]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/vmscan.c
vmscan: zone_reclaim() don't use insane swap_cluster_max
[thirdparty/kernel/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
a79311c1
RR
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
22fba335
KM
58 /* How many pages shrink_list() should reclaim */
59 unsigned long nr_to_reclaim;
60
7b51755c
KM
61 unsigned long hibernation_mode;
62
1da177e4 63 /* This context's GFP mask */
6daa0e28 64 gfp_t gfp_mask;
1da177e4
LT
65
66 int may_writepage;
67
a6dc60f8
JW
68 /* Can mapped pages be reclaimed? */
69 int may_unmap;
f1fd1067 70
2e2e4259
KM
71 /* Can pages be swapped as part of reclaim? */
72 int may_swap;
73
1da177e4
LT
74 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
75 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
76 * In this context, it doesn't matter that we scan the
77 * whole list at once. */
78 int swap_cluster_max;
d6277db4
RW
79
80 int swappiness;
408d8544
NP
81
82 int all_unreclaimable;
5ad333eb
AW
83
84 int order;
66e1707b
BS
85
86 /* Which cgroup do we reclaim from */
87 struct mem_cgroup *mem_cgroup;
88
327c0e96
KH
89 /*
90 * Nodemask of nodes allowed by the caller. If NULL, all nodes
91 * are scanned.
92 */
93 nodemask_t *nodemask;
94
66e1707b
BS
95 /* Pluggable isolate pages callback */
96 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
97 unsigned long *scanned, int order, int mode,
98 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 99 int active, int file);
1da177e4
LT
100};
101
1da177e4
LT
102#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
103
104#ifdef ARCH_HAS_PREFETCH
105#define prefetch_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
109 \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetch(&prev->_field); \
112 } \
113 } while (0)
114#else
115#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
116#endif
117
118#ifdef ARCH_HAS_PREFETCHW
119#define prefetchw_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetchw(&prev->_field); \
126 } \
127 } while (0)
128#else
129#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132/*
133 * From 0 .. 100. Higher means more swappy.
134 */
135int vm_swappiness = 60;
bd1e22b8 136long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
137
138static LIST_HEAD(shrinker_list);
139static DECLARE_RWSEM(shrinker_rwsem);
140
00f0b825 141#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 142#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 143#else
e72e2bd6 144#define scanning_global_lru(sc) (1)
91a45470
KH
145#endif
146
6e901571
KM
147static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
148 struct scan_control *sc)
149{
e72e2bd6 150 if (!scanning_global_lru(sc))
3e2f41f1
KM
151 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
152
6e901571
KM
153 return &zone->reclaim_stat;
154}
155
0b217676
VL
156static unsigned long zone_nr_lru_pages(struct zone *zone,
157 struct scan_control *sc, enum lru_list lru)
c9f299d9 158{
e72e2bd6 159 if (!scanning_global_lru(sc))
a3d8e054
KM
160 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
161
c9f299d9
KM
162 return zone_page_state(zone, NR_LRU_BASE + lru);
163}
164
165
1da177e4
LT
166/*
167 * Add a shrinker callback to be called from the vm
168 */
8e1f936b 169void register_shrinker(struct shrinker *shrinker)
1da177e4 170{
8e1f936b
RR
171 shrinker->nr = 0;
172 down_write(&shrinker_rwsem);
173 list_add_tail(&shrinker->list, &shrinker_list);
174 up_write(&shrinker_rwsem);
1da177e4 175}
8e1f936b 176EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
177
178/*
179 * Remove one
180 */
8e1f936b 181void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
182{
183 down_write(&shrinker_rwsem);
184 list_del(&shrinker->list);
185 up_write(&shrinker_rwsem);
1da177e4 186}
8e1f936b 187EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
188
189#define SHRINK_BATCH 128
190/*
191 * Call the shrink functions to age shrinkable caches
192 *
193 * Here we assume it costs one seek to replace a lru page and that it also
194 * takes a seek to recreate a cache object. With this in mind we age equal
195 * percentages of the lru and ageable caches. This should balance the seeks
196 * generated by these structures.
197 *
183ff22b 198 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
199 * slab to avoid swapping.
200 *
201 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
202 *
203 * `lru_pages' represents the number of on-LRU pages in all the zones which
204 * are eligible for the caller's allocation attempt. It is used for balancing
205 * slab reclaim versus page reclaim.
b15e0905 206 *
207 * Returns the number of slab objects which we shrunk.
1da177e4 208 */
69e05944
AM
209unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
210 unsigned long lru_pages)
1da177e4
LT
211{
212 struct shrinker *shrinker;
69e05944 213 unsigned long ret = 0;
1da177e4
LT
214
215 if (scanned == 0)
216 scanned = SWAP_CLUSTER_MAX;
217
218 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 219 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
220
221 list_for_each_entry(shrinker, &shrinker_list, list) {
222 unsigned long long delta;
223 unsigned long total_scan;
8e1f936b 224 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
225
226 delta = (4 * scanned) / shrinker->seeks;
ea164d73 227 delta *= max_pass;
1da177e4
LT
228 do_div(delta, lru_pages + 1);
229 shrinker->nr += delta;
ea164d73 230 if (shrinker->nr < 0) {
88c3bd70
DR
231 printk(KERN_ERR "shrink_slab: %pF negative objects to "
232 "delete nr=%ld\n",
233 shrinker->shrink, shrinker->nr);
ea164d73
AA
234 shrinker->nr = max_pass;
235 }
236
237 /*
238 * Avoid risking looping forever due to too large nr value:
239 * never try to free more than twice the estimate number of
240 * freeable entries.
241 */
242 if (shrinker->nr > max_pass * 2)
243 shrinker->nr = max_pass * 2;
1da177e4
LT
244
245 total_scan = shrinker->nr;
246 shrinker->nr = 0;
247
248 while (total_scan >= SHRINK_BATCH) {
249 long this_scan = SHRINK_BATCH;
250 int shrink_ret;
b15e0905 251 int nr_before;
1da177e4 252
8e1f936b
RR
253 nr_before = (*shrinker->shrink)(0, gfp_mask);
254 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
255 if (shrink_ret == -1)
256 break;
b15e0905 257 if (shrink_ret < nr_before)
258 ret += nr_before - shrink_ret;
f8891e5e 259 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
260 total_scan -= this_scan;
261
262 cond_resched();
263 }
264
265 shrinker->nr += total_scan;
266 }
267 up_read(&shrinker_rwsem);
b15e0905 268 return ret;
1da177e4
LT
269}
270
271/* Called without lock on whether page is mapped, so answer is unstable */
272static inline int page_mapping_inuse(struct page *page)
273{
274 struct address_space *mapping;
275
276 /* Page is in somebody's page tables. */
277 if (page_mapped(page))
278 return 1;
279
280 /* Be more reluctant to reclaim swapcache than pagecache */
281 if (PageSwapCache(page))
282 return 1;
283
284 mapping = page_mapping(page);
285 if (!mapping)
286 return 0;
287
288 /* File is mmap'd by somebody? */
289 return mapping_mapped(mapping);
290}
291
292static inline int is_page_cache_freeable(struct page *page)
293{
ceddc3a5
JW
294 /*
295 * A freeable page cache page is referenced only by the caller
296 * that isolated the page, the page cache radix tree and
297 * optional buffer heads at page->private.
298 */
edcf4748 299 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
300}
301
302static int may_write_to_queue(struct backing_dev_info *bdi)
303{
930d9152 304 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
305 return 1;
306 if (!bdi_write_congested(bdi))
307 return 1;
308 if (bdi == current->backing_dev_info)
309 return 1;
310 return 0;
311}
312
313/*
314 * We detected a synchronous write error writing a page out. Probably
315 * -ENOSPC. We need to propagate that into the address_space for a subsequent
316 * fsync(), msync() or close().
317 *
318 * The tricky part is that after writepage we cannot touch the mapping: nothing
319 * prevents it from being freed up. But we have a ref on the page and once
320 * that page is locked, the mapping is pinned.
321 *
322 * We're allowed to run sleeping lock_page() here because we know the caller has
323 * __GFP_FS.
324 */
325static void handle_write_error(struct address_space *mapping,
326 struct page *page, int error)
327{
328 lock_page(page);
3e9f45bd
GC
329 if (page_mapping(page) == mapping)
330 mapping_set_error(mapping, error);
1da177e4
LT
331 unlock_page(page);
332}
333
c661b078
AW
334/* Request for sync pageout. */
335enum pageout_io {
336 PAGEOUT_IO_ASYNC,
337 PAGEOUT_IO_SYNC,
338};
339
04e62a29
CL
340/* possible outcome of pageout() */
341typedef enum {
342 /* failed to write page out, page is locked */
343 PAGE_KEEP,
344 /* move page to the active list, page is locked */
345 PAGE_ACTIVATE,
346 /* page has been sent to the disk successfully, page is unlocked */
347 PAGE_SUCCESS,
348 /* page is clean and locked */
349 PAGE_CLEAN,
350} pageout_t;
351
1da177e4 352/*
1742f19f
AM
353 * pageout is called by shrink_page_list() for each dirty page.
354 * Calls ->writepage().
1da177e4 355 */
c661b078
AW
356static pageout_t pageout(struct page *page, struct address_space *mapping,
357 enum pageout_io sync_writeback)
1da177e4
LT
358{
359 /*
360 * If the page is dirty, only perform writeback if that write
361 * will be non-blocking. To prevent this allocation from being
362 * stalled by pagecache activity. But note that there may be
363 * stalls if we need to run get_block(). We could test
364 * PagePrivate for that.
365 *
6aceb53b 366 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
367 * this page's queue, we can perform writeback even if that
368 * will block.
369 *
370 * If the page is swapcache, write it back even if that would
371 * block, for some throttling. This happens by accident, because
372 * swap_backing_dev_info is bust: it doesn't reflect the
373 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
374 */
375 if (!is_page_cache_freeable(page))
376 return PAGE_KEEP;
377 if (!mapping) {
378 /*
379 * Some data journaling orphaned pages can have
380 * page->mapping == NULL while being dirty with clean buffers.
381 */
266cf658 382 if (page_has_private(page)) {
1da177e4
LT
383 if (try_to_free_buffers(page)) {
384 ClearPageDirty(page);
d40cee24 385 printk("%s: orphaned page\n", __func__);
1da177e4
LT
386 return PAGE_CLEAN;
387 }
388 }
389 return PAGE_KEEP;
390 }
391 if (mapping->a_ops->writepage == NULL)
392 return PAGE_ACTIVATE;
393 if (!may_write_to_queue(mapping->backing_dev_info))
394 return PAGE_KEEP;
395
396 if (clear_page_dirty_for_io(page)) {
397 int res;
398 struct writeback_control wbc = {
399 .sync_mode = WB_SYNC_NONE,
400 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
401 .range_start = 0,
402 .range_end = LLONG_MAX,
1da177e4
LT
403 .nonblocking = 1,
404 .for_reclaim = 1,
405 };
406
407 SetPageReclaim(page);
408 res = mapping->a_ops->writepage(page, &wbc);
409 if (res < 0)
410 handle_write_error(mapping, page, res);
994fc28c 411 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
412 ClearPageReclaim(page);
413 return PAGE_ACTIVATE;
414 }
c661b078
AW
415
416 /*
417 * Wait on writeback if requested to. This happens when
418 * direct reclaiming a large contiguous area and the
419 * first attempt to free a range of pages fails.
420 */
421 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
422 wait_on_page_writeback(page);
423
1da177e4
LT
424 if (!PageWriteback(page)) {
425 /* synchronous write or broken a_ops? */
426 ClearPageReclaim(page);
427 }
e129b5c2 428 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
429 return PAGE_SUCCESS;
430 }
431
432 return PAGE_CLEAN;
433}
434
a649fd92 435/*
e286781d
NP
436 * Same as remove_mapping, but if the page is removed from the mapping, it
437 * gets returned with a refcount of 0.
a649fd92 438 */
e286781d 439static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 440{
28e4d965
NP
441 BUG_ON(!PageLocked(page));
442 BUG_ON(mapping != page_mapping(page));
49d2e9cc 443
19fd6231 444 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 445 /*
0fd0e6b0
NP
446 * The non racy check for a busy page.
447 *
448 * Must be careful with the order of the tests. When someone has
449 * a ref to the page, it may be possible that they dirty it then
450 * drop the reference. So if PageDirty is tested before page_count
451 * here, then the following race may occur:
452 *
453 * get_user_pages(&page);
454 * [user mapping goes away]
455 * write_to(page);
456 * !PageDirty(page) [good]
457 * SetPageDirty(page);
458 * put_page(page);
459 * !page_count(page) [good, discard it]
460 *
461 * [oops, our write_to data is lost]
462 *
463 * Reversing the order of the tests ensures such a situation cannot
464 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
465 * load is not satisfied before that of page->_count.
466 *
467 * Note that if SetPageDirty is always performed via set_page_dirty,
468 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 469 */
e286781d 470 if (!page_freeze_refs(page, 2))
49d2e9cc 471 goto cannot_free;
e286781d
NP
472 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
473 if (unlikely(PageDirty(page))) {
474 page_unfreeze_refs(page, 2);
49d2e9cc 475 goto cannot_free;
e286781d 476 }
49d2e9cc
CL
477
478 if (PageSwapCache(page)) {
479 swp_entry_t swap = { .val = page_private(page) };
480 __delete_from_swap_cache(page);
19fd6231 481 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 482 swapcache_free(swap, page);
e286781d
NP
483 } else {
484 __remove_from_page_cache(page);
19fd6231 485 spin_unlock_irq(&mapping->tree_lock);
e767e056 486 mem_cgroup_uncharge_cache_page(page);
49d2e9cc
CL
487 }
488
49d2e9cc
CL
489 return 1;
490
491cannot_free:
19fd6231 492 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
493 return 0;
494}
495
e286781d
NP
496/*
497 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
498 * someone else has a ref on the page, abort and return 0. If it was
499 * successfully detached, return 1. Assumes the caller has a single ref on
500 * this page.
501 */
502int remove_mapping(struct address_space *mapping, struct page *page)
503{
504 if (__remove_mapping(mapping, page)) {
505 /*
506 * Unfreezing the refcount with 1 rather than 2 effectively
507 * drops the pagecache ref for us without requiring another
508 * atomic operation.
509 */
510 page_unfreeze_refs(page, 1);
511 return 1;
512 }
513 return 0;
514}
515
894bc310
LS
516/**
517 * putback_lru_page - put previously isolated page onto appropriate LRU list
518 * @page: page to be put back to appropriate lru list
519 *
520 * Add previously isolated @page to appropriate LRU list.
521 * Page may still be unevictable for other reasons.
522 *
523 * lru_lock must not be held, interrupts must be enabled.
524 */
894bc310
LS
525void putback_lru_page(struct page *page)
526{
527 int lru;
528 int active = !!TestClearPageActive(page);
bbfd28ee 529 int was_unevictable = PageUnevictable(page);
894bc310
LS
530
531 VM_BUG_ON(PageLRU(page));
532
533redo:
534 ClearPageUnevictable(page);
535
536 if (page_evictable(page, NULL)) {
537 /*
538 * For evictable pages, we can use the cache.
539 * In event of a race, worst case is we end up with an
540 * unevictable page on [in]active list.
541 * We know how to handle that.
542 */
401a8e1c 543 lru = active + page_lru_base_type(page);
894bc310
LS
544 lru_cache_add_lru(page, lru);
545 } else {
546 /*
547 * Put unevictable pages directly on zone's unevictable
548 * list.
549 */
550 lru = LRU_UNEVICTABLE;
551 add_page_to_unevictable_list(page);
6a7b9548
JW
552 /*
553 * When racing with an mlock clearing (page is
554 * unlocked), make sure that if the other thread does
555 * not observe our setting of PG_lru and fails
556 * isolation, we see PG_mlocked cleared below and move
557 * the page back to the evictable list.
558 *
559 * The other side is TestClearPageMlocked().
560 */
561 smp_mb();
894bc310 562 }
894bc310
LS
563
564 /*
565 * page's status can change while we move it among lru. If an evictable
566 * page is on unevictable list, it never be freed. To avoid that,
567 * check after we added it to the list, again.
568 */
569 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
570 if (!isolate_lru_page(page)) {
571 put_page(page);
572 goto redo;
573 }
574 /* This means someone else dropped this page from LRU
575 * So, it will be freed or putback to LRU again. There is
576 * nothing to do here.
577 */
578 }
579
bbfd28ee
LS
580 if (was_unevictable && lru != LRU_UNEVICTABLE)
581 count_vm_event(UNEVICTABLE_PGRESCUED);
582 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
583 count_vm_event(UNEVICTABLE_PGCULLED);
584
894bc310
LS
585 put_page(page); /* drop ref from isolate */
586}
587
1da177e4 588/*
1742f19f 589 * shrink_page_list() returns the number of reclaimed pages
1da177e4 590 */
1742f19f 591static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
592 struct scan_control *sc,
593 enum pageout_io sync_writeback)
1da177e4
LT
594{
595 LIST_HEAD(ret_pages);
596 struct pagevec freed_pvec;
597 int pgactivate = 0;
05ff5137 598 unsigned long nr_reclaimed = 0;
6fe6b7e3 599 unsigned long vm_flags;
1da177e4
LT
600
601 cond_resched();
602
603 pagevec_init(&freed_pvec, 1);
604 while (!list_empty(page_list)) {
605 struct address_space *mapping;
606 struct page *page;
607 int may_enter_fs;
608 int referenced;
609
610 cond_resched();
611
612 page = lru_to_page(page_list);
613 list_del(&page->lru);
614
529ae9aa 615 if (!trylock_page(page))
1da177e4
LT
616 goto keep;
617
725d704e 618 VM_BUG_ON(PageActive(page));
1da177e4
LT
619
620 sc->nr_scanned++;
80e43426 621
b291f000
NP
622 if (unlikely(!page_evictable(page, NULL)))
623 goto cull_mlocked;
894bc310 624
a6dc60f8 625 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
626 goto keep_locked;
627
1da177e4
LT
628 /* Double the slab pressure for mapped and swapcache pages */
629 if (page_mapped(page) || PageSwapCache(page))
630 sc->nr_scanned++;
631
c661b078
AW
632 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
633 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
634
635 if (PageWriteback(page)) {
636 /*
637 * Synchronous reclaim is performed in two passes,
638 * first an asynchronous pass over the list to
639 * start parallel writeback, and a second synchronous
640 * pass to wait for the IO to complete. Wait here
641 * for any page for which writeback has already
642 * started.
643 */
644 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
645 wait_on_page_writeback(page);
4dd4b920 646 else
c661b078
AW
647 goto keep_locked;
648 }
1da177e4 649
6fe6b7e3
WF
650 referenced = page_referenced(page, 1,
651 sc->mem_cgroup, &vm_flags);
03ef83af
MK
652 /*
653 * In active use or really unfreeable? Activate it.
654 * If page which have PG_mlocked lost isoltation race,
655 * try_to_unmap moves it to unevictable list
656 */
5ad333eb 657 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
03ef83af
MK
658 referenced && page_mapping_inuse(page)
659 && !(vm_flags & VM_LOCKED))
1da177e4
LT
660 goto activate_locked;
661
1da177e4
LT
662 /*
663 * Anonymous process memory has backing store?
664 * Try to allocate it some swap space here.
665 */
b291f000 666 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
667 if (!(sc->gfp_mask & __GFP_IO))
668 goto keep_locked;
ac47b003 669 if (!add_to_swap(page))
1da177e4 670 goto activate_locked;
63eb6b93 671 may_enter_fs = 1;
b291f000 672 }
1da177e4
LT
673
674 mapping = page_mapping(page);
1da177e4
LT
675
676 /*
677 * The page is mapped into the page tables of one or more
678 * processes. Try to unmap it here.
679 */
680 if (page_mapped(page) && mapping) {
14fa31b8 681 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
682 case SWAP_FAIL:
683 goto activate_locked;
684 case SWAP_AGAIN:
685 goto keep_locked;
b291f000
NP
686 case SWAP_MLOCK:
687 goto cull_mlocked;
1da177e4
LT
688 case SWAP_SUCCESS:
689 ; /* try to free the page below */
690 }
691 }
692
693 if (PageDirty(page)) {
5ad333eb 694 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 695 goto keep_locked;
4dd4b920 696 if (!may_enter_fs)
1da177e4 697 goto keep_locked;
52a8363e 698 if (!sc->may_writepage)
1da177e4
LT
699 goto keep_locked;
700
701 /* Page is dirty, try to write it out here */
c661b078 702 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
703 case PAGE_KEEP:
704 goto keep_locked;
705 case PAGE_ACTIVATE:
706 goto activate_locked;
707 case PAGE_SUCCESS:
4dd4b920 708 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
709 goto keep;
710 /*
711 * A synchronous write - probably a ramdisk. Go
712 * ahead and try to reclaim the page.
713 */
529ae9aa 714 if (!trylock_page(page))
1da177e4
LT
715 goto keep;
716 if (PageDirty(page) || PageWriteback(page))
717 goto keep_locked;
718 mapping = page_mapping(page);
719 case PAGE_CLEAN:
720 ; /* try to free the page below */
721 }
722 }
723
724 /*
725 * If the page has buffers, try to free the buffer mappings
726 * associated with this page. If we succeed we try to free
727 * the page as well.
728 *
729 * We do this even if the page is PageDirty().
730 * try_to_release_page() does not perform I/O, but it is
731 * possible for a page to have PageDirty set, but it is actually
732 * clean (all its buffers are clean). This happens if the
733 * buffers were written out directly, with submit_bh(). ext3
894bc310 734 * will do this, as well as the blockdev mapping.
1da177e4
LT
735 * try_to_release_page() will discover that cleanness and will
736 * drop the buffers and mark the page clean - it can be freed.
737 *
738 * Rarely, pages can have buffers and no ->mapping. These are
739 * the pages which were not successfully invalidated in
740 * truncate_complete_page(). We try to drop those buffers here
741 * and if that worked, and the page is no longer mapped into
742 * process address space (page_count == 1) it can be freed.
743 * Otherwise, leave the page on the LRU so it is swappable.
744 */
266cf658 745 if (page_has_private(page)) {
1da177e4
LT
746 if (!try_to_release_page(page, sc->gfp_mask))
747 goto activate_locked;
e286781d
NP
748 if (!mapping && page_count(page) == 1) {
749 unlock_page(page);
750 if (put_page_testzero(page))
751 goto free_it;
752 else {
753 /*
754 * rare race with speculative reference.
755 * the speculative reference will free
756 * this page shortly, so we may
757 * increment nr_reclaimed here (and
758 * leave it off the LRU).
759 */
760 nr_reclaimed++;
761 continue;
762 }
763 }
1da177e4
LT
764 }
765
e286781d 766 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 767 goto keep_locked;
1da177e4 768
a978d6f5
NP
769 /*
770 * At this point, we have no other references and there is
771 * no way to pick any more up (removed from LRU, removed
772 * from pagecache). Can use non-atomic bitops now (and
773 * we obviously don't have to worry about waking up a process
774 * waiting on the page lock, because there are no references.
775 */
776 __clear_page_locked(page);
e286781d 777free_it:
05ff5137 778 nr_reclaimed++;
e286781d
NP
779 if (!pagevec_add(&freed_pvec, page)) {
780 __pagevec_free(&freed_pvec);
781 pagevec_reinit(&freed_pvec);
782 }
1da177e4
LT
783 continue;
784
b291f000 785cull_mlocked:
63d6c5ad
HD
786 if (PageSwapCache(page))
787 try_to_free_swap(page);
b291f000
NP
788 unlock_page(page);
789 putback_lru_page(page);
790 continue;
791
1da177e4 792activate_locked:
68a22394
RR
793 /* Not a candidate for swapping, so reclaim swap space. */
794 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 795 try_to_free_swap(page);
894bc310 796 VM_BUG_ON(PageActive(page));
1da177e4
LT
797 SetPageActive(page);
798 pgactivate++;
799keep_locked:
800 unlock_page(page);
801keep:
802 list_add(&page->lru, &ret_pages);
b291f000 803 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
804 }
805 list_splice(&ret_pages, page_list);
806 if (pagevec_count(&freed_pvec))
e286781d 807 __pagevec_free(&freed_pvec);
f8891e5e 808 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 809 return nr_reclaimed;
1da177e4
LT
810}
811
5ad333eb
AW
812/* LRU Isolation modes. */
813#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
814#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
815#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
816
817/*
818 * Attempt to remove the specified page from its LRU. Only take this page
819 * if it is of the appropriate PageActive status. Pages which are being
820 * freed elsewhere are also ignored.
821 *
822 * page: page to consider
823 * mode: one of the LRU isolation modes defined above
824 *
825 * returns 0 on success, -ve errno on failure.
826 */
4f98a2fe 827int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
828{
829 int ret = -EINVAL;
830
831 /* Only take pages on the LRU. */
832 if (!PageLRU(page))
833 return ret;
834
835 /*
836 * When checking the active state, we need to be sure we are
837 * dealing with comparible boolean values. Take the logical not
838 * of each.
839 */
840 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
841 return ret;
842
6c0b1351 843 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
4f98a2fe
RR
844 return ret;
845
894bc310
LS
846 /*
847 * When this function is being called for lumpy reclaim, we
848 * initially look into all LRU pages, active, inactive and
849 * unevictable; only give shrink_page_list evictable pages.
850 */
851 if (PageUnevictable(page))
852 return ret;
853
5ad333eb 854 ret = -EBUSY;
08e552c6 855
5ad333eb
AW
856 if (likely(get_page_unless_zero(page))) {
857 /*
858 * Be careful not to clear PageLRU until after we're
859 * sure the page is not being freed elsewhere -- the
860 * page release code relies on it.
861 */
862 ClearPageLRU(page);
863 ret = 0;
864 }
865
866 return ret;
867}
868
1da177e4
LT
869/*
870 * zone->lru_lock is heavily contended. Some of the functions that
871 * shrink the lists perform better by taking out a batch of pages
872 * and working on them outside the LRU lock.
873 *
874 * For pagecache intensive workloads, this function is the hottest
875 * spot in the kernel (apart from copy_*_user functions).
876 *
877 * Appropriate locks must be held before calling this function.
878 *
879 * @nr_to_scan: The number of pages to look through on the list.
880 * @src: The LRU list to pull pages off.
881 * @dst: The temp list to put pages on to.
882 * @scanned: The number of pages that were scanned.
5ad333eb
AW
883 * @order: The caller's attempted allocation order
884 * @mode: One of the LRU isolation modes
4f98a2fe 885 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
886 *
887 * returns how many pages were moved onto *@dst.
888 */
69e05944
AM
889static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
890 struct list_head *src, struct list_head *dst,
4f98a2fe 891 unsigned long *scanned, int order, int mode, int file)
1da177e4 892{
69e05944 893 unsigned long nr_taken = 0;
c9b02d97 894 unsigned long scan;
1da177e4 895
c9b02d97 896 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
897 struct page *page;
898 unsigned long pfn;
899 unsigned long end_pfn;
900 unsigned long page_pfn;
901 int zone_id;
902
1da177e4
LT
903 page = lru_to_page(src);
904 prefetchw_prev_lru_page(page, src, flags);
905
725d704e 906 VM_BUG_ON(!PageLRU(page));
8d438f96 907
4f98a2fe 908 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
909 case 0:
910 list_move(&page->lru, dst);
2ffebca6 911 mem_cgroup_del_lru(page);
7c8ee9a8 912 nr_taken++;
5ad333eb
AW
913 break;
914
915 case -EBUSY:
916 /* else it is being freed elsewhere */
917 list_move(&page->lru, src);
2ffebca6 918 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 919 continue;
46453a6e 920
5ad333eb
AW
921 default:
922 BUG();
923 }
924
925 if (!order)
926 continue;
927
928 /*
929 * Attempt to take all pages in the order aligned region
930 * surrounding the tag page. Only take those pages of
931 * the same active state as that tag page. We may safely
932 * round the target page pfn down to the requested order
933 * as the mem_map is guarenteed valid out to MAX_ORDER,
934 * where that page is in a different zone we will detect
935 * it from its zone id and abort this block scan.
936 */
937 zone_id = page_zone_id(page);
938 page_pfn = page_to_pfn(page);
939 pfn = page_pfn & ~((1 << order) - 1);
940 end_pfn = pfn + (1 << order);
941 for (; pfn < end_pfn; pfn++) {
942 struct page *cursor_page;
943
944 /* The target page is in the block, ignore it. */
945 if (unlikely(pfn == page_pfn))
946 continue;
947
948 /* Avoid holes within the zone. */
949 if (unlikely(!pfn_valid_within(pfn)))
950 break;
951
952 cursor_page = pfn_to_page(pfn);
4f98a2fe 953
5ad333eb
AW
954 /* Check that we have not crossed a zone boundary. */
955 if (unlikely(page_zone_id(cursor_page) != zone_id))
956 continue;
de2e7567
MK
957
958 /*
959 * If we don't have enough swap space, reclaiming of
960 * anon page which don't already have a swap slot is
961 * pointless.
962 */
963 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
964 !PageSwapCache(cursor_page))
965 continue;
966
ee993b13 967 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 968 list_move(&cursor_page->lru, dst);
cb4cbcf6 969 mem_cgroup_del_lru(cursor_page);
5ad333eb
AW
970 nr_taken++;
971 scan++;
5ad333eb
AW
972 }
973 }
1da177e4
LT
974 }
975
976 *scanned = scan;
977 return nr_taken;
978}
979
66e1707b
BS
980static unsigned long isolate_pages_global(unsigned long nr,
981 struct list_head *dst,
982 unsigned long *scanned, int order,
983 int mode, struct zone *z,
984 struct mem_cgroup *mem_cont,
4f98a2fe 985 int active, int file)
66e1707b 986{
4f98a2fe 987 int lru = LRU_BASE;
66e1707b 988 if (active)
4f98a2fe
RR
989 lru += LRU_ACTIVE;
990 if (file)
991 lru += LRU_FILE;
992 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 993 mode, file);
66e1707b
BS
994}
995
5ad333eb
AW
996/*
997 * clear_active_flags() is a helper for shrink_active_list(), clearing
998 * any active bits from the pages in the list.
999 */
4f98a2fe
RR
1000static unsigned long clear_active_flags(struct list_head *page_list,
1001 unsigned int *count)
5ad333eb
AW
1002{
1003 int nr_active = 0;
4f98a2fe 1004 int lru;
5ad333eb
AW
1005 struct page *page;
1006
4f98a2fe 1007 list_for_each_entry(page, page_list, lru) {
401a8e1c 1008 lru = page_lru_base_type(page);
5ad333eb 1009 if (PageActive(page)) {
4f98a2fe 1010 lru += LRU_ACTIVE;
5ad333eb
AW
1011 ClearPageActive(page);
1012 nr_active++;
1013 }
4f98a2fe
RR
1014 count[lru]++;
1015 }
5ad333eb
AW
1016
1017 return nr_active;
1018}
1019
62695a84
NP
1020/**
1021 * isolate_lru_page - tries to isolate a page from its LRU list
1022 * @page: page to isolate from its LRU list
1023 *
1024 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1025 * vmstat statistic corresponding to whatever LRU list the page was on.
1026 *
1027 * Returns 0 if the page was removed from an LRU list.
1028 * Returns -EBUSY if the page was not on an LRU list.
1029 *
1030 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1031 * the active list, it will have PageActive set. If it was found on
1032 * the unevictable list, it will have the PageUnevictable bit set. That flag
1033 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1034 *
1035 * The vmstat statistic corresponding to the list on which the page was
1036 * found will be decremented.
1037 *
1038 * Restrictions:
1039 * (1) Must be called with an elevated refcount on the page. This is a
1040 * fundamentnal difference from isolate_lru_pages (which is called
1041 * without a stable reference).
1042 * (2) the lru_lock must not be held.
1043 * (3) interrupts must be enabled.
1044 */
1045int isolate_lru_page(struct page *page)
1046{
1047 int ret = -EBUSY;
1048
1049 if (PageLRU(page)) {
1050 struct zone *zone = page_zone(page);
1051
1052 spin_lock_irq(&zone->lru_lock);
1053 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1054 int lru = page_lru(page);
62695a84
NP
1055 ret = 0;
1056 ClearPageLRU(page);
4f98a2fe 1057
4f98a2fe 1058 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1059 }
1060 spin_unlock_irq(&zone->lru_lock);
1061 }
1062 return ret;
1063}
1064
35cd7815
RR
1065/*
1066 * Are there way too many processes in the direct reclaim path already?
1067 */
1068static int too_many_isolated(struct zone *zone, int file,
1069 struct scan_control *sc)
1070{
1071 unsigned long inactive, isolated;
1072
1073 if (current_is_kswapd())
1074 return 0;
1075
1076 if (!scanning_global_lru(sc))
1077 return 0;
1078
1079 if (file) {
1080 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1081 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1082 } else {
1083 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1084 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1085 }
1086
1087 return isolated > inactive;
1088}
1089
1da177e4 1090/*
1742f19f
AM
1091 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1092 * of reclaimed pages
1da177e4 1093 */
1742f19f 1094static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1095 struct zone *zone, struct scan_control *sc,
1096 int priority, int file)
1da177e4
LT
1097{
1098 LIST_HEAD(page_list);
1099 struct pagevec pvec;
69e05944 1100 unsigned long nr_scanned = 0;
05ff5137 1101 unsigned long nr_reclaimed = 0;
6e901571 1102 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
78dc583d
KM
1103 int lumpy_reclaim = 0;
1104
35cd7815 1105 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1106 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1107
1108 /* We are about to die and free our memory. Return now. */
1109 if (fatal_signal_pending(current))
1110 return SWAP_CLUSTER_MAX;
1111 }
1112
78dc583d
KM
1113 /*
1114 * If we need a large contiguous chunk of memory, or have
1115 * trouble getting a small set of contiguous pages, we
1116 * will reclaim both active and inactive pages.
1117 *
1118 * We use the same threshold as pageout congestion_wait below.
1119 */
1120 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1121 lumpy_reclaim = 1;
1122 else if (sc->order && priority < DEF_PRIORITY - 2)
1123 lumpy_reclaim = 1;
1da177e4
LT
1124
1125 pagevec_init(&pvec, 1);
1126
1127 lru_add_drain();
1128 spin_lock_irq(&zone->lru_lock);
69e05944 1129 do {
1da177e4 1130 struct page *page;
69e05944
AM
1131 unsigned long nr_taken;
1132 unsigned long nr_scan;
1133 unsigned long nr_freed;
5ad333eb 1134 unsigned long nr_active;
4f98a2fe 1135 unsigned int count[NR_LRU_LISTS] = { 0, };
78dc583d 1136 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
a731286d
KM
1137 unsigned long nr_anon;
1138 unsigned long nr_file;
1da177e4 1139
66e1707b 1140 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
4f98a2fe
RR
1141 &page_list, &nr_scan, sc->order, mode,
1142 zone, sc->mem_cgroup, 0, file);
b35ea17b
KM
1143
1144 if (scanning_global_lru(sc)) {
1145 zone->pages_scanned += nr_scan;
1146 if (current_is_kswapd())
1147 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1148 nr_scan);
1149 else
1150 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1151 nr_scan);
1152 }
1153
1154 if (nr_taken == 0)
1155 goto done;
1156
4f98a2fe 1157 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1158 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1159
4f98a2fe
RR
1160 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1161 -count[LRU_ACTIVE_FILE]);
1162 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1163 -count[LRU_INACTIVE_FILE]);
1164 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1165 -count[LRU_ACTIVE_ANON]);
1166 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1167 -count[LRU_INACTIVE_ANON]);
1168
a731286d
KM
1169 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1170 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1171 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1172 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
3e2f41f1
KM
1173
1174 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1175 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1176 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1177 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1178
1da177e4
LT
1179 spin_unlock_irq(&zone->lru_lock);
1180
69e05944 1181 nr_scanned += nr_scan;
c661b078
AW
1182 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1183
1184 /*
1185 * If we are direct reclaiming for contiguous pages and we do
1186 * not reclaim everything in the list, try again and wait
1187 * for IO to complete. This will stall high-order allocations
1188 * but that should be acceptable to the caller
1189 */
1190 if (nr_freed < nr_taken && !current_is_kswapd() &&
78dc583d 1191 lumpy_reclaim) {
8aa7e847 1192 congestion_wait(BLK_RW_ASYNC, HZ/10);
c661b078
AW
1193
1194 /*
1195 * The attempt at page out may have made some
1196 * of the pages active, mark them inactive again.
1197 */
4f98a2fe 1198 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1199 count_vm_events(PGDEACTIVATE, nr_active);
1200
1201 nr_freed += shrink_page_list(&page_list, sc,
1202 PAGEOUT_IO_SYNC);
1203 }
1204
05ff5137 1205 nr_reclaimed += nr_freed;
b35ea17b 1206
a74609fa 1207 local_irq_disable();
b35ea17b 1208 if (current_is_kswapd())
f8891e5e 1209 __count_vm_events(KSWAPD_STEAL, nr_freed);
918d3f90 1210 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa
NP
1211
1212 spin_lock(&zone->lru_lock);
1da177e4
LT
1213 /*
1214 * Put back any unfreeable pages.
1215 */
1216 while (!list_empty(&page_list)) {
894bc310 1217 int lru;
1da177e4 1218 page = lru_to_page(&page_list);
725d704e 1219 VM_BUG_ON(PageLRU(page));
1da177e4 1220 list_del(&page->lru);
894bc310
LS
1221 if (unlikely(!page_evictable(page, NULL))) {
1222 spin_unlock_irq(&zone->lru_lock);
1223 putback_lru_page(page);
1224 spin_lock_irq(&zone->lru_lock);
1225 continue;
1226 }
1227 SetPageLRU(page);
1228 lru = page_lru(page);
1229 add_page_to_lru_list(zone, page, lru);
74a1c48f 1230 if (is_active_lru(lru)) {
b7c46d15 1231 int file = is_file_lru(lru);
6e901571 1232 reclaim_stat->recent_rotated[file]++;
4f98a2fe 1233 }
1da177e4
LT
1234 if (!pagevec_add(&pvec, page)) {
1235 spin_unlock_irq(&zone->lru_lock);
1236 __pagevec_release(&pvec);
1237 spin_lock_irq(&zone->lru_lock);
1238 }
1239 }
a731286d
KM
1240 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1241 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1242
69e05944 1243 } while (nr_scanned < max_scan);
b35ea17b 1244
1da177e4 1245done:
b35ea17b 1246 spin_unlock_irq(&zone->lru_lock);
1da177e4 1247 pagevec_release(&pvec);
05ff5137 1248 return nr_reclaimed;
1da177e4
LT
1249}
1250
3bb1a852
MB
1251/*
1252 * We are about to scan this zone at a certain priority level. If that priority
1253 * level is smaller (ie: more urgent) than the previous priority, then note
1254 * that priority level within the zone. This is done so that when the next
1255 * process comes in to scan this zone, it will immediately start out at this
1256 * priority level rather than having to build up its own scanning priority.
1257 * Here, this priority affects only the reclaim-mapped threshold.
1258 */
1259static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1260{
1261 if (priority < zone->prev_priority)
1262 zone->prev_priority = priority;
1263}
1264
1da177e4
LT
1265/*
1266 * This moves pages from the active list to the inactive list.
1267 *
1268 * We move them the other way if the page is referenced by one or more
1269 * processes, from rmap.
1270 *
1271 * If the pages are mostly unmapped, the processing is fast and it is
1272 * appropriate to hold zone->lru_lock across the whole operation. But if
1273 * the pages are mapped, the processing is slow (page_referenced()) so we
1274 * should drop zone->lru_lock around each page. It's impossible to balance
1275 * this, so instead we remove the pages from the LRU while processing them.
1276 * It is safe to rely on PG_active against the non-LRU pages in here because
1277 * nobody will play with that bit on a non-LRU page.
1278 *
1279 * The downside is that we have to touch page->_count against each page.
1280 * But we had to alter page->flags anyway.
1281 */
1cfb419b 1282
3eb4140f
WF
1283static void move_active_pages_to_lru(struct zone *zone,
1284 struct list_head *list,
1285 enum lru_list lru)
1286{
1287 unsigned long pgmoved = 0;
1288 struct pagevec pvec;
1289 struct page *page;
1290
1291 pagevec_init(&pvec, 1);
1292
1293 while (!list_empty(list)) {
1294 page = lru_to_page(list);
3eb4140f
WF
1295
1296 VM_BUG_ON(PageLRU(page));
1297 SetPageLRU(page);
1298
3eb4140f
WF
1299 list_move(&page->lru, &zone->lru[lru].list);
1300 mem_cgroup_add_lru_list(page, lru);
1301 pgmoved++;
1302
1303 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1304 spin_unlock_irq(&zone->lru_lock);
1305 if (buffer_heads_over_limit)
1306 pagevec_strip(&pvec);
1307 __pagevec_release(&pvec);
1308 spin_lock_irq(&zone->lru_lock);
1309 }
1310 }
1311 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1312 if (!is_active_lru(lru))
1313 __count_vm_events(PGDEACTIVATE, pgmoved);
1314}
1cfb419b 1315
1742f19f 1316static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1317 struct scan_control *sc, int priority, int file)
1da177e4 1318{
44c241f1 1319 unsigned long nr_taken;
69e05944 1320 unsigned long pgscanned;
6fe6b7e3 1321 unsigned long vm_flags;
1da177e4 1322 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1323 LIST_HEAD(l_active);
b69408e8 1324 LIST_HEAD(l_inactive);
1da177e4 1325 struct page *page;
6e901571 1326 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1327 unsigned long nr_rotated = 0;
1da177e4
LT
1328
1329 lru_add_drain();
1330 spin_lock_irq(&zone->lru_lock);
44c241f1 1331 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
66e1707b 1332 ISOLATE_ACTIVE, zone,
4f98a2fe 1333 sc->mem_cgroup, 1, file);
1cfb419b
KH
1334 /*
1335 * zone->pages_scanned is used for detect zone's oom
1336 * mem_cgroup remembers nr_scan by itself.
1337 */
e72e2bd6 1338 if (scanning_global_lru(sc)) {
1cfb419b 1339 zone->pages_scanned += pgscanned;
4f98a2fe 1340 }
b7c46d15 1341 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1342
3eb4140f 1343 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1344 if (file)
44c241f1 1345 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1346 else
44c241f1 1347 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1348 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1349 spin_unlock_irq(&zone->lru_lock);
1350
1da177e4
LT
1351 while (!list_empty(&l_hold)) {
1352 cond_resched();
1353 page = lru_to_page(&l_hold);
1354 list_del(&page->lru);
7e9cd484 1355
894bc310
LS
1356 if (unlikely(!page_evictable(page, NULL))) {
1357 putback_lru_page(page);
1358 continue;
1359 }
1360
7e9cd484
RR
1361 /* page_referenced clears PageReferenced */
1362 if (page_mapping_inuse(page) &&
8cab4754 1363 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
44c241f1 1364 nr_rotated++;
8cab4754
WF
1365 /*
1366 * Identify referenced, file-backed active pages and
1367 * give them one more trip around the active list. So
1368 * that executable code get better chances to stay in
1369 * memory under moderate memory pressure. Anon pages
1370 * are not likely to be evicted by use-once streaming
1371 * IO, plus JVM can create lots of anon VM_EXEC pages,
1372 * so we ignore them here.
1373 */
41e20983 1374 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1375 list_add(&page->lru, &l_active);
1376 continue;
1377 }
1378 }
7e9cd484 1379
5205e56e 1380 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1381 list_add(&page->lru, &l_inactive);
1382 }
1383
b555749a 1384 /*
8cab4754 1385 * Move pages back to the lru list.
b555749a 1386 */
2a1dc509 1387 spin_lock_irq(&zone->lru_lock);
556adecb 1388 /*
8cab4754
WF
1389 * Count referenced pages from currently used mappings as rotated,
1390 * even though only some of them are actually re-activated. This
1391 * helps balance scan pressure between file and anonymous pages in
1392 * get_scan_ratio.
7e9cd484 1393 */
b7c46d15 1394 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1395
3eb4140f
WF
1396 move_active_pages_to_lru(zone, &l_active,
1397 LRU_ACTIVE + file * LRU_FILE);
1398 move_active_pages_to_lru(zone, &l_inactive,
1399 LRU_BASE + file * LRU_FILE);
a731286d 1400 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1401 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1402}
1403
14797e23 1404static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1405{
1406 unsigned long active, inactive;
1407
1408 active = zone_page_state(zone, NR_ACTIVE_ANON);
1409 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1410
1411 if (inactive * zone->inactive_ratio < active)
1412 return 1;
1413
1414 return 0;
1415}
1416
14797e23
KM
1417/**
1418 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1419 * @zone: zone to check
1420 * @sc: scan control of this context
1421 *
1422 * Returns true if the zone does not have enough inactive anon pages,
1423 * meaning some active anon pages need to be deactivated.
1424 */
1425static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1426{
1427 int low;
1428
e72e2bd6 1429 if (scanning_global_lru(sc))
14797e23
KM
1430 low = inactive_anon_is_low_global(zone);
1431 else
c772be93 1432 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1433 return low;
1434}
1435
56e49d21
RR
1436static int inactive_file_is_low_global(struct zone *zone)
1437{
1438 unsigned long active, inactive;
1439
1440 active = zone_page_state(zone, NR_ACTIVE_FILE);
1441 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1442
1443 return (active > inactive);
1444}
1445
1446/**
1447 * inactive_file_is_low - check if file pages need to be deactivated
1448 * @zone: zone to check
1449 * @sc: scan control of this context
1450 *
1451 * When the system is doing streaming IO, memory pressure here
1452 * ensures that active file pages get deactivated, until more
1453 * than half of the file pages are on the inactive list.
1454 *
1455 * Once we get to that situation, protect the system's working
1456 * set from being evicted by disabling active file page aging.
1457 *
1458 * This uses a different ratio than the anonymous pages, because
1459 * the page cache uses a use-once replacement algorithm.
1460 */
1461static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1462{
1463 int low;
1464
1465 if (scanning_global_lru(sc))
1466 low = inactive_file_is_low_global(zone);
1467 else
1468 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1469 return low;
1470}
1471
4f98a2fe 1472static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1473 struct zone *zone, struct scan_control *sc, int priority)
1474{
4f98a2fe
RR
1475 int file = is_file_lru(lru);
1476
56e49d21 1477 if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
556adecb
RR
1478 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1479 return 0;
1480 }
1481
14797e23 1482 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
4f98a2fe 1483 shrink_active_list(nr_to_scan, zone, sc, priority, file);
b69408e8
CL
1484 return 0;
1485 }
33c120ed 1486 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1487}
1488
1489/*
1490 * Determine how aggressively the anon and file LRU lists should be
1491 * scanned. The relative value of each set of LRU lists is determined
1492 * by looking at the fraction of the pages scanned we did rotate back
1493 * onto the active list instead of evict.
1494 *
1495 * percent[0] specifies how much pressure to put on ram/swap backed
1496 * memory, while percent[1] determines pressure on the file LRUs.
1497 */
1498static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1499 unsigned long *percent)
1500{
1501 unsigned long anon, file, free;
1502 unsigned long anon_prio, file_prio;
1503 unsigned long ap, fp;
6e901571 1504 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
4f98a2fe 1505
0b217676
VL
1506 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1507 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1508 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1509 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1510
e72e2bd6 1511 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1512 free = zone_page_state(zone, NR_FREE_PAGES);
1513 /* If we have very few page cache pages,
1514 force-scan anon pages. */
41858966 1515 if (unlikely(file + free <= high_wmark_pages(zone))) {
eeee9a8c
KM
1516 percent[0] = 100;
1517 percent[1] = 0;
1518 return;
1519 }
4f98a2fe
RR
1520 }
1521
1522 /*
1523 * OK, so we have swap space and a fair amount of page cache
1524 * pages. We use the recently rotated / recently scanned
1525 * ratios to determine how valuable each cache is.
1526 *
1527 * Because workloads change over time (and to avoid overflow)
1528 * we keep these statistics as a floating average, which ends
1529 * up weighing recent references more than old ones.
1530 *
1531 * anon in [0], file in [1]
1532 */
6e901571 1533 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
4f98a2fe 1534 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1535 reclaim_stat->recent_scanned[0] /= 2;
1536 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1537 spin_unlock_irq(&zone->lru_lock);
1538 }
1539
6e901571 1540 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
4f98a2fe 1541 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1542 reclaim_stat->recent_scanned[1] /= 2;
1543 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1544 spin_unlock_irq(&zone->lru_lock);
1545 }
1546
1547 /*
1548 * With swappiness at 100, anonymous and file have the same priority.
1549 * This scanning priority is essentially the inverse of IO cost.
1550 */
1551 anon_prio = sc->swappiness;
1552 file_prio = 200 - sc->swappiness;
1553
1554 /*
00d8089c
RR
1555 * The amount of pressure on anon vs file pages is inversely
1556 * proportional to the fraction of recently scanned pages on
1557 * each list that were recently referenced and in active use.
4f98a2fe 1558 */
6e901571
KM
1559 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1560 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1561
6e901571
KM
1562 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1563 fp /= reclaim_stat->recent_rotated[1] + 1;
4f98a2fe
RR
1564
1565 /* Normalize to percentages */
1566 percent[0] = 100 * ap / (ap + fp + 1);
1567 percent[1] = 100 - percent[0];
b69408e8
CL
1568}
1569
6e08a369
WF
1570/*
1571 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1572 * until we collected @swap_cluster_max pages to scan.
1573 */
1574static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1575 unsigned long *nr_saved_scan,
1576 unsigned long swap_cluster_max)
1577{
1578 unsigned long nr;
1579
1580 *nr_saved_scan += nr_to_scan;
1581 nr = *nr_saved_scan;
1582
1583 if (nr >= swap_cluster_max)
1584 *nr_saved_scan = 0;
1585 else
1586 nr = 0;
1587
1588 return nr;
1589}
4f98a2fe 1590
1da177e4
LT
1591/*
1592 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1593 */
a79311c1 1594static void shrink_zone(int priority, struct zone *zone,
05ff5137 1595 struct scan_control *sc)
1da177e4 1596{
b69408e8 1597 unsigned long nr[NR_LRU_LISTS];
8695949a 1598 unsigned long nr_to_scan;
4f98a2fe 1599 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1600 enum lru_list l;
01dbe5c9
KM
1601 unsigned long nr_reclaimed = sc->nr_reclaimed;
1602 unsigned long swap_cluster_max = sc->swap_cluster_max;
22fba335 1603 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
f8629631 1604 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
9198e96c 1605 int noswap = 0;
1da177e4 1606
9198e96c
DN
1607 /* If we have no swap space, do not bother scanning anon pages. */
1608 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1609 noswap = 1;
1610 percent[0] = 0;
1611 percent[1] = 100;
1612 } else
1613 get_scan_ratio(zone, sc, percent);
4f98a2fe 1614
894bc310 1615 for_each_evictable_lru(l) {
9439c1c9 1616 int file = is_file_lru(l);
8713e012 1617 unsigned long scan;
e0f79b8f 1618
0b217676 1619 scan = zone_nr_lru_pages(zone, sc, l);
9198e96c 1620 if (priority || noswap) {
9439c1c9
KM
1621 scan >>= priority;
1622 scan = (scan * percent[file]) / 100;
1623 }
f8629631
WF
1624 nr[l] = nr_scan_try_batch(scan,
1625 &reclaim_stat->nr_saved_scan[l],
1626 swap_cluster_max);
1cfb419b 1627 }
1da177e4 1628
556adecb
RR
1629 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1630 nr[LRU_INACTIVE_FILE]) {
894bc310 1631 for_each_evictable_lru(l) {
b69408e8 1632 if (nr[l]) {
01dbe5c9 1633 nr_to_scan = min(nr[l], swap_cluster_max);
b69408e8 1634 nr[l] -= nr_to_scan;
1da177e4 1635
01dbe5c9
KM
1636 nr_reclaimed += shrink_list(l, nr_to_scan,
1637 zone, sc, priority);
b69408e8 1638 }
1da177e4 1639 }
a79311c1
RR
1640 /*
1641 * On large memory systems, scan >> priority can become
1642 * really large. This is fine for the starting priority;
1643 * we want to put equal scanning pressure on each zone.
1644 * However, if the VM has a harder time of freeing pages,
1645 * with multiple processes reclaiming pages, the total
1646 * freeing target can get unreasonably large.
1647 */
22fba335 1648 if (nr_reclaimed > nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 1649 break;
1da177e4
LT
1650 }
1651
01dbe5c9
KM
1652 sc->nr_reclaimed = nr_reclaimed;
1653
556adecb
RR
1654 /*
1655 * Even if we did not try to evict anon pages at all, we want to
1656 * rebalance the anon lru active/inactive ratio.
1657 */
69c85481 1658 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
556adecb
RR
1659 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1660
232ea4d6 1661 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1662}
1663
1664/*
1665 * This is the direct reclaim path, for page-allocating processes. We only
1666 * try to reclaim pages from zones which will satisfy the caller's allocation
1667 * request.
1668 *
41858966
MG
1669 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1670 * Because:
1da177e4
LT
1671 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1672 * allocation or
41858966
MG
1673 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1674 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1675 * zone defense algorithm.
1da177e4 1676 *
1da177e4
LT
1677 * If a zone is deemed to be full of pinned pages then just give it a light
1678 * scan then give up on it.
1679 */
a79311c1 1680static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1681 struct scan_control *sc)
1da177e4 1682{
54a6eb5c 1683 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
dd1a239f 1684 struct zoneref *z;
54a6eb5c 1685 struct zone *zone;
1cfb419b 1686
408d8544 1687 sc->all_unreclaimable = 1;
327c0e96
KH
1688 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1689 sc->nodemask) {
f3fe6512 1690 if (!populated_zone(zone))
1da177e4 1691 continue;
1cfb419b
KH
1692 /*
1693 * Take care memory controller reclaiming has small influence
1694 * to global LRU.
1695 */
e72e2bd6 1696 if (scanning_global_lru(sc)) {
1cfb419b
KH
1697 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1698 continue;
1699 note_zone_scanning_priority(zone, priority);
1da177e4 1700
1cfb419b
KH
1701 if (zone_is_all_unreclaimable(zone) &&
1702 priority != DEF_PRIORITY)
1703 continue; /* Let kswapd poll it */
1704 sc->all_unreclaimable = 0;
1705 } else {
1706 /*
1707 * Ignore cpuset limitation here. We just want to reduce
1708 * # of used pages by us regardless of memory shortage.
1709 */
1710 sc->all_unreclaimable = 0;
1711 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1712 priority);
1713 }
408d8544 1714
a79311c1 1715 shrink_zone(priority, zone, sc);
1da177e4
LT
1716 }
1717}
4f98a2fe 1718
1da177e4
LT
1719/*
1720 * This is the main entry point to direct page reclaim.
1721 *
1722 * If a full scan of the inactive list fails to free enough memory then we
1723 * are "out of memory" and something needs to be killed.
1724 *
1725 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1726 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
1727 * caller can't do much about. We kick the writeback threads and take explicit
1728 * naps in the hope that some of these pages can be written. But if the
1729 * allocating task holds filesystem locks which prevent writeout this might not
1730 * work, and the allocation attempt will fail.
a41f24ea
NA
1731 *
1732 * returns: 0, if no pages reclaimed
1733 * else, the number of pages reclaimed
1da177e4 1734 */
dac1d27b 1735static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1736 struct scan_control *sc)
1da177e4
LT
1737{
1738 int priority;
c700be3d 1739 unsigned long ret = 0;
69e05944 1740 unsigned long total_scanned = 0;
1da177e4 1741 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1742 unsigned long lru_pages = 0;
dd1a239f 1743 struct zoneref *z;
54a6eb5c 1744 struct zone *zone;
dd1a239f 1745 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
22fba335 1746 unsigned long writeback_threshold;
1da177e4 1747
873b4771
KK
1748 delayacct_freepages_start();
1749
e72e2bd6 1750 if (scanning_global_lru(sc))
1cfb419b
KH
1751 count_vm_event(ALLOCSTALL);
1752 /*
1753 * mem_cgroup will not do shrink_slab.
1754 */
e72e2bd6 1755 if (scanning_global_lru(sc)) {
54a6eb5c 1756 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1757
1cfb419b
KH
1758 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1759 continue;
1da177e4 1760
adea02a1 1761 lru_pages += zone_reclaimable_pages(zone);
1cfb419b 1762 }
1da177e4
LT
1763 }
1764
1765 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1766 sc->nr_scanned = 0;
f7b7fd8f
RR
1767 if (!priority)
1768 disable_swap_token();
a79311c1 1769 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1770 /*
1771 * Don't shrink slabs when reclaiming memory from
1772 * over limit cgroups
1773 */
e72e2bd6 1774 if (scanning_global_lru(sc)) {
dd1a239f 1775 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1776 if (reclaim_state) {
a79311c1 1777 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1778 reclaim_state->reclaimed_slab = 0;
1779 }
1da177e4 1780 }
66e1707b 1781 total_scanned += sc->nr_scanned;
22fba335 1782 if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
a79311c1 1783 ret = sc->nr_reclaimed;
1da177e4
LT
1784 goto out;
1785 }
1786
1787 /*
1788 * Try to write back as many pages as we just scanned. This
1789 * tends to cause slow streaming writers to write data to the
1790 * disk smoothly, at the dirtying rate, which is nice. But
1791 * that's undesirable in laptop mode, where we *want* lumpy
1792 * writeout. So in laptop mode, write out the whole world.
1793 */
22fba335
KM
1794 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1795 if (total_scanned > writeback_threshold) {
03ba3782 1796 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 1797 sc->may_writepage = 1;
1da177e4
LT
1798 }
1799
1800 /* Take a nap, wait for some writeback to complete */
7b51755c
KM
1801 if (!sc->hibernation_mode && sc->nr_scanned &&
1802 priority < DEF_PRIORITY - 2)
8aa7e847 1803 congestion_wait(BLK_RW_ASYNC, HZ/10);
1da177e4 1804 }
87547ee9 1805 /* top priority shrink_zones still had more to do? don't OOM, then */
e72e2bd6 1806 if (!sc->all_unreclaimable && scanning_global_lru(sc))
a79311c1 1807 ret = sc->nr_reclaimed;
1da177e4 1808out:
3bb1a852
MB
1809 /*
1810 * Now that we've scanned all the zones at this priority level, note
1811 * that level within the zone so that the next thread which performs
1812 * scanning of this zone will immediately start out at this priority
1813 * level. This affects only the decision whether or not to bring
1814 * mapped pages onto the inactive list.
1815 */
1816 if (priority < 0)
1817 priority = 0;
1da177e4 1818
e72e2bd6 1819 if (scanning_global_lru(sc)) {
54a6eb5c 1820 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1821
1822 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1823 continue;
1824
1825 zone->prev_priority = priority;
1826 }
1827 } else
1828 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1829
873b4771
KK
1830 delayacct_freepages_end();
1831
1da177e4
LT
1832 return ret;
1833}
1834
dac1d27b 1835unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 1836 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b
BS
1837{
1838 struct scan_control sc = {
1839 .gfp_mask = gfp_mask,
1840 .may_writepage = !laptop_mode,
1841 .swap_cluster_max = SWAP_CLUSTER_MAX,
22fba335 1842 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 1843 .may_unmap = 1,
2e2e4259 1844 .may_swap = 1,
66e1707b
BS
1845 .swappiness = vm_swappiness,
1846 .order = order,
1847 .mem_cgroup = NULL,
1848 .isolate_pages = isolate_pages_global,
327c0e96 1849 .nodemask = nodemask,
66e1707b
BS
1850 };
1851
dd1a239f 1852 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1853}
1854
00f0b825 1855#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1856
4e416953
BS
1857unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1858 gfp_t gfp_mask, bool noswap,
1859 unsigned int swappiness,
1860 struct zone *zone, int nid)
1861{
1862 struct scan_control sc = {
1863 .may_writepage = !laptop_mode,
1864 .may_unmap = 1,
1865 .may_swap = !noswap,
1866 .swap_cluster_max = SWAP_CLUSTER_MAX,
1867 .swappiness = swappiness,
1868 .order = 0,
1869 .mem_cgroup = mem,
1870 .isolate_pages = mem_cgroup_isolate_pages,
1871 };
1872 nodemask_t nm = nodemask_of_node(nid);
1873
1874 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1875 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1876 sc.nodemask = &nm;
1877 sc.nr_reclaimed = 0;
1878 sc.nr_scanned = 0;
1879 /*
1880 * NOTE: Although we can get the priority field, using it
1881 * here is not a good idea, since it limits the pages we can scan.
1882 * if we don't reclaim here, the shrink_zone from balance_pgdat
1883 * will pick up pages from other mem cgroup's as well. We hack
1884 * the priority and make it zero.
1885 */
1886 shrink_zone(0, zone, &sc);
1887 return sc.nr_reclaimed;
1888}
1889
e1a1cd59 1890unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
1891 gfp_t gfp_mask,
1892 bool noswap,
1893 unsigned int swappiness)
66e1707b 1894{
4e416953 1895 struct zonelist *zonelist;
66e1707b 1896 struct scan_control sc = {
66e1707b 1897 .may_writepage = !laptop_mode,
a6dc60f8 1898 .may_unmap = 1,
2e2e4259 1899 .may_swap = !noswap,
66e1707b 1900 .swap_cluster_max = SWAP_CLUSTER_MAX,
22fba335 1901 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a7885eb8 1902 .swappiness = swappiness,
66e1707b
BS
1903 .order = 0,
1904 .mem_cgroup = mem_cont,
1905 .isolate_pages = mem_cgroup_isolate_pages,
327c0e96 1906 .nodemask = NULL, /* we don't care the placement */
66e1707b 1907 };
66e1707b 1908
dd1a239f
MG
1909 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1910 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1911 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1912 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1913}
1914#endif
1915
f50de2d3 1916/* is kswapd sleeping prematurely? */
bb3ab596 1917static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
f50de2d3 1918{
bb3ab596 1919 int i;
f50de2d3
MG
1920
1921 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1922 if (remaining)
1923 return 1;
1924
1925 /* If after HZ/10, a zone is below the high mark, it's premature */
bb3ab596
KM
1926 for (i = 0; i < pgdat->nr_zones; i++) {
1927 struct zone *zone = pgdat->node_zones + i;
1928
1929 if (!populated_zone(zone))
1930 continue;
1931
f50de2d3
MG
1932 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1933 0, 0))
1934 return 1;
bb3ab596 1935 }
f50de2d3
MG
1936
1937 return 0;
1938}
1939
1da177e4
LT
1940/*
1941 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 1942 * they are all at high_wmark_pages(zone).
1da177e4 1943 *
1da177e4
LT
1944 * Returns the number of pages which were actually freed.
1945 *
1946 * There is special handling here for zones which are full of pinned pages.
1947 * This can happen if the pages are all mlocked, or if they are all used by
1948 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1949 * What we do is to detect the case where all pages in the zone have been
1950 * scanned twice and there has been zero successful reclaim. Mark the zone as
1951 * dead and from now on, only perform a short scan. Basically we're polling
1952 * the zone for when the problem goes away.
1953 *
1954 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
1955 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1956 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1957 * lower zones regardless of the number of free pages in the lower zones. This
1958 * interoperates with the page allocator fallback scheme to ensure that aging
1959 * of pages is balanced across the zones.
1da177e4 1960 */
d6277db4 1961static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1962{
1da177e4
LT
1963 int all_zones_ok;
1964 int priority;
1965 int i;
69e05944 1966 unsigned long total_scanned;
1da177e4 1967 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1968 struct scan_control sc = {
1969 .gfp_mask = GFP_KERNEL,
a6dc60f8 1970 .may_unmap = 1,
2e2e4259 1971 .may_swap = 1,
d6277db4 1972 .swap_cluster_max = SWAP_CLUSTER_MAX,
22fba335
KM
1973 /*
1974 * kswapd doesn't want to be bailed out while reclaim. because
1975 * we want to put equal scanning pressure on each zone.
1976 */
1977 .nr_to_reclaim = ULONG_MAX,
d6277db4 1978 .swappiness = vm_swappiness,
5ad333eb 1979 .order = order,
66e1707b
BS
1980 .mem_cgroup = NULL,
1981 .isolate_pages = isolate_pages_global,
179e9639 1982 };
3bb1a852
MB
1983 /*
1984 * temp_priority is used to remember the scanning priority at which
41858966
MG
1985 * this zone was successfully refilled to
1986 * free_pages == high_wmark_pages(zone).
3bb1a852
MB
1987 */
1988 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1989
1990loop_again:
1991 total_scanned = 0;
a79311c1 1992 sc.nr_reclaimed = 0;
c0bbbc73 1993 sc.may_writepage = !laptop_mode;
f8891e5e 1994 count_vm_event(PAGEOUTRUN);
1da177e4 1995
3bb1a852
MB
1996 for (i = 0; i < pgdat->nr_zones; i++)
1997 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1998
1999 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2000 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2001 unsigned long lru_pages = 0;
bb3ab596 2002 int has_under_min_watermark_zone = 0;
1da177e4 2003
f7b7fd8f
RR
2004 /* The swap token gets in the way of swapout... */
2005 if (!priority)
2006 disable_swap_token();
2007
1da177e4
LT
2008 all_zones_ok = 1;
2009
d6277db4
RW
2010 /*
2011 * Scan in the highmem->dma direction for the highest
2012 * zone which needs scanning
2013 */
2014 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2015 struct zone *zone = pgdat->node_zones + i;
1da177e4 2016
d6277db4
RW
2017 if (!populated_zone(zone))
2018 continue;
1da177e4 2019
e815af95
DR
2020 if (zone_is_all_unreclaimable(zone) &&
2021 priority != DEF_PRIORITY)
d6277db4 2022 continue;
1da177e4 2023
556adecb
RR
2024 /*
2025 * Do some background aging of the anon list, to give
2026 * pages a chance to be referenced before reclaiming.
2027 */
14797e23 2028 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2029 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2030 &sc, priority, 0);
2031
41858966
MG
2032 if (!zone_watermark_ok(zone, order,
2033 high_wmark_pages(zone), 0, 0)) {
d6277db4 2034 end_zone = i;
e1dbeda6 2035 break;
1da177e4 2036 }
1da177e4 2037 }
e1dbeda6
AM
2038 if (i < 0)
2039 goto out;
2040
1da177e4
LT
2041 for (i = 0; i <= end_zone; i++) {
2042 struct zone *zone = pgdat->node_zones + i;
2043
adea02a1 2044 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2045 }
2046
2047 /*
2048 * Now scan the zone in the dma->highmem direction, stopping
2049 * at the last zone which needs scanning.
2050 *
2051 * We do this because the page allocator works in the opposite
2052 * direction. This prevents the page allocator from allocating
2053 * pages behind kswapd's direction of progress, which would
2054 * cause too much scanning of the lower zones.
2055 */
2056 for (i = 0; i <= end_zone; i++) {
2057 struct zone *zone = pgdat->node_zones + i;
b15e0905 2058 int nr_slab;
4e416953 2059 int nid, zid;
1da177e4 2060
f3fe6512 2061 if (!populated_zone(zone))
1da177e4
LT
2062 continue;
2063
e815af95
DR
2064 if (zone_is_all_unreclaimable(zone) &&
2065 priority != DEF_PRIORITY)
1da177e4
LT
2066 continue;
2067
41858966
MG
2068 if (!zone_watermark_ok(zone, order,
2069 high_wmark_pages(zone), end_zone, 0))
d6277db4 2070 all_zones_ok = 0;
3bb1a852 2071 temp_priority[i] = priority;
1da177e4 2072 sc.nr_scanned = 0;
3bb1a852 2073 note_zone_scanning_priority(zone, priority);
4e416953
BS
2074
2075 nid = pgdat->node_id;
2076 zid = zone_idx(zone);
2077 /*
2078 * Call soft limit reclaim before calling shrink_zone.
2079 * For now we ignore the return value
2080 */
2081 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2082 nid, zid);
32a4330d
RR
2083 /*
2084 * We put equal pressure on every zone, unless one
2085 * zone has way too many pages free already.
2086 */
41858966
MG
2087 if (!zone_watermark_ok(zone, order,
2088 8*high_wmark_pages(zone), end_zone, 0))
a79311c1 2089 shrink_zone(priority, zone, &sc);
1da177e4 2090 reclaim_state->reclaimed_slab = 0;
b15e0905 2091 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2092 lru_pages);
a79311c1 2093 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 2094 total_scanned += sc.nr_scanned;
e815af95 2095 if (zone_is_all_unreclaimable(zone))
1da177e4 2096 continue;
b15e0905 2097 if (nr_slab == 0 && zone->pages_scanned >=
adea02a1 2098 (zone_reclaimable_pages(zone) * 6))
e815af95
DR
2099 zone_set_flag(zone,
2100 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
2101 /*
2102 * If we've done a decent amount of scanning and
2103 * the reclaim ratio is low, start doing writepage
2104 * even in laptop mode
2105 */
2106 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2107 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2108 sc.may_writepage = 1;
bb3ab596
KM
2109
2110 /*
2111 * We are still under min water mark. it mean we have
2112 * GFP_ATOMIC allocation failure risk. Hurry up!
2113 */
2114 if (!zone_watermark_ok(zone, order, min_wmark_pages(zone),
2115 end_zone, 0))
2116 has_under_min_watermark_zone = 1;
2117
1da177e4 2118 }
1da177e4
LT
2119 if (all_zones_ok)
2120 break; /* kswapd: all done */
2121 /*
2122 * OK, kswapd is getting into trouble. Take a nap, then take
2123 * another pass across the zones.
2124 */
bb3ab596
KM
2125 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2126 if (has_under_min_watermark_zone)
2127 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2128 else
2129 congestion_wait(BLK_RW_ASYNC, HZ/10);
2130 }
1da177e4
LT
2131
2132 /*
2133 * We do this so kswapd doesn't build up large priorities for
2134 * example when it is freeing in parallel with allocators. It
2135 * matches the direct reclaim path behaviour in terms of impact
2136 * on zone->*_priority.
2137 */
a79311c1 2138 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2139 break;
2140 }
2141out:
3bb1a852
MB
2142 /*
2143 * Note within each zone the priority level at which this zone was
2144 * brought into a happy state. So that the next thread which scans this
2145 * zone will start out at that priority level.
2146 */
1da177e4
LT
2147 for (i = 0; i < pgdat->nr_zones; i++) {
2148 struct zone *zone = pgdat->node_zones + i;
2149
3bb1a852 2150 zone->prev_priority = temp_priority[i];
1da177e4
LT
2151 }
2152 if (!all_zones_ok) {
2153 cond_resched();
8357376d
RW
2154
2155 try_to_freeze();
2156
73ce02e9
KM
2157 /*
2158 * Fragmentation may mean that the system cannot be
2159 * rebalanced for high-order allocations in all zones.
2160 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2161 * it means the zones have been fully scanned and are still
2162 * not balanced. For high-order allocations, there is
2163 * little point trying all over again as kswapd may
2164 * infinite loop.
2165 *
2166 * Instead, recheck all watermarks at order-0 as they
2167 * are the most important. If watermarks are ok, kswapd will go
2168 * back to sleep. High-order users can still perform direct
2169 * reclaim if they wish.
2170 */
2171 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2172 order = sc.order = 0;
2173
1da177e4
LT
2174 goto loop_again;
2175 }
2176
a79311c1 2177 return sc.nr_reclaimed;
1da177e4
LT
2178}
2179
2180/*
2181 * The background pageout daemon, started as a kernel thread
4f98a2fe 2182 * from the init process.
1da177e4
LT
2183 *
2184 * This basically trickles out pages so that we have _some_
2185 * free memory available even if there is no other activity
2186 * that frees anything up. This is needed for things like routing
2187 * etc, where we otherwise might have all activity going on in
2188 * asynchronous contexts that cannot page things out.
2189 *
2190 * If there are applications that are active memory-allocators
2191 * (most normal use), this basically shouldn't matter.
2192 */
2193static int kswapd(void *p)
2194{
2195 unsigned long order;
2196 pg_data_t *pgdat = (pg_data_t*)p;
2197 struct task_struct *tsk = current;
2198 DEFINE_WAIT(wait);
2199 struct reclaim_state reclaim_state = {
2200 .reclaimed_slab = 0,
2201 };
a70f7302 2202 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2203
cf40bd16
NP
2204 lockdep_set_current_reclaim_state(GFP_KERNEL);
2205
174596a0 2206 if (!cpumask_empty(cpumask))
c5f59f08 2207 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2208 current->reclaim_state = &reclaim_state;
2209
2210 /*
2211 * Tell the memory management that we're a "memory allocator",
2212 * and that if we need more memory we should get access to it
2213 * regardless (see "__alloc_pages()"). "kswapd" should
2214 * never get caught in the normal page freeing logic.
2215 *
2216 * (Kswapd normally doesn't need memory anyway, but sometimes
2217 * you need a small amount of memory in order to be able to
2218 * page out something else, and this flag essentially protects
2219 * us from recursively trying to free more memory as we're
2220 * trying to free the first piece of memory in the first place).
2221 */
930d9152 2222 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2223 set_freezable();
1da177e4
LT
2224
2225 order = 0;
2226 for ( ; ; ) {
2227 unsigned long new_order;
8fe23e05 2228 int ret;
3e1d1d28 2229
1da177e4
LT
2230 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2231 new_order = pgdat->kswapd_max_order;
2232 pgdat->kswapd_max_order = 0;
2233 if (order < new_order) {
2234 /*
2235 * Don't sleep if someone wants a larger 'order'
2236 * allocation
2237 */
2238 order = new_order;
2239 } else {
f50de2d3
MG
2240 if (!freezing(current) && !kthread_should_stop()) {
2241 long remaining = 0;
2242
2243 /* Try to sleep for a short interval */
bb3ab596 2244 if (!sleeping_prematurely(pgdat, order, remaining)) {
f50de2d3
MG
2245 remaining = schedule_timeout(HZ/10);
2246 finish_wait(&pgdat->kswapd_wait, &wait);
2247 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2248 }
2249
2250 /*
2251 * After a short sleep, check if it was a
2252 * premature sleep. If not, then go fully
2253 * to sleep until explicitly woken up
2254 */
bb3ab596 2255 if (!sleeping_prematurely(pgdat, order, remaining))
f50de2d3
MG
2256 schedule();
2257 else {
2258 if (remaining)
bb3ab596 2259 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
f50de2d3 2260 else
bb3ab596 2261 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
f50de2d3
MG
2262 }
2263 }
b1296cc4 2264
1da177e4
LT
2265 order = pgdat->kswapd_max_order;
2266 }
2267 finish_wait(&pgdat->kswapd_wait, &wait);
2268
8fe23e05
DR
2269 ret = try_to_freeze();
2270 if (kthread_should_stop())
2271 break;
2272
2273 /*
2274 * We can speed up thawing tasks if we don't call balance_pgdat
2275 * after returning from the refrigerator
2276 */
2277 if (!ret)
b1296cc4 2278 balance_pgdat(pgdat, order);
1da177e4
LT
2279 }
2280 return 0;
2281}
2282
2283/*
2284 * A zone is low on free memory, so wake its kswapd task to service it.
2285 */
2286void wakeup_kswapd(struct zone *zone, int order)
2287{
2288 pg_data_t *pgdat;
2289
f3fe6512 2290 if (!populated_zone(zone))
1da177e4
LT
2291 return;
2292
2293 pgdat = zone->zone_pgdat;
41858966 2294 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
1da177e4
LT
2295 return;
2296 if (pgdat->kswapd_max_order < order)
2297 pgdat->kswapd_max_order = order;
02a0e53d 2298 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2299 return;
8d0986e2 2300 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2301 return;
8d0986e2 2302 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2303}
2304
adea02a1
WF
2305/*
2306 * The reclaimable count would be mostly accurate.
2307 * The less reclaimable pages may be
2308 * - mlocked pages, which will be moved to unevictable list when encountered
2309 * - mapped pages, which may require several travels to be reclaimed
2310 * - dirty pages, which is not "instantly" reclaimable
2311 */
2312unsigned long global_reclaimable_pages(void)
4f98a2fe 2313{
adea02a1
WF
2314 int nr;
2315
2316 nr = global_page_state(NR_ACTIVE_FILE) +
2317 global_page_state(NR_INACTIVE_FILE);
2318
2319 if (nr_swap_pages > 0)
2320 nr += global_page_state(NR_ACTIVE_ANON) +
2321 global_page_state(NR_INACTIVE_ANON);
2322
2323 return nr;
2324}
2325
2326unsigned long zone_reclaimable_pages(struct zone *zone)
2327{
2328 int nr;
2329
2330 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2331 zone_page_state(zone, NR_INACTIVE_FILE);
2332
2333 if (nr_swap_pages > 0)
2334 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2335 zone_page_state(zone, NR_INACTIVE_ANON);
2336
2337 return nr;
4f98a2fe
RR
2338}
2339
c6f37f12 2340#ifdef CONFIG_HIBERNATION
1da177e4 2341/*
7b51755c 2342 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2343 * freed pages.
2344 *
2345 * Rather than trying to age LRUs the aim is to preserve the overall
2346 * LRU order by reclaiming preferentially
2347 * inactive > active > active referenced > active mapped
1da177e4 2348 */
7b51755c 2349unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2350{
d6277db4 2351 struct reclaim_state reclaim_state;
d6277db4 2352 struct scan_control sc = {
7b51755c
KM
2353 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2354 .may_swap = 1,
2355 .may_unmap = 1,
d6277db4 2356 .may_writepage = 1,
7b51755c
KM
2357 .swap_cluster_max = SWAP_CLUSTER_MAX,
2358 .nr_to_reclaim = nr_to_reclaim,
2359 .hibernation_mode = 1,
2360 .swappiness = vm_swappiness,
2361 .order = 0,
66e1707b 2362 .isolate_pages = isolate_pages_global,
1da177e4 2363 };
7b51755c
KM
2364 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2365 struct task_struct *p = current;
2366 unsigned long nr_reclaimed;
1da177e4 2367
7b51755c
KM
2368 p->flags |= PF_MEMALLOC;
2369 lockdep_set_current_reclaim_state(sc.gfp_mask);
2370 reclaim_state.reclaimed_slab = 0;
2371 p->reclaim_state = &reclaim_state;
d6277db4 2372
7b51755c 2373 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 2374
7b51755c
KM
2375 p->reclaim_state = NULL;
2376 lockdep_clear_current_reclaim_state();
2377 p->flags &= ~PF_MEMALLOC;
d6277db4 2378
7b51755c 2379 return nr_reclaimed;
1da177e4 2380}
c6f37f12 2381#endif /* CONFIG_HIBERNATION */
1da177e4 2382
1da177e4
LT
2383/* It's optimal to keep kswapds on the same CPUs as their memory, but
2384 not required for correctness. So if the last cpu in a node goes
2385 away, we get changed to run anywhere: as the first one comes back,
2386 restore their cpu bindings. */
9c7b216d 2387static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2388 unsigned long action, void *hcpu)
1da177e4 2389{
58c0a4a7 2390 int nid;
1da177e4 2391
8bb78442 2392 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2393 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2394 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2395 const struct cpumask *mask;
2396
2397 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2398
3e597945 2399 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2400 /* One of our CPUs online: restore mask */
c5f59f08 2401 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2402 }
2403 }
2404 return NOTIFY_OK;
2405}
1da177e4 2406
3218ae14
YG
2407/*
2408 * This kswapd start function will be called by init and node-hot-add.
2409 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2410 */
2411int kswapd_run(int nid)
2412{
2413 pg_data_t *pgdat = NODE_DATA(nid);
2414 int ret = 0;
2415
2416 if (pgdat->kswapd)
2417 return 0;
2418
2419 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2420 if (IS_ERR(pgdat->kswapd)) {
2421 /* failure at boot is fatal */
2422 BUG_ON(system_state == SYSTEM_BOOTING);
2423 printk("Failed to start kswapd on node %d\n",nid);
2424 ret = -1;
2425 }
2426 return ret;
2427}
2428
8fe23e05
DR
2429/*
2430 * Called by memory hotplug when all memory in a node is offlined.
2431 */
2432void kswapd_stop(int nid)
2433{
2434 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2435
2436 if (kswapd)
2437 kthread_stop(kswapd);
2438}
2439
1da177e4
LT
2440static int __init kswapd_init(void)
2441{
3218ae14 2442 int nid;
69e05944 2443
1da177e4 2444 swap_setup();
9422ffba 2445 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2446 kswapd_run(nid);
1da177e4
LT
2447 hotcpu_notifier(cpu_callback, 0);
2448 return 0;
2449}
2450
2451module_init(kswapd_init)
9eeff239
CL
2452
2453#ifdef CONFIG_NUMA
2454/*
2455 * Zone reclaim mode
2456 *
2457 * If non-zero call zone_reclaim when the number of free pages falls below
2458 * the watermarks.
9eeff239
CL
2459 */
2460int zone_reclaim_mode __read_mostly;
2461
1b2ffb78 2462#define RECLAIM_OFF 0
7d03431c 2463#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2464#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2465#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2466
a92f7126
CL
2467/*
2468 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2469 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2470 * a zone.
2471 */
2472#define ZONE_RECLAIM_PRIORITY 4
2473
9614634f
CL
2474/*
2475 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2476 * occur.
2477 */
2478int sysctl_min_unmapped_ratio = 1;
2479
0ff38490
CL
2480/*
2481 * If the number of slab pages in a zone grows beyond this percentage then
2482 * slab reclaim needs to occur.
2483 */
2484int sysctl_min_slab_ratio = 5;
2485
90afa5de
MG
2486static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2487{
2488 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2489 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2490 zone_page_state(zone, NR_ACTIVE_FILE);
2491
2492 /*
2493 * It's possible for there to be more file mapped pages than
2494 * accounted for by the pages on the file LRU lists because
2495 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2496 */
2497 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2498}
2499
2500/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2501static long zone_pagecache_reclaimable(struct zone *zone)
2502{
2503 long nr_pagecache_reclaimable;
2504 long delta = 0;
2505
2506 /*
2507 * If RECLAIM_SWAP is set, then all file pages are considered
2508 * potentially reclaimable. Otherwise, we have to worry about
2509 * pages like swapcache and zone_unmapped_file_pages() provides
2510 * a better estimate
2511 */
2512 if (zone_reclaim_mode & RECLAIM_SWAP)
2513 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2514 else
2515 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2516
2517 /* If we can't clean pages, remove dirty pages from consideration */
2518 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2519 delta += zone_page_state(zone, NR_FILE_DIRTY);
2520
2521 /* Watch for any possible underflows due to delta */
2522 if (unlikely(delta > nr_pagecache_reclaimable))
2523 delta = nr_pagecache_reclaimable;
2524
2525 return nr_pagecache_reclaimable - delta;
2526}
2527
9eeff239
CL
2528/*
2529 * Try to free up some pages from this zone through reclaim.
2530 */
179e9639 2531static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2532{
7fb2d46d 2533 /* Minimum pages needed in order to stay on node */
69e05944 2534 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2535 struct task_struct *p = current;
2536 struct reclaim_state reclaim_state;
8695949a 2537 int priority;
179e9639
AM
2538 struct scan_control sc = {
2539 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2540 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 2541 .may_swap = 1,
4f0ddfdf 2542 .swap_cluster_max = SWAP_CLUSTER_MAX,
22fba335
KM
2543 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2544 SWAP_CLUSTER_MAX),
179e9639 2545 .gfp_mask = gfp_mask,
d6277db4 2546 .swappiness = vm_swappiness,
bd2f6199 2547 .order = order,
66e1707b 2548 .isolate_pages = isolate_pages_global,
179e9639 2549 };
83e33a47 2550 unsigned long slab_reclaimable;
9eeff239
CL
2551
2552 disable_swap_token();
9eeff239 2553 cond_resched();
d4f7796e
CL
2554 /*
2555 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2556 * and we also need to be able to write out pages for RECLAIM_WRITE
2557 * and RECLAIM_SWAP.
2558 */
2559 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2560 reclaim_state.reclaimed_slab = 0;
2561 p->reclaim_state = &reclaim_state;
c84db23c 2562
90afa5de 2563 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
2564 /*
2565 * Free memory by calling shrink zone with increasing
2566 * priorities until we have enough memory freed.
2567 */
2568 priority = ZONE_RECLAIM_PRIORITY;
2569 do {
3bb1a852 2570 note_zone_scanning_priority(zone, priority);
a79311c1 2571 shrink_zone(priority, zone, &sc);
0ff38490 2572 priority--;
a79311c1 2573 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2574 }
c84db23c 2575
83e33a47
CL
2576 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2577 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2578 /*
7fb2d46d 2579 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2580 * many pages were freed in this zone. So we take the current
2581 * number of slab pages and shake the slab until it is reduced
2582 * by the same nr_pages that we used for reclaiming unmapped
2583 * pages.
2a16e3f4 2584 *
0ff38490
CL
2585 * Note that shrink_slab will free memory on all zones and may
2586 * take a long time.
2a16e3f4 2587 */
0ff38490 2588 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2589 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2590 slab_reclaimable - nr_pages)
0ff38490 2591 ;
83e33a47
CL
2592
2593 /*
2594 * Update nr_reclaimed by the number of slab pages we
2595 * reclaimed from this zone.
2596 */
a79311c1 2597 sc.nr_reclaimed += slab_reclaimable -
83e33a47 2598 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2599 }
2600
9eeff239 2601 p->reclaim_state = NULL;
d4f7796e 2602 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
a79311c1 2603 return sc.nr_reclaimed >= nr_pages;
9eeff239 2604}
179e9639
AM
2605
2606int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2607{
179e9639 2608 int node_id;
d773ed6b 2609 int ret;
179e9639
AM
2610
2611 /*
0ff38490
CL
2612 * Zone reclaim reclaims unmapped file backed pages and
2613 * slab pages if we are over the defined limits.
34aa1330 2614 *
9614634f
CL
2615 * A small portion of unmapped file backed pages is needed for
2616 * file I/O otherwise pages read by file I/O will be immediately
2617 * thrown out if the zone is overallocated. So we do not reclaim
2618 * if less than a specified percentage of the zone is used by
2619 * unmapped file backed pages.
179e9639 2620 */
90afa5de
MG
2621 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2622 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 2623 return ZONE_RECLAIM_FULL;
179e9639 2624
d773ed6b 2625 if (zone_is_all_unreclaimable(zone))
fa5e084e 2626 return ZONE_RECLAIM_FULL;
d773ed6b 2627
179e9639 2628 /*
d773ed6b 2629 * Do not scan if the allocation should not be delayed.
179e9639 2630 */
d773ed6b 2631 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 2632 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
2633
2634 /*
2635 * Only run zone reclaim on the local zone or on zones that do not
2636 * have associated processors. This will favor the local processor
2637 * over remote processors and spread off node memory allocations
2638 * as wide as possible.
2639 */
89fa3024 2640 node_id = zone_to_nid(zone);
37c0708d 2641 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 2642 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
2643
2644 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
2645 return ZONE_RECLAIM_NOSCAN;
2646
d773ed6b
DR
2647 ret = __zone_reclaim(zone, gfp_mask, order);
2648 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2649
24cf7251
MG
2650 if (!ret)
2651 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2652
d773ed6b 2653 return ret;
179e9639 2654}
9eeff239 2655#endif
894bc310 2656
894bc310
LS
2657/*
2658 * page_evictable - test whether a page is evictable
2659 * @page: the page to test
2660 * @vma: the VMA in which the page is or will be mapped, may be NULL
2661 *
2662 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2663 * lists vs unevictable list. The vma argument is !NULL when called from the
2664 * fault path to determine how to instantate a new page.
894bc310
LS
2665 *
2666 * Reasons page might not be evictable:
ba9ddf49 2667 * (1) page's mapping marked unevictable
b291f000 2668 * (2) page is part of an mlocked VMA
ba9ddf49 2669 *
894bc310
LS
2670 */
2671int page_evictable(struct page *page, struct vm_area_struct *vma)
2672{
2673
ba9ddf49
LS
2674 if (mapping_unevictable(page_mapping(page)))
2675 return 0;
2676
b291f000
NP
2677 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2678 return 0;
894bc310
LS
2679
2680 return 1;
2681}
89e004ea
LS
2682
2683/**
2684 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2685 * @page: page to check evictability and move to appropriate lru list
2686 * @zone: zone page is in
2687 *
2688 * Checks a page for evictability and moves the page to the appropriate
2689 * zone lru list.
2690 *
2691 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2692 * have PageUnevictable set.
2693 */
2694static void check_move_unevictable_page(struct page *page, struct zone *zone)
2695{
2696 VM_BUG_ON(PageActive(page));
2697
2698retry:
2699 ClearPageUnevictable(page);
2700 if (page_evictable(page, NULL)) {
401a8e1c 2701 enum lru_list l = page_lru_base_type(page);
af936a16 2702
89e004ea
LS
2703 __dec_zone_state(zone, NR_UNEVICTABLE);
2704 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2705 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2706 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2707 __count_vm_event(UNEVICTABLE_PGRESCUED);
2708 } else {
2709 /*
2710 * rotate unevictable list
2711 */
2712 SetPageUnevictable(page);
2713 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2714 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2715 if (page_evictable(page, NULL))
2716 goto retry;
2717 }
2718}
2719
2720/**
2721 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2722 * @mapping: struct address_space to scan for evictable pages
2723 *
2724 * Scan all pages in mapping. Check unevictable pages for
2725 * evictability and move them to the appropriate zone lru list.
2726 */
2727void scan_mapping_unevictable_pages(struct address_space *mapping)
2728{
2729 pgoff_t next = 0;
2730 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2731 PAGE_CACHE_SHIFT;
2732 struct zone *zone;
2733 struct pagevec pvec;
2734
2735 if (mapping->nrpages == 0)
2736 return;
2737
2738 pagevec_init(&pvec, 0);
2739 while (next < end &&
2740 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2741 int i;
2742 int pg_scanned = 0;
2743
2744 zone = NULL;
2745
2746 for (i = 0; i < pagevec_count(&pvec); i++) {
2747 struct page *page = pvec.pages[i];
2748 pgoff_t page_index = page->index;
2749 struct zone *pagezone = page_zone(page);
2750
2751 pg_scanned++;
2752 if (page_index > next)
2753 next = page_index;
2754 next++;
2755
2756 if (pagezone != zone) {
2757 if (zone)
2758 spin_unlock_irq(&zone->lru_lock);
2759 zone = pagezone;
2760 spin_lock_irq(&zone->lru_lock);
2761 }
2762
2763 if (PageLRU(page) && PageUnevictable(page))
2764 check_move_unevictable_page(page, zone);
2765 }
2766 if (zone)
2767 spin_unlock_irq(&zone->lru_lock);
2768 pagevec_release(&pvec);
2769
2770 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2771 }
2772
2773}
af936a16
LS
2774
2775/**
2776 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2777 * @zone - zone of which to scan the unevictable list
2778 *
2779 * Scan @zone's unevictable LRU lists to check for pages that have become
2780 * evictable. Move those that have to @zone's inactive list where they
2781 * become candidates for reclaim, unless shrink_inactive_zone() decides
2782 * to reactivate them. Pages that are still unevictable are rotated
2783 * back onto @zone's unevictable list.
2784 */
2785#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2786static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2787{
2788 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2789 unsigned long scan;
2790 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2791
2792 while (nr_to_scan > 0) {
2793 unsigned long batch_size = min(nr_to_scan,
2794 SCAN_UNEVICTABLE_BATCH_SIZE);
2795
2796 spin_lock_irq(&zone->lru_lock);
2797 for (scan = 0; scan < batch_size; scan++) {
2798 struct page *page = lru_to_page(l_unevictable);
2799
2800 if (!trylock_page(page))
2801 continue;
2802
2803 prefetchw_prev_lru_page(page, l_unevictable, flags);
2804
2805 if (likely(PageLRU(page) && PageUnevictable(page)))
2806 check_move_unevictable_page(page, zone);
2807
2808 unlock_page(page);
2809 }
2810 spin_unlock_irq(&zone->lru_lock);
2811
2812 nr_to_scan -= batch_size;
2813 }
2814}
2815
2816
2817/**
2818 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2819 *
2820 * A really big hammer: scan all zones' unevictable LRU lists to check for
2821 * pages that have become evictable. Move those back to the zones'
2822 * inactive list where they become candidates for reclaim.
2823 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2824 * and we add swap to the system. As such, it runs in the context of a task
2825 * that has possibly/probably made some previously unevictable pages
2826 * evictable.
2827 */
ff30153b 2828static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2829{
2830 struct zone *zone;
2831
2832 for_each_zone(zone) {
2833 scan_zone_unevictable_pages(zone);
2834 }
2835}
2836
2837/*
2838 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2839 * all nodes' unevictable lists for evictable pages
2840 */
2841unsigned long scan_unevictable_pages;
2842
2843int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 2844 void __user *buffer,
af936a16
LS
2845 size_t *length, loff_t *ppos)
2846{
8d65af78 2847 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
2848
2849 if (write && *(unsigned long *)table->data)
2850 scan_all_zones_unevictable_pages();
2851
2852 scan_unevictable_pages = 0;
2853 return 0;
2854}
2855
2856/*
2857 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2858 * a specified node's per zone unevictable lists for evictable pages.
2859 */
2860
2861static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2862 struct sysdev_attribute *attr,
2863 char *buf)
2864{
2865 return sprintf(buf, "0\n"); /* always zero; should fit... */
2866}
2867
2868static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2869 struct sysdev_attribute *attr,
2870 const char *buf, size_t count)
2871{
2872 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2873 struct zone *zone;
2874 unsigned long res;
2875 unsigned long req = strict_strtoul(buf, 10, &res);
2876
2877 if (!req)
2878 return 1; /* zero is no-op */
2879
2880 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2881 if (!populated_zone(zone))
2882 continue;
2883 scan_zone_unevictable_pages(zone);
2884 }
2885 return 1;
2886}
2887
2888
2889static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2890 read_scan_unevictable_node,
2891 write_scan_unevictable_node);
2892
2893int scan_unevictable_register_node(struct node *node)
2894{
2895 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2896}
2897
2898void scan_unevictable_unregister_node(struct node *node)
2899{
2900 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2901}
2902