]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
vmscan: convert dirty page handling to folios
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
26aa2d19 44#include <linux/migrate.h>
873b4771 45#include <linux/delayacct.h>
af936a16 46#include <linux/sysctl.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
55#include <asm/div64.h>
56
57#include <linux/swapops.h>
117aad1e 58#include <linux/balloon_compaction.h>
c574bbe9 59#include <linux/sched/sysctl.h>
1da177e4 60
0f8053a5 61#include "internal.h"
014bb1de 62#include "swap.h"
0f8053a5 63
33906bc5
MG
64#define CREATE_TRACE_POINTS
65#include <trace/events/vmscan.h>
66
1da177e4 67struct scan_control {
22fba335
KM
68 /* How many pages shrink_list() should reclaim */
69 unsigned long nr_to_reclaim;
70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
7cf111bc
JW
83 /*
84 * Scan pressure balancing between anon and file LRUs
85 */
86 unsigned long anon_cost;
87 unsigned long file_cost;
88
b91ac374
JW
89 /* Can active pages be deactivated as part of reclaim? */
90#define DEACTIVATE_ANON 1
91#define DEACTIVATE_FILE 2
92 unsigned int may_deactivate:2;
93 unsigned int force_deactivate:1;
94 unsigned int skipped_deactivate:1;
95
1276ad68 96 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
97 unsigned int may_writepage:1;
98
99 /* Can mapped pages be reclaimed? */
100 unsigned int may_unmap:1;
101
102 /* Can pages be swapped as part of reclaim? */
103 unsigned int may_swap:1;
104
d6622f63 105 /*
f56ce412
JW
106 * Cgroup memory below memory.low is protected as long as we
107 * don't threaten to OOM. If any cgroup is reclaimed at
108 * reduced force or passed over entirely due to its memory.low
109 * setting (memcg_low_skipped), and nothing is reclaimed as a
110 * result, then go back for one more cycle that reclaims the protected
111 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
112 */
113 unsigned int memcg_low_reclaim:1;
114 unsigned int memcg_low_skipped:1;
241994ed 115
ee814fe2
JW
116 unsigned int hibernation_mode:1;
117
118 /* One of the zones is ready for compaction */
119 unsigned int compaction_ready:1;
120
b91ac374
JW
121 /* There is easily reclaimable cold cache in the current node */
122 unsigned int cache_trim_mode:1;
123
53138cea
JW
124 /* The file pages on the current node are dangerously low */
125 unsigned int file_is_tiny:1;
126
26aa2d19
DH
127 /* Always discard instead of demoting to lower tier memory */
128 unsigned int no_demotion:1;
129
bb451fdf
GT
130 /* Allocation order */
131 s8 order;
132
133 /* Scan (total_size >> priority) pages at once */
134 s8 priority;
135
136 /* The highest zone to isolate pages for reclaim from */
137 s8 reclaim_idx;
138
139 /* This context's GFP mask */
140 gfp_t gfp_mask;
141
ee814fe2
JW
142 /* Incremented by the number of inactive pages that were scanned */
143 unsigned long nr_scanned;
144
145 /* Number of pages freed so far during a call to shrink_zones() */
146 unsigned long nr_reclaimed;
d108c772
AR
147
148 struct {
149 unsigned int dirty;
150 unsigned int unqueued_dirty;
151 unsigned int congested;
152 unsigned int writeback;
153 unsigned int immediate;
154 unsigned int file_taken;
155 unsigned int taken;
156 } nr;
e5ca8071
YS
157
158 /* for recording the reclaimed slab by now */
159 struct reclaim_state reclaim_state;
1da177e4
LT
160};
161
1da177e4
LT
162#ifdef ARCH_HAS_PREFETCHW
163#define prefetchw_prev_lru_page(_page, _base, _field) \
164 do { \
165 if ((_page)->lru.prev != _base) { \
166 struct page *prev; \
167 \
168 prev = lru_to_page(&(_page->lru)); \
169 prefetchw(&prev->_field); \
170 } \
171 } while (0)
172#else
173#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
174#endif
175
176/*
c843966c 177 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
178 */
179int vm_swappiness = 60;
1da177e4 180
0a432dcb
YS
181static void set_task_reclaim_state(struct task_struct *task,
182 struct reclaim_state *rs)
183{
184 /* Check for an overwrite */
185 WARN_ON_ONCE(rs && task->reclaim_state);
186
187 /* Check for the nulling of an already-nulled member */
188 WARN_ON_ONCE(!rs && !task->reclaim_state);
189
190 task->reclaim_state = rs;
191}
192
1da177e4
LT
193static LIST_HEAD(shrinker_list);
194static DECLARE_RWSEM(shrinker_rwsem);
195
0a432dcb 196#ifdef CONFIG_MEMCG
a2fb1261 197static int shrinker_nr_max;
2bfd3637 198
3c6f17e6 199/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
200static inline int shrinker_map_size(int nr_items)
201{
202 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
203}
2bfd3637 204
3c6f17e6
YS
205static inline int shrinker_defer_size(int nr_items)
206{
207 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
208}
209
468ab843
YS
210static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
211 int nid)
212{
213 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
214 lockdep_is_held(&shrinker_rwsem));
215}
216
e4262c4f 217static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
218 int map_size, int defer_size,
219 int old_map_size, int old_defer_size)
2bfd3637 220{
e4262c4f 221 struct shrinker_info *new, *old;
2bfd3637
YS
222 struct mem_cgroup_per_node *pn;
223 int nid;
3c6f17e6 224 int size = map_size + defer_size;
2bfd3637 225
2bfd3637
YS
226 for_each_node(nid) {
227 pn = memcg->nodeinfo[nid];
468ab843 228 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
229 /* Not yet online memcg */
230 if (!old)
231 return 0;
232
233 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
234 if (!new)
235 return -ENOMEM;
236
3c6f17e6
YS
237 new->nr_deferred = (atomic_long_t *)(new + 1);
238 new->map = (void *)new->nr_deferred + defer_size;
239
240 /* map: set all old bits, clear all new bits */
241 memset(new->map, (int)0xff, old_map_size);
242 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
243 /* nr_deferred: copy old values, clear all new values */
244 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
245 memset((void *)new->nr_deferred + old_defer_size, 0,
246 defer_size - old_defer_size);
2bfd3637 247
e4262c4f 248 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 249 kvfree_rcu(old, rcu);
2bfd3637
YS
250 }
251
252 return 0;
253}
254
e4262c4f 255void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
256{
257 struct mem_cgroup_per_node *pn;
e4262c4f 258 struct shrinker_info *info;
2bfd3637
YS
259 int nid;
260
2bfd3637
YS
261 for_each_node(nid) {
262 pn = memcg->nodeinfo[nid];
e4262c4f
YS
263 info = rcu_dereference_protected(pn->shrinker_info, true);
264 kvfree(info);
265 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
266 }
267}
268
e4262c4f 269int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 270{
e4262c4f 271 struct shrinker_info *info;
2bfd3637 272 int nid, size, ret = 0;
3c6f17e6 273 int map_size, defer_size = 0;
2bfd3637 274
d27cf2aa 275 down_write(&shrinker_rwsem);
3c6f17e6
YS
276 map_size = shrinker_map_size(shrinker_nr_max);
277 defer_size = shrinker_defer_size(shrinker_nr_max);
278 size = map_size + defer_size;
2bfd3637 279 for_each_node(nid) {
e4262c4f
YS
280 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
281 if (!info) {
282 free_shrinker_info(memcg);
2bfd3637
YS
283 ret = -ENOMEM;
284 break;
285 }
3c6f17e6
YS
286 info->nr_deferred = (atomic_long_t *)(info + 1);
287 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 288 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 289 }
d27cf2aa 290 up_write(&shrinker_rwsem);
2bfd3637
YS
291
292 return ret;
293}
294
3c6f17e6
YS
295static inline bool need_expand(int nr_max)
296{
297 return round_up(nr_max, BITS_PER_LONG) >
298 round_up(shrinker_nr_max, BITS_PER_LONG);
299}
300
e4262c4f 301static int expand_shrinker_info(int new_id)
2bfd3637 302{
3c6f17e6 303 int ret = 0;
a2fb1261 304 int new_nr_max = new_id + 1;
3c6f17e6
YS
305 int map_size, defer_size = 0;
306 int old_map_size, old_defer_size = 0;
2bfd3637
YS
307 struct mem_cgroup *memcg;
308
3c6f17e6 309 if (!need_expand(new_nr_max))
a2fb1261 310 goto out;
2bfd3637 311
2bfd3637 312 if (!root_mem_cgroup)
d27cf2aa
YS
313 goto out;
314
315 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 316
3c6f17e6
YS
317 map_size = shrinker_map_size(new_nr_max);
318 defer_size = shrinker_defer_size(new_nr_max);
319 old_map_size = shrinker_map_size(shrinker_nr_max);
320 old_defer_size = shrinker_defer_size(shrinker_nr_max);
321
2bfd3637
YS
322 memcg = mem_cgroup_iter(NULL, NULL, NULL);
323 do {
3c6f17e6
YS
324 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
325 old_map_size, old_defer_size);
2bfd3637
YS
326 if (ret) {
327 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 328 goto out;
2bfd3637
YS
329 }
330 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 331out:
2bfd3637 332 if (!ret)
a2fb1261 333 shrinker_nr_max = new_nr_max;
d27cf2aa 334
2bfd3637
YS
335 return ret;
336}
337
338void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
339{
340 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 341 struct shrinker_info *info;
2bfd3637
YS
342
343 rcu_read_lock();
e4262c4f 344 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
345 /* Pairs with smp mb in shrink_slab() */
346 smp_mb__before_atomic();
e4262c4f 347 set_bit(shrinker_id, info->map);
2bfd3637
YS
348 rcu_read_unlock();
349 }
350}
351
b4c2b231 352static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
353
354static int prealloc_memcg_shrinker(struct shrinker *shrinker)
355{
356 int id, ret = -ENOMEM;
357
476b30a0
YS
358 if (mem_cgroup_disabled())
359 return -ENOSYS;
360
b4c2b231
KT
361 down_write(&shrinker_rwsem);
362 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 363 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
364 if (id < 0)
365 goto unlock;
366
0a4465d3 367 if (id >= shrinker_nr_max) {
e4262c4f 368 if (expand_shrinker_info(id)) {
0a4465d3
KT
369 idr_remove(&shrinker_idr, id);
370 goto unlock;
371 }
0a4465d3 372 }
b4c2b231
KT
373 shrinker->id = id;
374 ret = 0;
375unlock:
376 up_write(&shrinker_rwsem);
377 return ret;
378}
379
380static void unregister_memcg_shrinker(struct shrinker *shrinker)
381{
382 int id = shrinker->id;
383
384 BUG_ON(id < 0);
385
41ca668a
YS
386 lockdep_assert_held(&shrinker_rwsem);
387
b4c2b231 388 idr_remove(&shrinker_idr, id);
b4c2b231 389}
b4c2b231 390
86750830
YS
391static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
392 struct mem_cgroup *memcg)
393{
394 struct shrinker_info *info;
395
396 info = shrinker_info_protected(memcg, nid);
397 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
398}
399
400static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
401 struct mem_cgroup *memcg)
402{
403 struct shrinker_info *info;
404
405 info = shrinker_info_protected(memcg, nid);
406 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
407}
408
a178015c
YS
409void reparent_shrinker_deferred(struct mem_cgroup *memcg)
410{
411 int i, nid;
412 long nr;
413 struct mem_cgroup *parent;
414 struct shrinker_info *child_info, *parent_info;
415
416 parent = parent_mem_cgroup(memcg);
417 if (!parent)
418 parent = root_mem_cgroup;
419
420 /* Prevent from concurrent shrinker_info expand */
421 down_read(&shrinker_rwsem);
422 for_each_node(nid) {
423 child_info = shrinker_info_protected(memcg, nid);
424 parent_info = shrinker_info_protected(parent, nid);
425 for (i = 0; i < shrinker_nr_max; i++) {
426 nr = atomic_long_read(&child_info->nr_deferred[i]);
427 atomic_long_add(nr, &parent_info->nr_deferred[i]);
428 }
429 }
430 up_read(&shrinker_rwsem);
431}
432
b5ead35e 433static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 434{
b5ead35e 435 return sc->target_mem_cgroup;
89b5fae5 436}
97c9341f
TH
437
438/**
b5ead35e 439 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
440 * @sc: scan_control in question
441 *
442 * The normal page dirty throttling mechanism in balance_dirty_pages() is
443 * completely broken with the legacy memcg and direct stalling in
444 * shrink_page_list() is used for throttling instead, which lacks all the
445 * niceties such as fairness, adaptive pausing, bandwidth proportional
446 * allocation and configurability.
447 *
448 * This function tests whether the vmscan currently in progress can assume
449 * that the normal dirty throttling mechanism is operational.
450 */
b5ead35e 451static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 452{
b5ead35e 453 if (!cgroup_reclaim(sc))
97c9341f
TH
454 return true;
455#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 456 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
457 return true;
458#endif
459 return false;
460}
91a45470 461#else
0a432dcb
YS
462static int prealloc_memcg_shrinker(struct shrinker *shrinker)
463{
476b30a0 464 return -ENOSYS;
0a432dcb
YS
465}
466
467static void unregister_memcg_shrinker(struct shrinker *shrinker)
468{
469}
470
86750830
YS
471static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
472 struct mem_cgroup *memcg)
473{
474 return 0;
475}
476
477static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
478 struct mem_cgroup *memcg)
479{
480 return 0;
481}
482
b5ead35e 483static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 484{
b5ead35e 485 return false;
89b5fae5 486}
97c9341f 487
b5ead35e 488static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
489{
490 return true;
491}
91a45470
KH
492#endif
493
86750830
YS
494static long xchg_nr_deferred(struct shrinker *shrinker,
495 struct shrink_control *sc)
496{
497 int nid = sc->nid;
498
499 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
500 nid = 0;
501
502 if (sc->memcg &&
503 (shrinker->flags & SHRINKER_MEMCG_AWARE))
504 return xchg_nr_deferred_memcg(nid, shrinker,
505 sc->memcg);
506
507 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
508}
509
510
511static long add_nr_deferred(long nr, struct shrinker *shrinker,
512 struct shrink_control *sc)
513{
514 int nid = sc->nid;
515
516 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
517 nid = 0;
518
519 if (sc->memcg &&
520 (shrinker->flags & SHRINKER_MEMCG_AWARE))
521 return add_nr_deferred_memcg(nr, nid, shrinker,
522 sc->memcg);
523
524 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
525}
526
26aa2d19
DH
527static bool can_demote(int nid, struct scan_control *sc)
528{
20b51af1
HY
529 if (!numa_demotion_enabled)
530 return false;
3a235693
DH
531 if (sc) {
532 if (sc->no_demotion)
533 return false;
534 /* It is pointless to do demotion in memcg reclaim */
535 if (cgroup_reclaim(sc))
536 return false;
537 }
26aa2d19
DH
538 if (next_demotion_node(nid) == NUMA_NO_NODE)
539 return false;
540
20b51af1 541 return true;
26aa2d19
DH
542}
543
a2a36488
KB
544static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
545 int nid,
546 struct scan_control *sc)
547{
548 if (memcg == NULL) {
549 /*
550 * For non-memcg reclaim, is there
551 * space in any swap device?
552 */
553 if (get_nr_swap_pages() > 0)
554 return true;
555 } else {
556 /* Is the memcg below its swap limit? */
557 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
558 return true;
559 }
560
561 /*
562 * The page can not be swapped.
563 *
564 * Can it be reclaimed from this node via demotion?
565 */
566 return can_demote(nid, sc);
567}
568
5a1c84b4
MG
569/*
570 * This misses isolated pages which are not accounted for to save counters.
571 * As the data only determines if reclaim or compaction continues, it is
572 * not expected that isolated pages will be a dominating factor.
573 */
574unsigned long zone_reclaimable_pages(struct zone *zone)
575{
576 unsigned long nr;
577
578 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
579 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 580 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
581 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
582 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
583
584 return nr;
585}
586
fd538803
MH
587/**
588 * lruvec_lru_size - Returns the number of pages on the given LRU list.
589 * @lruvec: lru vector
590 * @lru: lru to use
8b3a899a 591 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
fd538803 592 */
2091339d
YZ
593static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
594 int zone_idx)
c9f299d9 595{
de3b0150 596 unsigned long size = 0;
fd538803
MH
597 int zid;
598
8b3a899a 599 for (zid = 0; zid <= zone_idx; zid++) {
fd538803 600 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 601
fd538803
MH
602 if (!managed_zone(zone))
603 continue;
604
605 if (!mem_cgroup_disabled())
de3b0150 606 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 607 else
de3b0150 608 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 609 }
de3b0150 610 return size;
b4536f0c
MH
611}
612
1da177e4 613/*
1d3d4437 614 * Add a shrinker callback to be called from the vm.
1da177e4 615 */
8e04944f 616int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 617{
476b30a0
YS
618 unsigned int size;
619 int err;
620
621 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
622 err = prealloc_memcg_shrinker(shrinker);
623 if (err != -ENOSYS)
624 return err;
1d3d4437 625
476b30a0
YS
626 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
627 }
628
629 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
630 if (shrinker->flags & SHRINKER_NUMA_AWARE)
631 size *= nr_node_ids;
632
633 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
634 if (!shrinker->nr_deferred)
635 return -ENOMEM;
b4c2b231 636
8e04944f
TH
637 return 0;
638}
639
640void free_prealloced_shrinker(struct shrinker *shrinker)
641{
41ca668a
YS
642 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
643 down_write(&shrinker_rwsem);
b4c2b231 644 unregister_memcg_shrinker(shrinker);
41ca668a 645 up_write(&shrinker_rwsem);
476b30a0 646 return;
41ca668a 647 }
b4c2b231 648
8e04944f
TH
649 kfree(shrinker->nr_deferred);
650 shrinker->nr_deferred = NULL;
651}
1d3d4437 652
8e04944f
TH
653void register_shrinker_prepared(struct shrinker *shrinker)
654{
8e1f936b
RR
655 down_write(&shrinker_rwsem);
656 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 657 shrinker->flags |= SHRINKER_REGISTERED;
8e1f936b 658 up_write(&shrinker_rwsem);
8e04944f
TH
659}
660
661int register_shrinker(struct shrinker *shrinker)
662{
663 int err = prealloc_shrinker(shrinker);
664
665 if (err)
666 return err;
667 register_shrinker_prepared(shrinker);
1d3d4437 668 return 0;
1da177e4 669}
8e1f936b 670EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
671
672/*
673 * Remove one
674 */
8e1f936b 675void unregister_shrinker(struct shrinker *shrinker)
1da177e4 676{
41ca668a 677 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 678 return;
41ca668a 679
1da177e4
LT
680 down_write(&shrinker_rwsem);
681 list_del(&shrinker->list);
41ca668a
YS
682 shrinker->flags &= ~SHRINKER_REGISTERED;
683 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
684 unregister_memcg_shrinker(shrinker);
1da177e4 685 up_write(&shrinker_rwsem);
41ca668a 686
ae393321 687 kfree(shrinker->nr_deferred);
bb422a73 688 shrinker->nr_deferred = NULL;
1da177e4 689}
8e1f936b 690EXPORT_SYMBOL(unregister_shrinker);
1da177e4 691
880121be
CK
692/**
693 * synchronize_shrinkers - Wait for all running shrinkers to complete.
694 *
695 * This is equivalent to calling unregister_shrink() and register_shrinker(),
696 * but atomically and with less overhead. This is useful to guarantee that all
697 * shrinker invocations have seen an update, before freeing memory, similar to
698 * rcu.
699 */
700void synchronize_shrinkers(void)
701{
702 down_write(&shrinker_rwsem);
703 up_write(&shrinker_rwsem);
704}
705EXPORT_SYMBOL(synchronize_shrinkers);
706
1da177e4 707#define SHRINK_BATCH 128
1d3d4437 708
cb731d6c 709static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 710 struct shrinker *shrinker, int priority)
1d3d4437
GC
711{
712 unsigned long freed = 0;
713 unsigned long long delta;
714 long total_scan;
d5bc5fd3 715 long freeable;
1d3d4437
GC
716 long nr;
717 long new_nr;
1d3d4437
GC
718 long batch_size = shrinker->batch ? shrinker->batch
719 : SHRINK_BATCH;
5f33a080 720 long scanned = 0, next_deferred;
1d3d4437 721
d5bc5fd3 722 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
723 if (freeable == 0 || freeable == SHRINK_EMPTY)
724 return freeable;
1d3d4437
GC
725
726 /*
727 * copy the current shrinker scan count into a local variable
728 * and zero it so that other concurrent shrinker invocations
729 * don't also do this scanning work.
730 */
86750830 731 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 732
4b85afbd
JW
733 if (shrinker->seeks) {
734 delta = freeable >> priority;
735 delta *= 4;
736 do_div(delta, shrinker->seeks);
737 } else {
738 /*
739 * These objects don't require any IO to create. Trim
740 * them aggressively under memory pressure to keep
741 * them from causing refetches in the IO caches.
742 */
743 delta = freeable / 2;
744 }
172b06c3 745
18bb473e 746 total_scan = nr >> priority;
1d3d4437 747 total_scan += delta;
18bb473e 748 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
749
750 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 751 freeable, delta, total_scan, priority);
1d3d4437 752
0b1fb40a
VD
753 /*
754 * Normally, we should not scan less than batch_size objects in one
755 * pass to avoid too frequent shrinker calls, but if the slab has less
756 * than batch_size objects in total and we are really tight on memory,
757 * we will try to reclaim all available objects, otherwise we can end
758 * up failing allocations although there are plenty of reclaimable
759 * objects spread over several slabs with usage less than the
760 * batch_size.
761 *
762 * We detect the "tight on memory" situations by looking at the total
763 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 764 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
765 * scanning at high prio and therefore should try to reclaim as much as
766 * possible.
767 */
768 while (total_scan >= batch_size ||
d5bc5fd3 769 total_scan >= freeable) {
a0b02131 770 unsigned long ret;
0b1fb40a 771 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 772
0b1fb40a 773 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 774 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
775 ret = shrinker->scan_objects(shrinker, shrinkctl);
776 if (ret == SHRINK_STOP)
777 break;
778 freed += ret;
1d3d4437 779
d460acb5
CW
780 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
781 total_scan -= shrinkctl->nr_scanned;
782 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
783
784 cond_resched();
785 }
786
18bb473e
YS
787 /*
788 * The deferred work is increased by any new work (delta) that wasn't
789 * done, decreased by old deferred work that was done now.
790 *
791 * And it is capped to two times of the freeable items.
792 */
793 next_deferred = max_t(long, (nr + delta - scanned), 0);
794 next_deferred = min(next_deferred, (2 * freeable));
795
1d3d4437
GC
796 /*
797 * move the unused scan count back into the shrinker in a
86750830 798 * manner that handles concurrent updates.
1d3d4437 799 */
86750830 800 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 801
8efb4b59 802 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 803 return freed;
1495f230
YH
804}
805
0a432dcb 806#ifdef CONFIG_MEMCG
b0dedc49
KT
807static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
808 struct mem_cgroup *memcg, int priority)
809{
e4262c4f 810 struct shrinker_info *info;
b8e57efa
KT
811 unsigned long ret, freed = 0;
812 int i;
b0dedc49 813
0a432dcb 814 if (!mem_cgroup_online(memcg))
b0dedc49
KT
815 return 0;
816
817 if (!down_read_trylock(&shrinker_rwsem))
818 return 0;
819
468ab843 820 info = shrinker_info_protected(memcg, nid);
e4262c4f 821 if (unlikely(!info))
b0dedc49
KT
822 goto unlock;
823
e4262c4f 824 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
825 struct shrink_control sc = {
826 .gfp_mask = gfp_mask,
827 .nid = nid,
828 .memcg = memcg,
829 };
830 struct shrinker *shrinker;
831
832 shrinker = idr_find(&shrinker_idr, i);
41ca668a 833 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 834 if (!shrinker)
e4262c4f 835 clear_bit(i, info->map);
b0dedc49
KT
836 continue;
837 }
838
0a432dcb
YS
839 /* Call non-slab shrinkers even though kmem is disabled */
840 if (!memcg_kmem_enabled() &&
841 !(shrinker->flags & SHRINKER_NONSLAB))
842 continue;
843
b0dedc49 844 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 845 if (ret == SHRINK_EMPTY) {
e4262c4f 846 clear_bit(i, info->map);
f90280d6
KT
847 /*
848 * After the shrinker reported that it had no objects to
849 * free, but before we cleared the corresponding bit in
850 * the memcg shrinker map, a new object might have been
851 * added. To make sure, we have the bit set in this
852 * case, we invoke the shrinker one more time and reset
853 * the bit if it reports that it is not empty anymore.
854 * The memory barrier here pairs with the barrier in
2bfd3637 855 * set_shrinker_bit():
f90280d6
KT
856 *
857 * list_lru_add() shrink_slab_memcg()
858 * list_add_tail() clear_bit()
859 * <MB> <MB>
860 * set_bit() do_shrink_slab()
861 */
862 smp_mb__after_atomic();
863 ret = do_shrink_slab(&sc, shrinker, priority);
864 if (ret == SHRINK_EMPTY)
865 ret = 0;
866 else
2bfd3637 867 set_shrinker_bit(memcg, nid, i);
f90280d6 868 }
b0dedc49
KT
869 freed += ret;
870
871 if (rwsem_is_contended(&shrinker_rwsem)) {
872 freed = freed ? : 1;
873 break;
874 }
875 }
876unlock:
877 up_read(&shrinker_rwsem);
878 return freed;
879}
0a432dcb 880#else /* CONFIG_MEMCG */
b0dedc49
KT
881static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
882 struct mem_cgroup *memcg, int priority)
883{
884 return 0;
885}
0a432dcb 886#endif /* CONFIG_MEMCG */
b0dedc49 887
6b4f7799 888/**
cb731d6c 889 * shrink_slab - shrink slab caches
6b4f7799
JW
890 * @gfp_mask: allocation context
891 * @nid: node whose slab caches to target
cb731d6c 892 * @memcg: memory cgroup whose slab caches to target
9092c71b 893 * @priority: the reclaim priority
1da177e4 894 *
6b4f7799 895 * Call the shrink functions to age shrinkable caches.
1da177e4 896 *
6b4f7799
JW
897 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
898 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 899 *
aeed1d32
VD
900 * @memcg specifies the memory cgroup to target. Unaware shrinkers
901 * are called only if it is the root cgroup.
cb731d6c 902 *
9092c71b
JB
903 * @priority is sc->priority, we take the number of objects and >> by priority
904 * in order to get the scan target.
b15e0905 905 *
6b4f7799 906 * Returns the number of reclaimed slab objects.
1da177e4 907 */
cb731d6c
VD
908static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
909 struct mem_cgroup *memcg,
9092c71b 910 int priority)
1da177e4 911{
b8e57efa 912 unsigned long ret, freed = 0;
1da177e4
LT
913 struct shrinker *shrinker;
914
fa1e512f
YS
915 /*
916 * The root memcg might be allocated even though memcg is disabled
917 * via "cgroup_disable=memory" boot parameter. This could make
918 * mem_cgroup_is_root() return false, then just run memcg slab
919 * shrink, but skip global shrink. This may result in premature
920 * oom.
921 */
922 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 923 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 924
e830c63a 925 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 926 goto out;
1da177e4
LT
927
928 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
929 struct shrink_control sc = {
930 .gfp_mask = gfp_mask,
931 .nid = nid,
cb731d6c 932 .memcg = memcg,
6b4f7799 933 };
ec97097b 934
9b996468
KT
935 ret = do_shrink_slab(&sc, shrinker, priority);
936 if (ret == SHRINK_EMPTY)
937 ret = 0;
938 freed += ret;
e496612c
MK
939 /*
940 * Bail out if someone want to register a new shrinker to
55b65a57 941 * prevent the registration from being stalled for long periods
e496612c
MK
942 * by parallel ongoing shrinking.
943 */
944 if (rwsem_is_contended(&shrinker_rwsem)) {
945 freed = freed ? : 1;
946 break;
947 }
1da177e4 948 }
6b4f7799 949
1da177e4 950 up_read(&shrinker_rwsem);
f06590bd
MK
951out:
952 cond_resched();
24f7c6b9 953 return freed;
1da177e4
LT
954}
955
e4b424b7 956static void drop_slab_node(int nid)
cb731d6c
VD
957{
958 unsigned long freed;
1399af7e 959 int shift = 0;
cb731d6c
VD
960
961 do {
962 struct mem_cgroup *memcg = NULL;
963
069c411d
CZ
964 if (fatal_signal_pending(current))
965 return;
966
cb731d6c 967 freed = 0;
aeed1d32 968 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 969 do {
9092c71b 970 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c 971 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1399af7e 972 } while ((freed >> shift++) > 1);
cb731d6c
VD
973}
974
975void drop_slab(void)
976{
977 int nid;
978
979 for_each_online_node(nid)
980 drop_slab_node(nid);
981}
982
e0cd5e7f 983static inline int is_page_cache_freeable(struct folio *folio)
1da177e4 984{
ceddc3a5
JW
985 /*
986 * A freeable page cache page is referenced only by the caller
67891fff
MW
987 * that isolated the page, the page cache and optional buffer
988 * heads at page->private.
ceddc3a5 989 */
e0cd5e7f
MWO
990 return folio_ref_count(folio) - folio_test_private(folio) ==
991 1 + folio_nr_pages(folio);
1da177e4
LT
992}
993
1da177e4 994/*
e0cd5e7f 995 * We detected a synchronous write error writing a folio out. Probably
1da177e4
LT
996 * -ENOSPC. We need to propagate that into the address_space for a subsequent
997 * fsync(), msync() or close().
998 *
999 * The tricky part is that after writepage we cannot touch the mapping: nothing
e0cd5e7f
MWO
1000 * prevents it from being freed up. But we have a ref on the folio and once
1001 * that folio is locked, the mapping is pinned.
1da177e4 1002 *
e0cd5e7f 1003 * We're allowed to run sleeping folio_lock() here because we know the caller has
1da177e4
LT
1004 * __GFP_FS.
1005 */
1006static void handle_write_error(struct address_space *mapping,
e0cd5e7f 1007 struct folio *folio, int error)
1da177e4 1008{
e0cd5e7f
MWO
1009 folio_lock(folio);
1010 if (folio_mapping(folio) == mapping)
3e9f45bd 1011 mapping_set_error(mapping, error);
e0cd5e7f 1012 folio_unlock(folio);
1da177e4
LT
1013}
1014
1b4e3f26
MG
1015static bool skip_throttle_noprogress(pg_data_t *pgdat)
1016{
1017 int reclaimable = 0, write_pending = 0;
1018 int i;
1019
1020 /*
1021 * If kswapd is disabled, reschedule if necessary but do not
1022 * throttle as the system is likely near OOM.
1023 */
1024 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1025 return true;
1026
1027 /*
1028 * If there are a lot of dirty/writeback pages then do not
1029 * throttle as throttling will occur when the pages cycle
1030 * towards the end of the LRU if still under writeback.
1031 */
1032 for (i = 0; i < MAX_NR_ZONES; i++) {
1033 struct zone *zone = pgdat->node_zones + i;
1034
36c26128 1035 if (!managed_zone(zone))
1b4e3f26
MG
1036 continue;
1037
1038 reclaimable += zone_reclaimable_pages(zone);
1039 write_pending += zone_page_state_snapshot(zone,
1040 NR_ZONE_WRITE_PENDING);
1041 }
1042 if (2 * write_pending <= reclaimable)
1043 return true;
1044
1045 return false;
1046}
1047
c3f4a9a2 1048void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
8cd7c588
MG
1049{
1050 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
c3f4a9a2 1051 long timeout, ret;
8cd7c588
MG
1052 DEFINE_WAIT(wait);
1053
1054 /*
1055 * Do not throttle IO workers, kthreads other than kswapd or
1056 * workqueues. They may be required for reclaim to make
1057 * forward progress (e.g. journalling workqueues or kthreads).
1058 */
1059 if (!current_is_kswapd() &&
b485c6f1
MG
1060 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1061 cond_resched();
8cd7c588 1062 return;
b485c6f1 1063 }
8cd7c588 1064
c3f4a9a2
MG
1065 /*
1066 * These figures are pulled out of thin air.
1067 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1068 * parallel reclaimers which is a short-lived event so the timeout is
1069 * short. Failing to make progress or waiting on writeback are
1070 * potentially long-lived events so use a longer timeout. This is shaky
1071 * logic as a failure to make progress could be due to anything from
1072 * writeback to a slow device to excessive references pages at the tail
1073 * of the inactive LRU.
1074 */
1075 switch(reason) {
1076 case VMSCAN_THROTTLE_WRITEBACK:
1077 timeout = HZ/10;
1078
1079 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1080 WRITE_ONCE(pgdat->nr_reclaim_start,
1081 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1082 }
1083
1084 break;
1b4e3f26
MG
1085 case VMSCAN_THROTTLE_CONGESTED:
1086 fallthrough;
c3f4a9a2 1087 case VMSCAN_THROTTLE_NOPROGRESS:
1b4e3f26
MG
1088 if (skip_throttle_noprogress(pgdat)) {
1089 cond_resched();
1090 return;
1091 }
1092
1093 timeout = 1;
1094
c3f4a9a2
MG
1095 break;
1096 case VMSCAN_THROTTLE_ISOLATED:
1097 timeout = HZ/50;
1098 break;
1099 default:
1100 WARN_ON_ONCE(1);
1101 timeout = HZ;
1102 break;
8cd7c588
MG
1103 }
1104
1105 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1106 ret = schedule_timeout(timeout);
1107 finish_wait(wqh, &wait);
d818fca1 1108
c3f4a9a2 1109 if (reason == VMSCAN_THROTTLE_WRITEBACK)
d818fca1 1110 atomic_dec(&pgdat->nr_writeback_throttled);
8cd7c588
MG
1111
1112 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1113 jiffies_to_usecs(timeout - ret),
1114 reason);
1115}
1116
1117/*
1118 * Account for pages written if tasks are throttled waiting on dirty
1119 * pages to clean. If enough pages have been cleaned since throttling
1120 * started then wakeup the throttled tasks.
1121 */
512b7931 1122void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
8cd7c588
MG
1123 int nr_throttled)
1124{
1125 unsigned long nr_written;
1126
512b7931 1127 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
8cd7c588
MG
1128
1129 /*
1130 * This is an inaccurate read as the per-cpu deltas may not
1131 * be synchronised. However, given that the system is
1132 * writeback throttled, it is not worth taking the penalty
1133 * of getting an accurate count. At worst, the throttle
1134 * timeout guarantees forward progress.
1135 */
1136 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1137 READ_ONCE(pgdat->nr_reclaim_start);
1138
1139 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1140 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1141}
1142
04e62a29
CL
1143/* possible outcome of pageout() */
1144typedef enum {
1145 /* failed to write page out, page is locked */
1146 PAGE_KEEP,
1147 /* move page to the active list, page is locked */
1148 PAGE_ACTIVATE,
1149 /* page has been sent to the disk successfully, page is unlocked */
1150 PAGE_SUCCESS,
1151 /* page is clean and locked */
1152 PAGE_CLEAN,
1153} pageout_t;
1154
1da177e4 1155/*
1742f19f
AM
1156 * pageout is called by shrink_page_list() for each dirty page.
1157 * Calls ->writepage().
1da177e4 1158 */
2282679f
N
1159static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1160 struct swap_iocb **plug)
1da177e4
LT
1161{
1162 /*
e0cd5e7f 1163 * If the folio is dirty, only perform writeback if that write
1da177e4
LT
1164 * will be non-blocking. To prevent this allocation from being
1165 * stalled by pagecache activity. But note that there may be
1166 * stalls if we need to run get_block(). We could test
1167 * PagePrivate for that.
1168 *
8174202b 1169 * If this process is currently in __generic_file_write_iter() against
e0cd5e7f 1170 * this folio's queue, we can perform writeback even if that
1da177e4
LT
1171 * will block.
1172 *
e0cd5e7f 1173 * If the folio is swapcache, write it back even if that would
1da177e4
LT
1174 * block, for some throttling. This happens by accident, because
1175 * swap_backing_dev_info is bust: it doesn't reflect the
1176 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4 1177 */
e0cd5e7f 1178 if (!is_page_cache_freeable(folio))
1da177e4
LT
1179 return PAGE_KEEP;
1180 if (!mapping) {
1181 /*
e0cd5e7f
MWO
1182 * Some data journaling orphaned folios can have
1183 * folio->mapping == NULL while being dirty with clean buffers.
1da177e4 1184 */
e0cd5e7f
MWO
1185 if (folio_test_private(folio)) {
1186 if (try_to_free_buffers(&folio->page)) {
1187 folio_clear_dirty(folio);
1188 pr_info("%s: orphaned folio\n", __func__);
1da177e4
LT
1189 return PAGE_CLEAN;
1190 }
1191 }
1192 return PAGE_KEEP;
1193 }
1194 if (mapping->a_ops->writepage == NULL)
1195 return PAGE_ACTIVATE;
1da177e4 1196
e0cd5e7f 1197 if (folio_clear_dirty_for_io(folio)) {
1da177e4
LT
1198 int res;
1199 struct writeback_control wbc = {
1200 .sync_mode = WB_SYNC_NONE,
1201 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1202 .range_start = 0,
1203 .range_end = LLONG_MAX,
1da177e4 1204 .for_reclaim = 1,
2282679f 1205 .swap_plug = plug,
1da177e4
LT
1206 };
1207
e0cd5e7f
MWO
1208 folio_set_reclaim(folio);
1209 res = mapping->a_ops->writepage(&folio->page, &wbc);
1da177e4 1210 if (res < 0)
e0cd5e7f 1211 handle_write_error(mapping, folio, res);
994fc28c 1212 if (res == AOP_WRITEPAGE_ACTIVATE) {
e0cd5e7f 1213 folio_clear_reclaim(folio);
1da177e4
LT
1214 return PAGE_ACTIVATE;
1215 }
c661b078 1216
e0cd5e7f 1217 if (!folio_test_writeback(folio)) {
1da177e4 1218 /* synchronous write or broken a_ops? */
e0cd5e7f 1219 folio_clear_reclaim(folio);
1da177e4 1220 }
e0cd5e7f
MWO
1221 trace_mm_vmscan_write_folio(folio);
1222 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1da177e4
LT
1223 return PAGE_SUCCESS;
1224 }
1225
1226 return PAGE_CLEAN;
1227}
1228
a649fd92 1229/*
e286781d
NP
1230 * Same as remove_mapping, but if the page is removed from the mapping, it
1231 * gets returned with a refcount of 0.
a649fd92 1232 */
be7c07d6 1233static int __remove_mapping(struct address_space *mapping, struct folio *folio,
b910718a 1234 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1235{
bd4c82c2 1236 int refcount;
aae466b0 1237 void *shadow = NULL;
c4843a75 1238
be7c07d6
MWO
1239 BUG_ON(!folio_test_locked(folio));
1240 BUG_ON(mapping != folio_mapping(folio));
49d2e9cc 1241
be7c07d6 1242 if (!folio_test_swapcache(folio))
51b8c1fe 1243 spin_lock(&mapping->host->i_lock);
30472509 1244 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1245 /*
0fd0e6b0
NP
1246 * The non racy check for a busy page.
1247 *
1248 * Must be careful with the order of the tests. When someone has
1249 * a ref to the page, it may be possible that they dirty it then
1250 * drop the reference. So if PageDirty is tested before page_count
1251 * here, then the following race may occur:
1252 *
1253 * get_user_pages(&page);
1254 * [user mapping goes away]
1255 * write_to(page);
1256 * !PageDirty(page) [good]
1257 * SetPageDirty(page);
1258 * put_page(page);
1259 * !page_count(page) [good, discard it]
1260 *
1261 * [oops, our write_to data is lost]
1262 *
1263 * Reversing the order of the tests ensures such a situation cannot
1264 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1265 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1266 *
1267 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1268 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1269 */
be7c07d6
MWO
1270 refcount = 1 + folio_nr_pages(folio);
1271 if (!folio_ref_freeze(folio, refcount))
49d2e9cc 1272 goto cannot_free;
1c4c3b99 1273 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
be7c07d6
MWO
1274 if (unlikely(folio_test_dirty(folio))) {
1275 folio_ref_unfreeze(folio, refcount);
49d2e9cc 1276 goto cannot_free;
e286781d 1277 }
49d2e9cc 1278
be7c07d6
MWO
1279 if (folio_test_swapcache(folio)) {
1280 swp_entry_t swap = folio_swap_entry(folio);
3ecb0087 1281 mem_cgroup_swapout(folio, swap);
aae466b0 1282 if (reclaimed && !mapping_exiting(mapping))
8927f647 1283 shadow = workingset_eviction(folio, target_memcg);
be7c07d6 1284 __delete_from_swap_cache(&folio->page, swap, shadow);
30472509 1285 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1286 put_swap_page(&folio->page, swap);
e286781d 1287 } else {
6072d13c
LT
1288 void (*freepage)(struct page *);
1289
1290 freepage = mapping->a_ops->freepage;
a528910e
JW
1291 /*
1292 * Remember a shadow entry for reclaimed file cache in
1293 * order to detect refaults, thus thrashing, later on.
1294 *
1295 * But don't store shadows in an address space that is
238c3046 1296 * already exiting. This is not just an optimization,
a528910e
JW
1297 * inode reclaim needs to empty out the radix tree or
1298 * the nodes are lost. Don't plant shadows behind its
1299 * back.
f9fe48be
RZ
1300 *
1301 * We also don't store shadows for DAX mappings because the
1302 * only page cache pages found in these are zero pages
1303 * covering holes, and because we don't want to mix DAX
1304 * exceptional entries and shadow exceptional entries in the
b93b0163 1305 * same address_space.
a528910e 1306 */
be7c07d6 1307 if (reclaimed && folio_is_file_lru(folio) &&
f9fe48be 1308 !mapping_exiting(mapping) && !dax_mapping(mapping))
8927f647
MWO
1309 shadow = workingset_eviction(folio, target_memcg);
1310 __filemap_remove_folio(folio, shadow);
30472509 1311 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
1312 if (mapping_shrinkable(mapping))
1313 inode_add_lru(mapping->host);
1314 spin_unlock(&mapping->host->i_lock);
6072d13c
LT
1315
1316 if (freepage != NULL)
be7c07d6 1317 freepage(&folio->page);
49d2e9cc
CL
1318 }
1319
49d2e9cc
CL
1320 return 1;
1321
1322cannot_free:
30472509 1323 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1324 if (!folio_test_swapcache(folio))
51b8c1fe 1325 spin_unlock(&mapping->host->i_lock);
49d2e9cc
CL
1326 return 0;
1327}
1328
5100da38
MWO
1329/**
1330 * remove_mapping() - Attempt to remove a folio from its mapping.
1331 * @mapping: The address space.
1332 * @folio: The folio to remove.
1333 *
1334 * If the folio is dirty, under writeback or if someone else has a ref
1335 * on it, removal will fail.
1336 * Return: The number of pages removed from the mapping. 0 if the folio
1337 * could not be removed.
1338 * Context: The caller should have a single refcount on the folio and
1339 * hold its lock.
e286781d 1340 */
5100da38 1341long remove_mapping(struct address_space *mapping, struct folio *folio)
e286781d 1342{
be7c07d6 1343 if (__remove_mapping(mapping, folio, false, NULL)) {
e286781d 1344 /*
5100da38 1345 * Unfreezing the refcount with 1 effectively
e286781d
NP
1346 * drops the pagecache ref for us without requiring another
1347 * atomic operation.
1348 */
be7c07d6 1349 folio_ref_unfreeze(folio, 1);
5100da38 1350 return folio_nr_pages(folio);
e286781d
NP
1351 }
1352 return 0;
1353}
1354
894bc310 1355/**
ca6d60f3
MWO
1356 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1357 * @folio: Folio to be returned to an LRU list.
894bc310 1358 *
ca6d60f3
MWO
1359 * Add previously isolated @folio to appropriate LRU list.
1360 * The folio may still be unevictable for other reasons.
894bc310 1361 *
ca6d60f3 1362 * Context: lru_lock must not be held, interrupts must be enabled.
894bc310 1363 */
ca6d60f3 1364void folio_putback_lru(struct folio *folio)
894bc310 1365{
ca6d60f3
MWO
1366 folio_add_lru(folio);
1367 folio_put(folio); /* drop ref from isolate */
894bc310
LS
1368}
1369
dfc8d636
JW
1370enum page_references {
1371 PAGEREF_RECLAIM,
1372 PAGEREF_RECLAIM_CLEAN,
64574746 1373 PAGEREF_KEEP,
dfc8d636
JW
1374 PAGEREF_ACTIVATE,
1375};
1376
d92013d1 1377static enum page_references folio_check_references(struct folio *folio,
dfc8d636
JW
1378 struct scan_control *sc)
1379{
d92013d1 1380 int referenced_ptes, referenced_folio;
dfc8d636 1381 unsigned long vm_flags;
dfc8d636 1382
b3ac0413
MWO
1383 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1384 &vm_flags);
d92013d1 1385 referenced_folio = folio_test_clear_referenced(folio);
dfc8d636 1386
dfc8d636 1387 /*
d92013d1
MWO
1388 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1389 * Let the folio, now marked Mlocked, be moved to the unevictable list.
dfc8d636
JW
1390 */
1391 if (vm_flags & VM_LOCKED)
47d4f3ee 1392 return PAGEREF_ACTIVATE;
dfc8d636 1393
64574746 1394 if (referenced_ptes) {
64574746 1395 /*
d92013d1 1396 * All mapped folios start out with page table
64574746 1397 * references from the instantiating fault, so we need
9030fb0b 1398 * to look twice if a mapped file/anon folio is used more
64574746
JW
1399 * than once.
1400 *
1401 * Mark it and spare it for another trip around the
1402 * inactive list. Another page table reference will
1403 * lead to its activation.
1404 *
d92013d1
MWO
1405 * Note: the mark is set for activated folios as well
1406 * so that recently deactivated but used folios are
64574746
JW
1407 * quickly recovered.
1408 */
d92013d1 1409 folio_set_referenced(folio);
64574746 1410
d92013d1 1411 if (referenced_folio || referenced_ptes > 1)
64574746
JW
1412 return PAGEREF_ACTIVATE;
1413
c909e993 1414 /*
d92013d1 1415 * Activate file-backed executable folios after first usage.
c909e993 1416 */
f19a27e3 1417 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
c909e993
KK
1418 return PAGEREF_ACTIVATE;
1419
64574746
JW
1420 return PAGEREF_KEEP;
1421 }
dfc8d636 1422
d92013d1 1423 /* Reclaim if clean, defer dirty folios to writeback */
f19a27e3 1424 if (referenced_folio && folio_is_file_lru(folio))
64574746
JW
1425 return PAGEREF_RECLAIM_CLEAN;
1426
1427 return PAGEREF_RECLAIM;
dfc8d636
JW
1428}
1429
e2be15f6 1430/* Check if a page is dirty or under writeback */
e20c41b1 1431static void folio_check_dirty_writeback(struct folio *folio,
e2be15f6
MG
1432 bool *dirty, bool *writeback)
1433{
b4597226
MG
1434 struct address_space *mapping;
1435
e2be15f6
MG
1436 /*
1437 * Anonymous pages are not handled by flushers and must be written
32a331a7
ML
1438 * from reclaim context. Do not stall reclaim based on them.
1439 * MADV_FREE anonymous pages are put into inactive file list too.
1440 * They could be mistakenly treated as file lru. So further anon
1441 * test is needed.
e2be15f6 1442 */
e20c41b1
MWO
1443 if (!folio_is_file_lru(folio) ||
1444 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
e2be15f6
MG
1445 *dirty = false;
1446 *writeback = false;
1447 return;
1448 }
1449
e20c41b1
MWO
1450 /* By default assume that the folio flags are accurate */
1451 *dirty = folio_test_dirty(folio);
1452 *writeback = folio_test_writeback(folio);
b4597226
MG
1453
1454 /* Verify dirty/writeback state if the filesystem supports it */
e20c41b1 1455 if (!folio_test_private(folio))
b4597226
MG
1456 return;
1457
e20c41b1 1458 mapping = folio_mapping(folio);
b4597226 1459 if (mapping && mapping->a_ops->is_dirty_writeback)
e20c41b1 1460 mapping->a_ops->is_dirty_writeback(&folio->page, dirty, writeback);
e2be15f6
MG
1461}
1462
26aa2d19
DH
1463static struct page *alloc_demote_page(struct page *page, unsigned long node)
1464{
1465 struct migration_target_control mtc = {
1466 /*
1467 * Allocate from 'node', or fail quickly and quietly.
1468 * When this happens, 'page' will likely just be discarded
1469 * instead of migrated.
1470 */
1471 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1472 __GFP_THISNODE | __GFP_NOWARN |
1473 __GFP_NOMEMALLOC | GFP_NOWAIT,
1474 .nid = node
1475 };
1476
1477 return alloc_migration_target(page, (unsigned long)&mtc);
1478}
1479
1480/*
1481 * Take pages on @demote_list and attempt to demote them to
1482 * another node. Pages which are not demoted are left on
1483 * @demote_pages.
1484 */
1485static unsigned int demote_page_list(struct list_head *demote_pages,
1486 struct pglist_data *pgdat)
1487{
1488 int target_nid = next_demotion_node(pgdat->node_id);
1489 unsigned int nr_succeeded;
26aa2d19
DH
1490
1491 if (list_empty(demote_pages))
1492 return 0;
1493
1494 if (target_nid == NUMA_NO_NODE)
1495 return 0;
1496
1497 /* Demotion ignores all cpuset and mempolicy settings */
cb75463c 1498 migrate_pages(demote_pages, alloc_demote_page, NULL,
26aa2d19
DH
1499 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1500 &nr_succeeded);
1501
668e4147
YS
1502 if (current_is_kswapd())
1503 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1504 else
1505 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1506
26aa2d19
DH
1507 return nr_succeeded;
1508}
1509
d791ea67
N
1510static bool may_enter_fs(struct page *page, gfp_t gfp_mask)
1511{
1512 if (gfp_mask & __GFP_FS)
1513 return true;
1514 if (!PageSwapCache(page) || !(gfp_mask & __GFP_IO))
1515 return false;
1516 /*
1517 * We can "enter_fs" for swap-cache with only __GFP_IO
1518 * providing this isn't SWP_FS_OPS.
1519 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1520 * but that will never affect SWP_FS_OPS, so the data_race
1521 * is safe.
1522 */
1523 return !data_race(page_swap_flags(page) & SWP_FS_OPS);
1524}
1525
1da177e4 1526/*
1742f19f 1527 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1528 */
730ec8c0
MS
1529static unsigned int shrink_page_list(struct list_head *page_list,
1530 struct pglist_data *pgdat,
1531 struct scan_control *sc,
730ec8c0
MS
1532 struct reclaim_stat *stat,
1533 bool ignore_references)
1da177e4
LT
1534{
1535 LIST_HEAD(ret_pages);
abe4c3b5 1536 LIST_HEAD(free_pages);
26aa2d19 1537 LIST_HEAD(demote_pages);
730ec8c0
MS
1538 unsigned int nr_reclaimed = 0;
1539 unsigned int pgactivate = 0;
26aa2d19 1540 bool do_demote_pass;
2282679f 1541 struct swap_iocb *plug = NULL;
1da177e4 1542
060f005f 1543 memset(stat, 0, sizeof(*stat));
1da177e4 1544 cond_resched();
26aa2d19 1545 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1546
26aa2d19 1547retry:
1da177e4
LT
1548 while (!list_empty(page_list)) {
1549 struct address_space *mapping;
1550 struct page *page;
be7c07d6 1551 struct folio *folio;
8940b34a 1552 enum page_references references = PAGEREF_RECLAIM;
d791ea67 1553 bool dirty, writeback;
98879b3b 1554 unsigned int nr_pages;
1da177e4
LT
1555
1556 cond_resched();
1557
be7c07d6
MWO
1558 folio = lru_to_folio(page_list);
1559 list_del(&folio->lru);
1560 page = &folio->page;
1da177e4 1561
529ae9aa 1562 if (!trylock_page(page))
1da177e4
LT
1563 goto keep;
1564
309381fe 1565 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1566
d8c6546b 1567 nr_pages = compound_nr(page);
98879b3b
YS
1568
1569 /* Account the number of base pages even though THP */
1570 sc->nr_scanned += nr_pages;
80e43426 1571
39b5f29a 1572 if (unlikely(!page_evictable(page)))
ad6b6704 1573 goto activate_locked;
894bc310 1574
1bee2c16 1575 if (!sc->may_unmap && folio_mapped(folio))
80e43426
CL
1576 goto keep_locked;
1577
e2be15f6 1578 /*
894befec 1579 * The number of dirty pages determines if a node is marked
8cd7c588
MG
1580 * reclaim_congested. kswapd will stall and start writing
1581 * pages if the tail of the LRU is all dirty unqueued pages.
e2be15f6 1582 */
e20c41b1 1583 folio_check_dirty_writeback(folio, &dirty, &writeback);
e2be15f6 1584 if (dirty || writeback)
c79b7b96 1585 stat->nr_dirty += nr_pages;
e2be15f6
MG
1586
1587 if (dirty && !writeback)
c79b7b96 1588 stat->nr_unqueued_dirty += nr_pages;
e2be15f6 1589
d04e8acd
MG
1590 /*
1591 * Treat this page as congested if the underlying BDI is or if
1592 * pages are cycling through the LRU so quickly that the
1593 * pages marked for immediate reclaim are making it to the
1594 * end of the LRU a second time.
1595 */
e2be15f6 1596 mapping = page_mapping(page);
fe55d563 1597 if (writeback && PageReclaim(page))
c79b7b96 1598 stat->nr_congested += nr_pages;
e2be15f6 1599
283aba9f 1600 /*
d33e4e14 1601 * If a folio at the tail of the LRU is under writeback, there
283aba9f
MG
1602 * are three cases to consider.
1603 *
d33e4e14
MWO
1604 * 1) If reclaim is encountering an excessive number of folios
1605 * under writeback and this folio is both under
1606 * writeback and has the reclaim flag set then it
1607 * indicates that folios are being queued for I/O but
1608 * are being recycled through the LRU before the I/O
1609 * can complete. Waiting on the folio itself risks an
1610 * indefinite stall if it is impossible to writeback
1611 * the folio due to I/O error or disconnected storage
1612 * so instead note that the LRU is being scanned too
1613 * quickly and the caller can stall after the folio
1614 * list has been processed.
283aba9f 1615 *
d33e4e14 1616 * 2) Global or new memcg reclaim encounters a folio that is
ecf5fc6e
MH
1617 * not marked for immediate reclaim, or the caller does not
1618 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
d33e4e14 1619 * not to fs). In this case mark the folio for immediate
97c9341f 1620 * reclaim and continue scanning.
283aba9f 1621 *
d791ea67 1622 * Require may_enter_fs() because we would wait on fs, which
d33e4e14
MWO
1623 * may not have submitted I/O yet. And the loop driver might
1624 * enter reclaim, and deadlock if it waits on a folio for
283aba9f
MG
1625 * which it is needed to do the write (loop masks off
1626 * __GFP_IO|__GFP_FS for this reason); but more thought
1627 * would probably show more reasons.
1628 *
d33e4e14
MWO
1629 * 3) Legacy memcg encounters a folio that already has the
1630 * reclaim flag set. memcg does not have any dirty folio
283aba9f 1631 * throttling so we could easily OOM just because too many
d33e4e14 1632 * folios are in writeback and there is nothing else to
283aba9f 1633 * reclaim. Wait for the writeback to complete.
c55e8d03 1634 *
d33e4e14
MWO
1635 * In cases 1) and 2) we activate the folios to get them out of
1636 * the way while we continue scanning for clean folios on the
c55e8d03
JW
1637 * inactive list and refilling from the active list. The
1638 * observation here is that waiting for disk writes is more
1639 * expensive than potentially causing reloads down the line.
1640 * Since they're marked for immediate reclaim, they won't put
1641 * memory pressure on the cache working set any longer than it
1642 * takes to write them to disk.
283aba9f 1643 */
d33e4e14 1644 if (folio_test_writeback(folio)) {
283aba9f
MG
1645 /* Case 1 above */
1646 if (current_is_kswapd() &&
d33e4e14 1647 folio_test_reclaim(folio) &&
599d0c95 1648 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
c79b7b96 1649 stat->nr_immediate += nr_pages;
c55e8d03 1650 goto activate_locked;
283aba9f
MG
1651
1652 /* Case 2 above */
b5ead35e 1653 } else if (writeback_throttling_sane(sc) ||
d33e4e14
MWO
1654 !folio_test_reclaim(folio) ||
1655 !may_enter_fs(page, sc->gfp_mask)) {
c3b94f44 1656 /*
d33e4e14
MWO
1657 * This is slightly racy -
1658 * folio_end_writeback() might have just
1659 * cleared the reclaim flag, then setting
1660 * reclaim here ends up interpreted as
1661 * the readahead flag - but that does
1662 * not matter enough to care. What we
1663 * do want is for this folio to have
1664 * the reclaim flag set next time memcg
1665 * reclaim reaches the tests above, so
1666 * it will then folio_wait_writeback()
1667 * to avoid OOM; and it's also appropriate
1668 * in global reclaim.
c3b94f44 1669 */
d33e4e14 1670 folio_set_reclaim(folio);
c79b7b96 1671 stat->nr_writeback += nr_pages;
c55e8d03 1672 goto activate_locked;
283aba9f
MG
1673
1674 /* Case 3 above */
1675 } else {
d33e4e14
MWO
1676 folio_unlock(folio);
1677 folio_wait_writeback(folio);
1678 /* then go back and try same folio again */
1679 list_add_tail(&folio->lru, page_list);
7fadc820 1680 continue;
e62e384e 1681 }
c661b078 1682 }
1da177e4 1683
8940b34a 1684 if (!ignore_references)
d92013d1 1685 references = folio_check_references(folio, sc);
02c6de8d 1686
dfc8d636
JW
1687 switch (references) {
1688 case PAGEREF_ACTIVATE:
1da177e4 1689 goto activate_locked;
64574746 1690 case PAGEREF_KEEP:
98879b3b 1691 stat->nr_ref_keep += nr_pages;
64574746 1692 goto keep_locked;
dfc8d636
JW
1693 case PAGEREF_RECLAIM:
1694 case PAGEREF_RECLAIM_CLEAN:
1695 ; /* try to reclaim the page below */
1696 }
1da177e4 1697
26aa2d19
DH
1698 /*
1699 * Before reclaiming the page, try to relocate
1700 * its contents to another node.
1701 */
1702 if (do_demote_pass &&
1703 (thp_migration_supported() || !PageTransHuge(page))) {
1704 list_add(&page->lru, &demote_pages);
1705 unlock_page(page);
1706 continue;
1707 }
1708
1da177e4
LT
1709 /*
1710 * Anonymous process memory has backing store?
1711 * Try to allocate it some swap space here.
802a3a92 1712 * Lazyfree page could be freed directly
1da177e4 1713 */
bd4c82c2
HY
1714 if (PageAnon(page) && PageSwapBacked(page)) {
1715 if (!PageSwapCache(page)) {
1716 if (!(sc->gfp_mask & __GFP_IO))
1717 goto keep_locked;
d4b4084a 1718 if (folio_maybe_dma_pinned(folio))
feb889fb 1719 goto keep_locked;
bd4c82c2
HY
1720 if (PageTransHuge(page)) {
1721 /* cannot split THP, skip it */
d4b4084a 1722 if (!can_split_folio(folio, NULL))
bd4c82c2
HY
1723 goto activate_locked;
1724 /*
1725 * Split pages without a PMD map right
1726 * away. Chances are some or all of the
1727 * tail pages can be freed without IO.
1728 */
d4b4084a 1729 if (!folio_entire_mapcount(folio) &&
346cf613
MWO
1730 split_folio_to_list(folio,
1731 page_list))
bd4c82c2
HY
1732 goto activate_locked;
1733 }
09c02e56
MWO
1734 if (!add_to_swap(folio)) {
1735 if (!folio_test_large(folio))
98879b3b 1736 goto activate_locked_split;
bd4c82c2 1737 /* Fallback to swap normal pages */
346cf613
MWO
1738 if (split_folio_to_list(folio,
1739 page_list))
bd4c82c2 1740 goto activate_locked;
fe490cc0
HY
1741#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1742 count_vm_event(THP_SWPOUT_FALLBACK);
1743#endif
09c02e56 1744 if (!add_to_swap(folio))
98879b3b 1745 goto activate_locked_split;
bd4c82c2 1746 }
0f074658 1747
bd4c82c2
HY
1748 /* Adding to swap updated mapping */
1749 mapping = page_mapping(page);
1750 }
820c4e2e
MWO
1751 } else if (PageSwapBacked(page) && PageTransHuge(page)) {
1752 /* Split shmem THP */
346cf613 1753 if (split_folio_to_list(folio, page_list))
7751b2da 1754 goto keep_locked;
e2be15f6 1755 }
1da177e4 1756
98879b3b
YS
1757 /*
1758 * THP may get split above, need minus tail pages and update
1759 * nr_pages to avoid accounting tail pages twice.
1760 *
1761 * The tail pages that are added into swap cache successfully
1762 * reach here.
1763 */
1764 if ((nr_pages > 1) && !PageTransHuge(page)) {
1765 sc->nr_scanned -= (nr_pages - 1);
1766 nr_pages = 1;
1767 }
1768
1da177e4 1769 /*
1bee2c16 1770 * The folio is mapped into the page tables of one or more
1da177e4
LT
1771 * processes. Try to unmap it here.
1772 */
1bee2c16 1773 if (folio_mapped(folio)) {
013339df 1774 enum ttu_flags flags = TTU_BATCH_FLUSH;
1bee2c16 1775 bool was_swapbacked = folio_test_swapbacked(folio);
bd4c82c2 1776
1bee2c16 1777 if (folio_test_pmd_mappable(folio))
bd4c82c2 1778 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1779
869f7ee6 1780 try_to_unmap(folio, flags);
1bee2c16 1781 if (folio_mapped(folio)) {
98879b3b 1782 stat->nr_unmap_fail += nr_pages;
1bee2c16
MWO
1783 if (!was_swapbacked &&
1784 folio_test_swapbacked(folio))
1f318a9b 1785 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1786 goto activate_locked;
1da177e4
LT
1787 }
1788 }
1789
49bd2bf9 1790 if (folio_test_dirty(folio)) {
ee72886d 1791 /*
49bd2bf9 1792 * Only kswapd can writeback filesystem folios
4eda4823 1793 * to avoid risk of stack overflow. But avoid
49bd2bf9 1794 * injecting inefficient single-folio I/O into
4eda4823 1795 * flusher writeback as much as possible: only
49bd2bf9
MWO
1796 * write folios when we've encountered many
1797 * dirty folios, and when we've already scanned
1798 * the rest of the LRU for clean folios and see
1799 * the same dirty folios again (with the reclaim
1800 * flag set).
ee72886d 1801 */
49bd2bf9
MWO
1802 if (folio_is_file_lru(folio) &&
1803 (!current_is_kswapd() ||
1804 !folio_test_reclaim(folio) ||
4eda4823 1805 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1806 /*
1807 * Immediately reclaim when written back.
49bd2bf9
MWO
1808 * Similar in principle to deactivate_page()
1809 * except we already have the folio isolated
49ea7eb6
MG
1810 * and know it's dirty
1811 */
49bd2bf9
MWO
1812 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1813 nr_pages);
1814 folio_set_reclaim(folio);
49ea7eb6 1815
c55e8d03 1816 goto activate_locked;
ee72886d
MG
1817 }
1818
dfc8d636 1819 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1820 goto keep_locked;
d791ea67 1821 if (!may_enter_fs(page, sc->gfp_mask))
1da177e4 1822 goto keep_locked;
52a8363e 1823 if (!sc->may_writepage)
1da177e4
LT
1824 goto keep_locked;
1825
d950c947 1826 /*
49bd2bf9
MWO
1827 * Folio is dirty. Flush the TLB if a writable entry
1828 * potentially exists to avoid CPU writes after I/O
d950c947
MG
1829 * starts and then write it out here.
1830 */
1831 try_to_unmap_flush_dirty();
2282679f 1832 switch (pageout(folio, mapping, &plug)) {
1da177e4
LT
1833 case PAGE_KEEP:
1834 goto keep_locked;
1835 case PAGE_ACTIVATE:
1836 goto activate_locked;
1837 case PAGE_SUCCESS:
c79b7b96 1838 stat->nr_pageout += nr_pages;
96f8bf4f 1839
49bd2bf9 1840 if (folio_test_writeback(folio))
41ac1999 1841 goto keep;
49bd2bf9 1842 if (folio_test_dirty(folio))
1da177e4 1843 goto keep;
7d3579e8 1844
1da177e4
LT
1845 /*
1846 * A synchronous write - probably a ramdisk. Go
49bd2bf9 1847 * ahead and try to reclaim the folio.
1da177e4 1848 */
49bd2bf9 1849 if (!folio_trylock(folio))
1da177e4 1850 goto keep;
49bd2bf9
MWO
1851 if (folio_test_dirty(folio) ||
1852 folio_test_writeback(folio))
1da177e4 1853 goto keep_locked;
49bd2bf9 1854 mapping = folio_mapping(folio);
01359eb2 1855 fallthrough;
1da177e4 1856 case PAGE_CLEAN:
49bd2bf9 1857 ; /* try to free the folio below */
1da177e4
LT
1858 }
1859 }
1860
1861 /*
1862 * If the page has buffers, try to free the buffer mappings
1863 * associated with this page. If we succeed we try to free
1864 * the page as well.
1865 *
1866 * We do this even if the page is PageDirty().
1867 * try_to_release_page() does not perform I/O, but it is
1868 * possible for a page to have PageDirty set, but it is actually
1869 * clean (all its buffers are clean). This happens if the
1870 * buffers were written out directly, with submit_bh(). ext3
894bc310 1871 * will do this, as well as the blockdev mapping.
1da177e4
LT
1872 * try_to_release_page() will discover that cleanness and will
1873 * drop the buffers and mark the page clean - it can be freed.
1874 *
1875 * Rarely, pages can have buffers and no ->mapping. These are
1876 * the pages which were not successfully invalidated in
d12b8951 1877 * truncate_cleanup_page(). We try to drop those buffers here
1da177e4
LT
1878 * and if that worked, and the page is no longer mapped into
1879 * process address space (page_count == 1) it can be freed.
1880 * Otherwise, leave the page on the LRU so it is swappable.
1881 */
266cf658 1882 if (page_has_private(page)) {
1da177e4
LT
1883 if (!try_to_release_page(page, sc->gfp_mask))
1884 goto activate_locked;
e286781d
NP
1885 if (!mapping && page_count(page) == 1) {
1886 unlock_page(page);
1887 if (put_page_testzero(page))
1888 goto free_it;
1889 else {
1890 /*
1891 * rare race with speculative reference.
1892 * the speculative reference will free
1893 * this page shortly, so we may
1894 * increment nr_reclaimed here (and
1895 * leave it off the LRU).
1896 */
9aafcffc 1897 nr_reclaimed += nr_pages;
e286781d
NP
1898 continue;
1899 }
1900 }
1da177e4
LT
1901 }
1902
802a3a92
SL
1903 if (PageAnon(page) && !PageSwapBacked(page)) {
1904 /* follow __remove_mapping for reference */
1905 if (!page_ref_freeze(page, 1))
1906 goto keep_locked;
d17be2d9
ML
1907 /*
1908 * The page has only one reference left, which is
1909 * from the isolation. After the caller puts the
1910 * page back on lru and drops the reference, the
1911 * page will be freed anyway. It doesn't matter
1912 * which lru it goes. So we don't bother checking
1913 * PageDirty here.
1914 */
802a3a92 1915 count_vm_event(PGLAZYFREED);
2262185c 1916 count_memcg_page_event(page, PGLAZYFREED);
be7c07d6 1917 } else if (!mapping || !__remove_mapping(mapping, folio, true,
b910718a 1918 sc->target_mem_cgroup))
802a3a92 1919 goto keep_locked;
9a1ea439
HD
1920
1921 unlock_page(page);
e286781d 1922free_it:
98879b3b
YS
1923 /*
1924 * THP may get swapped out in a whole, need account
1925 * all base pages.
1926 */
1927 nr_reclaimed += nr_pages;
abe4c3b5
MG
1928
1929 /*
1930 * Is there need to periodically free_page_list? It would
1931 * appear not as the counts should be low
1932 */
7ae88534 1933 if (unlikely(PageTransHuge(page)))
ff45fc3c 1934 destroy_compound_page(page);
7ae88534 1935 else
bd4c82c2 1936 list_add(&page->lru, &free_pages);
1da177e4
LT
1937 continue;
1938
98879b3b
YS
1939activate_locked_split:
1940 /*
1941 * The tail pages that are failed to add into swap cache
1942 * reach here. Fixup nr_scanned and nr_pages.
1943 */
1944 if (nr_pages > 1) {
1945 sc->nr_scanned -= (nr_pages - 1);
1946 nr_pages = 1;
1947 }
1da177e4 1948activate_locked:
68a22394 1949 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1950 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1951 PageMlocked(page)))
a2c43eed 1952 try_to_free_swap(page);
309381fe 1953 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1954 if (!PageMlocked(page)) {
9de4f22a 1955 int type = page_is_file_lru(page);
ad6b6704 1956 SetPageActive(page);
98879b3b 1957 stat->nr_activate[type] += nr_pages;
2262185c 1958 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1959 }
1da177e4
LT
1960keep_locked:
1961 unlock_page(page);
1962keep:
1963 list_add(&page->lru, &ret_pages);
309381fe 1964 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1965 }
26aa2d19
DH
1966 /* 'page_list' is always empty here */
1967
1968 /* Migrate pages selected for demotion */
1969 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1970 /* Pages that could not be demoted are still in @demote_pages */
1971 if (!list_empty(&demote_pages)) {
1972 /* Pages which failed to demoted go back on @page_list for retry: */
1973 list_splice_init(&demote_pages, page_list);
1974 do_demote_pass = false;
1975 goto retry;
1976 }
abe4c3b5 1977
98879b3b
YS
1978 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1979
747db954 1980 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1981 try_to_unmap_flush();
2d4894b5 1982 free_unref_page_list(&free_pages);
abe4c3b5 1983
1da177e4 1984 list_splice(&ret_pages, page_list);
886cf190 1985 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1986
2282679f
N
1987 if (plug)
1988 swap_write_unplug(plug);
05ff5137 1989 return nr_reclaimed;
1da177e4
LT
1990}
1991
730ec8c0 1992unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1993 struct list_head *page_list)
1994{
1995 struct scan_control sc = {
1996 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
1997 .may_unmap = 1,
1998 };
1f318a9b 1999 struct reclaim_stat stat;
730ec8c0 2000 unsigned int nr_reclaimed;
02c6de8d
MK
2001 struct page *page, *next;
2002 LIST_HEAD(clean_pages);
2d2b8d2b 2003 unsigned int noreclaim_flag;
02c6de8d
MK
2004
2005 list_for_each_entry_safe(page, next, page_list, lru) {
ae37c7ff
OS
2006 if (!PageHuge(page) && page_is_file_lru(page) &&
2007 !PageDirty(page) && !__PageMovable(page) &&
2008 !PageUnevictable(page)) {
02c6de8d
MK
2009 ClearPageActive(page);
2010 list_move(&page->lru, &clean_pages);
2011 }
2012 }
2013
2d2b8d2b
YZ
2014 /*
2015 * We should be safe here since we are only dealing with file pages and
2016 * we are not kswapd and therefore cannot write dirty file pages. But
2017 * call memalloc_noreclaim_save() anyway, just in case these conditions
2018 * change in the future.
2019 */
2020 noreclaim_flag = memalloc_noreclaim_save();
1f318a9b 2021 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
013339df 2022 &stat, true);
2d2b8d2b
YZ
2023 memalloc_noreclaim_restore(noreclaim_flag);
2024
02c6de8d 2025 list_splice(&clean_pages, page_list);
2da9f630
NP
2026 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2027 -(long)nr_reclaimed);
1f318a9b
JK
2028 /*
2029 * Since lazyfree pages are isolated from file LRU from the beginning,
2030 * they will rotate back to anonymous LRU in the end if it failed to
2031 * discard so isolated count will be mismatched.
2032 * Compensate the isolated count for both LRU lists.
2033 */
2034 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2035 stat.nr_lazyfree_fail);
2036 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 2037 -(long)stat.nr_lazyfree_fail);
1f318a9b 2038 return nr_reclaimed;
02c6de8d
MK
2039}
2040
7ee36a14
MG
2041/*
2042 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 2043 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
2044 */
2045static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 2046 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 2047{
7ee36a14
MG
2048 int zid;
2049
7ee36a14
MG
2050 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2051 if (!nr_zone_taken[zid])
2052 continue;
2053
a892cb6b 2054 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
2055 }
2056
7ee36a14
MG
2057}
2058
f611fab7 2059/*
15b44736
HD
2060 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2061 *
2062 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
2063 * shrink the lists perform better by taking out a batch of pages
2064 * and working on them outside the LRU lock.
2065 *
2066 * For pagecache intensive workloads, this function is the hottest
2067 * spot in the kernel (apart from copy_*_user functions).
2068 *
15b44736 2069 * Lru_lock must be held before calling this function.
1da177e4 2070 *
791b48b6 2071 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 2072 * @lruvec: The LRU vector to pull pages from.
1da177e4 2073 * @dst: The temp list to put pages on to.
f626012d 2074 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 2075 * @sc: The scan_control struct for this reclaim session
3cb99451 2076 * @lru: LRU list id for isolating
1da177e4
LT
2077 *
2078 * returns how many pages were moved onto *@dst.
2079 */
69e05944 2080static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 2081 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 2082 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 2083 enum lru_list lru)
1da177e4 2084{
75b00af7 2085 struct list_head *src = &lruvec->lists[lru];
69e05944 2086 unsigned long nr_taken = 0;
599d0c95 2087 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 2088 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 2089 unsigned long skipped = 0;
791b48b6 2090 unsigned long scan, total_scan, nr_pages;
b2e18757 2091 LIST_HEAD(pages_skipped);
1da177e4 2092
98879b3b 2093 total_scan = 0;
791b48b6 2094 scan = 0;
98879b3b 2095 while (scan < nr_to_scan && !list_empty(src)) {
89f6c88a 2096 struct list_head *move_to = src;
5ad333eb 2097 struct page *page;
5ad333eb 2098
1da177e4
LT
2099 page = lru_to_page(src);
2100 prefetchw_prev_lru_page(page, src, flags);
2101
d8c6546b 2102 nr_pages = compound_nr(page);
98879b3b
YS
2103 total_scan += nr_pages;
2104
b2e18757 2105 if (page_zonenum(page) > sc->reclaim_idx) {
98879b3b 2106 nr_skipped[page_zonenum(page)] += nr_pages;
89f6c88a
HD
2107 move_to = &pages_skipped;
2108 goto move;
b2e18757
MG
2109 }
2110
791b48b6
MK
2111 /*
2112 * Do not count skipped pages because that makes the function
2113 * return with no isolated pages if the LRU mostly contains
2114 * ineligible pages. This causes the VM to not reclaim any
2115 * pages, triggering a premature OOM.
89f6c88a 2116 * Account all tail pages of THP.
791b48b6 2117 */
98879b3b 2118 scan += nr_pages;
89f6c88a
HD
2119
2120 if (!PageLRU(page))
2121 goto move;
2122 if (!sc->may_unmap && page_mapped(page))
2123 goto move;
2124
c2135f7c
AS
2125 /*
2126 * Be careful not to clear PageLRU until after we're
2127 * sure the page is not being freed elsewhere -- the
2128 * page release code relies on it.
2129 */
89f6c88a
HD
2130 if (unlikely(!get_page_unless_zero(page)))
2131 goto move;
5ad333eb 2132
c2135f7c
AS
2133 if (!TestClearPageLRU(page)) {
2134 /* Another thread is already isolating this page */
2135 put_page(page);
89f6c88a 2136 goto move;
5ad333eb 2137 }
c2135f7c
AS
2138
2139 nr_taken += nr_pages;
2140 nr_zone_taken[page_zonenum(page)] += nr_pages;
89f6c88a
HD
2141 move_to = dst;
2142move:
2143 list_move(&page->lru, move_to);
1da177e4
LT
2144 }
2145
b2e18757
MG
2146 /*
2147 * Splice any skipped pages to the start of the LRU list. Note that
2148 * this disrupts the LRU order when reclaiming for lower zones but
2149 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
b2cb6826
ML
2150 * scanning would soon rescan the same pages to skip and waste lots
2151 * of cpu cycles.
b2e18757 2152 */
7cc30fcf
MG
2153 if (!list_empty(&pages_skipped)) {
2154 int zid;
2155
3db65812 2156 list_splice(&pages_skipped, src);
7cc30fcf
MG
2157 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2158 if (!nr_skipped[zid])
2159 continue;
2160
2161 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2162 skipped += nr_skipped[zid];
7cc30fcf
MG
2163 }
2164 }
791b48b6 2165 *nr_scanned = total_scan;
1265e3a6 2166 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
89f6c88a
HD
2167 total_scan, skipped, nr_taken,
2168 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
b4536f0c 2169 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2170 return nr_taken;
2171}
2172
62695a84 2173/**
d1d8a3b4
MWO
2174 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2175 * @folio: Folio to isolate from its LRU list.
62695a84 2176 *
d1d8a3b4
MWO
2177 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2178 * corresponding to whatever LRU list the folio was on.
62695a84 2179 *
d1d8a3b4
MWO
2180 * The folio will have its LRU flag cleared. If it was found on the
2181 * active list, it will have the Active flag set. If it was found on the
2182 * unevictable list, it will have the Unevictable flag set. These flags
894bc310 2183 * may need to be cleared by the caller before letting the page go.
62695a84 2184 *
d1d8a3b4 2185 * Context:
a5d09bed 2186 *
62695a84 2187 * (1) Must be called with an elevated refcount on the page. This is a
d1d8a3b4 2188 * fundamental difference from isolate_lru_pages() (which is called
62695a84 2189 * without a stable reference).
d1d8a3b4
MWO
2190 * (2) The lru_lock must not be held.
2191 * (3) Interrupts must be enabled.
2192 *
2193 * Return: 0 if the folio was removed from an LRU list.
2194 * -EBUSY if the folio was not on an LRU list.
62695a84 2195 */
d1d8a3b4 2196int folio_isolate_lru(struct folio *folio)
62695a84
NP
2197{
2198 int ret = -EBUSY;
2199
d1d8a3b4 2200 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
0c917313 2201
d1d8a3b4 2202 if (folio_test_clear_lru(folio)) {
fa9add64 2203 struct lruvec *lruvec;
62695a84 2204
d1d8a3b4 2205 folio_get(folio);
e809c3fe 2206 lruvec = folio_lruvec_lock_irq(folio);
d1d8a3b4 2207 lruvec_del_folio(lruvec, folio);
6168d0da 2208 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2209 ret = 0;
62695a84 2210 }
d25b5bd8 2211
62695a84
NP
2212 return ret;
2213}
2214
35cd7815 2215/*
d37dd5dc 2216 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2217 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2218 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2219 * the LRU list will go small and be scanned faster than necessary, leading to
2220 * unnecessary swapping, thrashing and OOM.
35cd7815 2221 */
599d0c95 2222static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2223 struct scan_control *sc)
2224{
2225 unsigned long inactive, isolated;
d818fca1 2226 bool too_many;
35cd7815
RR
2227
2228 if (current_is_kswapd())
2229 return 0;
2230
b5ead35e 2231 if (!writeback_throttling_sane(sc))
35cd7815
RR
2232 return 0;
2233
2234 if (file) {
599d0c95
MG
2235 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2236 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2237 } else {
599d0c95
MG
2238 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2239 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2240 }
2241
3cf23841
FW
2242 /*
2243 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2244 * won't get blocked by normal direct-reclaimers, forming a circular
2245 * deadlock.
2246 */
d0164adc 2247 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2248 inactive >>= 3;
2249
d818fca1
MG
2250 too_many = isolated > inactive;
2251
2252 /* Wake up tasks throttled due to too_many_isolated. */
2253 if (!too_many)
2254 wake_throttle_isolated(pgdat);
2255
2256 return too_many;
35cd7815
RR
2257}
2258
a222f341 2259/*
15b44736
HD
2260 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2261 * On return, @list is reused as a list of pages to be freed by the caller.
a222f341
KT
2262 *
2263 * Returns the number of pages moved to the given lruvec.
2264 */
9ef56b78
MS
2265static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2266 struct list_head *list)
66635629 2267{
a222f341 2268 int nr_pages, nr_moved = 0;
3f79768f 2269 LIST_HEAD(pages_to_free);
a222f341 2270 struct page *page;
66635629 2271
a222f341
KT
2272 while (!list_empty(list)) {
2273 page = lru_to_page(list);
309381fe 2274 VM_BUG_ON_PAGE(PageLRU(page), page);
3d06afab 2275 list_del(&page->lru);
39b5f29a 2276 if (unlikely(!page_evictable(page))) {
6168d0da 2277 spin_unlock_irq(&lruvec->lru_lock);
66635629 2278 putback_lru_page(page);
6168d0da 2279 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2280 continue;
2281 }
fa9add64 2282
3d06afab
AS
2283 /*
2284 * The SetPageLRU needs to be kept here for list integrity.
2285 * Otherwise:
2286 * #0 move_pages_to_lru #1 release_pages
2287 * if !put_page_testzero
2288 * if (put_page_testzero())
2289 * !PageLRU //skip lru_lock
2290 * SetPageLRU()
2291 * list_add(&page->lru,)
2292 * list_add(&page->lru,)
2293 */
7a608572 2294 SetPageLRU(page);
a222f341 2295
3d06afab 2296 if (unlikely(put_page_testzero(page))) {
87560179 2297 __clear_page_lru_flags(page);
2bcf8879
HD
2298
2299 if (unlikely(PageCompound(page))) {
6168d0da 2300 spin_unlock_irq(&lruvec->lru_lock);
ff45fc3c 2301 destroy_compound_page(page);
6168d0da 2302 spin_lock_irq(&lruvec->lru_lock);
2bcf8879
HD
2303 } else
2304 list_add(&page->lru, &pages_to_free);
3d06afab
AS
2305
2306 continue;
66635629 2307 }
3d06afab 2308
afca9157
AS
2309 /*
2310 * All pages were isolated from the same lruvec (and isolation
2311 * inhibits memcg migration).
2312 */
0de340cb 2313 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
3a9c9788 2314 add_page_to_lru_list(page, lruvec);
3d06afab 2315 nr_pages = thp_nr_pages(page);
3d06afab
AS
2316 nr_moved += nr_pages;
2317 if (PageActive(page))
2318 workingset_age_nonresident(lruvec, nr_pages);
66635629 2319 }
66635629 2320
3f79768f
HD
2321 /*
2322 * To save our caller's stack, now use input list for pages to free.
2323 */
a222f341
KT
2324 list_splice(&pages_to_free, list);
2325
2326 return nr_moved;
66635629
MG
2327}
2328
399ba0b9 2329/*
5829f7db
ML
2330 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2331 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2332 * we should not throttle. Otherwise it is safe to do so.
399ba0b9
N
2333 */
2334static int current_may_throttle(void)
2335{
b9b1335e 2336 return !(current->flags & PF_LOCAL_THROTTLE);
399ba0b9
N
2337}
2338
1da177e4 2339/*
b2e18757 2340 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2341 * of reclaimed pages
1da177e4 2342 */
9ef56b78 2343static unsigned long
1a93be0e 2344shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2345 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2346{
2347 LIST_HEAD(page_list);
e247dbce 2348 unsigned long nr_scanned;
730ec8c0 2349 unsigned int nr_reclaimed = 0;
e247dbce 2350 unsigned long nr_taken;
060f005f 2351 struct reclaim_stat stat;
497a6c1b 2352 bool file = is_file_lru(lru);
f46b7912 2353 enum vm_event_item item;
599d0c95 2354 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2355 bool stalled = false;
78dc583d 2356
599d0c95 2357 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2358 if (stalled)
2359 return 0;
2360
2361 /* wait a bit for the reclaimer. */
db73ee0d 2362 stalled = true;
c3f4a9a2 2363 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
35cd7815
RR
2364
2365 /* We are about to die and free our memory. Return now. */
2366 if (fatal_signal_pending(current))
2367 return SWAP_CLUSTER_MAX;
2368 }
2369
1da177e4 2370 lru_add_drain();
f80c0673 2371
6168d0da 2372 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2373
5dc35979 2374 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2375 &nr_scanned, sc, lru);
95d918fc 2376
599d0c95 2377 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2378 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2379 if (!cgroup_reclaim(sc))
f46b7912
KT
2380 __count_vm_events(item, nr_scanned);
2381 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2382 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2383
6168d0da 2384 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2385
d563c050 2386 if (nr_taken == 0)
66635629 2387 return 0;
5ad333eb 2388
013339df 2389 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2390
6168d0da 2391 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2392 move_pages_to_lru(lruvec, &page_list);
2393
2394 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2395 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2396 if (!cgroup_reclaim(sc))
f46b7912
KT
2397 __count_vm_events(item, nr_reclaimed);
2398 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2399 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2400 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2401
75cc3c91 2402 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2403 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2404 free_unref_page_list(&page_list);
e11da5b4 2405
1c610d5f
AR
2406 /*
2407 * If dirty pages are scanned that are not queued for IO, it
2408 * implies that flushers are not doing their job. This can
2409 * happen when memory pressure pushes dirty pages to the end of
2410 * the LRU before the dirty limits are breached and the dirty
2411 * data has expired. It can also happen when the proportion of
2412 * dirty pages grows not through writes but through memory
2413 * pressure reclaiming all the clean cache. And in some cases,
2414 * the flushers simply cannot keep up with the allocation
2415 * rate. Nudge the flusher threads in case they are asleep.
2416 */
2417 if (stat.nr_unqueued_dirty == nr_taken)
2418 wakeup_flusher_threads(WB_REASON_VMSCAN);
2419
d108c772
AR
2420 sc->nr.dirty += stat.nr_dirty;
2421 sc->nr.congested += stat.nr_congested;
2422 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2423 sc->nr.writeback += stat.nr_writeback;
2424 sc->nr.immediate += stat.nr_immediate;
2425 sc->nr.taken += nr_taken;
2426 if (file)
2427 sc->nr.file_taken += nr_taken;
8e950282 2428
599d0c95 2429 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2430 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2431 return nr_reclaimed;
1da177e4
LT
2432}
2433
15b44736
HD
2434/*
2435 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2436 *
2437 * We move them the other way if the page is referenced by one or more
2438 * processes.
2439 *
2440 * If the pages are mostly unmapped, the processing is fast and it is
2441 * appropriate to hold lru_lock across the whole operation. But if
b3ac0413 2442 * the pages are mapped, the processing is slow (folio_referenced()), so
15b44736
HD
2443 * we should drop lru_lock around each page. It's impossible to balance
2444 * this, so instead we remove the pages from the LRU while processing them.
2445 * It is safe to rely on PG_active against the non-LRU pages in here because
2446 * nobody will play with that bit on a non-LRU page.
2447 *
2448 * The downside is that we have to touch page->_refcount against each page.
2449 * But we had to alter page->flags anyway.
2450 */
f626012d 2451static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2452 struct lruvec *lruvec,
f16015fb 2453 struct scan_control *sc,
9e3b2f8c 2454 enum lru_list lru)
1da177e4 2455{
44c241f1 2456 unsigned long nr_taken;
f626012d 2457 unsigned long nr_scanned;
6fe6b7e3 2458 unsigned long vm_flags;
1da177e4 2459 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2460 LIST_HEAD(l_active);
b69408e8 2461 LIST_HEAD(l_inactive);
9d998b4f
MH
2462 unsigned nr_deactivate, nr_activate;
2463 unsigned nr_rotated = 0;
3cb99451 2464 int file = is_file_lru(lru);
599d0c95 2465 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2466
2467 lru_add_drain();
f80c0673 2468
6168d0da 2469 spin_lock_irq(&lruvec->lru_lock);
925b7673 2470
5dc35979 2471 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2472 &nr_scanned, sc, lru);
89b5fae5 2473
599d0c95 2474 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2475
912c0572
SB
2476 if (!cgroup_reclaim(sc))
2477 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2478 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2479
6168d0da 2480 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2481
1da177e4 2482 while (!list_empty(&l_hold)) {
b3ac0413
MWO
2483 struct folio *folio;
2484 struct page *page;
2485
1da177e4 2486 cond_resched();
b3ac0413
MWO
2487 folio = lru_to_folio(&l_hold);
2488 list_del(&folio->lru);
2489 page = &folio->page;
7e9cd484 2490
39b5f29a 2491 if (unlikely(!page_evictable(page))) {
894bc310
LS
2492 putback_lru_page(page);
2493 continue;
2494 }
2495
cc715d99
MG
2496 if (unlikely(buffer_heads_over_limit)) {
2497 if (page_has_private(page) && trylock_page(page)) {
2498 if (page_has_private(page))
2499 try_to_release_page(page, 0);
2500 unlock_page(page);
2501 }
2502 }
2503
b3ac0413
MWO
2504 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2505 &vm_flags)) {
8cab4754
WF
2506 /*
2507 * Identify referenced, file-backed active pages and
2508 * give them one more trip around the active list. So
2509 * that executable code get better chances to stay in
2510 * memory under moderate memory pressure. Anon pages
2511 * are not likely to be evicted by use-once streaming
2512 * IO, plus JVM can create lots of anon VM_EXEC pages,
2513 * so we ignore them here.
2514 */
9de4f22a 2515 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2516 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2517 list_add(&page->lru, &l_active);
2518 continue;
2519 }
2520 }
7e9cd484 2521
5205e56e 2522 ClearPageActive(page); /* we are de-activating */
1899ad18 2523 SetPageWorkingset(page);
1da177e4
LT
2524 list_add(&page->lru, &l_inactive);
2525 }
2526
b555749a 2527 /*
8cab4754 2528 * Move pages back to the lru list.
b555749a 2529 */
6168d0da 2530 spin_lock_irq(&lruvec->lru_lock);
556adecb 2531
a222f341
KT
2532 nr_activate = move_pages_to_lru(lruvec, &l_active);
2533 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2534 /* Keep all free pages in l_active list */
2535 list_splice(&l_inactive, &l_active);
9851ac13
KT
2536
2537 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2538 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2539
599d0c95 2540 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2541 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2542
f372d89e
KT
2543 mem_cgroup_uncharge_list(&l_active);
2544 free_unref_page_list(&l_active);
9d998b4f
MH
2545 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2546 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2547}
2548
1fe47c0b
ML
2549static unsigned int reclaim_page_list(struct list_head *page_list,
2550 struct pglist_data *pgdat)
1a4e58cc 2551{
1a4e58cc 2552 struct reclaim_stat dummy_stat;
1fe47c0b
ML
2553 unsigned int nr_reclaimed;
2554 struct folio *folio;
1a4e58cc
MK
2555 struct scan_control sc = {
2556 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2557 .may_writepage = 1,
2558 .may_unmap = 1,
2559 .may_swap = 1,
26aa2d19 2560 .no_demotion = 1,
1a4e58cc
MK
2561 };
2562
1fe47c0b
ML
2563 nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false);
2564 while (!list_empty(page_list)) {
2565 folio = lru_to_folio(page_list);
2566 list_del(&folio->lru);
2567 folio_putback_lru(folio);
2568 }
2569
2570 return nr_reclaimed;
2571}
2572
2573unsigned long reclaim_pages(struct list_head *page_list)
2574{
ed657e55 2575 int nid;
1fe47c0b
ML
2576 unsigned int nr_reclaimed = 0;
2577 LIST_HEAD(node_page_list);
2578 struct page *page;
2579 unsigned int noreclaim_flag;
2580
1ae65e27
WY
2581 if (list_empty(page_list))
2582 return nr_reclaimed;
2583
2d2b8d2b
YZ
2584 noreclaim_flag = memalloc_noreclaim_save();
2585
ed657e55 2586 nid = page_to_nid(lru_to_page(page_list));
1ae65e27 2587 do {
1a4e58cc 2588 page = lru_to_page(page_list);
1a4e58cc
MK
2589
2590 if (nid == page_to_nid(page)) {
2591 ClearPageActive(page);
2592 list_move(&page->lru, &node_page_list);
2593 continue;
2594 }
2595
1fe47c0b 2596 nr_reclaimed += reclaim_page_list(&node_page_list, NODE_DATA(nid));
ed657e55 2597 nid = page_to_nid(lru_to_page(page_list));
1ae65e27 2598 } while (!list_empty(page_list));
1a4e58cc 2599
1ae65e27 2600 nr_reclaimed += reclaim_page_list(&node_page_list, NODE_DATA(nid));
1a4e58cc 2601
2d2b8d2b
YZ
2602 memalloc_noreclaim_restore(noreclaim_flag);
2603
1a4e58cc
MK
2604 return nr_reclaimed;
2605}
2606
b91ac374
JW
2607static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2608 struct lruvec *lruvec, struct scan_control *sc)
2609{
2610 if (is_active_lru(lru)) {
2611 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2612 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2613 else
2614 sc->skipped_deactivate = 1;
2615 return 0;
2616 }
2617
2618 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2619}
2620
59dc76b0
RR
2621/*
2622 * The inactive anon list should be small enough that the VM never has
2623 * to do too much work.
14797e23 2624 *
59dc76b0
RR
2625 * The inactive file list should be small enough to leave most memory
2626 * to the established workingset on the scan-resistant active list,
2627 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2628 *
59dc76b0
RR
2629 * Both inactive lists should also be large enough that each inactive
2630 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2631 *
2a2e4885
JW
2632 * If that fails and refaulting is observed, the inactive list grows.
2633 *
59dc76b0 2634 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2635 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2636 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2637 *
59dc76b0
RR
2638 * total target max
2639 * memory ratio inactive
2640 * -------------------------------------
2641 * 10MB 1 5MB
2642 * 100MB 1 50MB
2643 * 1GB 3 250MB
2644 * 10GB 10 0.9GB
2645 * 100GB 31 3GB
2646 * 1TB 101 10GB
2647 * 10TB 320 32GB
56e49d21 2648 */
b91ac374 2649static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2650{
b91ac374 2651 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2652 unsigned long inactive, active;
2653 unsigned long inactive_ratio;
59dc76b0 2654 unsigned long gb;
e3790144 2655
b91ac374
JW
2656 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2657 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2658
b91ac374 2659 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2660 if (gb)
b91ac374
JW
2661 inactive_ratio = int_sqrt(10 * gb);
2662 else
2663 inactive_ratio = 1;
fd538803 2664
59dc76b0 2665 return inactive * inactive_ratio < active;
b39415b2
RR
2666}
2667
9a265114
JW
2668enum scan_balance {
2669 SCAN_EQUAL,
2670 SCAN_FRACT,
2671 SCAN_ANON,
2672 SCAN_FILE,
2673};
2674
4f98a2fe
RR
2675/*
2676 * Determine how aggressively the anon and file LRU lists should be
02e458d8 2677 * scanned.
4f98a2fe 2678 *
be7bd59d
WL
2679 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2680 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2681 */
afaf07a6
JW
2682static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2683 unsigned long *nr)
4f98a2fe 2684{
a2a36488 2685 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2686 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2687 unsigned long anon_cost, file_cost, total_cost;
33377678 2688 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2689 u64 fraction[ANON_AND_FILE];
9a265114 2690 u64 denominator = 0; /* gcc */
9a265114 2691 enum scan_balance scan_balance;
4f98a2fe 2692 unsigned long ap, fp;
4111304d 2693 enum lru_list lru;
76a33fc3
SL
2694
2695 /* If we have no swap space, do not bother scanning anon pages. */
a2a36488 2696 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2697 scan_balance = SCAN_FILE;
76a33fc3
SL
2698 goto out;
2699 }
4f98a2fe 2700
10316b31
JW
2701 /*
2702 * Global reclaim will swap to prevent OOM even with no
2703 * swappiness, but memcg users want to use this knob to
2704 * disable swapping for individual groups completely when
2705 * using the memory controller's swap limit feature would be
2706 * too expensive.
2707 */
b5ead35e 2708 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2709 scan_balance = SCAN_FILE;
10316b31
JW
2710 goto out;
2711 }
2712
2713 /*
2714 * Do not apply any pressure balancing cleverness when the
2715 * system is close to OOM, scan both anon and file equally
2716 * (unless the swappiness setting disagrees with swapping).
2717 */
02695175 2718 if (!sc->priority && swappiness) {
9a265114 2719 scan_balance = SCAN_EQUAL;
10316b31
JW
2720 goto out;
2721 }
2722
62376251 2723 /*
53138cea 2724 * If the system is almost out of file pages, force-scan anon.
62376251 2725 */
b91ac374 2726 if (sc->file_is_tiny) {
53138cea
JW
2727 scan_balance = SCAN_ANON;
2728 goto out;
62376251
JW
2729 }
2730
7c5bd705 2731 /*
b91ac374
JW
2732 * If there is enough inactive page cache, we do not reclaim
2733 * anything from the anonymous working right now.
7c5bd705 2734 */
b91ac374 2735 if (sc->cache_trim_mode) {
9a265114 2736 scan_balance = SCAN_FILE;
7c5bd705
JW
2737 goto out;
2738 }
2739
9a265114 2740 scan_balance = SCAN_FRACT;
58c37f6e 2741 /*
314b57fb
JW
2742 * Calculate the pressure balance between anon and file pages.
2743 *
2744 * The amount of pressure we put on each LRU is inversely
2745 * proportional to the cost of reclaiming each list, as
2746 * determined by the share of pages that are refaulting, times
2747 * the relative IO cost of bringing back a swapped out
2748 * anonymous page vs reloading a filesystem page (swappiness).
2749 *
d483a5dd
JW
2750 * Although we limit that influence to ensure no list gets
2751 * left behind completely: at least a third of the pressure is
2752 * applied, before swappiness.
2753 *
314b57fb 2754 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2755 */
d483a5dd
JW
2756 total_cost = sc->anon_cost + sc->file_cost;
2757 anon_cost = total_cost + sc->anon_cost;
2758 file_cost = total_cost + sc->file_cost;
2759 total_cost = anon_cost + file_cost;
58c37f6e 2760
d483a5dd
JW
2761 ap = swappiness * (total_cost + 1);
2762 ap /= anon_cost + 1;
4f98a2fe 2763
d483a5dd
JW
2764 fp = (200 - swappiness) * (total_cost + 1);
2765 fp /= file_cost + 1;
4f98a2fe 2766
76a33fc3
SL
2767 fraction[0] = ap;
2768 fraction[1] = fp;
a4fe1631 2769 denominator = ap + fp;
76a33fc3 2770out:
688035f7
JW
2771 for_each_evictable_lru(lru) {
2772 int file = is_file_lru(lru);
9783aa99 2773 unsigned long lruvec_size;
f56ce412 2774 unsigned long low, min;
688035f7 2775 unsigned long scan;
9783aa99
CD
2776
2777 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2778 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2779 &min, &low);
9783aa99 2780
f56ce412 2781 if (min || low) {
9783aa99
CD
2782 /*
2783 * Scale a cgroup's reclaim pressure by proportioning
2784 * its current usage to its memory.low or memory.min
2785 * setting.
2786 *
2787 * This is important, as otherwise scanning aggression
2788 * becomes extremely binary -- from nothing as we
2789 * approach the memory protection threshold, to totally
2790 * nominal as we exceed it. This results in requiring
2791 * setting extremely liberal protection thresholds. It
2792 * also means we simply get no protection at all if we
2793 * set it too low, which is not ideal.
1bc63fb1
CD
2794 *
2795 * If there is any protection in place, we reduce scan
2796 * pressure by how much of the total memory used is
2797 * within protection thresholds.
9783aa99 2798 *
9de7ca46
CD
2799 * There is one special case: in the first reclaim pass,
2800 * we skip over all groups that are within their low
2801 * protection. If that fails to reclaim enough pages to
2802 * satisfy the reclaim goal, we come back and override
2803 * the best-effort low protection. However, we still
2804 * ideally want to honor how well-behaved groups are in
2805 * that case instead of simply punishing them all
2806 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2807 * memory they are using, reducing the scan pressure
2808 * again by how much of the total memory used is under
2809 * hard protection.
9783aa99 2810 */
1bc63fb1 2811 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
2812 unsigned long protection;
2813
2814 /* memory.low scaling, make sure we retry before OOM */
2815 if (!sc->memcg_low_reclaim && low > min) {
2816 protection = low;
2817 sc->memcg_low_skipped = 1;
2818 } else {
2819 protection = min;
2820 }
1bc63fb1
CD
2821
2822 /* Avoid TOCTOU with earlier protection check */
2823 cgroup_size = max(cgroup_size, protection);
2824
2825 scan = lruvec_size - lruvec_size * protection /
32d4f4b7 2826 (cgroup_size + 1);
9783aa99
CD
2827
2828 /*
1bc63fb1 2829 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2830 * reclaim moving forwards, avoiding decrementing
9de7ca46 2831 * sc->priority further than desirable.
9783aa99 2832 */
1bc63fb1 2833 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2834 } else {
2835 scan = lruvec_size;
2836 }
2837
2838 scan >>= sc->priority;
6b4f7799 2839
688035f7
JW
2840 /*
2841 * If the cgroup's already been deleted, make sure to
2842 * scrape out the remaining cache.
2843 */
2844 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2845 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2846
688035f7
JW
2847 switch (scan_balance) {
2848 case SCAN_EQUAL:
2849 /* Scan lists relative to size */
2850 break;
2851 case SCAN_FRACT:
9a265114 2852 /*
688035f7
JW
2853 * Scan types proportional to swappiness and
2854 * their relative recent reclaim efficiency.
76073c64
GS
2855 * Make sure we don't miss the last page on
2856 * the offlined memory cgroups because of a
2857 * round-off error.
9a265114 2858 */
76073c64
GS
2859 scan = mem_cgroup_online(memcg) ?
2860 div64_u64(scan * fraction[file], denominator) :
2861 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2862 denominator);
688035f7
JW
2863 break;
2864 case SCAN_FILE:
2865 case SCAN_ANON:
2866 /* Scan one type exclusively */
e072bff6 2867 if ((scan_balance == SCAN_FILE) != file)
688035f7 2868 scan = 0;
688035f7
JW
2869 break;
2870 default:
2871 /* Look ma, no brain */
2872 BUG();
9a265114 2873 }
688035f7 2874
688035f7 2875 nr[lru] = scan;
76a33fc3 2876 }
6e08a369 2877}
4f98a2fe 2878
2f368a9f
DH
2879/*
2880 * Anonymous LRU management is a waste if there is
2881 * ultimately no way to reclaim the memory.
2882 */
2883static bool can_age_anon_pages(struct pglist_data *pgdat,
2884 struct scan_control *sc)
2885{
2886 /* Aging the anon LRU is valuable if swap is present: */
2887 if (total_swap_pages > 0)
2888 return true;
2889
2890 /* Also valuable if anon pages can be demoted: */
2891 return can_demote(pgdat->node_id, sc);
2892}
2893
afaf07a6 2894static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2895{
2896 unsigned long nr[NR_LRU_LISTS];
e82e0561 2897 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2898 unsigned long nr_to_scan;
2899 enum lru_list lru;
2900 unsigned long nr_reclaimed = 0;
2901 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2902 struct blk_plug plug;
1a501907 2903 bool scan_adjusted;
9b4f98cd 2904
afaf07a6 2905 get_scan_count(lruvec, sc, nr);
9b4f98cd 2906
e82e0561
MG
2907 /* Record the original scan target for proportional adjustments later */
2908 memcpy(targets, nr, sizeof(nr));
2909
1a501907
MG
2910 /*
2911 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2912 * event that can occur when there is little memory pressure e.g.
2913 * multiple streaming readers/writers. Hence, we do not abort scanning
2914 * when the requested number of pages are reclaimed when scanning at
2915 * DEF_PRIORITY on the assumption that the fact we are direct
2916 * reclaiming implies that kswapd is not keeping up and it is best to
2917 * do a batch of work at once. For memcg reclaim one check is made to
2918 * abort proportional reclaim if either the file or anon lru has already
2919 * dropped to zero at the first pass.
2920 */
b5ead35e 2921 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2922 sc->priority == DEF_PRIORITY);
2923
9b4f98cd
JW
2924 blk_start_plug(&plug);
2925 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2926 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2927 unsigned long nr_anon, nr_file, percentage;
2928 unsigned long nr_scanned;
2929
9b4f98cd
JW
2930 for_each_evictable_lru(lru) {
2931 if (nr[lru]) {
2932 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2933 nr[lru] -= nr_to_scan;
2934
2935 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2936 lruvec, sc);
9b4f98cd
JW
2937 }
2938 }
e82e0561 2939
bd041733
MH
2940 cond_resched();
2941
e82e0561
MG
2942 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2943 continue;
2944
e82e0561
MG
2945 /*
2946 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2947 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2948 * proportionally what was requested by get_scan_count(). We
2949 * stop reclaiming one LRU and reduce the amount scanning
2950 * proportional to the original scan target.
2951 */
2952 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2953 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2954
1a501907
MG
2955 /*
2956 * It's just vindictive to attack the larger once the smaller
2957 * has gone to zero. And given the way we stop scanning the
2958 * smaller below, this makes sure that we only make one nudge
2959 * towards proportionality once we've got nr_to_reclaim.
2960 */
2961 if (!nr_file || !nr_anon)
2962 break;
2963
e82e0561
MG
2964 if (nr_file > nr_anon) {
2965 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2966 targets[LRU_ACTIVE_ANON] + 1;
2967 lru = LRU_BASE;
2968 percentage = nr_anon * 100 / scan_target;
2969 } else {
2970 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2971 targets[LRU_ACTIVE_FILE] + 1;
2972 lru = LRU_FILE;
2973 percentage = nr_file * 100 / scan_target;
2974 }
2975
2976 /* Stop scanning the smaller of the LRU */
2977 nr[lru] = 0;
2978 nr[lru + LRU_ACTIVE] = 0;
2979
2980 /*
2981 * Recalculate the other LRU scan count based on its original
2982 * scan target and the percentage scanning already complete
2983 */
2984 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2985 nr_scanned = targets[lru] - nr[lru];
2986 nr[lru] = targets[lru] * (100 - percentage) / 100;
2987 nr[lru] -= min(nr[lru], nr_scanned);
2988
2989 lru += LRU_ACTIVE;
2990 nr_scanned = targets[lru] - nr[lru];
2991 nr[lru] = targets[lru] * (100 - percentage) / 100;
2992 nr[lru] -= min(nr[lru], nr_scanned);
2993
2994 scan_adjusted = true;
9b4f98cd
JW
2995 }
2996 blk_finish_plug(&plug);
2997 sc->nr_reclaimed += nr_reclaimed;
2998
2999 /*
3000 * Even if we did not try to evict anon pages at all, we want to
3001 * rebalance the anon lru active/inactive ratio.
3002 */
2f368a9f
DH
3003 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3004 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
3005 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3006 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
3007}
3008
23b9da55 3009/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 3010static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 3011{
d84da3f9 3012 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 3013 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 3014 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
3015 return true;
3016
3017 return false;
3018}
3019
3e7d3449 3020/*
23b9da55
MG
3021 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3022 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3023 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 3024 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 3025 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 3026 */
a9dd0a83 3027static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 3028 unsigned long nr_reclaimed,
3e7d3449
MG
3029 struct scan_control *sc)
3030{
3031 unsigned long pages_for_compaction;
3032 unsigned long inactive_lru_pages;
a9dd0a83 3033 int z;
3e7d3449
MG
3034
3035 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 3036 if (!in_reclaim_compaction(sc))
3e7d3449
MG
3037 return false;
3038
5ee04716
VB
3039 /*
3040 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3041 * number of pages that were scanned. This will return to the caller
3042 * with the risk reclaim/compaction and the resulting allocation attempt
3043 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3044 * allocations through requiring that the full LRU list has been scanned
3045 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3046 * scan, but that approximation was wrong, and there were corner cases
3047 * where always a non-zero amount of pages were scanned.
3048 */
3049 if (!nr_reclaimed)
3050 return false;
3e7d3449 3051
3e7d3449 3052 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
3053 for (z = 0; z <= sc->reclaim_idx; z++) {
3054 struct zone *zone = &pgdat->node_zones[z];
6aa303de 3055 if (!managed_zone(zone))
a9dd0a83
MG
3056 continue;
3057
3058 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 3059 case COMPACT_SUCCESS:
a9dd0a83
MG
3060 case COMPACT_CONTINUE:
3061 return false;
3062 default:
3063 /* check next zone */
3064 ;
3065 }
3e7d3449 3066 }
1c6c1597
HD
3067
3068 /*
3069 * If we have not reclaimed enough pages for compaction and the
3070 * inactive lists are large enough, continue reclaiming
3071 */
3072 pages_for_compaction = compact_gap(sc->order);
3073 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 3074 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
3075 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3076
5ee04716 3077 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
3078}
3079
0f6a5cff 3080static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 3081{
0f6a5cff 3082 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 3083 struct mem_cgroup *memcg;
1da177e4 3084
0f6a5cff 3085 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 3086 do {
afaf07a6 3087 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
3088 unsigned long reclaimed;
3089 unsigned long scanned;
5660048c 3090
e3336cab
XP
3091 /*
3092 * This loop can become CPU-bound when target memcgs
3093 * aren't eligible for reclaim - either because they
3094 * don't have any reclaimable pages, or because their
3095 * memory is explicitly protected. Avoid soft lockups.
3096 */
3097 cond_resched();
3098
45c7f7e1
CD
3099 mem_cgroup_calculate_protection(target_memcg, memcg);
3100
3101 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
3102 /*
3103 * Hard protection.
3104 * If there is no reclaimable memory, OOM.
3105 */
3106 continue;
45c7f7e1 3107 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
3108 /*
3109 * Soft protection.
3110 * Respect the protection only as long as
3111 * there is an unprotected supply
3112 * of reclaimable memory from other cgroups.
3113 */
3114 if (!sc->memcg_low_reclaim) {
3115 sc->memcg_low_skipped = 1;
bf8d5d52 3116 continue;
241994ed 3117 }
d2af3397 3118 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 3119 }
241994ed 3120
d2af3397
JW
3121 reclaimed = sc->nr_reclaimed;
3122 scanned = sc->nr_scanned;
afaf07a6
JW
3123
3124 shrink_lruvec(lruvec, sc);
70ddf637 3125
d2af3397
JW
3126 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3127 sc->priority);
6b4f7799 3128
d2af3397
JW
3129 /* Record the group's reclaim efficiency */
3130 vmpressure(sc->gfp_mask, memcg, false,
3131 sc->nr_scanned - scanned,
3132 sc->nr_reclaimed - reclaimed);
70ddf637 3133
0f6a5cff
JW
3134 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3135}
3136
6c9e0907 3137static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
3138{
3139 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 3140 unsigned long nr_reclaimed, nr_scanned;
1b05117d 3141 struct lruvec *target_lruvec;
0f6a5cff 3142 bool reclaimable = false;
b91ac374 3143 unsigned long file;
0f6a5cff 3144
1b05117d
JW
3145 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3146
0f6a5cff 3147again:
aa48e47e
SB
3148 /*
3149 * Flush the memory cgroup stats, so that we read accurate per-memcg
3150 * lruvec stats for heuristics.
3151 */
3152 mem_cgroup_flush_stats();
3153
0f6a5cff
JW
3154 memset(&sc->nr, 0, sizeof(sc->nr));
3155
3156 nr_reclaimed = sc->nr_reclaimed;
3157 nr_scanned = sc->nr_scanned;
3158
7cf111bc
JW
3159 /*
3160 * Determine the scan balance between anon and file LRUs.
3161 */
6168d0da 3162 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
3163 sc->anon_cost = target_lruvec->anon_cost;
3164 sc->file_cost = target_lruvec->file_cost;
6168d0da 3165 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 3166
b91ac374
JW
3167 /*
3168 * Target desirable inactive:active list ratios for the anon
3169 * and file LRU lists.
3170 */
3171 if (!sc->force_deactivate) {
3172 unsigned long refaults;
3173
170b04b7
JK
3174 refaults = lruvec_page_state(target_lruvec,
3175 WORKINGSET_ACTIVATE_ANON);
3176 if (refaults != target_lruvec->refaults[0] ||
3177 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
3178 sc->may_deactivate |= DEACTIVATE_ANON;
3179 else
3180 sc->may_deactivate &= ~DEACTIVATE_ANON;
3181
3182 /*
3183 * When refaults are being observed, it means a new
3184 * workingset is being established. Deactivate to get
3185 * rid of any stale active pages quickly.
3186 */
3187 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
3188 WORKINGSET_ACTIVATE_FILE);
3189 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
3190 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3191 sc->may_deactivate |= DEACTIVATE_FILE;
3192 else
3193 sc->may_deactivate &= ~DEACTIVATE_FILE;
3194 } else
3195 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3196
3197 /*
3198 * If we have plenty of inactive file pages that aren't
3199 * thrashing, try to reclaim those first before touching
3200 * anonymous pages.
3201 */
3202 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3203 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3204 sc->cache_trim_mode = 1;
3205 else
3206 sc->cache_trim_mode = 0;
3207
53138cea
JW
3208 /*
3209 * Prevent the reclaimer from falling into the cache trap: as
3210 * cache pages start out inactive, every cache fault will tip
3211 * the scan balance towards the file LRU. And as the file LRU
3212 * shrinks, so does the window for rotation from references.
3213 * This means we have a runaway feedback loop where a tiny
3214 * thrashing file LRU becomes infinitely more attractive than
3215 * anon pages. Try to detect this based on file LRU size.
3216 */
3217 if (!cgroup_reclaim(sc)) {
53138cea 3218 unsigned long total_high_wmark = 0;
b91ac374
JW
3219 unsigned long free, anon;
3220 int z;
53138cea
JW
3221
3222 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3223 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3224 node_page_state(pgdat, NR_INACTIVE_FILE);
3225
3226 for (z = 0; z < MAX_NR_ZONES; z++) {
3227 struct zone *zone = &pgdat->node_zones[z];
3228 if (!managed_zone(zone))
3229 continue;
3230
3231 total_high_wmark += high_wmark_pages(zone);
3232 }
3233
b91ac374
JW
3234 /*
3235 * Consider anon: if that's low too, this isn't a
3236 * runaway file reclaim problem, but rather just
3237 * extreme pressure. Reclaim as per usual then.
3238 */
3239 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3240
3241 sc->file_is_tiny =
3242 file + free <= total_high_wmark &&
3243 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3244 anon >> sc->priority;
53138cea
JW
3245 }
3246
0f6a5cff 3247 shrink_node_memcgs(pgdat, sc);
2344d7e4 3248
d2af3397
JW
3249 if (reclaim_state) {
3250 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3251 reclaim_state->reclaimed_slab = 0;
3252 }
d108c772 3253
d2af3397 3254 /* Record the subtree's reclaim efficiency */
1b05117d 3255 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
3256 sc->nr_scanned - nr_scanned,
3257 sc->nr_reclaimed - nr_reclaimed);
d108c772 3258
d2af3397
JW
3259 if (sc->nr_reclaimed - nr_reclaimed)
3260 reclaimable = true;
d108c772 3261
d2af3397
JW
3262 if (current_is_kswapd()) {
3263 /*
3264 * If reclaim is isolating dirty pages under writeback,
3265 * it implies that the long-lived page allocation rate
3266 * is exceeding the page laundering rate. Either the
3267 * global limits are not being effective at throttling
3268 * processes due to the page distribution throughout
3269 * zones or there is heavy usage of a slow backing
3270 * device. The only option is to throttle from reclaim
3271 * context which is not ideal as there is no guarantee
3272 * the dirtying process is throttled in the same way
3273 * balance_dirty_pages() manages.
3274 *
3275 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3276 * count the number of pages under pages flagged for
3277 * immediate reclaim and stall if any are encountered
3278 * in the nr_immediate check below.
3279 */
3280 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3281 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 3282
d2af3397
JW
3283 /* Allow kswapd to start writing pages during reclaim.*/
3284 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3285 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 3286
d108c772 3287 /*
1eba09c1 3288 * If kswapd scans pages marked for immediate
d2af3397
JW
3289 * reclaim and under writeback (nr_immediate), it
3290 * implies that pages are cycling through the LRU
8cd7c588
MG
3291 * faster than they are written so forcibly stall
3292 * until some pages complete writeback.
d108c772 3293 */
d2af3397 3294 if (sc->nr.immediate)
c3f4a9a2 3295 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d2af3397
JW
3296 }
3297
3298 /*
8cd7c588
MG
3299 * Tag a node/memcg as congested if all the dirty pages were marked
3300 * for writeback and immediate reclaim (counted in nr.congested).
1b05117d 3301 *
d2af3397 3302 * Legacy memcg will stall in page writeback so avoid forcibly
8cd7c588 3303 * stalling in reclaim_throttle().
d2af3397 3304 */
1b05117d
JW
3305 if ((current_is_kswapd() ||
3306 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 3307 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 3308 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
3309
3310 /*
8cd7c588
MG
3311 * Stall direct reclaim for IO completions if the lruvec is
3312 * node is congested. Allow kswapd to continue until it
d2af3397
JW
3313 * starts encountering unqueued dirty pages or cycling through
3314 * the LRU too quickly.
3315 */
1b05117d
JW
3316 if (!current_is_kswapd() && current_may_throttle() &&
3317 !sc->hibernation_mode &&
3318 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
1b4e3f26 3319 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
d108c772 3320
d2af3397
JW
3321 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3322 sc))
3323 goto again;
2344d7e4 3324
c73322d0
JW
3325 /*
3326 * Kswapd gives up on balancing particular nodes after too
3327 * many failures to reclaim anything from them and goes to
3328 * sleep. On reclaim progress, reset the failure counter. A
3329 * successful direct reclaim run will revive a dormant kswapd.
3330 */
3331 if (reclaimable)
3332 pgdat->kswapd_failures = 0;
f16015fb
JW
3333}
3334
53853e2d 3335/*
fdd4c614
VB
3336 * Returns true if compaction should go ahead for a costly-order request, or
3337 * the allocation would already succeed without compaction. Return false if we
3338 * should reclaim first.
53853e2d 3339 */
4f588331 3340static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 3341{
31483b6a 3342 unsigned long watermark;
fdd4c614 3343 enum compact_result suitable;
fe4b1b24 3344
fdd4c614
VB
3345 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3346 if (suitable == COMPACT_SUCCESS)
3347 /* Allocation should succeed already. Don't reclaim. */
3348 return true;
3349 if (suitable == COMPACT_SKIPPED)
3350 /* Compaction cannot yet proceed. Do reclaim. */
3351 return false;
fe4b1b24 3352
53853e2d 3353 /*
fdd4c614
VB
3354 * Compaction is already possible, but it takes time to run and there
3355 * are potentially other callers using the pages just freed. So proceed
3356 * with reclaim to make a buffer of free pages available to give
3357 * compaction a reasonable chance of completing and allocating the page.
3358 * Note that we won't actually reclaim the whole buffer in one attempt
3359 * as the target watermark in should_continue_reclaim() is lower. But if
3360 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 3361 */
fdd4c614 3362 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 3363
fdd4c614 3364 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
3365}
3366
69392a40
MG
3367static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3368{
66ce520b
MG
3369 /*
3370 * If reclaim is making progress greater than 12% efficiency then
3371 * wake all the NOPROGRESS throttled tasks.
3372 */
3373 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
69392a40
MG
3374 wait_queue_head_t *wqh;
3375
3376 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3377 if (waitqueue_active(wqh))
3378 wake_up(wqh);
3379
3380 return;
3381 }
3382
3383 /*
1b4e3f26
MG
3384 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3385 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3386 * under writeback and marked for immediate reclaim at the tail of the
3387 * LRU.
69392a40 3388 */
1b4e3f26 3389 if (current_is_kswapd() || cgroup_reclaim(sc))
69392a40
MG
3390 return;
3391
3392 /* Throttle if making no progress at high prioities. */
1b4e3f26 3393 if (sc->priority == 1 && !sc->nr_reclaimed)
c3f4a9a2 3394 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
69392a40
MG
3395}
3396
1da177e4
LT
3397/*
3398 * This is the direct reclaim path, for page-allocating processes. We only
3399 * try to reclaim pages from zones which will satisfy the caller's allocation
3400 * request.
3401 *
1da177e4
LT
3402 * If a zone is deemed to be full of pinned pages then just give it a light
3403 * scan then give up on it.
3404 */
0a0337e0 3405static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 3406{
dd1a239f 3407 struct zoneref *z;
54a6eb5c 3408 struct zone *zone;
0608f43d
AM
3409 unsigned long nr_soft_reclaimed;
3410 unsigned long nr_soft_scanned;
619d0d76 3411 gfp_t orig_mask;
79dafcdc 3412 pg_data_t *last_pgdat = NULL;
1b4e3f26 3413 pg_data_t *first_pgdat = NULL;
1cfb419b 3414
cc715d99
MG
3415 /*
3416 * If the number of buffer_heads in the machine exceeds the maximum
3417 * allowed level, force direct reclaim to scan the highmem zone as
3418 * highmem pages could be pinning lowmem pages storing buffer_heads
3419 */
619d0d76 3420 orig_mask = sc->gfp_mask;
b2e18757 3421 if (buffer_heads_over_limit) {
cc715d99 3422 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 3423 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 3424 }
cc715d99 3425
d4debc66 3426 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 3427 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
3428 /*
3429 * Take care memory controller reclaiming has small influence
3430 * to global LRU.
3431 */
b5ead35e 3432 if (!cgroup_reclaim(sc)) {
344736f2
VD
3433 if (!cpuset_zone_allowed(zone,
3434 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3435 continue;
65ec02cb 3436
0b06496a
JW
3437 /*
3438 * If we already have plenty of memory free for
3439 * compaction in this zone, don't free any more.
3440 * Even though compaction is invoked for any
3441 * non-zero order, only frequent costly order
3442 * reclamation is disruptive enough to become a
3443 * noticeable problem, like transparent huge
3444 * page allocations.
3445 */
3446 if (IS_ENABLED(CONFIG_COMPACTION) &&
3447 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3448 compaction_ready(zone, sc)) {
0b06496a
JW
3449 sc->compaction_ready = true;
3450 continue;
e0887c19 3451 }
0b06496a 3452
79dafcdc
MG
3453 /*
3454 * Shrink each node in the zonelist once. If the
3455 * zonelist is ordered by zone (not the default) then a
3456 * node may be shrunk multiple times but in that case
3457 * the user prefers lower zones being preserved.
3458 */
3459 if (zone->zone_pgdat == last_pgdat)
3460 continue;
3461
0608f43d
AM
3462 /*
3463 * This steals pages from memory cgroups over softlimit
3464 * and returns the number of reclaimed pages and
3465 * scanned pages. This works for global memory pressure
3466 * and balancing, not for a memcg's limit.
3467 */
3468 nr_soft_scanned = 0;
ef8f2327 3469 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3470 sc->order, sc->gfp_mask,
3471 &nr_soft_scanned);
3472 sc->nr_reclaimed += nr_soft_reclaimed;
3473 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3474 /* need some check for avoid more shrink_zone() */
1cfb419b 3475 }
408d8544 3476
1b4e3f26
MG
3477 if (!first_pgdat)
3478 first_pgdat = zone->zone_pgdat;
3479
79dafcdc
MG
3480 /* See comment about same check for global reclaim above */
3481 if (zone->zone_pgdat == last_pgdat)
3482 continue;
3483 last_pgdat = zone->zone_pgdat;
970a39a3 3484 shrink_node(zone->zone_pgdat, sc);
1da177e4 3485 }
e0c23279 3486
80082938
MG
3487 if (first_pgdat)
3488 consider_reclaim_throttle(first_pgdat, sc);
1b4e3f26 3489
619d0d76
WY
3490 /*
3491 * Restore to original mask to avoid the impact on the caller if we
3492 * promoted it to __GFP_HIGHMEM.
3493 */
3494 sc->gfp_mask = orig_mask;
1da177e4 3495}
4f98a2fe 3496
b910718a 3497static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3498{
b910718a
JW
3499 struct lruvec *target_lruvec;
3500 unsigned long refaults;
2a2e4885 3501
b910718a 3502 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
3503 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3504 target_lruvec->refaults[0] = refaults;
3505 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3506 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
3507}
3508
1da177e4
LT
3509/*
3510 * This is the main entry point to direct page reclaim.
3511 *
3512 * If a full scan of the inactive list fails to free enough memory then we
3513 * are "out of memory" and something needs to be killed.
3514 *
3515 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3516 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3517 * caller can't do much about. We kick the writeback threads and take explicit
3518 * naps in the hope that some of these pages can be written. But if the
3519 * allocating task holds filesystem locks which prevent writeout this might not
3520 * work, and the allocation attempt will fail.
a41f24ea
NA
3521 *
3522 * returns: 0, if no pages reclaimed
3523 * else, the number of pages reclaimed
1da177e4 3524 */
dac1d27b 3525static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3526 struct scan_control *sc)
1da177e4 3527{
241994ed 3528 int initial_priority = sc->priority;
2a2e4885
JW
3529 pg_data_t *last_pgdat;
3530 struct zoneref *z;
3531 struct zone *zone;
241994ed 3532retry:
873b4771
KK
3533 delayacct_freepages_start();
3534
b5ead35e 3535 if (!cgroup_reclaim(sc))
7cc30fcf 3536 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3537
9e3b2f8c 3538 do {
70ddf637
AV
3539 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3540 sc->priority);
66e1707b 3541 sc->nr_scanned = 0;
0a0337e0 3542 shrink_zones(zonelist, sc);
c6a8a8c5 3543
bb21c7ce 3544 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3545 break;
3546
3547 if (sc->compaction_ready)
3548 break;
1da177e4 3549
0e50ce3b
MK
3550 /*
3551 * If we're getting trouble reclaiming, start doing
3552 * writepage even in laptop mode.
3553 */
3554 if (sc->priority < DEF_PRIORITY - 2)
3555 sc->may_writepage = 1;
0b06496a 3556 } while (--sc->priority >= 0);
bb21c7ce 3557
2a2e4885
JW
3558 last_pgdat = NULL;
3559 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3560 sc->nodemask) {
3561 if (zone->zone_pgdat == last_pgdat)
3562 continue;
3563 last_pgdat = zone->zone_pgdat;
1b05117d 3564
2a2e4885 3565 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3566
3567 if (cgroup_reclaim(sc)) {
3568 struct lruvec *lruvec;
3569
3570 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3571 zone->zone_pgdat);
3572 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3573 }
2a2e4885
JW
3574 }
3575
873b4771
KK
3576 delayacct_freepages_end();
3577
bb21c7ce
KM
3578 if (sc->nr_reclaimed)
3579 return sc->nr_reclaimed;
3580
0cee34fd 3581 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3582 if (sc->compaction_ready)
7335084d
MG
3583 return 1;
3584
b91ac374
JW
3585 /*
3586 * We make inactive:active ratio decisions based on the node's
3587 * composition of memory, but a restrictive reclaim_idx or a
3588 * memory.low cgroup setting can exempt large amounts of
3589 * memory from reclaim. Neither of which are very common, so
3590 * instead of doing costly eligibility calculations of the
3591 * entire cgroup subtree up front, we assume the estimates are
3592 * good, and retry with forcible deactivation if that fails.
3593 */
3594 if (sc->skipped_deactivate) {
3595 sc->priority = initial_priority;
3596 sc->force_deactivate = 1;
3597 sc->skipped_deactivate = 0;
3598 goto retry;
3599 }
3600
241994ed 3601 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3602 if (sc->memcg_low_skipped) {
241994ed 3603 sc->priority = initial_priority;
b91ac374 3604 sc->force_deactivate = 0;
d6622f63
YX
3605 sc->memcg_low_reclaim = 1;
3606 sc->memcg_low_skipped = 0;
241994ed
JW
3607 goto retry;
3608 }
3609
bb21c7ce 3610 return 0;
1da177e4
LT
3611}
3612
c73322d0 3613static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3614{
3615 struct zone *zone;
3616 unsigned long pfmemalloc_reserve = 0;
3617 unsigned long free_pages = 0;
3618 int i;
3619 bool wmark_ok;
3620
c73322d0
JW
3621 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3622 return true;
3623
5515061d
MG
3624 for (i = 0; i <= ZONE_NORMAL; i++) {
3625 zone = &pgdat->node_zones[i];
d450abd8
JW
3626 if (!managed_zone(zone))
3627 continue;
3628
3629 if (!zone_reclaimable_pages(zone))
675becce
MG
3630 continue;
3631
5515061d
MG
3632 pfmemalloc_reserve += min_wmark_pages(zone);
3633 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3634 }
3635
675becce
MG
3636 /* If there are no reserves (unexpected config) then do not throttle */
3637 if (!pfmemalloc_reserve)
3638 return true;
3639
5515061d
MG
3640 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3641
3642 /* kswapd must be awake if processes are being throttled */
3643 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3644 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3645 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3646
5515061d
MG
3647 wake_up_interruptible(&pgdat->kswapd_wait);
3648 }
3649
3650 return wmark_ok;
3651}
3652
3653/*
3654 * Throttle direct reclaimers if backing storage is backed by the network
3655 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3656 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3657 * when the low watermark is reached.
3658 *
3659 * Returns true if a fatal signal was delivered during throttling. If this
3660 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3661 */
50694c28 3662static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3663 nodemask_t *nodemask)
3664{
675becce 3665 struct zoneref *z;
5515061d 3666 struct zone *zone;
675becce 3667 pg_data_t *pgdat = NULL;
5515061d
MG
3668
3669 /*
3670 * Kernel threads should not be throttled as they may be indirectly
3671 * responsible for cleaning pages necessary for reclaim to make forward
3672 * progress. kjournald for example may enter direct reclaim while
3673 * committing a transaction where throttling it could forcing other
3674 * processes to block on log_wait_commit().
3675 */
3676 if (current->flags & PF_KTHREAD)
50694c28
MG
3677 goto out;
3678
3679 /*
3680 * If a fatal signal is pending, this process should not throttle.
3681 * It should return quickly so it can exit and free its memory
3682 */
3683 if (fatal_signal_pending(current))
3684 goto out;
5515061d 3685
675becce
MG
3686 /*
3687 * Check if the pfmemalloc reserves are ok by finding the first node
3688 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3689 * GFP_KERNEL will be required for allocating network buffers when
3690 * swapping over the network so ZONE_HIGHMEM is unusable.
3691 *
3692 * Throttling is based on the first usable node and throttled processes
3693 * wait on a queue until kswapd makes progress and wakes them. There
3694 * is an affinity then between processes waking up and where reclaim
3695 * progress has been made assuming the process wakes on the same node.
3696 * More importantly, processes running on remote nodes will not compete
3697 * for remote pfmemalloc reserves and processes on different nodes
3698 * should make reasonable progress.
3699 */
3700 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3701 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3702 if (zone_idx(zone) > ZONE_NORMAL)
3703 continue;
3704
3705 /* Throttle based on the first usable node */
3706 pgdat = zone->zone_pgdat;
c73322d0 3707 if (allow_direct_reclaim(pgdat))
675becce
MG
3708 goto out;
3709 break;
3710 }
3711
3712 /* If no zone was usable by the allocation flags then do not throttle */
3713 if (!pgdat)
50694c28 3714 goto out;
5515061d 3715
68243e76
MG
3716 /* Account for the throttling */
3717 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3718
5515061d
MG
3719 /*
3720 * If the caller cannot enter the filesystem, it's possible that it
3721 * is due to the caller holding an FS lock or performing a journal
3722 * transaction in the case of a filesystem like ext[3|4]. In this case,
3723 * it is not safe to block on pfmemalloc_wait as kswapd could be
3724 * blocked waiting on the same lock. Instead, throttle for up to a
3725 * second before continuing.
3726 */
2e786d9e 3727 if (!(gfp_mask & __GFP_FS))
5515061d 3728 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3729 allow_direct_reclaim(pgdat), HZ);
2e786d9e
ML
3730 else
3731 /* Throttle until kswapd wakes the process */
3732 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3733 allow_direct_reclaim(pgdat));
50694c28 3734
50694c28
MG
3735 if (fatal_signal_pending(current))
3736 return true;
3737
3738out:
3739 return false;
5515061d
MG
3740}
3741
dac1d27b 3742unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3743 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3744{
33906bc5 3745 unsigned long nr_reclaimed;
66e1707b 3746 struct scan_control sc = {
ee814fe2 3747 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3748 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3749 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3750 .order = order,
3751 .nodemask = nodemask,
3752 .priority = DEF_PRIORITY,
66e1707b 3753 .may_writepage = !laptop_mode,
a6dc60f8 3754 .may_unmap = 1,
2e2e4259 3755 .may_swap = 1,
66e1707b
BS
3756 };
3757
bb451fdf
GT
3758 /*
3759 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3760 * Confirm they are large enough for max values.
3761 */
3762 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3763 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3764 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3765
5515061d 3766 /*
50694c28
MG
3767 * Do not enter reclaim if fatal signal was delivered while throttled.
3768 * 1 is returned so that the page allocator does not OOM kill at this
3769 * point.
5515061d 3770 */
f2f43e56 3771 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3772 return 1;
3773
1732d2b0 3774 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3775 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3776
3115cd91 3777 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3778
3779 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3780 set_task_reclaim_state(current, NULL);
33906bc5
MG
3781
3782 return nr_reclaimed;
66e1707b
BS
3783}
3784
c255a458 3785#ifdef CONFIG_MEMCG
66e1707b 3786
d2e5fb92 3787/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3788unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3789 gfp_t gfp_mask, bool noswap,
ef8f2327 3790 pg_data_t *pgdat,
0ae5e89c 3791 unsigned long *nr_scanned)
4e416953 3792{
afaf07a6 3793 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3794 struct scan_control sc = {
b8f5c566 3795 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3796 .target_mem_cgroup = memcg,
4e416953
BS
3797 .may_writepage = !laptop_mode,
3798 .may_unmap = 1,
b2e18757 3799 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3800 .may_swap = !noswap,
4e416953 3801 };
0ae5e89c 3802
d2e5fb92
MH
3803 WARN_ON_ONCE(!current->reclaim_state);
3804
4e416953
BS
3805 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3806 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3807
9e3b2f8c 3808 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3809 sc.gfp_mask);
bdce6d9e 3810
4e416953
BS
3811 /*
3812 * NOTE: Although we can get the priority field, using it
3813 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3814 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3815 * will pick up pages from other mem cgroup's as well. We hack
3816 * the priority and make it zero.
3817 */
afaf07a6 3818 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3819
3820 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3821
0ae5e89c 3822 *nr_scanned = sc.nr_scanned;
0308f7cf 3823
4e416953
BS
3824 return sc.nr_reclaimed;
3825}
3826
72835c86 3827unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3828 unsigned long nr_pages,
a7885eb8 3829 gfp_t gfp_mask,
b70a2a21 3830 bool may_swap)
66e1707b 3831{
bdce6d9e 3832 unsigned long nr_reclaimed;
499118e9 3833 unsigned int noreclaim_flag;
66e1707b 3834 struct scan_control sc = {
b70a2a21 3835 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3836 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3837 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3838 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3839 .target_mem_cgroup = memcg,
3840 .priority = DEF_PRIORITY,
3841 .may_writepage = !laptop_mode,
3842 .may_unmap = 1,
b70a2a21 3843 .may_swap = may_swap,
a09ed5e0 3844 };
889976db 3845 /*
fa40d1ee
SB
3846 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3847 * equal pressure on all the nodes. This is based on the assumption that
3848 * the reclaim does not bail out early.
889976db 3849 */
fa40d1ee 3850 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3851
fa40d1ee 3852 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3853 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3854 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3855
3115cd91 3856 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3857
499118e9 3858 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3859 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3860 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3861
3862 return nr_reclaimed;
66e1707b
BS
3863}
3864#endif
3865
1d82de61 3866static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3867 struct scan_control *sc)
f16015fb 3868{
b95a2f2d 3869 struct mem_cgroup *memcg;
b91ac374 3870 struct lruvec *lruvec;
f16015fb 3871
2f368a9f 3872 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
3873 return;
3874
b91ac374
JW
3875 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3876 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3877 return;
3878
b95a2f2d
JW
3879 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3880 do {
b91ac374
JW
3881 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3882 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3883 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3884 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3885 } while (memcg);
f16015fb
JW
3886}
3887
97a225e6 3888static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3889{
3890 int i;
3891 struct zone *zone;
3892
3893 /*
3894 * Check for watermark boosts top-down as the higher zones
3895 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3896 * should not be checked at the same time as reclaim would
1c30844d
MG
3897 * start prematurely when there is no boosting and a lower
3898 * zone is balanced.
3899 */
97a225e6 3900 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3901 zone = pgdat->node_zones + i;
3902 if (!managed_zone(zone))
3903 continue;
3904
3905 if (zone->watermark_boost)
3906 return true;
3907 }
3908
3909 return false;
3910}
3911
e716f2eb
MG
3912/*
3913 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3914 * and highest_zoneidx
e716f2eb 3915 */
97a225e6 3916static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3917{
e716f2eb
MG
3918 int i;
3919 unsigned long mark = -1;
3920 struct zone *zone;
60cefed4 3921
1c30844d
MG
3922 /*
3923 * Check watermarks bottom-up as lower zones are more likely to
3924 * meet watermarks.
3925 */
97a225e6 3926 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3927 zone = pgdat->node_zones + i;
6256c6b4 3928
e716f2eb
MG
3929 if (!managed_zone(zone))
3930 continue;
3931
c574bbe9
HY
3932 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3933 mark = wmark_pages(zone, WMARK_PROMO);
3934 else
3935 mark = high_wmark_pages(zone);
97a225e6 3936 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3937 return true;
3938 }
3939
3940 /*
36c26128 3941 * If a node has no managed zone within highest_zoneidx, it does not
e716f2eb
MG
3942 * need balancing by definition. This can happen if a zone-restricted
3943 * allocation tries to wake a remote kswapd.
3944 */
3945 if (mark == -1)
3946 return true;
3947
3948 return false;
60cefed4
JW
3949}
3950
631b6e08
MG
3951/* Clear pgdat state for congested, dirty or under writeback. */
3952static void clear_pgdat_congested(pg_data_t *pgdat)
3953{
1b05117d
JW
3954 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3955
3956 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3957 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3958 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3959}
3960
5515061d
MG
3961/*
3962 * Prepare kswapd for sleeping. This verifies that there are no processes
3963 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3964 *
3965 * Returns true if kswapd is ready to sleep
3966 */
97a225e6
JK
3967static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3968 int highest_zoneidx)
f50de2d3 3969{
5515061d 3970 /*
9e5e3661 3971 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3972 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3973 * race between when kswapd checks the watermarks and a process gets
3974 * throttled. There is also a potential race if processes get
3975 * throttled, kswapd wakes, a large process exits thereby balancing the
3976 * zones, which causes kswapd to exit balance_pgdat() before reaching
3977 * the wake up checks. If kswapd is going to sleep, no process should
3978 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3979 * the wake up is premature, processes will wake kswapd and get
3980 * throttled again. The difference from wake ups in balance_pgdat() is
3981 * that here we are under prepare_to_wait().
5515061d 3982 */
9e5e3661
VB
3983 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3984 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3985
c73322d0
JW
3986 /* Hopeless node, leave it to direct reclaim */
3987 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3988 return true;
3989
97a225e6 3990 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
3991 clear_pgdat_congested(pgdat);
3992 return true;
1d82de61
MG
3993 }
3994
333b0a45 3995 return false;
f50de2d3
MG
3996}
3997
75485363 3998/*
1d82de61
MG
3999 * kswapd shrinks a node of pages that are at or below the highest usable
4000 * zone that is currently unbalanced.
b8e83b94
MG
4001 *
4002 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
4003 * reclaim or if the lack of progress was due to pages under writeback.
4004 * This is used to determine if the scanning priority needs to be raised.
75485363 4005 */
1d82de61 4006static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 4007 struct scan_control *sc)
75485363 4008{
1d82de61
MG
4009 struct zone *zone;
4010 int z;
75485363 4011
1d82de61
MG
4012 /* Reclaim a number of pages proportional to the number of zones */
4013 sc->nr_to_reclaim = 0;
970a39a3 4014 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 4015 zone = pgdat->node_zones + z;
6aa303de 4016 if (!managed_zone(zone))
1d82de61 4017 continue;
7c954f6d 4018
1d82de61
MG
4019 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4020 }
7c954f6d
MG
4021
4022 /*
1d82de61
MG
4023 * Historically care was taken to put equal pressure on all zones but
4024 * now pressure is applied based on node LRU order.
7c954f6d 4025 */
970a39a3 4026 shrink_node(pgdat, sc);
283aba9f 4027
7c954f6d 4028 /*
1d82de61
MG
4029 * Fragmentation may mean that the system cannot be rebalanced for
4030 * high-order allocations. If twice the allocation size has been
4031 * reclaimed then recheck watermarks only at order-0 to prevent
4032 * excessive reclaim. Assume that a process requested a high-order
4033 * can direct reclaim/compact.
7c954f6d 4034 */
9861a62c 4035 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 4036 sc->order = 0;
7c954f6d 4037
b8e83b94 4038 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
4039}
4040
c49c2c47
MG
4041/* Page allocator PCP high watermark is lowered if reclaim is active. */
4042static inline void
4043update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4044{
4045 int i;
4046 struct zone *zone;
4047
4048 for (i = 0; i <= highest_zoneidx; i++) {
4049 zone = pgdat->node_zones + i;
4050
4051 if (!managed_zone(zone))
4052 continue;
4053
4054 if (active)
4055 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4056 else
4057 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4058 }
4059}
4060
4061static inline void
4062set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4063{
4064 update_reclaim_active(pgdat, highest_zoneidx, true);
4065}
4066
4067static inline void
4068clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4069{
4070 update_reclaim_active(pgdat, highest_zoneidx, false);
4071}
4072
1da177e4 4073/*
1d82de61
MG
4074 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4075 * that are eligible for use by the caller until at least one zone is
4076 * balanced.
1da177e4 4077 *
1d82de61 4078 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
4079 *
4080 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 4081 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 4082 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
4083 * or lower is eligible for reclaim until at least one usable zone is
4084 * balanced.
1da177e4 4085 */
97a225e6 4086static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 4087{
1da177e4 4088 int i;
0608f43d
AM
4089 unsigned long nr_soft_reclaimed;
4090 unsigned long nr_soft_scanned;
eb414681 4091 unsigned long pflags;
1c30844d
MG
4092 unsigned long nr_boost_reclaim;
4093 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4094 bool boosted;
1d82de61 4095 struct zone *zone;
179e9639
AM
4096 struct scan_control sc = {
4097 .gfp_mask = GFP_KERNEL,
ee814fe2 4098 .order = order,
a6dc60f8 4099 .may_unmap = 1,
179e9639 4100 };
93781325 4101
1732d2b0 4102 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 4103 psi_memstall_enter(&pflags);
4f3eaf45 4104 __fs_reclaim_acquire(_THIS_IP_);
93781325 4105
f8891e5e 4106 count_vm_event(PAGEOUTRUN);
1da177e4 4107
1c30844d
MG
4108 /*
4109 * Account for the reclaim boost. Note that the zone boost is left in
4110 * place so that parallel allocations that are near the watermark will
4111 * stall or direct reclaim until kswapd is finished.
4112 */
4113 nr_boost_reclaim = 0;
97a225e6 4114 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4115 zone = pgdat->node_zones + i;
4116 if (!managed_zone(zone))
4117 continue;
4118
4119 nr_boost_reclaim += zone->watermark_boost;
4120 zone_boosts[i] = zone->watermark_boost;
4121 }
4122 boosted = nr_boost_reclaim;
4123
4124restart:
c49c2c47 4125 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 4126 sc.priority = DEF_PRIORITY;
9e3b2f8c 4127 do {
c73322d0 4128 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 4129 bool raise_priority = true;
1c30844d 4130 bool balanced;
93781325 4131 bool ret;
b8e83b94 4132
97a225e6 4133 sc.reclaim_idx = highest_zoneidx;
1da177e4 4134
86c79f6b 4135 /*
84c7a777
MG
4136 * If the number of buffer_heads exceeds the maximum allowed
4137 * then consider reclaiming from all zones. This has a dual
4138 * purpose -- on 64-bit systems it is expected that
4139 * buffer_heads are stripped during active rotation. On 32-bit
4140 * systems, highmem pages can pin lowmem memory and shrinking
4141 * buffers can relieve lowmem pressure. Reclaim may still not
4142 * go ahead if all eligible zones for the original allocation
4143 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
4144 */
4145 if (buffer_heads_over_limit) {
4146 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4147 zone = pgdat->node_zones + i;
6aa303de 4148 if (!managed_zone(zone))
86c79f6b 4149 continue;
cc715d99 4150
970a39a3 4151 sc.reclaim_idx = i;
e1dbeda6 4152 break;
1da177e4 4153 }
1da177e4 4154 }
dafcb73e 4155
86c79f6b 4156 /*
1c30844d
MG
4157 * If the pgdat is imbalanced then ignore boosting and preserve
4158 * the watermarks for a later time and restart. Note that the
4159 * zone watermarks will be still reset at the end of balancing
4160 * on the grounds that the normal reclaim should be enough to
4161 * re-evaluate if boosting is required when kswapd next wakes.
4162 */
97a225e6 4163 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
4164 if (!balanced && nr_boost_reclaim) {
4165 nr_boost_reclaim = 0;
4166 goto restart;
4167 }
4168
4169 /*
4170 * If boosting is not active then only reclaim if there are no
4171 * eligible zones. Note that sc.reclaim_idx is not used as
4172 * buffer_heads_over_limit may have adjusted it.
86c79f6b 4173 */
1c30844d 4174 if (!nr_boost_reclaim && balanced)
e716f2eb 4175 goto out;
e1dbeda6 4176
1c30844d
MG
4177 /* Limit the priority of boosting to avoid reclaim writeback */
4178 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4179 raise_priority = false;
4180
4181 /*
4182 * Do not writeback or swap pages for boosted reclaim. The
4183 * intent is to relieve pressure not issue sub-optimal IO
4184 * from reclaim context. If no pages are reclaimed, the
4185 * reclaim will be aborted.
4186 */
4187 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4188 sc.may_swap = !nr_boost_reclaim;
1c30844d 4189
1d82de61
MG
4190 /*
4191 * Do some background aging of the anon list, to give
4192 * pages a chance to be referenced before reclaiming. All
4193 * pages are rotated regardless of classzone as this is
4194 * about consistent aging.
4195 */
ef8f2327 4196 age_active_anon(pgdat, &sc);
1d82de61 4197
b7ea3c41
MG
4198 /*
4199 * If we're getting trouble reclaiming, start doing writepage
4200 * even in laptop mode.
4201 */
047d72c3 4202 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
4203 sc.may_writepage = 1;
4204
1d82de61
MG
4205 /* Call soft limit reclaim before calling shrink_node. */
4206 sc.nr_scanned = 0;
4207 nr_soft_scanned = 0;
ef8f2327 4208 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
4209 sc.gfp_mask, &nr_soft_scanned);
4210 sc.nr_reclaimed += nr_soft_reclaimed;
4211
1da177e4 4212 /*
1d82de61
MG
4213 * There should be no need to raise the scanning priority if
4214 * enough pages are already being scanned that that high
4215 * watermark would be met at 100% efficiency.
1da177e4 4216 */
970a39a3 4217 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 4218 raise_priority = false;
5515061d
MG
4219
4220 /*
4221 * If the low watermark is met there is no need for processes
4222 * to be throttled on pfmemalloc_wait as they should not be
4223 * able to safely make forward progress. Wake them
4224 */
4225 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 4226 allow_direct_reclaim(pgdat))
cfc51155 4227 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 4228
b8e83b94 4229 /* Check if kswapd should be suspending */
4f3eaf45 4230 __fs_reclaim_release(_THIS_IP_);
93781325 4231 ret = try_to_freeze();
4f3eaf45 4232 __fs_reclaim_acquire(_THIS_IP_);
93781325 4233 if (ret || kthread_should_stop())
b8e83b94 4234 break;
8357376d 4235
73ce02e9 4236 /*
b8e83b94
MG
4237 * Raise priority if scanning rate is too low or there was no
4238 * progress in reclaiming pages
73ce02e9 4239 */
c73322d0 4240 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
4241 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4242
4243 /*
4244 * If reclaim made no progress for a boost, stop reclaim as
4245 * IO cannot be queued and it could be an infinite loop in
4246 * extreme circumstances.
4247 */
4248 if (nr_boost_reclaim && !nr_reclaimed)
4249 break;
4250
c73322d0 4251 if (raise_priority || !nr_reclaimed)
b8e83b94 4252 sc.priority--;
1d82de61 4253 } while (sc.priority >= 1);
1da177e4 4254
c73322d0
JW
4255 if (!sc.nr_reclaimed)
4256 pgdat->kswapd_failures++;
4257
b8e83b94 4258out:
c49c2c47
MG
4259 clear_reclaim_active(pgdat, highest_zoneidx);
4260
1c30844d
MG
4261 /* If reclaim was boosted, account for the reclaim done in this pass */
4262 if (boosted) {
4263 unsigned long flags;
4264
97a225e6 4265 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4266 if (!zone_boosts[i])
4267 continue;
4268
4269 /* Increments are under the zone lock */
4270 zone = pgdat->node_zones + i;
4271 spin_lock_irqsave(&zone->lock, flags);
4272 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4273 spin_unlock_irqrestore(&zone->lock, flags);
4274 }
4275
4276 /*
4277 * As there is now likely space, wakeup kcompact to defragment
4278 * pageblocks.
4279 */
97a225e6 4280 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
4281 }
4282
2a2e4885 4283 snapshot_refaults(NULL, pgdat);
4f3eaf45 4284 __fs_reclaim_release(_THIS_IP_);
eb414681 4285 psi_memstall_leave(&pflags);
1732d2b0 4286 set_task_reclaim_state(current, NULL);
e5ca8071 4287
0abdee2b 4288 /*
1d82de61
MG
4289 * Return the order kswapd stopped reclaiming at as
4290 * prepare_kswapd_sleep() takes it into account. If another caller
4291 * entered the allocator slow path while kswapd was awake, order will
4292 * remain at the higher level.
0abdee2b 4293 */
1d82de61 4294 return sc.order;
1da177e4
LT
4295}
4296
e716f2eb 4297/*
97a225e6
JK
4298 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4299 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4300 * not a valid index then either kswapd runs for first time or kswapd couldn't
4301 * sleep after previous reclaim attempt (node is still unbalanced). In that
4302 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 4303 */
97a225e6
JK
4304static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4305 enum zone_type prev_highest_zoneidx)
e716f2eb 4306{
97a225e6 4307 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4308
97a225e6 4309 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
4310}
4311
38087d9b 4312static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 4313 unsigned int highest_zoneidx)
f0bc0a60
KM
4314{
4315 long remaining = 0;
4316 DEFINE_WAIT(wait);
4317
4318 if (freezing(current) || kthread_should_stop())
4319 return;
4320
4321 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4322
333b0a45
SG
4323 /*
4324 * Try to sleep for a short interval. Note that kcompactd will only be
4325 * woken if it is possible to sleep for a short interval. This is
4326 * deliberate on the assumption that if reclaim cannot keep an
4327 * eligible zone balanced that it's also unlikely that compaction will
4328 * succeed.
4329 */
97a225e6 4330 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
4331 /*
4332 * Compaction records what page blocks it recently failed to
4333 * isolate pages from and skips them in the future scanning.
4334 * When kswapd is going to sleep, it is reasonable to assume
4335 * that pages and compaction may succeed so reset the cache.
4336 */
4337 reset_isolation_suitable(pgdat);
4338
4339 /*
4340 * We have freed the memory, now we should compact it to make
4341 * allocation of the requested order possible.
4342 */
97a225e6 4343 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 4344
f0bc0a60 4345 remaining = schedule_timeout(HZ/10);
38087d9b
MG
4346
4347 /*
97a225e6 4348 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
4349 * order. The values will either be from a wakeup request or
4350 * the previous request that slept prematurely.
4351 */
4352 if (remaining) {
97a225e6
JK
4353 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4354 kswapd_highest_zoneidx(pgdat,
4355 highest_zoneidx));
5644e1fb
QC
4356
4357 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4358 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
4359 }
4360
f0bc0a60
KM
4361 finish_wait(&pgdat->kswapd_wait, &wait);
4362 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4363 }
4364
4365 /*
4366 * After a short sleep, check if it was a premature sleep. If not, then
4367 * go fully to sleep until explicitly woken up.
4368 */
d9f21d42 4369 if (!remaining &&
97a225e6 4370 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
4371 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4372
4373 /*
4374 * vmstat counters are not perfectly accurate and the estimated
4375 * value for counters such as NR_FREE_PAGES can deviate from the
4376 * true value by nr_online_cpus * threshold. To avoid the zone
4377 * watermarks being breached while under pressure, we reduce the
4378 * per-cpu vmstat threshold while kswapd is awake and restore
4379 * them before going back to sleep.
4380 */
4381 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
4382
4383 if (!kthread_should_stop())
4384 schedule();
4385
f0bc0a60
KM
4386 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4387 } else {
4388 if (remaining)
4389 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4390 else
4391 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4392 }
4393 finish_wait(&pgdat->kswapd_wait, &wait);
4394}
4395
1da177e4
LT
4396/*
4397 * The background pageout daemon, started as a kernel thread
4f98a2fe 4398 * from the init process.
1da177e4
LT
4399 *
4400 * This basically trickles out pages so that we have _some_
4401 * free memory available even if there is no other activity
4402 * that frees anything up. This is needed for things like routing
4403 * etc, where we otherwise might have all activity going on in
4404 * asynchronous contexts that cannot page things out.
4405 *
4406 * If there are applications that are active memory-allocators
4407 * (most normal use), this basically shouldn't matter.
4408 */
4409static int kswapd(void *p)
4410{
e716f2eb 4411 unsigned int alloc_order, reclaim_order;
97a225e6 4412 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 4413 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 4414 struct task_struct *tsk = current;
a70f7302 4415 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 4416
174596a0 4417 if (!cpumask_empty(cpumask))
c5f59f08 4418 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
4419
4420 /*
4421 * Tell the memory management that we're a "memory allocator",
4422 * and that if we need more memory we should get access to it
4423 * regardless (see "__alloc_pages()"). "kswapd" should
4424 * never get caught in the normal page freeing logic.
4425 *
4426 * (Kswapd normally doesn't need memory anyway, but sometimes
4427 * you need a small amount of memory in order to be able to
4428 * page out something else, and this flag essentially protects
4429 * us from recursively trying to free more memory as we're
4430 * trying to free the first piece of memory in the first place).
4431 */
b698f0a1 4432 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
83144186 4433 set_freezable();
1da177e4 4434
5644e1fb 4435 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4436 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
8cd7c588 4437 atomic_set(&pgdat->nr_writeback_throttled, 0);
1da177e4 4438 for ( ; ; ) {
6f6313d4 4439 bool ret;
3e1d1d28 4440
5644e1fb 4441 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4442 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4443 highest_zoneidx);
e716f2eb 4444
38087d9b
MG
4445kswapd_try_sleep:
4446 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 4447 highest_zoneidx);
215ddd66 4448
97a225e6 4449 /* Read the new order and highest_zoneidx */
2b47a24c 4450 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4451 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4452 highest_zoneidx);
5644e1fb 4453 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4454 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4455
8fe23e05
DR
4456 ret = try_to_freeze();
4457 if (kthread_should_stop())
4458 break;
4459
4460 /*
4461 * We can speed up thawing tasks if we don't call balance_pgdat
4462 * after returning from the refrigerator
4463 */
38087d9b
MG
4464 if (ret)
4465 continue;
4466
4467 /*
4468 * Reclaim begins at the requested order but if a high-order
4469 * reclaim fails then kswapd falls back to reclaiming for
4470 * order-0. If that happens, kswapd will consider sleeping
4471 * for the order it finished reclaiming at (reclaim_order)
4472 * but kcompactd is woken to compact for the original
4473 * request (alloc_order).
4474 */
97a225e6 4475 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 4476 alloc_order);
97a225e6
JK
4477 reclaim_order = balance_pgdat(pgdat, alloc_order,
4478 highest_zoneidx);
38087d9b
MG
4479 if (reclaim_order < alloc_order)
4480 goto kswapd_try_sleep;
1da177e4 4481 }
b0a8cc58 4482
b698f0a1 4483 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
71abdc15 4484
1da177e4
LT
4485 return 0;
4486}
4487
4488/*
5ecd9d40
DR
4489 * A zone is low on free memory or too fragmented for high-order memory. If
4490 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4491 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4492 * has failed or is not needed, still wake up kcompactd if only compaction is
4493 * needed.
1da177e4 4494 */
5ecd9d40 4495void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 4496 enum zone_type highest_zoneidx)
1da177e4
LT
4497{
4498 pg_data_t *pgdat;
5644e1fb 4499 enum zone_type curr_idx;
1da177e4 4500
6aa303de 4501 if (!managed_zone(zone))
1da177e4
LT
4502 return;
4503
5ecd9d40 4504 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4505 return;
5644e1fb 4506
88f5acf8 4507 pgdat = zone->zone_pgdat;
97a225e6 4508 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4509
97a225e6
JK
4510 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4511 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
4512
4513 if (READ_ONCE(pgdat->kswapd_order) < order)
4514 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 4515
8d0986e2 4516 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4517 return;
e1a55637 4518
5ecd9d40
DR
4519 /* Hopeless node, leave it to direct reclaim if possible */
4520 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
4521 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4522 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
4523 /*
4524 * There may be plenty of free memory available, but it's too
4525 * fragmented for high-order allocations. Wake up kcompactd
4526 * and rely on compaction_suitable() to determine if it's
4527 * needed. If it fails, it will defer subsequent attempts to
4528 * ratelimit its work.
4529 */
4530 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4531 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4532 return;
5ecd9d40 4533 }
88f5acf8 4534
97a225e6 4535 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4536 gfp_flags);
8d0986e2 4537 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4538}
4539
c6f37f12 4540#ifdef CONFIG_HIBERNATION
1da177e4 4541/*
7b51755c 4542 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4543 * freed pages.
4544 *
4545 * Rather than trying to age LRUs the aim is to preserve the overall
4546 * LRU order by reclaiming preferentially
4547 * inactive > active > active referenced > active mapped
1da177e4 4548 */
7b51755c 4549unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4550{
d6277db4 4551 struct scan_control sc = {
ee814fe2 4552 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4553 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4554 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4555 .priority = DEF_PRIORITY,
d6277db4 4556 .may_writepage = 1,
ee814fe2
JW
4557 .may_unmap = 1,
4558 .may_swap = 1,
7b51755c 4559 .hibernation_mode = 1,
1da177e4 4560 };
a09ed5e0 4561 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4562 unsigned long nr_reclaimed;
499118e9 4563 unsigned int noreclaim_flag;
1da177e4 4564
d92a8cfc 4565 fs_reclaim_acquire(sc.gfp_mask);
93781325 4566 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4567 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4568
3115cd91 4569 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4570
1732d2b0 4571 set_task_reclaim_state(current, NULL);
499118e9 4572 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4573 fs_reclaim_release(sc.gfp_mask);
d6277db4 4574
7b51755c 4575 return nr_reclaimed;
1da177e4 4576}
c6f37f12 4577#endif /* CONFIG_HIBERNATION */
1da177e4 4578
3218ae14
YG
4579/*
4580 * This kswapd start function will be called by init and node-hot-add.
3218ae14 4581 */
b87c517a 4582void kswapd_run(int nid)
3218ae14
YG
4583{
4584 pg_data_t *pgdat = NODE_DATA(nid);
3218ae14
YG
4585
4586 if (pgdat->kswapd)
b87c517a 4587 return;
3218ae14
YG
4588
4589 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4590 if (IS_ERR(pgdat->kswapd)) {
4591 /* failure at boot is fatal */
c6202adf 4592 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9 4593 pr_err("Failed to start kswapd on node %d\n", nid);
d72515b8 4594 pgdat->kswapd = NULL;
3218ae14 4595 }
3218ae14
YG
4596}
4597
8fe23e05 4598/*
d8adde17 4599 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4600 * hold mem_hotplug_begin/end().
8fe23e05
DR
4601 */
4602void kswapd_stop(int nid)
4603{
4604 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4605
d8adde17 4606 if (kswapd) {
8fe23e05 4607 kthread_stop(kswapd);
d8adde17
JL
4608 NODE_DATA(nid)->kswapd = NULL;
4609 }
8fe23e05
DR
4610}
4611
1da177e4
LT
4612static int __init kswapd_init(void)
4613{
6b700b5b 4614 int nid;
69e05944 4615
1da177e4 4616 swap_setup();
48fb2e24 4617 for_each_node_state(nid, N_MEMORY)
3218ae14 4618 kswapd_run(nid);
1da177e4
LT
4619 return 0;
4620}
4621
4622module_init(kswapd_init)
9eeff239
CL
4623
4624#ifdef CONFIG_NUMA
4625/*
a5f5f91d 4626 * Node reclaim mode
9eeff239 4627 *
a5f5f91d 4628 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4629 * the watermarks.
9eeff239 4630 */
a5f5f91d 4631int node_reclaim_mode __read_mostly;
9eeff239 4632
a92f7126 4633/*
a5f5f91d 4634 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4635 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4636 * a zone.
4637 */
a5f5f91d 4638#define NODE_RECLAIM_PRIORITY 4
a92f7126 4639
9614634f 4640/*
a5f5f91d 4641 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4642 * occur.
4643 */
4644int sysctl_min_unmapped_ratio = 1;
4645
0ff38490
CL
4646/*
4647 * If the number of slab pages in a zone grows beyond this percentage then
4648 * slab reclaim needs to occur.
4649 */
4650int sysctl_min_slab_ratio = 5;
4651
11fb9989 4652static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4653{
11fb9989
MG
4654 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4655 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4656 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4657
4658 /*
4659 * It's possible for there to be more file mapped pages than
4660 * accounted for by the pages on the file LRU lists because
4661 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4662 */
4663 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4664}
4665
4666/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4667static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4668{
d031a157
AM
4669 unsigned long nr_pagecache_reclaimable;
4670 unsigned long delta = 0;
90afa5de
MG
4671
4672 /*
95bbc0c7 4673 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4674 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4675 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4676 * a better estimate
4677 */
a5f5f91d
MG
4678 if (node_reclaim_mode & RECLAIM_UNMAP)
4679 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4680 else
a5f5f91d 4681 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4682
4683 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4684 if (!(node_reclaim_mode & RECLAIM_WRITE))
4685 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4686
4687 /* Watch for any possible underflows due to delta */
4688 if (unlikely(delta > nr_pagecache_reclaimable))
4689 delta = nr_pagecache_reclaimable;
4690
4691 return nr_pagecache_reclaimable - delta;
4692}
4693
9eeff239 4694/*
a5f5f91d 4695 * Try to free up some pages from this node through reclaim.
9eeff239 4696 */
a5f5f91d 4697static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4698{
7fb2d46d 4699 /* Minimum pages needed in order to stay on node */
69e05944 4700 const unsigned long nr_pages = 1 << order;
9eeff239 4701 struct task_struct *p = current;
499118e9 4702 unsigned int noreclaim_flag;
179e9639 4703 struct scan_control sc = {
62b726c1 4704 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4705 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4706 .order = order,
a5f5f91d
MG
4707 .priority = NODE_RECLAIM_PRIORITY,
4708 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4709 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4710 .may_swap = 1,
f2f43e56 4711 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4712 };
57f29762 4713 unsigned long pflags;
9eeff239 4714
132bb8cf
YS
4715 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4716 sc.gfp_mask);
4717
9eeff239 4718 cond_resched();
57f29762 4719 psi_memstall_enter(&pflags);
93781325 4720 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4721 /*
95bbc0c7 4722 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4723 */
499118e9 4724 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4725 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4726
d8ff6fde
ML
4727 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
4728 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
0ff38490 4729 /*
894befec 4730 * Free memory by calling shrink node with increasing
0ff38490
CL
4731 * priorities until we have enough memory freed.
4732 */
0ff38490 4733 do {
970a39a3 4734 shrink_node(pgdat, &sc);
9e3b2f8c 4735 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4736 }
c84db23c 4737
1732d2b0 4738 set_task_reclaim_state(p, NULL);
499118e9 4739 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4740 fs_reclaim_release(sc.gfp_mask);
57f29762 4741 psi_memstall_leave(&pflags);
132bb8cf
YS
4742
4743 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4744
a79311c1 4745 return sc.nr_reclaimed >= nr_pages;
9eeff239 4746}
179e9639 4747
a5f5f91d 4748int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4749{
d773ed6b 4750 int ret;
179e9639
AM
4751
4752 /*
a5f5f91d 4753 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4754 * slab pages if we are over the defined limits.
34aa1330 4755 *
9614634f
CL
4756 * A small portion of unmapped file backed pages is needed for
4757 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4758 * thrown out if the node is overallocated. So we do not reclaim
4759 * if less than a specified percentage of the node is used by
9614634f 4760 * unmapped file backed pages.
179e9639 4761 */
a5f5f91d 4762 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4763 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4764 pgdat->min_slab_pages)
a5f5f91d 4765 return NODE_RECLAIM_FULL;
179e9639
AM
4766
4767 /*
d773ed6b 4768 * Do not scan if the allocation should not be delayed.
179e9639 4769 */
d0164adc 4770 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4771 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4772
4773 /*
a5f5f91d 4774 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4775 * have associated processors. This will favor the local processor
4776 * over remote processors and spread off node memory allocations
4777 * as wide as possible.
4778 */
a5f5f91d
MG
4779 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4780 return NODE_RECLAIM_NOSCAN;
d773ed6b 4781
a5f5f91d
MG
4782 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4783 return NODE_RECLAIM_NOSCAN;
fa5e084e 4784
a5f5f91d
MG
4785 ret = __node_reclaim(pgdat, gfp_mask, order);
4786 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4787
24cf7251
MG
4788 if (!ret)
4789 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4790
d773ed6b 4791 return ret;
179e9639 4792}
9eeff239 4793#endif
894bc310 4794
89e004ea 4795/**
64e3d12f
KHY
4796 * check_move_unevictable_pages - check pages for evictability and move to
4797 * appropriate zone lru list
4798 * @pvec: pagevec with lru pages to check
89e004ea 4799 *
64e3d12f
KHY
4800 * Checks pages for evictability, if an evictable page is in the unevictable
4801 * lru list, moves it to the appropriate evictable lru list. This function
4802 * should be only used for lru pages.
89e004ea 4803 */
64e3d12f 4804void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4805{
6168d0da 4806 struct lruvec *lruvec = NULL;
24513264
HD
4807 int pgscanned = 0;
4808 int pgrescued = 0;
4809 int i;
89e004ea 4810
64e3d12f
KHY
4811 for (i = 0; i < pvec->nr; i++) {
4812 struct page *page = pvec->pages[i];
0de340cb 4813 struct folio *folio = page_folio(page);
8d8869ca
HD
4814 int nr_pages;
4815
4816 if (PageTransTail(page))
4817 continue;
4818
4819 nr_pages = thp_nr_pages(page);
4820 pgscanned += nr_pages;
89e004ea 4821
d25b5bd8
AS
4822 /* block memcg migration during page moving between lru */
4823 if (!TestClearPageLRU(page))
4824 continue;
4825
0de340cb 4826 lruvec = folio_lruvec_relock_irq(folio, lruvec);
d25b5bd8 4827 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4828 del_page_from_lru_list(page, lruvec);
24513264 4829 ClearPageUnevictable(page);
3a9c9788 4830 add_page_to_lru_list(page, lruvec);
8d8869ca 4831 pgrescued += nr_pages;
89e004ea 4832 }
d25b5bd8 4833 SetPageLRU(page);
24513264 4834 }
89e004ea 4835
6168d0da 4836 if (lruvec) {
24513264
HD
4837 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4838 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4839 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4840 } else if (pgscanned) {
4841 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4842 }
89e004ea 4843}
64e3d12f 4844EXPORT_SYMBOL_GPL(check_move_unevictable_pages);