]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
drivers: virtio_mem: use pageblock size as the minimum virtio_mem size.
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
26aa2d19 44#include <linux/migrate.h>
873b4771 45#include <linux/delayacct.h>
af936a16 46#include <linux/sysctl.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
55#include <asm/div64.h>
56
57#include <linux/swapops.h>
117aad1e 58#include <linux/balloon_compaction.h>
c574bbe9 59#include <linux/sched/sysctl.h>
1da177e4 60
0f8053a5 61#include "internal.h"
014bb1de 62#include "swap.h"
0f8053a5 63
33906bc5
MG
64#define CREATE_TRACE_POINTS
65#include <trace/events/vmscan.h>
66
1da177e4 67struct scan_control {
22fba335
KM
68 /* How many pages shrink_list() should reclaim */
69 unsigned long nr_to_reclaim;
70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
7cf111bc
JW
83 /*
84 * Scan pressure balancing between anon and file LRUs
85 */
86 unsigned long anon_cost;
87 unsigned long file_cost;
88
b91ac374
JW
89 /* Can active pages be deactivated as part of reclaim? */
90#define DEACTIVATE_ANON 1
91#define DEACTIVATE_FILE 2
92 unsigned int may_deactivate:2;
93 unsigned int force_deactivate:1;
94 unsigned int skipped_deactivate:1;
95
1276ad68 96 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
97 unsigned int may_writepage:1;
98
99 /* Can mapped pages be reclaimed? */
100 unsigned int may_unmap:1;
101
102 /* Can pages be swapped as part of reclaim? */
103 unsigned int may_swap:1;
104
d6622f63 105 /*
f56ce412
JW
106 * Cgroup memory below memory.low is protected as long as we
107 * don't threaten to OOM. If any cgroup is reclaimed at
108 * reduced force or passed over entirely due to its memory.low
109 * setting (memcg_low_skipped), and nothing is reclaimed as a
110 * result, then go back for one more cycle that reclaims the protected
111 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
112 */
113 unsigned int memcg_low_reclaim:1;
114 unsigned int memcg_low_skipped:1;
241994ed 115
ee814fe2
JW
116 unsigned int hibernation_mode:1;
117
118 /* One of the zones is ready for compaction */
119 unsigned int compaction_ready:1;
120
b91ac374
JW
121 /* There is easily reclaimable cold cache in the current node */
122 unsigned int cache_trim_mode:1;
123
53138cea
JW
124 /* The file pages on the current node are dangerously low */
125 unsigned int file_is_tiny:1;
126
26aa2d19
DH
127 /* Always discard instead of demoting to lower tier memory */
128 unsigned int no_demotion:1;
129
bb451fdf
GT
130 /* Allocation order */
131 s8 order;
132
133 /* Scan (total_size >> priority) pages at once */
134 s8 priority;
135
136 /* The highest zone to isolate pages for reclaim from */
137 s8 reclaim_idx;
138
139 /* This context's GFP mask */
140 gfp_t gfp_mask;
141
ee814fe2
JW
142 /* Incremented by the number of inactive pages that were scanned */
143 unsigned long nr_scanned;
144
145 /* Number of pages freed so far during a call to shrink_zones() */
146 unsigned long nr_reclaimed;
d108c772
AR
147
148 struct {
149 unsigned int dirty;
150 unsigned int unqueued_dirty;
151 unsigned int congested;
152 unsigned int writeback;
153 unsigned int immediate;
154 unsigned int file_taken;
155 unsigned int taken;
156 } nr;
e5ca8071
YS
157
158 /* for recording the reclaimed slab by now */
159 struct reclaim_state reclaim_state;
1da177e4
LT
160};
161
1da177e4
LT
162#ifdef ARCH_HAS_PREFETCHW
163#define prefetchw_prev_lru_page(_page, _base, _field) \
164 do { \
165 if ((_page)->lru.prev != _base) { \
166 struct page *prev; \
167 \
168 prev = lru_to_page(&(_page->lru)); \
169 prefetchw(&prev->_field); \
170 } \
171 } while (0)
172#else
173#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
174#endif
175
176/*
c843966c 177 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
178 */
179int vm_swappiness = 60;
1da177e4 180
0a432dcb
YS
181static void set_task_reclaim_state(struct task_struct *task,
182 struct reclaim_state *rs)
183{
184 /* Check for an overwrite */
185 WARN_ON_ONCE(rs && task->reclaim_state);
186
187 /* Check for the nulling of an already-nulled member */
188 WARN_ON_ONCE(!rs && !task->reclaim_state);
189
190 task->reclaim_state = rs;
191}
192
1da177e4
LT
193static LIST_HEAD(shrinker_list);
194static DECLARE_RWSEM(shrinker_rwsem);
195
0a432dcb 196#ifdef CONFIG_MEMCG
a2fb1261 197static int shrinker_nr_max;
2bfd3637 198
3c6f17e6 199/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
200static inline int shrinker_map_size(int nr_items)
201{
202 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
203}
2bfd3637 204
3c6f17e6
YS
205static inline int shrinker_defer_size(int nr_items)
206{
207 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
208}
209
468ab843
YS
210static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
211 int nid)
212{
213 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
214 lockdep_is_held(&shrinker_rwsem));
215}
216
e4262c4f 217static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
218 int map_size, int defer_size,
219 int old_map_size, int old_defer_size)
2bfd3637 220{
e4262c4f 221 struct shrinker_info *new, *old;
2bfd3637
YS
222 struct mem_cgroup_per_node *pn;
223 int nid;
3c6f17e6 224 int size = map_size + defer_size;
2bfd3637 225
2bfd3637
YS
226 for_each_node(nid) {
227 pn = memcg->nodeinfo[nid];
468ab843 228 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
229 /* Not yet online memcg */
230 if (!old)
231 return 0;
232
233 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
234 if (!new)
235 return -ENOMEM;
236
3c6f17e6
YS
237 new->nr_deferred = (atomic_long_t *)(new + 1);
238 new->map = (void *)new->nr_deferred + defer_size;
239
240 /* map: set all old bits, clear all new bits */
241 memset(new->map, (int)0xff, old_map_size);
242 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
243 /* nr_deferred: copy old values, clear all new values */
244 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
245 memset((void *)new->nr_deferred + old_defer_size, 0,
246 defer_size - old_defer_size);
2bfd3637 247
e4262c4f 248 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 249 kvfree_rcu(old, rcu);
2bfd3637
YS
250 }
251
252 return 0;
253}
254
e4262c4f 255void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
256{
257 struct mem_cgroup_per_node *pn;
e4262c4f 258 struct shrinker_info *info;
2bfd3637
YS
259 int nid;
260
2bfd3637
YS
261 for_each_node(nid) {
262 pn = memcg->nodeinfo[nid];
e4262c4f
YS
263 info = rcu_dereference_protected(pn->shrinker_info, true);
264 kvfree(info);
265 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
266 }
267}
268
e4262c4f 269int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 270{
e4262c4f 271 struct shrinker_info *info;
2bfd3637 272 int nid, size, ret = 0;
3c6f17e6 273 int map_size, defer_size = 0;
2bfd3637 274
d27cf2aa 275 down_write(&shrinker_rwsem);
3c6f17e6
YS
276 map_size = shrinker_map_size(shrinker_nr_max);
277 defer_size = shrinker_defer_size(shrinker_nr_max);
278 size = map_size + defer_size;
2bfd3637 279 for_each_node(nid) {
e4262c4f
YS
280 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
281 if (!info) {
282 free_shrinker_info(memcg);
2bfd3637
YS
283 ret = -ENOMEM;
284 break;
285 }
3c6f17e6
YS
286 info->nr_deferred = (atomic_long_t *)(info + 1);
287 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 288 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 289 }
d27cf2aa 290 up_write(&shrinker_rwsem);
2bfd3637
YS
291
292 return ret;
293}
294
3c6f17e6
YS
295static inline bool need_expand(int nr_max)
296{
297 return round_up(nr_max, BITS_PER_LONG) >
298 round_up(shrinker_nr_max, BITS_PER_LONG);
299}
300
e4262c4f 301static int expand_shrinker_info(int new_id)
2bfd3637 302{
3c6f17e6 303 int ret = 0;
a2fb1261 304 int new_nr_max = new_id + 1;
3c6f17e6
YS
305 int map_size, defer_size = 0;
306 int old_map_size, old_defer_size = 0;
2bfd3637
YS
307 struct mem_cgroup *memcg;
308
3c6f17e6 309 if (!need_expand(new_nr_max))
a2fb1261 310 goto out;
2bfd3637 311
2bfd3637 312 if (!root_mem_cgroup)
d27cf2aa
YS
313 goto out;
314
315 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 316
3c6f17e6
YS
317 map_size = shrinker_map_size(new_nr_max);
318 defer_size = shrinker_defer_size(new_nr_max);
319 old_map_size = shrinker_map_size(shrinker_nr_max);
320 old_defer_size = shrinker_defer_size(shrinker_nr_max);
321
2bfd3637
YS
322 memcg = mem_cgroup_iter(NULL, NULL, NULL);
323 do {
3c6f17e6
YS
324 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
325 old_map_size, old_defer_size);
2bfd3637
YS
326 if (ret) {
327 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 328 goto out;
2bfd3637
YS
329 }
330 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 331out:
2bfd3637 332 if (!ret)
a2fb1261 333 shrinker_nr_max = new_nr_max;
d27cf2aa 334
2bfd3637
YS
335 return ret;
336}
337
338void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
339{
340 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 341 struct shrinker_info *info;
2bfd3637
YS
342
343 rcu_read_lock();
e4262c4f 344 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
345 /* Pairs with smp mb in shrink_slab() */
346 smp_mb__before_atomic();
e4262c4f 347 set_bit(shrinker_id, info->map);
2bfd3637
YS
348 rcu_read_unlock();
349 }
350}
351
b4c2b231 352static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
353
354static int prealloc_memcg_shrinker(struct shrinker *shrinker)
355{
356 int id, ret = -ENOMEM;
357
476b30a0
YS
358 if (mem_cgroup_disabled())
359 return -ENOSYS;
360
b4c2b231
KT
361 down_write(&shrinker_rwsem);
362 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 363 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
364 if (id < 0)
365 goto unlock;
366
0a4465d3 367 if (id >= shrinker_nr_max) {
e4262c4f 368 if (expand_shrinker_info(id)) {
0a4465d3
KT
369 idr_remove(&shrinker_idr, id);
370 goto unlock;
371 }
0a4465d3 372 }
b4c2b231
KT
373 shrinker->id = id;
374 ret = 0;
375unlock:
376 up_write(&shrinker_rwsem);
377 return ret;
378}
379
380static void unregister_memcg_shrinker(struct shrinker *shrinker)
381{
382 int id = shrinker->id;
383
384 BUG_ON(id < 0);
385
41ca668a
YS
386 lockdep_assert_held(&shrinker_rwsem);
387
b4c2b231 388 idr_remove(&shrinker_idr, id);
b4c2b231 389}
b4c2b231 390
86750830
YS
391static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
392 struct mem_cgroup *memcg)
393{
394 struct shrinker_info *info;
395
396 info = shrinker_info_protected(memcg, nid);
397 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
398}
399
400static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
401 struct mem_cgroup *memcg)
402{
403 struct shrinker_info *info;
404
405 info = shrinker_info_protected(memcg, nid);
406 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
407}
408
a178015c
YS
409void reparent_shrinker_deferred(struct mem_cgroup *memcg)
410{
411 int i, nid;
412 long nr;
413 struct mem_cgroup *parent;
414 struct shrinker_info *child_info, *parent_info;
415
416 parent = parent_mem_cgroup(memcg);
417 if (!parent)
418 parent = root_mem_cgroup;
419
420 /* Prevent from concurrent shrinker_info expand */
421 down_read(&shrinker_rwsem);
422 for_each_node(nid) {
423 child_info = shrinker_info_protected(memcg, nid);
424 parent_info = shrinker_info_protected(parent, nid);
425 for (i = 0; i < shrinker_nr_max; i++) {
426 nr = atomic_long_read(&child_info->nr_deferred[i]);
427 atomic_long_add(nr, &parent_info->nr_deferred[i]);
428 }
429 }
430 up_read(&shrinker_rwsem);
431}
432
b5ead35e 433static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 434{
b5ead35e 435 return sc->target_mem_cgroup;
89b5fae5 436}
97c9341f
TH
437
438/**
b5ead35e 439 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
440 * @sc: scan_control in question
441 *
442 * The normal page dirty throttling mechanism in balance_dirty_pages() is
443 * completely broken with the legacy memcg and direct stalling in
444 * shrink_page_list() is used for throttling instead, which lacks all the
445 * niceties such as fairness, adaptive pausing, bandwidth proportional
446 * allocation and configurability.
447 *
448 * This function tests whether the vmscan currently in progress can assume
449 * that the normal dirty throttling mechanism is operational.
450 */
b5ead35e 451static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 452{
b5ead35e 453 if (!cgroup_reclaim(sc))
97c9341f
TH
454 return true;
455#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 456 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
457 return true;
458#endif
459 return false;
460}
91a45470 461#else
0a432dcb
YS
462static int prealloc_memcg_shrinker(struct shrinker *shrinker)
463{
476b30a0 464 return -ENOSYS;
0a432dcb
YS
465}
466
467static void unregister_memcg_shrinker(struct shrinker *shrinker)
468{
469}
470
86750830
YS
471static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
472 struct mem_cgroup *memcg)
473{
474 return 0;
475}
476
477static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
478 struct mem_cgroup *memcg)
479{
480 return 0;
481}
482
b5ead35e 483static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 484{
b5ead35e 485 return false;
89b5fae5 486}
97c9341f 487
b5ead35e 488static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
489{
490 return true;
491}
91a45470
KH
492#endif
493
86750830
YS
494static long xchg_nr_deferred(struct shrinker *shrinker,
495 struct shrink_control *sc)
496{
497 int nid = sc->nid;
498
499 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
500 nid = 0;
501
502 if (sc->memcg &&
503 (shrinker->flags & SHRINKER_MEMCG_AWARE))
504 return xchg_nr_deferred_memcg(nid, shrinker,
505 sc->memcg);
506
507 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
508}
509
510
511static long add_nr_deferred(long nr, struct shrinker *shrinker,
512 struct shrink_control *sc)
513{
514 int nid = sc->nid;
515
516 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
517 nid = 0;
518
519 if (sc->memcg &&
520 (shrinker->flags & SHRINKER_MEMCG_AWARE))
521 return add_nr_deferred_memcg(nr, nid, shrinker,
522 sc->memcg);
523
524 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
525}
526
26aa2d19
DH
527static bool can_demote(int nid, struct scan_control *sc)
528{
20b51af1
HY
529 if (!numa_demotion_enabled)
530 return false;
3a235693
DH
531 if (sc) {
532 if (sc->no_demotion)
533 return false;
534 /* It is pointless to do demotion in memcg reclaim */
535 if (cgroup_reclaim(sc))
536 return false;
537 }
26aa2d19
DH
538 if (next_demotion_node(nid) == NUMA_NO_NODE)
539 return false;
540
20b51af1 541 return true;
26aa2d19
DH
542}
543
a2a36488
KB
544static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
545 int nid,
546 struct scan_control *sc)
547{
548 if (memcg == NULL) {
549 /*
550 * For non-memcg reclaim, is there
551 * space in any swap device?
552 */
553 if (get_nr_swap_pages() > 0)
554 return true;
555 } else {
556 /* Is the memcg below its swap limit? */
557 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
558 return true;
559 }
560
561 /*
562 * The page can not be swapped.
563 *
564 * Can it be reclaimed from this node via demotion?
565 */
566 return can_demote(nid, sc);
567}
568
5a1c84b4
MG
569/*
570 * This misses isolated pages which are not accounted for to save counters.
571 * As the data only determines if reclaim or compaction continues, it is
572 * not expected that isolated pages will be a dominating factor.
573 */
574unsigned long zone_reclaimable_pages(struct zone *zone)
575{
576 unsigned long nr;
577
578 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
579 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 580 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
581 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
582 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
583
584 return nr;
585}
586
fd538803
MH
587/**
588 * lruvec_lru_size - Returns the number of pages on the given LRU list.
589 * @lruvec: lru vector
590 * @lru: lru to use
8b3a899a 591 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
fd538803 592 */
2091339d
YZ
593static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
594 int zone_idx)
c9f299d9 595{
de3b0150 596 unsigned long size = 0;
fd538803
MH
597 int zid;
598
8b3a899a 599 for (zid = 0; zid <= zone_idx; zid++) {
fd538803 600 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 601
fd538803
MH
602 if (!managed_zone(zone))
603 continue;
604
605 if (!mem_cgroup_disabled())
de3b0150 606 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 607 else
de3b0150 608 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 609 }
de3b0150 610 return size;
b4536f0c
MH
611}
612
1da177e4 613/*
1d3d4437 614 * Add a shrinker callback to be called from the vm.
1da177e4 615 */
8e04944f 616int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 617{
476b30a0
YS
618 unsigned int size;
619 int err;
620
621 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
622 err = prealloc_memcg_shrinker(shrinker);
623 if (err != -ENOSYS)
624 return err;
1d3d4437 625
476b30a0
YS
626 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
627 }
628
629 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
630 if (shrinker->flags & SHRINKER_NUMA_AWARE)
631 size *= nr_node_ids;
632
633 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
634 if (!shrinker->nr_deferred)
635 return -ENOMEM;
b4c2b231 636
8e04944f
TH
637 return 0;
638}
639
640void free_prealloced_shrinker(struct shrinker *shrinker)
641{
41ca668a
YS
642 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
643 down_write(&shrinker_rwsem);
b4c2b231 644 unregister_memcg_shrinker(shrinker);
41ca668a 645 up_write(&shrinker_rwsem);
476b30a0 646 return;
41ca668a 647 }
b4c2b231 648
8e04944f
TH
649 kfree(shrinker->nr_deferred);
650 shrinker->nr_deferred = NULL;
651}
1d3d4437 652
8e04944f
TH
653void register_shrinker_prepared(struct shrinker *shrinker)
654{
8e1f936b
RR
655 down_write(&shrinker_rwsem);
656 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 657 shrinker->flags |= SHRINKER_REGISTERED;
8e1f936b 658 up_write(&shrinker_rwsem);
8e04944f
TH
659}
660
661int register_shrinker(struct shrinker *shrinker)
662{
663 int err = prealloc_shrinker(shrinker);
664
665 if (err)
666 return err;
667 register_shrinker_prepared(shrinker);
1d3d4437 668 return 0;
1da177e4 669}
8e1f936b 670EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
671
672/*
673 * Remove one
674 */
8e1f936b 675void unregister_shrinker(struct shrinker *shrinker)
1da177e4 676{
41ca668a 677 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 678 return;
41ca668a 679
1da177e4
LT
680 down_write(&shrinker_rwsem);
681 list_del(&shrinker->list);
41ca668a
YS
682 shrinker->flags &= ~SHRINKER_REGISTERED;
683 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
684 unregister_memcg_shrinker(shrinker);
1da177e4 685 up_write(&shrinker_rwsem);
41ca668a 686
ae393321 687 kfree(shrinker->nr_deferred);
bb422a73 688 shrinker->nr_deferred = NULL;
1da177e4 689}
8e1f936b 690EXPORT_SYMBOL(unregister_shrinker);
1da177e4 691
880121be
CK
692/**
693 * synchronize_shrinkers - Wait for all running shrinkers to complete.
694 *
695 * This is equivalent to calling unregister_shrink() and register_shrinker(),
696 * but atomically and with less overhead. This is useful to guarantee that all
697 * shrinker invocations have seen an update, before freeing memory, similar to
698 * rcu.
699 */
700void synchronize_shrinkers(void)
701{
702 down_write(&shrinker_rwsem);
703 up_write(&shrinker_rwsem);
704}
705EXPORT_SYMBOL(synchronize_shrinkers);
706
1da177e4 707#define SHRINK_BATCH 128
1d3d4437 708
cb731d6c 709static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 710 struct shrinker *shrinker, int priority)
1d3d4437
GC
711{
712 unsigned long freed = 0;
713 unsigned long long delta;
714 long total_scan;
d5bc5fd3 715 long freeable;
1d3d4437
GC
716 long nr;
717 long new_nr;
1d3d4437
GC
718 long batch_size = shrinker->batch ? shrinker->batch
719 : SHRINK_BATCH;
5f33a080 720 long scanned = 0, next_deferred;
1d3d4437 721
d5bc5fd3 722 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
723 if (freeable == 0 || freeable == SHRINK_EMPTY)
724 return freeable;
1d3d4437
GC
725
726 /*
727 * copy the current shrinker scan count into a local variable
728 * and zero it so that other concurrent shrinker invocations
729 * don't also do this scanning work.
730 */
86750830 731 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 732
4b85afbd
JW
733 if (shrinker->seeks) {
734 delta = freeable >> priority;
735 delta *= 4;
736 do_div(delta, shrinker->seeks);
737 } else {
738 /*
739 * These objects don't require any IO to create. Trim
740 * them aggressively under memory pressure to keep
741 * them from causing refetches in the IO caches.
742 */
743 delta = freeable / 2;
744 }
172b06c3 745
18bb473e 746 total_scan = nr >> priority;
1d3d4437 747 total_scan += delta;
18bb473e 748 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
749
750 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 751 freeable, delta, total_scan, priority);
1d3d4437 752
0b1fb40a
VD
753 /*
754 * Normally, we should not scan less than batch_size objects in one
755 * pass to avoid too frequent shrinker calls, but if the slab has less
756 * than batch_size objects in total and we are really tight on memory,
757 * we will try to reclaim all available objects, otherwise we can end
758 * up failing allocations although there are plenty of reclaimable
759 * objects spread over several slabs with usage less than the
760 * batch_size.
761 *
762 * We detect the "tight on memory" situations by looking at the total
763 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 764 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
765 * scanning at high prio and therefore should try to reclaim as much as
766 * possible.
767 */
768 while (total_scan >= batch_size ||
d5bc5fd3 769 total_scan >= freeable) {
a0b02131 770 unsigned long ret;
0b1fb40a 771 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 772
0b1fb40a 773 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 774 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
775 ret = shrinker->scan_objects(shrinker, shrinkctl);
776 if (ret == SHRINK_STOP)
777 break;
778 freed += ret;
1d3d4437 779
d460acb5
CW
780 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
781 total_scan -= shrinkctl->nr_scanned;
782 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
783
784 cond_resched();
785 }
786
18bb473e
YS
787 /*
788 * The deferred work is increased by any new work (delta) that wasn't
789 * done, decreased by old deferred work that was done now.
790 *
791 * And it is capped to two times of the freeable items.
792 */
793 next_deferred = max_t(long, (nr + delta - scanned), 0);
794 next_deferred = min(next_deferred, (2 * freeable));
795
1d3d4437
GC
796 /*
797 * move the unused scan count back into the shrinker in a
86750830 798 * manner that handles concurrent updates.
1d3d4437 799 */
86750830 800 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 801
8efb4b59 802 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 803 return freed;
1495f230
YH
804}
805
0a432dcb 806#ifdef CONFIG_MEMCG
b0dedc49
KT
807static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
808 struct mem_cgroup *memcg, int priority)
809{
e4262c4f 810 struct shrinker_info *info;
b8e57efa
KT
811 unsigned long ret, freed = 0;
812 int i;
b0dedc49 813
0a432dcb 814 if (!mem_cgroup_online(memcg))
b0dedc49
KT
815 return 0;
816
817 if (!down_read_trylock(&shrinker_rwsem))
818 return 0;
819
468ab843 820 info = shrinker_info_protected(memcg, nid);
e4262c4f 821 if (unlikely(!info))
b0dedc49
KT
822 goto unlock;
823
e4262c4f 824 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
825 struct shrink_control sc = {
826 .gfp_mask = gfp_mask,
827 .nid = nid,
828 .memcg = memcg,
829 };
830 struct shrinker *shrinker;
831
832 shrinker = idr_find(&shrinker_idr, i);
41ca668a 833 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 834 if (!shrinker)
e4262c4f 835 clear_bit(i, info->map);
b0dedc49
KT
836 continue;
837 }
838
0a432dcb
YS
839 /* Call non-slab shrinkers even though kmem is disabled */
840 if (!memcg_kmem_enabled() &&
841 !(shrinker->flags & SHRINKER_NONSLAB))
842 continue;
843
b0dedc49 844 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 845 if (ret == SHRINK_EMPTY) {
e4262c4f 846 clear_bit(i, info->map);
f90280d6
KT
847 /*
848 * After the shrinker reported that it had no objects to
849 * free, but before we cleared the corresponding bit in
850 * the memcg shrinker map, a new object might have been
851 * added. To make sure, we have the bit set in this
852 * case, we invoke the shrinker one more time and reset
853 * the bit if it reports that it is not empty anymore.
854 * The memory barrier here pairs with the barrier in
2bfd3637 855 * set_shrinker_bit():
f90280d6
KT
856 *
857 * list_lru_add() shrink_slab_memcg()
858 * list_add_tail() clear_bit()
859 * <MB> <MB>
860 * set_bit() do_shrink_slab()
861 */
862 smp_mb__after_atomic();
863 ret = do_shrink_slab(&sc, shrinker, priority);
864 if (ret == SHRINK_EMPTY)
865 ret = 0;
866 else
2bfd3637 867 set_shrinker_bit(memcg, nid, i);
f90280d6 868 }
b0dedc49
KT
869 freed += ret;
870
871 if (rwsem_is_contended(&shrinker_rwsem)) {
872 freed = freed ? : 1;
873 break;
874 }
875 }
876unlock:
877 up_read(&shrinker_rwsem);
878 return freed;
879}
0a432dcb 880#else /* CONFIG_MEMCG */
b0dedc49
KT
881static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
882 struct mem_cgroup *memcg, int priority)
883{
884 return 0;
885}
0a432dcb 886#endif /* CONFIG_MEMCG */
b0dedc49 887
6b4f7799 888/**
cb731d6c 889 * shrink_slab - shrink slab caches
6b4f7799
JW
890 * @gfp_mask: allocation context
891 * @nid: node whose slab caches to target
cb731d6c 892 * @memcg: memory cgroup whose slab caches to target
9092c71b 893 * @priority: the reclaim priority
1da177e4 894 *
6b4f7799 895 * Call the shrink functions to age shrinkable caches.
1da177e4 896 *
6b4f7799
JW
897 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
898 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 899 *
aeed1d32
VD
900 * @memcg specifies the memory cgroup to target. Unaware shrinkers
901 * are called only if it is the root cgroup.
cb731d6c 902 *
9092c71b
JB
903 * @priority is sc->priority, we take the number of objects and >> by priority
904 * in order to get the scan target.
b15e0905 905 *
6b4f7799 906 * Returns the number of reclaimed slab objects.
1da177e4 907 */
cb731d6c
VD
908static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
909 struct mem_cgroup *memcg,
9092c71b 910 int priority)
1da177e4 911{
b8e57efa 912 unsigned long ret, freed = 0;
1da177e4
LT
913 struct shrinker *shrinker;
914
fa1e512f
YS
915 /*
916 * The root memcg might be allocated even though memcg is disabled
917 * via "cgroup_disable=memory" boot parameter. This could make
918 * mem_cgroup_is_root() return false, then just run memcg slab
919 * shrink, but skip global shrink. This may result in premature
920 * oom.
921 */
922 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 923 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 924
e830c63a 925 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 926 goto out;
1da177e4
LT
927
928 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
929 struct shrink_control sc = {
930 .gfp_mask = gfp_mask,
931 .nid = nid,
cb731d6c 932 .memcg = memcg,
6b4f7799 933 };
ec97097b 934
9b996468
KT
935 ret = do_shrink_slab(&sc, shrinker, priority);
936 if (ret == SHRINK_EMPTY)
937 ret = 0;
938 freed += ret;
e496612c
MK
939 /*
940 * Bail out if someone want to register a new shrinker to
55b65a57 941 * prevent the registration from being stalled for long periods
e496612c
MK
942 * by parallel ongoing shrinking.
943 */
944 if (rwsem_is_contended(&shrinker_rwsem)) {
945 freed = freed ? : 1;
946 break;
947 }
1da177e4 948 }
6b4f7799 949
1da177e4 950 up_read(&shrinker_rwsem);
f06590bd
MK
951out:
952 cond_resched();
24f7c6b9 953 return freed;
1da177e4
LT
954}
955
e4b424b7 956static void drop_slab_node(int nid)
cb731d6c
VD
957{
958 unsigned long freed;
1399af7e 959 int shift = 0;
cb731d6c
VD
960
961 do {
962 struct mem_cgroup *memcg = NULL;
963
069c411d
CZ
964 if (fatal_signal_pending(current))
965 return;
966
cb731d6c 967 freed = 0;
aeed1d32 968 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 969 do {
9092c71b 970 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c 971 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1399af7e 972 } while ((freed >> shift++) > 1);
cb731d6c
VD
973}
974
975void drop_slab(void)
976{
977 int nid;
978
979 for_each_online_node(nid)
980 drop_slab_node(nid);
981}
982
e0cd5e7f 983static inline int is_page_cache_freeable(struct folio *folio)
1da177e4 984{
ceddc3a5
JW
985 /*
986 * A freeable page cache page is referenced only by the caller
67891fff
MW
987 * that isolated the page, the page cache and optional buffer
988 * heads at page->private.
ceddc3a5 989 */
e0cd5e7f
MWO
990 return folio_ref_count(folio) - folio_test_private(folio) ==
991 1 + folio_nr_pages(folio);
1da177e4
LT
992}
993
1da177e4 994/*
e0cd5e7f 995 * We detected a synchronous write error writing a folio out. Probably
1da177e4
LT
996 * -ENOSPC. We need to propagate that into the address_space for a subsequent
997 * fsync(), msync() or close().
998 *
999 * The tricky part is that after writepage we cannot touch the mapping: nothing
e0cd5e7f
MWO
1000 * prevents it from being freed up. But we have a ref on the folio and once
1001 * that folio is locked, the mapping is pinned.
1da177e4 1002 *
e0cd5e7f 1003 * We're allowed to run sleeping folio_lock() here because we know the caller has
1da177e4
LT
1004 * __GFP_FS.
1005 */
1006static void handle_write_error(struct address_space *mapping,
e0cd5e7f 1007 struct folio *folio, int error)
1da177e4 1008{
e0cd5e7f
MWO
1009 folio_lock(folio);
1010 if (folio_mapping(folio) == mapping)
3e9f45bd 1011 mapping_set_error(mapping, error);
e0cd5e7f 1012 folio_unlock(folio);
1da177e4
LT
1013}
1014
1b4e3f26
MG
1015static bool skip_throttle_noprogress(pg_data_t *pgdat)
1016{
1017 int reclaimable = 0, write_pending = 0;
1018 int i;
1019
1020 /*
1021 * If kswapd is disabled, reschedule if necessary but do not
1022 * throttle as the system is likely near OOM.
1023 */
1024 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1025 return true;
1026
1027 /*
1028 * If there are a lot of dirty/writeback pages then do not
1029 * throttle as throttling will occur when the pages cycle
1030 * towards the end of the LRU if still under writeback.
1031 */
1032 for (i = 0; i < MAX_NR_ZONES; i++) {
1033 struct zone *zone = pgdat->node_zones + i;
1034
36c26128 1035 if (!managed_zone(zone))
1b4e3f26
MG
1036 continue;
1037
1038 reclaimable += zone_reclaimable_pages(zone);
1039 write_pending += zone_page_state_snapshot(zone,
1040 NR_ZONE_WRITE_PENDING);
1041 }
1042 if (2 * write_pending <= reclaimable)
1043 return true;
1044
1045 return false;
1046}
1047
c3f4a9a2 1048void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
8cd7c588
MG
1049{
1050 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
c3f4a9a2 1051 long timeout, ret;
8cd7c588
MG
1052 DEFINE_WAIT(wait);
1053
1054 /*
1055 * Do not throttle IO workers, kthreads other than kswapd or
1056 * workqueues. They may be required for reclaim to make
1057 * forward progress (e.g. journalling workqueues or kthreads).
1058 */
1059 if (!current_is_kswapd() &&
b485c6f1
MG
1060 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1061 cond_resched();
8cd7c588 1062 return;
b485c6f1 1063 }
8cd7c588 1064
c3f4a9a2
MG
1065 /*
1066 * These figures are pulled out of thin air.
1067 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1068 * parallel reclaimers which is a short-lived event so the timeout is
1069 * short. Failing to make progress or waiting on writeback are
1070 * potentially long-lived events so use a longer timeout. This is shaky
1071 * logic as a failure to make progress could be due to anything from
1072 * writeback to a slow device to excessive references pages at the tail
1073 * of the inactive LRU.
1074 */
1075 switch(reason) {
1076 case VMSCAN_THROTTLE_WRITEBACK:
1077 timeout = HZ/10;
1078
1079 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1080 WRITE_ONCE(pgdat->nr_reclaim_start,
1081 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1082 }
1083
1084 break;
1b4e3f26
MG
1085 case VMSCAN_THROTTLE_CONGESTED:
1086 fallthrough;
c3f4a9a2 1087 case VMSCAN_THROTTLE_NOPROGRESS:
1b4e3f26
MG
1088 if (skip_throttle_noprogress(pgdat)) {
1089 cond_resched();
1090 return;
1091 }
1092
1093 timeout = 1;
1094
c3f4a9a2
MG
1095 break;
1096 case VMSCAN_THROTTLE_ISOLATED:
1097 timeout = HZ/50;
1098 break;
1099 default:
1100 WARN_ON_ONCE(1);
1101 timeout = HZ;
1102 break;
8cd7c588
MG
1103 }
1104
1105 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1106 ret = schedule_timeout(timeout);
1107 finish_wait(wqh, &wait);
d818fca1 1108
c3f4a9a2 1109 if (reason == VMSCAN_THROTTLE_WRITEBACK)
d818fca1 1110 atomic_dec(&pgdat->nr_writeback_throttled);
8cd7c588
MG
1111
1112 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1113 jiffies_to_usecs(timeout - ret),
1114 reason);
1115}
1116
1117/*
1118 * Account for pages written if tasks are throttled waiting on dirty
1119 * pages to clean. If enough pages have been cleaned since throttling
1120 * started then wakeup the throttled tasks.
1121 */
512b7931 1122void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
8cd7c588
MG
1123 int nr_throttled)
1124{
1125 unsigned long nr_written;
1126
512b7931 1127 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
8cd7c588
MG
1128
1129 /*
1130 * This is an inaccurate read as the per-cpu deltas may not
1131 * be synchronised. However, given that the system is
1132 * writeback throttled, it is not worth taking the penalty
1133 * of getting an accurate count. At worst, the throttle
1134 * timeout guarantees forward progress.
1135 */
1136 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1137 READ_ONCE(pgdat->nr_reclaim_start);
1138
1139 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1140 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1141}
1142
04e62a29
CL
1143/* possible outcome of pageout() */
1144typedef enum {
1145 /* failed to write page out, page is locked */
1146 PAGE_KEEP,
1147 /* move page to the active list, page is locked */
1148 PAGE_ACTIVATE,
1149 /* page has been sent to the disk successfully, page is unlocked */
1150 PAGE_SUCCESS,
1151 /* page is clean and locked */
1152 PAGE_CLEAN,
1153} pageout_t;
1154
1da177e4 1155/*
1742f19f
AM
1156 * pageout is called by shrink_page_list() for each dirty page.
1157 * Calls ->writepage().
1da177e4 1158 */
2282679f
N
1159static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1160 struct swap_iocb **plug)
1da177e4
LT
1161{
1162 /*
e0cd5e7f 1163 * If the folio is dirty, only perform writeback if that write
1da177e4
LT
1164 * will be non-blocking. To prevent this allocation from being
1165 * stalled by pagecache activity. But note that there may be
1166 * stalls if we need to run get_block(). We could test
1167 * PagePrivate for that.
1168 *
8174202b 1169 * If this process is currently in __generic_file_write_iter() against
e0cd5e7f 1170 * this folio's queue, we can perform writeback even if that
1da177e4
LT
1171 * will block.
1172 *
e0cd5e7f 1173 * If the folio is swapcache, write it back even if that would
1da177e4
LT
1174 * block, for some throttling. This happens by accident, because
1175 * swap_backing_dev_info is bust: it doesn't reflect the
1176 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4 1177 */
e0cd5e7f 1178 if (!is_page_cache_freeable(folio))
1da177e4
LT
1179 return PAGE_KEEP;
1180 if (!mapping) {
1181 /*
e0cd5e7f
MWO
1182 * Some data journaling orphaned folios can have
1183 * folio->mapping == NULL while being dirty with clean buffers.
1da177e4 1184 */
e0cd5e7f
MWO
1185 if (folio_test_private(folio)) {
1186 if (try_to_free_buffers(&folio->page)) {
1187 folio_clear_dirty(folio);
1188 pr_info("%s: orphaned folio\n", __func__);
1da177e4
LT
1189 return PAGE_CLEAN;
1190 }
1191 }
1192 return PAGE_KEEP;
1193 }
1194 if (mapping->a_ops->writepage == NULL)
1195 return PAGE_ACTIVATE;
1da177e4 1196
e0cd5e7f 1197 if (folio_clear_dirty_for_io(folio)) {
1da177e4
LT
1198 int res;
1199 struct writeback_control wbc = {
1200 .sync_mode = WB_SYNC_NONE,
1201 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1202 .range_start = 0,
1203 .range_end = LLONG_MAX,
1da177e4 1204 .for_reclaim = 1,
2282679f 1205 .swap_plug = plug,
1da177e4
LT
1206 };
1207
e0cd5e7f
MWO
1208 folio_set_reclaim(folio);
1209 res = mapping->a_ops->writepage(&folio->page, &wbc);
1da177e4 1210 if (res < 0)
e0cd5e7f 1211 handle_write_error(mapping, folio, res);
994fc28c 1212 if (res == AOP_WRITEPAGE_ACTIVATE) {
e0cd5e7f 1213 folio_clear_reclaim(folio);
1da177e4
LT
1214 return PAGE_ACTIVATE;
1215 }
c661b078 1216
e0cd5e7f 1217 if (!folio_test_writeback(folio)) {
1da177e4 1218 /* synchronous write or broken a_ops? */
e0cd5e7f 1219 folio_clear_reclaim(folio);
1da177e4 1220 }
e0cd5e7f
MWO
1221 trace_mm_vmscan_write_folio(folio);
1222 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1da177e4
LT
1223 return PAGE_SUCCESS;
1224 }
1225
1226 return PAGE_CLEAN;
1227}
1228
a649fd92 1229/*
e286781d
NP
1230 * Same as remove_mapping, but if the page is removed from the mapping, it
1231 * gets returned with a refcount of 0.
a649fd92 1232 */
be7c07d6 1233static int __remove_mapping(struct address_space *mapping, struct folio *folio,
b910718a 1234 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1235{
bd4c82c2 1236 int refcount;
aae466b0 1237 void *shadow = NULL;
c4843a75 1238
be7c07d6
MWO
1239 BUG_ON(!folio_test_locked(folio));
1240 BUG_ON(mapping != folio_mapping(folio));
49d2e9cc 1241
be7c07d6 1242 if (!folio_test_swapcache(folio))
51b8c1fe 1243 spin_lock(&mapping->host->i_lock);
30472509 1244 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1245 /*
0fd0e6b0
NP
1246 * The non racy check for a busy page.
1247 *
1248 * Must be careful with the order of the tests. When someone has
1249 * a ref to the page, it may be possible that they dirty it then
1250 * drop the reference. So if PageDirty is tested before page_count
1251 * here, then the following race may occur:
1252 *
1253 * get_user_pages(&page);
1254 * [user mapping goes away]
1255 * write_to(page);
1256 * !PageDirty(page) [good]
1257 * SetPageDirty(page);
1258 * put_page(page);
1259 * !page_count(page) [good, discard it]
1260 *
1261 * [oops, our write_to data is lost]
1262 *
1263 * Reversing the order of the tests ensures such a situation cannot
1264 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1265 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1266 *
1267 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1268 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1269 */
be7c07d6
MWO
1270 refcount = 1 + folio_nr_pages(folio);
1271 if (!folio_ref_freeze(folio, refcount))
49d2e9cc 1272 goto cannot_free;
1c4c3b99 1273 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
be7c07d6
MWO
1274 if (unlikely(folio_test_dirty(folio))) {
1275 folio_ref_unfreeze(folio, refcount);
49d2e9cc 1276 goto cannot_free;
e286781d 1277 }
49d2e9cc 1278
be7c07d6
MWO
1279 if (folio_test_swapcache(folio)) {
1280 swp_entry_t swap = folio_swap_entry(folio);
3ecb0087 1281 mem_cgroup_swapout(folio, swap);
aae466b0 1282 if (reclaimed && !mapping_exiting(mapping))
8927f647 1283 shadow = workingset_eviction(folio, target_memcg);
be7c07d6 1284 __delete_from_swap_cache(&folio->page, swap, shadow);
30472509 1285 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1286 put_swap_page(&folio->page, swap);
e286781d 1287 } else {
6072d13c
LT
1288 void (*freepage)(struct page *);
1289
1290 freepage = mapping->a_ops->freepage;
a528910e
JW
1291 /*
1292 * Remember a shadow entry for reclaimed file cache in
1293 * order to detect refaults, thus thrashing, later on.
1294 *
1295 * But don't store shadows in an address space that is
238c3046 1296 * already exiting. This is not just an optimization,
a528910e
JW
1297 * inode reclaim needs to empty out the radix tree or
1298 * the nodes are lost. Don't plant shadows behind its
1299 * back.
f9fe48be
RZ
1300 *
1301 * We also don't store shadows for DAX mappings because the
1302 * only page cache pages found in these are zero pages
1303 * covering holes, and because we don't want to mix DAX
1304 * exceptional entries and shadow exceptional entries in the
b93b0163 1305 * same address_space.
a528910e 1306 */
be7c07d6 1307 if (reclaimed && folio_is_file_lru(folio) &&
f9fe48be 1308 !mapping_exiting(mapping) && !dax_mapping(mapping))
8927f647
MWO
1309 shadow = workingset_eviction(folio, target_memcg);
1310 __filemap_remove_folio(folio, shadow);
30472509 1311 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
1312 if (mapping_shrinkable(mapping))
1313 inode_add_lru(mapping->host);
1314 spin_unlock(&mapping->host->i_lock);
6072d13c
LT
1315
1316 if (freepage != NULL)
be7c07d6 1317 freepage(&folio->page);
49d2e9cc
CL
1318 }
1319
49d2e9cc
CL
1320 return 1;
1321
1322cannot_free:
30472509 1323 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1324 if (!folio_test_swapcache(folio))
51b8c1fe 1325 spin_unlock(&mapping->host->i_lock);
49d2e9cc
CL
1326 return 0;
1327}
1328
5100da38
MWO
1329/**
1330 * remove_mapping() - Attempt to remove a folio from its mapping.
1331 * @mapping: The address space.
1332 * @folio: The folio to remove.
1333 *
1334 * If the folio is dirty, under writeback or if someone else has a ref
1335 * on it, removal will fail.
1336 * Return: The number of pages removed from the mapping. 0 if the folio
1337 * could not be removed.
1338 * Context: The caller should have a single refcount on the folio and
1339 * hold its lock.
e286781d 1340 */
5100da38 1341long remove_mapping(struct address_space *mapping, struct folio *folio)
e286781d 1342{
be7c07d6 1343 if (__remove_mapping(mapping, folio, false, NULL)) {
e286781d 1344 /*
5100da38 1345 * Unfreezing the refcount with 1 effectively
e286781d
NP
1346 * drops the pagecache ref for us without requiring another
1347 * atomic operation.
1348 */
be7c07d6 1349 folio_ref_unfreeze(folio, 1);
5100da38 1350 return folio_nr_pages(folio);
e286781d
NP
1351 }
1352 return 0;
1353}
1354
894bc310 1355/**
ca6d60f3
MWO
1356 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1357 * @folio: Folio to be returned to an LRU list.
894bc310 1358 *
ca6d60f3
MWO
1359 * Add previously isolated @folio to appropriate LRU list.
1360 * The folio may still be unevictable for other reasons.
894bc310 1361 *
ca6d60f3 1362 * Context: lru_lock must not be held, interrupts must be enabled.
894bc310 1363 */
ca6d60f3 1364void folio_putback_lru(struct folio *folio)
894bc310 1365{
ca6d60f3
MWO
1366 folio_add_lru(folio);
1367 folio_put(folio); /* drop ref from isolate */
894bc310
LS
1368}
1369
dfc8d636
JW
1370enum page_references {
1371 PAGEREF_RECLAIM,
1372 PAGEREF_RECLAIM_CLEAN,
64574746 1373 PAGEREF_KEEP,
dfc8d636
JW
1374 PAGEREF_ACTIVATE,
1375};
1376
d92013d1 1377static enum page_references folio_check_references(struct folio *folio,
dfc8d636
JW
1378 struct scan_control *sc)
1379{
d92013d1 1380 int referenced_ptes, referenced_folio;
dfc8d636 1381 unsigned long vm_flags;
dfc8d636 1382
b3ac0413
MWO
1383 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1384 &vm_flags);
d92013d1 1385 referenced_folio = folio_test_clear_referenced(folio);
dfc8d636 1386
dfc8d636 1387 /*
d92013d1
MWO
1388 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1389 * Let the folio, now marked Mlocked, be moved to the unevictable list.
dfc8d636
JW
1390 */
1391 if (vm_flags & VM_LOCKED)
47d4f3ee 1392 return PAGEREF_ACTIVATE;
dfc8d636 1393
64574746 1394 if (referenced_ptes) {
64574746 1395 /*
d92013d1 1396 * All mapped folios start out with page table
64574746 1397 * references from the instantiating fault, so we need
9030fb0b 1398 * to look twice if a mapped file/anon folio is used more
64574746
JW
1399 * than once.
1400 *
1401 * Mark it and spare it for another trip around the
1402 * inactive list. Another page table reference will
1403 * lead to its activation.
1404 *
d92013d1
MWO
1405 * Note: the mark is set for activated folios as well
1406 * so that recently deactivated but used folios are
64574746
JW
1407 * quickly recovered.
1408 */
d92013d1 1409 folio_set_referenced(folio);
64574746 1410
d92013d1 1411 if (referenced_folio || referenced_ptes > 1)
64574746
JW
1412 return PAGEREF_ACTIVATE;
1413
c909e993 1414 /*
d92013d1 1415 * Activate file-backed executable folios after first usage.
c909e993 1416 */
d92013d1 1417 if ((vm_flags & VM_EXEC) && !folio_test_swapbacked(folio))
c909e993
KK
1418 return PAGEREF_ACTIVATE;
1419
64574746
JW
1420 return PAGEREF_KEEP;
1421 }
dfc8d636 1422
d92013d1
MWO
1423 /* Reclaim if clean, defer dirty folios to writeback */
1424 if (referenced_folio && !folio_test_swapbacked(folio))
64574746
JW
1425 return PAGEREF_RECLAIM_CLEAN;
1426
1427 return PAGEREF_RECLAIM;
dfc8d636
JW
1428}
1429
e2be15f6 1430/* Check if a page is dirty or under writeback */
e20c41b1 1431static void folio_check_dirty_writeback(struct folio *folio,
e2be15f6
MG
1432 bool *dirty, bool *writeback)
1433{
b4597226
MG
1434 struct address_space *mapping;
1435
e2be15f6
MG
1436 /*
1437 * Anonymous pages are not handled by flushers and must be written
1438 * from reclaim context. Do not stall reclaim based on them
1439 */
e20c41b1
MWO
1440 if (!folio_is_file_lru(folio) ||
1441 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
e2be15f6
MG
1442 *dirty = false;
1443 *writeback = false;
1444 return;
1445 }
1446
e20c41b1
MWO
1447 /* By default assume that the folio flags are accurate */
1448 *dirty = folio_test_dirty(folio);
1449 *writeback = folio_test_writeback(folio);
b4597226
MG
1450
1451 /* Verify dirty/writeback state if the filesystem supports it */
e20c41b1 1452 if (!folio_test_private(folio))
b4597226
MG
1453 return;
1454
e20c41b1 1455 mapping = folio_mapping(folio);
b4597226 1456 if (mapping && mapping->a_ops->is_dirty_writeback)
e20c41b1 1457 mapping->a_ops->is_dirty_writeback(&folio->page, dirty, writeback);
e2be15f6
MG
1458}
1459
26aa2d19
DH
1460static struct page *alloc_demote_page(struct page *page, unsigned long node)
1461{
1462 struct migration_target_control mtc = {
1463 /*
1464 * Allocate from 'node', or fail quickly and quietly.
1465 * When this happens, 'page' will likely just be discarded
1466 * instead of migrated.
1467 */
1468 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1469 __GFP_THISNODE | __GFP_NOWARN |
1470 __GFP_NOMEMALLOC | GFP_NOWAIT,
1471 .nid = node
1472 };
1473
1474 return alloc_migration_target(page, (unsigned long)&mtc);
1475}
1476
1477/*
1478 * Take pages on @demote_list and attempt to demote them to
1479 * another node. Pages which are not demoted are left on
1480 * @demote_pages.
1481 */
1482static unsigned int demote_page_list(struct list_head *demote_pages,
1483 struct pglist_data *pgdat)
1484{
1485 int target_nid = next_demotion_node(pgdat->node_id);
1486 unsigned int nr_succeeded;
26aa2d19
DH
1487
1488 if (list_empty(demote_pages))
1489 return 0;
1490
1491 if (target_nid == NUMA_NO_NODE)
1492 return 0;
1493
1494 /* Demotion ignores all cpuset and mempolicy settings */
cb75463c 1495 migrate_pages(demote_pages, alloc_demote_page, NULL,
26aa2d19
DH
1496 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1497 &nr_succeeded);
1498
668e4147
YS
1499 if (current_is_kswapd())
1500 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1501 else
1502 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1503
26aa2d19
DH
1504 return nr_succeeded;
1505}
1506
d791ea67
N
1507static bool may_enter_fs(struct page *page, gfp_t gfp_mask)
1508{
1509 if (gfp_mask & __GFP_FS)
1510 return true;
1511 if (!PageSwapCache(page) || !(gfp_mask & __GFP_IO))
1512 return false;
1513 /*
1514 * We can "enter_fs" for swap-cache with only __GFP_IO
1515 * providing this isn't SWP_FS_OPS.
1516 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1517 * but that will never affect SWP_FS_OPS, so the data_race
1518 * is safe.
1519 */
1520 return !data_race(page_swap_flags(page) & SWP_FS_OPS);
1521}
1522
1da177e4 1523/*
1742f19f 1524 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1525 */
730ec8c0
MS
1526static unsigned int shrink_page_list(struct list_head *page_list,
1527 struct pglist_data *pgdat,
1528 struct scan_control *sc,
730ec8c0
MS
1529 struct reclaim_stat *stat,
1530 bool ignore_references)
1da177e4
LT
1531{
1532 LIST_HEAD(ret_pages);
abe4c3b5 1533 LIST_HEAD(free_pages);
26aa2d19 1534 LIST_HEAD(demote_pages);
730ec8c0
MS
1535 unsigned int nr_reclaimed = 0;
1536 unsigned int pgactivate = 0;
26aa2d19 1537 bool do_demote_pass;
2282679f 1538 struct swap_iocb *plug = NULL;
1da177e4 1539
060f005f 1540 memset(stat, 0, sizeof(*stat));
1da177e4 1541 cond_resched();
26aa2d19 1542 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1543
26aa2d19 1544retry:
1da177e4
LT
1545 while (!list_empty(page_list)) {
1546 struct address_space *mapping;
1547 struct page *page;
be7c07d6 1548 struct folio *folio;
8940b34a 1549 enum page_references references = PAGEREF_RECLAIM;
d791ea67 1550 bool dirty, writeback;
98879b3b 1551 unsigned int nr_pages;
1da177e4
LT
1552
1553 cond_resched();
1554
be7c07d6
MWO
1555 folio = lru_to_folio(page_list);
1556 list_del(&folio->lru);
1557 page = &folio->page;
1da177e4 1558
529ae9aa 1559 if (!trylock_page(page))
1da177e4
LT
1560 goto keep;
1561
309381fe 1562 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1563
d8c6546b 1564 nr_pages = compound_nr(page);
98879b3b
YS
1565
1566 /* Account the number of base pages even though THP */
1567 sc->nr_scanned += nr_pages;
80e43426 1568
39b5f29a 1569 if (unlikely(!page_evictable(page)))
ad6b6704 1570 goto activate_locked;
894bc310 1571
a6dc60f8 1572 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1573 goto keep_locked;
1574
e2be15f6 1575 /*
894befec 1576 * The number of dirty pages determines if a node is marked
8cd7c588
MG
1577 * reclaim_congested. kswapd will stall and start writing
1578 * pages if the tail of the LRU is all dirty unqueued pages.
e2be15f6 1579 */
e20c41b1 1580 folio_check_dirty_writeback(folio, &dirty, &writeback);
e2be15f6 1581 if (dirty || writeback)
c79b7b96 1582 stat->nr_dirty += nr_pages;
e2be15f6
MG
1583
1584 if (dirty && !writeback)
c79b7b96 1585 stat->nr_unqueued_dirty += nr_pages;
e2be15f6 1586
d04e8acd
MG
1587 /*
1588 * Treat this page as congested if the underlying BDI is or if
1589 * pages are cycling through the LRU so quickly that the
1590 * pages marked for immediate reclaim are making it to the
1591 * end of the LRU a second time.
1592 */
e2be15f6 1593 mapping = page_mapping(page);
fe55d563 1594 if (writeback && PageReclaim(page))
c79b7b96 1595 stat->nr_congested += nr_pages;
e2be15f6 1596
283aba9f
MG
1597 /*
1598 * If a page at the tail of the LRU is under writeback, there
1599 * are three cases to consider.
1600 *
1601 * 1) If reclaim is encountering an excessive number of pages
1602 * under writeback and this page is both under writeback and
1603 * PageReclaim then it indicates that pages are being queued
1604 * for IO but are being recycled through the LRU before the
1605 * IO can complete. Waiting on the page itself risks an
1606 * indefinite stall if it is impossible to writeback the
1607 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1608 * note that the LRU is being scanned too quickly and the
1609 * caller can stall after page list has been processed.
283aba9f 1610 *
97c9341f 1611 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1612 * not marked for immediate reclaim, or the caller does not
1613 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1614 * not to fs). In this case mark the page for immediate
97c9341f 1615 * reclaim and continue scanning.
283aba9f 1616 *
d791ea67 1617 * Require may_enter_fs() because we would wait on fs, which
ecf5fc6e 1618 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1619 * enter reclaim, and deadlock if it waits on a page for
1620 * which it is needed to do the write (loop masks off
1621 * __GFP_IO|__GFP_FS for this reason); but more thought
1622 * would probably show more reasons.
1623 *
7fadc820 1624 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1625 * PageReclaim. memcg does not have any dirty pages
1626 * throttling so we could easily OOM just because too many
1627 * pages are in writeback and there is nothing else to
1628 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1629 *
1630 * In cases 1) and 2) we activate the pages to get them out of
1631 * the way while we continue scanning for clean pages on the
1632 * inactive list and refilling from the active list. The
1633 * observation here is that waiting for disk writes is more
1634 * expensive than potentially causing reloads down the line.
1635 * Since they're marked for immediate reclaim, they won't put
1636 * memory pressure on the cache working set any longer than it
1637 * takes to write them to disk.
283aba9f 1638 */
c661b078 1639 if (PageWriteback(page)) {
283aba9f
MG
1640 /* Case 1 above */
1641 if (current_is_kswapd() &&
1642 PageReclaim(page) &&
599d0c95 1643 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
c79b7b96 1644 stat->nr_immediate += nr_pages;
c55e8d03 1645 goto activate_locked;
283aba9f
MG
1646
1647 /* Case 2 above */
b5ead35e 1648 } else if (writeback_throttling_sane(sc) ||
d791ea67 1649 !PageReclaim(page) || !may_enter_fs(page, sc->gfp_mask)) {
c3b94f44
HD
1650 /*
1651 * This is slightly racy - end_page_writeback()
1652 * might have just cleared PageReclaim, then
1653 * setting PageReclaim here end up interpreted
1654 * as PageReadahead - but that does not matter
1655 * enough to care. What we do want is for this
1656 * page to have PageReclaim set next time memcg
1657 * reclaim reaches the tests above, so it will
1658 * then wait_on_page_writeback() to avoid OOM;
1659 * and it's also appropriate in global reclaim.
1660 */
1661 SetPageReclaim(page);
c79b7b96 1662 stat->nr_writeback += nr_pages;
c55e8d03 1663 goto activate_locked;
283aba9f
MG
1664
1665 /* Case 3 above */
1666 } else {
7fadc820 1667 unlock_page(page);
283aba9f 1668 wait_on_page_writeback(page);
7fadc820
HD
1669 /* then go back and try same page again */
1670 list_add_tail(&page->lru, page_list);
1671 continue;
e62e384e 1672 }
c661b078 1673 }
1da177e4 1674
8940b34a 1675 if (!ignore_references)
d92013d1 1676 references = folio_check_references(folio, sc);
02c6de8d 1677
dfc8d636
JW
1678 switch (references) {
1679 case PAGEREF_ACTIVATE:
1da177e4 1680 goto activate_locked;
64574746 1681 case PAGEREF_KEEP:
98879b3b 1682 stat->nr_ref_keep += nr_pages;
64574746 1683 goto keep_locked;
dfc8d636
JW
1684 case PAGEREF_RECLAIM:
1685 case PAGEREF_RECLAIM_CLEAN:
1686 ; /* try to reclaim the page below */
1687 }
1da177e4 1688
26aa2d19
DH
1689 /*
1690 * Before reclaiming the page, try to relocate
1691 * its contents to another node.
1692 */
1693 if (do_demote_pass &&
1694 (thp_migration_supported() || !PageTransHuge(page))) {
1695 list_add(&page->lru, &demote_pages);
1696 unlock_page(page);
1697 continue;
1698 }
1699
1da177e4
LT
1700 /*
1701 * Anonymous process memory has backing store?
1702 * Try to allocate it some swap space here.
802a3a92 1703 * Lazyfree page could be freed directly
1da177e4 1704 */
bd4c82c2
HY
1705 if (PageAnon(page) && PageSwapBacked(page)) {
1706 if (!PageSwapCache(page)) {
1707 if (!(sc->gfp_mask & __GFP_IO))
1708 goto keep_locked;
d4b4084a 1709 if (folio_maybe_dma_pinned(folio))
feb889fb 1710 goto keep_locked;
bd4c82c2
HY
1711 if (PageTransHuge(page)) {
1712 /* cannot split THP, skip it */
d4b4084a 1713 if (!can_split_folio(folio, NULL))
bd4c82c2
HY
1714 goto activate_locked;
1715 /*
1716 * Split pages without a PMD map right
1717 * away. Chances are some or all of the
1718 * tail pages can be freed without IO.
1719 */
d4b4084a 1720 if (!folio_entire_mapcount(folio) &&
346cf613
MWO
1721 split_folio_to_list(folio,
1722 page_list))
bd4c82c2
HY
1723 goto activate_locked;
1724 }
1725 if (!add_to_swap(page)) {
1726 if (!PageTransHuge(page))
98879b3b 1727 goto activate_locked_split;
bd4c82c2 1728 /* Fallback to swap normal pages */
346cf613
MWO
1729 if (split_folio_to_list(folio,
1730 page_list))
bd4c82c2 1731 goto activate_locked;
fe490cc0
HY
1732#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1733 count_vm_event(THP_SWPOUT_FALLBACK);
1734#endif
bd4c82c2 1735 if (!add_to_swap(page))
98879b3b 1736 goto activate_locked_split;
bd4c82c2 1737 }
0f074658 1738
bd4c82c2
HY
1739 /* Adding to swap updated mapping */
1740 mapping = page_mapping(page);
1741 }
820c4e2e
MWO
1742 } else if (PageSwapBacked(page) && PageTransHuge(page)) {
1743 /* Split shmem THP */
346cf613 1744 if (split_folio_to_list(folio, page_list))
7751b2da 1745 goto keep_locked;
e2be15f6 1746 }
1da177e4 1747
98879b3b
YS
1748 /*
1749 * THP may get split above, need minus tail pages and update
1750 * nr_pages to avoid accounting tail pages twice.
1751 *
1752 * The tail pages that are added into swap cache successfully
1753 * reach here.
1754 */
1755 if ((nr_pages > 1) && !PageTransHuge(page)) {
1756 sc->nr_scanned -= (nr_pages - 1);
1757 nr_pages = 1;
1758 }
1759
1da177e4
LT
1760 /*
1761 * The page is mapped into the page tables of one or more
1762 * processes. Try to unmap it here.
1763 */
802a3a92 1764 if (page_mapped(page)) {
013339df 1765 enum ttu_flags flags = TTU_BATCH_FLUSH;
1f318a9b 1766 bool was_swapbacked = PageSwapBacked(page);
bd4c82c2 1767
343b2888
MWO
1768 if (PageTransHuge(page) &&
1769 thp_order(page) >= HPAGE_PMD_ORDER)
bd4c82c2 1770 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1771
869f7ee6 1772 try_to_unmap(folio, flags);
1fb08ac6 1773 if (page_mapped(page)) {
98879b3b 1774 stat->nr_unmap_fail += nr_pages;
1f318a9b
JK
1775 if (!was_swapbacked && PageSwapBacked(page))
1776 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1777 goto activate_locked;
1da177e4
LT
1778 }
1779 }
1780
1781 if (PageDirty(page)) {
ee72886d 1782 /*
4eda4823
JW
1783 * Only kswapd can writeback filesystem pages
1784 * to avoid risk of stack overflow. But avoid
1785 * injecting inefficient single-page IO into
1786 * flusher writeback as much as possible: only
1787 * write pages when we've encountered many
1788 * dirty pages, and when we've already scanned
1789 * the rest of the LRU for clean pages and see
1790 * the same dirty pages again (PageReclaim).
ee72886d 1791 */
9de4f22a 1792 if (page_is_file_lru(page) &&
4eda4823
JW
1793 (!current_is_kswapd() || !PageReclaim(page) ||
1794 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1795 /*
1796 * Immediately reclaim when written back.
1797 * Similar in principal to deactivate_page()
1798 * except we already have the page isolated
1799 * and know it's dirty
1800 */
c4a25635 1801 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1802 SetPageReclaim(page);
1803
c55e8d03 1804 goto activate_locked;
ee72886d
MG
1805 }
1806
dfc8d636 1807 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1808 goto keep_locked;
d791ea67 1809 if (!may_enter_fs(page, sc->gfp_mask))
1da177e4 1810 goto keep_locked;
52a8363e 1811 if (!sc->may_writepage)
1da177e4
LT
1812 goto keep_locked;
1813
d950c947
MG
1814 /*
1815 * Page is dirty. Flush the TLB if a writable entry
1816 * potentially exists to avoid CPU writes after IO
1817 * starts and then write it out here.
1818 */
1819 try_to_unmap_flush_dirty();
2282679f 1820 switch (pageout(folio, mapping, &plug)) {
1da177e4
LT
1821 case PAGE_KEEP:
1822 goto keep_locked;
1823 case PAGE_ACTIVATE:
1824 goto activate_locked;
1825 case PAGE_SUCCESS:
c79b7b96 1826 stat->nr_pageout += nr_pages;
96f8bf4f 1827
7d3579e8 1828 if (PageWriteback(page))
41ac1999 1829 goto keep;
7d3579e8 1830 if (PageDirty(page))
1da177e4 1831 goto keep;
7d3579e8 1832
1da177e4
LT
1833 /*
1834 * A synchronous write - probably a ramdisk. Go
1835 * ahead and try to reclaim the page.
1836 */
529ae9aa 1837 if (!trylock_page(page))
1da177e4
LT
1838 goto keep;
1839 if (PageDirty(page) || PageWriteback(page))
1840 goto keep_locked;
1841 mapping = page_mapping(page);
01359eb2 1842 fallthrough;
1da177e4
LT
1843 case PAGE_CLEAN:
1844 ; /* try to free the page below */
1845 }
1846 }
1847
1848 /*
1849 * If the page has buffers, try to free the buffer mappings
1850 * associated with this page. If we succeed we try to free
1851 * the page as well.
1852 *
1853 * We do this even if the page is PageDirty().
1854 * try_to_release_page() does not perform I/O, but it is
1855 * possible for a page to have PageDirty set, but it is actually
1856 * clean (all its buffers are clean). This happens if the
1857 * buffers were written out directly, with submit_bh(). ext3
894bc310 1858 * will do this, as well as the blockdev mapping.
1da177e4
LT
1859 * try_to_release_page() will discover that cleanness and will
1860 * drop the buffers and mark the page clean - it can be freed.
1861 *
1862 * Rarely, pages can have buffers and no ->mapping. These are
1863 * the pages which were not successfully invalidated in
d12b8951 1864 * truncate_cleanup_page(). We try to drop those buffers here
1da177e4
LT
1865 * and if that worked, and the page is no longer mapped into
1866 * process address space (page_count == 1) it can be freed.
1867 * Otherwise, leave the page on the LRU so it is swappable.
1868 */
266cf658 1869 if (page_has_private(page)) {
1da177e4
LT
1870 if (!try_to_release_page(page, sc->gfp_mask))
1871 goto activate_locked;
e286781d
NP
1872 if (!mapping && page_count(page) == 1) {
1873 unlock_page(page);
1874 if (put_page_testzero(page))
1875 goto free_it;
1876 else {
1877 /*
1878 * rare race with speculative reference.
1879 * the speculative reference will free
1880 * this page shortly, so we may
1881 * increment nr_reclaimed here (and
1882 * leave it off the LRU).
1883 */
1884 nr_reclaimed++;
1885 continue;
1886 }
1887 }
1da177e4
LT
1888 }
1889
802a3a92
SL
1890 if (PageAnon(page) && !PageSwapBacked(page)) {
1891 /* follow __remove_mapping for reference */
1892 if (!page_ref_freeze(page, 1))
1893 goto keep_locked;
d17be2d9
ML
1894 /*
1895 * The page has only one reference left, which is
1896 * from the isolation. After the caller puts the
1897 * page back on lru and drops the reference, the
1898 * page will be freed anyway. It doesn't matter
1899 * which lru it goes. So we don't bother checking
1900 * PageDirty here.
1901 */
802a3a92 1902 count_vm_event(PGLAZYFREED);
2262185c 1903 count_memcg_page_event(page, PGLAZYFREED);
be7c07d6 1904 } else if (!mapping || !__remove_mapping(mapping, folio, true,
b910718a 1905 sc->target_mem_cgroup))
802a3a92 1906 goto keep_locked;
9a1ea439
HD
1907
1908 unlock_page(page);
e286781d 1909free_it:
98879b3b
YS
1910 /*
1911 * THP may get swapped out in a whole, need account
1912 * all base pages.
1913 */
1914 nr_reclaimed += nr_pages;
abe4c3b5
MG
1915
1916 /*
1917 * Is there need to periodically free_page_list? It would
1918 * appear not as the counts should be low
1919 */
7ae88534 1920 if (unlikely(PageTransHuge(page)))
ff45fc3c 1921 destroy_compound_page(page);
7ae88534 1922 else
bd4c82c2 1923 list_add(&page->lru, &free_pages);
1da177e4
LT
1924 continue;
1925
98879b3b
YS
1926activate_locked_split:
1927 /*
1928 * The tail pages that are failed to add into swap cache
1929 * reach here. Fixup nr_scanned and nr_pages.
1930 */
1931 if (nr_pages > 1) {
1932 sc->nr_scanned -= (nr_pages - 1);
1933 nr_pages = 1;
1934 }
1da177e4 1935activate_locked:
68a22394 1936 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1937 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1938 PageMlocked(page)))
a2c43eed 1939 try_to_free_swap(page);
309381fe 1940 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1941 if (!PageMlocked(page)) {
9de4f22a 1942 int type = page_is_file_lru(page);
ad6b6704 1943 SetPageActive(page);
98879b3b 1944 stat->nr_activate[type] += nr_pages;
2262185c 1945 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1946 }
1da177e4
LT
1947keep_locked:
1948 unlock_page(page);
1949keep:
1950 list_add(&page->lru, &ret_pages);
309381fe 1951 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1952 }
26aa2d19
DH
1953 /* 'page_list' is always empty here */
1954
1955 /* Migrate pages selected for demotion */
1956 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1957 /* Pages that could not be demoted are still in @demote_pages */
1958 if (!list_empty(&demote_pages)) {
1959 /* Pages which failed to demoted go back on @page_list for retry: */
1960 list_splice_init(&demote_pages, page_list);
1961 do_demote_pass = false;
1962 goto retry;
1963 }
abe4c3b5 1964
98879b3b
YS
1965 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1966
747db954 1967 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1968 try_to_unmap_flush();
2d4894b5 1969 free_unref_page_list(&free_pages);
abe4c3b5 1970
1da177e4 1971 list_splice(&ret_pages, page_list);
886cf190 1972 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1973
2282679f
N
1974 if (plug)
1975 swap_write_unplug(plug);
05ff5137 1976 return nr_reclaimed;
1da177e4
LT
1977}
1978
730ec8c0 1979unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1980 struct list_head *page_list)
1981{
1982 struct scan_control sc = {
1983 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
1984 .may_unmap = 1,
1985 };
1f318a9b 1986 struct reclaim_stat stat;
730ec8c0 1987 unsigned int nr_reclaimed;
02c6de8d
MK
1988 struct page *page, *next;
1989 LIST_HEAD(clean_pages);
2d2b8d2b 1990 unsigned int noreclaim_flag;
02c6de8d
MK
1991
1992 list_for_each_entry_safe(page, next, page_list, lru) {
ae37c7ff
OS
1993 if (!PageHuge(page) && page_is_file_lru(page) &&
1994 !PageDirty(page) && !__PageMovable(page) &&
1995 !PageUnevictable(page)) {
02c6de8d
MK
1996 ClearPageActive(page);
1997 list_move(&page->lru, &clean_pages);
1998 }
1999 }
2000
2d2b8d2b
YZ
2001 /*
2002 * We should be safe here since we are only dealing with file pages and
2003 * we are not kswapd and therefore cannot write dirty file pages. But
2004 * call memalloc_noreclaim_save() anyway, just in case these conditions
2005 * change in the future.
2006 */
2007 noreclaim_flag = memalloc_noreclaim_save();
1f318a9b 2008 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
013339df 2009 &stat, true);
2d2b8d2b
YZ
2010 memalloc_noreclaim_restore(noreclaim_flag);
2011
02c6de8d 2012 list_splice(&clean_pages, page_list);
2da9f630
NP
2013 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2014 -(long)nr_reclaimed);
1f318a9b
JK
2015 /*
2016 * Since lazyfree pages are isolated from file LRU from the beginning,
2017 * they will rotate back to anonymous LRU in the end if it failed to
2018 * discard so isolated count will be mismatched.
2019 * Compensate the isolated count for both LRU lists.
2020 */
2021 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2022 stat.nr_lazyfree_fail);
2023 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 2024 -(long)stat.nr_lazyfree_fail);
1f318a9b 2025 return nr_reclaimed;
02c6de8d
MK
2026}
2027
7ee36a14
MG
2028/*
2029 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 2030 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
2031 */
2032static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 2033 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 2034{
7ee36a14
MG
2035 int zid;
2036
7ee36a14
MG
2037 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2038 if (!nr_zone_taken[zid])
2039 continue;
2040
a892cb6b 2041 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
2042 }
2043
7ee36a14
MG
2044}
2045
f611fab7 2046/*
15b44736
HD
2047 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2048 *
2049 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
2050 * shrink the lists perform better by taking out a batch of pages
2051 * and working on them outside the LRU lock.
2052 *
2053 * For pagecache intensive workloads, this function is the hottest
2054 * spot in the kernel (apart from copy_*_user functions).
2055 *
15b44736 2056 * Lru_lock must be held before calling this function.
1da177e4 2057 *
791b48b6 2058 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 2059 * @lruvec: The LRU vector to pull pages from.
1da177e4 2060 * @dst: The temp list to put pages on to.
f626012d 2061 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 2062 * @sc: The scan_control struct for this reclaim session
3cb99451 2063 * @lru: LRU list id for isolating
1da177e4
LT
2064 *
2065 * returns how many pages were moved onto *@dst.
2066 */
69e05944 2067static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 2068 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 2069 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 2070 enum lru_list lru)
1da177e4 2071{
75b00af7 2072 struct list_head *src = &lruvec->lists[lru];
69e05944 2073 unsigned long nr_taken = 0;
599d0c95 2074 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 2075 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 2076 unsigned long skipped = 0;
791b48b6 2077 unsigned long scan, total_scan, nr_pages;
b2e18757 2078 LIST_HEAD(pages_skipped);
1da177e4 2079
98879b3b 2080 total_scan = 0;
791b48b6 2081 scan = 0;
98879b3b 2082 while (scan < nr_to_scan && !list_empty(src)) {
89f6c88a 2083 struct list_head *move_to = src;
5ad333eb 2084 struct page *page;
5ad333eb 2085
1da177e4
LT
2086 page = lru_to_page(src);
2087 prefetchw_prev_lru_page(page, src, flags);
2088
d8c6546b 2089 nr_pages = compound_nr(page);
98879b3b
YS
2090 total_scan += nr_pages;
2091
b2e18757 2092 if (page_zonenum(page) > sc->reclaim_idx) {
98879b3b 2093 nr_skipped[page_zonenum(page)] += nr_pages;
89f6c88a
HD
2094 move_to = &pages_skipped;
2095 goto move;
b2e18757
MG
2096 }
2097
791b48b6
MK
2098 /*
2099 * Do not count skipped pages because that makes the function
2100 * return with no isolated pages if the LRU mostly contains
2101 * ineligible pages. This causes the VM to not reclaim any
2102 * pages, triggering a premature OOM.
89f6c88a 2103 * Account all tail pages of THP.
791b48b6 2104 */
98879b3b 2105 scan += nr_pages;
89f6c88a
HD
2106
2107 if (!PageLRU(page))
2108 goto move;
2109 if (!sc->may_unmap && page_mapped(page))
2110 goto move;
2111
c2135f7c
AS
2112 /*
2113 * Be careful not to clear PageLRU until after we're
2114 * sure the page is not being freed elsewhere -- the
2115 * page release code relies on it.
2116 */
89f6c88a
HD
2117 if (unlikely(!get_page_unless_zero(page)))
2118 goto move;
5ad333eb 2119
c2135f7c
AS
2120 if (!TestClearPageLRU(page)) {
2121 /* Another thread is already isolating this page */
2122 put_page(page);
89f6c88a 2123 goto move;
5ad333eb 2124 }
c2135f7c
AS
2125
2126 nr_taken += nr_pages;
2127 nr_zone_taken[page_zonenum(page)] += nr_pages;
89f6c88a
HD
2128 move_to = dst;
2129move:
2130 list_move(&page->lru, move_to);
1da177e4
LT
2131 }
2132
b2e18757
MG
2133 /*
2134 * Splice any skipped pages to the start of the LRU list. Note that
2135 * this disrupts the LRU order when reclaiming for lower zones but
2136 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
b2cb6826
ML
2137 * scanning would soon rescan the same pages to skip and waste lots
2138 * of cpu cycles.
b2e18757 2139 */
7cc30fcf
MG
2140 if (!list_empty(&pages_skipped)) {
2141 int zid;
2142
3db65812 2143 list_splice(&pages_skipped, src);
7cc30fcf
MG
2144 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2145 if (!nr_skipped[zid])
2146 continue;
2147
2148 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2149 skipped += nr_skipped[zid];
7cc30fcf
MG
2150 }
2151 }
791b48b6 2152 *nr_scanned = total_scan;
1265e3a6 2153 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
89f6c88a
HD
2154 total_scan, skipped, nr_taken,
2155 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
b4536f0c 2156 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2157 return nr_taken;
2158}
2159
62695a84 2160/**
d1d8a3b4
MWO
2161 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2162 * @folio: Folio to isolate from its LRU list.
62695a84 2163 *
d1d8a3b4
MWO
2164 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2165 * corresponding to whatever LRU list the folio was on.
62695a84 2166 *
d1d8a3b4
MWO
2167 * The folio will have its LRU flag cleared. If it was found on the
2168 * active list, it will have the Active flag set. If it was found on the
2169 * unevictable list, it will have the Unevictable flag set. These flags
894bc310 2170 * may need to be cleared by the caller before letting the page go.
62695a84 2171 *
d1d8a3b4 2172 * Context:
a5d09bed 2173 *
62695a84 2174 * (1) Must be called with an elevated refcount on the page. This is a
d1d8a3b4 2175 * fundamental difference from isolate_lru_pages() (which is called
62695a84 2176 * without a stable reference).
d1d8a3b4
MWO
2177 * (2) The lru_lock must not be held.
2178 * (3) Interrupts must be enabled.
2179 *
2180 * Return: 0 if the folio was removed from an LRU list.
2181 * -EBUSY if the folio was not on an LRU list.
62695a84 2182 */
d1d8a3b4 2183int folio_isolate_lru(struct folio *folio)
62695a84
NP
2184{
2185 int ret = -EBUSY;
2186
d1d8a3b4 2187 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
0c917313 2188
d1d8a3b4 2189 if (folio_test_clear_lru(folio)) {
fa9add64 2190 struct lruvec *lruvec;
62695a84 2191
d1d8a3b4 2192 folio_get(folio);
e809c3fe 2193 lruvec = folio_lruvec_lock_irq(folio);
d1d8a3b4 2194 lruvec_del_folio(lruvec, folio);
6168d0da 2195 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2196 ret = 0;
62695a84 2197 }
d25b5bd8 2198
62695a84
NP
2199 return ret;
2200}
2201
35cd7815 2202/*
d37dd5dc 2203 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2204 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2205 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2206 * the LRU list will go small and be scanned faster than necessary, leading to
2207 * unnecessary swapping, thrashing and OOM.
35cd7815 2208 */
599d0c95 2209static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2210 struct scan_control *sc)
2211{
2212 unsigned long inactive, isolated;
d818fca1 2213 bool too_many;
35cd7815
RR
2214
2215 if (current_is_kswapd())
2216 return 0;
2217
b5ead35e 2218 if (!writeback_throttling_sane(sc))
35cd7815
RR
2219 return 0;
2220
2221 if (file) {
599d0c95
MG
2222 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2223 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2224 } else {
599d0c95
MG
2225 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2226 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2227 }
2228
3cf23841
FW
2229 /*
2230 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2231 * won't get blocked by normal direct-reclaimers, forming a circular
2232 * deadlock.
2233 */
d0164adc 2234 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2235 inactive >>= 3;
2236
d818fca1
MG
2237 too_many = isolated > inactive;
2238
2239 /* Wake up tasks throttled due to too_many_isolated. */
2240 if (!too_many)
2241 wake_throttle_isolated(pgdat);
2242
2243 return too_many;
35cd7815
RR
2244}
2245
a222f341 2246/*
15b44736
HD
2247 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2248 * On return, @list is reused as a list of pages to be freed by the caller.
a222f341
KT
2249 *
2250 * Returns the number of pages moved to the given lruvec.
2251 */
9ef56b78
MS
2252static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2253 struct list_head *list)
66635629 2254{
a222f341 2255 int nr_pages, nr_moved = 0;
3f79768f 2256 LIST_HEAD(pages_to_free);
a222f341 2257 struct page *page;
66635629 2258
a222f341
KT
2259 while (!list_empty(list)) {
2260 page = lru_to_page(list);
309381fe 2261 VM_BUG_ON_PAGE(PageLRU(page), page);
3d06afab 2262 list_del(&page->lru);
39b5f29a 2263 if (unlikely(!page_evictable(page))) {
6168d0da 2264 spin_unlock_irq(&lruvec->lru_lock);
66635629 2265 putback_lru_page(page);
6168d0da 2266 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2267 continue;
2268 }
fa9add64 2269
3d06afab
AS
2270 /*
2271 * The SetPageLRU needs to be kept here for list integrity.
2272 * Otherwise:
2273 * #0 move_pages_to_lru #1 release_pages
2274 * if !put_page_testzero
2275 * if (put_page_testzero())
2276 * !PageLRU //skip lru_lock
2277 * SetPageLRU()
2278 * list_add(&page->lru,)
2279 * list_add(&page->lru,)
2280 */
7a608572 2281 SetPageLRU(page);
a222f341 2282
3d06afab 2283 if (unlikely(put_page_testzero(page))) {
87560179 2284 __clear_page_lru_flags(page);
2bcf8879
HD
2285
2286 if (unlikely(PageCompound(page))) {
6168d0da 2287 spin_unlock_irq(&lruvec->lru_lock);
ff45fc3c 2288 destroy_compound_page(page);
6168d0da 2289 spin_lock_irq(&lruvec->lru_lock);
2bcf8879
HD
2290 } else
2291 list_add(&page->lru, &pages_to_free);
3d06afab
AS
2292
2293 continue;
66635629 2294 }
3d06afab 2295
afca9157
AS
2296 /*
2297 * All pages were isolated from the same lruvec (and isolation
2298 * inhibits memcg migration).
2299 */
0de340cb 2300 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
3a9c9788 2301 add_page_to_lru_list(page, lruvec);
3d06afab 2302 nr_pages = thp_nr_pages(page);
3d06afab
AS
2303 nr_moved += nr_pages;
2304 if (PageActive(page))
2305 workingset_age_nonresident(lruvec, nr_pages);
66635629 2306 }
66635629 2307
3f79768f
HD
2308 /*
2309 * To save our caller's stack, now use input list for pages to free.
2310 */
a222f341
KT
2311 list_splice(&pages_to_free, list);
2312
2313 return nr_moved;
66635629
MG
2314}
2315
399ba0b9 2316/*
5829f7db
ML
2317 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2318 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2319 * we should not throttle. Otherwise it is safe to do so.
399ba0b9
N
2320 */
2321static int current_may_throttle(void)
2322{
b9b1335e 2323 return !(current->flags & PF_LOCAL_THROTTLE);
399ba0b9
N
2324}
2325
1da177e4 2326/*
b2e18757 2327 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2328 * of reclaimed pages
1da177e4 2329 */
9ef56b78 2330static unsigned long
1a93be0e 2331shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2332 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2333{
2334 LIST_HEAD(page_list);
e247dbce 2335 unsigned long nr_scanned;
730ec8c0 2336 unsigned int nr_reclaimed = 0;
e247dbce 2337 unsigned long nr_taken;
060f005f 2338 struct reclaim_stat stat;
497a6c1b 2339 bool file = is_file_lru(lru);
f46b7912 2340 enum vm_event_item item;
599d0c95 2341 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2342 bool stalled = false;
78dc583d 2343
599d0c95 2344 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2345 if (stalled)
2346 return 0;
2347
2348 /* wait a bit for the reclaimer. */
db73ee0d 2349 stalled = true;
c3f4a9a2 2350 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
35cd7815
RR
2351
2352 /* We are about to die and free our memory. Return now. */
2353 if (fatal_signal_pending(current))
2354 return SWAP_CLUSTER_MAX;
2355 }
2356
1da177e4 2357 lru_add_drain();
f80c0673 2358
6168d0da 2359 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2360
5dc35979 2361 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2362 &nr_scanned, sc, lru);
95d918fc 2363
599d0c95 2364 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2365 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2366 if (!cgroup_reclaim(sc))
f46b7912
KT
2367 __count_vm_events(item, nr_scanned);
2368 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2369 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2370
6168d0da 2371 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2372
d563c050 2373 if (nr_taken == 0)
66635629 2374 return 0;
5ad333eb 2375
013339df 2376 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2377
6168d0da 2378 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2379 move_pages_to_lru(lruvec, &page_list);
2380
2381 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2382 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2383 if (!cgroup_reclaim(sc))
f46b7912
KT
2384 __count_vm_events(item, nr_reclaimed);
2385 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2386 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2387 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2388
75cc3c91 2389 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2390 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2391 free_unref_page_list(&page_list);
e11da5b4 2392
1c610d5f
AR
2393 /*
2394 * If dirty pages are scanned that are not queued for IO, it
2395 * implies that flushers are not doing their job. This can
2396 * happen when memory pressure pushes dirty pages to the end of
2397 * the LRU before the dirty limits are breached and the dirty
2398 * data has expired. It can also happen when the proportion of
2399 * dirty pages grows not through writes but through memory
2400 * pressure reclaiming all the clean cache. And in some cases,
2401 * the flushers simply cannot keep up with the allocation
2402 * rate. Nudge the flusher threads in case they are asleep.
2403 */
2404 if (stat.nr_unqueued_dirty == nr_taken)
2405 wakeup_flusher_threads(WB_REASON_VMSCAN);
2406
d108c772
AR
2407 sc->nr.dirty += stat.nr_dirty;
2408 sc->nr.congested += stat.nr_congested;
2409 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2410 sc->nr.writeback += stat.nr_writeback;
2411 sc->nr.immediate += stat.nr_immediate;
2412 sc->nr.taken += nr_taken;
2413 if (file)
2414 sc->nr.file_taken += nr_taken;
8e950282 2415
599d0c95 2416 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2417 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2418 return nr_reclaimed;
1da177e4
LT
2419}
2420
15b44736
HD
2421/*
2422 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2423 *
2424 * We move them the other way if the page is referenced by one or more
2425 * processes.
2426 *
2427 * If the pages are mostly unmapped, the processing is fast and it is
2428 * appropriate to hold lru_lock across the whole operation. But if
b3ac0413 2429 * the pages are mapped, the processing is slow (folio_referenced()), so
15b44736
HD
2430 * we should drop lru_lock around each page. It's impossible to balance
2431 * this, so instead we remove the pages from the LRU while processing them.
2432 * It is safe to rely on PG_active against the non-LRU pages in here because
2433 * nobody will play with that bit on a non-LRU page.
2434 *
2435 * The downside is that we have to touch page->_refcount against each page.
2436 * But we had to alter page->flags anyway.
2437 */
f626012d 2438static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2439 struct lruvec *lruvec,
f16015fb 2440 struct scan_control *sc,
9e3b2f8c 2441 enum lru_list lru)
1da177e4 2442{
44c241f1 2443 unsigned long nr_taken;
f626012d 2444 unsigned long nr_scanned;
6fe6b7e3 2445 unsigned long vm_flags;
1da177e4 2446 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2447 LIST_HEAD(l_active);
b69408e8 2448 LIST_HEAD(l_inactive);
9d998b4f
MH
2449 unsigned nr_deactivate, nr_activate;
2450 unsigned nr_rotated = 0;
3cb99451 2451 int file = is_file_lru(lru);
599d0c95 2452 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2453
2454 lru_add_drain();
f80c0673 2455
6168d0da 2456 spin_lock_irq(&lruvec->lru_lock);
925b7673 2457
5dc35979 2458 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2459 &nr_scanned, sc, lru);
89b5fae5 2460
599d0c95 2461 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2462
912c0572
SB
2463 if (!cgroup_reclaim(sc))
2464 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2465 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2466
6168d0da 2467 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2468
1da177e4 2469 while (!list_empty(&l_hold)) {
b3ac0413
MWO
2470 struct folio *folio;
2471 struct page *page;
2472
1da177e4 2473 cond_resched();
b3ac0413
MWO
2474 folio = lru_to_folio(&l_hold);
2475 list_del(&folio->lru);
2476 page = &folio->page;
7e9cd484 2477
39b5f29a 2478 if (unlikely(!page_evictable(page))) {
894bc310
LS
2479 putback_lru_page(page);
2480 continue;
2481 }
2482
cc715d99
MG
2483 if (unlikely(buffer_heads_over_limit)) {
2484 if (page_has_private(page) && trylock_page(page)) {
2485 if (page_has_private(page))
2486 try_to_release_page(page, 0);
2487 unlock_page(page);
2488 }
2489 }
2490
b3ac0413
MWO
2491 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2492 &vm_flags)) {
8cab4754
WF
2493 /*
2494 * Identify referenced, file-backed active pages and
2495 * give them one more trip around the active list. So
2496 * that executable code get better chances to stay in
2497 * memory under moderate memory pressure. Anon pages
2498 * are not likely to be evicted by use-once streaming
2499 * IO, plus JVM can create lots of anon VM_EXEC pages,
2500 * so we ignore them here.
2501 */
9de4f22a 2502 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2503 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2504 list_add(&page->lru, &l_active);
2505 continue;
2506 }
2507 }
7e9cd484 2508
5205e56e 2509 ClearPageActive(page); /* we are de-activating */
1899ad18 2510 SetPageWorkingset(page);
1da177e4
LT
2511 list_add(&page->lru, &l_inactive);
2512 }
2513
b555749a 2514 /*
8cab4754 2515 * Move pages back to the lru list.
b555749a 2516 */
6168d0da 2517 spin_lock_irq(&lruvec->lru_lock);
556adecb 2518
a222f341
KT
2519 nr_activate = move_pages_to_lru(lruvec, &l_active);
2520 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2521 /* Keep all free pages in l_active list */
2522 list_splice(&l_inactive, &l_active);
9851ac13
KT
2523
2524 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2525 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2526
599d0c95 2527 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2528 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2529
f372d89e
KT
2530 mem_cgroup_uncharge_list(&l_active);
2531 free_unref_page_list(&l_active);
9d998b4f
MH
2532 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2533 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2534}
2535
1a4e58cc
MK
2536unsigned long reclaim_pages(struct list_head *page_list)
2537{
f661d007 2538 int nid = NUMA_NO_NODE;
730ec8c0 2539 unsigned int nr_reclaimed = 0;
1a4e58cc
MK
2540 LIST_HEAD(node_page_list);
2541 struct reclaim_stat dummy_stat;
2542 struct page *page;
2d2b8d2b 2543 unsigned int noreclaim_flag;
1a4e58cc
MK
2544 struct scan_control sc = {
2545 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2546 .may_writepage = 1,
2547 .may_unmap = 1,
2548 .may_swap = 1,
26aa2d19 2549 .no_demotion = 1,
1a4e58cc
MK
2550 };
2551
2d2b8d2b
YZ
2552 noreclaim_flag = memalloc_noreclaim_save();
2553
1a4e58cc
MK
2554 while (!list_empty(page_list)) {
2555 page = lru_to_page(page_list);
f661d007 2556 if (nid == NUMA_NO_NODE) {
1a4e58cc
MK
2557 nid = page_to_nid(page);
2558 INIT_LIST_HEAD(&node_page_list);
2559 }
2560
2561 if (nid == page_to_nid(page)) {
2562 ClearPageActive(page);
2563 list_move(&page->lru, &node_page_list);
2564 continue;
2565 }
2566
2567 nr_reclaimed += shrink_page_list(&node_page_list,
2568 NODE_DATA(nid),
013339df 2569 &sc, &dummy_stat, false);
1a4e58cc
MK
2570 while (!list_empty(&node_page_list)) {
2571 page = lru_to_page(&node_page_list);
2572 list_del(&page->lru);
2573 putback_lru_page(page);
2574 }
2575
f661d007 2576 nid = NUMA_NO_NODE;
1a4e58cc
MK
2577 }
2578
2579 if (!list_empty(&node_page_list)) {
2580 nr_reclaimed += shrink_page_list(&node_page_list,
2581 NODE_DATA(nid),
013339df 2582 &sc, &dummy_stat, false);
1a4e58cc
MK
2583 while (!list_empty(&node_page_list)) {
2584 page = lru_to_page(&node_page_list);
2585 list_del(&page->lru);
2586 putback_lru_page(page);
2587 }
2588 }
2589
2d2b8d2b
YZ
2590 memalloc_noreclaim_restore(noreclaim_flag);
2591
1a4e58cc
MK
2592 return nr_reclaimed;
2593}
2594
b91ac374
JW
2595static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2596 struct lruvec *lruvec, struct scan_control *sc)
2597{
2598 if (is_active_lru(lru)) {
2599 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2600 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2601 else
2602 sc->skipped_deactivate = 1;
2603 return 0;
2604 }
2605
2606 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2607}
2608
59dc76b0
RR
2609/*
2610 * The inactive anon list should be small enough that the VM never has
2611 * to do too much work.
14797e23 2612 *
59dc76b0
RR
2613 * The inactive file list should be small enough to leave most memory
2614 * to the established workingset on the scan-resistant active list,
2615 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2616 *
59dc76b0
RR
2617 * Both inactive lists should also be large enough that each inactive
2618 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2619 *
2a2e4885
JW
2620 * If that fails and refaulting is observed, the inactive list grows.
2621 *
59dc76b0 2622 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2623 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2624 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2625 *
59dc76b0
RR
2626 * total target max
2627 * memory ratio inactive
2628 * -------------------------------------
2629 * 10MB 1 5MB
2630 * 100MB 1 50MB
2631 * 1GB 3 250MB
2632 * 10GB 10 0.9GB
2633 * 100GB 31 3GB
2634 * 1TB 101 10GB
2635 * 10TB 320 32GB
56e49d21 2636 */
b91ac374 2637static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2638{
b91ac374 2639 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2640 unsigned long inactive, active;
2641 unsigned long inactive_ratio;
59dc76b0 2642 unsigned long gb;
e3790144 2643
b91ac374
JW
2644 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2645 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2646
b91ac374 2647 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2648 if (gb)
b91ac374
JW
2649 inactive_ratio = int_sqrt(10 * gb);
2650 else
2651 inactive_ratio = 1;
fd538803 2652
59dc76b0 2653 return inactive * inactive_ratio < active;
b39415b2
RR
2654}
2655
9a265114
JW
2656enum scan_balance {
2657 SCAN_EQUAL,
2658 SCAN_FRACT,
2659 SCAN_ANON,
2660 SCAN_FILE,
2661};
2662
4f98a2fe
RR
2663/*
2664 * Determine how aggressively the anon and file LRU lists should be
02e458d8 2665 * scanned.
4f98a2fe 2666 *
be7bd59d
WL
2667 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2668 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2669 */
afaf07a6
JW
2670static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2671 unsigned long *nr)
4f98a2fe 2672{
a2a36488 2673 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2674 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2675 unsigned long anon_cost, file_cost, total_cost;
33377678 2676 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2677 u64 fraction[ANON_AND_FILE];
9a265114 2678 u64 denominator = 0; /* gcc */
9a265114 2679 enum scan_balance scan_balance;
4f98a2fe 2680 unsigned long ap, fp;
4111304d 2681 enum lru_list lru;
76a33fc3
SL
2682
2683 /* If we have no swap space, do not bother scanning anon pages. */
a2a36488 2684 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2685 scan_balance = SCAN_FILE;
76a33fc3
SL
2686 goto out;
2687 }
4f98a2fe 2688
10316b31
JW
2689 /*
2690 * Global reclaim will swap to prevent OOM even with no
2691 * swappiness, but memcg users want to use this knob to
2692 * disable swapping for individual groups completely when
2693 * using the memory controller's swap limit feature would be
2694 * too expensive.
2695 */
b5ead35e 2696 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2697 scan_balance = SCAN_FILE;
10316b31
JW
2698 goto out;
2699 }
2700
2701 /*
2702 * Do not apply any pressure balancing cleverness when the
2703 * system is close to OOM, scan both anon and file equally
2704 * (unless the swappiness setting disagrees with swapping).
2705 */
02695175 2706 if (!sc->priority && swappiness) {
9a265114 2707 scan_balance = SCAN_EQUAL;
10316b31
JW
2708 goto out;
2709 }
2710
62376251 2711 /*
53138cea 2712 * If the system is almost out of file pages, force-scan anon.
62376251 2713 */
b91ac374 2714 if (sc->file_is_tiny) {
53138cea
JW
2715 scan_balance = SCAN_ANON;
2716 goto out;
62376251
JW
2717 }
2718
7c5bd705 2719 /*
b91ac374
JW
2720 * If there is enough inactive page cache, we do not reclaim
2721 * anything from the anonymous working right now.
7c5bd705 2722 */
b91ac374 2723 if (sc->cache_trim_mode) {
9a265114 2724 scan_balance = SCAN_FILE;
7c5bd705
JW
2725 goto out;
2726 }
2727
9a265114 2728 scan_balance = SCAN_FRACT;
58c37f6e 2729 /*
314b57fb
JW
2730 * Calculate the pressure balance between anon and file pages.
2731 *
2732 * The amount of pressure we put on each LRU is inversely
2733 * proportional to the cost of reclaiming each list, as
2734 * determined by the share of pages that are refaulting, times
2735 * the relative IO cost of bringing back a swapped out
2736 * anonymous page vs reloading a filesystem page (swappiness).
2737 *
d483a5dd
JW
2738 * Although we limit that influence to ensure no list gets
2739 * left behind completely: at least a third of the pressure is
2740 * applied, before swappiness.
2741 *
314b57fb 2742 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2743 */
d483a5dd
JW
2744 total_cost = sc->anon_cost + sc->file_cost;
2745 anon_cost = total_cost + sc->anon_cost;
2746 file_cost = total_cost + sc->file_cost;
2747 total_cost = anon_cost + file_cost;
58c37f6e 2748
d483a5dd
JW
2749 ap = swappiness * (total_cost + 1);
2750 ap /= anon_cost + 1;
4f98a2fe 2751
d483a5dd
JW
2752 fp = (200 - swappiness) * (total_cost + 1);
2753 fp /= file_cost + 1;
4f98a2fe 2754
76a33fc3
SL
2755 fraction[0] = ap;
2756 fraction[1] = fp;
a4fe1631 2757 denominator = ap + fp;
76a33fc3 2758out:
688035f7
JW
2759 for_each_evictable_lru(lru) {
2760 int file = is_file_lru(lru);
9783aa99 2761 unsigned long lruvec_size;
f56ce412 2762 unsigned long low, min;
688035f7 2763 unsigned long scan;
9783aa99
CD
2764
2765 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2766 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2767 &min, &low);
9783aa99 2768
f56ce412 2769 if (min || low) {
9783aa99
CD
2770 /*
2771 * Scale a cgroup's reclaim pressure by proportioning
2772 * its current usage to its memory.low or memory.min
2773 * setting.
2774 *
2775 * This is important, as otherwise scanning aggression
2776 * becomes extremely binary -- from nothing as we
2777 * approach the memory protection threshold, to totally
2778 * nominal as we exceed it. This results in requiring
2779 * setting extremely liberal protection thresholds. It
2780 * also means we simply get no protection at all if we
2781 * set it too low, which is not ideal.
1bc63fb1
CD
2782 *
2783 * If there is any protection in place, we reduce scan
2784 * pressure by how much of the total memory used is
2785 * within protection thresholds.
9783aa99 2786 *
9de7ca46
CD
2787 * There is one special case: in the first reclaim pass,
2788 * we skip over all groups that are within their low
2789 * protection. If that fails to reclaim enough pages to
2790 * satisfy the reclaim goal, we come back and override
2791 * the best-effort low protection. However, we still
2792 * ideally want to honor how well-behaved groups are in
2793 * that case instead of simply punishing them all
2794 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2795 * memory they are using, reducing the scan pressure
2796 * again by how much of the total memory used is under
2797 * hard protection.
9783aa99 2798 */
1bc63fb1 2799 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
2800 unsigned long protection;
2801
2802 /* memory.low scaling, make sure we retry before OOM */
2803 if (!sc->memcg_low_reclaim && low > min) {
2804 protection = low;
2805 sc->memcg_low_skipped = 1;
2806 } else {
2807 protection = min;
2808 }
1bc63fb1
CD
2809
2810 /* Avoid TOCTOU with earlier protection check */
2811 cgroup_size = max(cgroup_size, protection);
2812
2813 scan = lruvec_size - lruvec_size * protection /
32d4f4b7 2814 (cgroup_size + 1);
9783aa99
CD
2815
2816 /*
1bc63fb1 2817 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2818 * reclaim moving forwards, avoiding decrementing
9de7ca46 2819 * sc->priority further than desirable.
9783aa99 2820 */
1bc63fb1 2821 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2822 } else {
2823 scan = lruvec_size;
2824 }
2825
2826 scan >>= sc->priority;
6b4f7799 2827
688035f7
JW
2828 /*
2829 * If the cgroup's already been deleted, make sure to
2830 * scrape out the remaining cache.
2831 */
2832 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2833 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2834
688035f7
JW
2835 switch (scan_balance) {
2836 case SCAN_EQUAL:
2837 /* Scan lists relative to size */
2838 break;
2839 case SCAN_FRACT:
9a265114 2840 /*
688035f7
JW
2841 * Scan types proportional to swappiness and
2842 * their relative recent reclaim efficiency.
76073c64
GS
2843 * Make sure we don't miss the last page on
2844 * the offlined memory cgroups because of a
2845 * round-off error.
9a265114 2846 */
76073c64
GS
2847 scan = mem_cgroup_online(memcg) ?
2848 div64_u64(scan * fraction[file], denominator) :
2849 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2850 denominator);
688035f7
JW
2851 break;
2852 case SCAN_FILE:
2853 case SCAN_ANON:
2854 /* Scan one type exclusively */
e072bff6 2855 if ((scan_balance == SCAN_FILE) != file)
688035f7 2856 scan = 0;
688035f7
JW
2857 break;
2858 default:
2859 /* Look ma, no brain */
2860 BUG();
9a265114 2861 }
688035f7 2862
688035f7 2863 nr[lru] = scan;
76a33fc3 2864 }
6e08a369 2865}
4f98a2fe 2866
2f368a9f
DH
2867/*
2868 * Anonymous LRU management is a waste if there is
2869 * ultimately no way to reclaim the memory.
2870 */
2871static bool can_age_anon_pages(struct pglist_data *pgdat,
2872 struct scan_control *sc)
2873{
2874 /* Aging the anon LRU is valuable if swap is present: */
2875 if (total_swap_pages > 0)
2876 return true;
2877
2878 /* Also valuable if anon pages can be demoted: */
2879 return can_demote(pgdat->node_id, sc);
2880}
2881
afaf07a6 2882static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2883{
2884 unsigned long nr[NR_LRU_LISTS];
e82e0561 2885 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2886 unsigned long nr_to_scan;
2887 enum lru_list lru;
2888 unsigned long nr_reclaimed = 0;
2889 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2890 struct blk_plug plug;
1a501907 2891 bool scan_adjusted;
9b4f98cd 2892
afaf07a6 2893 get_scan_count(lruvec, sc, nr);
9b4f98cd 2894
e82e0561
MG
2895 /* Record the original scan target for proportional adjustments later */
2896 memcpy(targets, nr, sizeof(nr));
2897
1a501907
MG
2898 /*
2899 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2900 * event that can occur when there is little memory pressure e.g.
2901 * multiple streaming readers/writers. Hence, we do not abort scanning
2902 * when the requested number of pages are reclaimed when scanning at
2903 * DEF_PRIORITY on the assumption that the fact we are direct
2904 * reclaiming implies that kswapd is not keeping up and it is best to
2905 * do a batch of work at once. For memcg reclaim one check is made to
2906 * abort proportional reclaim if either the file or anon lru has already
2907 * dropped to zero at the first pass.
2908 */
b5ead35e 2909 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2910 sc->priority == DEF_PRIORITY);
2911
9b4f98cd
JW
2912 blk_start_plug(&plug);
2913 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2914 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2915 unsigned long nr_anon, nr_file, percentage;
2916 unsigned long nr_scanned;
2917
9b4f98cd
JW
2918 for_each_evictable_lru(lru) {
2919 if (nr[lru]) {
2920 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2921 nr[lru] -= nr_to_scan;
2922
2923 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2924 lruvec, sc);
9b4f98cd
JW
2925 }
2926 }
e82e0561 2927
bd041733
MH
2928 cond_resched();
2929
e82e0561
MG
2930 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2931 continue;
2932
e82e0561
MG
2933 /*
2934 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2935 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2936 * proportionally what was requested by get_scan_count(). We
2937 * stop reclaiming one LRU and reduce the amount scanning
2938 * proportional to the original scan target.
2939 */
2940 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2941 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2942
1a501907
MG
2943 /*
2944 * It's just vindictive to attack the larger once the smaller
2945 * has gone to zero. And given the way we stop scanning the
2946 * smaller below, this makes sure that we only make one nudge
2947 * towards proportionality once we've got nr_to_reclaim.
2948 */
2949 if (!nr_file || !nr_anon)
2950 break;
2951
e82e0561
MG
2952 if (nr_file > nr_anon) {
2953 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2954 targets[LRU_ACTIVE_ANON] + 1;
2955 lru = LRU_BASE;
2956 percentage = nr_anon * 100 / scan_target;
2957 } else {
2958 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2959 targets[LRU_ACTIVE_FILE] + 1;
2960 lru = LRU_FILE;
2961 percentage = nr_file * 100 / scan_target;
2962 }
2963
2964 /* Stop scanning the smaller of the LRU */
2965 nr[lru] = 0;
2966 nr[lru + LRU_ACTIVE] = 0;
2967
2968 /*
2969 * Recalculate the other LRU scan count based on its original
2970 * scan target and the percentage scanning already complete
2971 */
2972 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2973 nr_scanned = targets[lru] - nr[lru];
2974 nr[lru] = targets[lru] * (100 - percentage) / 100;
2975 nr[lru] -= min(nr[lru], nr_scanned);
2976
2977 lru += LRU_ACTIVE;
2978 nr_scanned = targets[lru] - nr[lru];
2979 nr[lru] = targets[lru] * (100 - percentage) / 100;
2980 nr[lru] -= min(nr[lru], nr_scanned);
2981
2982 scan_adjusted = true;
9b4f98cd
JW
2983 }
2984 blk_finish_plug(&plug);
2985 sc->nr_reclaimed += nr_reclaimed;
2986
2987 /*
2988 * Even if we did not try to evict anon pages at all, we want to
2989 * rebalance the anon lru active/inactive ratio.
2990 */
2f368a9f
DH
2991 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2992 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
2993 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2994 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2995}
2996
23b9da55 2997/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2998static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2999{
d84da3f9 3000 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 3001 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 3002 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
3003 return true;
3004
3005 return false;
3006}
3007
3e7d3449 3008/*
23b9da55
MG
3009 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3010 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3011 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 3012 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 3013 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 3014 */
a9dd0a83 3015static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 3016 unsigned long nr_reclaimed,
3e7d3449
MG
3017 struct scan_control *sc)
3018{
3019 unsigned long pages_for_compaction;
3020 unsigned long inactive_lru_pages;
a9dd0a83 3021 int z;
3e7d3449
MG
3022
3023 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 3024 if (!in_reclaim_compaction(sc))
3e7d3449
MG
3025 return false;
3026
5ee04716
VB
3027 /*
3028 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3029 * number of pages that were scanned. This will return to the caller
3030 * with the risk reclaim/compaction and the resulting allocation attempt
3031 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3032 * allocations through requiring that the full LRU list has been scanned
3033 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3034 * scan, but that approximation was wrong, and there were corner cases
3035 * where always a non-zero amount of pages were scanned.
3036 */
3037 if (!nr_reclaimed)
3038 return false;
3e7d3449 3039
3e7d3449 3040 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
3041 for (z = 0; z <= sc->reclaim_idx; z++) {
3042 struct zone *zone = &pgdat->node_zones[z];
6aa303de 3043 if (!managed_zone(zone))
a9dd0a83
MG
3044 continue;
3045
3046 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 3047 case COMPACT_SUCCESS:
a9dd0a83
MG
3048 case COMPACT_CONTINUE:
3049 return false;
3050 default:
3051 /* check next zone */
3052 ;
3053 }
3e7d3449 3054 }
1c6c1597
HD
3055
3056 /*
3057 * If we have not reclaimed enough pages for compaction and the
3058 * inactive lists are large enough, continue reclaiming
3059 */
3060 pages_for_compaction = compact_gap(sc->order);
3061 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 3062 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
3063 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3064
5ee04716 3065 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
3066}
3067
0f6a5cff 3068static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 3069{
0f6a5cff 3070 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 3071 struct mem_cgroup *memcg;
1da177e4 3072
0f6a5cff 3073 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 3074 do {
afaf07a6 3075 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
3076 unsigned long reclaimed;
3077 unsigned long scanned;
5660048c 3078
e3336cab
XP
3079 /*
3080 * This loop can become CPU-bound when target memcgs
3081 * aren't eligible for reclaim - either because they
3082 * don't have any reclaimable pages, or because their
3083 * memory is explicitly protected. Avoid soft lockups.
3084 */
3085 cond_resched();
3086
45c7f7e1
CD
3087 mem_cgroup_calculate_protection(target_memcg, memcg);
3088
3089 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
3090 /*
3091 * Hard protection.
3092 * If there is no reclaimable memory, OOM.
3093 */
3094 continue;
45c7f7e1 3095 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
3096 /*
3097 * Soft protection.
3098 * Respect the protection only as long as
3099 * there is an unprotected supply
3100 * of reclaimable memory from other cgroups.
3101 */
3102 if (!sc->memcg_low_reclaim) {
3103 sc->memcg_low_skipped = 1;
bf8d5d52 3104 continue;
241994ed 3105 }
d2af3397 3106 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 3107 }
241994ed 3108
d2af3397
JW
3109 reclaimed = sc->nr_reclaimed;
3110 scanned = sc->nr_scanned;
afaf07a6
JW
3111
3112 shrink_lruvec(lruvec, sc);
70ddf637 3113
d2af3397
JW
3114 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3115 sc->priority);
6b4f7799 3116
d2af3397
JW
3117 /* Record the group's reclaim efficiency */
3118 vmpressure(sc->gfp_mask, memcg, false,
3119 sc->nr_scanned - scanned,
3120 sc->nr_reclaimed - reclaimed);
70ddf637 3121
0f6a5cff
JW
3122 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3123}
3124
6c9e0907 3125static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
3126{
3127 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 3128 unsigned long nr_reclaimed, nr_scanned;
1b05117d 3129 struct lruvec *target_lruvec;
0f6a5cff 3130 bool reclaimable = false;
b91ac374 3131 unsigned long file;
0f6a5cff 3132
1b05117d
JW
3133 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3134
0f6a5cff 3135again:
aa48e47e
SB
3136 /*
3137 * Flush the memory cgroup stats, so that we read accurate per-memcg
3138 * lruvec stats for heuristics.
3139 */
3140 mem_cgroup_flush_stats();
3141
0f6a5cff
JW
3142 memset(&sc->nr, 0, sizeof(sc->nr));
3143
3144 nr_reclaimed = sc->nr_reclaimed;
3145 nr_scanned = sc->nr_scanned;
3146
7cf111bc
JW
3147 /*
3148 * Determine the scan balance between anon and file LRUs.
3149 */
6168d0da 3150 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
3151 sc->anon_cost = target_lruvec->anon_cost;
3152 sc->file_cost = target_lruvec->file_cost;
6168d0da 3153 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 3154
b91ac374
JW
3155 /*
3156 * Target desirable inactive:active list ratios for the anon
3157 * and file LRU lists.
3158 */
3159 if (!sc->force_deactivate) {
3160 unsigned long refaults;
3161
170b04b7
JK
3162 refaults = lruvec_page_state(target_lruvec,
3163 WORKINGSET_ACTIVATE_ANON);
3164 if (refaults != target_lruvec->refaults[0] ||
3165 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
3166 sc->may_deactivate |= DEACTIVATE_ANON;
3167 else
3168 sc->may_deactivate &= ~DEACTIVATE_ANON;
3169
3170 /*
3171 * When refaults are being observed, it means a new
3172 * workingset is being established. Deactivate to get
3173 * rid of any stale active pages quickly.
3174 */
3175 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
3176 WORKINGSET_ACTIVATE_FILE);
3177 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
3178 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3179 sc->may_deactivate |= DEACTIVATE_FILE;
3180 else
3181 sc->may_deactivate &= ~DEACTIVATE_FILE;
3182 } else
3183 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3184
3185 /*
3186 * If we have plenty of inactive file pages that aren't
3187 * thrashing, try to reclaim those first before touching
3188 * anonymous pages.
3189 */
3190 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3191 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3192 sc->cache_trim_mode = 1;
3193 else
3194 sc->cache_trim_mode = 0;
3195
53138cea
JW
3196 /*
3197 * Prevent the reclaimer from falling into the cache trap: as
3198 * cache pages start out inactive, every cache fault will tip
3199 * the scan balance towards the file LRU. And as the file LRU
3200 * shrinks, so does the window for rotation from references.
3201 * This means we have a runaway feedback loop where a tiny
3202 * thrashing file LRU becomes infinitely more attractive than
3203 * anon pages. Try to detect this based on file LRU size.
3204 */
3205 if (!cgroup_reclaim(sc)) {
53138cea 3206 unsigned long total_high_wmark = 0;
b91ac374
JW
3207 unsigned long free, anon;
3208 int z;
53138cea
JW
3209
3210 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3211 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3212 node_page_state(pgdat, NR_INACTIVE_FILE);
3213
3214 for (z = 0; z < MAX_NR_ZONES; z++) {
3215 struct zone *zone = &pgdat->node_zones[z];
3216 if (!managed_zone(zone))
3217 continue;
3218
3219 total_high_wmark += high_wmark_pages(zone);
3220 }
3221
b91ac374
JW
3222 /*
3223 * Consider anon: if that's low too, this isn't a
3224 * runaway file reclaim problem, but rather just
3225 * extreme pressure. Reclaim as per usual then.
3226 */
3227 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3228
3229 sc->file_is_tiny =
3230 file + free <= total_high_wmark &&
3231 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3232 anon >> sc->priority;
53138cea
JW
3233 }
3234
0f6a5cff 3235 shrink_node_memcgs(pgdat, sc);
2344d7e4 3236
d2af3397
JW
3237 if (reclaim_state) {
3238 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3239 reclaim_state->reclaimed_slab = 0;
3240 }
d108c772 3241
d2af3397 3242 /* Record the subtree's reclaim efficiency */
1b05117d 3243 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
3244 sc->nr_scanned - nr_scanned,
3245 sc->nr_reclaimed - nr_reclaimed);
d108c772 3246
d2af3397
JW
3247 if (sc->nr_reclaimed - nr_reclaimed)
3248 reclaimable = true;
d108c772 3249
d2af3397
JW
3250 if (current_is_kswapd()) {
3251 /*
3252 * If reclaim is isolating dirty pages under writeback,
3253 * it implies that the long-lived page allocation rate
3254 * is exceeding the page laundering rate. Either the
3255 * global limits are not being effective at throttling
3256 * processes due to the page distribution throughout
3257 * zones or there is heavy usage of a slow backing
3258 * device. The only option is to throttle from reclaim
3259 * context which is not ideal as there is no guarantee
3260 * the dirtying process is throttled in the same way
3261 * balance_dirty_pages() manages.
3262 *
3263 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3264 * count the number of pages under pages flagged for
3265 * immediate reclaim and stall if any are encountered
3266 * in the nr_immediate check below.
3267 */
3268 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3269 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 3270
d2af3397
JW
3271 /* Allow kswapd to start writing pages during reclaim.*/
3272 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3273 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 3274
d108c772 3275 /*
1eba09c1 3276 * If kswapd scans pages marked for immediate
d2af3397
JW
3277 * reclaim and under writeback (nr_immediate), it
3278 * implies that pages are cycling through the LRU
8cd7c588
MG
3279 * faster than they are written so forcibly stall
3280 * until some pages complete writeback.
d108c772 3281 */
d2af3397 3282 if (sc->nr.immediate)
c3f4a9a2 3283 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d2af3397
JW
3284 }
3285
3286 /*
8cd7c588
MG
3287 * Tag a node/memcg as congested if all the dirty pages were marked
3288 * for writeback and immediate reclaim (counted in nr.congested).
1b05117d 3289 *
d2af3397 3290 * Legacy memcg will stall in page writeback so avoid forcibly
8cd7c588 3291 * stalling in reclaim_throttle().
d2af3397 3292 */
1b05117d
JW
3293 if ((current_is_kswapd() ||
3294 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 3295 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 3296 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
3297
3298 /*
8cd7c588
MG
3299 * Stall direct reclaim for IO completions if the lruvec is
3300 * node is congested. Allow kswapd to continue until it
d2af3397
JW
3301 * starts encountering unqueued dirty pages or cycling through
3302 * the LRU too quickly.
3303 */
1b05117d
JW
3304 if (!current_is_kswapd() && current_may_throttle() &&
3305 !sc->hibernation_mode &&
3306 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
1b4e3f26 3307 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
d108c772 3308
d2af3397
JW
3309 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3310 sc))
3311 goto again;
2344d7e4 3312
c73322d0
JW
3313 /*
3314 * Kswapd gives up on balancing particular nodes after too
3315 * many failures to reclaim anything from them and goes to
3316 * sleep. On reclaim progress, reset the failure counter. A
3317 * successful direct reclaim run will revive a dormant kswapd.
3318 */
3319 if (reclaimable)
3320 pgdat->kswapd_failures = 0;
f16015fb
JW
3321}
3322
53853e2d 3323/*
fdd4c614
VB
3324 * Returns true if compaction should go ahead for a costly-order request, or
3325 * the allocation would already succeed without compaction. Return false if we
3326 * should reclaim first.
53853e2d 3327 */
4f588331 3328static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 3329{
31483b6a 3330 unsigned long watermark;
fdd4c614 3331 enum compact_result suitable;
fe4b1b24 3332
fdd4c614
VB
3333 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3334 if (suitable == COMPACT_SUCCESS)
3335 /* Allocation should succeed already. Don't reclaim. */
3336 return true;
3337 if (suitable == COMPACT_SKIPPED)
3338 /* Compaction cannot yet proceed. Do reclaim. */
3339 return false;
fe4b1b24 3340
53853e2d 3341 /*
fdd4c614
VB
3342 * Compaction is already possible, but it takes time to run and there
3343 * are potentially other callers using the pages just freed. So proceed
3344 * with reclaim to make a buffer of free pages available to give
3345 * compaction a reasonable chance of completing and allocating the page.
3346 * Note that we won't actually reclaim the whole buffer in one attempt
3347 * as the target watermark in should_continue_reclaim() is lower. But if
3348 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 3349 */
fdd4c614 3350 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 3351
fdd4c614 3352 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
3353}
3354
69392a40
MG
3355static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3356{
66ce520b
MG
3357 /*
3358 * If reclaim is making progress greater than 12% efficiency then
3359 * wake all the NOPROGRESS throttled tasks.
3360 */
3361 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
69392a40
MG
3362 wait_queue_head_t *wqh;
3363
3364 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3365 if (waitqueue_active(wqh))
3366 wake_up(wqh);
3367
3368 return;
3369 }
3370
3371 /*
1b4e3f26
MG
3372 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3373 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3374 * under writeback and marked for immediate reclaim at the tail of the
3375 * LRU.
69392a40 3376 */
1b4e3f26 3377 if (current_is_kswapd() || cgroup_reclaim(sc))
69392a40
MG
3378 return;
3379
3380 /* Throttle if making no progress at high prioities. */
1b4e3f26 3381 if (sc->priority == 1 && !sc->nr_reclaimed)
c3f4a9a2 3382 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
69392a40
MG
3383}
3384
1da177e4
LT
3385/*
3386 * This is the direct reclaim path, for page-allocating processes. We only
3387 * try to reclaim pages from zones which will satisfy the caller's allocation
3388 * request.
3389 *
1da177e4
LT
3390 * If a zone is deemed to be full of pinned pages then just give it a light
3391 * scan then give up on it.
3392 */
0a0337e0 3393static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 3394{
dd1a239f 3395 struct zoneref *z;
54a6eb5c 3396 struct zone *zone;
0608f43d
AM
3397 unsigned long nr_soft_reclaimed;
3398 unsigned long nr_soft_scanned;
619d0d76 3399 gfp_t orig_mask;
79dafcdc 3400 pg_data_t *last_pgdat = NULL;
1b4e3f26 3401 pg_data_t *first_pgdat = NULL;
1cfb419b 3402
cc715d99
MG
3403 /*
3404 * If the number of buffer_heads in the machine exceeds the maximum
3405 * allowed level, force direct reclaim to scan the highmem zone as
3406 * highmem pages could be pinning lowmem pages storing buffer_heads
3407 */
619d0d76 3408 orig_mask = sc->gfp_mask;
b2e18757 3409 if (buffer_heads_over_limit) {
cc715d99 3410 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 3411 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 3412 }
cc715d99 3413
d4debc66 3414 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 3415 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
3416 /*
3417 * Take care memory controller reclaiming has small influence
3418 * to global LRU.
3419 */
b5ead35e 3420 if (!cgroup_reclaim(sc)) {
344736f2
VD
3421 if (!cpuset_zone_allowed(zone,
3422 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3423 continue;
65ec02cb 3424
0b06496a
JW
3425 /*
3426 * If we already have plenty of memory free for
3427 * compaction in this zone, don't free any more.
3428 * Even though compaction is invoked for any
3429 * non-zero order, only frequent costly order
3430 * reclamation is disruptive enough to become a
3431 * noticeable problem, like transparent huge
3432 * page allocations.
3433 */
3434 if (IS_ENABLED(CONFIG_COMPACTION) &&
3435 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3436 compaction_ready(zone, sc)) {
0b06496a
JW
3437 sc->compaction_ready = true;
3438 continue;
e0887c19 3439 }
0b06496a 3440
79dafcdc
MG
3441 /*
3442 * Shrink each node in the zonelist once. If the
3443 * zonelist is ordered by zone (not the default) then a
3444 * node may be shrunk multiple times but in that case
3445 * the user prefers lower zones being preserved.
3446 */
3447 if (zone->zone_pgdat == last_pgdat)
3448 continue;
3449
0608f43d
AM
3450 /*
3451 * This steals pages from memory cgroups over softlimit
3452 * and returns the number of reclaimed pages and
3453 * scanned pages. This works for global memory pressure
3454 * and balancing, not for a memcg's limit.
3455 */
3456 nr_soft_scanned = 0;
ef8f2327 3457 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3458 sc->order, sc->gfp_mask,
3459 &nr_soft_scanned);
3460 sc->nr_reclaimed += nr_soft_reclaimed;
3461 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3462 /* need some check for avoid more shrink_zone() */
1cfb419b 3463 }
408d8544 3464
1b4e3f26
MG
3465 if (!first_pgdat)
3466 first_pgdat = zone->zone_pgdat;
3467
79dafcdc
MG
3468 /* See comment about same check for global reclaim above */
3469 if (zone->zone_pgdat == last_pgdat)
3470 continue;
3471 last_pgdat = zone->zone_pgdat;
970a39a3 3472 shrink_node(zone->zone_pgdat, sc);
1da177e4 3473 }
e0c23279 3474
80082938
MG
3475 if (first_pgdat)
3476 consider_reclaim_throttle(first_pgdat, sc);
1b4e3f26 3477
619d0d76
WY
3478 /*
3479 * Restore to original mask to avoid the impact on the caller if we
3480 * promoted it to __GFP_HIGHMEM.
3481 */
3482 sc->gfp_mask = orig_mask;
1da177e4 3483}
4f98a2fe 3484
b910718a 3485static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3486{
b910718a
JW
3487 struct lruvec *target_lruvec;
3488 unsigned long refaults;
2a2e4885 3489
b910718a 3490 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
3491 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3492 target_lruvec->refaults[0] = refaults;
3493 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3494 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
3495}
3496
1da177e4
LT
3497/*
3498 * This is the main entry point to direct page reclaim.
3499 *
3500 * If a full scan of the inactive list fails to free enough memory then we
3501 * are "out of memory" and something needs to be killed.
3502 *
3503 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3504 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3505 * caller can't do much about. We kick the writeback threads and take explicit
3506 * naps in the hope that some of these pages can be written. But if the
3507 * allocating task holds filesystem locks which prevent writeout this might not
3508 * work, and the allocation attempt will fail.
a41f24ea
NA
3509 *
3510 * returns: 0, if no pages reclaimed
3511 * else, the number of pages reclaimed
1da177e4 3512 */
dac1d27b 3513static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3514 struct scan_control *sc)
1da177e4 3515{
241994ed 3516 int initial_priority = sc->priority;
2a2e4885
JW
3517 pg_data_t *last_pgdat;
3518 struct zoneref *z;
3519 struct zone *zone;
241994ed 3520retry:
873b4771
KK
3521 delayacct_freepages_start();
3522
b5ead35e 3523 if (!cgroup_reclaim(sc))
7cc30fcf 3524 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3525
9e3b2f8c 3526 do {
70ddf637
AV
3527 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3528 sc->priority);
66e1707b 3529 sc->nr_scanned = 0;
0a0337e0 3530 shrink_zones(zonelist, sc);
c6a8a8c5 3531
bb21c7ce 3532 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3533 break;
3534
3535 if (sc->compaction_ready)
3536 break;
1da177e4 3537
0e50ce3b
MK
3538 /*
3539 * If we're getting trouble reclaiming, start doing
3540 * writepage even in laptop mode.
3541 */
3542 if (sc->priority < DEF_PRIORITY - 2)
3543 sc->may_writepage = 1;
0b06496a 3544 } while (--sc->priority >= 0);
bb21c7ce 3545
2a2e4885
JW
3546 last_pgdat = NULL;
3547 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3548 sc->nodemask) {
3549 if (zone->zone_pgdat == last_pgdat)
3550 continue;
3551 last_pgdat = zone->zone_pgdat;
1b05117d 3552
2a2e4885 3553 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3554
3555 if (cgroup_reclaim(sc)) {
3556 struct lruvec *lruvec;
3557
3558 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3559 zone->zone_pgdat);
3560 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3561 }
2a2e4885
JW
3562 }
3563
873b4771
KK
3564 delayacct_freepages_end();
3565
bb21c7ce
KM
3566 if (sc->nr_reclaimed)
3567 return sc->nr_reclaimed;
3568
0cee34fd 3569 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3570 if (sc->compaction_ready)
7335084d
MG
3571 return 1;
3572
b91ac374
JW
3573 /*
3574 * We make inactive:active ratio decisions based on the node's
3575 * composition of memory, but a restrictive reclaim_idx or a
3576 * memory.low cgroup setting can exempt large amounts of
3577 * memory from reclaim. Neither of which are very common, so
3578 * instead of doing costly eligibility calculations of the
3579 * entire cgroup subtree up front, we assume the estimates are
3580 * good, and retry with forcible deactivation if that fails.
3581 */
3582 if (sc->skipped_deactivate) {
3583 sc->priority = initial_priority;
3584 sc->force_deactivate = 1;
3585 sc->skipped_deactivate = 0;
3586 goto retry;
3587 }
3588
241994ed 3589 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3590 if (sc->memcg_low_skipped) {
241994ed 3591 sc->priority = initial_priority;
b91ac374 3592 sc->force_deactivate = 0;
d6622f63
YX
3593 sc->memcg_low_reclaim = 1;
3594 sc->memcg_low_skipped = 0;
241994ed
JW
3595 goto retry;
3596 }
3597
bb21c7ce 3598 return 0;
1da177e4
LT
3599}
3600
c73322d0 3601static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3602{
3603 struct zone *zone;
3604 unsigned long pfmemalloc_reserve = 0;
3605 unsigned long free_pages = 0;
3606 int i;
3607 bool wmark_ok;
3608
c73322d0
JW
3609 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3610 return true;
3611
5515061d
MG
3612 for (i = 0; i <= ZONE_NORMAL; i++) {
3613 zone = &pgdat->node_zones[i];
d450abd8
JW
3614 if (!managed_zone(zone))
3615 continue;
3616
3617 if (!zone_reclaimable_pages(zone))
675becce
MG
3618 continue;
3619
5515061d
MG
3620 pfmemalloc_reserve += min_wmark_pages(zone);
3621 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3622 }
3623
675becce
MG
3624 /* If there are no reserves (unexpected config) then do not throttle */
3625 if (!pfmemalloc_reserve)
3626 return true;
3627
5515061d
MG
3628 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3629
3630 /* kswapd must be awake if processes are being throttled */
3631 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3632 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3633 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3634
5515061d
MG
3635 wake_up_interruptible(&pgdat->kswapd_wait);
3636 }
3637
3638 return wmark_ok;
3639}
3640
3641/*
3642 * Throttle direct reclaimers if backing storage is backed by the network
3643 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3644 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3645 * when the low watermark is reached.
3646 *
3647 * Returns true if a fatal signal was delivered during throttling. If this
3648 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3649 */
50694c28 3650static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3651 nodemask_t *nodemask)
3652{
675becce 3653 struct zoneref *z;
5515061d 3654 struct zone *zone;
675becce 3655 pg_data_t *pgdat = NULL;
5515061d
MG
3656
3657 /*
3658 * Kernel threads should not be throttled as they may be indirectly
3659 * responsible for cleaning pages necessary for reclaim to make forward
3660 * progress. kjournald for example may enter direct reclaim while
3661 * committing a transaction where throttling it could forcing other
3662 * processes to block on log_wait_commit().
3663 */
3664 if (current->flags & PF_KTHREAD)
50694c28
MG
3665 goto out;
3666
3667 /*
3668 * If a fatal signal is pending, this process should not throttle.
3669 * It should return quickly so it can exit and free its memory
3670 */
3671 if (fatal_signal_pending(current))
3672 goto out;
5515061d 3673
675becce
MG
3674 /*
3675 * Check if the pfmemalloc reserves are ok by finding the first node
3676 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3677 * GFP_KERNEL will be required for allocating network buffers when
3678 * swapping over the network so ZONE_HIGHMEM is unusable.
3679 *
3680 * Throttling is based on the first usable node and throttled processes
3681 * wait on a queue until kswapd makes progress and wakes them. There
3682 * is an affinity then between processes waking up and where reclaim
3683 * progress has been made assuming the process wakes on the same node.
3684 * More importantly, processes running on remote nodes will not compete
3685 * for remote pfmemalloc reserves and processes on different nodes
3686 * should make reasonable progress.
3687 */
3688 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3689 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3690 if (zone_idx(zone) > ZONE_NORMAL)
3691 continue;
3692
3693 /* Throttle based on the first usable node */
3694 pgdat = zone->zone_pgdat;
c73322d0 3695 if (allow_direct_reclaim(pgdat))
675becce
MG
3696 goto out;
3697 break;
3698 }
3699
3700 /* If no zone was usable by the allocation flags then do not throttle */
3701 if (!pgdat)
50694c28 3702 goto out;
5515061d 3703
68243e76
MG
3704 /* Account for the throttling */
3705 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3706
5515061d
MG
3707 /*
3708 * If the caller cannot enter the filesystem, it's possible that it
3709 * is due to the caller holding an FS lock or performing a journal
3710 * transaction in the case of a filesystem like ext[3|4]. In this case,
3711 * it is not safe to block on pfmemalloc_wait as kswapd could be
3712 * blocked waiting on the same lock. Instead, throttle for up to a
3713 * second before continuing.
3714 */
2e786d9e 3715 if (!(gfp_mask & __GFP_FS))
5515061d 3716 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3717 allow_direct_reclaim(pgdat), HZ);
2e786d9e
ML
3718 else
3719 /* Throttle until kswapd wakes the process */
3720 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3721 allow_direct_reclaim(pgdat));
50694c28 3722
50694c28
MG
3723 if (fatal_signal_pending(current))
3724 return true;
3725
3726out:
3727 return false;
5515061d
MG
3728}
3729
dac1d27b 3730unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3731 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3732{
33906bc5 3733 unsigned long nr_reclaimed;
66e1707b 3734 struct scan_control sc = {
ee814fe2 3735 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3736 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3737 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3738 .order = order,
3739 .nodemask = nodemask,
3740 .priority = DEF_PRIORITY,
66e1707b 3741 .may_writepage = !laptop_mode,
a6dc60f8 3742 .may_unmap = 1,
2e2e4259 3743 .may_swap = 1,
66e1707b
BS
3744 };
3745
bb451fdf
GT
3746 /*
3747 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3748 * Confirm they are large enough for max values.
3749 */
3750 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3751 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3752 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3753
5515061d 3754 /*
50694c28
MG
3755 * Do not enter reclaim if fatal signal was delivered while throttled.
3756 * 1 is returned so that the page allocator does not OOM kill at this
3757 * point.
5515061d 3758 */
f2f43e56 3759 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3760 return 1;
3761
1732d2b0 3762 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3763 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3764
3115cd91 3765 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3766
3767 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3768 set_task_reclaim_state(current, NULL);
33906bc5
MG
3769
3770 return nr_reclaimed;
66e1707b
BS
3771}
3772
c255a458 3773#ifdef CONFIG_MEMCG
66e1707b 3774
d2e5fb92 3775/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3776unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3777 gfp_t gfp_mask, bool noswap,
ef8f2327 3778 pg_data_t *pgdat,
0ae5e89c 3779 unsigned long *nr_scanned)
4e416953 3780{
afaf07a6 3781 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3782 struct scan_control sc = {
b8f5c566 3783 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3784 .target_mem_cgroup = memcg,
4e416953
BS
3785 .may_writepage = !laptop_mode,
3786 .may_unmap = 1,
b2e18757 3787 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3788 .may_swap = !noswap,
4e416953 3789 };
0ae5e89c 3790
d2e5fb92
MH
3791 WARN_ON_ONCE(!current->reclaim_state);
3792
4e416953
BS
3793 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3794 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3795
9e3b2f8c 3796 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3797 sc.gfp_mask);
bdce6d9e 3798
4e416953
BS
3799 /*
3800 * NOTE: Although we can get the priority field, using it
3801 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3802 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3803 * will pick up pages from other mem cgroup's as well. We hack
3804 * the priority and make it zero.
3805 */
afaf07a6 3806 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3807
3808 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3809
0ae5e89c 3810 *nr_scanned = sc.nr_scanned;
0308f7cf 3811
4e416953
BS
3812 return sc.nr_reclaimed;
3813}
3814
72835c86 3815unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3816 unsigned long nr_pages,
a7885eb8 3817 gfp_t gfp_mask,
b70a2a21 3818 bool may_swap)
66e1707b 3819{
bdce6d9e 3820 unsigned long nr_reclaimed;
499118e9 3821 unsigned int noreclaim_flag;
66e1707b 3822 struct scan_control sc = {
b70a2a21 3823 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3824 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3825 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3826 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3827 .target_mem_cgroup = memcg,
3828 .priority = DEF_PRIORITY,
3829 .may_writepage = !laptop_mode,
3830 .may_unmap = 1,
b70a2a21 3831 .may_swap = may_swap,
a09ed5e0 3832 };
889976db 3833 /*
fa40d1ee
SB
3834 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3835 * equal pressure on all the nodes. This is based on the assumption that
3836 * the reclaim does not bail out early.
889976db 3837 */
fa40d1ee 3838 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3839
fa40d1ee 3840 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3841 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3842 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3843
3115cd91 3844 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3845
499118e9 3846 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3847 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3848 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3849
3850 return nr_reclaimed;
66e1707b
BS
3851}
3852#endif
3853
1d82de61 3854static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3855 struct scan_control *sc)
f16015fb 3856{
b95a2f2d 3857 struct mem_cgroup *memcg;
b91ac374 3858 struct lruvec *lruvec;
f16015fb 3859
2f368a9f 3860 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
3861 return;
3862
b91ac374
JW
3863 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3864 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3865 return;
3866
b95a2f2d
JW
3867 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3868 do {
b91ac374
JW
3869 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3870 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3871 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3872 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3873 } while (memcg);
f16015fb
JW
3874}
3875
97a225e6 3876static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3877{
3878 int i;
3879 struct zone *zone;
3880
3881 /*
3882 * Check for watermark boosts top-down as the higher zones
3883 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3884 * should not be checked at the same time as reclaim would
1c30844d
MG
3885 * start prematurely when there is no boosting and a lower
3886 * zone is balanced.
3887 */
97a225e6 3888 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3889 zone = pgdat->node_zones + i;
3890 if (!managed_zone(zone))
3891 continue;
3892
3893 if (zone->watermark_boost)
3894 return true;
3895 }
3896
3897 return false;
3898}
3899
e716f2eb
MG
3900/*
3901 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3902 * and highest_zoneidx
e716f2eb 3903 */
97a225e6 3904static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3905{
e716f2eb
MG
3906 int i;
3907 unsigned long mark = -1;
3908 struct zone *zone;
60cefed4 3909
1c30844d
MG
3910 /*
3911 * Check watermarks bottom-up as lower zones are more likely to
3912 * meet watermarks.
3913 */
97a225e6 3914 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3915 zone = pgdat->node_zones + i;
6256c6b4 3916
e716f2eb
MG
3917 if (!managed_zone(zone))
3918 continue;
3919
c574bbe9
HY
3920 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3921 mark = wmark_pages(zone, WMARK_PROMO);
3922 else
3923 mark = high_wmark_pages(zone);
97a225e6 3924 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3925 return true;
3926 }
3927
3928 /*
36c26128 3929 * If a node has no managed zone within highest_zoneidx, it does not
e716f2eb
MG
3930 * need balancing by definition. This can happen if a zone-restricted
3931 * allocation tries to wake a remote kswapd.
3932 */
3933 if (mark == -1)
3934 return true;
3935
3936 return false;
60cefed4
JW
3937}
3938
631b6e08
MG
3939/* Clear pgdat state for congested, dirty or under writeback. */
3940static void clear_pgdat_congested(pg_data_t *pgdat)
3941{
1b05117d
JW
3942 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3943
3944 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3945 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3946 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3947}
3948
5515061d
MG
3949/*
3950 * Prepare kswapd for sleeping. This verifies that there are no processes
3951 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3952 *
3953 * Returns true if kswapd is ready to sleep
3954 */
97a225e6
JK
3955static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3956 int highest_zoneidx)
f50de2d3 3957{
5515061d 3958 /*
9e5e3661 3959 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3960 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3961 * race between when kswapd checks the watermarks and a process gets
3962 * throttled. There is also a potential race if processes get
3963 * throttled, kswapd wakes, a large process exits thereby balancing the
3964 * zones, which causes kswapd to exit balance_pgdat() before reaching
3965 * the wake up checks. If kswapd is going to sleep, no process should
3966 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3967 * the wake up is premature, processes will wake kswapd and get
3968 * throttled again. The difference from wake ups in balance_pgdat() is
3969 * that here we are under prepare_to_wait().
5515061d 3970 */
9e5e3661
VB
3971 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3972 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3973
c73322d0
JW
3974 /* Hopeless node, leave it to direct reclaim */
3975 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3976 return true;
3977
97a225e6 3978 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
3979 clear_pgdat_congested(pgdat);
3980 return true;
1d82de61
MG
3981 }
3982
333b0a45 3983 return false;
f50de2d3
MG
3984}
3985
75485363 3986/*
1d82de61
MG
3987 * kswapd shrinks a node of pages that are at or below the highest usable
3988 * zone that is currently unbalanced.
b8e83b94
MG
3989 *
3990 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3991 * reclaim or if the lack of progress was due to pages under writeback.
3992 * This is used to determine if the scanning priority needs to be raised.
75485363 3993 */
1d82de61 3994static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3995 struct scan_control *sc)
75485363 3996{
1d82de61
MG
3997 struct zone *zone;
3998 int z;
75485363 3999
1d82de61
MG
4000 /* Reclaim a number of pages proportional to the number of zones */
4001 sc->nr_to_reclaim = 0;
970a39a3 4002 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 4003 zone = pgdat->node_zones + z;
6aa303de 4004 if (!managed_zone(zone))
1d82de61 4005 continue;
7c954f6d 4006
1d82de61
MG
4007 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4008 }
7c954f6d
MG
4009
4010 /*
1d82de61
MG
4011 * Historically care was taken to put equal pressure on all zones but
4012 * now pressure is applied based on node LRU order.
7c954f6d 4013 */
970a39a3 4014 shrink_node(pgdat, sc);
283aba9f 4015
7c954f6d 4016 /*
1d82de61
MG
4017 * Fragmentation may mean that the system cannot be rebalanced for
4018 * high-order allocations. If twice the allocation size has been
4019 * reclaimed then recheck watermarks only at order-0 to prevent
4020 * excessive reclaim. Assume that a process requested a high-order
4021 * can direct reclaim/compact.
7c954f6d 4022 */
9861a62c 4023 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 4024 sc->order = 0;
7c954f6d 4025
b8e83b94 4026 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
4027}
4028
c49c2c47
MG
4029/* Page allocator PCP high watermark is lowered if reclaim is active. */
4030static inline void
4031update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4032{
4033 int i;
4034 struct zone *zone;
4035
4036 for (i = 0; i <= highest_zoneidx; i++) {
4037 zone = pgdat->node_zones + i;
4038
4039 if (!managed_zone(zone))
4040 continue;
4041
4042 if (active)
4043 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4044 else
4045 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4046 }
4047}
4048
4049static inline void
4050set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4051{
4052 update_reclaim_active(pgdat, highest_zoneidx, true);
4053}
4054
4055static inline void
4056clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4057{
4058 update_reclaim_active(pgdat, highest_zoneidx, false);
4059}
4060
1da177e4 4061/*
1d82de61
MG
4062 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4063 * that are eligible for use by the caller until at least one zone is
4064 * balanced.
1da177e4 4065 *
1d82de61 4066 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
4067 *
4068 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 4069 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 4070 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
4071 * or lower is eligible for reclaim until at least one usable zone is
4072 * balanced.
1da177e4 4073 */
97a225e6 4074static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 4075{
1da177e4 4076 int i;
0608f43d
AM
4077 unsigned long nr_soft_reclaimed;
4078 unsigned long nr_soft_scanned;
eb414681 4079 unsigned long pflags;
1c30844d
MG
4080 unsigned long nr_boost_reclaim;
4081 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4082 bool boosted;
1d82de61 4083 struct zone *zone;
179e9639
AM
4084 struct scan_control sc = {
4085 .gfp_mask = GFP_KERNEL,
ee814fe2 4086 .order = order,
a6dc60f8 4087 .may_unmap = 1,
179e9639 4088 };
93781325 4089
1732d2b0 4090 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 4091 psi_memstall_enter(&pflags);
4f3eaf45 4092 __fs_reclaim_acquire(_THIS_IP_);
93781325 4093
f8891e5e 4094 count_vm_event(PAGEOUTRUN);
1da177e4 4095
1c30844d
MG
4096 /*
4097 * Account for the reclaim boost. Note that the zone boost is left in
4098 * place so that parallel allocations that are near the watermark will
4099 * stall or direct reclaim until kswapd is finished.
4100 */
4101 nr_boost_reclaim = 0;
97a225e6 4102 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4103 zone = pgdat->node_zones + i;
4104 if (!managed_zone(zone))
4105 continue;
4106
4107 nr_boost_reclaim += zone->watermark_boost;
4108 zone_boosts[i] = zone->watermark_boost;
4109 }
4110 boosted = nr_boost_reclaim;
4111
4112restart:
c49c2c47 4113 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 4114 sc.priority = DEF_PRIORITY;
9e3b2f8c 4115 do {
c73322d0 4116 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 4117 bool raise_priority = true;
1c30844d 4118 bool balanced;
93781325 4119 bool ret;
b8e83b94 4120
97a225e6 4121 sc.reclaim_idx = highest_zoneidx;
1da177e4 4122
86c79f6b 4123 /*
84c7a777
MG
4124 * If the number of buffer_heads exceeds the maximum allowed
4125 * then consider reclaiming from all zones. This has a dual
4126 * purpose -- on 64-bit systems it is expected that
4127 * buffer_heads are stripped during active rotation. On 32-bit
4128 * systems, highmem pages can pin lowmem memory and shrinking
4129 * buffers can relieve lowmem pressure. Reclaim may still not
4130 * go ahead if all eligible zones for the original allocation
4131 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
4132 */
4133 if (buffer_heads_over_limit) {
4134 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4135 zone = pgdat->node_zones + i;
6aa303de 4136 if (!managed_zone(zone))
86c79f6b 4137 continue;
cc715d99 4138
970a39a3 4139 sc.reclaim_idx = i;
e1dbeda6 4140 break;
1da177e4 4141 }
1da177e4 4142 }
dafcb73e 4143
86c79f6b 4144 /*
1c30844d
MG
4145 * If the pgdat is imbalanced then ignore boosting and preserve
4146 * the watermarks for a later time and restart. Note that the
4147 * zone watermarks will be still reset at the end of balancing
4148 * on the grounds that the normal reclaim should be enough to
4149 * re-evaluate if boosting is required when kswapd next wakes.
4150 */
97a225e6 4151 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
4152 if (!balanced && nr_boost_reclaim) {
4153 nr_boost_reclaim = 0;
4154 goto restart;
4155 }
4156
4157 /*
4158 * If boosting is not active then only reclaim if there are no
4159 * eligible zones. Note that sc.reclaim_idx is not used as
4160 * buffer_heads_over_limit may have adjusted it.
86c79f6b 4161 */
1c30844d 4162 if (!nr_boost_reclaim && balanced)
e716f2eb 4163 goto out;
e1dbeda6 4164
1c30844d
MG
4165 /* Limit the priority of boosting to avoid reclaim writeback */
4166 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4167 raise_priority = false;
4168
4169 /*
4170 * Do not writeback or swap pages for boosted reclaim. The
4171 * intent is to relieve pressure not issue sub-optimal IO
4172 * from reclaim context. If no pages are reclaimed, the
4173 * reclaim will be aborted.
4174 */
4175 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4176 sc.may_swap = !nr_boost_reclaim;
1c30844d 4177
1d82de61
MG
4178 /*
4179 * Do some background aging of the anon list, to give
4180 * pages a chance to be referenced before reclaiming. All
4181 * pages are rotated regardless of classzone as this is
4182 * about consistent aging.
4183 */
ef8f2327 4184 age_active_anon(pgdat, &sc);
1d82de61 4185
b7ea3c41
MG
4186 /*
4187 * If we're getting trouble reclaiming, start doing writepage
4188 * even in laptop mode.
4189 */
047d72c3 4190 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
4191 sc.may_writepage = 1;
4192
1d82de61
MG
4193 /* Call soft limit reclaim before calling shrink_node. */
4194 sc.nr_scanned = 0;
4195 nr_soft_scanned = 0;
ef8f2327 4196 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
4197 sc.gfp_mask, &nr_soft_scanned);
4198 sc.nr_reclaimed += nr_soft_reclaimed;
4199
1da177e4 4200 /*
1d82de61
MG
4201 * There should be no need to raise the scanning priority if
4202 * enough pages are already being scanned that that high
4203 * watermark would be met at 100% efficiency.
1da177e4 4204 */
970a39a3 4205 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 4206 raise_priority = false;
5515061d
MG
4207
4208 /*
4209 * If the low watermark is met there is no need for processes
4210 * to be throttled on pfmemalloc_wait as they should not be
4211 * able to safely make forward progress. Wake them
4212 */
4213 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 4214 allow_direct_reclaim(pgdat))
cfc51155 4215 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 4216
b8e83b94 4217 /* Check if kswapd should be suspending */
4f3eaf45 4218 __fs_reclaim_release(_THIS_IP_);
93781325 4219 ret = try_to_freeze();
4f3eaf45 4220 __fs_reclaim_acquire(_THIS_IP_);
93781325 4221 if (ret || kthread_should_stop())
b8e83b94 4222 break;
8357376d 4223
73ce02e9 4224 /*
b8e83b94
MG
4225 * Raise priority if scanning rate is too low or there was no
4226 * progress in reclaiming pages
73ce02e9 4227 */
c73322d0 4228 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
4229 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4230
4231 /*
4232 * If reclaim made no progress for a boost, stop reclaim as
4233 * IO cannot be queued and it could be an infinite loop in
4234 * extreme circumstances.
4235 */
4236 if (nr_boost_reclaim && !nr_reclaimed)
4237 break;
4238
c73322d0 4239 if (raise_priority || !nr_reclaimed)
b8e83b94 4240 sc.priority--;
1d82de61 4241 } while (sc.priority >= 1);
1da177e4 4242
c73322d0
JW
4243 if (!sc.nr_reclaimed)
4244 pgdat->kswapd_failures++;
4245
b8e83b94 4246out:
c49c2c47
MG
4247 clear_reclaim_active(pgdat, highest_zoneidx);
4248
1c30844d
MG
4249 /* If reclaim was boosted, account for the reclaim done in this pass */
4250 if (boosted) {
4251 unsigned long flags;
4252
97a225e6 4253 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4254 if (!zone_boosts[i])
4255 continue;
4256
4257 /* Increments are under the zone lock */
4258 zone = pgdat->node_zones + i;
4259 spin_lock_irqsave(&zone->lock, flags);
4260 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4261 spin_unlock_irqrestore(&zone->lock, flags);
4262 }
4263
4264 /*
4265 * As there is now likely space, wakeup kcompact to defragment
4266 * pageblocks.
4267 */
97a225e6 4268 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
4269 }
4270
2a2e4885 4271 snapshot_refaults(NULL, pgdat);
4f3eaf45 4272 __fs_reclaim_release(_THIS_IP_);
eb414681 4273 psi_memstall_leave(&pflags);
1732d2b0 4274 set_task_reclaim_state(current, NULL);
e5ca8071 4275
0abdee2b 4276 /*
1d82de61
MG
4277 * Return the order kswapd stopped reclaiming at as
4278 * prepare_kswapd_sleep() takes it into account. If another caller
4279 * entered the allocator slow path while kswapd was awake, order will
4280 * remain at the higher level.
0abdee2b 4281 */
1d82de61 4282 return sc.order;
1da177e4
LT
4283}
4284
e716f2eb 4285/*
97a225e6
JK
4286 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4287 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4288 * not a valid index then either kswapd runs for first time or kswapd couldn't
4289 * sleep after previous reclaim attempt (node is still unbalanced). In that
4290 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 4291 */
97a225e6
JK
4292static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4293 enum zone_type prev_highest_zoneidx)
e716f2eb 4294{
97a225e6 4295 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4296
97a225e6 4297 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
4298}
4299
38087d9b 4300static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 4301 unsigned int highest_zoneidx)
f0bc0a60
KM
4302{
4303 long remaining = 0;
4304 DEFINE_WAIT(wait);
4305
4306 if (freezing(current) || kthread_should_stop())
4307 return;
4308
4309 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4310
333b0a45
SG
4311 /*
4312 * Try to sleep for a short interval. Note that kcompactd will only be
4313 * woken if it is possible to sleep for a short interval. This is
4314 * deliberate on the assumption that if reclaim cannot keep an
4315 * eligible zone balanced that it's also unlikely that compaction will
4316 * succeed.
4317 */
97a225e6 4318 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
4319 /*
4320 * Compaction records what page blocks it recently failed to
4321 * isolate pages from and skips them in the future scanning.
4322 * When kswapd is going to sleep, it is reasonable to assume
4323 * that pages and compaction may succeed so reset the cache.
4324 */
4325 reset_isolation_suitable(pgdat);
4326
4327 /*
4328 * We have freed the memory, now we should compact it to make
4329 * allocation of the requested order possible.
4330 */
97a225e6 4331 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 4332
f0bc0a60 4333 remaining = schedule_timeout(HZ/10);
38087d9b
MG
4334
4335 /*
97a225e6 4336 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
4337 * order. The values will either be from a wakeup request or
4338 * the previous request that slept prematurely.
4339 */
4340 if (remaining) {
97a225e6
JK
4341 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4342 kswapd_highest_zoneidx(pgdat,
4343 highest_zoneidx));
5644e1fb
QC
4344
4345 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4346 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
4347 }
4348
f0bc0a60
KM
4349 finish_wait(&pgdat->kswapd_wait, &wait);
4350 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4351 }
4352
4353 /*
4354 * After a short sleep, check if it was a premature sleep. If not, then
4355 * go fully to sleep until explicitly woken up.
4356 */
d9f21d42 4357 if (!remaining &&
97a225e6 4358 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
4359 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4360
4361 /*
4362 * vmstat counters are not perfectly accurate and the estimated
4363 * value for counters such as NR_FREE_PAGES can deviate from the
4364 * true value by nr_online_cpus * threshold. To avoid the zone
4365 * watermarks being breached while under pressure, we reduce the
4366 * per-cpu vmstat threshold while kswapd is awake and restore
4367 * them before going back to sleep.
4368 */
4369 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
4370
4371 if (!kthread_should_stop())
4372 schedule();
4373
f0bc0a60
KM
4374 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4375 } else {
4376 if (remaining)
4377 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4378 else
4379 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4380 }
4381 finish_wait(&pgdat->kswapd_wait, &wait);
4382}
4383
1da177e4
LT
4384/*
4385 * The background pageout daemon, started as a kernel thread
4f98a2fe 4386 * from the init process.
1da177e4
LT
4387 *
4388 * This basically trickles out pages so that we have _some_
4389 * free memory available even if there is no other activity
4390 * that frees anything up. This is needed for things like routing
4391 * etc, where we otherwise might have all activity going on in
4392 * asynchronous contexts that cannot page things out.
4393 *
4394 * If there are applications that are active memory-allocators
4395 * (most normal use), this basically shouldn't matter.
4396 */
4397static int kswapd(void *p)
4398{
e716f2eb 4399 unsigned int alloc_order, reclaim_order;
97a225e6 4400 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 4401 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 4402 struct task_struct *tsk = current;
a70f7302 4403 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 4404
174596a0 4405 if (!cpumask_empty(cpumask))
c5f59f08 4406 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
4407
4408 /*
4409 * Tell the memory management that we're a "memory allocator",
4410 * and that if we need more memory we should get access to it
4411 * regardless (see "__alloc_pages()"). "kswapd" should
4412 * never get caught in the normal page freeing logic.
4413 *
4414 * (Kswapd normally doesn't need memory anyway, but sometimes
4415 * you need a small amount of memory in order to be able to
4416 * page out something else, and this flag essentially protects
4417 * us from recursively trying to free more memory as we're
4418 * trying to free the first piece of memory in the first place).
4419 */
b698f0a1 4420 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
83144186 4421 set_freezable();
1da177e4 4422
5644e1fb 4423 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4424 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
8cd7c588 4425 atomic_set(&pgdat->nr_writeback_throttled, 0);
1da177e4 4426 for ( ; ; ) {
6f6313d4 4427 bool ret;
3e1d1d28 4428
5644e1fb 4429 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4430 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4431 highest_zoneidx);
e716f2eb 4432
38087d9b
MG
4433kswapd_try_sleep:
4434 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 4435 highest_zoneidx);
215ddd66 4436
97a225e6 4437 /* Read the new order and highest_zoneidx */
2b47a24c 4438 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4439 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4440 highest_zoneidx);
5644e1fb 4441 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4442 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4443
8fe23e05
DR
4444 ret = try_to_freeze();
4445 if (kthread_should_stop())
4446 break;
4447
4448 /*
4449 * We can speed up thawing tasks if we don't call balance_pgdat
4450 * after returning from the refrigerator
4451 */
38087d9b
MG
4452 if (ret)
4453 continue;
4454
4455 /*
4456 * Reclaim begins at the requested order but if a high-order
4457 * reclaim fails then kswapd falls back to reclaiming for
4458 * order-0. If that happens, kswapd will consider sleeping
4459 * for the order it finished reclaiming at (reclaim_order)
4460 * but kcompactd is woken to compact for the original
4461 * request (alloc_order).
4462 */
97a225e6 4463 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 4464 alloc_order);
97a225e6
JK
4465 reclaim_order = balance_pgdat(pgdat, alloc_order,
4466 highest_zoneidx);
38087d9b
MG
4467 if (reclaim_order < alloc_order)
4468 goto kswapd_try_sleep;
1da177e4 4469 }
b0a8cc58 4470
b698f0a1 4471 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
71abdc15 4472
1da177e4
LT
4473 return 0;
4474}
4475
4476/*
5ecd9d40
DR
4477 * A zone is low on free memory or too fragmented for high-order memory. If
4478 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4479 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4480 * has failed or is not needed, still wake up kcompactd if only compaction is
4481 * needed.
1da177e4 4482 */
5ecd9d40 4483void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 4484 enum zone_type highest_zoneidx)
1da177e4
LT
4485{
4486 pg_data_t *pgdat;
5644e1fb 4487 enum zone_type curr_idx;
1da177e4 4488
6aa303de 4489 if (!managed_zone(zone))
1da177e4
LT
4490 return;
4491
5ecd9d40 4492 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4493 return;
5644e1fb 4494
88f5acf8 4495 pgdat = zone->zone_pgdat;
97a225e6 4496 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4497
97a225e6
JK
4498 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4499 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
4500
4501 if (READ_ONCE(pgdat->kswapd_order) < order)
4502 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 4503
8d0986e2 4504 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4505 return;
e1a55637 4506
5ecd9d40
DR
4507 /* Hopeless node, leave it to direct reclaim if possible */
4508 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
4509 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4510 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
4511 /*
4512 * There may be plenty of free memory available, but it's too
4513 * fragmented for high-order allocations. Wake up kcompactd
4514 * and rely on compaction_suitable() to determine if it's
4515 * needed. If it fails, it will defer subsequent attempts to
4516 * ratelimit its work.
4517 */
4518 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4519 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4520 return;
5ecd9d40 4521 }
88f5acf8 4522
97a225e6 4523 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4524 gfp_flags);
8d0986e2 4525 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4526}
4527
c6f37f12 4528#ifdef CONFIG_HIBERNATION
1da177e4 4529/*
7b51755c 4530 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4531 * freed pages.
4532 *
4533 * Rather than trying to age LRUs the aim is to preserve the overall
4534 * LRU order by reclaiming preferentially
4535 * inactive > active > active referenced > active mapped
1da177e4 4536 */
7b51755c 4537unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4538{
d6277db4 4539 struct scan_control sc = {
ee814fe2 4540 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4541 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4542 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4543 .priority = DEF_PRIORITY,
d6277db4 4544 .may_writepage = 1,
ee814fe2
JW
4545 .may_unmap = 1,
4546 .may_swap = 1,
7b51755c 4547 .hibernation_mode = 1,
1da177e4 4548 };
a09ed5e0 4549 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4550 unsigned long nr_reclaimed;
499118e9 4551 unsigned int noreclaim_flag;
1da177e4 4552
d92a8cfc 4553 fs_reclaim_acquire(sc.gfp_mask);
93781325 4554 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4555 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4556
3115cd91 4557 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4558
1732d2b0 4559 set_task_reclaim_state(current, NULL);
499118e9 4560 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4561 fs_reclaim_release(sc.gfp_mask);
d6277db4 4562
7b51755c 4563 return nr_reclaimed;
1da177e4 4564}
c6f37f12 4565#endif /* CONFIG_HIBERNATION */
1da177e4 4566
3218ae14
YG
4567/*
4568 * This kswapd start function will be called by init and node-hot-add.
4569 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4570 */
b87c517a 4571void kswapd_run(int nid)
3218ae14
YG
4572{
4573 pg_data_t *pgdat = NODE_DATA(nid);
3218ae14
YG
4574
4575 if (pgdat->kswapd)
b87c517a 4576 return;
3218ae14
YG
4577
4578 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4579 if (IS_ERR(pgdat->kswapd)) {
4580 /* failure at boot is fatal */
c6202adf 4581 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9 4582 pr_err("Failed to start kswapd on node %d\n", nid);
d72515b8 4583 pgdat->kswapd = NULL;
3218ae14 4584 }
3218ae14
YG
4585}
4586
8fe23e05 4587/*
d8adde17 4588 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4589 * hold mem_hotplug_begin/end().
8fe23e05
DR
4590 */
4591void kswapd_stop(int nid)
4592{
4593 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4594
d8adde17 4595 if (kswapd) {
8fe23e05 4596 kthread_stop(kswapd);
d8adde17
JL
4597 NODE_DATA(nid)->kswapd = NULL;
4598 }
8fe23e05
DR
4599}
4600
1da177e4
LT
4601static int __init kswapd_init(void)
4602{
6b700b5b 4603 int nid;
69e05944 4604
1da177e4 4605 swap_setup();
48fb2e24 4606 for_each_node_state(nid, N_MEMORY)
3218ae14 4607 kswapd_run(nid);
1da177e4
LT
4608 return 0;
4609}
4610
4611module_init(kswapd_init)
9eeff239
CL
4612
4613#ifdef CONFIG_NUMA
4614/*
a5f5f91d 4615 * Node reclaim mode
9eeff239 4616 *
a5f5f91d 4617 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4618 * the watermarks.
9eeff239 4619 */
a5f5f91d 4620int node_reclaim_mode __read_mostly;
9eeff239 4621
a92f7126 4622/*
a5f5f91d 4623 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4624 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4625 * a zone.
4626 */
a5f5f91d 4627#define NODE_RECLAIM_PRIORITY 4
a92f7126 4628
9614634f 4629/*
a5f5f91d 4630 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4631 * occur.
4632 */
4633int sysctl_min_unmapped_ratio = 1;
4634
0ff38490
CL
4635/*
4636 * If the number of slab pages in a zone grows beyond this percentage then
4637 * slab reclaim needs to occur.
4638 */
4639int sysctl_min_slab_ratio = 5;
4640
11fb9989 4641static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4642{
11fb9989
MG
4643 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4644 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4645 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4646
4647 /*
4648 * It's possible for there to be more file mapped pages than
4649 * accounted for by the pages on the file LRU lists because
4650 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4651 */
4652 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4653}
4654
4655/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4656static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4657{
d031a157
AM
4658 unsigned long nr_pagecache_reclaimable;
4659 unsigned long delta = 0;
90afa5de
MG
4660
4661 /*
95bbc0c7 4662 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4663 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4664 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4665 * a better estimate
4666 */
a5f5f91d
MG
4667 if (node_reclaim_mode & RECLAIM_UNMAP)
4668 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4669 else
a5f5f91d 4670 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4671
4672 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4673 if (!(node_reclaim_mode & RECLAIM_WRITE))
4674 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4675
4676 /* Watch for any possible underflows due to delta */
4677 if (unlikely(delta > nr_pagecache_reclaimable))
4678 delta = nr_pagecache_reclaimable;
4679
4680 return nr_pagecache_reclaimable - delta;
4681}
4682
9eeff239 4683/*
a5f5f91d 4684 * Try to free up some pages from this node through reclaim.
9eeff239 4685 */
a5f5f91d 4686static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4687{
7fb2d46d 4688 /* Minimum pages needed in order to stay on node */
69e05944 4689 const unsigned long nr_pages = 1 << order;
9eeff239 4690 struct task_struct *p = current;
499118e9 4691 unsigned int noreclaim_flag;
179e9639 4692 struct scan_control sc = {
62b726c1 4693 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4694 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4695 .order = order,
a5f5f91d
MG
4696 .priority = NODE_RECLAIM_PRIORITY,
4697 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4698 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4699 .may_swap = 1,
f2f43e56 4700 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4701 };
57f29762 4702 unsigned long pflags;
9eeff239 4703
132bb8cf
YS
4704 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4705 sc.gfp_mask);
4706
9eeff239 4707 cond_resched();
57f29762 4708 psi_memstall_enter(&pflags);
93781325 4709 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4710 /*
95bbc0c7 4711 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4712 */
499118e9 4713 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4714 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4715
a5f5f91d 4716 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4717 /*
894befec 4718 * Free memory by calling shrink node with increasing
0ff38490
CL
4719 * priorities until we have enough memory freed.
4720 */
0ff38490 4721 do {
970a39a3 4722 shrink_node(pgdat, &sc);
9e3b2f8c 4723 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4724 }
c84db23c 4725
1732d2b0 4726 set_task_reclaim_state(p, NULL);
499118e9 4727 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4728 fs_reclaim_release(sc.gfp_mask);
57f29762 4729 psi_memstall_leave(&pflags);
132bb8cf
YS
4730
4731 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4732
a79311c1 4733 return sc.nr_reclaimed >= nr_pages;
9eeff239 4734}
179e9639 4735
a5f5f91d 4736int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4737{
d773ed6b 4738 int ret;
179e9639
AM
4739
4740 /*
a5f5f91d 4741 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4742 * slab pages if we are over the defined limits.
34aa1330 4743 *
9614634f
CL
4744 * A small portion of unmapped file backed pages is needed for
4745 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4746 * thrown out if the node is overallocated. So we do not reclaim
4747 * if less than a specified percentage of the node is used by
9614634f 4748 * unmapped file backed pages.
179e9639 4749 */
a5f5f91d 4750 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4751 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4752 pgdat->min_slab_pages)
a5f5f91d 4753 return NODE_RECLAIM_FULL;
179e9639
AM
4754
4755 /*
d773ed6b 4756 * Do not scan if the allocation should not be delayed.
179e9639 4757 */
d0164adc 4758 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4759 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4760
4761 /*
a5f5f91d 4762 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4763 * have associated processors. This will favor the local processor
4764 * over remote processors and spread off node memory allocations
4765 * as wide as possible.
4766 */
a5f5f91d
MG
4767 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4768 return NODE_RECLAIM_NOSCAN;
d773ed6b 4769
a5f5f91d
MG
4770 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4771 return NODE_RECLAIM_NOSCAN;
fa5e084e 4772
a5f5f91d
MG
4773 ret = __node_reclaim(pgdat, gfp_mask, order);
4774 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4775
24cf7251
MG
4776 if (!ret)
4777 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4778
d773ed6b 4779 return ret;
179e9639 4780}
9eeff239 4781#endif
894bc310 4782
89e004ea 4783/**
64e3d12f
KHY
4784 * check_move_unevictable_pages - check pages for evictability and move to
4785 * appropriate zone lru list
4786 * @pvec: pagevec with lru pages to check
89e004ea 4787 *
64e3d12f
KHY
4788 * Checks pages for evictability, if an evictable page is in the unevictable
4789 * lru list, moves it to the appropriate evictable lru list. This function
4790 * should be only used for lru pages.
89e004ea 4791 */
64e3d12f 4792void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4793{
6168d0da 4794 struct lruvec *lruvec = NULL;
24513264
HD
4795 int pgscanned = 0;
4796 int pgrescued = 0;
4797 int i;
89e004ea 4798
64e3d12f
KHY
4799 for (i = 0; i < pvec->nr; i++) {
4800 struct page *page = pvec->pages[i];
0de340cb 4801 struct folio *folio = page_folio(page);
8d8869ca
HD
4802 int nr_pages;
4803
4804 if (PageTransTail(page))
4805 continue;
4806
4807 nr_pages = thp_nr_pages(page);
4808 pgscanned += nr_pages;
89e004ea 4809
d25b5bd8
AS
4810 /* block memcg migration during page moving between lru */
4811 if (!TestClearPageLRU(page))
4812 continue;
4813
0de340cb 4814 lruvec = folio_lruvec_relock_irq(folio, lruvec);
d25b5bd8 4815 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4816 del_page_from_lru_list(page, lruvec);
24513264 4817 ClearPageUnevictable(page);
3a9c9788 4818 add_page_to_lru_list(page, lruvec);
8d8869ca 4819 pgrescued += nr_pages;
89e004ea 4820 }
d25b5bd8 4821 SetPageLRU(page);
24513264 4822 }
89e004ea 4823
6168d0da 4824 if (lruvec) {
24513264
HD
4825 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4826 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4827 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4828 } else if (pgscanned) {
4829 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4830 }
89e004ea 4831}
64e3d12f 4832EXPORT_SYMBOL_GPL(check_move_unevictable_pages);