]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
mm: convert destroy_compound_page() to destroy_large_folio()
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
07f67a8d 29#include <linux/buffer_head.h> /* for buffer_heads_over_limit */
1da177e4 30#include <linux/mm_inline.h>
1da177e4
LT
31#include <linux/backing-dev.h>
32#include <linux/rmap.h>
33#include <linux/topology.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
3e7d3449 36#include <linux/compaction.h>
1da177e4
LT
37#include <linux/notifier.h>
38#include <linux/rwsem.h>
248a0301 39#include <linux/delay.h>
3218ae14 40#include <linux/kthread.h>
7dfb7103 41#include <linux/freezer.h>
66e1707b 42#include <linux/memcontrol.h>
26aa2d19 43#include <linux/migrate.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
64e3d12f 47#include <linux/pagevec.h>
268bb0ce 48#include <linux/prefetch.h>
b1de0d13 49#include <linux/printk.h>
f9fe48be 50#include <linux/dax.h>
eb414681 51#include <linux/psi.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
c574bbe9 58#include <linux/sched/sysctl.h>
1da177e4 59
0f8053a5 60#include "internal.h"
014bb1de 61#include "swap.h"
0f8053a5 62
33906bc5
MG
63#define CREATE_TRACE_POINTS
64#include <trace/events/vmscan.h>
65
1da177e4 66struct scan_control {
22fba335
KM
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
ee814fe2
JW
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
9e3b2f8c 75
f16015fb
JW
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
66e1707b 81
7cf111bc
JW
82 /*
83 * Scan pressure balancing between anon and file LRUs
84 */
85 unsigned long anon_cost;
86 unsigned long file_cost;
87
b91ac374
JW
88 /* Can active pages be deactivated as part of reclaim? */
89#define DEACTIVATE_ANON 1
90#define DEACTIVATE_FILE 2
91 unsigned int may_deactivate:2;
92 unsigned int force_deactivate:1;
93 unsigned int skipped_deactivate:1;
94
1276ad68 95 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
96 unsigned int may_writepage:1;
97
98 /* Can mapped pages be reclaimed? */
99 unsigned int may_unmap:1;
100
101 /* Can pages be swapped as part of reclaim? */
102 unsigned int may_swap:1;
103
d6622f63 104 /*
f56ce412
JW
105 * Cgroup memory below memory.low is protected as long as we
106 * don't threaten to OOM. If any cgroup is reclaimed at
107 * reduced force or passed over entirely due to its memory.low
108 * setting (memcg_low_skipped), and nothing is reclaimed as a
109 * result, then go back for one more cycle that reclaims the protected
110 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
111 */
112 unsigned int memcg_low_reclaim:1;
113 unsigned int memcg_low_skipped:1;
241994ed 114
ee814fe2
JW
115 unsigned int hibernation_mode:1;
116
117 /* One of the zones is ready for compaction */
118 unsigned int compaction_ready:1;
119
b91ac374
JW
120 /* There is easily reclaimable cold cache in the current node */
121 unsigned int cache_trim_mode:1;
122
53138cea
JW
123 /* The file pages on the current node are dangerously low */
124 unsigned int file_is_tiny:1;
125
26aa2d19
DH
126 /* Always discard instead of demoting to lower tier memory */
127 unsigned int no_demotion:1;
128
bb451fdf
GT
129 /* Allocation order */
130 s8 order;
131
132 /* Scan (total_size >> priority) pages at once */
133 s8 priority;
134
135 /* The highest zone to isolate pages for reclaim from */
136 s8 reclaim_idx;
137
138 /* This context's GFP mask */
139 gfp_t gfp_mask;
140
ee814fe2
JW
141 /* Incremented by the number of inactive pages that were scanned */
142 unsigned long nr_scanned;
143
144 /* Number of pages freed so far during a call to shrink_zones() */
145 unsigned long nr_reclaimed;
d108c772
AR
146
147 struct {
148 unsigned int dirty;
149 unsigned int unqueued_dirty;
150 unsigned int congested;
151 unsigned int writeback;
152 unsigned int immediate;
153 unsigned int file_taken;
154 unsigned int taken;
155 } nr;
e5ca8071
YS
156
157 /* for recording the reclaimed slab by now */
158 struct reclaim_state reclaim_state;
1da177e4
LT
159};
160
1da177e4 161#ifdef ARCH_HAS_PREFETCHW
166e3d32 162#define prefetchw_prev_lru_folio(_folio, _base, _field) \
1da177e4 163 do { \
166e3d32
MWO
164 if ((_folio)->lru.prev != _base) { \
165 struct folio *prev; \
1da177e4 166 \
166e3d32 167 prev = lru_to_folio(&(_folio->lru)); \
1da177e4
LT
168 prefetchw(&prev->_field); \
169 } \
170 } while (0)
171#else
166e3d32 172#define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
1da177e4
LT
173#endif
174
175/*
c843966c 176 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
177 */
178int vm_swappiness = 60;
1da177e4 179
0a432dcb
YS
180static void set_task_reclaim_state(struct task_struct *task,
181 struct reclaim_state *rs)
182{
183 /* Check for an overwrite */
184 WARN_ON_ONCE(rs && task->reclaim_state);
185
186 /* Check for the nulling of an already-nulled member */
187 WARN_ON_ONCE(!rs && !task->reclaim_state);
188
189 task->reclaim_state = rs;
190}
191
5035ebc6
RG
192LIST_HEAD(shrinker_list);
193DECLARE_RWSEM(shrinker_rwsem);
1da177e4 194
0a432dcb 195#ifdef CONFIG_MEMCG
a2fb1261 196static int shrinker_nr_max;
2bfd3637 197
3c6f17e6 198/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
199static inline int shrinker_map_size(int nr_items)
200{
201 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
202}
2bfd3637 203
3c6f17e6
YS
204static inline int shrinker_defer_size(int nr_items)
205{
206 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
207}
208
468ab843
YS
209static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
210 int nid)
211{
212 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
213 lockdep_is_held(&shrinker_rwsem));
214}
215
e4262c4f 216static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
217 int map_size, int defer_size,
218 int old_map_size, int old_defer_size)
2bfd3637 219{
e4262c4f 220 struct shrinker_info *new, *old;
2bfd3637
YS
221 struct mem_cgroup_per_node *pn;
222 int nid;
3c6f17e6 223 int size = map_size + defer_size;
2bfd3637 224
2bfd3637
YS
225 for_each_node(nid) {
226 pn = memcg->nodeinfo[nid];
468ab843 227 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
228 /* Not yet online memcg */
229 if (!old)
230 return 0;
231
232 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
233 if (!new)
234 return -ENOMEM;
235
3c6f17e6
YS
236 new->nr_deferred = (atomic_long_t *)(new + 1);
237 new->map = (void *)new->nr_deferred + defer_size;
238
239 /* map: set all old bits, clear all new bits */
240 memset(new->map, (int)0xff, old_map_size);
241 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
242 /* nr_deferred: copy old values, clear all new values */
243 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
244 memset((void *)new->nr_deferred + old_defer_size, 0,
245 defer_size - old_defer_size);
2bfd3637 246
e4262c4f 247 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 248 kvfree_rcu(old, rcu);
2bfd3637
YS
249 }
250
251 return 0;
252}
253
e4262c4f 254void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
255{
256 struct mem_cgroup_per_node *pn;
e4262c4f 257 struct shrinker_info *info;
2bfd3637
YS
258 int nid;
259
2bfd3637
YS
260 for_each_node(nid) {
261 pn = memcg->nodeinfo[nid];
e4262c4f
YS
262 info = rcu_dereference_protected(pn->shrinker_info, true);
263 kvfree(info);
264 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
265 }
266}
267
e4262c4f 268int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 269{
e4262c4f 270 struct shrinker_info *info;
2bfd3637 271 int nid, size, ret = 0;
3c6f17e6 272 int map_size, defer_size = 0;
2bfd3637 273
d27cf2aa 274 down_write(&shrinker_rwsem);
3c6f17e6
YS
275 map_size = shrinker_map_size(shrinker_nr_max);
276 defer_size = shrinker_defer_size(shrinker_nr_max);
277 size = map_size + defer_size;
2bfd3637 278 for_each_node(nid) {
e4262c4f
YS
279 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
280 if (!info) {
281 free_shrinker_info(memcg);
2bfd3637
YS
282 ret = -ENOMEM;
283 break;
284 }
3c6f17e6
YS
285 info->nr_deferred = (atomic_long_t *)(info + 1);
286 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 287 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 288 }
d27cf2aa 289 up_write(&shrinker_rwsem);
2bfd3637
YS
290
291 return ret;
292}
293
3c6f17e6
YS
294static inline bool need_expand(int nr_max)
295{
296 return round_up(nr_max, BITS_PER_LONG) >
297 round_up(shrinker_nr_max, BITS_PER_LONG);
298}
299
e4262c4f 300static int expand_shrinker_info(int new_id)
2bfd3637 301{
3c6f17e6 302 int ret = 0;
a2fb1261 303 int new_nr_max = new_id + 1;
3c6f17e6
YS
304 int map_size, defer_size = 0;
305 int old_map_size, old_defer_size = 0;
2bfd3637
YS
306 struct mem_cgroup *memcg;
307
3c6f17e6 308 if (!need_expand(new_nr_max))
a2fb1261 309 goto out;
2bfd3637 310
2bfd3637 311 if (!root_mem_cgroup)
d27cf2aa
YS
312 goto out;
313
314 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 315
3c6f17e6
YS
316 map_size = shrinker_map_size(new_nr_max);
317 defer_size = shrinker_defer_size(new_nr_max);
318 old_map_size = shrinker_map_size(shrinker_nr_max);
319 old_defer_size = shrinker_defer_size(shrinker_nr_max);
320
2bfd3637
YS
321 memcg = mem_cgroup_iter(NULL, NULL, NULL);
322 do {
3c6f17e6
YS
323 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
324 old_map_size, old_defer_size);
2bfd3637
YS
325 if (ret) {
326 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 327 goto out;
2bfd3637
YS
328 }
329 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 330out:
2bfd3637 331 if (!ret)
a2fb1261 332 shrinker_nr_max = new_nr_max;
d27cf2aa 333
2bfd3637
YS
334 return ret;
335}
336
337void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
338{
339 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 340 struct shrinker_info *info;
2bfd3637
YS
341
342 rcu_read_lock();
e4262c4f 343 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
344 /* Pairs with smp mb in shrink_slab() */
345 smp_mb__before_atomic();
e4262c4f 346 set_bit(shrinker_id, info->map);
2bfd3637
YS
347 rcu_read_unlock();
348 }
349}
350
b4c2b231 351static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
352
353static int prealloc_memcg_shrinker(struct shrinker *shrinker)
354{
355 int id, ret = -ENOMEM;
356
476b30a0
YS
357 if (mem_cgroup_disabled())
358 return -ENOSYS;
359
b4c2b231
KT
360 down_write(&shrinker_rwsem);
361 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 362 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
363 if (id < 0)
364 goto unlock;
365
0a4465d3 366 if (id >= shrinker_nr_max) {
e4262c4f 367 if (expand_shrinker_info(id)) {
0a4465d3
KT
368 idr_remove(&shrinker_idr, id);
369 goto unlock;
370 }
0a4465d3 371 }
b4c2b231
KT
372 shrinker->id = id;
373 ret = 0;
374unlock:
375 up_write(&shrinker_rwsem);
376 return ret;
377}
378
379static void unregister_memcg_shrinker(struct shrinker *shrinker)
380{
381 int id = shrinker->id;
382
383 BUG_ON(id < 0);
384
41ca668a
YS
385 lockdep_assert_held(&shrinker_rwsem);
386
b4c2b231 387 idr_remove(&shrinker_idr, id);
b4c2b231 388}
b4c2b231 389
86750830
YS
390static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
391 struct mem_cgroup *memcg)
392{
393 struct shrinker_info *info;
394
395 info = shrinker_info_protected(memcg, nid);
396 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
397}
398
399static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
400 struct mem_cgroup *memcg)
401{
402 struct shrinker_info *info;
403
404 info = shrinker_info_protected(memcg, nid);
405 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
406}
407
a178015c
YS
408void reparent_shrinker_deferred(struct mem_cgroup *memcg)
409{
410 int i, nid;
411 long nr;
412 struct mem_cgroup *parent;
413 struct shrinker_info *child_info, *parent_info;
414
415 parent = parent_mem_cgroup(memcg);
416 if (!parent)
417 parent = root_mem_cgroup;
418
419 /* Prevent from concurrent shrinker_info expand */
420 down_read(&shrinker_rwsem);
421 for_each_node(nid) {
422 child_info = shrinker_info_protected(memcg, nid);
423 parent_info = shrinker_info_protected(parent, nid);
424 for (i = 0; i < shrinker_nr_max; i++) {
425 nr = atomic_long_read(&child_info->nr_deferred[i]);
426 atomic_long_add(nr, &parent_info->nr_deferred[i]);
427 }
428 }
429 up_read(&shrinker_rwsem);
430}
431
b5ead35e 432static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 433{
b5ead35e 434 return sc->target_mem_cgroup;
89b5fae5 435}
97c9341f
TH
436
437/**
b5ead35e 438 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
439 * @sc: scan_control in question
440 *
441 * The normal page dirty throttling mechanism in balance_dirty_pages() is
442 * completely broken with the legacy memcg and direct stalling in
443 * shrink_page_list() is used for throttling instead, which lacks all the
444 * niceties such as fairness, adaptive pausing, bandwidth proportional
445 * allocation and configurability.
446 *
447 * This function tests whether the vmscan currently in progress can assume
448 * that the normal dirty throttling mechanism is operational.
449 */
b5ead35e 450static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 451{
b5ead35e 452 if (!cgroup_reclaim(sc))
97c9341f
TH
453 return true;
454#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 455 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
456 return true;
457#endif
458 return false;
459}
91a45470 460#else
0a432dcb
YS
461static int prealloc_memcg_shrinker(struct shrinker *shrinker)
462{
476b30a0 463 return -ENOSYS;
0a432dcb
YS
464}
465
466static void unregister_memcg_shrinker(struct shrinker *shrinker)
467{
468}
469
86750830
YS
470static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
471 struct mem_cgroup *memcg)
472{
473 return 0;
474}
475
476static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
477 struct mem_cgroup *memcg)
478{
479 return 0;
480}
481
b5ead35e 482static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 483{
b5ead35e 484 return false;
89b5fae5 485}
97c9341f 486
b5ead35e 487static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
488{
489 return true;
490}
91a45470
KH
491#endif
492
86750830
YS
493static long xchg_nr_deferred(struct shrinker *shrinker,
494 struct shrink_control *sc)
495{
496 int nid = sc->nid;
497
498 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
499 nid = 0;
500
501 if (sc->memcg &&
502 (shrinker->flags & SHRINKER_MEMCG_AWARE))
503 return xchg_nr_deferred_memcg(nid, shrinker,
504 sc->memcg);
505
506 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
507}
508
509
510static long add_nr_deferred(long nr, struct shrinker *shrinker,
511 struct shrink_control *sc)
512{
513 int nid = sc->nid;
514
515 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
516 nid = 0;
517
518 if (sc->memcg &&
519 (shrinker->flags & SHRINKER_MEMCG_AWARE))
520 return add_nr_deferred_memcg(nr, nid, shrinker,
521 sc->memcg);
522
523 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
524}
525
26aa2d19
DH
526static bool can_demote(int nid, struct scan_control *sc)
527{
20b51af1
HY
528 if (!numa_demotion_enabled)
529 return false;
3f1509c5
JW
530 if (sc && sc->no_demotion)
531 return false;
26aa2d19
DH
532 if (next_demotion_node(nid) == NUMA_NO_NODE)
533 return false;
534
20b51af1 535 return true;
26aa2d19
DH
536}
537
a2a36488
KB
538static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
539 int nid,
540 struct scan_control *sc)
541{
542 if (memcg == NULL) {
543 /*
544 * For non-memcg reclaim, is there
545 * space in any swap device?
546 */
547 if (get_nr_swap_pages() > 0)
548 return true;
549 } else {
550 /* Is the memcg below its swap limit? */
551 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
552 return true;
553 }
554
555 /*
556 * The page can not be swapped.
557 *
558 * Can it be reclaimed from this node via demotion?
559 */
560 return can_demote(nid, sc);
561}
562
5a1c84b4
MG
563/*
564 * This misses isolated pages which are not accounted for to save counters.
565 * As the data only determines if reclaim or compaction continues, it is
566 * not expected that isolated pages will be a dominating factor.
567 */
568unsigned long zone_reclaimable_pages(struct zone *zone)
569{
570 unsigned long nr;
571
572 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
573 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 574 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
575 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
576 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
577
578 return nr;
579}
580
fd538803
MH
581/**
582 * lruvec_lru_size - Returns the number of pages on the given LRU list.
583 * @lruvec: lru vector
584 * @lru: lru to use
8b3a899a 585 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
fd538803 586 */
2091339d
YZ
587static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
588 int zone_idx)
c9f299d9 589{
de3b0150 590 unsigned long size = 0;
fd538803
MH
591 int zid;
592
8b3a899a 593 for (zid = 0; zid <= zone_idx; zid++) {
fd538803 594 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 595
fd538803
MH
596 if (!managed_zone(zone))
597 continue;
598
599 if (!mem_cgroup_disabled())
de3b0150 600 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 601 else
de3b0150 602 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 603 }
de3b0150 604 return size;
b4536f0c
MH
605}
606
1da177e4 607/*
1d3d4437 608 * Add a shrinker callback to be called from the vm.
1da177e4 609 */
e33c267a 610static int __prealloc_shrinker(struct shrinker *shrinker)
1da177e4 611{
476b30a0
YS
612 unsigned int size;
613 int err;
614
615 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
616 err = prealloc_memcg_shrinker(shrinker);
617 if (err != -ENOSYS)
618 return err;
1d3d4437 619
476b30a0
YS
620 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
621 }
622
623 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
624 if (shrinker->flags & SHRINKER_NUMA_AWARE)
625 size *= nr_node_ids;
626
627 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
628 if (!shrinker->nr_deferred)
629 return -ENOMEM;
b4c2b231 630
8e04944f
TH
631 return 0;
632}
633
e33c267a
RG
634#ifdef CONFIG_SHRINKER_DEBUG
635int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
636{
637 va_list ap;
638 int err;
639
640 va_start(ap, fmt);
641 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
642 va_end(ap);
643 if (!shrinker->name)
644 return -ENOMEM;
645
646 err = __prealloc_shrinker(shrinker);
647 if (err)
648 kfree_const(shrinker->name);
649
650 return err;
651}
652#else
653int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
654{
655 return __prealloc_shrinker(shrinker);
656}
657#endif
658
8e04944f
TH
659void free_prealloced_shrinker(struct shrinker *shrinker)
660{
e33c267a
RG
661#ifdef CONFIG_SHRINKER_DEBUG
662 kfree_const(shrinker->name);
663#endif
41ca668a
YS
664 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
665 down_write(&shrinker_rwsem);
b4c2b231 666 unregister_memcg_shrinker(shrinker);
41ca668a 667 up_write(&shrinker_rwsem);
476b30a0 668 return;
41ca668a 669 }
b4c2b231 670
8e04944f
TH
671 kfree(shrinker->nr_deferred);
672 shrinker->nr_deferred = NULL;
673}
1d3d4437 674
8e04944f
TH
675void register_shrinker_prepared(struct shrinker *shrinker)
676{
8e1f936b
RR
677 down_write(&shrinker_rwsem);
678 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 679 shrinker->flags |= SHRINKER_REGISTERED;
5035ebc6 680 shrinker_debugfs_add(shrinker);
8e1f936b 681 up_write(&shrinker_rwsem);
8e04944f
TH
682}
683
e33c267a 684static int __register_shrinker(struct shrinker *shrinker)
8e04944f 685{
e33c267a 686 int err = __prealloc_shrinker(shrinker);
8e04944f
TH
687
688 if (err)
689 return err;
690 register_shrinker_prepared(shrinker);
1d3d4437 691 return 0;
1da177e4 692}
e33c267a
RG
693
694#ifdef CONFIG_SHRINKER_DEBUG
695int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
696{
697 va_list ap;
698 int err;
699
700 va_start(ap, fmt);
701 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
702 va_end(ap);
703 if (!shrinker->name)
704 return -ENOMEM;
705
706 err = __register_shrinker(shrinker);
707 if (err)
708 kfree_const(shrinker->name);
709 return err;
710}
711#else
712int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
713{
714 return __register_shrinker(shrinker);
715}
716#endif
8e1f936b 717EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
718
719/*
720 * Remove one
721 */
8e1f936b 722void unregister_shrinker(struct shrinker *shrinker)
1da177e4 723{
41ca668a 724 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 725 return;
41ca668a 726
1da177e4
LT
727 down_write(&shrinker_rwsem);
728 list_del(&shrinker->list);
41ca668a
YS
729 shrinker->flags &= ~SHRINKER_REGISTERED;
730 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
731 unregister_memcg_shrinker(shrinker);
5035ebc6 732 shrinker_debugfs_remove(shrinker);
1da177e4 733 up_write(&shrinker_rwsem);
41ca668a 734
ae393321 735 kfree(shrinker->nr_deferred);
bb422a73 736 shrinker->nr_deferred = NULL;
1da177e4 737}
8e1f936b 738EXPORT_SYMBOL(unregister_shrinker);
1da177e4 739
880121be
CK
740/**
741 * synchronize_shrinkers - Wait for all running shrinkers to complete.
742 *
743 * This is equivalent to calling unregister_shrink() and register_shrinker(),
744 * but atomically and with less overhead. This is useful to guarantee that all
745 * shrinker invocations have seen an update, before freeing memory, similar to
746 * rcu.
747 */
748void synchronize_shrinkers(void)
749{
750 down_write(&shrinker_rwsem);
751 up_write(&shrinker_rwsem);
752}
753EXPORT_SYMBOL(synchronize_shrinkers);
754
1da177e4 755#define SHRINK_BATCH 128
1d3d4437 756
cb731d6c 757static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 758 struct shrinker *shrinker, int priority)
1d3d4437
GC
759{
760 unsigned long freed = 0;
761 unsigned long long delta;
762 long total_scan;
d5bc5fd3 763 long freeable;
1d3d4437
GC
764 long nr;
765 long new_nr;
1d3d4437
GC
766 long batch_size = shrinker->batch ? shrinker->batch
767 : SHRINK_BATCH;
5f33a080 768 long scanned = 0, next_deferred;
1d3d4437 769
d5bc5fd3 770 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
771 if (freeable == 0 || freeable == SHRINK_EMPTY)
772 return freeable;
1d3d4437
GC
773
774 /*
775 * copy the current shrinker scan count into a local variable
776 * and zero it so that other concurrent shrinker invocations
777 * don't also do this scanning work.
778 */
86750830 779 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 780
4b85afbd
JW
781 if (shrinker->seeks) {
782 delta = freeable >> priority;
783 delta *= 4;
784 do_div(delta, shrinker->seeks);
785 } else {
786 /*
787 * These objects don't require any IO to create. Trim
788 * them aggressively under memory pressure to keep
789 * them from causing refetches in the IO caches.
790 */
791 delta = freeable / 2;
792 }
172b06c3 793
18bb473e 794 total_scan = nr >> priority;
1d3d4437 795 total_scan += delta;
18bb473e 796 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
797
798 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 799 freeable, delta, total_scan, priority);
1d3d4437 800
0b1fb40a
VD
801 /*
802 * Normally, we should not scan less than batch_size objects in one
803 * pass to avoid too frequent shrinker calls, but if the slab has less
804 * than batch_size objects in total and we are really tight on memory,
805 * we will try to reclaim all available objects, otherwise we can end
806 * up failing allocations although there are plenty of reclaimable
807 * objects spread over several slabs with usage less than the
808 * batch_size.
809 *
810 * We detect the "tight on memory" situations by looking at the total
811 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 812 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
813 * scanning at high prio and therefore should try to reclaim as much as
814 * possible.
815 */
816 while (total_scan >= batch_size ||
d5bc5fd3 817 total_scan >= freeable) {
a0b02131 818 unsigned long ret;
0b1fb40a 819 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 820
0b1fb40a 821 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 822 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
823 ret = shrinker->scan_objects(shrinker, shrinkctl);
824 if (ret == SHRINK_STOP)
825 break;
826 freed += ret;
1d3d4437 827
d460acb5
CW
828 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
829 total_scan -= shrinkctl->nr_scanned;
830 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
831
832 cond_resched();
833 }
834
18bb473e
YS
835 /*
836 * The deferred work is increased by any new work (delta) that wasn't
837 * done, decreased by old deferred work that was done now.
838 *
839 * And it is capped to two times of the freeable items.
840 */
841 next_deferred = max_t(long, (nr + delta - scanned), 0);
842 next_deferred = min(next_deferred, (2 * freeable));
843
1d3d4437
GC
844 /*
845 * move the unused scan count back into the shrinker in a
86750830 846 * manner that handles concurrent updates.
1d3d4437 847 */
86750830 848 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 849
8efb4b59 850 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 851 return freed;
1495f230
YH
852}
853
0a432dcb 854#ifdef CONFIG_MEMCG
b0dedc49
KT
855static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
856 struct mem_cgroup *memcg, int priority)
857{
e4262c4f 858 struct shrinker_info *info;
b8e57efa
KT
859 unsigned long ret, freed = 0;
860 int i;
b0dedc49 861
0a432dcb 862 if (!mem_cgroup_online(memcg))
b0dedc49
KT
863 return 0;
864
865 if (!down_read_trylock(&shrinker_rwsem))
866 return 0;
867
468ab843 868 info = shrinker_info_protected(memcg, nid);
e4262c4f 869 if (unlikely(!info))
b0dedc49
KT
870 goto unlock;
871
e4262c4f 872 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
873 struct shrink_control sc = {
874 .gfp_mask = gfp_mask,
875 .nid = nid,
876 .memcg = memcg,
877 };
878 struct shrinker *shrinker;
879
880 shrinker = idr_find(&shrinker_idr, i);
41ca668a 881 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 882 if (!shrinker)
e4262c4f 883 clear_bit(i, info->map);
b0dedc49
KT
884 continue;
885 }
886
0a432dcb
YS
887 /* Call non-slab shrinkers even though kmem is disabled */
888 if (!memcg_kmem_enabled() &&
889 !(shrinker->flags & SHRINKER_NONSLAB))
890 continue;
891
b0dedc49 892 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 893 if (ret == SHRINK_EMPTY) {
e4262c4f 894 clear_bit(i, info->map);
f90280d6
KT
895 /*
896 * After the shrinker reported that it had no objects to
897 * free, but before we cleared the corresponding bit in
898 * the memcg shrinker map, a new object might have been
899 * added. To make sure, we have the bit set in this
900 * case, we invoke the shrinker one more time and reset
901 * the bit if it reports that it is not empty anymore.
902 * The memory barrier here pairs with the barrier in
2bfd3637 903 * set_shrinker_bit():
f90280d6
KT
904 *
905 * list_lru_add() shrink_slab_memcg()
906 * list_add_tail() clear_bit()
907 * <MB> <MB>
908 * set_bit() do_shrink_slab()
909 */
910 smp_mb__after_atomic();
911 ret = do_shrink_slab(&sc, shrinker, priority);
912 if (ret == SHRINK_EMPTY)
913 ret = 0;
914 else
2bfd3637 915 set_shrinker_bit(memcg, nid, i);
f90280d6 916 }
b0dedc49
KT
917 freed += ret;
918
919 if (rwsem_is_contended(&shrinker_rwsem)) {
920 freed = freed ? : 1;
921 break;
922 }
923 }
924unlock:
925 up_read(&shrinker_rwsem);
926 return freed;
927}
0a432dcb 928#else /* CONFIG_MEMCG */
b0dedc49
KT
929static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
930 struct mem_cgroup *memcg, int priority)
931{
932 return 0;
933}
0a432dcb 934#endif /* CONFIG_MEMCG */
b0dedc49 935
6b4f7799 936/**
cb731d6c 937 * shrink_slab - shrink slab caches
6b4f7799
JW
938 * @gfp_mask: allocation context
939 * @nid: node whose slab caches to target
cb731d6c 940 * @memcg: memory cgroup whose slab caches to target
9092c71b 941 * @priority: the reclaim priority
1da177e4 942 *
6b4f7799 943 * Call the shrink functions to age shrinkable caches.
1da177e4 944 *
6b4f7799
JW
945 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
946 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 947 *
aeed1d32
VD
948 * @memcg specifies the memory cgroup to target. Unaware shrinkers
949 * are called only if it is the root cgroup.
cb731d6c 950 *
9092c71b
JB
951 * @priority is sc->priority, we take the number of objects and >> by priority
952 * in order to get the scan target.
b15e0905 953 *
6b4f7799 954 * Returns the number of reclaimed slab objects.
1da177e4 955 */
cb731d6c
VD
956static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
957 struct mem_cgroup *memcg,
9092c71b 958 int priority)
1da177e4 959{
b8e57efa 960 unsigned long ret, freed = 0;
1da177e4
LT
961 struct shrinker *shrinker;
962
fa1e512f
YS
963 /*
964 * The root memcg might be allocated even though memcg is disabled
965 * via "cgroup_disable=memory" boot parameter. This could make
966 * mem_cgroup_is_root() return false, then just run memcg slab
967 * shrink, but skip global shrink. This may result in premature
968 * oom.
969 */
970 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 971 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 972
e830c63a 973 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 974 goto out;
1da177e4
LT
975
976 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
977 struct shrink_control sc = {
978 .gfp_mask = gfp_mask,
979 .nid = nid,
cb731d6c 980 .memcg = memcg,
6b4f7799 981 };
ec97097b 982
9b996468
KT
983 ret = do_shrink_slab(&sc, shrinker, priority);
984 if (ret == SHRINK_EMPTY)
985 ret = 0;
986 freed += ret;
e496612c
MK
987 /*
988 * Bail out if someone want to register a new shrinker to
55b65a57 989 * prevent the registration from being stalled for long periods
e496612c
MK
990 * by parallel ongoing shrinking.
991 */
992 if (rwsem_is_contended(&shrinker_rwsem)) {
993 freed = freed ? : 1;
994 break;
995 }
1da177e4 996 }
6b4f7799 997
1da177e4 998 up_read(&shrinker_rwsem);
f06590bd
MK
999out:
1000 cond_resched();
24f7c6b9 1001 return freed;
1da177e4
LT
1002}
1003
e4b424b7 1004static void drop_slab_node(int nid)
cb731d6c
VD
1005{
1006 unsigned long freed;
1399af7e 1007 int shift = 0;
cb731d6c
VD
1008
1009 do {
1010 struct mem_cgroup *memcg = NULL;
1011
069c411d
CZ
1012 if (fatal_signal_pending(current))
1013 return;
1014
cb731d6c 1015 freed = 0;
aeed1d32 1016 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 1017 do {
9092c71b 1018 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c 1019 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1399af7e 1020 } while ((freed >> shift++) > 1);
cb731d6c
VD
1021}
1022
1023void drop_slab(void)
1024{
1025 int nid;
1026
1027 for_each_online_node(nid)
1028 drop_slab_node(nid);
1029}
1030
e0cd5e7f 1031static inline int is_page_cache_freeable(struct folio *folio)
1da177e4 1032{
ceddc3a5
JW
1033 /*
1034 * A freeable page cache page is referenced only by the caller
67891fff
MW
1035 * that isolated the page, the page cache and optional buffer
1036 * heads at page->private.
ceddc3a5 1037 */
e0cd5e7f
MWO
1038 return folio_ref_count(folio) - folio_test_private(folio) ==
1039 1 + folio_nr_pages(folio);
1da177e4
LT
1040}
1041
1da177e4 1042/*
e0cd5e7f 1043 * We detected a synchronous write error writing a folio out. Probably
1da177e4
LT
1044 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1045 * fsync(), msync() or close().
1046 *
1047 * The tricky part is that after writepage we cannot touch the mapping: nothing
e0cd5e7f
MWO
1048 * prevents it from being freed up. But we have a ref on the folio and once
1049 * that folio is locked, the mapping is pinned.
1da177e4 1050 *
e0cd5e7f 1051 * We're allowed to run sleeping folio_lock() here because we know the caller has
1da177e4
LT
1052 * __GFP_FS.
1053 */
1054static void handle_write_error(struct address_space *mapping,
e0cd5e7f 1055 struct folio *folio, int error)
1da177e4 1056{
e0cd5e7f
MWO
1057 folio_lock(folio);
1058 if (folio_mapping(folio) == mapping)
3e9f45bd 1059 mapping_set_error(mapping, error);
e0cd5e7f 1060 folio_unlock(folio);
1da177e4
LT
1061}
1062
1b4e3f26
MG
1063static bool skip_throttle_noprogress(pg_data_t *pgdat)
1064{
1065 int reclaimable = 0, write_pending = 0;
1066 int i;
1067
1068 /*
1069 * If kswapd is disabled, reschedule if necessary but do not
1070 * throttle as the system is likely near OOM.
1071 */
1072 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1073 return true;
1074
1075 /*
1076 * If there are a lot of dirty/writeback pages then do not
1077 * throttle as throttling will occur when the pages cycle
1078 * towards the end of the LRU if still under writeback.
1079 */
1080 for (i = 0; i < MAX_NR_ZONES; i++) {
1081 struct zone *zone = pgdat->node_zones + i;
1082
36c26128 1083 if (!managed_zone(zone))
1b4e3f26
MG
1084 continue;
1085
1086 reclaimable += zone_reclaimable_pages(zone);
1087 write_pending += zone_page_state_snapshot(zone,
1088 NR_ZONE_WRITE_PENDING);
1089 }
1090 if (2 * write_pending <= reclaimable)
1091 return true;
1092
1093 return false;
1094}
1095
c3f4a9a2 1096void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
8cd7c588
MG
1097{
1098 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
c3f4a9a2 1099 long timeout, ret;
8cd7c588
MG
1100 DEFINE_WAIT(wait);
1101
1102 /*
1103 * Do not throttle IO workers, kthreads other than kswapd or
1104 * workqueues. They may be required for reclaim to make
1105 * forward progress (e.g. journalling workqueues or kthreads).
1106 */
1107 if (!current_is_kswapd() &&
b485c6f1
MG
1108 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1109 cond_resched();
8cd7c588 1110 return;
b485c6f1 1111 }
8cd7c588 1112
c3f4a9a2
MG
1113 /*
1114 * These figures are pulled out of thin air.
1115 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1116 * parallel reclaimers which is a short-lived event so the timeout is
1117 * short. Failing to make progress or waiting on writeback are
1118 * potentially long-lived events so use a longer timeout. This is shaky
1119 * logic as a failure to make progress could be due to anything from
1120 * writeback to a slow device to excessive references pages at the tail
1121 * of the inactive LRU.
1122 */
1123 switch(reason) {
1124 case VMSCAN_THROTTLE_WRITEBACK:
1125 timeout = HZ/10;
1126
1127 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1128 WRITE_ONCE(pgdat->nr_reclaim_start,
1129 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1130 }
1131
1132 break;
1b4e3f26
MG
1133 case VMSCAN_THROTTLE_CONGESTED:
1134 fallthrough;
c3f4a9a2 1135 case VMSCAN_THROTTLE_NOPROGRESS:
1b4e3f26
MG
1136 if (skip_throttle_noprogress(pgdat)) {
1137 cond_resched();
1138 return;
1139 }
1140
1141 timeout = 1;
1142
c3f4a9a2
MG
1143 break;
1144 case VMSCAN_THROTTLE_ISOLATED:
1145 timeout = HZ/50;
1146 break;
1147 default:
1148 WARN_ON_ONCE(1);
1149 timeout = HZ;
1150 break;
8cd7c588
MG
1151 }
1152
1153 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1154 ret = schedule_timeout(timeout);
1155 finish_wait(wqh, &wait);
d818fca1 1156
c3f4a9a2 1157 if (reason == VMSCAN_THROTTLE_WRITEBACK)
d818fca1 1158 atomic_dec(&pgdat->nr_writeback_throttled);
8cd7c588
MG
1159
1160 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1161 jiffies_to_usecs(timeout - ret),
1162 reason);
1163}
1164
1165/*
1166 * Account for pages written if tasks are throttled waiting on dirty
1167 * pages to clean. If enough pages have been cleaned since throttling
1168 * started then wakeup the throttled tasks.
1169 */
512b7931 1170void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
8cd7c588
MG
1171 int nr_throttled)
1172{
1173 unsigned long nr_written;
1174
512b7931 1175 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
8cd7c588
MG
1176
1177 /*
1178 * This is an inaccurate read as the per-cpu deltas may not
1179 * be synchronised. However, given that the system is
1180 * writeback throttled, it is not worth taking the penalty
1181 * of getting an accurate count. At worst, the throttle
1182 * timeout guarantees forward progress.
1183 */
1184 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1185 READ_ONCE(pgdat->nr_reclaim_start);
1186
1187 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1188 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1189}
1190
04e62a29
CL
1191/* possible outcome of pageout() */
1192typedef enum {
1193 /* failed to write page out, page is locked */
1194 PAGE_KEEP,
1195 /* move page to the active list, page is locked */
1196 PAGE_ACTIVATE,
1197 /* page has been sent to the disk successfully, page is unlocked */
1198 PAGE_SUCCESS,
1199 /* page is clean and locked */
1200 PAGE_CLEAN,
1201} pageout_t;
1202
1da177e4 1203/*
1742f19f
AM
1204 * pageout is called by shrink_page_list() for each dirty page.
1205 * Calls ->writepage().
1da177e4 1206 */
2282679f
N
1207static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1208 struct swap_iocb **plug)
1da177e4
LT
1209{
1210 /*
e0cd5e7f 1211 * If the folio is dirty, only perform writeback if that write
1da177e4
LT
1212 * will be non-blocking. To prevent this allocation from being
1213 * stalled by pagecache activity. But note that there may be
1214 * stalls if we need to run get_block(). We could test
1215 * PagePrivate for that.
1216 *
8174202b 1217 * If this process is currently in __generic_file_write_iter() against
e0cd5e7f 1218 * this folio's queue, we can perform writeback even if that
1da177e4
LT
1219 * will block.
1220 *
e0cd5e7f 1221 * If the folio is swapcache, write it back even if that would
1da177e4
LT
1222 * block, for some throttling. This happens by accident, because
1223 * swap_backing_dev_info is bust: it doesn't reflect the
1224 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4 1225 */
e0cd5e7f 1226 if (!is_page_cache_freeable(folio))
1da177e4
LT
1227 return PAGE_KEEP;
1228 if (!mapping) {
1229 /*
e0cd5e7f
MWO
1230 * Some data journaling orphaned folios can have
1231 * folio->mapping == NULL while being dirty with clean buffers.
1da177e4 1232 */
e0cd5e7f 1233 if (folio_test_private(folio)) {
68189fef 1234 if (try_to_free_buffers(folio)) {
e0cd5e7f
MWO
1235 folio_clear_dirty(folio);
1236 pr_info("%s: orphaned folio\n", __func__);
1da177e4
LT
1237 return PAGE_CLEAN;
1238 }
1239 }
1240 return PAGE_KEEP;
1241 }
1242 if (mapping->a_ops->writepage == NULL)
1243 return PAGE_ACTIVATE;
1da177e4 1244
e0cd5e7f 1245 if (folio_clear_dirty_for_io(folio)) {
1da177e4
LT
1246 int res;
1247 struct writeback_control wbc = {
1248 .sync_mode = WB_SYNC_NONE,
1249 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1250 .range_start = 0,
1251 .range_end = LLONG_MAX,
1da177e4 1252 .for_reclaim = 1,
2282679f 1253 .swap_plug = plug,
1da177e4
LT
1254 };
1255
e0cd5e7f
MWO
1256 folio_set_reclaim(folio);
1257 res = mapping->a_ops->writepage(&folio->page, &wbc);
1da177e4 1258 if (res < 0)
e0cd5e7f 1259 handle_write_error(mapping, folio, res);
994fc28c 1260 if (res == AOP_WRITEPAGE_ACTIVATE) {
e0cd5e7f 1261 folio_clear_reclaim(folio);
1da177e4
LT
1262 return PAGE_ACTIVATE;
1263 }
c661b078 1264
e0cd5e7f 1265 if (!folio_test_writeback(folio)) {
1da177e4 1266 /* synchronous write or broken a_ops? */
e0cd5e7f 1267 folio_clear_reclaim(folio);
1da177e4 1268 }
e0cd5e7f
MWO
1269 trace_mm_vmscan_write_folio(folio);
1270 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1da177e4
LT
1271 return PAGE_SUCCESS;
1272 }
1273
1274 return PAGE_CLEAN;
1275}
1276
a649fd92 1277/*
e286781d
NP
1278 * Same as remove_mapping, but if the page is removed from the mapping, it
1279 * gets returned with a refcount of 0.
a649fd92 1280 */
be7c07d6 1281static int __remove_mapping(struct address_space *mapping, struct folio *folio,
b910718a 1282 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1283{
bd4c82c2 1284 int refcount;
aae466b0 1285 void *shadow = NULL;
c4843a75 1286
be7c07d6
MWO
1287 BUG_ON(!folio_test_locked(folio));
1288 BUG_ON(mapping != folio_mapping(folio));
49d2e9cc 1289
be7c07d6 1290 if (!folio_test_swapcache(folio))
51b8c1fe 1291 spin_lock(&mapping->host->i_lock);
30472509 1292 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1293 /*
0fd0e6b0
NP
1294 * The non racy check for a busy page.
1295 *
1296 * Must be careful with the order of the tests. When someone has
1297 * a ref to the page, it may be possible that they dirty it then
1298 * drop the reference. So if PageDirty is tested before page_count
1299 * here, then the following race may occur:
1300 *
1301 * get_user_pages(&page);
1302 * [user mapping goes away]
1303 * write_to(page);
1304 * !PageDirty(page) [good]
1305 * SetPageDirty(page);
1306 * put_page(page);
1307 * !page_count(page) [good, discard it]
1308 *
1309 * [oops, our write_to data is lost]
1310 *
1311 * Reversing the order of the tests ensures such a situation cannot
1312 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1313 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1314 *
1315 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1316 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1317 */
be7c07d6
MWO
1318 refcount = 1 + folio_nr_pages(folio);
1319 if (!folio_ref_freeze(folio, refcount))
49d2e9cc 1320 goto cannot_free;
1c4c3b99 1321 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
be7c07d6
MWO
1322 if (unlikely(folio_test_dirty(folio))) {
1323 folio_ref_unfreeze(folio, refcount);
49d2e9cc 1324 goto cannot_free;
e286781d 1325 }
49d2e9cc 1326
be7c07d6
MWO
1327 if (folio_test_swapcache(folio)) {
1328 swp_entry_t swap = folio_swap_entry(folio);
3ecb0087 1329 mem_cgroup_swapout(folio, swap);
aae466b0 1330 if (reclaimed && !mapping_exiting(mapping))
8927f647 1331 shadow = workingset_eviction(folio, target_memcg);
be7c07d6 1332 __delete_from_swap_cache(&folio->page, swap, shadow);
30472509 1333 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1334 put_swap_page(&folio->page, swap);
e286781d 1335 } else {
d2329aa0 1336 void (*free_folio)(struct folio *);
6072d13c 1337
d2329aa0 1338 free_folio = mapping->a_ops->free_folio;
a528910e
JW
1339 /*
1340 * Remember a shadow entry for reclaimed file cache in
1341 * order to detect refaults, thus thrashing, later on.
1342 *
1343 * But don't store shadows in an address space that is
238c3046 1344 * already exiting. This is not just an optimization,
a528910e
JW
1345 * inode reclaim needs to empty out the radix tree or
1346 * the nodes are lost. Don't plant shadows behind its
1347 * back.
f9fe48be
RZ
1348 *
1349 * We also don't store shadows for DAX mappings because the
1350 * only page cache pages found in these are zero pages
1351 * covering holes, and because we don't want to mix DAX
1352 * exceptional entries and shadow exceptional entries in the
b93b0163 1353 * same address_space.
a528910e 1354 */
be7c07d6 1355 if (reclaimed && folio_is_file_lru(folio) &&
f9fe48be 1356 !mapping_exiting(mapping) && !dax_mapping(mapping))
8927f647
MWO
1357 shadow = workingset_eviction(folio, target_memcg);
1358 __filemap_remove_folio(folio, shadow);
30472509 1359 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
1360 if (mapping_shrinkable(mapping))
1361 inode_add_lru(mapping->host);
1362 spin_unlock(&mapping->host->i_lock);
6072d13c 1363
d2329aa0
MWO
1364 if (free_folio)
1365 free_folio(folio);
49d2e9cc
CL
1366 }
1367
49d2e9cc
CL
1368 return 1;
1369
1370cannot_free:
30472509 1371 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1372 if (!folio_test_swapcache(folio))
51b8c1fe 1373 spin_unlock(&mapping->host->i_lock);
49d2e9cc
CL
1374 return 0;
1375}
1376
5100da38
MWO
1377/**
1378 * remove_mapping() - Attempt to remove a folio from its mapping.
1379 * @mapping: The address space.
1380 * @folio: The folio to remove.
1381 *
1382 * If the folio is dirty, under writeback or if someone else has a ref
1383 * on it, removal will fail.
1384 * Return: The number of pages removed from the mapping. 0 if the folio
1385 * could not be removed.
1386 * Context: The caller should have a single refcount on the folio and
1387 * hold its lock.
e286781d 1388 */
5100da38 1389long remove_mapping(struct address_space *mapping, struct folio *folio)
e286781d 1390{
be7c07d6 1391 if (__remove_mapping(mapping, folio, false, NULL)) {
e286781d 1392 /*
5100da38 1393 * Unfreezing the refcount with 1 effectively
e286781d
NP
1394 * drops the pagecache ref for us without requiring another
1395 * atomic operation.
1396 */
be7c07d6 1397 folio_ref_unfreeze(folio, 1);
5100da38 1398 return folio_nr_pages(folio);
e286781d
NP
1399 }
1400 return 0;
1401}
1402
894bc310 1403/**
ca6d60f3
MWO
1404 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1405 * @folio: Folio to be returned to an LRU list.
894bc310 1406 *
ca6d60f3
MWO
1407 * Add previously isolated @folio to appropriate LRU list.
1408 * The folio may still be unevictable for other reasons.
894bc310 1409 *
ca6d60f3 1410 * Context: lru_lock must not be held, interrupts must be enabled.
894bc310 1411 */
ca6d60f3 1412void folio_putback_lru(struct folio *folio)
894bc310 1413{
ca6d60f3
MWO
1414 folio_add_lru(folio);
1415 folio_put(folio); /* drop ref from isolate */
894bc310
LS
1416}
1417
dfc8d636
JW
1418enum page_references {
1419 PAGEREF_RECLAIM,
1420 PAGEREF_RECLAIM_CLEAN,
64574746 1421 PAGEREF_KEEP,
dfc8d636
JW
1422 PAGEREF_ACTIVATE,
1423};
1424
d92013d1 1425static enum page_references folio_check_references(struct folio *folio,
dfc8d636
JW
1426 struct scan_control *sc)
1427{
d92013d1 1428 int referenced_ptes, referenced_folio;
dfc8d636 1429 unsigned long vm_flags;
dfc8d636 1430
b3ac0413
MWO
1431 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1432 &vm_flags);
d92013d1 1433 referenced_folio = folio_test_clear_referenced(folio);
dfc8d636 1434
dfc8d636 1435 /*
d92013d1
MWO
1436 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1437 * Let the folio, now marked Mlocked, be moved to the unevictable list.
dfc8d636
JW
1438 */
1439 if (vm_flags & VM_LOCKED)
47d4f3ee 1440 return PAGEREF_ACTIVATE;
dfc8d636 1441
6d4675e6
MK
1442 /* rmap lock contention: rotate */
1443 if (referenced_ptes == -1)
1444 return PAGEREF_KEEP;
1445
64574746 1446 if (referenced_ptes) {
64574746 1447 /*
d92013d1 1448 * All mapped folios start out with page table
64574746 1449 * references from the instantiating fault, so we need
9030fb0b 1450 * to look twice if a mapped file/anon folio is used more
64574746
JW
1451 * than once.
1452 *
1453 * Mark it and spare it for another trip around the
1454 * inactive list. Another page table reference will
1455 * lead to its activation.
1456 *
d92013d1
MWO
1457 * Note: the mark is set for activated folios as well
1458 * so that recently deactivated but used folios are
64574746
JW
1459 * quickly recovered.
1460 */
d92013d1 1461 folio_set_referenced(folio);
64574746 1462
d92013d1 1463 if (referenced_folio || referenced_ptes > 1)
64574746
JW
1464 return PAGEREF_ACTIVATE;
1465
c909e993 1466 /*
d92013d1 1467 * Activate file-backed executable folios after first usage.
c909e993 1468 */
f19a27e3 1469 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
c909e993
KK
1470 return PAGEREF_ACTIVATE;
1471
64574746
JW
1472 return PAGEREF_KEEP;
1473 }
dfc8d636 1474
d92013d1 1475 /* Reclaim if clean, defer dirty folios to writeback */
f19a27e3 1476 if (referenced_folio && folio_is_file_lru(folio))
64574746
JW
1477 return PAGEREF_RECLAIM_CLEAN;
1478
1479 return PAGEREF_RECLAIM;
dfc8d636
JW
1480}
1481
e2be15f6 1482/* Check if a page is dirty or under writeback */
e20c41b1 1483static void folio_check_dirty_writeback(struct folio *folio,
e2be15f6
MG
1484 bool *dirty, bool *writeback)
1485{
b4597226
MG
1486 struct address_space *mapping;
1487
e2be15f6
MG
1488 /*
1489 * Anonymous pages are not handled by flushers and must be written
32a331a7
ML
1490 * from reclaim context. Do not stall reclaim based on them.
1491 * MADV_FREE anonymous pages are put into inactive file list too.
1492 * They could be mistakenly treated as file lru. So further anon
1493 * test is needed.
e2be15f6 1494 */
e20c41b1
MWO
1495 if (!folio_is_file_lru(folio) ||
1496 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
e2be15f6
MG
1497 *dirty = false;
1498 *writeback = false;
1499 return;
1500 }
1501
e20c41b1
MWO
1502 /* By default assume that the folio flags are accurate */
1503 *dirty = folio_test_dirty(folio);
1504 *writeback = folio_test_writeback(folio);
b4597226
MG
1505
1506 /* Verify dirty/writeback state if the filesystem supports it */
e20c41b1 1507 if (!folio_test_private(folio))
b4597226
MG
1508 return;
1509
e20c41b1 1510 mapping = folio_mapping(folio);
b4597226 1511 if (mapping && mapping->a_ops->is_dirty_writeback)
520f301c 1512 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
e2be15f6
MG
1513}
1514
26aa2d19
DH
1515static struct page *alloc_demote_page(struct page *page, unsigned long node)
1516{
1517 struct migration_target_control mtc = {
1518 /*
1519 * Allocate from 'node', or fail quickly and quietly.
1520 * When this happens, 'page' will likely just be discarded
1521 * instead of migrated.
1522 */
1523 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1524 __GFP_THISNODE | __GFP_NOWARN |
1525 __GFP_NOMEMALLOC | GFP_NOWAIT,
1526 .nid = node
1527 };
1528
1529 return alloc_migration_target(page, (unsigned long)&mtc);
1530}
1531
1532/*
1533 * Take pages on @demote_list and attempt to demote them to
1534 * another node. Pages which are not demoted are left on
1535 * @demote_pages.
1536 */
1537static unsigned int demote_page_list(struct list_head *demote_pages,
1538 struct pglist_data *pgdat)
1539{
1540 int target_nid = next_demotion_node(pgdat->node_id);
1541 unsigned int nr_succeeded;
26aa2d19
DH
1542
1543 if (list_empty(demote_pages))
1544 return 0;
1545
1546 if (target_nid == NUMA_NO_NODE)
1547 return 0;
1548
1549 /* Demotion ignores all cpuset and mempolicy settings */
cb75463c 1550 migrate_pages(demote_pages, alloc_demote_page, NULL,
26aa2d19
DH
1551 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1552 &nr_succeeded);
1553
668e4147
YS
1554 if (current_is_kswapd())
1555 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1556 else
1557 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1558
26aa2d19
DH
1559 return nr_succeeded;
1560}
1561
c28a0e96 1562static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
d791ea67
N
1563{
1564 if (gfp_mask & __GFP_FS)
1565 return true;
c28a0e96 1566 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
d791ea67
N
1567 return false;
1568 /*
1569 * We can "enter_fs" for swap-cache with only __GFP_IO
1570 * providing this isn't SWP_FS_OPS.
1571 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1572 * but that will never affect SWP_FS_OPS, so the data_race
1573 * is safe.
1574 */
c28a0e96 1575 return !data_race(page_swap_flags(&folio->page) & SWP_FS_OPS);
d791ea67
N
1576}
1577
1da177e4 1578/*
1742f19f 1579 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1580 */
730ec8c0
MS
1581static unsigned int shrink_page_list(struct list_head *page_list,
1582 struct pglist_data *pgdat,
1583 struct scan_control *sc,
730ec8c0
MS
1584 struct reclaim_stat *stat,
1585 bool ignore_references)
1da177e4
LT
1586{
1587 LIST_HEAD(ret_pages);
abe4c3b5 1588 LIST_HEAD(free_pages);
26aa2d19 1589 LIST_HEAD(demote_pages);
730ec8c0
MS
1590 unsigned int nr_reclaimed = 0;
1591 unsigned int pgactivate = 0;
26aa2d19 1592 bool do_demote_pass;
2282679f 1593 struct swap_iocb *plug = NULL;
1da177e4 1594
060f005f 1595 memset(stat, 0, sizeof(*stat));
1da177e4 1596 cond_resched();
26aa2d19 1597 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1598
26aa2d19 1599retry:
1da177e4
LT
1600 while (!list_empty(page_list)) {
1601 struct address_space *mapping;
be7c07d6 1602 struct folio *folio;
8940b34a 1603 enum page_references references = PAGEREF_RECLAIM;
d791ea67 1604 bool dirty, writeback;
98879b3b 1605 unsigned int nr_pages;
1da177e4
LT
1606
1607 cond_resched();
1608
be7c07d6
MWO
1609 folio = lru_to_folio(page_list);
1610 list_del(&folio->lru);
1da177e4 1611
c28a0e96 1612 if (!folio_trylock(folio))
1da177e4
LT
1613 goto keep;
1614
c28a0e96 1615 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1da177e4 1616
c28a0e96 1617 nr_pages = folio_nr_pages(folio);
98879b3b 1618
c28a0e96 1619 /* Account the number of base pages */
98879b3b 1620 sc->nr_scanned += nr_pages;
80e43426 1621
c28a0e96 1622 if (unlikely(!folio_evictable(folio)))
ad6b6704 1623 goto activate_locked;
894bc310 1624
1bee2c16 1625 if (!sc->may_unmap && folio_mapped(folio))
80e43426
CL
1626 goto keep_locked;
1627
e2be15f6 1628 /*
894befec 1629 * The number of dirty pages determines if a node is marked
8cd7c588 1630 * reclaim_congested. kswapd will stall and start writing
c28a0e96 1631 * folios if the tail of the LRU is all dirty unqueued folios.
e2be15f6 1632 */
e20c41b1 1633 folio_check_dirty_writeback(folio, &dirty, &writeback);
e2be15f6 1634 if (dirty || writeback)
c79b7b96 1635 stat->nr_dirty += nr_pages;
e2be15f6
MG
1636
1637 if (dirty && !writeback)
c79b7b96 1638 stat->nr_unqueued_dirty += nr_pages;
e2be15f6 1639
d04e8acd 1640 /*
c28a0e96
MWO
1641 * Treat this folio as congested if folios are cycling
1642 * through the LRU so quickly that the folios marked
1643 * for immediate reclaim are making it to the end of
1644 * the LRU a second time.
d04e8acd 1645 */
c28a0e96 1646 if (writeback && folio_test_reclaim(folio))
c79b7b96 1647 stat->nr_congested += nr_pages;
e2be15f6 1648
283aba9f 1649 /*
d33e4e14 1650 * If a folio at the tail of the LRU is under writeback, there
283aba9f
MG
1651 * are three cases to consider.
1652 *
c28a0e96
MWO
1653 * 1) If reclaim is encountering an excessive number
1654 * of folios under writeback and this folio has both
1655 * the writeback and reclaim flags set, then it
d33e4e14
MWO
1656 * indicates that folios are being queued for I/O but
1657 * are being recycled through the LRU before the I/O
1658 * can complete. Waiting on the folio itself risks an
1659 * indefinite stall if it is impossible to writeback
1660 * the folio due to I/O error or disconnected storage
1661 * so instead note that the LRU is being scanned too
1662 * quickly and the caller can stall after the folio
1663 * list has been processed.
283aba9f 1664 *
d33e4e14 1665 * 2) Global or new memcg reclaim encounters a folio that is
ecf5fc6e
MH
1666 * not marked for immediate reclaim, or the caller does not
1667 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
d33e4e14 1668 * not to fs). In this case mark the folio for immediate
97c9341f 1669 * reclaim and continue scanning.
283aba9f 1670 *
d791ea67 1671 * Require may_enter_fs() because we would wait on fs, which
d33e4e14
MWO
1672 * may not have submitted I/O yet. And the loop driver might
1673 * enter reclaim, and deadlock if it waits on a folio for
283aba9f
MG
1674 * which it is needed to do the write (loop masks off
1675 * __GFP_IO|__GFP_FS for this reason); but more thought
1676 * would probably show more reasons.
1677 *
d33e4e14
MWO
1678 * 3) Legacy memcg encounters a folio that already has the
1679 * reclaim flag set. memcg does not have any dirty folio
283aba9f 1680 * throttling so we could easily OOM just because too many
d33e4e14 1681 * folios are in writeback and there is nothing else to
283aba9f 1682 * reclaim. Wait for the writeback to complete.
c55e8d03 1683 *
d33e4e14
MWO
1684 * In cases 1) and 2) we activate the folios to get them out of
1685 * the way while we continue scanning for clean folios on the
c55e8d03
JW
1686 * inactive list and refilling from the active list. The
1687 * observation here is that waiting for disk writes is more
1688 * expensive than potentially causing reloads down the line.
1689 * Since they're marked for immediate reclaim, they won't put
1690 * memory pressure on the cache working set any longer than it
1691 * takes to write them to disk.
283aba9f 1692 */
d33e4e14 1693 if (folio_test_writeback(folio)) {
283aba9f
MG
1694 /* Case 1 above */
1695 if (current_is_kswapd() &&
d33e4e14 1696 folio_test_reclaim(folio) &&
599d0c95 1697 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
c79b7b96 1698 stat->nr_immediate += nr_pages;
c55e8d03 1699 goto activate_locked;
283aba9f
MG
1700
1701 /* Case 2 above */
b5ead35e 1702 } else if (writeback_throttling_sane(sc) ||
d33e4e14 1703 !folio_test_reclaim(folio) ||
c28a0e96 1704 !may_enter_fs(folio, sc->gfp_mask)) {
c3b94f44 1705 /*
d33e4e14 1706 * This is slightly racy -
c28a0e96
MWO
1707 * folio_end_writeback() might have
1708 * just cleared the reclaim flag, then
1709 * setting the reclaim flag here ends up
1710 * interpreted as the readahead flag - but
1711 * that does not matter enough to care.
1712 * What we do want is for this folio to
1713 * have the reclaim flag set next time
1714 * memcg reclaim reaches the tests above,
1715 * so it will then wait for writeback to
1716 * avoid OOM; and it's also appropriate
d33e4e14 1717 * in global reclaim.
c3b94f44 1718 */
d33e4e14 1719 folio_set_reclaim(folio);
c79b7b96 1720 stat->nr_writeback += nr_pages;
c55e8d03 1721 goto activate_locked;
283aba9f
MG
1722
1723 /* Case 3 above */
1724 } else {
d33e4e14
MWO
1725 folio_unlock(folio);
1726 folio_wait_writeback(folio);
1727 /* then go back and try same folio again */
1728 list_add_tail(&folio->lru, page_list);
7fadc820 1729 continue;
e62e384e 1730 }
c661b078 1731 }
1da177e4 1732
8940b34a 1733 if (!ignore_references)
d92013d1 1734 references = folio_check_references(folio, sc);
02c6de8d 1735
dfc8d636
JW
1736 switch (references) {
1737 case PAGEREF_ACTIVATE:
1da177e4 1738 goto activate_locked;
64574746 1739 case PAGEREF_KEEP:
98879b3b 1740 stat->nr_ref_keep += nr_pages;
64574746 1741 goto keep_locked;
dfc8d636
JW
1742 case PAGEREF_RECLAIM:
1743 case PAGEREF_RECLAIM_CLEAN:
c28a0e96 1744 ; /* try to reclaim the folio below */
dfc8d636 1745 }
1da177e4 1746
26aa2d19 1747 /*
c28a0e96 1748 * Before reclaiming the folio, try to relocate
26aa2d19
DH
1749 * its contents to another node.
1750 */
1751 if (do_demote_pass &&
c28a0e96
MWO
1752 (thp_migration_supported() || !folio_test_large(folio))) {
1753 list_add(&folio->lru, &demote_pages);
1754 folio_unlock(folio);
26aa2d19
DH
1755 continue;
1756 }
1757
1da177e4
LT
1758 /*
1759 * Anonymous process memory has backing store?
1760 * Try to allocate it some swap space here.
c28a0e96 1761 * Lazyfree folio could be freed directly
1da177e4 1762 */
c28a0e96
MWO
1763 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1764 if (!folio_test_swapcache(folio)) {
bd4c82c2
HY
1765 if (!(sc->gfp_mask & __GFP_IO))
1766 goto keep_locked;
d4b4084a 1767 if (folio_maybe_dma_pinned(folio))
feb889fb 1768 goto keep_locked;
c28a0e96
MWO
1769 if (folio_test_large(folio)) {
1770 /* cannot split folio, skip it */
d4b4084a 1771 if (!can_split_folio(folio, NULL))
bd4c82c2
HY
1772 goto activate_locked;
1773 /*
c28a0e96 1774 * Split folios without a PMD map right
bd4c82c2
HY
1775 * away. Chances are some or all of the
1776 * tail pages can be freed without IO.
1777 */
d4b4084a 1778 if (!folio_entire_mapcount(folio) &&
346cf613
MWO
1779 split_folio_to_list(folio,
1780 page_list))
bd4c82c2
HY
1781 goto activate_locked;
1782 }
09c02e56
MWO
1783 if (!add_to_swap(folio)) {
1784 if (!folio_test_large(folio))
98879b3b 1785 goto activate_locked_split;
bd4c82c2 1786 /* Fallback to swap normal pages */
346cf613
MWO
1787 if (split_folio_to_list(folio,
1788 page_list))
bd4c82c2 1789 goto activate_locked;
fe490cc0
HY
1790#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1791 count_vm_event(THP_SWPOUT_FALLBACK);
1792#endif
09c02e56 1793 if (!add_to_swap(folio))
98879b3b 1794 goto activate_locked_split;
bd4c82c2 1795 }
bd4c82c2 1796 }
c28a0e96
MWO
1797 } else if (folio_test_swapbacked(folio) &&
1798 folio_test_large(folio)) {
1799 /* Split shmem folio */
346cf613 1800 if (split_folio_to_list(folio, page_list))
7751b2da 1801 goto keep_locked;
e2be15f6 1802 }
1da177e4 1803
98879b3b 1804 /*
c28a0e96
MWO
1805 * If the folio was split above, the tail pages will make
1806 * their own pass through this function and be accounted
1807 * then.
98879b3b 1808 */
c28a0e96 1809 if ((nr_pages > 1) && !folio_test_large(folio)) {
98879b3b
YS
1810 sc->nr_scanned -= (nr_pages - 1);
1811 nr_pages = 1;
1812 }
1813
1da177e4 1814 /*
1bee2c16 1815 * The folio is mapped into the page tables of one or more
1da177e4
LT
1816 * processes. Try to unmap it here.
1817 */
1bee2c16 1818 if (folio_mapped(folio)) {
013339df 1819 enum ttu_flags flags = TTU_BATCH_FLUSH;
1bee2c16 1820 bool was_swapbacked = folio_test_swapbacked(folio);
bd4c82c2 1821
1bee2c16 1822 if (folio_test_pmd_mappable(folio))
bd4c82c2 1823 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1824
869f7ee6 1825 try_to_unmap(folio, flags);
1bee2c16 1826 if (folio_mapped(folio)) {
98879b3b 1827 stat->nr_unmap_fail += nr_pages;
1bee2c16
MWO
1828 if (!was_swapbacked &&
1829 folio_test_swapbacked(folio))
1f318a9b 1830 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1831 goto activate_locked;
1da177e4
LT
1832 }
1833 }
1834
5441d490 1835 mapping = folio_mapping(folio);
49bd2bf9 1836 if (folio_test_dirty(folio)) {
ee72886d 1837 /*
49bd2bf9 1838 * Only kswapd can writeback filesystem folios
4eda4823 1839 * to avoid risk of stack overflow. But avoid
49bd2bf9 1840 * injecting inefficient single-folio I/O into
4eda4823 1841 * flusher writeback as much as possible: only
49bd2bf9
MWO
1842 * write folios when we've encountered many
1843 * dirty folios, and when we've already scanned
1844 * the rest of the LRU for clean folios and see
1845 * the same dirty folios again (with the reclaim
1846 * flag set).
ee72886d 1847 */
49bd2bf9
MWO
1848 if (folio_is_file_lru(folio) &&
1849 (!current_is_kswapd() ||
1850 !folio_test_reclaim(folio) ||
4eda4823 1851 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1852 /*
1853 * Immediately reclaim when written back.
49bd2bf9
MWO
1854 * Similar in principle to deactivate_page()
1855 * except we already have the folio isolated
49ea7eb6
MG
1856 * and know it's dirty
1857 */
49bd2bf9
MWO
1858 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1859 nr_pages);
1860 folio_set_reclaim(folio);
49ea7eb6 1861
c55e8d03 1862 goto activate_locked;
ee72886d
MG
1863 }
1864
dfc8d636 1865 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1866 goto keep_locked;
c28a0e96 1867 if (!may_enter_fs(folio, sc->gfp_mask))
1da177e4 1868 goto keep_locked;
52a8363e 1869 if (!sc->may_writepage)
1da177e4
LT
1870 goto keep_locked;
1871
d950c947 1872 /*
49bd2bf9
MWO
1873 * Folio is dirty. Flush the TLB if a writable entry
1874 * potentially exists to avoid CPU writes after I/O
d950c947
MG
1875 * starts and then write it out here.
1876 */
1877 try_to_unmap_flush_dirty();
2282679f 1878 switch (pageout(folio, mapping, &plug)) {
1da177e4
LT
1879 case PAGE_KEEP:
1880 goto keep_locked;
1881 case PAGE_ACTIVATE:
1882 goto activate_locked;
1883 case PAGE_SUCCESS:
c79b7b96 1884 stat->nr_pageout += nr_pages;
96f8bf4f 1885
49bd2bf9 1886 if (folio_test_writeback(folio))
41ac1999 1887 goto keep;
49bd2bf9 1888 if (folio_test_dirty(folio))
1da177e4 1889 goto keep;
7d3579e8 1890
1da177e4
LT
1891 /*
1892 * A synchronous write - probably a ramdisk. Go
49bd2bf9 1893 * ahead and try to reclaim the folio.
1da177e4 1894 */
49bd2bf9 1895 if (!folio_trylock(folio))
1da177e4 1896 goto keep;
49bd2bf9
MWO
1897 if (folio_test_dirty(folio) ||
1898 folio_test_writeback(folio))
1da177e4 1899 goto keep_locked;
49bd2bf9 1900 mapping = folio_mapping(folio);
01359eb2 1901 fallthrough;
1da177e4 1902 case PAGE_CLEAN:
49bd2bf9 1903 ; /* try to free the folio below */
1da177e4
LT
1904 }
1905 }
1906
1907 /*
0a36111c
MWO
1908 * If the folio has buffers, try to free the buffer
1909 * mappings associated with this folio. If we succeed
1910 * we try to free the folio as well.
1da177e4 1911 *
0a36111c
MWO
1912 * We do this even if the folio is dirty.
1913 * filemap_release_folio() does not perform I/O, but it
1914 * is possible for a folio to have the dirty flag set,
1915 * but it is actually clean (all its buffers are clean).
1916 * This happens if the buffers were written out directly,
1917 * with submit_bh(). ext3 will do this, as well as
1918 * the blockdev mapping. filemap_release_folio() will
1919 * discover that cleanness and will drop the buffers
1920 * and mark the folio clean - it can be freed.
1da177e4 1921 *
0a36111c
MWO
1922 * Rarely, folios can have buffers and no ->mapping.
1923 * These are the folios which were not successfully
1924 * invalidated in truncate_cleanup_folio(). We try to
1925 * drop those buffers here and if that worked, and the
1926 * folio is no longer mapped into process address space
1927 * (refcount == 1) it can be freed. Otherwise, leave
1928 * the folio on the LRU so it is swappable.
1da177e4 1929 */
0a36111c
MWO
1930 if (folio_has_private(folio)) {
1931 if (!filemap_release_folio(folio, sc->gfp_mask))
1da177e4 1932 goto activate_locked;
0a36111c
MWO
1933 if (!mapping && folio_ref_count(folio) == 1) {
1934 folio_unlock(folio);
1935 if (folio_put_testzero(folio))
e286781d
NP
1936 goto free_it;
1937 else {
1938 /*
1939 * rare race with speculative reference.
1940 * the speculative reference will free
0a36111c 1941 * this folio shortly, so we may
e286781d
NP
1942 * increment nr_reclaimed here (and
1943 * leave it off the LRU).
1944 */
9aafcffc 1945 nr_reclaimed += nr_pages;
e286781d
NP
1946 continue;
1947 }
1948 }
1da177e4
LT
1949 }
1950
64daa5d8 1951 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
802a3a92 1952 /* follow __remove_mapping for reference */
64daa5d8 1953 if (!folio_ref_freeze(folio, 1))
802a3a92 1954 goto keep_locked;
d17be2d9 1955 /*
64daa5d8 1956 * The folio has only one reference left, which is
d17be2d9 1957 * from the isolation. After the caller puts the
64daa5d8
MWO
1958 * folio back on the lru and drops the reference, the
1959 * folio will be freed anyway. It doesn't matter
1960 * which lru it goes on. So we don't bother checking
1961 * the dirty flag here.
d17be2d9 1962 */
64daa5d8
MWO
1963 count_vm_events(PGLAZYFREED, nr_pages);
1964 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
be7c07d6 1965 } else if (!mapping || !__remove_mapping(mapping, folio, true,
b910718a 1966 sc->target_mem_cgroup))
802a3a92 1967 goto keep_locked;
9a1ea439 1968
c28a0e96 1969 folio_unlock(folio);
e286781d 1970free_it:
98879b3b 1971 /*
c28a0e96
MWO
1972 * Folio may get swapped out as a whole, need to account
1973 * all pages in it.
98879b3b
YS
1974 */
1975 nr_reclaimed += nr_pages;
abe4c3b5
MG
1976
1977 /*
1978 * Is there need to periodically free_page_list? It would
1979 * appear not as the counts should be low
1980 */
c28a0e96 1981 if (unlikely(folio_test_large(folio)))
5375336c 1982 destroy_large_folio(folio);
7ae88534 1983 else
c28a0e96 1984 list_add(&folio->lru, &free_pages);
1da177e4
LT
1985 continue;
1986
98879b3b
YS
1987activate_locked_split:
1988 /*
1989 * The tail pages that are failed to add into swap cache
1990 * reach here. Fixup nr_scanned and nr_pages.
1991 */
1992 if (nr_pages > 1) {
1993 sc->nr_scanned -= (nr_pages - 1);
1994 nr_pages = 1;
1995 }
1da177e4 1996activate_locked:
68a22394 1997 /* Not a candidate for swapping, so reclaim swap space. */
246b6480
MWO
1998 if (folio_test_swapcache(folio) &&
1999 (mem_cgroup_swap_full(&folio->page) ||
2000 folio_test_mlocked(folio)))
2001 try_to_free_swap(&folio->page);
2002 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2003 if (!folio_test_mlocked(folio)) {
2004 int type = folio_is_file_lru(folio);
2005 folio_set_active(folio);
98879b3b 2006 stat->nr_activate[type] += nr_pages;
246b6480 2007 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
ad6b6704 2008 }
1da177e4 2009keep_locked:
c28a0e96 2010 folio_unlock(folio);
1da177e4 2011keep:
c28a0e96
MWO
2012 list_add(&folio->lru, &ret_pages);
2013 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2014 folio_test_unevictable(folio), folio);
1da177e4 2015 }
26aa2d19
DH
2016 /* 'page_list' is always empty here */
2017
c28a0e96 2018 /* Migrate folios selected for demotion */
26aa2d19 2019 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
c28a0e96 2020 /* Folios that could not be demoted are still in @demote_pages */
26aa2d19 2021 if (!list_empty(&demote_pages)) {
c28a0e96 2022 /* Folios which weren't demoted go back on @page_list for retry: */
26aa2d19
DH
2023 list_splice_init(&demote_pages, page_list);
2024 do_demote_pass = false;
2025 goto retry;
2026 }
abe4c3b5 2027
98879b3b
YS
2028 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2029
747db954 2030 mem_cgroup_uncharge_list(&free_pages);
72b252ae 2031 try_to_unmap_flush();
2d4894b5 2032 free_unref_page_list(&free_pages);
abe4c3b5 2033
1da177e4 2034 list_splice(&ret_pages, page_list);
886cf190 2035 count_vm_events(PGACTIVATE, pgactivate);
060f005f 2036
2282679f
N
2037 if (plug)
2038 swap_write_unplug(plug);
05ff5137 2039 return nr_reclaimed;
1da177e4
LT
2040}
2041
730ec8c0 2042unsigned int reclaim_clean_pages_from_list(struct zone *zone,
b8cecb93 2043 struct list_head *folio_list)
02c6de8d
MK
2044{
2045 struct scan_control sc = {
2046 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
2047 .may_unmap = 1,
2048 };
1f318a9b 2049 struct reclaim_stat stat;
730ec8c0 2050 unsigned int nr_reclaimed;
b8cecb93
MWO
2051 struct folio *folio, *next;
2052 LIST_HEAD(clean_folios);
2d2b8d2b 2053 unsigned int noreclaim_flag;
02c6de8d 2054
b8cecb93
MWO
2055 list_for_each_entry_safe(folio, next, folio_list, lru) {
2056 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2057 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2058 !folio_test_unevictable(folio)) {
2059 folio_clear_active(folio);
2060 list_move(&folio->lru, &clean_folios);
02c6de8d
MK
2061 }
2062 }
2063
2d2b8d2b
YZ
2064 /*
2065 * We should be safe here since we are only dealing with file pages and
2066 * we are not kswapd and therefore cannot write dirty file pages. But
2067 * call memalloc_noreclaim_save() anyway, just in case these conditions
2068 * change in the future.
2069 */
2070 noreclaim_flag = memalloc_noreclaim_save();
b8cecb93 2071 nr_reclaimed = shrink_page_list(&clean_folios, zone->zone_pgdat, &sc,
013339df 2072 &stat, true);
2d2b8d2b
YZ
2073 memalloc_noreclaim_restore(noreclaim_flag);
2074
b8cecb93 2075 list_splice(&clean_folios, folio_list);
2da9f630
NP
2076 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2077 -(long)nr_reclaimed);
1f318a9b
JK
2078 /*
2079 * Since lazyfree pages are isolated from file LRU from the beginning,
2080 * they will rotate back to anonymous LRU in the end if it failed to
2081 * discard so isolated count will be mismatched.
2082 * Compensate the isolated count for both LRU lists.
2083 */
2084 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2085 stat.nr_lazyfree_fail);
2086 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 2087 -(long)stat.nr_lazyfree_fail);
1f318a9b 2088 return nr_reclaimed;
02c6de8d
MK
2089}
2090
7ee36a14
MG
2091/*
2092 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 2093 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
2094 */
2095static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 2096 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 2097{
7ee36a14
MG
2098 int zid;
2099
7ee36a14
MG
2100 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2101 if (!nr_zone_taken[zid])
2102 continue;
2103
a892cb6b 2104 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
2105 }
2106
7ee36a14
MG
2107}
2108
f611fab7 2109/*
15b44736
HD
2110 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2111 *
2112 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
2113 * shrink the lists perform better by taking out a batch of pages
2114 * and working on them outside the LRU lock.
2115 *
2116 * For pagecache intensive workloads, this function is the hottest
2117 * spot in the kernel (apart from copy_*_user functions).
2118 *
15b44736 2119 * Lru_lock must be held before calling this function.
1da177e4 2120 *
791b48b6 2121 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 2122 * @lruvec: The LRU vector to pull pages from.
1da177e4 2123 * @dst: The temp list to put pages on to.
f626012d 2124 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 2125 * @sc: The scan_control struct for this reclaim session
3cb99451 2126 * @lru: LRU list id for isolating
1da177e4
LT
2127 *
2128 * returns how many pages were moved onto *@dst.
2129 */
69e05944 2130static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 2131 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 2132 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 2133 enum lru_list lru)
1da177e4 2134{
75b00af7 2135 struct list_head *src = &lruvec->lists[lru];
69e05944 2136 unsigned long nr_taken = 0;
599d0c95 2137 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 2138 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 2139 unsigned long skipped = 0;
791b48b6 2140 unsigned long scan, total_scan, nr_pages;
166e3d32 2141 LIST_HEAD(folios_skipped);
1da177e4 2142
98879b3b 2143 total_scan = 0;
791b48b6 2144 scan = 0;
98879b3b 2145 while (scan < nr_to_scan && !list_empty(src)) {
89f6c88a 2146 struct list_head *move_to = src;
166e3d32 2147 struct folio *folio;
5ad333eb 2148
166e3d32
MWO
2149 folio = lru_to_folio(src);
2150 prefetchw_prev_lru_folio(folio, src, flags);
1da177e4 2151
166e3d32 2152 nr_pages = folio_nr_pages(folio);
98879b3b
YS
2153 total_scan += nr_pages;
2154
166e3d32
MWO
2155 if (folio_zonenum(folio) > sc->reclaim_idx) {
2156 nr_skipped[folio_zonenum(folio)] += nr_pages;
2157 move_to = &folios_skipped;
89f6c88a 2158 goto move;
b2e18757
MG
2159 }
2160
791b48b6 2161 /*
166e3d32
MWO
2162 * Do not count skipped folios because that makes the function
2163 * return with no isolated folios if the LRU mostly contains
2164 * ineligible folios. This causes the VM to not reclaim any
2165 * folios, triggering a premature OOM.
2166 * Account all pages in a folio.
791b48b6 2167 */
98879b3b 2168 scan += nr_pages;
89f6c88a 2169
166e3d32 2170 if (!folio_test_lru(folio))
89f6c88a 2171 goto move;
166e3d32 2172 if (!sc->may_unmap && folio_mapped(folio))
89f6c88a
HD
2173 goto move;
2174
c2135f7c 2175 /*
166e3d32
MWO
2176 * Be careful not to clear the lru flag until after we're
2177 * sure the folio is not being freed elsewhere -- the
2178 * folio release code relies on it.
c2135f7c 2179 */
166e3d32 2180 if (unlikely(!folio_try_get(folio)))
89f6c88a 2181 goto move;
5ad333eb 2182
166e3d32
MWO
2183 if (!folio_test_clear_lru(folio)) {
2184 /* Another thread is already isolating this folio */
2185 folio_put(folio);
89f6c88a 2186 goto move;
5ad333eb 2187 }
c2135f7c
AS
2188
2189 nr_taken += nr_pages;
166e3d32 2190 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
89f6c88a
HD
2191 move_to = dst;
2192move:
166e3d32 2193 list_move(&folio->lru, move_to);
1da177e4
LT
2194 }
2195
b2e18757 2196 /*
166e3d32 2197 * Splice any skipped folios to the start of the LRU list. Note that
b2e18757
MG
2198 * this disrupts the LRU order when reclaiming for lower zones but
2199 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
166e3d32 2200 * scanning would soon rescan the same folios to skip and waste lots
b2cb6826 2201 * of cpu cycles.
b2e18757 2202 */
166e3d32 2203 if (!list_empty(&folios_skipped)) {
7cc30fcf
MG
2204 int zid;
2205
166e3d32 2206 list_splice(&folios_skipped, src);
7cc30fcf
MG
2207 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2208 if (!nr_skipped[zid])
2209 continue;
2210
2211 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2212 skipped += nr_skipped[zid];
7cc30fcf
MG
2213 }
2214 }
791b48b6 2215 *nr_scanned = total_scan;
1265e3a6 2216 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
89f6c88a
HD
2217 total_scan, skipped, nr_taken,
2218 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
b4536f0c 2219 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2220 return nr_taken;
2221}
2222
62695a84 2223/**
d1d8a3b4
MWO
2224 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2225 * @folio: Folio to isolate from its LRU list.
62695a84 2226 *
d1d8a3b4
MWO
2227 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2228 * corresponding to whatever LRU list the folio was on.
62695a84 2229 *
d1d8a3b4
MWO
2230 * The folio will have its LRU flag cleared. If it was found on the
2231 * active list, it will have the Active flag set. If it was found on the
2232 * unevictable list, it will have the Unevictable flag set. These flags
894bc310 2233 * may need to be cleared by the caller before letting the page go.
62695a84 2234 *
d1d8a3b4 2235 * Context:
a5d09bed 2236 *
62695a84 2237 * (1) Must be called with an elevated refcount on the page. This is a
d1d8a3b4 2238 * fundamental difference from isolate_lru_pages() (which is called
62695a84 2239 * without a stable reference).
d1d8a3b4
MWO
2240 * (2) The lru_lock must not be held.
2241 * (3) Interrupts must be enabled.
2242 *
2243 * Return: 0 if the folio was removed from an LRU list.
2244 * -EBUSY if the folio was not on an LRU list.
62695a84 2245 */
d1d8a3b4 2246int folio_isolate_lru(struct folio *folio)
62695a84
NP
2247{
2248 int ret = -EBUSY;
2249
d1d8a3b4 2250 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
0c917313 2251
d1d8a3b4 2252 if (folio_test_clear_lru(folio)) {
fa9add64 2253 struct lruvec *lruvec;
62695a84 2254
d1d8a3b4 2255 folio_get(folio);
e809c3fe 2256 lruvec = folio_lruvec_lock_irq(folio);
d1d8a3b4 2257 lruvec_del_folio(lruvec, folio);
6168d0da 2258 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2259 ret = 0;
62695a84 2260 }
d25b5bd8 2261
62695a84
NP
2262 return ret;
2263}
2264
35cd7815 2265/*
d37dd5dc 2266 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2267 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2268 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2269 * the LRU list will go small and be scanned faster than necessary, leading to
2270 * unnecessary swapping, thrashing and OOM.
35cd7815 2271 */
599d0c95 2272static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2273 struct scan_control *sc)
2274{
2275 unsigned long inactive, isolated;
d818fca1 2276 bool too_many;
35cd7815
RR
2277
2278 if (current_is_kswapd())
2279 return 0;
2280
b5ead35e 2281 if (!writeback_throttling_sane(sc))
35cd7815
RR
2282 return 0;
2283
2284 if (file) {
599d0c95
MG
2285 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2286 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2287 } else {
599d0c95
MG
2288 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2289 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2290 }
2291
3cf23841
FW
2292 /*
2293 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2294 * won't get blocked by normal direct-reclaimers, forming a circular
2295 * deadlock.
2296 */
d0164adc 2297 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2298 inactive >>= 3;
2299
d818fca1
MG
2300 too_many = isolated > inactive;
2301
2302 /* Wake up tasks throttled due to too_many_isolated. */
2303 if (!too_many)
2304 wake_throttle_isolated(pgdat);
2305
2306 return too_many;
35cd7815
RR
2307}
2308
a222f341 2309/*
ff00a170
MWO
2310 * move_pages_to_lru() moves folios from private @list to appropriate LRU list.
2311 * On return, @list is reused as a list of folios to be freed by the caller.
a222f341
KT
2312 *
2313 * Returns the number of pages moved to the given lruvec.
2314 */
9ef56b78
MS
2315static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2316 struct list_head *list)
66635629 2317{
a222f341 2318 int nr_pages, nr_moved = 0;
ff00a170 2319 LIST_HEAD(folios_to_free);
66635629 2320
a222f341 2321 while (!list_empty(list)) {
ff00a170
MWO
2322 struct folio *folio = lru_to_folio(list);
2323
2324 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2325 list_del(&folio->lru);
2326 if (unlikely(!folio_evictable(folio))) {
6168d0da 2327 spin_unlock_irq(&lruvec->lru_lock);
ff00a170 2328 folio_putback_lru(folio);
6168d0da 2329 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2330 continue;
2331 }
fa9add64 2332
3d06afab 2333 /*
ff00a170 2334 * The folio_set_lru needs to be kept here for list integrity.
3d06afab
AS
2335 * Otherwise:
2336 * #0 move_pages_to_lru #1 release_pages
ff00a170
MWO
2337 * if (!folio_put_testzero())
2338 * if (folio_put_testzero())
2339 * !lru //skip lru_lock
2340 * folio_set_lru()
2341 * list_add(&folio->lru,)
2342 * list_add(&folio->lru,)
3d06afab 2343 */
ff00a170 2344 folio_set_lru(folio);
a222f341 2345
ff00a170
MWO
2346 if (unlikely(folio_put_testzero(folio))) {
2347 __folio_clear_lru_flags(folio);
2bcf8879 2348
ff00a170 2349 if (unlikely(folio_test_large(folio))) {
6168d0da 2350 spin_unlock_irq(&lruvec->lru_lock);
5375336c 2351 destroy_large_folio(folio);
6168d0da 2352 spin_lock_irq(&lruvec->lru_lock);
2bcf8879 2353 } else
ff00a170 2354 list_add(&folio->lru, &folios_to_free);
3d06afab
AS
2355
2356 continue;
66635629 2357 }
3d06afab 2358
afca9157
AS
2359 /*
2360 * All pages were isolated from the same lruvec (and isolation
2361 * inhibits memcg migration).
2362 */
ff00a170
MWO
2363 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2364 lruvec_add_folio(lruvec, folio);
2365 nr_pages = folio_nr_pages(folio);
3d06afab 2366 nr_moved += nr_pages;
ff00a170 2367 if (folio_test_active(folio))
3d06afab 2368 workingset_age_nonresident(lruvec, nr_pages);
66635629 2369 }
66635629 2370
3f79768f
HD
2371 /*
2372 * To save our caller's stack, now use input list for pages to free.
2373 */
ff00a170 2374 list_splice(&folios_to_free, list);
a222f341
KT
2375
2376 return nr_moved;
66635629
MG
2377}
2378
399ba0b9 2379/*
5829f7db
ML
2380 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2381 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2382 * we should not throttle. Otherwise it is safe to do so.
399ba0b9
N
2383 */
2384static int current_may_throttle(void)
2385{
b9b1335e 2386 return !(current->flags & PF_LOCAL_THROTTLE);
399ba0b9
N
2387}
2388
1da177e4 2389/*
b2e18757 2390 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2391 * of reclaimed pages
1da177e4 2392 */
9ef56b78 2393static unsigned long
1a93be0e 2394shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2395 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2396{
2397 LIST_HEAD(page_list);
e247dbce 2398 unsigned long nr_scanned;
730ec8c0 2399 unsigned int nr_reclaimed = 0;
e247dbce 2400 unsigned long nr_taken;
060f005f 2401 struct reclaim_stat stat;
497a6c1b 2402 bool file = is_file_lru(lru);
f46b7912 2403 enum vm_event_item item;
599d0c95 2404 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2405 bool stalled = false;
78dc583d 2406
599d0c95 2407 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2408 if (stalled)
2409 return 0;
2410
2411 /* wait a bit for the reclaimer. */
db73ee0d 2412 stalled = true;
c3f4a9a2 2413 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
35cd7815
RR
2414
2415 /* We are about to die and free our memory. Return now. */
2416 if (fatal_signal_pending(current))
2417 return SWAP_CLUSTER_MAX;
2418 }
2419
1da177e4 2420 lru_add_drain();
f80c0673 2421
6168d0da 2422 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2423
5dc35979 2424 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2425 &nr_scanned, sc, lru);
95d918fc 2426
599d0c95 2427 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2428 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2429 if (!cgroup_reclaim(sc))
f46b7912
KT
2430 __count_vm_events(item, nr_scanned);
2431 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2432 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2433
6168d0da 2434 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2435
d563c050 2436 if (nr_taken == 0)
66635629 2437 return 0;
5ad333eb 2438
013339df 2439 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2440
6168d0da 2441 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2442 move_pages_to_lru(lruvec, &page_list);
2443
2444 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2445 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2446 if (!cgroup_reclaim(sc))
f46b7912
KT
2447 __count_vm_events(item, nr_reclaimed);
2448 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2449 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2450 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2451
75cc3c91 2452 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2453 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2454 free_unref_page_list(&page_list);
e11da5b4 2455
1c610d5f
AR
2456 /*
2457 * If dirty pages are scanned that are not queued for IO, it
2458 * implies that flushers are not doing their job. This can
2459 * happen when memory pressure pushes dirty pages to the end of
2460 * the LRU before the dirty limits are breached and the dirty
2461 * data has expired. It can also happen when the proportion of
2462 * dirty pages grows not through writes but through memory
2463 * pressure reclaiming all the clean cache. And in some cases,
2464 * the flushers simply cannot keep up with the allocation
2465 * rate. Nudge the flusher threads in case they are asleep.
2466 */
2467 if (stat.nr_unqueued_dirty == nr_taken)
2468 wakeup_flusher_threads(WB_REASON_VMSCAN);
2469
d108c772
AR
2470 sc->nr.dirty += stat.nr_dirty;
2471 sc->nr.congested += stat.nr_congested;
2472 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2473 sc->nr.writeback += stat.nr_writeback;
2474 sc->nr.immediate += stat.nr_immediate;
2475 sc->nr.taken += nr_taken;
2476 if (file)
2477 sc->nr.file_taken += nr_taken;
8e950282 2478
599d0c95 2479 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2480 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2481 return nr_reclaimed;
1da177e4
LT
2482}
2483
15b44736 2484/*
07f67a8d 2485 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
15b44736 2486 *
07f67a8d 2487 * We move them the other way if the folio is referenced by one or more
15b44736
HD
2488 * processes.
2489 *
07f67a8d 2490 * If the folios are mostly unmapped, the processing is fast and it is
15b44736 2491 * appropriate to hold lru_lock across the whole operation. But if
07f67a8d
MWO
2492 * the folios are mapped, the processing is slow (folio_referenced()), so
2493 * we should drop lru_lock around each folio. It's impossible to balance
2494 * this, so instead we remove the folios from the LRU while processing them.
2495 * It is safe to rely on the active flag against the non-LRU folios in here
2496 * because nobody will play with that bit on a non-LRU folio.
15b44736 2497 *
07f67a8d
MWO
2498 * The downside is that we have to touch folio->_refcount against each folio.
2499 * But we had to alter folio->flags anyway.
15b44736 2500 */
f626012d 2501static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2502 struct lruvec *lruvec,
f16015fb 2503 struct scan_control *sc,
9e3b2f8c 2504 enum lru_list lru)
1da177e4 2505{
44c241f1 2506 unsigned long nr_taken;
f626012d 2507 unsigned long nr_scanned;
6fe6b7e3 2508 unsigned long vm_flags;
07f67a8d 2509 LIST_HEAD(l_hold); /* The folios which were snipped off */
8cab4754 2510 LIST_HEAD(l_active);
b69408e8 2511 LIST_HEAD(l_inactive);
9d998b4f
MH
2512 unsigned nr_deactivate, nr_activate;
2513 unsigned nr_rotated = 0;
3cb99451 2514 int file = is_file_lru(lru);
599d0c95 2515 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2516
2517 lru_add_drain();
f80c0673 2518
6168d0da 2519 spin_lock_irq(&lruvec->lru_lock);
925b7673 2520
5dc35979 2521 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2522 &nr_scanned, sc, lru);
89b5fae5 2523
599d0c95 2524 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2525
912c0572
SB
2526 if (!cgroup_reclaim(sc))
2527 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2528 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2529
6168d0da 2530 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2531
1da177e4 2532 while (!list_empty(&l_hold)) {
b3ac0413 2533 struct folio *folio;
b3ac0413 2534
1da177e4 2535 cond_resched();
b3ac0413
MWO
2536 folio = lru_to_folio(&l_hold);
2537 list_del(&folio->lru);
7e9cd484 2538
07f67a8d
MWO
2539 if (unlikely(!folio_evictable(folio))) {
2540 folio_putback_lru(folio);
894bc310
LS
2541 continue;
2542 }
2543
cc715d99 2544 if (unlikely(buffer_heads_over_limit)) {
07f67a8d
MWO
2545 if (folio_get_private(folio) && folio_trylock(folio)) {
2546 if (folio_get_private(folio))
2547 filemap_release_folio(folio, 0);
2548 folio_unlock(folio);
cc715d99
MG
2549 }
2550 }
2551
6d4675e6 2552 /* Referenced or rmap lock contention: rotate */
b3ac0413 2553 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
6d4675e6 2554 &vm_flags) != 0) {
8cab4754 2555 /*
07f67a8d 2556 * Identify referenced, file-backed active folios and
8cab4754
WF
2557 * give them one more trip around the active list. So
2558 * that executable code get better chances to stay in
07f67a8d 2559 * memory under moderate memory pressure. Anon folios
8cab4754 2560 * are not likely to be evicted by use-once streaming
07f67a8d 2561 * IO, plus JVM can create lots of anon VM_EXEC folios,
8cab4754
WF
2562 * so we ignore them here.
2563 */
07f67a8d
MWO
2564 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2565 nr_rotated += folio_nr_pages(folio);
2566 list_add(&folio->lru, &l_active);
8cab4754
WF
2567 continue;
2568 }
2569 }
7e9cd484 2570
07f67a8d
MWO
2571 folio_clear_active(folio); /* we are de-activating */
2572 folio_set_workingset(folio);
2573 list_add(&folio->lru, &l_inactive);
1da177e4
LT
2574 }
2575
b555749a 2576 /*
07f67a8d 2577 * Move folios back to the lru list.
b555749a 2578 */
6168d0da 2579 spin_lock_irq(&lruvec->lru_lock);
556adecb 2580
a222f341
KT
2581 nr_activate = move_pages_to_lru(lruvec, &l_active);
2582 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
07f67a8d 2583 /* Keep all free folios in l_active list */
f372d89e 2584 list_splice(&l_inactive, &l_active);
9851ac13
KT
2585
2586 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2587 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2588
599d0c95 2589 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2590 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2591
f372d89e
KT
2592 mem_cgroup_uncharge_list(&l_active);
2593 free_unref_page_list(&l_active);
9d998b4f
MH
2594 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2595 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2596}
2597
1fe47c0b
ML
2598static unsigned int reclaim_page_list(struct list_head *page_list,
2599 struct pglist_data *pgdat)
1a4e58cc 2600{
1a4e58cc 2601 struct reclaim_stat dummy_stat;
1fe47c0b
ML
2602 unsigned int nr_reclaimed;
2603 struct folio *folio;
1a4e58cc
MK
2604 struct scan_control sc = {
2605 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2606 .may_writepage = 1,
2607 .may_unmap = 1,
2608 .may_swap = 1,
26aa2d19 2609 .no_demotion = 1,
1a4e58cc
MK
2610 };
2611
1fe47c0b
ML
2612 nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false);
2613 while (!list_empty(page_list)) {
2614 folio = lru_to_folio(page_list);
2615 list_del(&folio->lru);
2616 folio_putback_lru(folio);
2617 }
2618
2619 return nr_reclaimed;
2620}
2621
a83f0551 2622unsigned long reclaim_pages(struct list_head *folio_list)
1fe47c0b 2623{
ed657e55 2624 int nid;
1fe47c0b 2625 unsigned int nr_reclaimed = 0;
a83f0551 2626 LIST_HEAD(node_folio_list);
1fe47c0b
ML
2627 unsigned int noreclaim_flag;
2628
a83f0551 2629 if (list_empty(folio_list))
1ae65e27
WY
2630 return nr_reclaimed;
2631
2d2b8d2b
YZ
2632 noreclaim_flag = memalloc_noreclaim_save();
2633
a83f0551 2634 nid = folio_nid(lru_to_folio(folio_list));
1ae65e27 2635 do {
a83f0551 2636 struct folio *folio = lru_to_folio(folio_list);
1a4e58cc 2637
a83f0551
MWO
2638 if (nid == folio_nid(folio)) {
2639 folio_clear_active(folio);
2640 list_move(&folio->lru, &node_folio_list);
1a4e58cc
MK
2641 continue;
2642 }
2643
a83f0551
MWO
2644 nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid));
2645 nid = folio_nid(lru_to_folio(folio_list));
2646 } while (!list_empty(folio_list));
1a4e58cc 2647
a83f0551 2648 nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid));
1a4e58cc 2649
2d2b8d2b
YZ
2650 memalloc_noreclaim_restore(noreclaim_flag);
2651
1a4e58cc
MK
2652 return nr_reclaimed;
2653}
2654
b91ac374
JW
2655static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2656 struct lruvec *lruvec, struct scan_control *sc)
2657{
2658 if (is_active_lru(lru)) {
2659 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2660 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2661 else
2662 sc->skipped_deactivate = 1;
2663 return 0;
2664 }
2665
2666 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2667}
2668
59dc76b0
RR
2669/*
2670 * The inactive anon list should be small enough that the VM never has
2671 * to do too much work.
14797e23 2672 *
59dc76b0
RR
2673 * The inactive file list should be small enough to leave most memory
2674 * to the established workingset on the scan-resistant active list,
2675 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2676 *
59dc76b0
RR
2677 * Both inactive lists should also be large enough that each inactive
2678 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2679 *
2a2e4885
JW
2680 * If that fails and refaulting is observed, the inactive list grows.
2681 *
59dc76b0 2682 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2683 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2684 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2685 *
59dc76b0
RR
2686 * total target max
2687 * memory ratio inactive
2688 * -------------------------------------
2689 * 10MB 1 5MB
2690 * 100MB 1 50MB
2691 * 1GB 3 250MB
2692 * 10GB 10 0.9GB
2693 * 100GB 31 3GB
2694 * 1TB 101 10GB
2695 * 10TB 320 32GB
56e49d21 2696 */
b91ac374 2697static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2698{
b91ac374 2699 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2700 unsigned long inactive, active;
2701 unsigned long inactive_ratio;
59dc76b0 2702 unsigned long gb;
e3790144 2703
b91ac374
JW
2704 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2705 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2706
b91ac374 2707 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2708 if (gb)
b91ac374
JW
2709 inactive_ratio = int_sqrt(10 * gb);
2710 else
2711 inactive_ratio = 1;
fd538803 2712
59dc76b0 2713 return inactive * inactive_ratio < active;
b39415b2
RR
2714}
2715
9a265114
JW
2716enum scan_balance {
2717 SCAN_EQUAL,
2718 SCAN_FRACT,
2719 SCAN_ANON,
2720 SCAN_FILE,
2721};
2722
4f98a2fe
RR
2723/*
2724 * Determine how aggressively the anon and file LRU lists should be
02e458d8 2725 * scanned.
4f98a2fe 2726 *
be7bd59d
WL
2727 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2728 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2729 */
afaf07a6
JW
2730static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2731 unsigned long *nr)
4f98a2fe 2732{
a2a36488 2733 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2734 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2735 unsigned long anon_cost, file_cost, total_cost;
33377678 2736 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2737 u64 fraction[ANON_AND_FILE];
9a265114 2738 u64 denominator = 0; /* gcc */
9a265114 2739 enum scan_balance scan_balance;
4f98a2fe 2740 unsigned long ap, fp;
4111304d 2741 enum lru_list lru;
76a33fc3
SL
2742
2743 /* If we have no swap space, do not bother scanning anon pages. */
a2a36488 2744 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2745 scan_balance = SCAN_FILE;
76a33fc3
SL
2746 goto out;
2747 }
4f98a2fe 2748
10316b31
JW
2749 /*
2750 * Global reclaim will swap to prevent OOM even with no
2751 * swappiness, but memcg users want to use this knob to
2752 * disable swapping for individual groups completely when
2753 * using the memory controller's swap limit feature would be
2754 * too expensive.
2755 */
b5ead35e 2756 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2757 scan_balance = SCAN_FILE;
10316b31
JW
2758 goto out;
2759 }
2760
2761 /*
2762 * Do not apply any pressure balancing cleverness when the
2763 * system is close to OOM, scan both anon and file equally
2764 * (unless the swappiness setting disagrees with swapping).
2765 */
02695175 2766 if (!sc->priority && swappiness) {
9a265114 2767 scan_balance = SCAN_EQUAL;
10316b31
JW
2768 goto out;
2769 }
2770
62376251 2771 /*
53138cea 2772 * If the system is almost out of file pages, force-scan anon.
62376251 2773 */
b91ac374 2774 if (sc->file_is_tiny) {
53138cea
JW
2775 scan_balance = SCAN_ANON;
2776 goto out;
62376251
JW
2777 }
2778
7c5bd705 2779 /*
b91ac374
JW
2780 * If there is enough inactive page cache, we do not reclaim
2781 * anything from the anonymous working right now.
7c5bd705 2782 */
b91ac374 2783 if (sc->cache_trim_mode) {
9a265114 2784 scan_balance = SCAN_FILE;
7c5bd705
JW
2785 goto out;
2786 }
2787
9a265114 2788 scan_balance = SCAN_FRACT;
58c37f6e 2789 /*
314b57fb
JW
2790 * Calculate the pressure balance between anon and file pages.
2791 *
2792 * The amount of pressure we put on each LRU is inversely
2793 * proportional to the cost of reclaiming each list, as
2794 * determined by the share of pages that are refaulting, times
2795 * the relative IO cost of bringing back a swapped out
2796 * anonymous page vs reloading a filesystem page (swappiness).
2797 *
d483a5dd
JW
2798 * Although we limit that influence to ensure no list gets
2799 * left behind completely: at least a third of the pressure is
2800 * applied, before swappiness.
2801 *
314b57fb 2802 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2803 */
d483a5dd
JW
2804 total_cost = sc->anon_cost + sc->file_cost;
2805 anon_cost = total_cost + sc->anon_cost;
2806 file_cost = total_cost + sc->file_cost;
2807 total_cost = anon_cost + file_cost;
58c37f6e 2808
d483a5dd
JW
2809 ap = swappiness * (total_cost + 1);
2810 ap /= anon_cost + 1;
4f98a2fe 2811
d483a5dd
JW
2812 fp = (200 - swappiness) * (total_cost + 1);
2813 fp /= file_cost + 1;
4f98a2fe 2814
76a33fc3
SL
2815 fraction[0] = ap;
2816 fraction[1] = fp;
a4fe1631 2817 denominator = ap + fp;
76a33fc3 2818out:
688035f7
JW
2819 for_each_evictable_lru(lru) {
2820 int file = is_file_lru(lru);
9783aa99 2821 unsigned long lruvec_size;
f56ce412 2822 unsigned long low, min;
688035f7 2823 unsigned long scan;
9783aa99
CD
2824
2825 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2826 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2827 &min, &low);
9783aa99 2828
f56ce412 2829 if (min || low) {
9783aa99
CD
2830 /*
2831 * Scale a cgroup's reclaim pressure by proportioning
2832 * its current usage to its memory.low or memory.min
2833 * setting.
2834 *
2835 * This is important, as otherwise scanning aggression
2836 * becomes extremely binary -- from nothing as we
2837 * approach the memory protection threshold, to totally
2838 * nominal as we exceed it. This results in requiring
2839 * setting extremely liberal protection thresholds. It
2840 * also means we simply get no protection at all if we
2841 * set it too low, which is not ideal.
1bc63fb1
CD
2842 *
2843 * If there is any protection in place, we reduce scan
2844 * pressure by how much of the total memory used is
2845 * within protection thresholds.
9783aa99 2846 *
9de7ca46
CD
2847 * There is one special case: in the first reclaim pass,
2848 * we skip over all groups that are within their low
2849 * protection. If that fails to reclaim enough pages to
2850 * satisfy the reclaim goal, we come back and override
2851 * the best-effort low protection. However, we still
2852 * ideally want to honor how well-behaved groups are in
2853 * that case instead of simply punishing them all
2854 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2855 * memory they are using, reducing the scan pressure
2856 * again by how much of the total memory used is under
2857 * hard protection.
9783aa99 2858 */
1bc63fb1 2859 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
2860 unsigned long protection;
2861
2862 /* memory.low scaling, make sure we retry before OOM */
2863 if (!sc->memcg_low_reclaim && low > min) {
2864 protection = low;
2865 sc->memcg_low_skipped = 1;
2866 } else {
2867 protection = min;
2868 }
1bc63fb1
CD
2869
2870 /* Avoid TOCTOU with earlier protection check */
2871 cgroup_size = max(cgroup_size, protection);
2872
2873 scan = lruvec_size - lruvec_size * protection /
32d4f4b7 2874 (cgroup_size + 1);
9783aa99
CD
2875
2876 /*
1bc63fb1 2877 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2878 * reclaim moving forwards, avoiding decrementing
9de7ca46 2879 * sc->priority further than desirable.
9783aa99 2880 */
1bc63fb1 2881 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2882 } else {
2883 scan = lruvec_size;
2884 }
2885
2886 scan >>= sc->priority;
6b4f7799 2887
688035f7
JW
2888 /*
2889 * If the cgroup's already been deleted, make sure to
2890 * scrape out the remaining cache.
2891 */
2892 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2893 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2894
688035f7
JW
2895 switch (scan_balance) {
2896 case SCAN_EQUAL:
2897 /* Scan lists relative to size */
2898 break;
2899 case SCAN_FRACT:
9a265114 2900 /*
688035f7
JW
2901 * Scan types proportional to swappiness and
2902 * their relative recent reclaim efficiency.
76073c64
GS
2903 * Make sure we don't miss the last page on
2904 * the offlined memory cgroups because of a
2905 * round-off error.
9a265114 2906 */
76073c64
GS
2907 scan = mem_cgroup_online(memcg) ?
2908 div64_u64(scan * fraction[file], denominator) :
2909 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2910 denominator);
688035f7
JW
2911 break;
2912 case SCAN_FILE:
2913 case SCAN_ANON:
2914 /* Scan one type exclusively */
e072bff6 2915 if ((scan_balance == SCAN_FILE) != file)
688035f7 2916 scan = 0;
688035f7
JW
2917 break;
2918 default:
2919 /* Look ma, no brain */
2920 BUG();
9a265114 2921 }
688035f7 2922
688035f7 2923 nr[lru] = scan;
76a33fc3 2924 }
6e08a369 2925}
4f98a2fe 2926
2f368a9f
DH
2927/*
2928 * Anonymous LRU management is a waste if there is
2929 * ultimately no way to reclaim the memory.
2930 */
2931static bool can_age_anon_pages(struct pglist_data *pgdat,
2932 struct scan_control *sc)
2933{
2934 /* Aging the anon LRU is valuable if swap is present: */
2935 if (total_swap_pages > 0)
2936 return true;
2937
2938 /* Also valuable if anon pages can be demoted: */
2939 return can_demote(pgdat->node_id, sc);
2940}
2941
afaf07a6 2942static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2943{
2944 unsigned long nr[NR_LRU_LISTS];
e82e0561 2945 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2946 unsigned long nr_to_scan;
2947 enum lru_list lru;
2948 unsigned long nr_reclaimed = 0;
2949 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2950 struct blk_plug plug;
1a501907 2951 bool scan_adjusted;
9b4f98cd 2952
afaf07a6 2953 get_scan_count(lruvec, sc, nr);
9b4f98cd 2954
e82e0561
MG
2955 /* Record the original scan target for proportional adjustments later */
2956 memcpy(targets, nr, sizeof(nr));
2957
1a501907
MG
2958 /*
2959 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2960 * event that can occur when there is little memory pressure e.g.
2961 * multiple streaming readers/writers. Hence, we do not abort scanning
2962 * when the requested number of pages are reclaimed when scanning at
2963 * DEF_PRIORITY on the assumption that the fact we are direct
2964 * reclaiming implies that kswapd is not keeping up and it is best to
2965 * do a batch of work at once. For memcg reclaim one check is made to
2966 * abort proportional reclaim if either the file or anon lru has already
2967 * dropped to zero at the first pass.
2968 */
b5ead35e 2969 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2970 sc->priority == DEF_PRIORITY);
2971
9b4f98cd
JW
2972 blk_start_plug(&plug);
2973 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2974 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2975 unsigned long nr_anon, nr_file, percentage;
2976 unsigned long nr_scanned;
2977
9b4f98cd
JW
2978 for_each_evictable_lru(lru) {
2979 if (nr[lru]) {
2980 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2981 nr[lru] -= nr_to_scan;
2982
2983 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2984 lruvec, sc);
9b4f98cd
JW
2985 }
2986 }
e82e0561 2987
bd041733
MH
2988 cond_resched();
2989
e82e0561
MG
2990 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2991 continue;
2992
e82e0561
MG
2993 /*
2994 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2995 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2996 * proportionally what was requested by get_scan_count(). We
2997 * stop reclaiming one LRU and reduce the amount scanning
2998 * proportional to the original scan target.
2999 */
3000 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
3001 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
3002
1a501907
MG
3003 /*
3004 * It's just vindictive to attack the larger once the smaller
3005 * has gone to zero. And given the way we stop scanning the
3006 * smaller below, this makes sure that we only make one nudge
3007 * towards proportionality once we've got nr_to_reclaim.
3008 */
3009 if (!nr_file || !nr_anon)
3010 break;
3011
e82e0561
MG
3012 if (nr_file > nr_anon) {
3013 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
3014 targets[LRU_ACTIVE_ANON] + 1;
3015 lru = LRU_BASE;
3016 percentage = nr_anon * 100 / scan_target;
3017 } else {
3018 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
3019 targets[LRU_ACTIVE_FILE] + 1;
3020 lru = LRU_FILE;
3021 percentage = nr_file * 100 / scan_target;
3022 }
3023
3024 /* Stop scanning the smaller of the LRU */
3025 nr[lru] = 0;
3026 nr[lru + LRU_ACTIVE] = 0;
3027
3028 /*
3029 * Recalculate the other LRU scan count based on its original
3030 * scan target and the percentage scanning already complete
3031 */
3032 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
3033 nr_scanned = targets[lru] - nr[lru];
3034 nr[lru] = targets[lru] * (100 - percentage) / 100;
3035 nr[lru] -= min(nr[lru], nr_scanned);
3036
3037 lru += LRU_ACTIVE;
3038 nr_scanned = targets[lru] - nr[lru];
3039 nr[lru] = targets[lru] * (100 - percentage) / 100;
3040 nr[lru] -= min(nr[lru], nr_scanned);
3041
3042 scan_adjusted = true;
9b4f98cd
JW
3043 }
3044 blk_finish_plug(&plug);
3045 sc->nr_reclaimed += nr_reclaimed;
3046
3047 /*
3048 * Even if we did not try to evict anon pages at all, we want to
3049 * rebalance the anon lru active/inactive ratio.
3050 */
2f368a9f
DH
3051 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3052 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
3053 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3054 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
3055}
3056
23b9da55 3057/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 3058static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 3059{
d84da3f9 3060 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 3061 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 3062 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
3063 return true;
3064
3065 return false;
3066}
3067
3e7d3449 3068/*
23b9da55
MG
3069 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3070 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3071 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 3072 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 3073 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 3074 */
a9dd0a83 3075static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 3076 unsigned long nr_reclaimed,
3e7d3449
MG
3077 struct scan_control *sc)
3078{
3079 unsigned long pages_for_compaction;
3080 unsigned long inactive_lru_pages;
a9dd0a83 3081 int z;
3e7d3449
MG
3082
3083 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 3084 if (!in_reclaim_compaction(sc))
3e7d3449
MG
3085 return false;
3086
5ee04716
VB
3087 /*
3088 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3089 * number of pages that were scanned. This will return to the caller
3090 * with the risk reclaim/compaction and the resulting allocation attempt
3091 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3092 * allocations through requiring that the full LRU list has been scanned
3093 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3094 * scan, but that approximation was wrong, and there were corner cases
3095 * where always a non-zero amount of pages were scanned.
3096 */
3097 if (!nr_reclaimed)
3098 return false;
3e7d3449 3099
3e7d3449 3100 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
3101 for (z = 0; z <= sc->reclaim_idx; z++) {
3102 struct zone *zone = &pgdat->node_zones[z];
6aa303de 3103 if (!managed_zone(zone))
a9dd0a83
MG
3104 continue;
3105
3106 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 3107 case COMPACT_SUCCESS:
a9dd0a83
MG
3108 case COMPACT_CONTINUE:
3109 return false;
3110 default:
3111 /* check next zone */
3112 ;
3113 }
3e7d3449 3114 }
1c6c1597
HD
3115
3116 /*
3117 * If we have not reclaimed enough pages for compaction and the
3118 * inactive lists are large enough, continue reclaiming
3119 */
3120 pages_for_compaction = compact_gap(sc->order);
3121 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 3122 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
3123 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3124
5ee04716 3125 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
3126}
3127
0f6a5cff 3128static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 3129{
0f6a5cff 3130 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 3131 struct mem_cgroup *memcg;
1da177e4 3132
0f6a5cff 3133 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 3134 do {
afaf07a6 3135 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
3136 unsigned long reclaimed;
3137 unsigned long scanned;
5660048c 3138
e3336cab
XP
3139 /*
3140 * This loop can become CPU-bound when target memcgs
3141 * aren't eligible for reclaim - either because they
3142 * don't have any reclaimable pages, or because their
3143 * memory is explicitly protected. Avoid soft lockups.
3144 */
3145 cond_resched();
3146
45c7f7e1
CD
3147 mem_cgroup_calculate_protection(target_memcg, memcg);
3148
3149 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
3150 /*
3151 * Hard protection.
3152 * If there is no reclaimable memory, OOM.
3153 */
3154 continue;
45c7f7e1 3155 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
3156 /*
3157 * Soft protection.
3158 * Respect the protection only as long as
3159 * there is an unprotected supply
3160 * of reclaimable memory from other cgroups.
3161 */
3162 if (!sc->memcg_low_reclaim) {
3163 sc->memcg_low_skipped = 1;
bf8d5d52 3164 continue;
241994ed 3165 }
d2af3397 3166 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 3167 }
241994ed 3168
d2af3397
JW
3169 reclaimed = sc->nr_reclaimed;
3170 scanned = sc->nr_scanned;
afaf07a6
JW
3171
3172 shrink_lruvec(lruvec, sc);
70ddf637 3173
d2af3397
JW
3174 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3175 sc->priority);
6b4f7799 3176
d2af3397
JW
3177 /* Record the group's reclaim efficiency */
3178 vmpressure(sc->gfp_mask, memcg, false,
3179 sc->nr_scanned - scanned,
3180 sc->nr_reclaimed - reclaimed);
70ddf637 3181
0f6a5cff
JW
3182 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3183}
3184
6c9e0907 3185static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
3186{
3187 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 3188 unsigned long nr_reclaimed, nr_scanned;
1b05117d 3189 struct lruvec *target_lruvec;
0f6a5cff 3190 bool reclaimable = false;
b91ac374 3191 unsigned long file;
0f6a5cff 3192
1b05117d
JW
3193 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3194
0f6a5cff 3195again:
aa48e47e
SB
3196 /*
3197 * Flush the memory cgroup stats, so that we read accurate per-memcg
3198 * lruvec stats for heuristics.
3199 */
3200 mem_cgroup_flush_stats();
3201
0f6a5cff
JW
3202 memset(&sc->nr, 0, sizeof(sc->nr));
3203
3204 nr_reclaimed = sc->nr_reclaimed;
3205 nr_scanned = sc->nr_scanned;
3206
7cf111bc
JW
3207 /*
3208 * Determine the scan balance between anon and file LRUs.
3209 */
6168d0da 3210 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
3211 sc->anon_cost = target_lruvec->anon_cost;
3212 sc->file_cost = target_lruvec->file_cost;
6168d0da 3213 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 3214
b91ac374
JW
3215 /*
3216 * Target desirable inactive:active list ratios for the anon
3217 * and file LRU lists.
3218 */
3219 if (!sc->force_deactivate) {
3220 unsigned long refaults;
3221
170b04b7
JK
3222 refaults = lruvec_page_state(target_lruvec,
3223 WORKINGSET_ACTIVATE_ANON);
3224 if (refaults != target_lruvec->refaults[0] ||
3225 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
3226 sc->may_deactivate |= DEACTIVATE_ANON;
3227 else
3228 sc->may_deactivate &= ~DEACTIVATE_ANON;
3229
3230 /*
3231 * When refaults are being observed, it means a new
3232 * workingset is being established. Deactivate to get
3233 * rid of any stale active pages quickly.
3234 */
3235 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
3236 WORKINGSET_ACTIVATE_FILE);
3237 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
3238 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3239 sc->may_deactivate |= DEACTIVATE_FILE;
3240 else
3241 sc->may_deactivate &= ~DEACTIVATE_FILE;
3242 } else
3243 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3244
3245 /*
3246 * If we have plenty of inactive file pages that aren't
3247 * thrashing, try to reclaim those first before touching
3248 * anonymous pages.
3249 */
3250 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3251 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3252 sc->cache_trim_mode = 1;
3253 else
3254 sc->cache_trim_mode = 0;
3255
53138cea
JW
3256 /*
3257 * Prevent the reclaimer from falling into the cache trap: as
3258 * cache pages start out inactive, every cache fault will tip
3259 * the scan balance towards the file LRU. And as the file LRU
3260 * shrinks, so does the window for rotation from references.
3261 * This means we have a runaway feedback loop where a tiny
3262 * thrashing file LRU becomes infinitely more attractive than
3263 * anon pages. Try to detect this based on file LRU size.
3264 */
3265 if (!cgroup_reclaim(sc)) {
53138cea 3266 unsigned long total_high_wmark = 0;
b91ac374
JW
3267 unsigned long free, anon;
3268 int z;
53138cea
JW
3269
3270 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3271 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3272 node_page_state(pgdat, NR_INACTIVE_FILE);
3273
3274 for (z = 0; z < MAX_NR_ZONES; z++) {
3275 struct zone *zone = &pgdat->node_zones[z];
3276 if (!managed_zone(zone))
3277 continue;
3278
3279 total_high_wmark += high_wmark_pages(zone);
3280 }
3281
b91ac374
JW
3282 /*
3283 * Consider anon: if that's low too, this isn't a
3284 * runaway file reclaim problem, but rather just
3285 * extreme pressure. Reclaim as per usual then.
3286 */
3287 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3288
3289 sc->file_is_tiny =
3290 file + free <= total_high_wmark &&
3291 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3292 anon >> sc->priority;
53138cea
JW
3293 }
3294
0f6a5cff 3295 shrink_node_memcgs(pgdat, sc);
2344d7e4 3296
d2af3397
JW
3297 if (reclaim_state) {
3298 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3299 reclaim_state->reclaimed_slab = 0;
3300 }
d108c772 3301
d2af3397 3302 /* Record the subtree's reclaim efficiency */
1b05117d 3303 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
3304 sc->nr_scanned - nr_scanned,
3305 sc->nr_reclaimed - nr_reclaimed);
d108c772 3306
d2af3397
JW
3307 if (sc->nr_reclaimed - nr_reclaimed)
3308 reclaimable = true;
d108c772 3309
d2af3397
JW
3310 if (current_is_kswapd()) {
3311 /*
3312 * If reclaim is isolating dirty pages under writeback,
3313 * it implies that the long-lived page allocation rate
3314 * is exceeding the page laundering rate. Either the
3315 * global limits are not being effective at throttling
3316 * processes due to the page distribution throughout
3317 * zones or there is heavy usage of a slow backing
3318 * device. The only option is to throttle from reclaim
3319 * context which is not ideal as there is no guarantee
3320 * the dirtying process is throttled in the same way
3321 * balance_dirty_pages() manages.
3322 *
3323 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3324 * count the number of pages under pages flagged for
3325 * immediate reclaim and stall if any are encountered
3326 * in the nr_immediate check below.
3327 */
3328 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3329 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 3330
d2af3397
JW
3331 /* Allow kswapd to start writing pages during reclaim.*/
3332 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3333 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 3334
d108c772 3335 /*
1eba09c1 3336 * If kswapd scans pages marked for immediate
d2af3397
JW
3337 * reclaim and under writeback (nr_immediate), it
3338 * implies that pages are cycling through the LRU
8cd7c588
MG
3339 * faster than they are written so forcibly stall
3340 * until some pages complete writeback.
d108c772 3341 */
d2af3397 3342 if (sc->nr.immediate)
c3f4a9a2 3343 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d2af3397
JW
3344 }
3345
3346 /*
8cd7c588
MG
3347 * Tag a node/memcg as congested if all the dirty pages were marked
3348 * for writeback and immediate reclaim (counted in nr.congested).
1b05117d 3349 *
d2af3397 3350 * Legacy memcg will stall in page writeback so avoid forcibly
8cd7c588 3351 * stalling in reclaim_throttle().
d2af3397 3352 */
1b05117d
JW
3353 if ((current_is_kswapd() ||
3354 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 3355 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 3356 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
3357
3358 /*
8cd7c588
MG
3359 * Stall direct reclaim for IO completions if the lruvec is
3360 * node is congested. Allow kswapd to continue until it
d2af3397
JW
3361 * starts encountering unqueued dirty pages or cycling through
3362 * the LRU too quickly.
3363 */
1b05117d
JW
3364 if (!current_is_kswapd() && current_may_throttle() &&
3365 !sc->hibernation_mode &&
3366 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
1b4e3f26 3367 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
d108c772 3368
d2af3397
JW
3369 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3370 sc))
3371 goto again;
2344d7e4 3372
c73322d0
JW
3373 /*
3374 * Kswapd gives up on balancing particular nodes after too
3375 * many failures to reclaim anything from them and goes to
3376 * sleep. On reclaim progress, reset the failure counter. A
3377 * successful direct reclaim run will revive a dormant kswapd.
3378 */
3379 if (reclaimable)
3380 pgdat->kswapd_failures = 0;
f16015fb
JW
3381}
3382
53853e2d 3383/*
fdd4c614
VB
3384 * Returns true if compaction should go ahead for a costly-order request, or
3385 * the allocation would already succeed without compaction. Return false if we
3386 * should reclaim first.
53853e2d 3387 */
4f588331 3388static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 3389{
31483b6a 3390 unsigned long watermark;
fdd4c614 3391 enum compact_result suitable;
fe4b1b24 3392
fdd4c614
VB
3393 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3394 if (suitable == COMPACT_SUCCESS)
3395 /* Allocation should succeed already. Don't reclaim. */
3396 return true;
3397 if (suitable == COMPACT_SKIPPED)
3398 /* Compaction cannot yet proceed. Do reclaim. */
3399 return false;
fe4b1b24 3400
53853e2d 3401 /*
fdd4c614
VB
3402 * Compaction is already possible, but it takes time to run and there
3403 * are potentially other callers using the pages just freed. So proceed
3404 * with reclaim to make a buffer of free pages available to give
3405 * compaction a reasonable chance of completing and allocating the page.
3406 * Note that we won't actually reclaim the whole buffer in one attempt
3407 * as the target watermark in should_continue_reclaim() is lower. But if
3408 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 3409 */
fdd4c614 3410 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 3411
fdd4c614 3412 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
3413}
3414
69392a40
MG
3415static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3416{
66ce520b
MG
3417 /*
3418 * If reclaim is making progress greater than 12% efficiency then
3419 * wake all the NOPROGRESS throttled tasks.
3420 */
3421 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
69392a40
MG
3422 wait_queue_head_t *wqh;
3423
3424 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3425 if (waitqueue_active(wqh))
3426 wake_up(wqh);
3427
3428 return;
3429 }
3430
3431 /*
1b4e3f26
MG
3432 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3433 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3434 * under writeback and marked for immediate reclaim at the tail of the
3435 * LRU.
69392a40 3436 */
1b4e3f26 3437 if (current_is_kswapd() || cgroup_reclaim(sc))
69392a40
MG
3438 return;
3439
3440 /* Throttle if making no progress at high prioities. */
1b4e3f26 3441 if (sc->priority == 1 && !sc->nr_reclaimed)
c3f4a9a2 3442 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
69392a40
MG
3443}
3444
1da177e4
LT
3445/*
3446 * This is the direct reclaim path, for page-allocating processes. We only
3447 * try to reclaim pages from zones which will satisfy the caller's allocation
3448 * request.
3449 *
1da177e4
LT
3450 * If a zone is deemed to be full of pinned pages then just give it a light
3451 * scan then give up on it.
3452 */
0a0337e0 3453static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 3454{
dd1a239f 3455 struct zoneref *z;
54a6eb5c 3456 struct zone *zone;
0608f43d
AM
3457 unsigned long nr_soft_reclaimed;
3458 unsigned long nr_soft_scanned;
619d0d76 3459 gfp_t orig_mask;
79dafcdc 3460 pg_data_t *last_pgdat = NULL;
1b4e3f26 3461 pg_data_t *first_pgdat = NULL;
1cfb419b 3462
cc715d99
MG
3463 /*
3464 * If the number of buffer_heads in the machine exceeds the maximum
3465 * allowed level, force direct reclaim to scan the highmem zone as
3466 * highmem pages could be pinning lowmem pages storing buffer_heads
3467 */
619d0d76 3468 orig_mask = sc->gfp_mask;
b2e18757 3469 if (buffer_heads_over_limit) {
cc715d99 3470 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 3471 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 3472 }
cc715d99 3473
d4debc66 3474 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 3475 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
3476 /*
3477 * Take care memory controller reclaiming has small influence
3478 * to global LRU.
3479 */
b5ead35e 3480 if (!cgroup_reclaim(sc)) {
344736f2
VD
3481 if (!cpuset_zone_allowed(zone,
3482 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3483 continue;
65ec02cb 3484
0b06496a
JW
3485 /*
3486 * If we already have plenty of memory free for
3487 * compaction in this zone, don't free any more.
3488 * Even though compaction is invoked for any
3489 * non-zero order, only frequent costly order
3490 * reclamation is disruptive enough to become a
3491 * noticeable problem, like transparent huge
3492 * page allocations.
3493 */
3494 if (IS_ENABLED(CONFIG_COMPACTION) &&
3495 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3496 compaction_ready(zone, sc)) {
0b06496a
JW
3497 sc->compaction_ready = true;
3498 continue;
e0887c19 3499 }
0b06496a 3500
79dafcdc
MG
3501 /*
3502 * Shrink each node in the zonelist once. If the
3503 * zonelist is ordered by zone (not the default) then a
3504 * node may be shrunk multiple times but in that case
3505 * the user prefers lower zones being preserved.
3506 */
3507 if (zone->zone_pgdat == last_pgdat)
3508 continue;
3509
0608f43d
AM
3510 /*
3511 * This steals pages from memory cgroups over softlimit
3512 * and returns the number of reclaimed pages and
3513 * scanned pages. This works for global memory pressure
3514 * and balancing, not for a memcg's limit.
3515 */
3516 nr_soft_scanned = 0;
ef8f2327 3517 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3518 sc->order, sc->gfp_mask,
3519 &nr_soft_scanned);
3520 sc->nr_reclaimed += nr_soft_reclaimed;
3521 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3522 /* need some check for avoid more shrink_zone() */
1cfb419b 3523 }
408d8544 3524
1b4e3f26
MG
3525 if (!first_pgdat)
3526 first_pgdat = zone->zone_pgdat;
3527
79dafcdc
MG
3528 /* See comment about same check for global reclaim above */
3529 if (zone->zone_pgdat == last_pgdat)
3530 continue;
3531 last_pgdat = zone->zone_pgdat;
970a39a3 3532 shrink_node(zone->zone_pgdat, sc);
1da177e4 3533 }
e0c23279 3534
80082938
MG
3535 if (first_pgdat)
3536 consider_reclaim_throttle(first_pgdat, sc);
1b4e3f26 3537
619d0d76
WY
3538 /*
3539 * Restore to original mask to avoid the impact on the caller if we
3540 * promoted it to __GFP_HIGHMEM.
3541 */
3542 sc->gfp_mask = orig_mask;
1da177e4 3543}
4f98a2fe 3544
b910718a 3545static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3546{
b910718a
JW
3547 struct lruvec *target_lruvec;
3548 unsigned long refaults;
2a2e4885 3549
b910718a 3550 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
3551 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3552 target_lruvec->refaults[0] = refaults;
3553 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3554 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
3555}
3556
1da177e4
LT
3557/*
3558 * This is the main entry point to direct page reclaim.
3559 *
3560 * If a full scan of the inactive list fails to free enough memory then we
3561 * are "out of memory" and something needs to be killed.
3562 *
3563 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3564 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3565 * caller can't do much about. We kick the writeback threads and take explicit
3566 * naps in the hope that some of these pages can be written. But if the
3567 * allocating task holds filesystem locks which prevent writeout this might not
3568 * work, and the allocation attempt will fail.
a41f24ea
NA
3569 *
3570 * returns: 0, if no pages reclaimed
3571 * else, the number of pages reclaimed
1da177e4 3572 */
dac1d27b 3573static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3574 struct scan_control *sc)
1da177e4 3575{
241994ed 3576 int initial_priority = sc->priority;
2a2e4885
JW
3577 pg_data_t *last_pgdat;
3578 struct zoneref *z;
3579 struct zone *zone;
241994ed 3580retry:
873b4771
KK
3581 delayacct_freepages_start();
3582
b5ead35e 3583 if (!cgroup_reclaim(sc))
7cc30fcf 3584 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3585
9e3b2f8c 3586 do {
70ddf637
AV
3587 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3588 sc->priority);
66e1707b 3589 sc->nr_scanned = 0;
0a0337e0 3590 shrink_zones(zonelist, sc);
c6a8a8c5 3591
bb21c7ce 3592 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3593 break;
3594
3595 if (sc->compaction_ready)
3596 break;
1da177e4 3597
0e50ce3b
MK
3598 /*
3599 * If we're getting trouble reclaiming, start doing
3600 * writepage even in laptop mode.
3601 */
3602 if (sc->priority < DEF_PRIORITY - 2)
3603 sc->may_writepage = 1;
0b06496a 3604 } while (--sc->priority >= 0);
bb21c7ce 3605
2a2e4885
JW
3606 last_pgdat = NULL;
3607 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3608 sc->nodemask) {
3609 if (zone->zone_pgdat == last_pgdat)
3610 continue;
3611 last_pgdat = zone->zone_pgdat;
1b05117d 3612
2a2e4885 3613 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3614
3615 if (cgroup_reclaim(sc)) {
3616 struct lruvec *lruvec;
3617
3618 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3619 zone->zone_pgdat);
3620 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3621 }
2a2e4885
JW
3622 }
3623
873b4771
KK
3624 delayacct_freepages_end();
3625
bb21c7ce
KM
3626 if (sc->nr_reclaimed)
3627 return sc->nr_reclaimed;
3628
0cee34fd 3629 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3630 if (sc->compaction_ready)
7335084d
MG
3631 return 1;
3632
b91ac374
JW
3633 /*
3634 * We make inactive:active ratio decisions based on the node's
3635 * composition of memory, but a restrictive reclaim_idx or a
3636 * memory.low cgroup setting can exempt large amounts of
3637 * memory from reclaim. Neither of which are very common, so
3638 * instead of doing costly eligibility calculations of the
3639 * entire cgroup subtree up front, we assume the estimates are
3640 * good, and retry with forcible deactivation if that fails.
3641 */
3642 if (sc->skipped_deactivate) {
3643 sc->priority = initial_priority;
3644 sc->force_deactivate = 1;
3645 sc->skipped_deactivate = 0;
3646 goto retry;
3647 }
3648
241994ed 3649 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3650 if (sc->memcg_low_skipped) {
241994ed 3651 sc->priority = initial_priority;
b91ac374 3652 sc->force_deactivate = 0;
d6622f63
YX
3653 sc->memcg_low_reclaim = 1;
3654 sc->memcg_low_skipped = 0;
241994ed
JW
3655 goto retry;
3656 }
3657
bb21c7ce 3658 return 0;
1da177e4
LT
3659}
3660
c73322d0 3661static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3662{
3663 struct zone *zone;
3664 unsigned long pfmemalloc_reserve = 0;
3665 unsigned long free_pages = 0;
3666 int i;
3667 bool wmark_ok;
3668
c73322d0
JW
3669 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3670 return true;
3671
5515061d
MG
3672 for (i = 0; i <= ZONE_NORMAL; i++) {
3673 zone = &pgdat->node_zones[i];
d450abd8
JW
3674 if (!managed_zone(zone))
3675 continue;
3676
3677 if (!zone_reclaimable_pages(zone))
675becce
MG
3678 continue;
3679
5515061d
MG
3680 pfmemalloc_reserve += min_wmark_pages(zone);
3681 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3682 }
3683
675becce
MG
3684 /* If there are no reserves (unexpected config) then do not throttle */
3685 if (!pfmemalloc_reserve)
3686 return true;
3687
5515061d
MG
3688 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3689
3690 /* kswapd must be awake if processes are being throttled */
3691 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3692 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3693 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3694
5515061d
MG
3695 wake_up_interruptible(&pgdat->kswapd_wait);
3696 }
3697
3698 return wmark_ok;
3699}
3700
3701/*
3702 * Throttle direct reclaimers if backing storage is backed by the network
3703 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3704 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3705 * when the low watermark is reached.
3706 *
3707 * Returns true if a fatal signal was delivered during throttling. If this
3708 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3709 */
50694c28 3710static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3711 nodemask_t *nodemask)
3712{
675becce 3713 struct zoneref *z;
5515061d 3714 struct zone *zone;
675becce 3715 pg_data_t *pgdat = NULL;
5515061d
MG
3716
3717 /*
3718 * Kernel threads should not be throttled as they may be indirectly
3719 * responsible for cleaning pages necessary for reclaim to make forward
3720 * progress. kjournald for example may enter direct reclaim while
3721 * committing a transaction where throttling it could forcing other
3722 * processes to block on log_wait_commit().
3723 */
3724 if (current->flags & PF_KTHREAD)
50694c28
MG
3725 goto out;
3726
3727 /*
3728 * If a fatal signal is pending, this process should not throttle.
3729 * It should return quickly so it can exit and free its memory
3730 */
3731 if (fatal_signal_pending(current))
3732 goto out;
5515061d 3733
675becce
MG
3734 /*
3735 * Check if the pfmemalloc reserves are ok by finding the first node
3736 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3737 * GFP_KERNEL will be required for allocating network buffers when
3738 * swapping over the network so ZONE_HIGHMEM is unusable.
3739 *
3740 * Throttling is based on the first usable node and throttled processes
3741 * wait on a queue until kswapd makes progress and wakes them. There
3742 * is an affinity then between processes waking up and where reclaim
3743 * progress has been made assuming the process wakes on the same node.
3744 * More importantly, processes running on remote nodes will not compete
3745 * for remote pfmemalloc reserves and processes on different nodes
3746 * should make reasonable progress.
3747 */
3748 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3749 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3750 if (zone_idx(zone) > ZONE_NORMAL)
3751 continue;
3752
3753 /* Throttle based on the first usable node */
3754 pgdat = zone->zone_pgdat;
c73322d0 3755 if (allow_direct_reclaim(pgdat))
675becce
MG
3756 goto out;
3757 break;
3758 }
3759
3760 /* If no zone was usable by the allocation flags then do not throttle */
3761 if (!pgdat)
50694c28 3762 goto out;
5515061d 3763
68243e76
MG
3764 /* Account for the throttling */
3765 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3766
5515061d
MG
3767 /*
3768 * If the caller cannot enter the filesystem, it's possible that it
3769 * is due to the caller holding an FS lock or performing a journal
3770 * transaction in the case of a filesystem like ext[3|4]. In this case,
3771 * it is not safe to block on pfmemalloc_wait as kswapd could be
3772 * blocked waiting on the same lock. Instead, throttle for up to a
3773 * second before continuing.
3774 */
2e786d9e 3775 if (!(gfp_mask & __GFP_FS))
5515061d 3776 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3777 allow_direct_reclaim(pgdat), HZ);
2e786d9e
ML
3778 else
3779 /* Throttle until kswapd wakes the process */
3780 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3781 allow_direct_reclaim(pgdat));
50694c28 3782
50694c28
MG
3783 if (fatal_signal_pending(current))
3784 return true;
3785
3786out:
3787 return false;
5515061d
MG
3788}
3789
dac1d27b 3790unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3791 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3792{
33906bc5 3793 unsigned long nr_reclaimed;
66e1707b 3794 struct scan_control sc = {
ee814fe2 3795 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3796 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3797 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3798 .order = order,
3799 .nodemask = nodemask,
3800 .priority = DEF_PRIORITY,
66e1707b 3801 .may_writepage = !laptop_mode,
a6dc60f8 3802 .may_unmap = 1,
2e2e4259 3803 .may_swap = 1,
66e1707b
BS
3804 };
3805
bb451fdf
GT
3806 /*
3807 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3808 * Confirm they are large enough for max values.
3809 */
3810 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3811 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3812 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3813
5515061d 3814 /*
50694c28
MG
3815 * Do not enter reclaim if fatal signal was delivered while throttled.
3816 * 1 is returned so that the page allocator does not OOM kill at this
3817 * point.
5515061d 3818 */
f2f43e56 3819 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3820 return 1;
3821
1732d2b0 3822 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3823 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3824
3115cd91 3825 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3826
3827 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3828 set_task_reclaim_state(current, NULL);
33906bc5
MG
3829
3830 return nr_reclaimed;
66e1707b
BS
3831}
3832
c255a458 3833#ifdef CONFIG_MEMCG
66e1707b 3834
d2e5fb92 3835/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3836unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3837 gfp_t gfp_mask, bool noswap,
ef8f2327 3838 pg_data_t *pgdat,
0ae5e89c 3839 unsigned long *nr_scanned)
4e416953 3840{
afaf07a6 3841 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3842 struct scan_control sc = {
b8f5c566 3843 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3844 .target_mem_cgroup = memcg,
4e416953
BS
3845 .may_writepage = !laptop_mode,
3846 .may_unmap = 1,
b2e18757 3847 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3848 .may_swap = !noswap,
4e416953 3849 };
0ae5e89c 3850
d2e5fb92
MH
3851 WARN_ON_ONCE(!current->reclaim_state);
3852
4e416953
BS
3853 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3854 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3855
9e3b2f8c 3856 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3857 sc.gfp_mask);
bdce6d9e 3858
4e416953
BS
3859 /*
3860 * NOTE: Although we can get the priority field, using it
3861 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3862 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3863 * will pick up pages from other mem cgroup's as well. We hack
3864 * the priority and make it zero.
3865 */
afaf07a6 3866 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3867
3868 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3869
0ae5e89c 3870 *nr_scanned = sc.nr_scanned;
0308f7cf 3871
4e416953
BS
3872 return sc.nr_reclaimed;
3873}
3874
72835c86 3875unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3876 unsigned long nr_pages,
a7885eb8 3877 gfp_t gfp_mask,
b70a2a21 3878 bool may_swap)
66e1707b 3879{
bdce6d9e 3880 unsigned long nr_reclaimed;
499118e9 3881 unsigned int noreclaim_flag;
66e1707b 3882 struct scan_control sc = {
b70a2a21 3883 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3884 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3885 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3886 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3887 .target_mem_cgroup = memcg,
3888 .priority = DEF_PRIORITY,
3889 .may_writepage = !laptop_mode,
3890 .may_unmap = 1,
b70a2a21 3891 .may_swap = may_swap,
a09ed5e0 3892 };
889976db 3893 /*
fa40d1ee
SB
3894 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3895 * equal pressure on all the nodes. This is based on the assumption that
3896 * the reclaim does not bail out early.
889976db 3897 */
fa40d1ee 3898 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3899
fa40d1ee 3900 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3901 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3902 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3903
3115cd91 3904 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3905
499118e9 3906 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3907 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3908 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3909
3910 return nr_reclaimed;
66e1707b
BS
3911}
3912#endif
3913
1d82de61 3914static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3915 struct scan_control *sc)
f16015fb 3916{
b95a2f2d 3917 struct mem_cgroup *memcg;
b91ac374 3918 struct lruvec *lruvec;
f16015fb 3919
2f368a9f 3920 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
3921 return;
3922
b91ac374
JW
3923 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3924 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3925 return;
3926
b95a2f2d
JW
3927 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3928 do {
b91ac374
JW
3929 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3930 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3931 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3932 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3933 } while (memcg);
f16015fb
JW
3934}
3935
97a225e6 3936static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3937{
3938 int i;
3939 struct zone *zone;
3940
3941 /*
3942 * Check for watermark boosts top-down as the higher zones
3943 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3944 * should not be checked at the same time as reclaim would
1c30844d
MG
3945 * start prematurely when there is no boosting and a lower
3946 * zone is balanced.
3947 */
97a225e6 3948 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3949 zone = pgdat->node_zones + i;
3950 if (!managed_zone(zone))
3951 continue;
3952
3953 if (zone->watermark_boost)
3954 return true;
3955 }
3956
3957 return false;
3958}
3959
e716f2eb
MG
3960/*
3961 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3962 * and highest_zoneidx
e716f2eb 3963 */
97a225e6 3964static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3965{
e716f2eb
MG
3966 int i;
3967 unsigned long mark = -1;
3968 struct zone *zone;
60cefed4 3969
1c30844d
MG
3970 /*
3971 * Check watermarks bottom-up as lower zones are more likely to
3972 * meet watermarks.
3973 */
97a225e6 3974 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3975 zone = pgdat->node_zones + i;
6256c6b4 3976
e716f2eb
MG
3977 if (!managed_zone(zone))
3978 continue;
3979
c574bbe9
HY
3980 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3981 mark = wmark_pages(zone, WMARK_PROMO);
3982 else
3983 mark = high_wmark_pages(zone);
97a225e6 3984 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3985 return true;
3986 }
3987
3988 /*
36c26128 3989 * If a node has no managed zone within highest_zoneidx, it does not
e716f2eb
MG
3990 * need balancing by definition. This can happen if a zone-restricted
3991 * allocation tries to wake a remote kswapd.
3992 */
3993 if (mark == -1)
3994 return true;
3995
3996 return false;
60cefed4
JW
3997}
3998
631b6e08
MG
3999/* Clear pgdat state for congested, dirty or under writeback. */
4000static void clear_pgdat_congested(pg_data_t *pgdat)
4001{
1b05117d
JW
4002 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4003
4004 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
4005 clear_bit(PGDAT_DIRTY, &pgdat->flags);
4006 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
4007}
4008
5515061d
MG
4009/*
4010 * Prepare kswapd for sleeping. This verifies that there are no processes
4011 * waiting in throttle_direct_reclaim() and that watermarks have been met.
4012 *
4013 * Returns true if kswapd is ready to sleep
4014 */
97a225e6
JK
4015static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
4016 int highest_zoneidx)
f50de2d3 4017{
5515061d 4018 /*
9e5e3661 4019 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 4020 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
4021 * race between when kswapd checks the watermarks and a process gets
4022 * throttled. There is also a potential race if processes get
4023 * throttled, kswapd wakes, a large process exits thereby balancing the
4024 * zones, which causes kswapd to exit balance_pgdat() before reaching
4025 * the wake up checks. If kswapd is going to sleep, no process should
4026 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
4027 * the wake up is premature, processes will wake kswapd and get
4028 * throttled again. The difference from wake ups in balance_pgdat() is
4029 * that here we are under prepare_to_wait().
5515061d 4030 */
9e5e3661
VB
4031 if (waitqueue_active(&pgdat->pfmemalloc_wait))
4032 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 4033
c73322d0
JW
4034 /* Hopeless node, leave it to direct reclaim */
4035 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
4036 return true;
4037
97a225e6 4038 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
4039 clear_pgdat_congested(pgdat);
4040 return true;
1d82de61
MG
4041 }
4042
333b0a45 4043 return false;
f50de2d3
MG
4044}
4045
75485363 4046/*
1d82de61
MG
4047 * kswapd shrinks a node of pages that are at or below the highest usable
4048 * zone that is currently unbalanced.
b8e83b94
MG
4049 *
4050 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
4051 * reclaim or if the lack of progress was due to pages under writeback.
4052 * This is used to determine if the scanning priority needs to be raised.
75485363 4053 */
1d82de61 4054static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 4055 struct scan_control *sc)
75485363 4056{
1d82de61
MG
4057 struct zone *zone;
4058 int z;
75485363 4059
1d82de61
MG
4060 /* Reclaim a number of pages proportional to the number of zones */
4061 sc->nr_to_reclaim = 0;
970a39a3 4062 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 4063 zone = pgdat->node_zones + z;
6aa303de 4064 if (!managed_zone(zone))
1d82de61 4065 continue;
7c954f6d 4066
1d82de61
MG
4067 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4068 }
7c954f6d
MG
4069
4070 /*
1d82de61
MG
4071 * Historically care was taken to put equal pressure on all zones but
4072 * now pressure is applied based on node LRU order.
7c954f6d 4073 */
970a39a3 4074 shrink_node(pgdat, sc);
283aba9f 4075
7c954f6d 4076 /*
1d82de61
MG
4077 * Fragmentation may mean that the system cannot be rebalanced for
4078 * high-order allocations. If twice the allocation size has been
4079 * reclaimed then recheck watermarks only at order-0 to prevent
4080 * excessive reclaim. Assume that a process requested a high-order
4081 * can direct reclaim/compact.
7c954f6d 4082 */
9861a62c 4083 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 4084 sc->order = 0;
7c954f6d 4085
b8e83b94 4086 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
4087}
4088
c49c2c47
MG
4089/* Page allocator PCP high watermark is lowered if reclaim is active. */
4090static inline void
4091update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4092{
4093 int i;
4094 struct zone *zone;
4095
4096 for (i = 0; i <= highest_zoneidx; i++) {
4097 zone = pgdat->node_zones + i;
4098
4099 if (!managed_zone(zone))
4100 continue;
4101
4102 if (active)
4103 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4104 else
4105 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4106 }
4107}
4108
4109static inline void
4110set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4111{
4112 update_reclaim_active(pgdat, highest_zoneidx, true);
4113}
4114
4115static inline void
4116clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4117{
4118 update_reclaim_active(pgdat, highest_zoneidx, false);
4119}
4120
1da177e4 4121/*
1d82de61
MG
4122 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4123 * that are eligible for use by the caller until at least one zone is
4124 * balanced.
1da177e4 4125 *
1d82de61 4126 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
4127 *
4128 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 4129 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 4130 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
4131 * or lower is eligible for reclaim until at least one usable zone is
4132 * balanced.
1da177e4 4133 */
97a225e6 4134static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 4135{
1da177e4 4136 int i;
0608f43d
AM
4137 unsigned long nr_soft_reclaimed;
4138 unsigned long nr_soft_scanned;
eb414681 4139 unsigned long pflags;
1c30844d
MG
4140 unsigned long nr_boost_reclaim;
4141 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4142 bool boosted;
1d82de61 4143 struct zone *zone;
179e9639
AM
4144 struct scan_control sc = {
4145 .gfp_mask = GFP_KERNEL,
ee814fe2 4146 .order = order,
a6dc60f8 4147 .may_unmap = 1,
179e9639 4148 };
93781325 4149
1732d2b0 4150 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 4151 psi_memstall_enter(&pflags);
4f3eaf45 4152 __fs_reclaim_acquire(_THIS_IP_);
93781325 4153
f8891e5e 4154 count_vm_event(PAGEOUTRUN);
1da177e4 4155
1c30844d
MG
4156 /*
4157 * Account for the reclaim boost. Note that the zone boost is left in
4158 * place so that parallel allocations that are near the watermark will
4159 * stall or direct reclaim until kswapd is finished.
4160 */
4161 nr_boost_reclaim = 0;
97a225e6 4162 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4163 zone = pgdat->node_zones + i;
4164 if (!managed_zone(zone))
4165 continue;
4166
4167 nr_boost_reclaim += zone->watermark_boost;
4168 zone_boosts[i] = zone->watermark_boost;
4169 }
4170 boosted = nr_boost_reclaim;
4171
4172restart:
c49c2c47 4173 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 4174 sc.priority = DEF_PRIORITY;
9e3b2f8c 4175 do {
c73322d0 4176 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 4177 bool raise_priority = true;
1c30844d 4178 bool balanced;
93781325 4179 bool ret;
b8e83b94 4180
97a225e6 4181 sc.reclaim_idx = highest_zoneidx;
1da177e4 4182
86c79f6b 4183 /*
84c7a777
MG
4184 * If the number of buffer_heads exceeds the maximum allowed
4185 * then consider reclaiming from all zones. This has a dual
4186 * purpose -- on 64-bit systems it is expected that
4187 * buffer_heads are stripped during active rotation. On 32-bit
4188 * systems, highmem pages can pin lowmem memory and shrinking
4189 * buffers can relieve lowmem pressure. Reclaim may still not
4190 * go ahead if all eligible zones for the original allocation
4191 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
4192 */
4193 if (buffer_heads_over_limit) {
4194 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4195 zone = pgdat->node_zones + i;
6aa303de 4196 if (!managed_zone(zone))
86c79f6b 4197 continue;
cc715d99 4198
970a39a3 4199 sc.reclaim_idx = i;
e1dbeda6 4200 break;
1da177e4 4201 }
1da177e4 4202 }
dafcb73e 4203
86c79f6b 4204 /*
1c30844d
MG
4205 * If the pgdat is imbalanced then ignore boosting and preserve
4206 * the watermarks for a later time and restart. Note that the
4207 * zone watermarks will be still reset at the end of balancing
4208 * on the grounds that the normal reclaim should be enough to
4209 * re-evaluate if boosting is required when kswapd next wakes.
4210 */
97a225e6 4211 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
4212 if (!balanced && nr_boost_reclaim) {
4213 nr_boost_reclaim = 0;
4214 goto restart;
4215 }
4216
4217 /*
4218 * If boosting is not active then only reclaim if there are no
4219 * eligible zones. Note that sc.reclaim_idx is not used as
4220 * buffer_heads_over_limit may have adjusted it.
86c79f6b 4221 */
1c30844d 4222 if (!nr_boost_reclaim && balanced)
e716f2eb 4223 goto out;
e1dbeda6 4224
1c30844d
MG
4225 /* Limit the priority of boosting to avoid reclaim writeback */
4226 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4227 raise_priority = false;
4228
4229 /*
4230 * Do not writeback or swap pages for boosted reclaim. The
4231 * intent is to relieve pressure not issue sub-optimal IO
4232 * from reclaim context. If no pages are reclaimed, the
4233 * reclaim will be aborted.
4234 */
4235 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4236 sc.may_swap = !nr_boost_reclaim;
1c30844d 4237
1d82de61
MG
4238 /*
4239 * Do some background aging of the anon list, to give
4240 * pages a chance to be referenced before reclaiming. All
4241 * pages are rotated regardless of classzone as this is
4242 * about consistent aging.
4243 */
ef8f2327 4244 age_active_anon(pgdat, &sc);
1d82de61 4245
b7ea3c41
MG
4246 /*
4247 * If we're getting trouble reclaiming, start doing writepage
4248 * even in laptop mode.
4249 */
047d72c3 4250 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
4251 sc.may_writepage = 1;
4252
1d82de61
MG
4253 /* Call soft limit reclaim before calling shrink_node. */
4254 sc.nr_scanned = 0;
4255 nr_soft_scanned = 0;
ef8f2327 4256 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
4257 sc.gfp_mask, &nr_soft_scanned);
4258 sc.nr_reclaimed += nr_soft_reclaimed;
4259
1da177e4 4260 /*
1d82de61
MG
4261 * There should be no need to raise the scanning priority if
4262 * enough pages are already being scanned that that high
4263 * watermark would be met at 100% efficiency.
1da177e4 4264 */
970a39a3 4265 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 4266 raise_priority = false;
5515061d
MG
4267
4268 /*
4269 * If the low watermark is met there is no need for processes
4270 * to be throttled on pfmemalloc_wait as they should not be
4271 * able to safely make forward progress. Wake them
4272 */
4273 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 4274 allow_direct_reclaim(pgdat))
cfc51155 4275 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 4276
b8e83b94 4277 /* Check if kswapd should be suspending */
4f3eaf45 4278 __fs_reclaim_release(_THIS_IP_);
93781325 4279 ret = try_to_freeze();
4f3eaf45 4280 __fs_reclaim_acquire(_THIS_IP_);
93781325 4281 if (ret || kthread_should_stop())
b8e83b94 4282 break;
8357376d 4283
73ce02e9 4284 /*
b8e83b94
MG
4285 * Raise priority if scanning rate is too low or there was no
4286 * progress in reclaiming pages
73ce02e9 4287 */
c73322d0 4288 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
4289 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4290
4291 /*
4292 * If reclaim made no progress for a boost, stop reclaim as
4293 * IO cannot be queued and it could be an infinite loop in
4294 * extreme circumstances.
4295 */
4296 if (nr_boost_reclaim && !nr_reclaimed)
4297 break;
4298
c73322d0 4299 if (raise_priority || !nr_reclaimed)
b8e83b94 4300 sc.priority--;
1d82de61 4301 } while (sc.priority >= 1);
1da177e4 4302
c73322d0
JW
4303 if (!sc.nr_reclaimed)
4304 pgdat->kswapd_failures++;
4305
b8e83b94 4306out:
c49c2c47
MG
4307 clear_reclaim_active(pgdat, highest_zoneidx);
4308
1c30844d
MG
4309 /* If reclaim was boosted, account for the reclaim done in this pass */
4310 if (boosted) {
4311 unsigned long flags;
4312
97a225e6 4313 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4314 if (!zone_boosts[i])
4315 continue;
4316
4317 /* Increments are under the zone lock */
4318 zone = pgdat->node_zones + i;
4319 spin_lock_irqsave(&zone->lock, flags);
4320 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4321 spin_unlock_irqrestore(&zone->lock, flags);
4322 }
4323
4324 /*
4325 * As there is now likely space, wakeup kcompact to defragment
4326 * pageblocks.
4327 */
97a225e6 4328 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
4329 }
4330
2a2e4885 4331 snapshot_refaults(NULL, pgdat);
4f3eaf45 4332 __fs_reclaim_release(_THIS_IP_);
eb414681 4333 psi_memstall_leave(&pflags);
1732d2b0 4334 set_task_reclaim_state(current, NULL);
e5ca8071 4335
0abdee2b 4336 /*
1d82de61
MG
4337 * Return the order kswapd stopped reclaiming at as
4338 * prepare_kswapd_sleep() takes it into account. If another caller
4339 * entered the allocator slow path while kswapd was awake, order will
4340 * remain at the higher level.
0abdee2b 4341 */
1d82de61 4342 return sc.order;
1da177e4
LT
4343}
4344
e716f2eb 4345/*
97a225e6
JK
4346 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4347 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4348 * not a valid index then either kswapd runs for first time or kswapd couldn't
4349 * sleep after previous reclaim attempt (node is still unbalanced). In that
4350 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 4351 */
97a225e6
JK
4352static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4353 enum zone_type prev_highest_zoneidx)
e716f2eb 4354{
97a225e6 4355 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4356
97a225e6 4357 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
4358}
4359
38087d9b 4360static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 4361 unsigned int highest_zoneidx)
f0bc0a60
KM
4362{
4363 long remaining = 0;
4364 DEFINE_WAIT(wait);
4365
4366 if (freezing(current) || kthread_should_stop())
4367 return;
4368
4369 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4370
333b0a45
SG
4371 /*
4372 * Try to sleep for a short interval. Note that kcompactd will only be
4373 * woken if it is possible to sleep for a short interval. This is
4374 * deliberate on the assumption that if reclaim cannot keep an
4375 * eligible zone balanced that it's also unlikely that compaction will
4376 * succeed.
4377 */
97a225e6 4378 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
4379 /*
4380 * Compaction records what page blocks it recently failed to
4381 * isolate pages from and skips them in the future scanning.
4382 * When kswapd is going to sleep, it is reasonable to assume
4383 * that pages and compaction may succeed so reset the cache.
4384 */
4385 reset_isolation_suitable(pgdat);
4386
4387 /*
4388 * We have freed the memory, now we should compact it to make
4389 * allocation of the requested order possible.
4390 */
97a225e6 4391 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 4392
f0bc0a60 4393 remaining = schedule_timeout(HZ/10);
38087d9b
MG
4394
4395 /*
97a225e6 4396 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
4397 * order. The values will either be from a wakeup request or
4398 * the previous request that slept prematurely.
4399 */
4400 if (remaining) {
97a225e6
JK
4401 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4402 kswapd_highest_zoneidx(pgdat,
4403 highest_zoneidx));
5644e1fb
QC
4404
4405 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4406 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
4407 }
4408
f0bc0a60
KM
4409 finish_wait(&pgdat->kswapd_wait, &wait);
4410 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4411 }
4412
4413 /*
4414 * After a short sleep, check if it was a premature sleep. If not, then
4415 * go fully to sleep until explicitly woken up.
4416 */
d9f21d42 4417 if (!remaining &&
97a225e6 4418 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
4419 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4420
4421 /*
4422 * vmstat counters are not perfectly accurate and the estimated
4423 * value for counters such as NR_FREE_PAGES can deviate from the
4424 * true value by nr_online_cpus * threshold. To avoid the zone
4425 * watermarks being breached while under pressure, we reduce the
4426 * per-cpu vmstat threshold while kswapd is awake and restore
4427 * them before going back to sleep.
4428 */
4429 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
4430
4431 if (!kthread_should_stop())
4432 schedule();
4433
f0bc0a60
KM
4434 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4435 } else {
4436 if (remaining)
4437 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4438 else
4439 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4440 }
4441 finish_wait(&pgdat->kswapd_wait, &wait);
4442}
4443
1da177e4
LT
4444/*
4445 * The background pageout daemon, started as a kernel thread
4f98a2fe 4446 * from the init process.
1da177e4
LT
4447 *
4448 * This basically trickles out pages so that we have _some_
4449 * free memory available even if there is no other activity
4450 * that frees anything up. This is needed for things like routing
4451 * etc, where we otherwise might have all activity going on in
4452 * asynchronous contexts that cannot page things out.
4453 *
4454 * If there are applications that are active memory-allocators
4455 * (most normal use), this basically shouldn't matter.
4456 */
4457static int kswapd(void *p)
4458{
e716f2eb 4459 unsigned int alloc_order, reclaim_order;
97a225e6 4460 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 4461 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 4462 struct task_struct *tsk = current;
a70f7302 4463 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 4464
174596a0 4465 if (!cpumask_empty(cpumask))
c5f59f08 4466 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
4467
4468 /*
4469 * Tell the memory management that we're a "memory allocator",
4470 * and that if we need more memory we should get access to it
4471 * regardless (see "__alloc_pages()"). "kswapd" should
4472 * never get caught in the normal page freeing logic.
4473 *
4474 * (Kswapd normally doesn't need memory anyway, but sometimes
4475 * you need a small amount of memory in order to be able to
4476 * page out something else, and this flag essentially protects
4477 * us from recursively trying to free more memory as we're
4478 * trying to free the first piece of memory in the first place).
4479 */
b698f0a1 4480 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
83144186 4481 set_freezable();
1da177e4 4482
5644e1fb 4483 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4484 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
8cd7c588 4485 atomic_set(&pgdat->nr_writeback_throttled, 0);
1da177e4 4486 for ( ; ; ) {
6f6313d4 4487 bool ret;
3e1d1d28 4488
5644e1fb 4489 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4490 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4491 highest_zoneidx);
e716f2eb 4492
38087d9b
MG
4493kswapd_try_sleep:
4494 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 4495 highest_zoneidx);
215ddd66 4496
97a225e6 4497 /* Read the new order and highest_zoneidx */
2b47a24c 4498 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4499 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4500 highest_zoneidx);
5644e1fb 4501 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4502 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4503
8fe23e05
DR
4504 ret = try_to_freeze();
4505 if (kthread_should_stop())
4506 break;
4507
4508 /*
4509 * We can speed up thawing tasks if we don't call balance_pgdat
4510 * after returning from the refrigerator
4511 */
38087d9b
MG
4512 if (ret)
4513 continue;
4514
4515 /*
4516 * Reclaim begins at the requested order but if a high-order
4517 * reclaim fails then kswapd falls back to reclaiming for
4518 * order-0. If that happens, kswapd will consider sleeping
4519 * for the order it finished reclaiming at (reclaim_order)
4520 * but kcompactd is woken to compact for the original
4521 * request (alloc_order).
4522 */
97a225e6 4523 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 4524 alloc_order);
97a225e6
JK
4525 reclaim_order = balance_pgdat(pgdat, alloc_order,
4526 highest_zoneidx);
38087d9b
MG
4527 if (reclaim_order < alloc_order)
4528 goto kswapd_try_sleep;
1da177e4 4529 }
b0a8cc58 4530
b698f0a1 4531 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
71abdc15 4532
1da177e4
LT
4533 return 0;
4534}
4535
4536/*
5ecd9d40
DR
4537 * A zone is low on free memory or too fragmented for high-order memory. If
4538 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4539 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4540 * has failed or is not needed, still wake up kcompactd if only compaction is
4541 * needed.
1da177e4 4542 */
5ecd9d40 4543void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 4544 enum zone_type highest_zoneidx)
1da177e4
LT
4545{
4546 pg_data_t *pgdat;
5644e1fb 4547 enum zone_type curr_idx;
1da177e4 4548
6aa303de 4549 if (!managed_zone(zone))
1da177e4
LT
4550 return;
4551
5ecd9d40 4552 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4553 return;
5644e1fb 4554
88f5acf8 4555 pgdat = zone->zone_pgdat;
97a225e6 4556 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4557
97a225e6
JK
4558 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4559 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
4560
4561 if (READ_ONCE(pgdat->kswapd_order) < order)
4562 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 4563
8d0986e2 4564 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4565 return;
e1a55637 4566
5ecd9d40
DR
4567 /* Hopeless node, leave it to direct reclaim if possible */
4568 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
4569 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4570 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
4571 /*
4572 * There may be plenty of free memory available, but it's too
4573 * fragmented for high-order allocations. Wake up kcompactd
4574 * and rely on compaction_suitable() to determine if it's
4575 * needed. If it fails, it will defer subsequent attempts to
4576 * ratelimit its work.
4577 */
4578 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4579 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4580 return;
5ecd9d40 4581 }
88f5acf8 4582
97a225e6 4583 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4584 gfp_flags);
8d0986e2 4585 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4586}
4587
c6f37f12 4588#ifdef CONFIG_HIBERNATION
1da177e4 4589/*
7b51755c 4590 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4591 * freed pages.
4592 *
4593 * Rather than trying to age LRUs the aim is to preserve the overall
4594 * LRU order by reclaiming preferentially
4595 * inactive > active > active referenced > active mapped
1da177e4 4596 */
7b51755c 4597unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4598{
d6277db4 4599 struct scan_control sc = {
ee814fe2 4600 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4601 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4602 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4603 .priority = DEF_PRIORITY,
d6277db4 4604 .may_writepage = 1,
ee814fe2
JW
4605 .may_unmap = 1,
4606 .may_swap = 1,
7b51755c 4607 .hibernation_mode = 1,
1da177e4 4608 };
a09ed5e0 4609 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4610 unsigned long nr_reclaimed;
499118e9 4611 unsigned int noreclaim_flag;
1da177e4 4612
d92a8cfc 4613 fs_reclaim_acquire(sc.gfp_mask);
93781325 4614 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4615 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4616
3115cd91 4617 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4618
1732d2b0 4619 set_task_reclaim_state(current, NULL);
499118e9 4620 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4621 fs_reclaim_release(sc.gfp_mask);
d6277db4 4622
7b51755c 4623 return nr_reclaimed;
1da177e4 4624}
c6f37f12 4625#endif /* CONFIG_HIBERNATION */
1da177e4 4626
3218ae14
YG
4627/*
4628 * This kswapd start function will be called by init and node-hot-add.
3218ae14 4629 */
b87c517a 4630void kswapd_run(int nid)
3218ae14
YG
4631{
4632 pg_data_t *pgdat = NODE_DATA(nid);
3218ae14
YG
4633
4634 if (pgdat->kswapd)
b87c517a 4635 return;
3218ae14
YG
4636
4637 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4638 if (IS_ERR(pgdat->kswapd)) {
4639 /* failure at boot is fatal */
c6202adf 4640 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9 4641 pr_err("Failed to start kswapd on node %d\n", nid);
d72515b8 4642 pgdat->kswapd = NULL;
3218ae14 4643 }
3218ae14
YG
4644}
4645
8fe23e05 4646/*
d8adde17 4647 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4648 * hold mem_hotplug_begin/end().
8fe23e05
DR
4649 */
4650void kswapd_stop(int nid)
4651{
4652 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4653
d8adde17 4654 if (kswapd) {
8fe23e05 4655 kthread_stop(kswapd);
d8adde17
JL
4656 NODE_DATA(nid)->kswapd = NULL;
4657 }
8fe23e05
DR
4658}
4659
1da177e4
LT
4660static int __init kswapd_init(void)
4661{
6b700b5b 4662 int nid;
69e05944 4663
1da177e4 4664 swap_setup();
48fb2e24 4665 for_each_node_state(nid, N_MEMORY)
3218ae14 4666 kswapd_run(nid);
1da177e4
LT
4667 return 0;
4668}
4669
4670module_init(kswapd_init)
9eeff239
CL
4671
4672#ifdef CONFIG_NUMA
4673/*
a5f5f91d 4674 * Node reclaim mode
9eeff239 4675 *
a5f5f91d 4676 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4677 * the watermarks.
9eeff239 4678 */
a5f5f91d 4679int node_reclaim_mode __read_mostly;
9eeff239 4680
a92f7126 4681/*
a5f5f91d 4682 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4683 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4684 * a zone.
4685 */
a5f5f91d 4686#define NODE_RECLAIM_PRIORITY 4
a92f7126 4687
9614634f 4688/*
a5f5f91d 4689 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4690 * occur.
4691 */
4692int sysctl_min_unmapped_ratio = 1;
4693
0ff38490
CL
4694/*
4695 * If the number of slab pages in a zone grows beyond this percentage then
4696 * slab reclaim needs to occur.
4697 */
4698int sysctl_min_slab_ratio = 5;
4699
11fb9989 4700static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4701{
11fb9989
MG
4702 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4703 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4704 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4705
4706 /*
4707 * It's possible for there to be more file mapped pages than
4708 * accounted for by the pages on the file LRU lists because
4709 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4710 */
4711 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4712}
4713
4714/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4715static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4716{
d031a157
AM
4717 unsigned long nr_pagecache_reclaimable;
4718 unsigned long delta = 0;
90afa5de
MG
4719
4720 /*
95bbc0c7 4721 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4722 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4723 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4724 * a better estimate
4725 */
a5f5f91d
MG
4726 if (node_reclaim_mode & RECLAIM_UNMAP)
4727 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4728 else
a5f5f91d 4729 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4730
4731 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4732 if (!(node_reclaim_mode & RECLAIM_WRITE))
4733 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4734
4735 /* Watch for any possible underflows due to delta */
4736 if (unlikely(delta > nr_pagecache_reclaimable))
4737 delta = nr_pagecache_reclaimable;
4738
4739 return nr_pagecache_reclaimable - delta;
4740}
4741
9eeff239 4742/*
a5f5f91d 4743 * Try to free up some pages from this node through reclaim.
9eeff239 4744 */
a5f5f91d 4745static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4746{
7fb2d46d 4747 /* Minimum pages needed in order to stay on node */
69e05944 4748 const unsigned long nr_pages = 1 << order;
9eeff239 4749 struct task_struct *p = current;
499118e9 4750 unsigned int noreclaim_flag;
179e9639 4751 struct scan_control sc = {
62b726c1 4752 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4753 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4754 .order = order,
a5f5f91d
MG
4755 .priority = NODE_RECLAIM_PRIORITY,
4756 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4757 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4758 .may_swap = 1,
f2f43e56 4759 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4760 };
57f29762 4761 unsigned long pflags;
9eeff239 4762
132bb8cf
YS
4763 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4764 sc.gfp_mask);
4765
9eeff239 4766 cond_resched();
57f29762 4767 psi_memstall_enter(&pflags);
93781325 4768 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4769 /*
95bbc0c7 4770 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4771 */
499118e9 4772 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4773 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4774
d8ff6fde
ML
4775 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
4776 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
0ff38490 4777 /*
894befec 4778 * Free memory by calling shrink node with increasing
0ff38490
CL
4779 * priorities until we have enough memory freed.
4780 */
0ff38490 4781 do {
970a39a3 4782 shrink_node(pgdat, &sc);
9e3b2f8c 4783 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4784 }
c84db23c 4785
1732d2b0 4786 set_task_reclaim_state(p, NULL);
499118e9 4787 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4788 fs_reclaim_release(sc.gfp_mask);
57f29762 4789 psi_memstall_leave(&pflags);
132bb8cf
YS
4790
4791 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4792
a79311c1 4793 return sc.nr_reclaimed >= nr_pages;
9eeff239 4794}
179e9639 4795
a5f5f91d 4796int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4797{
d773ed6b 4798 int ret;
179e9639
AM
4799
4800 /*
a5f5f91d 4801 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4802 * slab pages if we are over the defined limits.
34aa1330 4803 *
9614634f
CL
4804 * A small portion of unmapped file backed pages is needed for
4805 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4806 * thrown out if the node is overallocated. So we do not reclaim
4807 * if less than a specified percentage of the node is used by
9614634f 4808 * unmapped file backed pages.
179e9639 4809 */
a5f5f91d 4810 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4811 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4812 pgdat->min_slab_pages)
a5f5f91d 4813 return NODE_RECLAIM_FULL;
179e9639
AM
4814
4815 /*
d773ed6b 4816 * Do not scan if the allocation should not be delayed.
179e9639 4817 */
d0164adc 4818 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4819 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4820
4821 /*
a5f5f91d 4822 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4823 * have associated processors. This will favor the local processor
4824 * over remote processors and spread off node memory allocations
4825 * as wide as possible.
4826 */
a5f5f91d
MG
4827 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4828 return NODE_RECLAIM_NOSCAN;
d773ed6b 4829
a5f5f91d
MG
4830 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4831 return NODE_RECLAIM_NOSCAN;
fa5e084e 4832
a5f5f91d
MG
4833 ret = __node_reclaim(pgdat, gfp_mask, order);
4834 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4835
24cf7251
MG
4836 if (!ret)
4837 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4838
d773ed6b 4839 return ret;
179e9639 4840}
9eeff239 4841#endif
894bc310 4842
89e004ea 4843/**
64e3d12f
KHY
4844 * check_move_unevictable_pages - check pages for evictability and move to
4845 * appropriate zone lru list
4846 * @pvec: pagevec with lru pages to check
89e004ea 4847 *
64e3d12f
KHY
4848 * Checks pages for evictability, if an evictable page is in the unevictable
4849 * lru list, moves it to the appropriate evictable lru list. This function
4850 * should be only used for lru pages.
89e004ea 4851 */
64e3d12f 4852void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4853{
6168d0da 4854 struct lruvec *lruvec = NULL;
24513264
HD
4855 int pgscanned = 0;
4856 int pgrescued = 0;
4857 int i;
89e004ea 4858
64e3d12f
KHY
4859 for (i = 0; i < pvec->nr; i++) {
4860 struct page *page = pvec->pages[i];
0de340cb 4861 struct folio *folio = page_folio(page);
8d8869ca
HD
4862 int nr_pages;
4863
4864 if (PageTransTail(page))
4865 continue;
4866
4867 nr_pages = thp_nr_pages(page);
4868 pgscanned += nr_pages;
89e004ea 4869
d25b5bd8
AS
4870 /* block memcg migration during page moving between lru */
4871 if (!TestClearPageLRU(page))
4872 continue;
4873
0de340cb 4874 lruvec = folio_lruvec_relock_irq(folio, lruvec);
d25b5bd8 4875 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4876 del_page_from_lru_list(page, lruvec);
24513264 4877 ClearPageUnevictable(page);
3a9c9788 4878 add_page_to_lru_list(page, lruvec);
8d8869ca 4879 pgrescued += nr_pages;
89e004ea 4880 }
d25b5bd8 4881 SetPageLRU(page);
24513264 4882 }
89e004ea 4883
6168d0da 4884 if (lruvec) {
24513264
HD
4885 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4886 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4887 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4888 } else if (pgscanned) {
4889 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4890 }
89e004ea 4891}
64e3d12f 4892EXPORT_SYMBOL_GPL(check_move_unevictable_pages);