]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
mm: change isolate mode from #define to bitwise type
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
ee64fc93 57/*
f3a310bc
MG
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
ee64fc93
MG
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
f3a310bc 65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
3e7d3449 66 * order-0 pages and then compact the zone
ee64fc93 67 */
f3a310bc
MG
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
7d3579e8 74
1da177e4 75struct scan_control {
1da177e4
LT
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
a79311c1
RR
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
22fba335
KM
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
7b51755c
KM
85 unsigned long hibernation_mode;
86
1da177e4 87 /* This context's GFP mask */
6daa0e28 88 gfp_t gfp_mask;
1da177e4
LT
89
90 int may_writepage;
91
a6dc60f8
JW
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
f1fd1067 94
2e2e4259
KM
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
5ad333eb 98 int order;
66e1707b 99
5f53e762 100 /*
415b54e3
NK
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
5f53e762 103 */
f3a310bc 104 reclaim_mode_t reclaim_mode;
5f53e762 105
66e1707b
BS
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup *mem_cgroup;
108
327c0e96
KH
109 /*
110 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111 * are scanned.
112 */
113 nodemask_t *nodemask;
1da177e4
LT
114};
115
1da177e4
LT
116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118#ifdef ARCH_HAS_PREFETCH
119#define prefetch_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetch(&prev->_field); \
126 } \
127 } while (0)
128#else
129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132#ifdef ARCH_HAS_PREFETCHW
133#define prefetchw_prev_lru_page(_page, _base, _field) \
134 do { \
135 if ((_page)->lru.prev != _base) { \
136 struct page *prev; \
137 \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetchw(&prev->_field); \
140 } \
141 } while (0)
142#else
143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144#endif
145
146/*
147 * From 0 .. 100. Higher means more swappy.
148 */
149int vm_swappiness = 60;
bd1e22b8 150long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
151
152static LIST_HEAD(shrinker_list);
153static DECLARE_RWSEM(shrinker_rwsem);
154
00f0b825 155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 156#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 157#else
e72e2bd6 158#define scanning_global_lru(sc) (1)
91a45470
KH
159#endif
160
6e901571
KM
161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162 struct scan_control *sc)
163{
e72e2bd6 164 if (!scanning_global_lru(sc))
3e2f41f1
KM
165 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
6e901571
KM
167 return &zone->reclaim_stat;
168}
169
0b217676
VL
170static unsigned long zone_nr_lru_pages(struct zone *zone,
171 struct scan_control *sc, enum lru_list lru)
c9f299d9 172{
e72e2bd6 173 if (!scanning_global_lru(sc))
bb2a0de9
KH
174 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175 zone_to_nid(zone), zone_idx(zone), BIT(lru));
a3d8e054 176
c9f299d9
KM
177 return zone_page_state(zone, NR_LRU_BASE + lru);
178}
179
180
1da177e4
LT
181/*
182 * Add a shrinker callback to be called from the vm
183 */
8e1f936b 184void register_shrinker(struct shrinker *shrinker)
1da177e4 185{
8e1f936b
RR
186 shrinker->nr = 0;
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
1da177e4 190}
8e1f936b 191EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
192
193/*
194 * Remove one
195 */
8e1f936b 196void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
197{
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
1da177e4 201}
8e1f936b 202EXPORT_SYMBOL(unregister_shrinker);
1da177e4 203
1495f230
YH
204static inline int do_shrinker_shrink(struct shrinker *shrinker,
205 struct shrink_control *sc,
206 unsigned long nr_to_scan)
207{
208 sc->nr_to_scan = nr_to_scan;
209 return (*shrinker->shrink)(shrinker, sc);
210}
211
1da177e4
LT
212#define SHRINK_BATCH 128
213/*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object. With this in mind we age equal
218 * percentages of the lru and ageable caches. This should balance the seeks
219 * generated by these structures.
220 *
183ff22b 221 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt. It is used for balancing
228 * slab reclaim versus page reclaim.
b15e0905 229 *
230 * Returns the number of slab objects which we shrunk.
1da177e4 231 */
a09ed5e0 232unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 233 unsigned long nr_pages_scanned,
a09ed5e0 234 unsigned long lru_pages)
1da177e4
LT
235{
236 struct shrinker *shrinker;
69e05944 237 unsigned long ret = 0;
1da177e4 238
1495f230
YH
239 if (nr_pages_scanned == 0)
240 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 241
f06590bd
MK
242 if (!down_read_trylock(&shrinker_rwsem)) {
243 /* Assume we'll be able to shrink next time */
244 ret = 1;
245 goto out;
246 }
1da177e4
LT
247
248 list_for_each_entry(shrinker, &shrinker_list, list) {
249 unsigned long long delta;
250 unsigned long total_scan;
7f8275d0 251 unsigned long max_pass;
09576073 252 int shrink_ret = 0;
acf92b48
DC
253 long nr;
254 long new_nr;
e9299f50
DC
255 long batch_size = shrinker->batch ? shrinker->batch
256 : SHRINK_BATCH;
1da177e4 257
acf92b48
DC
258 /*
259 * copy the current shrinker scan count into a local variable
260 * and zero it so that other concurrent shrinker invocations
261 * don't also do this scanning work.
262 */
263 do {
264 nr = shrinker->nr;
265 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267 total_scan = nr;
1495f230
YH
268 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 270 delta *= max_pass;
1da177e4 271 do_div(delta, lru_pages + 1);
acf92b48
DC
272 total_scan += delta;
273 if (total_scan < 0) {
88c3bd70
DR
274 printk(KERN_ERR "shrink_slab: %pF negative objects to "
275 "delete nr=%ld\n",
acf92b48
DC
276 shrinker->shrink, total_scan);
277 total_scan = max_pass;
ea164d73
AA
278 }
279
3567b59a
DC
280 /*
281 * We need to avoid excessive windup on filesystem shrinkers
282 * due to large numbers of GFP_NOFS allocations causing the
283 * shrinkers to return -1 all the time. This results in a large
284 * nr being built up so when a shrink that can do some work
285 * comes along it empties the entire cache due to nr >>>
286 * max_pass. This is bad for sustaining a working set in
287 * memory.
288 *
289 * Hence only allow the shrinker to scan the entire cache when
290 * a large delta change is calculated directly.
291 */
292 if (delta < max_pass / 4)
293 total_scan = min(total_scan, max_pass / 2);
294
ea164d73
AA
295 /*
296 * Avoid risking looping forever due to too large nr value:
297 * never try to free more than twice the estimate number of
298 * freeable entries.
299 */
acf92b48
DC
300 if (total_scan > max_pass * 2)
301 total_scan = max_pass * 2;
1da177e4 302
acf92b48 303 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
304 nr_pages_scanned, lru_pages,
305 max_pass, delta, total_scan);
306
e9299f50 307 while (total_scan >= batch_size) {
b15e0905 308 int nr_before;
1da177e4 309
1495f230
YH
310 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 312 batch_size);
1da177e4
LT
313 if (shrink_ret == -1)
314 break;
b15e0905 315 if (shrink_ret < nr_before)
316 ret += nr_before - shrink_ret;
e9299f50
DC
317 count_vm_events(SLABS_SCANNED, batch_size);
318 total_scan -= batch_size;
1da177e4
LT
319
320 cond_resched();
321 }
322
acf92b48
DC
323 /*
324 * move the unused scan count back into the shrinker in a
325 * manner that handles concurrent updates. If we exhausted the
326 * scan, there is no need to do an update.
327 */
328 do {
329 nr = shrinker->nr;
330 new_nr = total_scan + nr;
331 if (total_scan <= 0)
332 break;
333 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
336 }
337 up_read(&shrinker_rwsem);
f06590bd
MK
338out:
339 cond_resched();
b15e0905 340 return ret;
1da177e4
LT
341}
342
f3a310bc 343static void set_reclaim_mode(int priority, struct scan_control *sc,
7d3579e8
KM
344 bool sync)
345{
f3a310bc 346 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
7d3579e8
KM
347
348 /*
3e7d3449
MG
349 * Initially assume we are entering either lumpy reclaim or
350 * reclaim/compaction.Depending on the order, we will either set the
351 * sync mode or just reclaim order-0 pages later.
7d3579e8 352 */
3e7d3449 353 if (COMPACTION_BUILD)
f3a310bc 354 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
3e7d3449 355 else
f3a310bc 356 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
7d3579e8
KM
357
358 /*
3e7d3449
MG
359 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360 * restricting when its set to either costly allocations or when
361 * under memory pressure
7d3579e8
KM
362 */
363 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
f3a310bc 364 sc->reclaim_mode |= syncmode;
7d3579e8 365 else if (sc->order && priority < DEF_PRIORITY - 2)
f3a310bc 366 sc->reclaim_mode |= syncmode;
7d3579e8 367 else
f3a310bc 368 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
369}
370
f3a310bc 371static void reset_reclaim_mode(struct scan_control *sc)
7d3579e8 372{
f3a310bc 373 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
374}
375
1da177e4
LT
376static inline int is_page_cache_freeable(struct page *page)
377{
ceddc3a5
JW
378 /*
379 * A freeable page cache page is referenced only by the caller
380 * that isolated the page, the page cache radix tree and
381 * optional buffer heads at page->private.
382 */
edcf4748 383 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
384}
385
7d3579e8
KM
386static int may_write_to_queue(struct backing_dev_info *bdi,
387 struct scan_control *sc)
1da177e4 388{
930d9152 389 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
390 return 1;
391 if (!bdi_write_congested(bdi))
392 return 1;
393 if (bdi == current->backing_dev_info)
394 return 1;
7d3579e8
KM
395
396 /* lumpy reclaim for hugepage often need a lot of write */
397 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398 return 1;
1da177e4
LT
399 return 0;
400}
401
402/*
403 * We detected a synchronous write error writing a page out. Probably
404 * -ENOSPC. We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
406 *
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up. But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
410 *
411 * We're allowed to run sleeping lock_page() here because we know the caller has
412 * __GFP_FS.
413 */
414static void handle_write_error(struct address_space *mapping,
415 struct page *page, int error)
416{
7eaceacc 417 lock_page(page);
3e9f45bd
GC
418 if (page_mapping(page) == mapping)
419 mapping_set_error(mapping, error);
1da177e4
LT
420 unlock_page(page);
421}
422
04e62a29
CL
423/* possible outcome of pageout() */
424typedef enum {
425 /* failed to write page out, page is locked */
426 PAGE_KEEP,
427 /* move page to the active list, page is locked */
428 PAGE_ACTIVATE,
429 /* page has been sent to the disk successfully, page is unlocked */
430 PAGE_SUCCESS,
431 /* page is clean and locked */
432 PAGE_CLEAN,
433} pageout_t;
434
1da177e4 435/*
1742f19f
AM
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
1da177e4 438 */
c661b078 439static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 440 struct scan_control *sc)
1da177e4
LT
441{
442 /*
443 * If the page is dirty, only perform writeback if that write
444 * will be non-blocking. To prevent this allocation from being
445 * stalled by pagecache activity. But note that there may be
446 * stalls if we need to run get_block(). We could test
447 * PagePrivate for that.
448 *
6aceb53b 449 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
450 * this page's queue, we can perform writeback even if that
451 * will block.
452 *
453 * If the page is swapcache, write it back even if that would
454 * block, for some throttling. This happens by accident, because
455 * swap_backing_dev_info is bust: it doesn't reflect the
456 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
457 */
458 if (!is_page_cache_freeable(page))
459 return PAGE_KEEP;
460 if (!mapping) {
461 /*
462 * Some data journaling orphaned pages can have
463 * page->mapping == NULL while being dirty with clean buffers.
464 */
266cf658 465 if (page_has_private(page)) {
1da177e4
LT
466 if (try_to_free_buffers(page)) {
467 ClearPageDirty(page);
d40cee24 468 printk("%s: orphaned page\n", __func__);
1da177e4
LT
469 return PAGE_CLEAN;
470 }
471 }
472 return PAGE_KEEP;
473 }
474 if (mapping->a_ops->writepage == NULL)
475 return PAGE_ACTIVATE;
0e093d99 476 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
477 return PAGE_KEEP;
478
479 if (clear_page_dirty_for_io(page)) {
480 int res;
481 struct writeback_control wbc = {
482 .sync_mode = WB_SYNC_NONE,
483 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
484 .range_start = 0,
485 .range_end = LLONG_MAX,
1da177e4
LT
486 .for_reclaim = 1,
487 };
488
489 SetPageReclaim(page);
490 res = mapping->a_ops->writepage(page, &wbc);
491 if (res < 0)
492 handle_write_error(mapping, page, res);
994fc28c 493 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
494 ClearPageReclaim(page);
495 return PAGE_ACTIVATE;
496 }
c661b078
AW
497
498 /*
499 * Wait on writeback if requested to. This happens when
500 * direct reclaiming a large contiguous area and the
501 * first attempt to free a range of pages fails.
502 */
7d3579e8 503 if (PageWriteback(page) &&
f3a310bc 504 (sc->reclaim_mode & RECLAIM_MODE_SYNC))
c661b078
AW
505 wait_on_page_writeback(page);
506
1da177e4
LT
507 if (!PageWriteback(page)) {
508 /* synchronous write or broken a_ops? */
509 ClearPageReclaim(page);
510 }
755f0225 511 trace_mm_vmscan_writepage(page,
f3a310bc 512 trace_reclaim_flags(page, sc->reclaim_mode));
e129b5c2 513 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
514 return PAGE_SUCCESS;
515 }
516
517 return PAGE_CLEAN;
518}
519
a649fd92 520/*
e286781d
NP
521 * Same as remove_mapping, but if the page is removed from the mapping, it
522 * gets returned with a refcount of 0.
a649fd92 523 */
e286781d 524static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 525{
28e4d965
NP
526 BUG_ON(!PageLocked(page));
527 BUG_ON(mapping != page_mapping(page));
49d2e9cc 528
19fd6231 529 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 530 /*
0fd0e6b0
NP
531 * The non racy check for a busy page.
532 *
533 * Must be careful with the order of the tests. When someone has
534 * a ref to the page, it may be possible that they dirty it then
535 * drop the reference. So if PageDirty is tested before page_count
536 * here, then the following race may occur:
537 *
538 * get_user_pages(&page);
539 * [user mapping goes away]
540 * write_to(page);
541 * !PageDirty(page) [good]
542 * SetPageDirty(page);
543 * put_page(page);
544 * !page_count(page) [good, discard it]
545 *
546 * [oops, our write_to data is lost]
547 *
548 * Reversing the order of the tests ensures such a situation cannot
549 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
550 * load is not satisfied before that of page->_count.
551 *
552 * Note that if SetPageDirty is always performed via set_page_dirty,
553 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 554 */
e286781d 555 if (!page_freeze_refs(page, 2))
49d2e9cc 556 goto cannot_free;
e286781d
NP
557 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
558 if (unlikely(PageDirty(page))) {
559 page_unfreeze_refs(page, 2);
49d2e9cc 560 goto cannot_free;
e286781d 561 }
49d2e9cc
CL
562
563 if (PageSwapCache(page)) {
564 swp_entry_t swap = { .val = page_private(page) };
565 __delete_from_swap_cache(page);
19fd6231 566 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 567 swapcache_free(swap, page);
e286781d 568 } else {
6072d13c
LT
569 void (*freepage)(struct page *);
570
571 freepage = mapping->a_ops->freepage;
572
e64a782f 573 __delete_from_page_cache(page);
19fd6231 574 spin_unlock_irq(&mapping->tree_lock);
e767e056 575 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
576
577 if (freepage != NULL)
578 freepage(page);
49d2e9cc
CL
579 }
580
49d2e9cc
CL
581 return 1;
582
583cannot_free:
19fd6231 584 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
585 return 0;
586}
587
e286781d
NP
588/*
589 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
590 * someone else has a ref on the page, abort and return 0. If it was
591 * successfully detached, return 1. Assumes the caller has a single ref on
592 * this page.
593 */
594int remove_mapping(struct address_space *mapping, struct page *page)
595{
596 if (__remove_mapping(mapping, page)) {
597 /*
598 * Unfreezing the refcount with 1 rather than 2 effectively
599 * drops the pagecache ref for us without requiring another
600 * atomic operation.
601 */
602 page_unfreeze_refs(page, 1);
603 return 1;
604 }
605 return 0;
606}
607
894bc310
LS
608/**
609 * putback_lru_page - put previously isolated page onto appropriate LRU list
610 * @page: page to be put back to appropriate lru list
611 *
612 * Add previously isolated @page to appropriate LRU list.
613 * Page may still be unevictable for other reasons.
614 *
615 * lru_lock must not be held, interrupts must be enabled.
616 */
894bc310
LS
617void putback_lru_page(struct page *page)
618{
619 int lru;
620 int active = !!TestClearPageActive(page);
bbfd28ee 621 int was_unevictable = PageUnevictable(page);
894bc310
LS
622
623 VM_BUG_ON(PageLRU(page));
624
625redo:
626 ClearPageUnevictable(page);
627
628 if (page_evictable(page, NULL)) {
629 /*
630 * For evictable pages, we can use the cache.
631 * In event of a race, worst case is we end up with an
632 * unevictable page on [in]active list.
633 * We know how to handle that.
634 */
401a8e1c 635 lru = active + page_lru_base_type(page);
894bc310
LS
636 lru_cache_add_lru(page, lru);
637 } else {
638 /*
639 * Put unevictable pages directly on zone's unevictable
640 * list.
641 */
642 lru = LRU_UNEVICTABLE;
643 add_page_to_unevictable_list(page);
6a7b9548
JW
644 /*
645 * When racing with an mlock clearing (page is
646 * unlocked), make sure that if the other thread does
647 * not observe our setting of PG_lru and fails
648 * isolation, we see PG_mlocked cleared below and move
649 * the page back to the evictable list.
650 *
651 * The other side is TestClearPageMlocked().
652 */
653 smp_mb();
894bc310 654 }
894bc310
LS
655
656 /*
657 * page's status can change while we move it among lru. If an evictable
658 * page is on unevictable list, it never be freed. To avoid that,
659 * check after we added it to the list, again.
660 */
661 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
662 if (!isolate_lru_page(page)) {
663 put_page(page);
664 goto redo;
665 }
666 /* This means someone else dropped this page from LRU
667 * So, it will be freed or putback to LRU again. There is
668 * nothing to do here.
669 */
670 }
671
bbfd28ee
LS
672 if (was_unevictable && lru != LRU_UNEVICTABLE)
673 count_vm_event(UNEVICTABLE_PGRESCUED);
674 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
675 count_vm_event(UNEVICTABLE_PGCULLED);
676
894bc310
LS
677 put_page(page); /* drop ref from isolate */
678}
679
dfc8d636
JW
680enum page_references {
681 PAGEREF_RECLAIM,
682 PAGEREF_RECLAIM_CLEAN,
64574746 683 PAGEREF_KEEP,
dfc8d636
JW
684 PAGEREF_ACTIVATE,
685};
686
687static enum page_references page_check_references(struct page *page,
688 struct scan_control *sc)
689{
64574746 690 int referenced_ptes, referenced_page;
dfc8d636 691 unsigned long vm_flags;
dfc8d636 692
64574746
JW
693 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
694 referenced_page = TestClearPageReferenced(page);
dfc8d636
JW
695
696 /* Lumpy reclaim - ignore references */
f3a310bc 697 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
dfc8d636
JW
698 return PAGEREF_RECLAIM;
699
700 /*
701 * Mlock lost the isolation race with us. Let try_to_unmap()
702 * move the page to the unevictable list.
703 */
704 if (vm_flags & VM_LOCKED)
705 return PAGEREF_RECLAIM;
706
64574746
JW
707 if (referenced_ptes) {
708 if (PageAnon(page))
709 return PAGEREF_ACTIVATE;
710 /*
711 * All mapped pages start out with page table
712 * references from the instantiating fault, so we need
713 * to look twice if a mapped file page is used more
714 * than once.
715 *
716 * Mark it and spare it for another trip around the
717 * inactive list. Another page table reference will
718 * lead to its activation.
719 *
720 * Note: the mark is set for activated pages as well
721 * so that recently deactivated but used pages are
722 * quickly recovered.
723 */
724 SetPageReferenced(page);
725
726 if (referenced_page)
727 return PAGEREF_ACTIVATE;
728
729 return PAGEREF_KEEP;
730 }
dfc8d636
JW
731
732 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 733 if (referenced_page && !PageSwapBacked(page))
64574746
JW
734 return PAGEREF_RECLAIM_CLEAN;
735
736 return PAGEREF_RECLAIM;
dfc8d636
JW
737}
738
abe4c3b5
MG
739static noinline_for_stack void free_page_list(struct list_head *free_pages)
740{
741 struct pagevec freed_pvec;
742 struct page *page, *tmp;
743
744 pagevec_init(&freed_pvec, 1);
745
746 list_for_each_entry_safe(page, tmp, free_pages, lru) {
747 list_del(&page->lru);
748 if (!pagevec_add(&freed_pvec, page)) {
749 __pagevec_free(&freed_pvec);
750 pagevec_reinit(&freed_pvec);
751 }
752 }
753
754 pagevec_free(&freed_pvec);
755}
756
1da177e4 757/*
1742f19f 758 * shrink_page_list() returns the number of reclaimed pages
1da177e4 759 */
1742f19f 760static unsigned long shrink_page_list(struct list_head *page_list,
0e093d99 761 struct zone *zone,
7d3579e8 762 struct scan_control *sc)
1da177e4
LT
763{
764 LIST_HEAD(ret_pages);
abe4c3b5 765 LIST_HEAD(free_pages);
1da177e4 766 int pgactivate = 0;
0e093d99
MG
767 unsigned long nr_dirty = 0;
768 unsigned long nr_congested = 0;
05ff5137 769 unsigned long nr_reclaimed = 0;
1da177e4
LT
770
771 cond_resched();
772
1da177e4 773 while (!list_empty(page_list)) {
dfc8d636 774 enum page_references references;
1da177e4
LT
775 struct address_space *mapping;
776 struct page *page;
777 int may_enter_fs;
1da177e4
LT
778
779 cond_resched();
780
781 page = lru_to_page(page_list);
782 list_del(&page->lru);
783
529ae9aa 784 if (!trylock_page(page))
1da177e4
LT
785 goto keep;
786
725d704e 787 VM_BUG_ON(PageActive(page));
0e093d99 788 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
789
790 sc->nr_scanned++;
80e43426 791
b291f000
NP
792 if (unlikely(!page_evictable(page, NULL)))
793 goto cull_mlocked;
894bc310 794
a6dc60f8 795 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
796 goto keep_locked;
797
1da177e4
LT
798 /* Double the slab pressure for mapped and swapcache pages */
799 if (page_mapped(page) || PageSwapCache(page))
800 sc->nr_scanned++;
801
c661b078
AW
802 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
803 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
804
805 if (PageWriteback(page)) {
806 /*
807 * Synchronous reclaim is performed in two passes,
808 * first an asynchronous pass over the list to
809 * start parallel writeback, and a second synchronous
810 * pass to wait for the IO to complete. Wait here
811 * for any page for which writeback has already
812 * started.
813 */
f3a310bc 814 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
7d3579e8 815 may_enter_fs)
c661b078 816 wait_on_page_writeback(page);
7d3579e8
KM
817 else {
818 unlock_page(page);
819 goto keep_lumpy;
820 }
c661b078 821 }
1da177e4 822
dfc8d636
JW
823 references = page_check_references(page, sc);
824 switch (references) {
825 case PAGEREF_ACTIVATE:
1da177e4 826 goto activate_locked;
64574746
JW
827 case PAGEREF_KEEP:
828 goto keep_locked;
dfc8d636
JW
829 case PAGEREF_RECLAIM:
830 case PAGEREF_RECLAIM_CLEAN:
831 ; /* try to reclaim the page below */
832 }
1da177e4 833
1da177e4
LT
834 /*
835 * Anonymous process memory has backing store?
836 * Try to allocate it some swap space here.
837 */
b291f000 838 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
839 if (!(sc->gfp_mask & __GFP_IO))
840 goto keep_locked;
ac47b003 841 if (!add_to_swap(page))
1da177e4 842 goto activate_locked;
63eb6b93 843 may_enter_fs = 1;
b291f000 844 }
1da177e4
LT
845
846 mapping = page_mapping(page);
1da177e4
LT
847
848 /*
849 * The page is mapped into the page tables of one or more
850 * processes. Try to unmap it here.
851 */
852 if (page_mapped(page) && mapping) {
14fa31b8 853 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
854 case SWAP_FAIL:
855 goto activate_locked;
856 case SWAP_AGAIN:
857 goto keep_locked;
b291f000
NP
858 case SWAP_MLOCK:
859 goto cull_mlocked;
1da177e4
LT
860 case SWAP_SUCCESS:
861 ; /* try to free the page below */
862 }
863 }
864
865 if (PageDirty(page)) {
0e093d99
MG
866 nr_dirty++;
867
dfc8d636 868 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 869 goto keep_locked;
4dd4b920 870 if (!may_enter_fs)
1da177e4 871 goto keep_locked;
52a8363e 872 if (!sc->may_writepage)
1da177e4
LT
873 goto keep_locked;
874
875 /* Page is dirty, try to write it out here */
7d3579e8 876 switch (pageout(page, mapping, sc)) {
1da177e4 877 case PAGE_KEEP:
0e093d99 878 nr_congested++;
1da177e4
LT
879 goto keep_locked;
880 case PAGE_ACTIVATE:
881 goto activate_locked;
882 case PAGE_SUCCESS:
7d3579e8
KM
883 if (PageWriteback(page))
884 goto keep_lumpy;
885 if (PageDirty(page))
1da177e4 886 goto keep;
7d3579e8 887
1da177e4
LT
888 /*
889 * A synchronous write - probably a ramdisk. Go
890 * ahead and try to reclaim the page.
891 */
529ae9aa 892 if (!trylock_page(page))
1da177e4
LT
893 goto keep;
894 if (PageDirty(page) || PageWriteback(page))
895 goto keep_locked;
896 mapping = page_mapping(page);
897 case PAGE_CLEAN:
898 ; /* try to free the page below */
899 }
900 }
901
902 /*
903 * If the page has buffers, try to free the buffer mappings
904 * associated with this page. If we succeed we try to free
905 * the page as well.
906 *
907 * We do this even if the page is PageDirty().
908 * try_to_release_page() does not perform I/O, but it is
909 * possible for a page to have PageDirty set, but it is actually
910 * clean (all its buffers are clean). This happens if the
911 * buffers were written out directly, with submit_bh(). ext3
894bc310 912 * will do this, as well as the blockdev mapping.
1da177e4
LT
913 * try_to_release_page() will discover that cleanness and will
914 * drop the buffers and mark the page clean - it can be freed.
915 *
916 * Rarely, pages can have buffers and no ->mapping. These are
917 * the pages which were not successfully invalidated in
918 * truncate_complete_page(). We try to drop those buffers here
919 * and if that worked, and the page is no longer mapped into
920 * process address space (page_count == 1) it can be freed.
921 * Otherwise, leave the page on the LRU so it is swappable.
922 */
266cf658 923 if (page_has_private(page)) {
1da177e4
LT
924 if (!try_to_release_page(page, sc->gfp_mask))
925 goto activate_locked;
e286781d
NP
926 if (!mapping && page_count(page) == 1) {
927 unlock_page(page);
928 if (put_page_testzero(page))
929 goto free_it;
930 else {
931 /*
932 * rare race with speculative reference.
933 * the speculative reference will free
934 * this page shortly, so we may
935 * increment nr_reclaimed here (and
936 * leave it off the LRU).
937 */
938 nr_reclaimed++;
939 continue;
940 }
941 }
1da177e4
LT
942 }
943
e286781d 944 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 945 goto keep_locked;
1da177e4 946
a978d6f5
NP
947 /*
948 * At this point, we have no other references and there is
949 * no way to pick any more up (removed from LRU, removed
950 * from pagecache). Can use non-atomic bitops now (and
951 * we obviously don't have to worry about waking up a process
952 * waiting on the page lock, because there are no references.
953 */
954 __clear_page_locked(page);
e286781d 955free_it:
05ff5137 956 nr_reclaimed++;
abe4c3b5
MG
957
958 /*
959 * Is there need to periodically free_page_list? It would
960 * appear not as the counts should be low
961 */
962 list_add(&page->lru, &free_pages);
1da177e4
LT
963 continue;
964
b291f000 965cull_mlocked:
63d6c5ad
HD
966 if (PageSwapCache(page))
967 try_to_free_swap(page);
b291f000
NP
968 unlock_page(page);
969 putback_lru_page(page);
f3a310bc 970 reset_reclaim_mode(sc);
b291f000
NP
971 continue;
972
1da177e4 973activate_locked:
68a22394
RR
974 /* Not a candidate for swapping, so reclaim swap space. */
975 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 976 try_to_free_swap(page);
894bc310 977 VM_BUG_ON(PageActive(page));
1da177e4
LT
978 SetPageActive(page);
979 pgactivate++;
980keep_locked:
981 unlock_page(page);
982keep:
f3a310bc 983 reset_reclaim_mode(sc);
7d3579e8 984keep_lumpy:
1da177e4 985 list_add(&page->lru, &ret_pages);
b291f000 986 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 987 }
abe4c3b5 988
0e093d99
MG
989 /*
990 * Tag a zone as congested if all the dirty pages encountered were
991 * backed by a congested BDI. In this case, reclaimers should just
992 * back off and wait for congestion to clear because further reclaim
993 * will encounter the same problem
994 */
d6c438b6 995 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
0e093d99
MG
996 zone_set_flag(zone, ZONE_CONGESTED);
997
abe4c3b5
MG
998 free_page_list(&free_pages);
999
1da177e4 1000 list_splice(&ret_pages, page_list);
f8891e5e 1001 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 1002 return nr_reclaimed;
1da177e4
LT
1003}
1004
5ad333eb
AW
1005/*
1006 * Attempt to remove the specified page from its LRU. Only take this page
1007 * if it is of the appropriate PageActive status. Pages which are being
1008 * freed elsewhere are also ignored.
1009 *
1010 * page: page to consider
1011 * mode: one of the LRU isolation modes defined above
1012 *
1013 * returns 0 on success, -ve errno on failure.
1014 */
4356f21d 1015int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
5ad333eb 1016{
4356f21d 1017 bool all_lru_mode;
5ad333eb
AW
1018 int ret = -EINVAL;
1019
1020 /* Only take pages on the LRU. */
1021 if (!PageLRU(page))
1022 return ret;
1023
4356f21d
MK
1024 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1025 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1026
5ad333eb
AW
1027 /*
1028 * When checking the active state, we need to be sure we are
1029 * dealing with comparible boolean values. Take the logical not
1030 * of each.
1031 */
4356f21d 1032 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
5ad333eb
AW
1033 return ret;
1034
4356f21d 1035 if (!all_lru_mode && !!page_is_file_cache(page) != file)
4f98a2fe
RR
1036 return ret;
1037
894bc310
LS
1038 /*
1039 * When this function is being called for lumpy reclaim, we
1040 * initially look into all LRU pages, active, inactive and
1041 * unevictable; only give shrink_page_list evictable pages.
1042 */
1043 if (PageUnevictable(page))
1044 return ret;
1045
5ad333eb 1046 ret = -EBUSY;
08e552c6 1047
5ad333eb
AW
1048 if (likely(get_page_unless_zero(page))) {
1049 /*
1050 * Be careful not to clear PageLRU until after we're
1051 * sure the page is not being freed elsewhere -- the
1052 * page release code relies on it.
1053 */
1054 ClearPageLRU(page);
1055 ret = 0;
1056 }
1057
1058 return ret;
1059}
1060
1da177e4
LT
1061/*
1062 * zone->lru_lock is heavily contended. Some of the functions that
1063 * shrink the lists perform better by taking out a batch of pages
1064 * and working on them outside the LRU lock.
1065 *
1066 * For pagecache intensive workloads, this function is the hottest
1067 * spot in the kernel (apart from copy_*_user functions).
1068 *
1069 * Appropriate locks must be held before calling this function.
1070 *
1071 * @nr_to_scan: The number of pages to look through on the list.
1072 * @src: The LRU list to pull pages off.
1073 * @dst: The temp list to put pages on to.
1074 * @scanned: The number of pages that were scanned.
5ad333eb
AW
1075 * @order: The caller's attempted allocation order
1076 * @mode: One of the LRU isolation modes
4f98a2fe 1077 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
1078 *
1079 * returns how many pages were moved onto *@dst.
1080 */
69e05944
AM
1081static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1082 struct list_head *src, struct list_head *dst,
4356f21d
MK
1083 unsigned long *scanned, int order, isolate_mode_t mode,
1084 int file)
1da177e4 1085{
69e05944 1086 unsigned long nr_taken = 0;
a8a94d15
MG
1087 unsigned long nr_lumpy_taken = 0;
1088 unsigned long nr_lumpy_dirty = 0;
1089 unsigned long nr_lumpy_failed = 0;
c9b02d97 1090 unsigned long scan;
1da177e4 1091
c9b02d97 1092 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
1093 struct page *page;
1094 unsigned long pfn;
1095 unsigned long end_pfn;
1096 unsigned long page_pfn;
1097 int zone_id;
1098
1da177e4
LT
1099 page = lru_to_page(src);
1100 prefetchw_prev_lru_page(page, src, flags);
1101
725d704e 1102 VM_BUG_ON(!PageLRU(page));
8d438f96 1103
4f98a2fe 1104 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
1105 case 0:
1106 list_move(&page->lru, dst);
2ffebca6 1107 mem_cgroup_del_lru(page);
2c888cfb 1108 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1109 break;
1110
1111 case -EBUSY:
1112 /* else it is being freed elsewhere */
1113 list_move(&page->lru, src);
2ffebca6 1114 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 1115 continue;
46453a6e 1116
5ad333eb
AW
1117 default:
1118 BUG();
1119 }
1120
1121 if (!order)
1122 continue;
1123
1124 /*
1125 * Attempt to take all pages in the order aligned region
1126 * surrounding the tag page. Only take those pages of
1127 * the same active state as that tag page. We may safely
1128 * round the target page pfn down to the requested order
25985edc 1129 * as the mem_map is guaranteed valid out to MAX_ORDER,
5ad333eb
AW
1130 * where that page is in a different zone we will detect
1131 * it from its zone id and abort this block scan.
1132 */
1133 zone_id = page_zone_id(page);
1134 page_pfn = page_to_pfn(page);
1135 pfn = page_pfn & ~((1 << order) - 1);
1136 end_pfn = pfn + (1 << order);
1137 for (; pfn < end_pfn; pfn++) {
1138 struct page *cursor_page;
1139
1140 /* The target page is in the block, ignore it. */
1141 if (unlikely(pfn == page_pfn))
1142 continue;
1143
1144 /* Avoid holes within the zone. */
1145 if (unlikely(!pfn_valid_within(pfn)))
1146 break;
1147
1148 cursor_page = pfn_to_page(pfn);
4f98a2fe 1149
5ad333eb
AW
1150 /* Check that we have not crossed a zone boundary. */
1151 if (unlikely(page_zone_id(cursor_page) != zone_id))
08fc468f 1152 break;
de2e7567
MK
1153
1154 /*
1155 * If we don't have enough swap space, reclaiming of
1156 * anon page which don't already have a swap slot is
1157 * pointless.
1158 */
1159 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
08fc468f
KM
1160 !PageSwapCache(cursor_page))
1161 break;
de2e7567 1162
ee993b13 1163 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 1164 list_move(&cursor_page->lru, dst);
cb4cbcf6 1165 mem_cgroup_del_lru(cursor_page);
2c888cfb 1166 nr_taken += hpage_nr_pages(page);
a8a94d15
MG
1167 nr_lumpy_taken++;
1168 if (PageDirty(cursor_page))
1169 nr_lumpy_dirty++;
5ad333eb 1170 scan++;
a8a94d15 1171 } else {
d179e84b
AA
1172 /*
1173 * Check if the page is freed already.
1174 *
1175 * We can't use page_count() as that
1176 * requires compound_head and we don't
1177 * have a pin on the page here. If a
1178 * page is tail, we may or may not
1179 * have isolated the head, so assume
1180 * it's not free, it'd be tricky to
1181 * track the head status without a
1182 * page pin.
1183 */
1184 if (!PageTail(cursor_page) &&
1185 !atomic_read(&cursor_page->_count))
08fc468f
KM
1186 continue;
1187 break;
5ad333eb
AW
1188 }
1189 }
08fc468f
KM
1190
1191 /* If we break out of the loop above, lumpy reclaim failed */
1192 if (pfn < end_pfn)
1193 nr_lumpy_failed++;
1da177e4
LT
1194 }
1195
1196 *scanned = scan;
a8a94d15
MG
1197
1198 trace_mm_vmscan_lru_isolate(order,
1199 nr_to_scan, scan,
1200 nr_taken,
1201 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1202 mode);
1da177e4
LT
1203 return nr_taken;
1204}
1205
66e1707b
BS
1206static unsigned long isolate_pages_global(unsigned long nr,
1207 struct list_head *dst,
1208 unsigned long *scanned, int order,
4356f21d
MK
1209 isolate_mode_t mode,
1210 struct zone *z, int active, int file)
66e1707b 1211{
4f98a2fe 1212 int lru = LRU_BASE;
66e1707b 1213 if (active)
4f98a2fe
RR
1214 lru += LRU_ACTIVE;
1215 if (file)
1216 lru += LRU_FILE;
1217 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 1218 mode, file);
66e1707b
BS
1219}
1220
5ad333eb
AW
1221/*
1222 * clear_active_flags() is a helper for shrink_active_list(), clearing
1223 * any active bits from the pages in the list.
1224 */
4f98a2fe
RR
1225static unsigned long clear_active_flags(struct list_head *page_list,
1226 unsigned int *count)
5ad333eb
AW
1227{
1228 int nr_active = 0;
4f98a2fe 1229 int lru;
5ad333eb
AW
1230 struct page *page;
1231
4f98a2fe 1232 list_for_each_entry(page, page_list, lru) {
2c888cfb 1233 int numpages = hpage_nr_pages(page);
401a8e1c 1234 lru = page_lru_base_type(page);
5ad333eb 1235 if (PageActive(page)) {
4f98a2fe 1236 lru += LRU_ACTIVE;
5ad333eb 1237 ClearPageActive(page);
2c888cfb 1238 nr_active += numpages;
5ad333eb 1239 }
1489fa14 1240 if (count)
2c888cfb 1241 count[lru] += numpages;
4f98a2fe 1242 }
5ad333eb
AW
1243
1244 return nr_active;
1245}
1246
62695a84
NP
1247/**
1248 * isolate_lru_page - tries to isolate a page from its LRU list
1249 * @page: page to isolate from its LRU list
1250 *
1251 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1252 * vmstat statistic corresponding to whatever LRU list the page was on.
1253 *
1254 * Returns 0 if the page was removed from an LRU list.
1255 * Returns -EBUSY if the page was not on an LRU list.
1256 *
1257 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1258 * the active list, it will have PageActive set. If it was found on
1259 * the unevictable list, it will have the PageUnevictable bit set. That flag
1260 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1261 *
1262 * The vmstat statistic corresponding to the list on which the page was
1263 * found will be decremented.
1264 *
1265 * Restrictions:
1266 * (1) Must be called with an elevated refcount on the page. This is a
1267 * fundamentnal difference from isolate_lru_pages (which is called
1268 * without a stable reference).
1269 * (2) the lru_lock must not be held.
1270 * (3) interrupts must be enabled.
1271 */
1272int isolate_lru_page(struct page *page)
1273{
1274 int ret = -EBUSY;
1275
0c917313
KK
1276 VM_BUG_ON(!page_count(page));
1277
62695a84
NP
1278 if (PageLRU(page)) {
1279 struct zone *zone = page_zone(page);
1280
1281 spin_lock_irq(&zone->lru_lock);
0c917313 1282 if (PageLRU(page)) {
894bc310 1283 int lru = page_lru(page);
62695a84 1284 ret = 0;
0c917313 1285 get_page(page);
62695a84 1286 ClearPageLRU(page);
4f98a2fe 1287
4f98a2fe 1288 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1289 }
1290 spin_unlock_irq(&zone->lru_lock);
1291 }
1292 return ret;
1293}
1294
35cd7815
RR
1295/*
1296 * Are there way too many processes in the direct reclaim path already?
1297 */
1298static int too_many_isolated(struct zone *zone, int file,
1299 struct scan_control *sc)
1300{
1301 unsigned long inactive, isolated;
1302
1303 if (current_is_kswapd())
1304 return 0;
1305
1306 if (!scanning_global_lru(sc))
1307 return 0;
1308
1309 if (file) {
1310 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1311 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1312 } else {
1313 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1314 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1315 }
1316
1317 return isolated > inactive;
1318}
1319
66635629
MG
1320/*
1321 * TODO: Try merging with migrations version of putback_lru_pages
1322 */
1323static noinline_for_stack void
1489fa14 1324putback_lru_pages(struct zone *zone, struct scan_control *sc,
66635629
MG
1325 unsigned long nr_anon, unsigned long nr_file,
1326 struct list_head *page_list)
1327{
1328 struct page *page;
1329 struct pagevec pvec;
1489fa14 1330 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
66635629
MG
1331
1332 pagevec_init(&pvec, 1);
1333
1334 /*
1335 * Put back any unfreeable pages.
1336 */
1337 spin_lock(&zone->lru_lock);
1338 while (!list_empty(page_list)) {
1339 int lru;
1340 page = lru_to_page(page_list);
1341 VM_BUG_ON(PageLRU(page));
1342 list_del(&page->lru);
1343 if (unlikely(!page_evictable(page, NULL))) {
1344 spin_unlock_irq(&zone->lru_lock);
1345 putback_lru_page(page);
1346 spin_lock_irq(&zone->lru_lock);
1347 continue;
1348 }
7a608572 1349 SetPageLRU(page);
66635629 1350 lru = page_lru(page);
7a608572 1351 add_page_to_lru_list(zone, page, lru);
66635629
MG
1352 if (is_active_lru(lru)) {
1353 int file = is_file_lru(lru);
9992af10
RR
1354 int numpages = hpage_nr_pages(page);
1355 reclaim_stat->recent_rotated[file] += numpages;
66635629
MG
1356 }
1357 if (!pagevec_add(&pvec, page)) {
1358 spin_unlock_irq(&zone->lru_lock);
1359 __pagevec_release(&pvec);
1360 spin_lock_irq(&zone->lru_lock);
1361 }
1362 }
1363 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1364 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1365
1366 spin_unlock_irq(&zone->lru_lock);
1367 pagevec_release(&pvec);
1368}
1369
1489fa14
MG
1370static noinline_for_stack void update_isolated_counts(struct zone *zone,
1371 struct scan_control *sc,
1372 unsigned long *nr_anon,
1373 unsigned long *nr_file,
1374 struct list_head *isolated_list)
1375{
1376 unsigned long nr_active;
1377 unsigned int count[NR_LRU_LISTS] = { 0, };
1378 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1379
1380 nr_active = clear_active_flags(isolated_list, count);
1381 __count_vm_events(PGDEACTIVATE, nr_active);
1382
1383 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1384 -count[LRU_ACTIVE_FILE]);
1385 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1386 -count[LRU_INACTIVE_FILE]);
1387 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1388 -count[LRU_ACTIVE_ANON]);
1389 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1390 -count[LRU_INACTIVE_ANON]);
1391
1392 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1393 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1394 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1395 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1396
1397 reclaim_stat->recent_scanned[0] += *nr_anon;
1398 reclaim_stat->recent_scanned[1] += *nr_file;
1399}
1400
e31f3698
WF
1401/*
1402 * Returns true if the caller should wait to clean dirty/writeback pages.
1403 *
1404 * If we are direct reclaiming for contiguous pages and we do not reclaim
1405 * everything in the list, try again and wait for writeback IO to complete.
1406 * This will stall high-order allocations noticeably. Only do that when really
1407 * need to free the pages under high memory pressure.
1408 */
1409static inline bool should_reclaim_stall(unsigned long nr_taken,
1410 unsigned long nr_freed,
1411 int priority,
1412 struct scan_control *sc)
1413{
1414 int lumpy_stall_priority;
1415
1416 /* kswapd should not stall on sync IO */
1417 if (current_is_kswapd())
1418 return false;
1419
1420 /* Only stall on lumpy reclaim */
f3a310bc 1421 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
e31f3698
WF
1422 return false;
1423
81d66c70 1424 /* If we have reclaimed everything on the isolated list, no stall */
e31f3698
WF
1425 if (nr_freed == nr_taken)
1426 return false;
1427
1428 /*
1429 * For high-order allocations, there are two stall thresholds.
1430 * High-cost allocations stall immediately where as lower
1431 * order allocations such as stacks require the scanning
1432 * priority to be much higher before stalling.
1433 */
1434 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1435 lumpy_stall_priority = DEF_PRIORITY;
1436 else
1437 lumpy_stall_priority = DEF_PRIORITY / 3;
1438
1439 return priority <= lumpy_stall_priority;
1440}
1441
1da177e4 1442/*
1742f19f
AM
1443 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1444 * of reclaimed pages
1da177e4 1445 */
66635629
MG
1446static noinline_for_stack unsigned long
1447shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1448 struct scan_control *sc, int priority, int file)
1da177e4
LT
1449{
1450 LIST_HEAD(page_list);
e247dbce 1451 unsigned long nr_scanned;
05ff5137 1452 unsigned long nr_reclaimed = 0;
e247dbce 1453 unsigned long nr_taken;
e247dbce
KM
1454 unsigned long nr_anon;
1455 unsigned long nr_file;
4356f21d 1456 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
78dc583d 1457
35cd7815 1458 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1459 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1460
1461 /* We are about to die and free our memory. Return now. */
1462 if (fatal_signal_pending(current))
1463 return SWAP_CLUSTER_MAX;
1464 }
1465
f3a310bc 1466 set_reclaim_mode(priority, sc, false);
4356f21d
MK
1467 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1468 reclaim_mode |= ISOLATE_ACTIVE;
1469
1da177e4
LT
1470 lru_add_drain();
1471 spin_lock_irq(&zone->lru_lock);
b35ea17b 1472
e247dbce 1473 if (scanning_global_lru(sc)) {
4356f21d
MK
1474 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1475 &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
e247dbce
KM
1476 zone->pages_scanned += nr_scanned;
1477 if (current_is_kswapd())
1478 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1479 nr_scanned);
1480 else
1481 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1482 nr_scanned);
1483 } else {
4356f21d
MK
1484 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1485 &nr_scanned, sc->order, reclaim_mode, zone,
1486 sc->mem_cgroup, 0, file);
e247dbce
KM
1487 /*
1488 * mem_cgroup_isolate_pages() keeps track of
1489 * scanned pages on its own.
1490 */
1491 }
b35ea17b 1492
66635629
MG
1493 if (nr_taken == 0) {
1494 spin_unlock_irq(&zone->lru_lock);
1495 return 0;
1496 }
5ad333eb 1497
1489fa14 1498 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1da177e4 1499
e247dbce 1500 spin_unlock_irq(&zone->lru_lock);
c661b078 1501
0e093d99 1502 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
c661b078 1503
e31f3698
WF
1504 /* Check if we should syncronously wait for writeback */
1505 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
f3a310bc 1506 set_reclaim_mode(priority, sc, true);
0e093d99 1507 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
e247dbce 1508 }
b35ea17b 1509
e247dbce
KM
1510 local_irq_disable();
1511 if (current_is_kswapd())
1512 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1513 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
a74609fa 1514
1489fa14 1515 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
e11da5b4
MG
1516
1517 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1518 zone_idx(zone),
1519 nr_scanned, nr_reclaimed,
1520 priority,
f3a310bc 1521 trace_shrink_flags(file, sc->reclaim_mode));
05ff5137 1522 return nr_reclaimed;
1da177e4
LT
1523}
1524
1525/*
1526 * This moves pages from the active list to the inactive list.
1527 *
1528 * We move them the other way if the page is referenced by one or more
1529 * processes, from rmap.
1530 *
1531 * If the pages are mostly unmapped, the processing is fast and it is
1532 * appropriate to hold zone->lru_lock across the whole operation. But if
1533 * the pages are mapped, the processing is slow (page_referenced()) so we
1534 * should drop zone->lru_lock around each page. It's impossible to balance
1535 * this, so instead we remove the pages from the LRU while processing them.
1536 * It is safe to rely on PG_active against the non-LRU pages in here because
1537 * nobody will play with that bit on a non-LRU page.
1538 *
1539 * The downside is that we have to touch page->_count against each page.
1540 * But we had to alter page->flags anyway.
1541 */
1cfb419b 1542
3eb4140f
WF
1543static void move_active_pages_to_lru(struct zone *zone,
1544 struct list_head *list,
1545 enum lru_list lru)
1546{
1547 unsigned long pgmoved = 0;
1548 struct pagevec pvec;
1549 struct page *page;
1550
1551 pagevec_init(&pvec, 1);
1552
1553 while (!list_empty(list)) {
1554 page = lru_to_page(list);
3eb4140f
WF
1555
1556 VM_BUG_ON(PageLRU(page));
1557 SetPageLRU(page);
1558
3eb4140f
WF
1559 list_move(&page->lru, &zone->lru[lru].list);
1560 mem_cgroup_add_lru_list(page, lru);
2c888cfb 1561 pgmoved += hpage_nr_pages(page);
3eb4140f
WF
1562
1563 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1564 spin_unlock_irq(&zone->lru_lock);
1565 if (buffer_heads_over_limit)
1566 pagevec_strip(&pvec);
1567 __pagevec_release(&pvec);
1568 spin_lock_irq(&zone->lru_lock);
1569 }
1570 }
1571 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1572 if (!is_active_lru(lru))
1573 __count_vm_events(PGDEACTIVATE, pgmoved);
1574}
1cfb419b 1575
1742f19f 1576static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1577 struct scan_control *sc, int priority, int file)
1da177e4 1578{
44c241f1 1579 unsigned long nr_taken;
69e05944 1580 unsigned long pgscanned;
6fe6b7e3 1581 unsigned long vm_flags;
1da177e4 1582 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1583 LIST_HEAD(l_active);
b69408e8 1584 LIST_HEAD(l_inactive);
1da177e4 1585 struct page *page;
6e901571 1586 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1587 unsigned long nr_rotated = 0;
1da177e4
LT
1588
1589 lru_add_drain();
1590 spin_lock_irq(&zone->lru_lock);
e72e2bd6 1591 if (scanning_global_lru(sc)) {
8b25c6d2
JW
1592 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1593 &pgscanned, sc->order,
1594 ISOLATE_ACTIVE, zone,
1595 1, file);
1cfb419b 1596 zone->pages_scanned += pgscanned;
8b25c6d2
JW
1597 } else {
1598 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1599 &pgscanned, sc->order,
1600 ISOLATE_ACTIVE, zone,
1601 sc->mem_cgroup, 1, file);
1602 /*
1603 * mem_cgroup_isolate_pages() keeps track of
1604 * scanned pages on its own.
1605 */
4f98a2fe 1606 }
8b25c6d2 1607
b7c46d15 1608 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1609
3eb4140f 1610 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1611 if (file)
44c241f1 1612 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1613 else
44c241f1 1614 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1615 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1616 spin_unlock_irq(&zone->lru_lock);
1617
1da177e4
LT
1618 while (!list_empty(&l_hold)) {
1619 cond_resched();
1620 page = lru_to_page(&l_hold);
1621 list_del(&page->lru);
7e9cd484 1622
894bc310
LS
1623 if (unlikely(!page_evictable(page, NULL))) {
1624 putback_lru_page(page);
1625 continue;
1626 }
1627
64574746 1628 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
9992af10 1629 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1630 /*
1631 * Identify referenced, file-backed active pages and
1632 * give them one more trip around the active list. So
1633 * that executable code get better chances to stay in
1634 * memory under moderate memory pressure. Anon pages
1635 * are not likely to be evicted by use-once streaming
1636 * IO, plus JVM can create lots of anon VM_EXEC pages,
1637 * so we ignore them here.
1638 */
41e20983 1639 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1640 list_add(&page->lru, &l_active);
1641 continue;
1642 }
1643 }
7e9cd484 1644
5205e56e 1645 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1646 list_add(&page->lru, &l_inactive);
1647 }
1648
b555749a 1649 /*
8cab4754 1650 * Move pages back to the lru list.
b555749a 1651 */
2a1dc509 1652 spin_lock_irq(&zone->lru_lock);
556adecb 1653 /*
8cab4754
WF
1654 * Count referenced pages from currently used mappings as rotated,
1655 * even though only some of them are actually re-activated. This
1656 * helps balance scan pressure between file and anonymous pages in
1657 * get_scan_ratio.
7e9cd484 1658 */
b7c46d15 1659 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1660
3eb4140f
WF
1661 move_active_pages_to_lru(zone, &l_active,
1662 LRU_ACTIVE + file * LRU_FILE);
1663 move_active_pages_to_lru(zone, &l_inactive,
1664 LRU_BASE + file * LRU_FILE);
a731286d 1665 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1666 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1667}
1668
74e3f3c3 1669#ifdef CONFIG_SWAP
14797e23 1670static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1671{
1672 unsigned long active, inactive;
1673
1674 active = zone_page_state(zone, NR_ACTIVE_ANON);
1675 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1676
1677 if (inactive * zone->inactive_ratio < active)
1678 return 1;
1679
1680 return 0;
1681}
1682
14797e23
KM
1683/**
1684 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1685 * @zone: zone to check
1686 * @sc: scan control of this context
1687 *
1688 * Returns true if the zone does not have enough inactive anon pages,
1689 * meaning some active anon pages need to be deactivated.
1690 */
1691static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1692{
1693 int low;
1694
74e3f3c3
MK
1695 /*
1696 * If we don't have swap space, anonymous page deactivation
1697 * is pointless.
1698 */
1699 if (!total_swap_pages)
1700 return 0;
1701
e72e2bd6 1702 if (scanning_global_lru(sc))
14797e23
KM
1703 low = inactive_anon_is_low_global(zone);
1704 else
c772be93 1705 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1706 return low;
1707}
74e3f3c3
MK
1708#else
1709static inline int inactive_anon_is_low(struct zone *zone,
1710 struct scan_control *sc)
1711{
1712 return 0;
1713}
1714#endif
14797e23 1715
56e49d21
RR
1716static int inactive_file_is_low_global(struct zone *zone)
1717{
1718 unsigned long active, inactive;
1719
1720 active = zone_page_state(zone, NR_ACTIVE_FILE);
1721 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1722
1723 return (active > inactive);
1724}
1725
1726/**
1727 * inactive_file_is_low - check if file pages need to be deactivated
1728 * @zone: zone to check
1729 * @sc: scan control of this context
1730 *
1731 * When the system is doing streaming IO, memory pressure here
1732 * ensures that active file pages get deactivated, until more
1733 * than half of the file pages are on the inactive list.
1734 *
1735 * Once we get to that situation, protect the system's working
1736 * set from being evicted by disabling active file page aging.
1737 *
1738 * This uses a different ratio than the anonymous pages, because
1739 * the page cache uses a use-once replacement algorithm.
1740 */
1741static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1742{
1743 int low;
1744
1745 if (scanning_global_lru(sc))
1746 low = inactive_file_is_low_global(zone);
1747 else
1748 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1749 return low;
1750}
1751
b39415b2
RR
1752static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1753 int file)
1754{
1755 if (file)
1756 return inactive_file_is_low(zone, sc);
1757 else
1758 return inactive_anon_is_low(zone, sc);
1759}
1760
4f98a2fe 1761static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1762 struct zone *zone, struct scan_control *sc, int priority)
1763{
4f98a2fe
RR
1764 int file = is_file_lru(lru);
1765
b39415b2
RR
1766 if (is_active_lru(lru)) {
1767 if (inactive_list_is_low(zone, sc, file))
1768 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1769 return 0;
1770 }
1771
33c120ed 1772 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1773}
1774
1f4c025b
KH
1775static int vmscan_swappiness(struct scan_control *sc)
1776{
1777 if (scanning_global_lru(sc))
1778 return vm_swappiness;
1779 return mem_cgroup_swappiness(sc->mem_cgroup);
1780}
1781
4f98a2fe
RR
1782/*
1783 * Determine how aggressively the anon and file LRU lists should be
1784 * scanned. The relative value of each set of LRU lists is determined
1785 * by looking at the fraction of the pages scanned we did rotate back
1786 * onto the active list instead of evict.
1787 *
76a33fc3 1788 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1789 */
76a33fc3
SL
1790static void get_scan_count(struct zone *zone, struct scan_control *sc,
1791 unsigned long *nr, int priority)
4f98a2fe
RR
1792{
1793 unsigned long anon, file, free;
1794 unsigned long anon_prio, file_prio;
1795 unsigned long ap, fp;
6e901571 1796 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
76a33fc3
SL
1797 u64 fraction[2], denominator;
1798 enum lru_list l;
1799 int noswap = 0;
a4d3e9e7 1800 bool force_scan = false;
4508378b 1801 unsigned long nr_force_scan[2];
246e87a9 1802
a4d3e9e7
JW
1803 /* kswapd does zone balancing and needs to scan this zone */
1804 if (scanning_global_lru(sc) && current_is_kswapd())
1805 force_scan = true;
1806 /* memcg may have small limit and need to avoid priority drop */
1807 if (!scanning_global_lru(sc))
1808 force_scan = true;
76a33fc3
SL
1809
1810 /* If we have no swap space, do not bother scanning anon pages. */
1811 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1812 noswap = 1;
1813 fraction[0] = 0;
1814 fraction[1] = 1;
1815 denominator = 1;
4508378b
KH
1816 nr_force_scan[0] = 0;
1817 nr_force_scan[1] = SWAP_CLUSTER_MAX;
76a33fc3
SL
1818 goto out;
1819 }
4f98a2fe 1820
a4d3e9e7
JW
1821 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1822 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1823 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1824 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1825
e72e2bd6 1826 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1827 free = zone_page_state(zone, NR_FREE_PAGES);
1828 /* If we have very few page cache pages,
1829 force-scan anon pages. */
41858966 1830 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1831 fraction[0] = 1;
1832 fraction[1] = 0;
1833 denominator = 1;
4508378b
KH
1834 nr_force_scan[0] = SWAP_CLUSTER_MAX;
1835 nr_force_scan[1] = 0;
76a33fc3 1836 goto out;
eeee9a8c 1837 }
4f98a2fe
RR
1838 }
1839
58c37f6e
KM
1840 /*
1841 * With swappiness at 100, anonymous and file have the same priority.
1842 * This scanning priority is essentially the inverse of IO cost.
1843 */
1f4c025b
KH
1844 anon_prio = vmscan_swappiness(sc);
1845 file_prio = 200 - vmscan_swappiness(sc);
58c37f6e 1846
4f98a2fe
RR
1847 /*
1848 * OK, so we have swap space and a fair amount of page cache
1849 * pages. We use the recently rotated / recently scanned
1850 * ratios to determine how valuable each cache is.
1851 *
1852 * Because workloads change over time (and to avoid overflow)
1853 * we keep these statistics as a floating average, which ends
1854 * up weighing recent references more than old ones.
1855 *
1856 * anon in [0], file in [1]
1857 */
58c37f6e 1858 spin_lock_irq(&zone->lru_lock);
6e901571 1859 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1860 reclaim_stat->recent_scanned[0] /= 2;
1861 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1862 }
1863
6e901571 1864 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1865 reclaim_stat->recent_scanned[1] /= 2;
1866 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1867 }
1868
4f98a2fe 1869 /*
00d8089c
RR
1870 * The amount of pressure on anon vs file pages is inversely
1871 * proportional to the fraction of recently scanned pages on
1872 * each list that were recently referenced and in active use.
4f98a2fe 1873 */
6e901571
KM
1874 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1875 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1876
6e901571
KM
1877 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1878 fp /= reclaim_stat->recent_rotated[1] + 1;
58c37f6e 1879 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1880
76a33fc3
SL
1881 fraction[0] = ap;
1882 fraction[1] = fp;
1883 denominator = ap + fp + 1;
4508378b
KH
1884 if (force_scan) {
1885 unsigned long scan = SWAP_CLUSTER_MAX;
1886 nr_force_scan[0] = div64_u64(scan * ap, denominator);
1887 nr_force_scan[1] = div64_u64(scan * fp, denominator);
1888 }
76a33fc3
SL
1889out:
1890 for_each_evictable_lru(l) {
1891 int file = is_file_lru(l);
1892 unsigned long scan;
6e08a369 1893
76a33fc3
SL
1894 scan = zone_nr_lru_pages(zone, sc, l);
1895 if (priority || noswap) {
1896 scan >>= priority;
1897 scan = div64_u64(scan * fraction[file], denominator);
1898 }
246e87a9
KH
1899
1900 /*
1901 * If zone is small or memcg is small, nr[l] can be 0.
1902 * This results no-scan on this priority and priority drop down.
1903 * For global direct reclaim, it can visit next zone and tend
1904 * not to have problems. For global kswapd, it's for zone
1905 * balancing and it need to scan a small amounts. When using
1906 * memcg, priority drop can cause big latency. So, it's better
1907 * to scan small amount. See may_noscan above.
1908 */
4508378b
KH
1909 if (!scan && force_scan)
1910 scan = nr_force_scan[file];
246e87a9 1911 nr[l] = scan;
76a33fc3 1912 }
6e08a369 1913}
4f98a2fe 1914
3e7d3449
MG
1915/*
1916 * Reclaim/compaction depends on a number of pages being freed. To avoid
1917 * disruption to the system, a small number of order-0 pages continue to be
1918 * rotated and reclaimed in the normal fashion. However, by the time we get
1919 * back to the allocator and call try_to_compact_zone(), we ensure that
1920 * there are enough free pages for it to be likely successful
1921 */
1922static inline bool should_continue_reclaim(struct zone *zone,
1923 unsigned long nr_reclaimed,
1924 unsigned long nr_scanned,
1925 struct scan_control *sc)
1926{
1927 unsigned long pages_for_compaction;
1928 unsigned long inactive_lru_pages;
1929
1930 /* If not in reclaim/compaction mode, stop */
f3a310bc 1931 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
3e7d3449
MG
1932 return false;
1933
2876592f
MG
1934 /* Consider stopping depending on scan and reclaim activity */
1935 if (sc->gfp_mask & __GFP_REPEAT) {
1936 /*
1937 * For __GFP_REPEAT allocations, stop reclaiming if the
1938 * full LRU list has been scanned and we are still failing
1939 * to reclaim pages. This full LRU scan is potentially
1940 * expensive but a __GFP_REPEAT caller really wants to succeed
1941 */
1942 if (!nr_reclaimed && !nr_scanned)
1943 return false;
1944 } else {
1945 /*
1946 * For non-__GFP_REPEAT allocations which can presumably
1947 * fail without consequence, stop if we failed to reclaim
1948 * any pages from the last SWAP_CLUSTER_MAX number of
1949 * pages that were scanned. This will return to the
1950 * caller faster at the risk reclaim/compaction and
1951 * the resulting allocation attempt fails
1952 */
1953 if (!nr_reclaimed)
1954 return false;
1955 }
3e7d3449
MG
1956
1957 /*
1958 * If we have not reclaimed enough pages for compaction and the
1959 * inactive lists are large enough, continue reclaiming
1960 */
1961 pages_for_compaction = (2UL << sc->order);
1962 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1963 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1964 if (sc->nr_reclaimed < pages_for_compaction &&
1965 inactive_lru_pages > pages_for_compaction)
1966 return true;
1967
1968 /* If compaction would go ahead or the allocation would succeed, stop */
1969 switch (compaction_suitable(zone, sc->order)) {
1970 case COMPACT_PARTIAL:
1971 case COMPACT_CONTINUE:
1972 return false;
1973 default:
1974 return true;
1975 }
1976}
1977
1da177e4
LT
1978/*
1979 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1980 */
a79311c1 1981static void shrink_zone(int priority, struct zone *zone,
05ff5137 1982 struct scan_control *sc)
1da177e4 1983{
b69408e8 1984 unsigned long nr[NR_LRU_LISTS];
8695949a 1985 unsigned long nr_to_scan;
b69408e8 1986 enum lru_list l;
f0fdc5e8 1987 unsigned long nr_reclaimed, nr_scanned;
22fba335 1988 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
e0f79b8f 1989
3e7d3449
MG
1990restart:
1991 nr_reclaimed = 0;
f0fdc5e8 1992 nr_scanned = sc->nr_scanned;
76a33fc3 1993 get_scan_count(zone, sc, nr, priority);
1da177e4 1994
556adecb
RR
1995 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1996 nr[LRU_INACTIVE_FILE]) {
894bc310 1997 for_each_evictable_lru(l) {
b69408e8 1998 if (nr[l]) {
ece74b2e
KM
1999 nr_to_scan = min_t(unsigned long,
2000 nr[l], SWAP_CLUSTER_MAX);
b69408e8 2001 nr[l] -= nr_to_scan;
1da177e4 2002
01dbe5c9
KM
2003 nr_reclaimed += shrink_list(l, nr_to_scan,
2004 zone, sc, priority);
b69408e8 2005 }
1da177e4 2006 }
a79311c1
RR
2007 /*
2008 * On large memory systems, scan >> priority can become
2009 * really large. This is fine for the starting priority;
2010 * we want to put equal scanning pressure on each zone.
2011 * However, if the VM has a harder time of freeing pages,
2012 * with multiple processes reclaiming pages, the total
2013 * freeing target can get unreasonably large.
2014 */
338fde90 2015 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 2016 break;
1da177e4 2017 }
3e7d3449 2018 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 2019
556adecb
RR
2020 /*
2021 * Even if we did not try to evict anon pages at all, we want to
2022 * rebalance the anon lru active/inactive ratio.
2023 */
74e3f3c3 2024 if (inactive_anon_is_low(zone, sc))
556adecb
RR
2025 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2026
3e7d3449
MG
2027 /* reclaim/compaction might need reclaim to continue */
2028 if (should_continue_reclaim(zone, nr_reclaimed,
2029 sc->nr_scanned - nr_scanned, sc))
2030 goto restart;
2031
232ea4d6 2032 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
2033}
2034
2035/*
2036 * This is the direct reclaim path, for page-allocating processes. We only
2037 * try to reclaim pages from zones which will satisfy the caller's allocation
2038 * request.
2039 *
41858966
MG
2040 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2041 * Because:
1da177e4
LT
2042 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2043 * allocation or
41858966
MG
2044 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2045 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2046 * zone defense algorithm.
1da177e4 2047 *
1da177e4
LT
2048 * If a zone is deemed to be full of pinned pages then just give it a light
2049 * scan then give up on it.
2050 */
ac34a1a3 2051static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 2052 struct scan_control *sc)
1da177e4 2053{
dd1a239f 2054 struct zoneref *z;
54a6eb5c 2055 struct zone *zone;
d149e3b2
YH
2056 unsigned long nr_soft_reclaimed;
2057 unsigned long nr_soft_scanned;
1cfb419b 2058
d4debc66
MG
2059 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2060 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2061 if (!populated_zone(zone))
1da177e4 2062 continue;
1cfb419b
KH
2063 /*
2064 * Take care memory controller reclaiming has small influence
2065 * to global LRU.
2066 */
e72e2bd6 2067 if (scanning_global_lru(sc)) {
1cfb419b
KH
2068 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2069 continue;
93e4a89a 2070 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2071 continue; /* Let kswapd poll it */
ac34a1a3
KH
2072 /*
2073 * This steals pages from memory cgroups over softlimit
2074 * and returns the number of reclaimed pages and
2075 * scanned pages. This works for global memory pressure
2076 * and balancing, not for a memcg's limit.
2077 */
2078 nr_soft_scanned = 0;
2079 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2080 sc->order, sc->gfp_mask,
2081 &nr_soft_scanned);
2082 sc->nr_reclaimed += nr_soft_reclaimed;
2083 sc->nr_scanned += nr_soft_scanned;
2084 /* need some check for avoid more shrink_zone() */
1cfb419b 2085 }
408d8544 2086
a79311c1 2087 shrink_zone(priority, zone, sc);
1da177e4 2088 }
d1908362
MK
2089}
2090
2091static bool zone_reclaimable(struct zone *zone)
2092{
2093 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2094}
2095
929bea7c 2096/* All zones in zonelist are unreclaimable? */
d1908362
MK
2097static bool all_unreclaimable(struct zonelist *zonelist,
2098 struct scan_control *sc)
2099{
2100 struct zoneref *z;
2101 struct zone *zone;
d1908362
MK
2102
2103 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2104 gfp_zone(sc->gfp_mask), sc->nodemask) {
2105 if (!populated_zone(zone))
2106 continue;
2107 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2108 continue;
929bea7c
KM
2109 if (!zone->all_unreclaimable)
2110 return false;
d1908362
MK
2111 }
2112
929bea7c 2113 return true;
1da177e4 2114}
4f98a2fe 2115
1da177e4
LT
2116/*
2117 * This is the main entry point to direct page reclaim.
2118 *
2119 * If a full scan of the inactive list fails to free enough memory then we
2120 * are "out of memory" and something needs to be killed.
2121 *
2122 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2123 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2124 * caller can't do much about. We kick the writeback threads and take explicit
2125 * naps in the hope that some of these pages can be written. But if the
2126 * allocating task holds filesystem locks which prevent writeout this might not
2127 * work, and the allocation attempt will fail.
a41f24ea
NA
2128 *
2129 * returns: 0, if no pages reclaimed
2130 * else, the number of pages reclaimed
1da177e4 2131 */
dac1d27b 2132static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2133 struct scan_control *sc,
2134 struct shrink_control *shrink)
1da177e4
LT
2135{
2136 int priority;
69e05944 2137 unsigned long total_scanned = 0;
1da177e4 2138 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2139 struct zoneref *z;
54a6eb5c 2140 struct zone *zone;
22fba335 2141 unsigned long writeback_threshold;
1da177e4 2142
c0ff7453 2143 get_mems_allowed();
873b4771
KK
2144 delayacct_freepages_start();
2145
e72e2bd6 2146 if (scanning_global_lru(sc))
1cfb419b 2147 count_vm_event(ALLOCSTALL);
1da177e4
LT
2148
2149 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2150 sc->nr_scanned = 0;
f7b7fd8f 2151 if (!priority)
a433658c 2152 disable_swap_token(sc->mem_cgroup);
ac34a1a3 2153 shrink_zones(priority, zonelist, sc);
66e1707b
BS
2154 /*
2155 * Don't shrink slabs when reclaiming memory from
2156 * over limit cgroups
2157 */
e72e2bd6 2158 if (scanning_global_lru(sc)) {
c6a8a8c5 2159 unsigned long lru_pages = 0;
d4debc66
MG
2160 for_each_zone_zonelist(zone, z, zonelist,
2161 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2162 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2163 continue;
2164
2165 lru_pages += zone_reclaimable_pages(zone);
2166 }
2167
1495f230 2168 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2169 if (reclaim_state) {
a79311c1 2170 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2171 reclaim_state->reclaimed_slab = 0;
2172 }
1da177e4 2173 }
66e1707b 2174 total_scanned += sc->nr_scanned;
bb21c7ce 2175 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2176 goto out;
1da177e4
LT
2177
2178 /*
2179 * Try to write back as many pages as we just scanned. This
2180 * tends to cause slow streaming writers to write data to the
2181 * disk smoothly, at the dirtying rate, which is nice. But
2182 * that's undesirable in laptop mode, where we *want* lumpy
2183 * writeout. So in laptop mode, write out the whole world.
2184 */
22fba335
KM
2185 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2186 if (total_scanned > writeback_threshold) {
03ba3782 2187 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 2188 sc->may_writepage = 1;
1da177e4
LT
2189 }
2190
2191 /* Take a nap, wait for some writeback to complete */
7b51755c 2192 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2193 priority < DEF_PRIORITY - 2) {
2194 struct zone *preferred_zone;
2195
2196 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2197 &cpuset_current_mems_allowed,
2198 &preferred_zone);
0e093d99
MG
2199 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2200 }
1da177e4 2201 }
bb21c7ce 2202
1da177e4 2203out:
873b4771 2204 delayacct_freepages_end();
c0ff7453 2205 put_mems_allowed();
873b4771 2206
bb21c7ce
KM
2207 if (sc->nr_reclaimed)
2208 return sc->nr_reclaimed;
2209
929bea7c
KM
2210 /*
2211 * As hibernation is going on, kswapd is freezed so that it can't mark
2212 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2213 * check.
2214 */
2215 if (oom_killer_disabled)
2216 return 0;
2217
bb21c7ce 2218 /* top priority shrink_zones still had more to do? don't OOM, then */
d1908362 2219 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2220 return 1;
2221
2222 return 0;
1da177e4
LT
2223}
2224
dac1d27b 2225unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2226 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2227{
33906bc5 2228 unsigned long nr_reclaimed;
66e1707b
BS
2229 struct scan_control sc = {
2230 .gfp_mask = gfp_mask,
2231 .may_writepage = !laptop_mode,
22fba335 2232 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2233 .may_unmap = 1,
2e2e4259 2234 .may_swap = 1,
66e1707b
BS
2235 .order = order,
2236 .mem_cgroup = NULL,
327c0e96 2237 .nodemask = nodemask,
66e1707b 2238 };
a09ed5e0
YH
2239 struct shrink_control shrink = {
2240 .gfp_mask = sc.gfp_mask,
2241 };
66e1707b 2242
33906bc5
MG
2243 trace_mm_vmscan_direct_reclaim_begin(order,
2244 sc.may_writepage,
2245 gfp_mask);
2246
a09ed5e0 2247 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2248
2249 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2250
2251 return nr_reclaimed;
66e1707b
BS
2252}
2253
00f0b825 2254#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2255
4e416953
BS
2256unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2257 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2258 struct zone *zone,
2259 unsigned long *nr_scanned)
4e416953
BS
2260{
2261 struct scan_control sc = {
0ae5e89c 2262 .nr_scanned = 0,
b8f5c566 2263 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2264 .may_writepage = !laptop_mode,
2265 .may_unmap = 1,
2266 .may_swap = !noswap,
4e416953
BS
2267 .order = 0,
2268 .mem_cgroup = mem,
4e416953 2269 };
0ae5e89c 2270
4e416953
BS
2271 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2272 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2273
2274 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2275 sc.may_writepage,
2276 sc.gfp_mask);
2277
4e416953
BS
2278 /*
2279 * NOTE: Although we can get the priority field, using it
2280 * here is not a good idea, since it limits the pages we can scan.
2281 * if we don't reclaim here, the shrink_zone from balance_pgdat
2282 * will pick up pages from other mem cgroup's as well. We hack
2283 * the priority and make it zero.
2284 */
2285 shrink_zone(0, zone, &sc);
bdce6d9e
KM
2286
2287 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2288
0ae5e89c 2289 *nr_scanned = sc.nr_scanned;
4e416953
BS
2290 return sc.nr_reclaimed;
2291}
2292
e1a1cd59 2293unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8 2294 gfp_t gfp_mask,
185efc0f 2295 bool noswap)
66e1707b 2296{
4e416953 2297 struct zonelist *zonelist;
bdce6d9e 2298 unsigned long nr_reclaimed;
889976db 2299 int nid;
66e1707b 2300 struct scan_control sc = {
66e1707b 2301 .may_writepage = !laptop_mode,
a6dc60f8 2302 .may_unmap = 1,
2e2e4259 2303 .may_swap = !noswap,
22fba335 2304 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b
BS
2305 .order = 0,
2306 .mem_cgroup = mem_cont,
327c0e96 2307 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2308 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2309 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2310 };
2311 struct shrink_control shrink = {
2312 .gfp_mask = sc.gfp_mask,
66e1707b 2313 };
66e1707b 2314
889976db
YH
2315 /*
2316 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2317 * take care of from where we get pages. So the node where we start the
2318 * scan does not need to be the current node.
2319 */
2320 nid = mem_cgroup_select_victim_node(mem_cont);
2321
2322 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2323
2324 trace_mm_vmscan_memcg_reclaim_begin(0,
2325 sc.may_writepage,
2326 sc.gfp_mask);
2327
a09ed5e0 2328 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2329
2330 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2331
2332 return nr_reclaimed;
66e1707b
BS
2333}
2334#endif
2335
1741c877
MG
2336/*
2337 * pgdat_balanced is used when checking if a node is balanced for high-order
2338 * allocations. Only zones that meet watermarks and are in a zone allowed
2339 * by the callers classzone_idx are added to balanced_pages. The total of
2340 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2341 * for the node to be considered balanced. Forcing all zones to be balanced
2342 * for high orders can cause excessive reclaim when there are imbalanced zones.
2343 * The choice of 25% is due to
2344 * o a 16M DMA zone that is balanced will not balance a zone on any
2345 * reasonable sized machine
2346 * o On all other machines, the top zone must be at least a reasonable
25985edc 2347 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2348 * would need to be at least 256M for it to be balance a whole node.
2349 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2350 * to balance a node on its own. These seemed like reasonable ratios.
2351 */
2352static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2353 int classzone_idx)
2354{
2355 unsigned long present_pages = 0;
2356 int i;
2357
2358 for (i = 0; i <= classzone_idx; i++)
2359 present_pages += pgdat->node_zones[i].present_pages;
2360
4746efde
SL
2361 /* A special case here: if zone has no page, we think it's balanced */
2362 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2363}
2364
f50de2d3 2365/* is kswapd sleeping prematurely? */
dc83edd9
MG
2366static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2367 int classzone_idx)
f50de2d3 2368{
bb3ab596 2369 int i;
1741c877
MG
2370 unsigned long balanced = 0;
2371 bool all_zones_ok = true;
f50de2d3
MG
2372
2373 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2374 if (remaining)
dc83edd9 2375 return true;
f50de2d3 2376
0abdee2b 2377 /* Check the watermark levels */
08951e54 2378 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2379 struct zone *zone = pgdat->node_zones + i;
2380
2381 if (!populated_zone(zone))
2382 continue;
2383
355b09c4
MG
2384 /*
2385 * balance_pgdat() skips over all_unreclaimable after
2386 * DEF_PRIORITY. Effectively, it considers them balanced so
2387 * they must be considered balanced here as well if kswapd
2388 * is to sleep
2389 */
2390 if (zone->all_unreclaimable) {
2391 balanced += zone->present_pages;
de3fab39 2392 continue;
355b09c4 2393 }
de3fab39 2394
88f5acf8 2395 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2396 i, 0))
1741c877
MG
2397 all_zones_ok = false;
2398 else
2399 balanced += zone->present_pages;
bb3ab596 2400 }
f50de2d3 2401
1741c877
MG
2402 /*
2403 * For high-order requests, the balanced zones must contain at least
2404 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2405 * must be balanced
2406 */
2407 if (order)
afc7e326 2408 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2409 else
2410 return !all_zones_ok;
f50de2d3
MG
2411}
2412
1da177e4
LT
2413/*
2414 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2415 * they are all at high_wmark_pages(zone).
1da177e4 2416 *
0abdee2b 2417 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2418 *
2419 * There is special handling here for zones which are full of pinned pages.
2420 * This can happen if the pages are all mlocked, or if they are all used by
2421 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2422 * What we do is to detect the case where all pages in the zone have been
2423 * scanned twice and there has been zero successful reclaim. Mark the zone as
2424 * dead and from now on, only perform a short scan. Basically we're polling
2425 * the zone for when the problem goes away.
2426 *
2427 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2428 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2429 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2430 * lower zones regardless of the number of free pages in the lower zones. This
2431 * interoperates with the page allocator fallback scheme to ensure that aging
2432 * of pages is balanced across the zones.
1da177e4 2433 */
99504748 2434static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2435 int *classzone_idx)
1da177e4 2436{
1da177e4 2437 int all_zones_ok;
1741c877 2438 unsigned long balanced;
1da177e4
LT
2439 int priority;
2440 int i;
99504748 2441 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2442 unsigned long total_scanned;
1da177e4 2443 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2444 unsigned long nr_soft_reclaimed;
2445 unsigned long nr_soft_scanned;
179e9639
AM
2446 struct scan_control sc = {
2447 .gfp_mask = GFP_KERNEL,
a6dc60f8 2448 .may_unmap = 1,
2e2e4259 2449 .may_swap = 1,
22fba335
KM
2450 /*
2451 * kswapd doesn't want to be bailed out while reclaim. because
2452 * we want to put equal scanning pressure on each zone.
2453 */
2454 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2455 .order = order,
66e1707b 2456 .mem_cgroup = NULL,
179e9639 2457 };
a09ed5e0
YH
2458 struct shrink_control shrink = {
2459 .gfp_mask = sc.gfp_mask,
2460 };
1da177e4
LT
2461loop_again:
2462 total_scanned = 0;
a79311c1 2463 sc.nr_reclaimed = 0;
c0bbbc73 2464 sc.may_writepage = !laptop_mode;
f8891e5e 2465 count_vm_event(PAGEOUTRUN);
1da177e4 2466
1da177e4 2467 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2468 unsigned long lru_pages = 0;
bb3ab596 2469 int has_under_min_watermark_zone = 0;
1da177e4 2470
f7b7fd8f
RR
2471 /* The swap token gets in the way of swapout... */
2472 if (!priority)
a433658c 2473 disable_swap_token(NULL);
f7b7fd8f 2474
1da177e4 2475 all_zones_ok = 1;
1741c877 2476 balanced = 0;
1da177e4 2477
d6277db4
RW
2478 /*
2479 * Scan in the highmem->dma direction for the highest
2480 * zone which needs scanning
2481 */
2482 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2483 struct zone *zone = pgdat->node_zones + i;
1da177e4 2484
d6277db4
RW
2485 if (!populated_zone(zone))
2486 continue;
1da177e4 2487
93e4a89a 2488 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2489 continue;
1da177e4 2490
556adecb
RR
2491 /*
2492 * Do some background aging of the anon list, to give
2493 * pages a chance to be referenced before reclaiming.
2494 */
14797e23 2495 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2496 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2497 &sc, priority, 0);
2498
88f5acf8 2499 if (!zone_watermark_ok_safe(zone, order,
41858966 2500 high_wmark_pages(zone), 0, 0)) {
d6277db4 2501 end_zone = i;
e1dbeda6 2502 break;
439423f6
SL
2503 } else {
2504 /* If balanced, clear the congested flag */
2505 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2506 }
1da177e4 2507 }
e1dbeda6
AM
2508 if (i < 0)
2509 goto out;
2510
1da177e4
LT
2511 for (i = 0; i <= end_zone; i++) {
2512 struct zone *zone = pgdat->node_zones + i;
2513
adea02a1 2514 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2515 }
2516
2517 /*
2518 * Now scan the zone in the dma->highmem direction, stopping
2519 * at the last zone which needs scanning.
2520 *
2521 * We do this because the page allocator works in the opposite
2522 * direction. This prevents the page allocator from allocating
2523 * pages behind kswapd's direction of progress, which would
2524 * cause too much scanning of the lower zones.
2525 */
2526 for (i = 0; i <= end_zone; i++) {
2527 struct zone *zone = pgdat->node_zones + i;
b15e0905 2528 int nr_slab;
8afdcece 2529 unsigned long balance_gap;
1da177e4 2530
f3fe6512 2531 if (!populated_zone(zone))
1da177e4
LT
2532 continue;
2533
93e4a89a 2534 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2535 continue;
2536
1da177e4 2537 sc.nr_scanned = 0;
4e416953 2538
0ae5e89c 2539 nr_soft_scanned = 0;
4e416953
BS
2540 /*
2541 * Call soft limit reclaim before calling shrink_zone.
4e416953 2542 */
0ae5e89c
YH
2543 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2544 order, sc.gfp_mask,
2545 &nr_soft_scanned);
2546 sc.nr_reclaimed += nr_soft_reclaimed;
2547 total_scanned += nr_soft_scanned;
00918b6a 2548
32a4330d 2549 /*
8afdcece
MG
2550 * We put equal pressure on every zone, unless
2551 * one zone has way too many pages free
2552 * already. The "too many pages" is defined
2553 * as the high wmark plus a "gap" where the
2554 * gap is either the low watermark or 1%
2555 * of the zone, whichever is smaller.
32a4330d 2556 */
8afdcece
MG
2557 balance_gap = min(low_wmark_pages(zone),
2558 (zone->present_pages +
2559 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2560 KSWAPD_ZONE_BALANCE_GAP_RATIO);
88f5acf8 2561 if (!zone_watermark_ok_safe(zone, order,
8afdcece 2562 high_wmark_pages(zone) + balance_gap,
d7868dae 2563 end_zone, 0)) {
a79311c1 2564 shrink_zone(priority, zone, &sc);
5a03b051 2565
d7868dae
MG
2566 reclaim_state->reclaimed_slab = 0;
2567 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2568 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2569 total_scanned += sc.nr_scanned;
2570
2571 if (nr_slab == 0 && !zone_reclaimable(zone))
2572 zone->all_unreclaimable = 1;
2573 }
2574
1da177e4
LT
2575 /*
2576 * If we've done a decent amount of scanning and
2577 * the reclaim ratio is low, start doing writepage
2578 * even in laptop mode
2579 */
2580 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2581 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2582 sc.may_writepage = 1;
bb3ab596 2583
215ddd66
MG
2584 if (zone->all_unreclaimable) {
2585 if (end_zone && end_zone == i)
2586 end_zone--;
d7868dae 2587 continue;
215ddd66 2588 }
d7868dae 2589
88f5acf8 2590 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2591 high_wmark_pages(zone), end_zone, 0)) {
2592 all_zones_ok = 0;
2593 /*
2594 * We are still under min water mark. This
2595 * means that we have a GFP_ATOMIC allocation
2596 * failure risk. Hurry up!
2597 */
88f5acf8 2598 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2599 min_wmark_pages(zone), end_zone, 0))
2600 has_under_min_watermark_zone = 1;
0e093d99
MG
2601 } else {
2602 /*
2603 * If a zone reaches its high watermark,
2604 * consider it to be no longer congested. It's
2605 * possible there are dirty pages backed by
2606 * congested BDIs but as pressure is relieved,
2607 * spectulatively avoid congestion waits
2608 */
2609 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2610 if (i <= *classzone_idx)
1741c877 2611 balanced += zone->present_pages;
45973d74 2612 }
bb3ab596 2613
1da177e4 2614 }
dc83edd9 2615 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2616 break; /* kswapd: all done */
2617 /*
2618 * OK, kswapd is getting into trouble. Take a nap, then take
2619 * another pass across the zones.
2620 */
bb3ab596
KM
2621 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2622 if (has_under_min_watermark_zone)
2623 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2624 else
2625 congestion_wait(BLK_RW_ASYNC, HZ/10);
2626 }
1da177e4
LT
2627
2628 /*
2629 * We do this so kswapd doesn't build up large priorities for
2630 * example when it is freeing in parallel with allocators. It
2631 * matches the direct reclaim path behaviour in terms of impact
2632 * on zone->*_priority.
2633 */
a79311c1 2634 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2635 break;
2636 }
2637out:
99504748
MG
2638
2639 /*
2640 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2641 * high-order: Balanced zones must make up at least 25% of the node
2642 * for the node to be balanced
99504748 2643 */
dc83edd9 2644 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2645 cond_resched();
8357376d
RW
2646
2647 try_to_freeze();
2648
73ce02e9
KM
2649 /*
2650 * Fragmentation may mean that the system cannot be
2651 * rebalanced for high-order allocations in all zones.
2652 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2653 * it means the zones have been fully scanned and are still
2654 * not balanced. For high-order allocations, there is
2655 * little point trying all over again as kswapd may
2656 * infinite loop.
2657 *
2658 * Instead, recheck all watermarks at order-0 as they
2659 * are the most important. If watermarks are ok, kswapd will go
2660 * back to sleep. High-order users can still perform direct
2661 * reclaim if they wish.
2662 */
2663 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2664 order = sc.order = 0;
2665
1da177e4
LT
2666 goto loop_again;
2667 }
2668
99504748
MG
2669 /*
2670 * If kswapd was reclaiming at a higher order, it has the option of
2671 * sleeping without all zones being balanced. Before it does, it must
2672 * ensure that the watermarks for order-0 on *all* zones are met and
2673 * that the congestion flags are cleared. The congestion flag must
2674 * be cleared as kswapd is the only mechanism that clears the flag
2675 * and it is potentially going to sleep here.
2676 */
2677 if (order) {
2678 for (i = 0; i <= end_zone; i++) {
2679 struct zone *zone = pgdat->node_zones + i;
2680
2681 if (!populated_zone(zone))
2682 continue;
2683
2684 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2685 continue;
2686
2687 /* Confirm the zone is balanced for order-0 */
2688 if (!zone_watermark_ok(zone, 0,
2689 high_wmark_pages(zone), 0, 0)) {
2690 order = sc.order = 0;
2691 goto loop_again;
2692 }
2693
2694 /* If balanced, clear the congested flag */
2695 zone_clear_flag(zone, ZONE_CONGESTED);
2696 }
2697 }
2698
0abdee2b
MG
2699 /*
2700 * Return the order we were reclaiming at so sleeping_prematurely()
2701 * makes a decision on the order we were last reclaiming at. However,
2702 * if another caller entered the allocator slow path while kswapd
2703 * was awake, order will remain at the higher level
2704 */
dc83edd9 2705 *classzone_idx = end_zone;
0abdee2b 2706 return order;
1da177e4
LT
2707}
2708
dc83edd9 2709static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2710{
2711 long remaining = 0;
2712 DEFINE_WAIT(wait);
2713
2714 if (freezing(current) || kthread_should_stop())
2715 return;
2716
2717 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2718
2719 /* Try to sleep for a short interval */
dc83edd9 2720 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2721 remaining = schedule_timeout(HZ/10);
2722 finish_wait(&pgdat->kswapd_wait, &wait);
2723 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2724 }
2725
2726 /*
2727 * After a short sleep, check if it was a premature sleep. If not, then
2728 * go fully to sleep until explicitly woken up.
2729 */
dc83edd9 2730 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2731 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2732
2733 /*
2734 * vmstat counters are not perfectly accurate and the estimated
2735 * value for counters such as NR_FREE_PAGES can deviate from the
2736 * true value by nr_online_cpus * threshold. To avoid the zone
2737 * watermarks being breached while under pressure, we reduce the
2738 * per-cpu vmstat threshold while kswapd is awake and restore
2739 * them before going back to sleep.
2740 */
2741 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2742 schedule();
2743 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2744 } else {
2745 if (remaining)
2746 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2747 else
2748 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2749 }
2750 finish_wait(&pgdat->kswapd_wait, &wait);
2751}
2752
1da177e4
LT
2753/*
2754 * The background pageout daemon, started as a kernel thread
4f98a2fe 2755 * from the init process.
1da177e4
LT
2756 *
2757 * This basically trickles out pages so that we have _some_
2758 * free memory available even if there is no other activity
2759 * that frees anything up. This is needed for things like routing
2760 * etc, where we otherwise might have all activity going on in
2761 * asynchronous contexts that cannot page things out.
2762 *
2763 * If there are applications that are active memory-allocators
2764 * (most normal use), this basically shouldn't matter.
2765 */
2766static int kswapd(void *p)
2767{
215ddd66
MG
2768 unsigned long order, new_order;
2769 int classzone_idx, new_classzone_idx;
1da177e4
LT
2770 pg_data_t *pgdat = (pg_data_t*)p;
2771 struct task_struct *tsk = current;
f0bc0a60 2772
1da177e4
LT
2773 struct reclaim_state reclaim_state = {
2774 .reclaimed_slab = 0,
2775 };
a70f7302 2776 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2777
cf40bd16
NP
2778 lockdep_set_current_reclaim_state(GFP_KERNEL);
2779
174596a0 2780 if (!cpumask_empty(cpumask))
c5f59f08 2781 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2782 current->reclaim_state = &reclaim_state;
2783
2784 /*
2785 * Tell the memory management that we're a "memory allocator",
2786 * and that if we need more memory we should get access to it
2787 * regardless (see "__alloc_pages()"). "kswapd" should
2788 * never get caught in the normal page freeing logic.
2789 *
2790 * (Kswapd normally doesn't need memory anyway, but sometimes
2791 * you need a small amount of memory in order to be able to
2792 * page out something else, and this flag essentially protects
2793 * us from recursively trying to free more memory as we're
2794 * trying to free the first piece of memory in the first place).
2795 */
930d9152 2796 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2797 set_freezable();
1da177e4 2798
215ddd66
MG
2799 order = new_order = 0;
2800 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
1da177e4 2801 for ( ; ; ) {
8fe23e05 2802 int ret;
3e1d1d28 2803
215ddd66
MG
2804 /*
2805 * If the last balance_pgdat was unsuccessful it's unlikely a
2806 * new request of a similar or harder type will succeed soon
2807 * so consider going to sleep on the basis we reclaimed at
2808 */
2809 if (classzone_idx >= new_classzone_idx && order == new_order) {
2810 new_order = pgdat->kswapd_max_order;
2811 new_classzone_idx = pgdat->classzone_idx;
2812 pgdat->kswapd_max_order = 0;
2813 pgdat->classzone_idx = pgdat->nr_zones - 1;
2814 }
2815
99504748 2816 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2817 /*
2818 * Don't sleep if someone wants a larger 'order'
99504748 2819 * allocation or has tigher zone constraints
1da177e4
LT
2820 */
2821 order = new_order;
99504748 2822 classzone_idx = new_classzone_idx;
1da177e4 2823 } else {
dc83edd9 2824 kswapd_try_to_sleep(pgdat, order, classzone_idx);
1da177e4 2825 order = pgdat->kswapd_max_order;
99504748 2826 classzone_idx = pgdat->classzone_idx;
4d40502e 2827 pgdat->kswapd_max_order = 0;
215ddd66 2828 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2829 }
1da177e4 2830
8fe23e05
DR
2831 ret = try_to_freeze();
2832 if (kthread_should_stop())
2833 break;
2834
2835 /*
2836 * We can speed up thawing tasks if we don't call balance_pgdat
2837 * after returning from the refrigerator
2838 */
33906bc5
MG
2839 if (!ret) {
2840 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
dc83edd9 2841 order = balance_pgdat(pgdat, order, &classzone_idx);
33906bc5 2842 }
1da177e4
LT
2843 }
2844 return 0;
2845}
2846
2847/*
2848 * A zone is low on free memory, so wake its kswapd task to service it.
2849 */
99504748 2850void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2851{
2852 pg_data_t *pgdat;
2853
f3fe6512 2854 if (!populated_zone(zone))
1da177e4
LT
2855 return;
2856
88f5acf8 2857 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2858 return;
88f5acf8 2859 pgdat = zone->zone_pgdat;
99504748 2860 if (pgdat->kswapd_max_order < order) {
1da177e4 2861 pgdat->kswapd_max_order = order;
99504748
MG
2862 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2863 }
8d0986e2 2864 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2865 return;
88f5acf8
MG
2866 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2867 return;
2868
2869 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2870 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2871}
2872
adea02a1
WF
2873/*
2874 * The reclaimable count would be mostly accurate.
2875 * The less reclaimable pages may be
2876 * - mlocked pages, which will be moved to unevictable list when encountered
2877 * - mapped pages, which may require several travels to be reclaimed
2878 * - dirty pages, which is not "instantly" reclaimable
2879 */
2880unsigned long global_reclaimable_pages(void)
4f98a2fe 2881{
adea02a1
WF
2882 int nr;
2883
2884 nr = global_page_state(NR_ACTIVE_FILE) +
2885 global_page_state(NR_INACTIVE_FILE);
2886
2887 if (nr_swap_pages > 0)
2888 nr += global_page_state(NR_ACTIVE_ANON) +
2889 global_page_state(NR_INACTIVE_ANON);
2890
2891 return nr;
2892}
2893
2894unsigned long zone_reclaimable_pages(struct zone *zone)
2895{
2896 int nr;
2897
2898 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2899 zone_page_state(zone, NR_INACTIVE_FILE);
2900
2901 if (nr_swap_pages > 0)
2902 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2903 zone_page_state(zone, NR_INACTIVE_ANON);
2904
2905 return nr;
4f98a2fe
RR
2906}
2907
c6f37f12 2908#ifdef CONFIG_HIBERNATION
1da177e4 2909/*
7b51755c 2910 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2911 * freed pages.
2912 *
2913 * Rather than trying to age LRUs the aim is to preserve the overall
2914 * LRU order by reclaiming preferentially
2915 * inactive > active > active referenced > active mapped
1da177e4 2916 */
7b51755c 2917unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2918{
d6277db4 2919 struct reclaim_state reclaim_state;
d6277db4 2920 struct scan_control sc = {
7b51755c
KM
2921 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2922 .may_swap = 1,
2923 .may_unmap = 1,
d6277db4 2924 .may_writepage = 1,
7b51755c
KM
2925 .nr_to_reclaim = nr_to_reclaim,
2926 .hibernation_mode = 1,
7b51755c 2927 .order = 0,
1da177e4 2928 };
a09ed5e0
YH
2929 struct shrink_control shrink = {
2930 .gfp_mask = sc.gfp_mask,
2931 };
2932 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2933 struct task_struct *p = current;
2934 unsigned long nr_reclaimed;
1da177e4 2935
7b51755c
KM
2936 p->flags |= PF_MEMALLOC;
2937 lockdep_set_current_reclaim_state(sc.gfp_mask);
2938 reclaim_state.reclaimed_slab = 0;
2939 p->reclaim_state = &reclaim_state;
d6277db4 2940
a09ed5e0 2941 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2942
7b51755c
KM
2943 p->reclaim_state = NULL;
2944 lockdep_clear_current_reclaim_state();
2945 p->flags &= ~PF_MEMALLOC;
d6277db4 2946
7b51755c 2947 return nr_reclaimed;
1da177e4 2948}
c6f37f12 2949#endif /* CONFIG_HIBERNATION */
1da177e4 2950
1da177e4
LT
2951/* It's optimal to keep kswapds on the same CPUs as their memory, but
2952 not required for correctness. So if the last cpu in a node goes
2953 away, we get changed to run anywhere: as the first one comes back,
2954 restore their cpu bindings. */
9c7b216d 2955static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2956 unsigned long action, void *hcpu)
1da177e4 2957{
58c0a4a7 2958 int nid;
1da177e4 2959
8bb78442 2960 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2961 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2962 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2963 const struct cpumask *mask;
2964
2965 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2966
3e597945 2967 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2968 /* One of our CPUs online: restore mask */
c5f59f08 2969 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2970 }
2971 }
2972 return NOTIFY_OK;
2973}
1da177e4 2974
3218ae14
YG
2975/*
2976 * This kswapd start function will be called by init and node-hot-add.
2977 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2978 */
2979int kswapd_run(int nid)
2980{
2981 pg_data_t *pgdat = NODE_DATA(nid);
2982 int ret = 0;
2983
2984 if (pgdat->kswapd)
2985 return 0;
2986
2987 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2988 if (IS_ERR(pgdat->kswapd)) {
2989 /* failure at boot is fatal */
2990 BUG_ON(system_state == SYSTEM_BOOTING);
2991 printk("Failed to start kswapd on node %d\n",nid);
2992 ret = -1;
2993 }
2994 return ret;
2995}
2996
8fe23e05
DR
2997/*
2998 * Called by memory hotplug when all memory in a node is offlined.
2999 */
3000void kswapd_stop(int nid)
3001{
3002 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3003
3004 if (kswapd)
3005 kthread_stop(kswapd);
3006}
3007
1da177e4
LT
3008static int __init kswapd_init(void)
3009{
3218ae14 3010 int nid;
69e05944 3011
1da177e4 3012 swap_setup();
9422ffba 3013 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3014 kswapd_run(nid);
1da177e4
LT
3015 hotcpu_notifier(cpu_callback, 0);
3016 return 0;
3017}
3018
3019module_init(kswapd_init)
9eeff239
CL
3020
3021#ifdef CONFIG_NUMA
3022/*
3023 * Zone reclaim mode
3024 *
3025 * If non-zero call zone_reclaim when the number of free pages falls below
3026 * the watermarks.
9eeff239
CL
3027 */
3028int zone_reclaim_mode __read_mostly;
3029
1b2ffb78 3030#define RECLAIM_OFF 0
7d03431c 3031#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3032#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3033#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3034
a92f7126
CL
3035/*
3036 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3037 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3038 * a zone.
3039 */
3040#define ZONE_RECLAIM_PRIORITY 4
3041
9614634f
CL
3042/*
3043 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3044 * occur.
3045 */
3046int sysctl_min_unmapped_ratio = 1;
3047
0ff38490
CL
3048/*
3049 * If the number of slab pages in a zone grows beyond this percentage then
3050 * slab reclaim needs to occur.
3051 */
3052int sysctl_min_slab_ratio = 5;
3053
90afa5de
MG
3054static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3055{
3056 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3057 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3058 zone_page_state(zone, NR_ACTIVE_FILE);
3059
3060 /*
3061 * It's possible for there to be more file mapped pages than
3062 * accounted for by the pages on the file LRU lists because
3063 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3064 */
3065 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3066}
3067
3068/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3069static long zone_pagecache_reclaimable(struct zone *zone)
3070{
3071 long nr_pagecache_reclaimable;
3072 long delta = 0;
3073
3074 /*
3075 * If RECLAIM_SWAP is set, then all file pages are considered
3076 * potentially reclaimable. Otherwise, we have to worry about
3077 * pages like swapcache and zone_unmapped_file_pages() provides
3078 * a better estimate
3079 */
3080 if (zone_reclaim_mode & RECLAIM_SWAP)
3081 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3082 else
3083 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3084
3085 /* If we can't clean pages, remove dirty pages from consideration */
3086 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3087 delta += zone_page_state(zone, NR_FILE_DIRTY);
3088
3089 /* Watch for any possible underflows due to delta */
3090 if (unlikely(delta > nr_pagecache_reclaimable))
3091 delta = nr_pagecache_reclaimable;
3092
3093 return nr_pagecache_reclaimable - delta;
3094}
3095
9eeff239
CL
3096/*
3097 * Try to free up some pages from this zone through reclaim.
3098 */
179e9639 3099static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3100{
7fb2d46d 3101 /* Minimum pages needed in order to stay on node */
69e05944 3102 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3103 struct task_struct *p = current;
3104 struct reclaim_state reclaim_state;
8695949a 3105 int priority;
179e9639
AM
3106 struct scan_control sc = {
3107 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3108 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3109 .may_swap = 1,
22fba335
KM
3110 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3111 SWAP_CLUSTER_MAX),
179e9639 3112 .gfp_mask = gfp_mask,
bd2f6199 3113 .order = order,
179e9639 3114 };
a09ed5e0
YH
3115 struct shrink_control shrink = {
3116 .gfp_mask = sc.gfp_mask,
3117 };
15748048 3118 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3119
9eeff239 3120 cond_resched();
d4f7796e
CL
3121 /*
3122 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3123 * and we also need to be able to write out pages for RECLAIM_WRITE
3124 * and RECLAIM_SWAP.
3125 */
3126 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3127 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3128 reclaim_state.reclaimed_slab = 0;
3129 p->reclaim_state = &reclaim_state;
c84db23c 3130
90afa5de 3131 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3132 /*
3133 * Free memory by calling shrink zone with increasing
3134 * priorities until we have enough memory freed.
3135 */
3136 priority = ZONE_RECLAIM_PRIORITY;
3137 do {
a79311c1 3138 shrink_zone(priority, zone, &sc);
0ff38490 3139 priority--;
a79311c1 3140 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3141 }
c84db23c 3142
15748048
KM
3143 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3144 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3145 /*
7fb2d46d 3146 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3147 * many pages were freed in this zone. So we take the current
3148 * number of slab pages and shake the slab until it is reduced
3149 * by the same nr_pages that we used for reclaiming unmapped
3150 * pages.
2a16e3f4 3151 *
0ff38490
CL
3152 * Note that shrink_slab will free memory on all zones and may
3153 * take a long time.
2a16e3f4 3154 */
4dc4b3d9
KM
3155 for (;;) {
3156 unsigned long lru_pages = zone_reclaimable_pages(zone);
3157
3158 /* No reclaimable slab or very low memory pressure */
1495f230 3159 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3160 break;
3161
3162 /* Freed enough memory */
3163 nr_slab_pages1 = zone_page_state(zone,
3164 NR_SLAB_RECLAIMABLE);
3165 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3166 break;
3167 }
83e33a47
CL
3168
3169 /*
3170 * Update nr_reclaimed by the number of slab pages we
3171 * reclaimed from this zone.
3172 */
15748048
KM
3173 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3174 if (nr_slab_pages1 < nr_slab_pages0)
3175 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3176 }
3177
9eeff239 3178 p->reclaim_state = NULL;
d4f7796e 3179 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3180 lockdep_clear_current_reclaim_state();
a79311c1 3181 return sc.nr_reclaimed >= nr_pages;
9eeff239 3182}
179e9639
AM
3183
3184int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3185{
179e9639 3186 int node_id;
d773ed6b 3187 int ret;
179e9639
AM
3188
3189 /*
0ff38490
CL
3190 * Zone reclaim reclaims unmapped file backed pages and
3191 * slab pages if we are over the defined limits.
34aa1330 3192 *
9614634f
CL
3193 * A small portion of unmapped file backed pages is needed for
3194 * file I/O otherwise pages read by file I/O will be immediately
3195 * thrown out if the zone is overallocated. So we do not reclaim
3196 * if less than a specified percentage of the zone is used by
3197 * unmapped file backed pages.
179e9639 3198 */
90afa5de
MG
3199 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3200 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3201 return ZONE_RECLAIM_FULL;
179e9639 3202
93e4a89a 3203 if (zone->all_unreclaimable)
fa5e084e 3204 return ZONE_RECLAIM_FULL;
d773ed6b 3205
179e9639 3206 /*
d773ed6b 3207 * Do not scan if the allocation should not be delayed.
179e9639 3208 */
d773ed6b 3209 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3210 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3211
3212 /*
3213 * Only run zone reclaim on the local zone or on zones that do not
3214 * have associated processors. This will favor the local processor
3215 * over remote processors and spread off node memory allocations
3216 * as wide as possible.
3217 */
89fa3024 3218 node_id = zone_to_nid(zone);
37c0708d 3219 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3220 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3221
3222 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3223 return ZONE_RECLAIM_NOSCAN;
3224
d773ed6b
DR
3225 ret = __zone_reclaim(zone, gfp_mask, order);
3226 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3227
24cf7251
MG
3228 if (!ret)
3229 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3230
d773ed6b 3231 return ret;
179e9639 3232}
9eeff239 3233#endif
894bc310 3234
894bc310
LS
3235/*
3236 * page_evictable - test whether a page is evictable
3237 * @page: the page to test
3238 * @vma: the VMA in which the page is or will be mapped, may be NULL
3239 *
3240 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3241 * lists vs unevictable list. The vma argument is !NULL when called from the
3242 * fault path to determine how to instantate a new page.
894bc310
LS
3243 *
3244 * Reasons page might not be evictable:
ba9ddf49 3245 * (1) page's mapping marked unevictable
b291f000 3246 * (2) page is part of an mlocked VMA
ba9ddf49 3247 *
894bc310
LS
3248 */
3249int page_evictable(struct page *page, struct vm_area_struct *vma)
3250{
3251
ba9ddf49
LS
3252 if (mapping_unevictable(page_mapping(page)))
3253 return 0;
3254
b291f000
NP
3255 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3256 return 0;
894bc310
LS
3257
3258 return 1;
3259}
89e004ea
LS
3260
3261/**
3262 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3263 * @page: page to check evictability and move to appropriate lru list
3264 * @zone: zone page is in
3265 *
3266 * Checks a page for evictability and moves the page to the appropriate
3267 * zone lru list.
3268 *
3269 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3270 * have PageUnevictable set.
3271 */
3272static void check_move_unevictable_page(struct page *page, struct zone *zone)
3273{
3274 VM_BUG_ON(PageActive(page));
3275
3276retry:
3277 ClearPageUnevictable(page);
3278 if (page_evictable(page, NULL)) {
401a8e1c 3279 enum lru_list l = page_lru_base_type(page);
af936a16 3280
89e004ea
LS
3281 __dec_zone_state(zone, NR_UNEVICTABLE);
3282 list_move(&page->lru, &zone->lru[l].list);
08e552c6 3283 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
3284 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3285 __count_vm_event(UNEVICTABLE_PGRESCUED);
3286 } else {
3287 /*
3288 * rotate unevictable list
3289 */
3290 SetPageUnevictable(page);
3291 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 3292 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
3293 if (page_evictable(page, NULL))
3294 goto retry;
3295 }
3296}
3297
3298/**
3299 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3300 * @mapping: struct address_space to scan for evictable pages
3301 *
3302 * Scan all pages in mapping. Check unevictable pages for
3303 * evictability and move them to the appropriate zone lru list.
3304 */
3305void scan_mapping_unevictable_pages(struct address_space *mapping)
3306{
3307 pgoff_t next = 0;
3308 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3309 PAGE_CACHE_SHIFT;
3310 struct zone *zone;
3311 struct pagevec pvec;
3312
3313 if (mapping->nrpages == 0)
3314 return;
3315
3316 pagevec_init(&pvec, 0);
3317 while (next < end &&
3318 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3319 int i;
3320 int pg_scanned = 0;
3321
3322 zone = NULL;
3323
3324 for (i = 0; i < pagevec_count(&pvec); i++) {
3325 struct page *page = pvec.pages[i];
3326 pgoff_t page_index = page->index;
3327 struct zone *pagezone = page_zone(page);
3328
3329 pg_scanned++;
3330 if (page_index > next)
3331 next = page_index;
3332 next++;
3333
3334 if (pagezone != zone) {
3335 if (zone)
3336 spin_unlock_irq(&zone->lru_lock);
3337 zone = pagezone;
3338 spin_lock_irq(&zone->lru_lock);
3339 }
3340
3341 if (PageLRU(page) && PageUnevictable(page))
3342 check_move_unevictable_page(page, zone);
3343 }
3344 if (zone)
3345 spin_unlock_irq(&zone->lru_lock);
3346 pagevec_release(&pvec);
3347
3348 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3349 }
3350
3351}
af936a16
LS
3352
3353/**
3354 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3355 * @zone - zone of which to scan the unevictable list
3356 *
3357 * Scan @zone's unevictable LRU lists to check for pages that have become
3358 * evictable. Move those that have to @zone's inactive list where they
3359 * become candidates for reclaim, unless shrink_inactive_zone() decides
3360 * to reactivate them. Pages that are still unevictable are rotated
3361 * back onto @zone's unevictable list.
3362 */
3363#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 3364static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
3365{
3366 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3367 unsigned long scan;
3368 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3369
3370 while (nr_to_scan > 0) {
3371 unsigned long batch_size = min(nr_to_scan,
3372 SCAN_UNEVICTABLE_BATCH_SIZE);
3373
3374 spin_lock_irq(&zone->lru_lock);
3375 for (scan = 0; scan < batch_size; scan++) {
3376 struct page *page = lru_to_page(l_unevictable);
3377
3378 if (!trylock_page(page))
3379 continue;
3380
3381 prefetchw_prev_lru_page(page, l_unevictable, flags);
3382
3383 if (likely(PageLRU(page) && PageUnevictable(page)))
3384 check_move_unevictable_page(page, zone);
3385
3386 unlock_page(page);
3387 }
3388 spin_unlock_irq(&zone->lru_lock);
3389
3390 nr_to_scan -= batch_size;
3391 }
3392}
3393
3394
3395/**
3396 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3397 *
3398 * A really big hammer: scan all zones' unevictable LRU lists to check for
3399 * pages that have become evictable. Move those back to the zones'
3400 * inactive list where they become candidates for reclaim.
3401 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3402 * and we add swap to the system. As such, it runs in the context of a task
3403 * that has possibly/probably made some previously unevictable pages
3404 * evictable.
3405 */
ff30153b 3406static void scan_all_zones_unevictable_pages(void)
af936a16
LS
3407{
3408 struct zone *zone;
3409
3410 for_each_zone(zone) {
3411 scan_zone_unevictable_pages(zone);
3412 }
3413}
3414
3415/*
3416 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3417 * all nodes' unevictable lists for evictable pages
3418 */
3419unsigned long scan_unevictable_pages;
3420
3421int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3422 void __user *buffer,
af936a16
LS
3423 size_t *length, loff_t *ppos)
3424{
8d65af78 3425 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3426
3427 if (write && *(unsigned long *)table->data)
3428 scan_all_zones_unevictable_pages();
3429
3430 scan_unevictable_pages = 0;
3431 return 0;
3432}
3433
e4455abb 3434#ifdef CONFIG_NUMA
af936a16
LS
3435/*
3436 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3437 * a specified node's per zone unevictable lists for evictable pages.
3438 */
3439
3440static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3441 struct sysdev_attribute *attr,
3442 char *buf)
3443{
3444 return sprintf(buf, "0\n"); /* always zero; should fit... */
3445}
3446
3447static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3448 struct sysdev_attribute *attr,
3449 const char *buf, size_t count)
3450{
3451 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3452 struct zone *zone;
3453 unsigned long res;
3454 unsigned long req = strict_strtoul(buf, 10, &res);
3455
3456 if (!req)
3457 return 1; /* zero is no-op */
3458
3459 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3460 if (!populated_zone(zone))
3461 continue;
3462 scan_zone_unevictable_pages(zone);
3463 }
3464 return 1;
3465}
3466
3467
3468static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3469 read_scan_unevictable_node,
3470 write_scan_unevictable_node);
3471
3472int scan_unevictable_register_node(struct node *node)
3473{
3474 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3475}
3476
3477void scan_unevictable_unregister_node(struct node *node)
3478{
3479 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3480}
e4455abb 3481#endif