may_write_to_queue(mapping->backing_dev_info))
385 return PAGE_KEEP;
386
387 if (clear_page_dirty_for_io(page)) {
388 int res;
389 struct writeback_control wbc = {
390 .sync_mode = WB_SYNC_NONE,
391 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
392 .range_start = 0,
393 .range_end = LLONG_MAX,
1da177e4
LT
394 .nonblocking = 1,
395 .for_reclaim = 1,
396 };
397
398 SetPageReclaim(page);
399 res = mapping->a_ops->writepage(page, &wbc);
400 if (res < 0)
401 handle_write_error(mapping, page, res);
994fc28c 402 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
403 ClearPageReclaim(page);
404 return PAGE_ACTIVATE;
405 }
c661b078
AW
406
407 /*
408 * Wait on writeback if requested to. This happens when
409 * direct reclaiming a large contiguous area and the
410 * first attempt to free a range of pages fails.
411 */
412 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
413 wait_on_page_writeback(page);
414
1da177e4
LT
415 if (!PageWriteback(page)) {
416 /* synchronous write or broken a_ops? */
417 ClearPageReclaim(page);
418 }
e129b5c2 419 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
420 return PAGE_SUCCESS;
421 }
422
423 return PAGE_CLEAN;
424}
425
a649fd92 426/*
e286781d
NP
427 * Same as remove_mapping, but if the page is removed from the mapping, it
428 * gets returned with a refcount of 0.
a649fd92 429 */
e286781d 430static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 431{
28e4d965
NP
432 BUG_ON(!PageLocked(page));
433 BUG_ON(mapping != page_mapping(page));
49d2e9cc 434
19fd6231 435 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 436 /*
0fd0e6b0
NP
437 * The non racy check for a busy page.
438 *
439 * Must be careful with the order of the tests. When someone has
440 * a ref to the page, it may be possible that they dirty it then
441 * drop the reference. So if PageDirty is tested before page_count
442 * here, then the following race may occur:
443 *
444 * get_user_pages(&page);
445 * [user mapping goes away]
446 * write_to(page);
447 * !PageDirty(page) [good]
448 * SetPageDirty(page);
449 * put_page(page);
450 * !page_count(page) [good, discard it]
451 *
452 * [oops, our write_to data is lost]
453 *
454 * Reversing the order of the tests ensures such a situation cannot
455 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
456 * load is not satisfied before that of page->_count.
457 *
458 * Note that if SetPageDirty is always performed via set_page_dirty,
459 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 460 */
e286781d 461 if (!page_freeze_refs(page, 2))
49d2e9cc 462 goto cannot_free;
e286781d
NP
463 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
464 if (unlikely(PageDirty(page))) {
465 page_unfreeze_refs(page, 2);
49d2e9cc 466 goto cannot_free;
e286781d 467 }
49d2e9cc
CL
468
469 if (PageSwapCache(page)) {
470 swp_entry_t swap = { .val = page_private(page) };
471 __delete_from_swap_cache(page);
19fd6231 472 spin_unlock_irq(&mapping->tree_lock);
e767e056 473 mem_cgroup_uncharge_swapcache(page, swap);
49d2e9cc 474 swap_free(swap);
e286781d
NP
475 } else {
476 __remove_from_page_cache(page);
19fd6231 477 spin_unlock_irq(&mapping->tree_lock);
e767e056 478 mem_cgroup_uncharge_cache_page(page);
49d2e9cc
CL
479 }
480
49d2e9cc
CL
481 return 1;
482
483cannot_free:
19fd6231 484 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
485 return 0;
486}
487
e286781d
NP
488/*
489 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
490 * someone else has a ref on the page, abort and return 0. If it was
491 * successfully detached, return 1. Assumes the caller has a single ref on
492 * this page.
493 */
494int remove_mapping(struct address_space *mapping, struct page *page)
495{
496 if (__remove_mapping(mapping, page)) {
497 /*
498 * Unfreezing the refcount with 1 rather than 2 effectively
499 * drops the pagecache ref for us without requiring another
500 * atomic operation.
501 */
502 page_unfreeze_refs(page, 1);
503 return 1;
504 }
505 return 0;
506}
507
894bc310
LS
508/**
509 * putback_lru_page - put previously isolated page onto appropriate LRU list
510 * @page: page to be put back to appropriate lru list
511 *
512 * Add previously isolated @page to appropriate LRU list.
513 * Page may still be unevictable for other reasons.
514 *
515 * lru_lock must not be held, interrupts must be enabled.
516 */
517#ifdef CONFIG_UNEVICTABLE_LRU
518void putback_lru_page(struct page *page)
519{
520 int lru;
521 int active = !!TestClearPageActive(page);
bbfd28ee 522 int was_unevictable = PageUnevictable(page);
894bc310
LS
523
524 VM_BUG_ON(PageLRU(page));
525
526redo:
527 ClearPageUnevictable(page);
528
529 if (page_evictable(page, NULL)) {
530 /*
531 * For evictable pages, we can use the cache.
532 * In event of a race, worst case is we end up with an
533 * unevictable page on [in]active list.
534 * We know how to handle that.
535 */
536 lru = active + page_is_file_cache(page);
537 lru_cache_add_lru(page, lru);
538 } else {
539 /*
540 * Put unevictable pages directly on zone's unevictable
541 * list.
542 */
543 lru = LRU_UNEVICTABLE;
544 add_page_to_unevictable_list(page);
545 }
894bc310
LS
546
547 /*
548 * page's status can change while we move it among lru. If an evictable
549 * page is on unevictable list, it never be freed. To avoid that,
550 * check after we added it to the list, again.
551 */
552 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
553 if (!isolate_lru_page(page)) {
554 put_page(page);
555 goto redo;
556 }
557 /* This means someone else dropped this page from LRU
558 * So, it will be freed or putback to LRU again. There is
559 * nothing to do here.
560 */
561 }
562
bbfd28ee
LS
563 if (was_unevictable && lru != LRU_UNEVICTABLE)
564 count_vm_event(UNEVICTABLE_PGRESCUED);
565 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
566 count_vm_event(UNEVICTABLE_PGCULLED);
567
894bc310
LS
568 put_page(page); /* drop ref from isolate */
569}
570
571#else /* CONFIG_UNEVICTABLE_LRU */
572
573void putback_lru_page(struct page *page)
574{
575 int lru;
576 VM_BUG_ON(PageLRU(page));
577
578 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
579 lru_cache_add_lru(page, lru);
894bc310
LS
580 put_page(page);
581}
582#endif /* CONFIG_UNEVICTABLE_LRU */
583
584
1da177e4 585/*
1742f19f 586 * shrink_page_list() returns the number of reclaimed pages
1da177e4 587 */
1742f19f 588static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
589 struct scan_control *sc,
590 enum pageout_io sync_writeback)
1da177e4
LT
591{
592 LIST_HEAD(ret_pages);
593 struct pagevec freed_pvec;
594 int pgactivate = 0;
05ff5137 595 unsigned long nr_reclaimed = 0;
1da177e4
LT
596
597 cond_resched();
598
599 pagevec_init(&freed_pvec, 1);
600 while (!list_empty(page_list)) {
601 struct address_space *mapping;
602 struct page *page;
603 int may_enter_fs;
604 int referenced;
605
606 cond_resched();
607
608 page = lru_to_page(page_list);
609 list_del(&page->lru);
610
529ae9aa 611 if (!trylock_page(page))
1da177e4
LT
612 goto keep;
613
725d704e 614 VM_BUG_ON(PageActive(page));
1da177e4
LT
615
616 sc->nr_scanned++;
80e43426 617
b291f000
NP
618 if (unlikely(!page_evictable(page, NULL)))
619 goto cull_mlocked;
894bc310 620
a6dc60f8 621 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
622 goto keep_locked;
623
1da177e4
LT
624 /* Double the slab pressure for mapped and swapcache pages */
625 if (page_mapped(page) || PageSwapCache(page))
626 sc->nr_scanned++;
627
c661b078
AW
628 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
629 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
630
631 if (PageWriteback(page)) {
632 /*
633 * Synchronous reclaim is performed in two passes,
634 * first an asynchronous pass over the list to
635 * start parallel writeback, and a second synchronous
636 * pass to wait for the IO to complete. Wait here
637 * for any page for which writeback has already
638 * started.
639 */
640 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
641 wait_on_page_writeback(page);
4dd4b920 642 else
c661b078
AW
643 goto keep_locked;
644 }
1da177e4 645
bed7161a 646 referenced = page_referenced(page, 1, sc->mem_cgroup);
1da177e4 647 /* In active use or really unfreeable? Activate it. */
5ad333eb
AW
648 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
649 referenced && page_mapping_inuse(page))
1da177e4
LT
650 goto activate_locked;
651
1da177e4
LT
652 /*
653 * Anonymous process memory has backing store?
654 * Try to allocate it some swap space here.
655 */
b291f000 656 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
657 if (!(sc->gfp_mask & __GFP_IO))
658 goto keep_locked;
ac47b003 659 if (!add_to_swap(page))
1da177e4 660 goto activate_locked;
63eb6b93 661 may_enter_fs = 1;
b291f000 662 }
1da177e4
LT
663
664 mapping = page_mapping(page);
1da177e4
LT
665
666 /*
667 * The page is mapped into the page tables of one or more
668 * processes. Try to unmap it here.
669 */
670 if (page_mapped(page) && mapping) {
a48d07af 671 switch (try_to_unmap(page, 0)) {
1da177e4
LT
672 case SWAP_FAIL:
673 goto activate_locked;
674 case SWAP_AGAIN:
675 goto keep_locked;
b291f000
NP
676 case SWAP_MLOCK:
677 goto cull_mlocked;
1da177e4
LT
678 case SWAP_SUCCESS:
679 ; /* try to free the page below */
680 }
681 }
682
683 if (PageDirty(page)) {
5ad333eb 684 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 685 goto keep_locked;
4dd4b920 686 if (!may_enter_fs)
1da177e4 687 goto keep_locked;
52a8363e 688 if (!sc->may_writepage)
1da177e4
LT
689 goto keep_locked;
690
691 /* Page is dirty, try to write it out here */
c661b078 692 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
693 case PAGE_KEEP:
694 goto keep_locked;
695 case PAGE_ACTIVATE:
696 goto activate_locked;
697 case PAGE_SUCCESS:
4dd4b920 698 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
699 goto keep;
700 /*
701 * A synchronous write - probably a ramdisk. Go
702 * ahead and try to reclaim the page.
703 */
529ae9aa 704 if (!trylock_page(page))
1da177e4
LT
705 goto keep;
706 if (PageDirty(page) || PageWriteback(page))
707 goto keep_locked;
708 mapping = page_mapping(page);
709 case PAGE_CLEAN:
710 ; /* try to free the page below */
711 }
712 }
713
714 /*
715 * If the page has buffers, try to free the buffer mappings
716 * associated with this page. If we succeed we try to free
717 * the page as well.
718 *
719 * We do this even if the page is PageDirty().
720 * try_to_release_page() does not perform I/O, but it is
721 * possible for a page to have PageDirty set, but it is actually
722 * clean (all its buffers are clean). This happens if the
723 * buffers were written out directly, with submit_bh(). ext3
894bc310 724 * will do this, as well as the blockdev mapping.
1da177e4
LT
725 * try_to_release_page() will discover that cleanness and will
726 * drop the buffers and mark the page clean - it can be freed.
727 *
728 * Rarely, pages can have buffers and no ->mapping. These are
729 * the pages which were not successfully invalidated in
730 * truncate_complete_page(). We try to drop those buffers here
731 * and if that worked, and the page is no longer mapped into
732 * process address space (page_count == 1) it can be freed.
733 * Otherwise, leave the page on the LRU so it is swappable.
734 */
266cf658 735 if (page_has_private(page)) {
1da177e4
LT
736 if (!try_to_release_page(page, sc->gfp_mask))
737 goto activate_locked;
e286781d
NP
738 if (!mapping && page_count(page) == 1) {
739 unlock_page(page);
740 if (put_page_testzero(page))
741 goto free_it;
742 else {
743 /*
744 * rare race with speculative reference.
745 * the speculative reference will free
746 * this page shortly, so we may
747 * increment nr_reclaimed here (and
748 * leave it off the LRU).
749 */
750 nr_reclaimed++;
751 continue;
752 }
753 }
1da177e4
LT
754 }
755
e286781d 756 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 757 goto keep_locked;
1da177e4 758
a978d6f5
NP
759 /*
760 * At this point, we have no other references and there is
761 * no way to pick any more up (removed from LRU, removed
762 * from pagecache). Can use non-atomic bitops now (and
763 * we obviously don't have to worry about waking up a process
764 * waiting on the page lock, because there are no references.
765 */
766 __clear_page_locked(page);
e286781d 767free_it:
05ff5137 768 nr_reclaimed++;
e286781d
NP
769 if (!pagevec_add(&freed_pvec, page)) {
770 __pagevec_free(&freed_pvec);
771 pagevec_reinit(&freed_pvec);
772 }
1da177e4
LT
773 continue;
774
b291f000 775cull_mlocked:
63d6c5ad
HD
776 if (PageSwapCache(page))
777 try_to_free_swap(page);
b291f000
NP
778 unlock_page(page);
779 putback_lru_page(page);
780 continue;
781
1da177e4 782activate_locked:
68a22394
RR
783 /* Not a candidate for swapping, so reclaim swap space. */
784 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 785 try_to_free_swap(page);
894bc310 786 VM_BUG_ON(PageActive(page));
1da177e4
LT
787 SetPageActive(page);
788 pgactivate++;
789keep_locked:
790 unlock_page(page);
791keep:
792 list_add(&page->lru, &ret_pages);
b291f000 793 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
794 }
795 list_splice(&ret_pages, page_list);
796 if (pagevec_count(&freed_pvec))
e286781d 797 __pagevec_free(&freed_pvec);
f8891e5e 798 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 799 return nr_reclaimed;
1da177e4
LT
800}
801
5ad333eb
AW
802/* LRU Isolation modes. */
803#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
804#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
805#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
806
807/*
808 * Attempt to remove the specified page from its LRU. Only take this page
809 * if it is of the appropriate PageActive status. Pages which are being
810 * freed elsewhere are also ignored.
811 *
812 * page: page to consider
813 * mode: one of the LRU isolation modes defined above
814 *
815 * returns 0 on success, -ve errno on failure.
816 */
4f98a2fe 817int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
818{
819 int ret = -EINVAL;
820
821 /* Only take pages on the LRU. */
822 if (!PageLRU(page))
823 return ret;
824
825 /*
826 * When checking the active state, we need to be sure we are
827 * dealing with comparible boolean values. Take the logical not
828 * of each.
829 */
830 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
831 return ret;
832
4f98a2fe
RR
833 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
834 return ret;
835
894bc310
LS
836 /*
837 * When this function is being called for lumpy reclaim, we
838 * initially look into all LRU pages, active, inactive and
839 * unevictable; only give shrink_page_list evictable pages.
840 */
841 if (PageUnevictable(page))
842 return ret;
843
5ad333eb 844 ret = -EBUSY;
08e552c6 845
5ad333eb
AW
846 if (likely(get_page_unless_zero(page))) {
847 /*
848 * Be careful not to clear PageLRU until after we're
849 * sure the page is not being freed elsewhere -- the
850 * page release code relies on it.
851 */
852 ClearPageLRU(page);
853 ret = 0;
08e552c6 854 mem_cgroup_del_lru(page);
5ad333eb
AW
855 }
856
857 return ret;
858}
859
1da177e4
LT
860/*
861 * zone->lru_lock is heavily contended. Some of the functions that
862 * shrink the lists perform better by taking out a batch of pages
863 * and working on them outside the LRU lock.
864 *
865 * For pagecache intensive workloads, this function is the hottest
866 * spot in the kernel (apart from copy_*_user functions).
867 *
868 * Appropriate locks must be held before calling this function.
869 *
870 * @nr_to_scan: The number of pages to look through on the list.
871 * @src: The LRU list to pull pages off.
872 * @dst: The temp list to put pages on to.
873 * @scanned: The number of pages that were scanned.
5ad333eb
AW
874 * @order: The caller's attempted allocation order
875 * @mode: One of the LRU isolation modes
4f98a2fe 876 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
877 *
878 * returns how many pages were moved onto *@dst.
879 */
69e05944
AM
880static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
881 struct list_head *src, struct list_head *dst,
4f98a2fe 882 unsigned long *scanned, int order, int mode, int file)
1da177e4 883{
69e05944 884 unsigned long nr_taken = 0;
c9b02d97 885 unsigned long scan;
1da177e4 886
c9b02d97 887 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
888 struct page *page;
889 unsigned long pfn;
890 unsigned long end_pfn;
891 unsigned long page_pfn;
892 int zone_id;
893
1da177e4
LT
894 page = lru_to_page(src);
895 prefetchw_prev_lru_page(page, src, flags);
896
725d704e 897 VM_BUG_ON(!PageLRU(page));
8d438f96 898
4f98a2fe 899 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
900 case 0:
901 list_move(&page->lru, dst);
7c8ee9a8 902 nr_taken++;
5ad333eb
AW
903 break;
904
905 case -EBUSY:
906 /* else it is being freed elsewhere */
907 list_move(&page->lru, src);
908 continue;
46453a6e 909
5ad333eb
AW
910 default:
911 BUG();
912 }
913
914 if (!order)
915 continue;
916
917 /*
918 * Attempt to take all pages in the order aligned region
919 * surrounding the tag page. Only take those pages of
920 * the same active state as that tag page. We may safely
921 * round the target page pfn down to the requested order
922 * as the mem_map is guarenteed valid out to MAX_ORDER,
923 * where that page is in a different zone we will detect
924 * it from its zone id and abort this block scan.
925 */
926 zone_id = page_zone_id(page);
927 page_pfn = page_to_pfn(page);
928 pfn = page_pfn & ~((1 << order) - 1);
929 end_pfn = pfn + (1 << order);
930 for (; pfn < end_pfn; pfn++) {
931 struct page *cursor_page;
932
933 /* The target page is in the block, ignore it. */
934 if (unlikely(pfn == page_pfn))
935 continue;
936
937 /* Avoid holes within the zone. */
938 if (unlikely(!pfn_valid_within(pfn)))
939 break;
940
941 cursor_page = pfn_to_page(pfn);
4f98a2fe 942
5ad333eb
AW
943 /* Check that we have not crossed a zone boundary. */
944 if (unlikely(page_zone_id(cursor_page) != zone_id))
945 continue;
4f98a2fe 946 switch (__isolate_lru_page(cursor_page, mode, file)) {
5ad333eb
AW
947 case 0:
948 list_move(&cursor_page->lru, dst);
949 nr_taken++;
950 scan++;
951 break;
952
953 case -EBUSY:
954 /* else it is being freed elsewhere */
955 list_move(&cursor_page->lru, src);
956 default:
894bc310 957 break; /* ! on LRU or wrong list */
5ad333eb
AW
958 }
959 }
1da177e4
LT
960 }
961
962 *scanned = scan;
963 return nr_taken;
964}
965
66e1707b
BS
966static unsigned long isolate_pages_global(unsigned long nr,
967 struct list_head *dst,
968 unsigned long *scanned, int order,
969 int mode, struct zone *z,
970 struct mem_cgroup *mem_cont,
4f98a2fe 971 int active, int file)
66e1707b 972{
4f98a2fe 973 int lru = LRU_BASE;
66e1707b 974 if (active)
4f98a2fe
RR
975 lru += LRU_ACTIVE;
976 if (file)
977 lru += LRU_FILE;
978 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
979 mode, !!file);
66e1707b
BS
980}
981
5ad333eb
AW
982/*
983 * clear_active_flags() is a helper for shrink_active_list(), clearing
984 * any active bits from the pages in the list.
985 */
4f98a2fe
RR
986static unsigned long clear_active_flags(struct list_head *page_list,
987 unsigned int *count)
5ad333eb
AW
988{
989 int nr_active = 0;
4f98a2fe 990 int lru;
5ad333eb
AW
991 struct page *page;
992
4f98a2fe
RR
993 list_for_each_entry(page, page_list, lru) {
994 lru = page_is_file_cache(page);
5ad333eb 995 if (PageActive(page)) {
4f98a2fe 996 lru += LRU_ACTIVE;
5ad333eb
AW
997 ClearPageActive(page);
998 nr_active++;
999 }
4f98a2fe
RR
1000 count[lru]++;
1001 }
5ad333eb
AW
1002
1003 return nr_active;
1004}
1005
62695a84
NP
1006/**
1007 * isolate_lru_page - tries to isolate a page from its LRU list
1008 * @page: page to isolate from its LRU list
1009 *
1010 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1011 * vmstat statistic corresponding to whatever LRU list the page was on.
1012 *
1013 * Returns 0 if the page was removed from an LRU list.
1014 * Returns -EBUSY if the page was not on an LRU list.
1015 *
1016 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1017 * the active list, it will have PageActive set. If it was found on
1018 * the unevictable list, it will have the PageUnevictable bit set. That flag
1019 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1020 *
1021 * The vmstat statistic corresponding to the list on which the page was
1022 * found will be decremented.
1023 *
1024 * Restrictions:
1025 * (1) Must be called with an elevated refcount on the page. This is a
1026 * fundamentnal difference from isolate_lru_pages (which is called
1027 * without a stable reference).
1028 * (2) the lru_lock must not be held.
1029 * (3) interrupts must be enabled.
1030 */
1031int isolate_lru_page(struct page *page)
1032{
1033 int ret = -EBUSY;
1034
1035 if (PageLRU(page)) {
1036 struct zone *zone = page_zone(page);
1037
1038 spin_lock_irq(&zone->lru_lock);
1039 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1040 int lru = page_lru(page);
62695a84
NP
1041 ret = 0;
1042 ClearPageLRU(page);
4f98a2fe 1043
4f98a2fe 1044 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1045 }
1046 spin_unlock_irq(&zone->lru_lock);
1047 }
1048 return ret;
1049}
1050
1da177e4 1051/*
1742f19f
AM
1052 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1053 * of reclaimed pages
1da177e4 1054 */
1742f19f 1055static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1056 struct zone *zone, struct scan_control *sc,
1057 int priority, int file)
1da177e4
LT
1058{
1059 LIST_HEAD(page_list);
1060 struct pagevec pvec;
69e05944 1061 unsigned long nr_scanned = 0;
05ff5137 1062 unsigned long nr_reclaimed = 0;
6e901571 1063 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
78dc583d
KM
1064 int lumpy_reclaim = 0;
1065
1066 /*
1067 * If we need a large contiguous chunk of memory, or have
1068 * trouble getting a small set of contiguous pages, we
1069 * will reclaim both active and inactive pages.
1070 *
1071 * We use the same threshold as pageout congestion_wait below.
1072 */
1073 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1074 lumpy_reclaim = 1;
1075 else if (sc->order && priority < DEF_PRIORITY - 2)
1076 lumpy_reclaim = 1;
1da177e4
LT
1077
1078 pagevec_init(&pvec, 1);
1079
1080 lru_add_drain();
1081 spin_lock_irq(&zone->lru_lock);
69e05944 1082 do {
1da177e4 1083 struct page *page;
69e05944
AM
1084 unsigned long nr_taken;
1085 unsigned long nr_scan;
1086 unsigned long nr_freed;
5ad333eb 1087 unsigned long nr_active;
4f98a2fe 1088 unsigned int count[NR_LRU_LISTS] = { 0, };
78dc583d 1089 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1da177e4 1090
66e1707b 1091 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
4f98a2fe
RR
1092 &page_list, &nr_scan, sc->order, mode,
1093 zone, sc->mem_cgroup, 0, file);
1094 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1095 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1096
4f98a2fe
RR
1097 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1098 -count[LRU_ACTIVE_FILE]);
1099 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1100 -count[LRU_INACTIVE_FILE]);
1101 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1102 -count[LRU_ACTIVE_ANON]);
1103 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1104 -count[LRU_INACTIVE_ANON]);
1105
e72e2bd6 1106 if (scanning_global_lru(sc))
1cfb419b 1107 zone->pages_scanned += nr_scan;
3e2f41f1
KM
1108
1109 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1110 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1111 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1112 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1113
1da177e4
LT
1114 spin_unlock_irq(&zone->lru_lock);
1115
69e05944 1116 nr_scanned += nr_scan;
c661b078
AW
1117 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1118
1119 /*
1120 * If we are direct reclaiming for contiguous pages and we do
1121 * not reclaim everything in the list, try again and wait
1122 * for IO to complete. This will stall high-order allocations
1123 * but that should be acceptable to the caller
1124 */
1125 if (nr_freed < nr_taken && !current_is_kswapd() &&
78dc583d 1126 lumpy_reclaim) {
c661b078
AW
1127 congestion_wait(WRITE, HZ/10);
1128
1129 /*
1130 * The attempt at page out may have made some
1131 * of the pages active, mark them inactive again.
1132 */
4f98a2fe 1133 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1134 count_vm_events(PGDEACTIVATE, nr_active);
1135
1136 nr_freed += shrink_page_list(&page_list, sc,
1137 PAGEOUT_IO_SYNC);
1138 }
1139
05ff5137 1140 nr_reclaimed += nr_freed;
a74609fa
NP
1141 local_irq_disable();
1142 if (current_is_kswapd()) {
f8891e5e
CL
1143 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1144 __count_vm_events(KSWAPD_STEAL, nr_freed);
e72e2bd6 1145 } else if (scanning_global_lru(sc))
f8891e5e 1146 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1cfb419b 1147
918d3f90 1148 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa 1149
fb8d14e1
WF
1150 if (nr_taken == 0)
1151 goto done;
1152
a74609fa 1153 spin_lock(&zone->lru_lock);
1da177e4
LT
1154 /*
1155 * Put back any unfreeable pages.
1156 */
1157 while (!list_empty(&page_list)) {
894bc310 1158 int lru;
1da177e4 1159 page = lru_to_page(&page_list);
725d704e 1160 VM_BUG_ON(PageLRU(page));
1da177e4 1161 list_del(&page->lru);
894bc310
LS
1162 if (unlikely(!page_evictable(page, NULL))) {
1163 spin_unlock_irq(&zone->lru_lock);
1164 putback_lru_page(page);
1165 spin_lock_irq(&zone->lru_lock);
1166 continue;
1167 }
1168 SetPageLRU(page);
1169 lru = page_lru(page);
1170 add_page_to_lru_list(zone, page, lru);
3e2f41f1 1171 if (PageActive(page)) {
4f98a2fe 1172 int file = !!page_is_file_cache(page);
6e901571 1173 reclaim_stat->recent_rotated[file]++;
4f98a2fe 1174 }
1da177e4
LT
1175 if (!pagevec_add(&pvec, page)) {
1176 spin_unlock_irq(&zone->lru_lock);
1177 __pagevec_release(&pvec);
1178 spin_lock_irq(&zone->lru_lock);
1179 }
1180 }
69e05944 1181 } while (nr_scanned < max_scan);
fb8d14e1 1182 spin_unlock(&zone->lru_lock);
1da177e4 1183done:
fb8d14e1 1184 local_irq_enable();
1da177e4 1185 pagevec_release(&pvec);
05ff5137 1186 return nr_reclaimed;
1da177e4
LT
1187}
1188
3bb1a852
MB
1189/*
1190 * We are about to scan this zone at a certain priority level. If that priority
1191 * level is smaller (ie: more urgent) than the previous priority, then note
1192 * that priority level within the zone. This is done so that when the next
1193 * process comes in to scan this zone, it will immediately start out at this
1194 * priority level rather than having to build up its own scanning priority.
1195 * Here, this priority affects only the reclaim-mapped threshold.
1196 */
1197static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1198{
1199 if (priority < zone->prev_priority)
1200 zone->prev_priority = priority;
1201}
1202
1da177e4
LT
1203/*
1204 * This moves pages from the active list to the inactive list.
1205 *
1206 * We move them the other way if the page is referenced by one or more
1207 * processes, from rmap.
1208 *
1209 * If the pages are mostly unmapped, the processing is fast and it is
1210 * appropriate to hold zone->lru_lock across the whole operation. But if
1211 * the pages are mapped, the processing is slow (page_referenced()) so we
1212 * should drop zone->lru_lock around each page. It's impossible to balance
1213 * this, so instead we remove the pages from the LRU while processing them.
1214 * It is safe to rely on PG_active against the non-LRU pages in here because
1215 * nobody will play with that bit on a non-LRU page.
1216 *
1217 * The downside is that we have to touch page->_count against each page.
1218 * But we had to alter page->flags anyway.
1219 */
1cfb419b
KH
1220
1221
1742f19f 1222static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1223 struct scan_control *sc, int priority, int file)
1da177e4 1224{
69e05944 1225 unsigned long pgmoved;
69e05944 1226 unsigned long pgscanned;
1da177e4 1227 LIST_HEAD(l_hold); /* The pages which were snipped off */
b69408e8 1228 LIST_HEAD(l_inactive);
1da177e4
LT
1229 struct page *page;
1230 struct pagevec pvec;
4f98a2fe 1231 enum lru_list lru;
6e901571 1232 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1da177e4
LT
1233
1234 lru_add_drain();
1235 spin_lock_irq(&zone->lru_lock);
66e1707b
BS
1236 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1237 ISOLATE_ACTIVE, zone,
4f98a2fe 1238 sc->mem_cgroup, 1, file);
1cfb419b
KH
1239 /*
1240 * zone->pages_scanned is used for detect zone's oom
1241 * mem_cgroup remembers nr_scan by itself.
1242 */
e72e2bd6 1243 if (scanning_global_lru(sc)) {
1cfb419b 1244 zone->pages_scanned += pgscanned;
4f98a2fe 1245 }
3e2f41f1 1246 reclaim_stat->recent_scanned[!!file] += pgmoved;
1cfb419b 1247
4f98a2fe
RR
1248 if (file)
1249 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1250 else
1251 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1da177e4
LT
1252 spin_unlock_irq(&zone->lru_lock);
1253
af166777 1254 pgmoved = 0; /* count referenced (mapping) mapped pages */
1da177e4
LT
1255 while (!list_empty(&l_hold)) {
1256 cond_resched();
1257 page = lru_to_page(&l_hold);
1258 list_del(&page->lru);
7e9cd484 1259
894bc310
LS
1260 if (unlikely(!page_evictable(page, NULL))) {
1261 putback_lru_page(page);
1262 continue;
1263 }
1264
7e9cd484
RR
1265 /* page_referenced clears PageReferenced */
1266 if (page_mapping_inuse(page) &&
1267 page_referenced(page, 0, sc->mem_cgroup))
1268 pgmoved++;
1269
1da177e4
LT
1270 list_add(&page->lru, &l_inactive);
1271 }
1272
b555749a
AM
1273 /*
1274 * Move the pages to the [file or anon] inactive list.
1275 */
1276 pagevec_init(&pvec, 1);
b555749a
AM
1277 lru = LRU_BASE + file * LRU_FILE;
1278
2a1dc509 1279 spin_lock_irq(&zone->lru_lock);
556adecb 1280 /*
7e9cd484
RR
1281 * Count referenced pages from currently used mappings as
1282 * rotated, even though they are moved to the inactive list.
1283 * This helps balance scan pressure between file and anonymous
1284 * pages in get_scan_ratio.
1285 */
3e2f41f1 1286 reclaim_stat->recent_rotated[!!file] += pgmoved;
556adecb 1287
af166777 1288 pgmoved = 0; /* count pages moved to inactive list */
1da177e4
LT
1289 while (!list_empty(&l_inactive)) {
1290 page = lru_to_page(&l_inactive);
1291 prefetchw_prev_lru_page(page, &l_inactive, flags);
725d704e 1292 VM_BUG_ON(PageLRU(page));
8d438f96 1293 SetPageLRU(page);
725d704e 1294 VM_BUG_ON(!PageActive(page));
4c84cacf
NP
1295 ClearPageActive(page);
1296
4f98a2fe 1297 list_move(&page->lru, &zone->lru[lru].list);
08e552c6 1298 mem_cgroup_add_lru_list(page, lru);
1da177e4
LT
1299 pgmoved++;
1300 if (!pagevec_add(&pvec, page)) {
1da177e4 1301 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1302 if (buffer_heads_over_limit)
1303 pagevec_strip(&pvec);
1304 __pagevec_release(&pvec);
1305 spin_lock_irq(&zone->lru_lock);
1306 }
1307 }
4f98a2fe 1308 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
f8891e5e 1309 __count_zone_vm_events(PGREFILL, zone, pgscanned);
af166777 1310 __count_vm_events(PGDEACTIVATE, pgmoved);
f8891e5e 1311 spin_unlock_irq(&zone->lru_lock);
2443462b
JW
1312 if (buffer_heads_over_limit)
1313 pagevec_strip(&pvec);
a74609fa 1314 pagevec_release(&pvec);
1da177e4
LT
1315}
1316
14797e23 1317static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1318{
1319 unsigned long active, inactive;
1320
1321 active = zone_page_state(zone, NR_ACTIVE_ANON);
1322 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1323
1324 if (inactive * zone->inactive_ratio < active)
1325 return 1;
1326
1327 return 0;
1328}
1329
14797e23
KM
1330/**
1331 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1332 * @zone: zone to check
1333 * @sc: scan control of this context
1334 *
1335 * Returns true if the zone does not have enough inactive anon pages,
1336 * meaning some active anon pages need to be deactivated.
1337 */
1338static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1339{
1340 int low;
1341
e72e2bd6 1342 if (scanning_global_lru(sc))
14797e23
KM
1343 low = inactive_anon_is_low_global(zone);
1344 else
c772be93 1345 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1346 return low;
1347}
1348
56e49d21
RR
1349static int inactive_file_is_low_global(struct zone *zone)
1350{
1351 unsigned long active, inactive;
1352
1353 active = zone_page_state(zone, NR_ACTIVE_FILE);
1354 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1355
1356 return (active > inactive);
1357}
1358
1359/**
1360 * inactive_file_is_low - check if file pages need to be deactivated
1361 * @zone: zone to check
1362 * @sc: scan control of this context
1363 *
1364 * When the system is doing streaming IO, memory pressure here
1365 * ensures that active file pages get deactivated, until more
1366 * than half of the file pages are on the inactive list.
1367 *
1368 * Once we get to that situation, protect the system's working
1369 * set from being evicted by disabling active file page aging.
1370 *
1371 * This uses a different ratio than the anonymous pages, because
1372 * the page cache uses a use-once replacement algorithm.
1373 */
1374static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1375{
1376 int low;
1377
1378 if (scanning_global_lru(sc))
1379 low = inactive_file_is_low_global(zone);
1380 else
1381 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1382 return low;
1383}
1384
4f98a2fe 1385static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1386 struct zone *zone, struct scan_control *sc, int priority)
1387{
4f98a2fe
RR
1388 int file = is_file_lru(lru);
1389
56e49d21 1390 if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
556adecb
RR
1391 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1392 return 0;
1393 }
1394
14797e23 1395 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
4f98a2fe 1396 shrink_active_list(nr_to_scan, zone, sc, priority, file);
b69408e8
CL
1397 return 0;
1398 }
33c120ed 1399 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1400}
1401
1402/*
1403 * Determine how aggressively the anon and file LRU lists should be
1404 * scanned. The relative value of each set of LRU lists is determined
1405 * by looking at the fraction of the pages scanned we did rotate back
1406 * onto the active list instead of evict.
1407 *
1408 * percent[0] specifies how much pressure to put on ram/swap backed
1409 * memory, while percent[1] determines pressure on the file LRUs.
1410 */
1411static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1412 unsigned long *percent)
1413{
1414 unsigned long anon, file, free;
1415 unsigned long anon_prio, file_prio;
1416 unsigned long ap, fp;
6e901571 1417 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
4f98a2fe 1418
4f98a2fe 1419 /* If we have no swap space, do not bother scanning anon pages. */
2e2e4259 1420 if (!sc->may_swap || (nr_swap_pages <= 0)) {
4f98a2fe
RR
1421 percent[0] = 0;
1422 percent[1] = 100;
1423 return;
1424 }
1425
c9f299d9
KM
1426 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1427 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1428 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1429 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1430
e72e2bd6 1431 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1432 free = zone_page_state(zone, NR_FREE_PAGES);
1433 /* If we have very few page cache pages,
1434 force-scan anon pages. */
41858966 1435 if (unlikely(file + free <= high_wmark_pages(zone))) {
eeee9a8c
KM
1436 percent[0] = 100;
1437 percent[1] = 0;
1438 return;
1439 }
4f98a2fe
RR
1440 }
1441
1442 /*
1443 * OK, so we have swap space and a fair amount of page cache
1444 * pages. We use the recently rotated / recently scanned
1445 * ratios to determine how valuable each cache is.
1446 *
1447 * Because workloads change over time (and to avoid overflow)
1448 * we keep these statistics as a floating average, which ends
1449 * up weighing recent references more than old ones.
1450 *
1451 * anon in [0], file in [1]
1452 */
6e901571 1453 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
4f98a2fe 1454 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1455 reclaim_stat->recent_scanned[0] /= 2;
1456 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1457 spin_unlock_irq(&zone->lru_lock);
1458 }
1459
6e901571 1460 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
4f98a2fe 1461 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1462 reclaim_stat->recent_scanned[1] /= 2;
1463 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1464 spin_unlock_irq(&zone->lru_lock);
1465 }
1466
1467 /*
1468 * With swappiness at 100, anonymous and file have the same priority.
1469 * This scanning priority is essentially the inverse of IO cost.
1470 */
1471 anon_prio = sc->swappiness;
1472 file_prio = 200 - sc->swappiness;
1473
1474 /*
00d8089c
RR
1475 * The amount of pressure on anon vs file pages is inversely
1476 * proportional to the fraction of recently scanned pages on
1477 * each list that were recently referenced and in active use.
4f98a2fe 1478 */
6e901571
KM
1479 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1480 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1481
6e901571
KM
1482 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1483 fp /= reclaim_stat->recent_rotated[1] + 1;
4f98a2fe
RR
1484
1485 /* Normalize to percentages */
1486 percent[0] = 100 * ap / (ap + fp + 1);
1487 percent[1] = 100 - percent[0];
b69408e8
CL
1488}
1489
6e08a369
WF
1490/*
1491 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1492 * until we collected @swap_cluster_max pages to scan.
1493 */
1494static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1495 unsigned long *nr_saved_scan,
1496 unsigned long swap_cluster_max)
1497{
1498 unsigned long nr;
1499
1500 *nr_saved_scan += nr_to_scan;
1501 nr = *nr_saved_scan;
1502
1503 if (nr >= swap_cluster_max)
1504 *nr_saved_scan = 0;
1505 else
1506 nr = 0;
1507
1508 return nr;
1509}
4f98a2fe 1510
1da177e4
LT
1511/*
1512 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1513 */
a79311c1 1514static void shrink_zone(int priority, struct zone *zone,
05ff5137 1515 struct scan_control *sc)
1da177e4 1516{
b69408e8 1517 unsigned long nr[NR_LRU_LISTS];
8695949a 1518 unsigned long nr_to_scan;
4f98a2fe 1519 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1520 enum lru_list l;
01dbe5c9
KM
1521 unsigned long nr_reclaimed = sc->nr_reclaimed;
1522 unsigned long swap_cluster_max = sc->swap_cluster_max;
1da177e4 1523
4f98a2fe
RR
1524 get_scan_ratio(zone, sc, percent);
1525
894bc310 1526 for_each_evictable_lru(l) {
9439c1c9 1527 int file = is_file_lru(l);
8713e012 1528 unsigned long scan;
e0f79b8f 1529
f272b7bc 1530 scan = zone_nr_pages(zone, sc, l);
9439c1c9
KM
1531 if (priority) {
1532 scan >>= priority;
1533 scan = (scan * percent[file]) / 100;
1534 }
6e08a369
WF
1535 if (scanning_global_lru(sc))
1536 nr[l] = nr_scan_try_batch(scan,
1537 &zone->lru[l].nr_saved_scan,
1538 swap_cluster_max);
1539 else
9439c1c9 1540 nr[l] = scan;
1cfb419b 1541 }
1da177e4 1542
556adecb
RR
1543 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1544 nr[LRU_INACTIVE_FILE]) {
894bc310 1545 for_each_evictable_lru(l) {
b69408e8 1546 if (nr[l]) {
01dbe5c9 1547 nr_to_scan = min(nr[l], swap_cluster_max);
b69408e8 1548 nr[l] -= nr_to_scan;
1da177e4 1549
01dbe5c9
KM
1550 nr_reclaimed += shrink_list(l, nr_to_scan,
1551 zone, sc, priority);
b69408e8 1552 }
1da177e4 1553 }
a79311c1
RR
1554 /*
1555 * On large memory systems, scan >> priority can become
1556 * really large. This is fine for the starting priority;
1557 * we want to put equal scanning pressure on each zone.
1558 * However, if the VM has a harder time of freeing pages,
1559 * with multiple processes reclaiming pages, the total
1560 * freeing target can get unreasonably large.
1561 */
01dbe5c9 1562 if (nr_reclaimed > swap_cluster_max &&
a79311c1
RR
1563 priority < DEF_PRIORITY && !current_is_kswapd())
1564 break;
1da177e4
LT
1565 }
1566
01dbe5c9
KM
1567 sc->nr_reclaimed = nr_reclaimed;
1568
556adecb
RR
1569 /*
1570 * Even if we did not try to evict anon pages at all, we want to
1571 * rebalance the anon lru active/inactive ratio.
1572 */
14797e23 1573 if (inactive_anon_is_low(zone, sc))
556adecb
RR
1574 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1575
232ea4d6 1576 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1577}
1578
1579/*
1580 * This is the direct reclaim path, for page-allocating processes. We only
1581 * try to reclaim pages from zones which will satisfy the caller's allocation
1582 * request.
1583 *
41858966
MG
1584 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1585 * Because:
1da177e4
LT
1586 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1587 * allocation or
41858966
MG
1588 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1589 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1590 * zone defense algorithm.
1da177e4 1591 *
1da177e4
LT
1592 * If a zone is deemed to be full of pinned pages then just give it a light
1593 * scan then give up on it.
1594 */
a79311c1 1595static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1596 struct scan_control *sc)
1da177e4 1597{
54a6eb5c 1598 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
dd1a239f 1599 struct zoneref *z;
54a6eb5c 1600 struct zone *zone;
1cfb419b 1601
408d8544 1602 sc->all_unreclaimable = 1;
327c0e96
KH
1603 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1604 sc->nodemask) {
f3fe6512 1605 if (!populated_zone(zone))
1da177e4 1606 continue;
1cfb419b
KH
1607 /*
1608 * Take care memory controller reclaiming has small influence
1609 * to global LRU.
1610 */
e72e2bd6 1611 if (scanning_global_lru(sc)) {
1cfb419b
KH
1612 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1613 continue;
1614 note_zone_scanning_priority(zone, priority);
1da177e4 1615
1cfb419b
KH
1616 if (zone_is_all_unreclaimable(zone) &&
1617 priority != DEF_PRIORITY)
1618 continue; /* Let kswapd poll it */
1619 sc->all_unreclaimable = 0;
1620 } else {
1621 /*
1622 * Ignore cpuset limitation here. We just want to reduce
1623 * # of used pages by us regardless of memory shortage.
1624 */
1625 sc->all_unreclaimable = 0;
1626 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1627 priority);
1628 }
408d8544 1629
a79311c1 1630 shrink_zone(priority, zone, sc);
1da177e4
LT
1631 }
1632}
4f98a2fe 1633
1da177e4
LT
1634/*
1635 * This is the main entry point to direct page reclaim.
1636 *
1637 * If a full scan of the inactive list fails to free enough memory then we
1638 * are "out of memory" and something needs to be killed.
1639 *
1640 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1641 * high - the zone may be full of dirty or under-writeback pages, which this
1642 * caller can't do much about. We kick pdflush and take explicit naps in the
1643 * hope that some of these pages can be written. But if the allocating task
1644 * holds filesystem locks which prevent writeout this might not work, and the
1645 * allocation attempt will fail.
a41f24ea
NA
1646 *
1647 * returns: 0, if no pages reclaimed
1648 * else, the number of pages reclaimed
1da177e4 1649 */
dac1d27b 1650static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1651 struct scan_control *sc)
1da177e4
LT
1652{
1653 int priority;
c700be3d 1654 unsigned long ret = 0;
69e05944 1655 unsigned long total_scanned = 0;
1da177e4 1656 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1657 unsigned long lru_pages = 0;
dd1a239f 1658 struct zoneref *z;
54a6eb5c 1659 struct zone *zone;
dd1a239f 1660 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1da177e4 1661
873b4771
KK
1662 delayacct_freepages_start();
1663
e72e2bd6 1664 if (scanning_global_lru(sc))
1cfb419b
KH
1665 count_vm_event(ALLOCSTALL);
1666 /*
1667 * mem_cgroup will not do shrink_slab.
1668 */
e72e2bd6 1669 if (scanning_global_lru(sc)) {
54a6eb5c 1670 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1671
1cfb419b
KH
1672 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1673 continue;
1da177e4 1674
4f98a2fe 1675 lru_pages += zone_lru_pages(zone);
1cfb419b 1676 }
1da177e4
LT
1677 }
1678
1679 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1680 sc->nr_scanned = 0;
f7b7fd8f
RR
1681 if (!priority)
1682 disable_swap_token();
a79311c1 1683 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1684 /*
1685 * Don't shrink slabs when reclaiming memory from
1686 * over limit cgroups
1687 */
e72e2bd6 1688 if (scanning_global_lru(sc)) {
dd1a239f 1689 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1690 if (reclaim_state) {
a79311c1 1691 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1692 reclaim_state->reclaimed_slab = 0;
1693 }
1da177e4 1694 }
66e1707b 1695 total_scanned += sc->nr_scanned;
a79311c1
RR
1696 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1697 ret = sc->nr_reclaimed;
1da177e4
LT
1698 goto out;
1699 }
1700
1701 /*
1702 * Try to write back as many pages as we just scanned. This
1703 * tends to cause slow streaming writers to write data to the
1704 * disk smoothly, at the dirtying rate, which is nice. But
1705 * that's undesirable in laptop mode, where we *want* lumpy
1706 * writeout. So in laptop mode, write out the whole world.
1707 */
66e1707b
BS
1708 if (total_scanned > sc->swap_cluster_max +
1709 sc->swap_cluster_max / 2) {
687a21ce 1710 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
66e1707b 1711 sc->may_writepage = 1;
1da177e4
LT
1712 }
1713
1714 /* Take a nap, wait for some writeback to complete */
4dd4b920 1715 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1716 congestion_wait(WRITE, HZ/10);
1da177e4 1717 }
87547ee9 1718 /* top priority shrink_zones still had more to do? don't OOM, then */
e72e2bd6 1719 if (!sc->all_unreclaimable && scanning_global_lru(sc))
a79311c1 1720 ret = sc->nr_reclaimed;
1da177e4 1721out:
3bb1a852
MB
1722 /*
1723 * Now that we've scanned all the zones at this priority level, note
1724 * that level within the zone so that the next thread which performs
1725 * scanning of this zone will immediately start out at this priority
1726 * level. This affects only the decision whether or not to bring
1727 * mapped pages onto the inactive list.
1728 */
1729 if (priority < 0)
1730 priority = 0;
1da177e4 1731
e72e2bd6 1732 if (scanning_global_lru(sc)) {
54a6eb5c 1733 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1734
1735 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1736 continue;
1737
1738 zone->prev_priority = priority;
1739 }
1740 } else
1741 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1742
873b4771
KK
1743 delayacct_freepages_end();
1744
1da177e4
LT
1745 return ret;
1746}
1747
dac1d27b 1748unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 1749 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b
BS
1750{
1751 struct scan_control sc = {
1752 .gfp_mask = gfp_mask,
1753 .may_writepage = !laptop_mode,
1754 .swap_cluster_max = SWAP_CLUSTER_MAX,
a6dc60f8 1755 .may_unmap = 1,
2e2e4259 1756 .may_swap = 1,
66e1707b
BS
1757 .swappiness = vm_swappiness,
1758 .order = order,
1759 .mem_cgroup = NULL,
1760 .isolate_pages = isolate_pages_global,
327c0e96 1761 .nodemask = nodemask,
66e1707b
BS
1762 };
1763
dd1a239f 1764 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1765}
1766
00f0b825 1767#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1768
e1a1cd59 1769unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
1770 gfp_t gfp_mask,
1771 bool noswap,
1772 unsigned int swappiness)
66e1707b
BS
1773{
1774 struct scan_control sc = {
66e1707b 1775 .may_writepage = !laptop_mode,
a6dc60f8 1776 .may_unmap = 1,
2e2e4259 1777 .may_swap = !noswap,
66e1707b 1778 .swap_cluster_max = SWAP_CLUSTER_MAX,
a7885eb8 1779 .swappiness = swappiness,
66e1707b
BS
1780 .order = 0,
1781 .mem_cgroup = mem_cont,
1782 .isolate_pages = mem_cgroup_isolate_pages,
327c0e96 1783 .nodemask = NULL, /* we don't care the placement */
66e1707b 1784 };
dac1d27b 1785 struct zonelist *zonelist;
66e1707b 1786
dd1a239f
MG
1787 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1788 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1789 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1790 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1791}
1792#endif
1793
1da177e4
LT
1794/*
1795 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 1796 * they are all at high_wmark_pages(zone).
1da177e4 1797 *
1da177e4
LT
1798 * Returns the number of pages which were actually freed.
1799 *
1800 * There is special handling here for zones which are full of pinned pages.
1801 * This can happen if the pages are all mlocked, or if they are all used by
1802 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1803 * What we do is to detect the case where all pages in the zone have been
1804 * scanned twice and there has been zero successful reclaim. Mark the zone as
1805 * dead and from now on, only perform a short scan. Basically we're polling
1806 * the zone for when the problem goes away.
1807 *
1808 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
1809 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1810 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1811 * lower zones regardless of the number of free pages in the lower zones. This
1812 * interoperates with the page allocator fallback scheme to ensure that aging
1813 * of pages is balanced across the zones.
1da177e4 1814 */
d6277db4 1815static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1816{
1da177e4
LT
1817 int all_zones_ok;
1818 int priority;
1819 int i;
69e05944 1820 unsigned long total_scanned;
1da177e4 1821 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1822 struct scan_control sc = {
1823 .gfp_mask = GFP_KERNEL,
a6dc60f8 1824 .may_unmap = 1,
2e2e4259 1825 .may_swap = 1,
d6277db4
RW
1826 .swap_cluster_max = SWAP_CLUSTER_MAX,
1827 .swappiness = vm_swappiness,
5ad333eb 1828 .order = order,
66e1707b
BS
1829 .mem_cgroup = NULL,
1830 .isolate_pages = isolate_pages_global,
179e9639 1831 };
3bb1a852
MB
1832 /*
1833 * temp_priority is used to remember the scanning priority at which
41858966
MG
1834 * this zone was successfully refilled to
1835 * free_pages == high_wmark_pages(zone).
3bb1a852
MB
1836 */
1837 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1838
1839loop_again:
1840 total_scanned = 0;
a79311c1 1841 sc.nr_reclaimed = 0;
c0bbbc73 1842 sc.may_writepage = !laptop_mode;
f8891e5e 1843 count_vm_event(PAGEOUTRUN);
1da177e4 1844
3bb1a852
MB
1845 for (i = 0; i < pgdat->nr_zones; i++)
1846 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1847
1848 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1849 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1850 unsigned long lru_pages = 0;
1851
f7b7fd8f
RR
1852 /* The swap token gets in the way of swapout... */
1853 if (!priority)
1854 disable_swap_token();
1855
1da177e4
LT
1856 all_zones_ok = 1;
1857
d6277db4
RW
1858 /*
1859 * Scan in the highmem->dma direction for the highest
1860 * zone which needs scanning
1861 */
1862 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1863 struct zone *zone = pgdat->node_zones + i;
1da177e4 1864
d6277db4
RW
1865 if (!populated_zone(zone))
1866 continue;
1da177e4 1867
e815af95
DR
1868 if (zone_is_all_unreclaimable(zone) &&
1869 priority != DEF_PRIORITY)
d6277db4 1870 continue;
1da177e4 1871
556adecb
RR
1872 /*
1873 * Do some background aging of the anon list, to give
1874 * pages a chance to be referenced before reclaiming.
1875 */
14797e23 1876 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
1877 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1878 &sc, priority, 0);
1879
41858966
MG
1880 if (!zone_watermark_ok(zone, order,
1881 high_wmark_pages(zone), 0, 0)) {
d6277db4 1882 end_zone = i;
e1dbeda6 1883 break;
1da177e4 1884 }
1da177e4 1885 }
e1dbeda6
AM
1886 if (i < 0)
1887 goto out;
1888
1da177e4
LT
1889 for (i = 0; i <= end_zone; i++) {
1890 struct zone *zone = pgdat->node_zones + i;
1891
4f98a2fe 1892 lru_pages += zone_lru_pages(zone);
1da177e4
LT
1893 }
1894
1895 /*
1896 * Now scan the zone in the dma->highmem direction, stopping
1897 * at the last zone which needs scanning.
1898 *
1899 * We do this because the page allocator works in the opposite
1900 * direction. This prevents the page allocator from allocating
1901 * pages behind kswapd's direction of progress, which would
1902 * cause too much scanning of the lower zones.
1903 */
1904 for (i = 0; i <= end_zone; i++) {
1905 struct zone *zone = pgdat->node_zones + i;
b15e0905 1906 int nr_slab;
1da177e4 1907
f3fe6512 1908 if (!populated_zone(zone))
1da177e4
LT
1909 continue;
1910
e815af95
DR
1911 if (zone_is_all_unreclaimable(zone) &&
1912 priority != DEF_PRIORITY)
1da177e4
LT
1913 continue;
1914
41858966
MG
1915 if (!zone_watermark_ok(zone, order,
1916 high_wmark_pages(zone), end_zone, 0))
d6277db4 1917 all_zones_ok = 0;
3bb1a852 1918 temp_priority[i] = priority;
1da177e4 1919 sc.nr_scanned = 0;
3bb1a852 1920 note_zone_scanning_priority(zone, priority);
32a4330d
RR
1921 /*
1922 * We put equal pressure on every zone, unless one
1923 * zone has way too many pages free already.
1924 */
41858966
MG
1925 if (!zone_watermark_ok(zone, order,
1926 8*high_wmark_pages(zone), end_zone, 0))
a79311c1 1927 shrink_zone(priority, zone, &sc);
1da177e4 1928 reclaim_state->reclaimed_slab = 0;
b15e0905 1929 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1930 lru_pages);
a79311c1 1931 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 1932 total_scanned += sc.nr_scanned;
e815af95 1933 if (zone_is_all_unreclaimable(zone))
1da177e4 1934 continue;
b15e0905 1935 if (nr_slab == 0 && zone->pages_scanned >=
4f98a2fe 1936 (zone_lru_pages(zone) * 6))
e815af95
DR
1937 zone_set_flag(zone,
1938 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
1939 /*
1940 * If we've done a decent amount of scanning and
1941 * the reclaim ratio is low, start doing writepage
1942 * even in laptop mode
1943 */
1944 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 1945 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4
LT
1946 sc.may_writepage = 1;
1947 }
1da177e4
LT
1948 if (all_zones_ok)
1949 break; /* kswapd: all done */
1950 /*
1951 * OK, kswapd is getting into trouble. Take a nap, then take
1952 * another pass across the zones.
1953 */
4dd4b920 1954 if (total_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1955 congestion_wait(WRITE, HZ/10);
1da177e4
LT
1956
1957 /*
1958 * We do this so kswapd doesn't build up large priorities for
1959 * example when it is freeing in parallel with allocators. It
1960 * matches the direct reclaim path behaviour in terms of impact
1961 * on zone->*_priority.
1962 */
a79311c1 1963 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
1964 break;
1965 }
1966out:
3bb1a852
MB
1967 /*
1968 * Note within each zone the priority level at which this zone was
1969 * brought into a happy state. So that the next thread which scans this
1970 * zone will start out at that priority level.
1971 */
1da177e4
LT
1972 for (i = 0; i < pgdat->nr_zones; i++) {
1973 struct zone *zone = pgdat->node_zones + i;
1974
3bb1a852 1975 zone->prev_priority = temp_priority[i];
1da177e4
LT
1976 }
1977 if (!all_zones_ok) {
1978 cond_resched();
8357376d
RW
1979
1980 try_to_freeze();
1981
73ce02e9
KM
1982 /*
1983 * Fragmentation may mean that the system cannot be
1984 * rebalanced for high-order allocations in all zones.
1985 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1986 * it means the zones have been fully scanned and are still
1987 * not balanced. For high-order allocations, there is
1988 * little point trying all over again as kswapd may
1989 * infinite loop.
1990 *
1991 * Instead, recheck all watermarks at order-0 as they
1992 * are the most important. If watermarks are ok, kswapd will go
1993 * back to sleep. High-order users can still perform direct
1994 * reclaim if they wish.
1995 */
1996 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1997 order = sc.order = 0;
1998
1da177e4
LT
1999 goto loop_again;
2000 }
2001
a79311c1 2002 return sc.nr_reclaimed;
1da177e4
LT
2003}
2004
2005/*
2006 * The background pageout daemon, started as a kernel thread
4f98a2fe 2007 * from the init process.
1da177e4
LT
2008 *
2009 * This basically trickles out pages so that we have _some_
2010 * free memory available even if there is no other activity
2011 * that frees anything up. This is needed for things like routing
2012 * etc, where we otherwise might have all activity going on in
2013 * asynchronous contexts that cannot page things out.
2014 *
2015 * If there are applications that are active memory-allocators
2016 * (most normal use), this basically shouldn't matter.
2017 */
2018static int kswapd(void *p)
2019{
2020 unsigned long order;
2021 pg_data_t *pgdat = (pg_data_t*)p;
2022 struct task_struct *tsk = current;
2023 DEFINE_WAIT(wait);
2024 struct reclaim_state reclaim_state = {
2025 .reclaimed_slab = 0,
2026 };
a70f7302 2027 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2028
cf40bd16
NP
2029 lockdep_set_current_reclaim_state(GFP_KERNEL);
2030
174596a0 2031 if (!cpumask_empty(cpumask))
c5f59f08 2032 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2033 current->reclaim_state = &reclaim_state;
2034
2035 /*
2036 * Tell the memory management that we're a "memory allocator",
2037 * and that if we need more memory we should get access to it
2038 * regardless (see "__alloc_pages()"). "kswapd" should
2039 * never get caught in the normal page freeing logic.
2040 *
2041 * (Kswapd normally doesn't need memory anyway, but sometimes
2042 * you need a small amount of memory in order to be able to
2043 * page out something else, and this flag essentially protects
2044 * us from recursively trying to free more memory as we're
2045 * trying to free the first piece of memory in the first place).
2046 */
930d9152 2047 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2048 set_freezable();
1da177e4
LT
2049
2050 order = 0;
2051 for ( ; ; ) {
2052 unsigned long new_order;
3e1d1d28 2053
1da177e4
LT
2054 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2055 new_order = pgdat->kswapd_max_order;
2056 pgdat->kswapd_max_order = 0;
2057 if (order < new_order) {
2058 /*
2059 * Don't sleep if someone wants a larger 'order'
2060 * allocation
2061 */
2062 order = new_order;
2063 } else {
b1296cc4
RW
2064 if (!freezing(current))
2065 schedule();
2066
1da177e4
LT
2067 order = pgdat->kswapd_max_order;
2068 }
2069 finish_wait(&pgdat->kswapd_wait, &wait);
2070
b1296cc4
RW
2071 if (!try_to_freeze()) {
2072 /* We can speed up thawing tasks if we don't call
2073 * balance_pgdat after returning from the refrigerator
2074 */
2075 balance_pgdat(pgdat, order);
2076 }
1da177e4
LT
2077 }
2078 return 0;
2079}
2080
2081/*
2082 * A zone is low on free memory, so wake its kswapd task to service it.
2083 */
2084void wakeup_kswapd(struct zone *zone, int order)
2085{
2086 pg_data_t *pgdat;
2087
f3fe6512 2088 if (!populated_zone(zone))
1da177e4
LT
2089 return;
2090
2091 pgdat = zone->zone_pgdat;
41858966 2092 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
1da177e4
LT
2093 return;
2094 if (pgdat->kswapd_max_order < order)
2095 pgdat->kswapd_max_order = order;
02a0e53d 2096 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2097 return;
8d0986e2 2098 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2099 return;
8d0986e2 2100 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2101}
2102
4f98a2fe
RR
2103unsigned long global_lru_pages(void)
2104{
2105 return global_page_state(NR_ACTIVE_ANON)
2106 + global_page_state(NR_ACTIVE_FILE)
2107 + global_page_state(NR_INACTIVE_ANON)
2108 + global_page_state(NR_INACTIVE_FILE);
2109}
2110
c6f37f12 2111#ifdef CONFIG_HIBERNATION
1da177e4 2112/*
d6277db4 2113 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
d979677c 2114 * from LRU lists system-wide, for given pass and priority.
d6277db4
RW
2115 *
2116 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2117 */
d979677c 2118static void shrink_all_zones(unsigned long nr_pages, int prio,
e07aa05b 2119 int pass, struct scan_control *sc)
d6277db4
RW
2120{
2121 struct zone *zone;
d979677c 2122 unsigned long nr_reclaimed = 0;
d6277db4 2123
ee99c71c 2124 for_each_populated_zone(zone) {
0cb57258 2125 enum lru_list l;
d6277db4 2126
e815af95 2127 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
d6277db4
RW
2128 continue;
2129
894bc310 2130 for_each_evictable_lru(l) {
0cb57258
JW
2131 enum zone_stat_item ls = NR_LRU_BASE + l;
2132 unsigned long lru_pages = zone_page_state(zone, ls);
2133
894bc310 2134 /* For pass = 0, we don't shrink the active list */
0cb57258
JW
2135 if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2136 l == LRU_ACTIVE_FILE))
b69408e8
CL
2137 continue;
2138
6e08a369
WF
2139 zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1;
2140 if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) {
0cb57258
JW
2141 unsigned long nr_to_scan;
2142
6e08a369 2143 zone->lru[l].nr_saved_scan = 0;
0cb57258 2144 nr_to_scan = min(nr_pages, lru_pages);
d979677c 2145 nr_reclaimed += shrink_list(l, nr_to_scan, zone,
b69408e8 2146 sc, prio);
d979677c 2147 if (nr_reclaimed >= nr_pages) {
a21e2553 2148 sc->nr_reclaimed += nr_reclaimed;
d979677c
MK
2149 return;
2150 }
d6277db4
RW
2151 }
2152 }
d6277db4 2153 }
a21e2553 2154 sc->nr_reclaimed += nr_reclaimed;
d6277db4
RW
2155}
2156
2157/*
2158 * Try to free `nr_pages' of memory, system-wide, and return the number of
2159 * freed pages.
2160 *
2161 * Rather than trying to age LRUs the aim is to preserve the overall
2162 * LRU order by reclaiming preferentially
2163 * inactive > active > active referenced > active mapped
1da177e4 2164 */
69e05944 2165unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 2166{
d6277db4 2167 unsigned long lru_pages, nr_slab;
d6277db4
RW
2168 int pass;
2169 struct reclaim_state reclaim_state;
d6277db4
RW
2170 struct scan_control sc = {
2171 .gfp_mask = GFP_KERNEL,
a6dc60f8 2172 .may_unmap = 0,
d6277db4 2173 .may_writepage = 1,
66e1707b 2174 .isolate_pages = isolate_pages_global,
a21e2553 2175 .nr_reclaimed = 0,
1da177e4
LT
2176 };
2177
2178 current->reclaim_state = &reclaim_state;
69e05944 2179
4f98a2fe 2180 lru_pages = global_lru_pages();
972d1a7b 2181 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
2182 /* If slab caches are huge, it's better to hit them first */
2183 while (nr_slab >= lru_pages) {
2184 reclaim_state.reclaimed_slab = 0;
2185 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2186 if (!reclaim_state.reclaimed_slab)
1da177e4 2187 break;
d6277db4 2188
d979677c
MK
2189 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2190 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2191 goto out;
2192
2193 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 2194 }
d6277db4
RW
2195
2196 /*
2197 * We try to shrink LRUs in 5 passes:
2198 * 0 = Reclaim from inactive_list only
2199 * 1 = Reclaim from active list but don't reclaim mapped
2200 * 2 = 2nd pass of type 1
2201 * 3 = Reclaim mapped (normal reclaim)
2202 * 4 = 2nd pass of type 3
2203 */
2204 for (pass = 0; pass < 5; pass++) {
2205 int prio;
2206
d6277db4 2207 /* Force reclaiming mapped pages in the passes #3 and #4 */
3049103d 2208 if (pass > 2)
a6dc60f8 2209 sc.may_unmap = 1;
d6277db4
RW
2210
2211 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
d979677c 2212 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
d6277db4 2213
d6277db4 2214 sc.nr_scanned = 0;
9786bf84 2215 sc.swap_cluster_max = nr_to_scan;
d979677c
MK
2216 shrink_all_zones(nr_to_scan, prio, pass, &sc);
2217 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2218 goto out;
2219
2220 reclaim_state.reclaimed_slab = 0;
76395d37 2221 shrink_slab(sc.nr_scanned, sc.gfp_mask,
4f98a2fe 2222 global_lru_pages());
d979677c
MK
2223 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2224 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2225 goto out;
2226
2227 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
3fcfab16 2228 congestion_wait(WRITE, HZ / 10);
d6277db4 2229 }
248a0301 2230 }
d6277db4
RW
2231
2232 /*
d979677c
MK
2233 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2234 * something in slab caches
d6277db4 2235 */
d979677c 2236 if (!sc.nr_reclaimed) {
d6277db4
RW
2237 do {
2238 reclaim_state.reclaimed_slab = 0;
4f98a2fe 2239 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
d979677c
MK
2240 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2241 } while (sc.nr_reclaimed < nr_pages &&
2242 reclaim_state.reclaimed_slab > 0);
76395d37 2243 }
d6277db4 2244
d979677c 2245
d6277db4 2246out:
1da177e4 2247 current->reclaim_state = NULL;
d6277db4 2248
d979677c 2249 return sc.nr_reclaimed;
1da177e4 2250}
c6f37f12 2251#endif /* CONFIG_HIBERNATION */
1da177e4 2252
1da177e4
LT
2253/* It's optimal to keep kswapds on the same CPUs as their memory, but
2254 not required for correctness. So if the last cpu in a node goes
2255 away, we get changed to run anywhere: as the first one comes back,
2256 restore their cpu bindings. */
9c7b216d 2257static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2258 unsigned long action, void *hcpu)
1da177e4 2259{
58c0a4a7 2260 int nid;
1da177e4 2261
8bb78442 2262 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2263 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2264 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2265 const struct cpumask *mask;
2266
2267 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2268
3e597945 2269 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2270 /* One of our CPUs online: restore mask */
c5f59f08 2271 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2272 }
2273 }
2274 return NOTIFY_OK;
2275}
1da177e4 2276
3218ae14
YG
2277/*
2278 * This kswapd start function will be called by init and node-hot-add.
2279 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2280 */
2281int kswapd_run(int nid)
2282{
2283 pg_data_t *pgdat = NODE_DATA(nid);
2284 int ret = 0;
2285
2286 if (pgdat->kswapd)
2287 return 0;
2288
2289 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2290 if (IS_ERR(pgdat->kswapd)) {
2291 /* failure at boot is fatal */
2292 BUG_ON(system_state == SYSTEM_BOOTING);
2293 printk("Failed to start kswapd on node %d\n",nid);
2294 ret = -1;
2295 }
2296 return ret;
2297}
2298
1da177e4
LT
2299static int __init kswapd_init(void)
2300{
3218ae14 2301 int nid;
69e05944 2302
1da177e4 2303 swap_setup();
9422ffba 2304 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2305 kswapd_run(nid);
1da177e4
LT
2306 hotcpu_notifier(cpu_callback, 0);
2307 return 0;
2308}
2309
2310module_init(kswapd_init)
9eeff239
CL
2311
2312#ifdef CONFIG_NUMA
2313/*
2314 * Zone reclaim mode
2315 *
2316 * If non-zero call zone_reclaim when the number of free pages falls below
2317 * the watermarks.
9eeff239
CL
2318 */
2319int zone_reclaim_mode __read_mostly;
2320
1b2ffb78 2321#define RECLAIM_OFF 0
7d03431c 2322#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2323#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2324#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2325
a92f7126
CL
2326/*
2327 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2328 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2329 * a zone.
2330 */
2331#define ZONE_RECLAIM_PRIORITY 4
2332
9614634f
CL
2333/*
2334 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2335 * occur.
2336 */
2337int sysctl_min_unmapped_ratio = 1;
2338
0ff38490
CL
2339/*
2340 * If the number of slab pages in a zone grows beyond this percentage then
2341 * slab reclaim needs to occur.
2342 */
2343int sysctl_min_slab_ratio = 5;
2344
9eeff239
CL
2345/*
2346 * Try to free up some pages from this zone through reclaim.
2347 */
179e9639 2348static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2349{
7fb2d46d 2350 /* Minimum pages needed in order to stay on node */
69e05944 2351 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2352 struct task_struct *p = current;
2353 struct reclaim_state reclaim_state;
8695949a 2354 int priority;
179e9639
AM
2355 struct scan_control sc = {
2356 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2357 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 2358 .may_swap = 1,
69e05944
AM
2359 .swap_cluster_max = max_t(unsigned long, nr_pages,
2360 SWAP_CLUSTER_MAX),
179e9639 2361 .gfp_mask = gfp_mask,
d6277db4 2362 .swappiness = vm_swappiness,
bd2f6199 2363 .order = order,
66e1707b 2364 .isolate_pages = isolate_pages_global,
179e9639 2365 };
83e33a47 2366 unsigned long slab_reclaimable;
9eeff239
CL
2367
2368 disable_swap_token();
9eeff239 2369 cond_resched();
d4f7796e
CL
2370 /*
2371 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2372 * and we also need to be able to write out pages for RECLAIM_WRITE
2373 * and RECLAIM_SWAP.
2374 */
2375 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2376 reclaim_state.reclaimed_slab = 0;
2377 p->reclaim_state = &reclaim_state;
c84db23c 2378
0ff38490
CL
2379 if (zone_page_state(zone, NR_FILE_PAGES) -
2380 zone_page_state(zone, NR_FILE_MAPPED) >
2381 zone->min_unmapped_pages) {
2382 /*
2383 * Free memory by calling shrink zone with increasing
2384 * priorities until we have enough memory freed.
2385 */
2386 priority = ZONE_RECLAIM_PRIORITY;
2387 do {
3bb1a852 2388 note_zone_scanning_priority(zone, priority);
a79311c1 2389 shrink_zone(priority, zone, &sc);
0ff38490 2390 priority--;
a79311c1 2391 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2392 }
c84db23c 2393
83e33a47
CL
2394 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2395 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2396 /*
7fb2d46d 2397 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2398 * many pages were freed in this zone. So we take the current
2399 * number of slab pages and shake the slab until it is reduced
2400 * by the same nr_pages that we used for reclaiming unmapped
2401 * pages.
2a16e3f4 2402 *
0ff38490
CL
2403 * Note that shrink_slab will free memory on all zones and may
2404 * take a long time.
2a16e3f4 2405 */
0ff38490 2406 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2407 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2408 slab_reclaimable - nr_pages)
0ff38490 2409 ;
83e33a47
CL
2410
2411 /*
2412 * Update nr_reclaimed by the number of slab pages we
2413 * reclaimed from this zone.
2414 */
a79311c1 2415 sc.nr_reclaimed += slab_reclaimable -
83e33a47 2416 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2417 }
2418
9eeff239 2419 p->reclaim_state = NULL;
d4f7796e 2420 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
a79311c1 2421 return sc.nr_reclaimed >= nr_pages;
9eeff239 2422}
179e9639
AM
2423
2424int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2425{
179e9639 2426 int node_id;
d773ed6b 2427 int ret;
179e9639
AM
2428
2429 /*
0ff38490
CL
2430 * Zone reclaim reclaims unmapped file backed pages and
2431 * slab pages if we are over the defined limits.
34aa1330 2432 *
9614634f
CL
2433 * A small portion of unmapped file backed pages is needed for
2434 * file I/O otherwise pages read by file I/O will be immediately
2435 * thrown out if the zone is overallocated. So we do not reclaim
2436 * if less than a specified percentage of the zone is used by
2437 * unmapped file backed pages.
179e9639 2438 */
34aa1330 2439 if (zone_page_state(zone, NR_FILE_PAGES) -
0ff38490
CL
2440 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2441 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2442 <= zone->min_slab_pages)
9614634f 2443 return 0;
179e9639 2444
d773ed6b
DR
2445 if (zone_is_all_unreclaimable(zone))
2446 return 0;
2447
179e9639 2448 /*
d773ed6b 2449 * Do not scan if the allocation should not be delayed.
179e9639 2450 */
d773ed6b 2451 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
179e9639
AM
2452 return 0;
2453
2454 /*
2455 * Only run zone reclaim on the local zone or on zones that do not
2456 * have associated processors. This will favor the local processor
2457 * over remote processors and spread off node memory allocations
2458 * as wide as possible.
2459 */
89fa3024 2460 node_id = zone_to_nid(zone);
37c0708d 2461 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
179e9639 2462 return 0;
d773ed6b
DR
2463
2464 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2465 return 0;
2466 ret = __zone_reclaim(zone, gfp_mask, order);
2467 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2468
2469 return ret;
179e9639 2470}
9eeff239 2471#endif
894bc310
LS
2472
2473#ifdef CONFIG_UNEVICTABLE_LRU
2474/*
2475 * page_evictable - test whether a page is evictable
2476 * @page: the page to test
2477 * @vma: the VMA in which the page is or will be mapped, may be NULL
2478 *
2479 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2480 * lists vs unevictable list. The vma argument is !NULL when called from the
2481 * fault path to determine how to instantate a new page.
894bc310
LS
2482 *
2483 * Reasons page might not be evictable:
ba9ddf49 2484 * (1) page's mapping marked unevictable
b291f000 2485 * (2) page is part of an mlocked VMA
ba9ddf49 2486 *
894bc310
LS
2487 */
2488int page_evictable(struct page *page, struct vm_area_struct *vma)
2489{
2490
ba9ddf49
LS
2491 if (mapping_unevictable(page_mapping(page)))
2492 return 0;
2493
b291f000
NP
2494 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2495 return 0;
894bc310
LS
2496
2497 return 1;
2498}
89e004ea
LS
2499
2500/**
2501 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2502 * @page: page to check evictability and move to appropriate lru list
2503 * @zone: zone page is in
2504 *
2505 * Checks a page for evictability and moves the page to the appropriate
2506 * zone lru list.
2507 *
2508 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2509 * have PageUnevictable set.
2510 */
2511static void check_move_unevictable_page(struct page *page, struct zone *zone)
2512{
2513 VM_BUG_ON(PageActive(page));
2514
2515retry:
2516 ClearPageUnevictable(page);
2517 if (page_evictable(page, NULL)) {
2518 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
af936a16 2519
89e004ea
LS
2520 __dec_zone_state(zone, NR_UNEVICTABLE);
2521 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2522 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2523 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2524 __count_vm_event(UNEVICTABLE_PGRESCUED);
2525 } else {
2526 /*
2527 * rotate unevictable list
2528 */
2529 SetPageUnevictable(page);
2530 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2531 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2532 if (page_evictable(page, NULL))
2533 goto retry;
2534 }
2535}
2536
2537/**
2538 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2539 * @mapping: struct address_space to scan for evictable pages
2540 *
2541 * Scan all pages in mapping. Check unevictable pages for
2542 * evictability and move them to the appropriate zone lru list.
2543 */
2544void scan_mapping_unevictable_pages(struct address_space *mapping)
2545{
2546 pgoff_t next = 0;
2547 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2548 PAGE_CACHE_SHIFT;
2549 struct zone *zone;
2550 struct pagevec pvec;
2551
2552 if (mapping->nrpages == 0)
2553 return;
2554
2555 pagevec_init(&pvec, 0);
2556 while (next < end &&
2557 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2558 int i;
2559 int pg_scanned = 0;
2560
2561 zone = NULL;
2562
2563 for (i = 0; i < pagevec_count(&pvec); i++) {
2564 struct page *page = pvec.pages[i];
2565 pgoff_t page_index = page->index;
2566 struct zone *pagezone = page_zone(page);
2567
2568 pg_scanned++;
2569 if (page_index > next)
2570 next = page_index;
2571 next++;
2572
2573 if (pagezone != zone) {
2574 if (zone)
2575 spin_unlock_irq(&zone->lru_lock);
2576 zone = pagezone;
2577 spin_lock_irq(&zone->lru_lock);
2578 }
2579
2580 if (PageLRU(page) && PageUnevictable(page))
2581 check_move_unevictable_page(page, zone);
2582 }
2583 if (zone)
2584 spin_unlock_irq(&zone->lru_lock);
2585 pagevec_release(&pvec);
2586
2587 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2588 }
2589
2590}
af936a16
LS
2591
2592/**
2593 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2594 * @zone - zone of which to scan the unevictable list
2595 *
2596 * Scan @zone's unevictable LRU lists to check for pages that have become
2597 * evictable. Move those that have to @zone's inactive list where they
2598 * become candidates for reclaim, unless shrink_inactive_zone() decides
2599 * to reactivate them. Pages that are still unevictable are rotated
2600 * back onto @zone's unevictable list.
2601 */
2602#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2603static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2604{
2605 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2606 unsigned long scan;
2607 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2608
2609 while (nr_to_scan > 0) {
2610 unsigned long batch_size = min(nr_to_scan,
2611 SCAN_UNEVICTABLE_BATCH_SIZE);
2612
2613 spin_lock_irq(&zone->lru_lock);
2614 for (scan = 0; scan < batch_size; scan++) {
2615 struct page *page = lru_to_page(l_unevictable);
2616
2617 if (!trylock_page(page))
2618 continue;
2619
2620 prefetchw_prev_lru_page(page, l_unevictable, flags);
2621
2622 if (likely(PageLRU(page) && PageUnevictable(page)))
2623 check_move_unevictable_page(page, zone);
2624
2625 unlock_page(page);
2626 }
2627 spin_unlock_irq(&zone->lru_lock);
2628
2629 nr_to_scan -= batch_size;
2630 }
2631}
2632
2633
2634/**
2635 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2636 *
2637 * A really big hammer: scan all zones' unevictable LRU lists to check for
2638 * pages that have become evictable. Move those back to the zones'
2639 * inactive list where they become candidates for reclaim.
2640 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2641 * and we add swap to the system. As such, it runs in the context of a task
2642 * that has possibly/probably made some previously unevictable pages
2643 * evictable.
2644 */
ff30153b 2645static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2646{
2647 struct zone *zone;
2648
2649 for_each_zone(zone) {
2650 scan_zone_unevictable_pages(zone);
2651 }
2652}
2653
2654/*
2655 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2656 * all nodes' unevictable lists for evictable pages
2657 */
2658unsigned long scan_unevictable_pages;
2659
2660int scan_unevictable_handler(struct ctl_table *table, int write,
2661 struct file *file, void __user *buffer,
2662 size_t *length, loff_t *ppos)
2663{
2664 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2665
2666 if (write && *(unsigned long *)table->data)
2667 scan_all_zones_unevictable_pages();
2668
2669 scan_unevictable_pages = 0;
2670 return 0;
2671}
2672
2673/*
2674 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2675 * a specified node's per zone unevictable lists for evictable pages.
2676 */
2677
2678static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2679 struct sysdev_attribute *attr,
2680 char *buf)
2681{
2682 return sprintf(buf, "0\n"); /* always zero; should fit... */
2683}
2684
2685static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2686 struct sysdev_attribute *attr,
2687 const char *buf, size_t count)
2688{
2689 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2690 struct zone *zone;
2691 unsigned long res;
2692 unsigned long req = strict_strtoul(buf, 10, &res);
2693
2694 if (!req)
2695 return 1; /* zero is no-op */
2696
2697 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2698 if (!populated_zone(zone))
2699 continue;
2700 scan_zone_unevictable_pages(zone);
2701 }
2702 return 1;
2703}
2704
2705
2706static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2707 read_scan_unevictable_node,
2708 write_scan_unevictable_node);
2709
2710int scan_unevictable_register_node(struct node *node)
2711{
2712 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2713}
2714
2715void scan_unevictable_unregister_node(struct node *node)
2716{
2717 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2718}
2719
894bc310 2720#endif