]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
z3fold: limit use of stale list for allocation
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
1da177e4 58
0f8053a5
NP
59#include "internal.h"
60
33906bc5
MG
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
1da177e4 64struct scan_control {
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4 70
ee814fe2 71 /* Allocation order */
5ad333eb 72 int order;
66e1707b 73
ee814fe2
JW
74 /*
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
77 */
78 nodemask_t *nodemask;
9e3b2f8c 79
f16015fb
JW
80 /*
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
83 */
84 struct mem_cgroup *target_mem_cgroup;
66e1707b 85
ee814fe2
JW
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
88
b2e18757
MG
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
91
1276ad68 92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
93 unsigned int may_writepage:1;
94
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
97
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
100
d6622f63
YX
101 /*
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
105 */
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
241994ed 108
ee814fe2
JW
109 unsigned int hibernation_mode:1;
110
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
113
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
1da177e4
LT
119};
120
1da177e4
LT
121#ifdef ARCH_HAS_PREFETCH
122#define prefetch_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
126 \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
129 } \
130 } while (0)
131#else
132#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133#endif
134
135#ifdef ARCH_HAS_PREFETCHW
136#define prefetchw_prev_lru_page(_page, _base, _field) \
137 do { \
138 if ((_page)->lru.prev != _base) { \
139 struct page *prev; \
140 \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
143 } \
144 } while (0)
145#else
146#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147#endif
148
149/*
150 * From 0 .. 100. Higher means more swappy.
151 */
152int vm_swappiness = 60;
d0480be4
WSH
153/*
154 * The total number of pages which are beyond the high watermark within all
155 * zones.
156 */
157unsigned long vm_total_pages;
1da177e4
LT
158
159static LIST_HEAD(shrinker_list);
160static DECLARE_RWSEM(shrinker_rwsem);
161
c255a458 162#ifdef CONFIG_MEMCG
89b5fae5
JW
163static bool global_reclaim(struct scan_control *sc)
164{
f16015fb 165 return !sc->target_mem_cgroup;
89b5fae5 166}
97c9341f
TH
167
168/**
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
171 *
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
177 *
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
180 */
181static bool sane_reclaim(struct scan_control *sc)
182{
183 struct mem_cgroup *memcg = sc->target_mem_cgroup;
184
185 if (!memcg)
186 return true;
187#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
189 return true;
190#endif
191 return false;
192}
91a45470 193#else
89b5fae5
JW
194static bool global_reclaim(struct scan_control *sc)
195{
196 return true;
197}
97c9341f
TH
198
199static bool sane_reclaim(struct scan_control *sc)
200{
201 return true;
202}
91a45470
KH
203#endif
204
5a1c84b4
MG
205/*
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
209 */
210unsigned long zone_reclaimable_pages(struct zone *zone)
211{
212 unsigned long nr;
213
214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 if (get_nr_swap_pages() > 0)
217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
219
220 return nr;
221}
222
fd538803
MH
223/**
224 * lruvec_lru_size - Returns the number of pages on the given LRU list.
225 * @lruvec: lru vector
226 * @lru: lru to use
227 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
228 */
229unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 230{
fd538803
MH
231 unsigned long lru_size;
232 int zid;
233
c3c787e8 234 if (!mem_cgroup_disabled())
fd538803
MH
235 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
236 else
237 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 238
fd538803
MH
239 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
240 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
241 unsigned long size;
c9f299d9 242
fd538803
MH
243 if (!managed_zone(zone))
244 continue;
245
246 if (!mem_cgroup_disabled())
247 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
248 else
249 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
250 NR_ZONE_LRU_BASE + lru);
251 lru_size -= min(size, lru_size);
252 }
253
254 return lru_size;
b4536f0c 255
b4536f0c
MH
256}
257
1da177e4 258/*
1d3d4437 259 * Add a shrinker callback to be called from the vm.
1da177e4 260 */
1d3d4437 261int register_shrinker(struct shrinker *shrinker)
1da177e4 262{
1d3d4437
GC
263 size_t size = sizeof(*shrinker->nr_deferred);
264
1d3d4437
GC
265 if (shrinker->flags & SHRINKER_NUMA_AWARE)
266 size *= nr_node_ids;
267
268 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
269 if (!shrinker->nr_deferred)
270 return -ENOMEM;
271
8e1f936b
RR
272 down_write(&shrinker_rwsem);
273 list_add_tail(&shrinker->list, &shrinker_list);
274 up_write(&shrinker_rwsem);
1d3d4437 275 return 0;
1da177e4 276}
8e1f936b 277EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
278
279/*
280 * Remove one
281 */
8e1f936b 282void unregister_shrinker(struct shrinker *shrinker)
1da177e4 283{
bb422a73
TH
284 if (!shrinker->nr_deferred)
285 return;
1da177e4
LT
286 down_write(&shrinker_rwsem);
287 list_del(&shrinker->list);
288 up_write(&shrinker_rwsem);
ae393321 289 kfree(shrinker->nr_deferred);
bb422a73 290 shrinker->nr_deferred = NULL;
1da177e4 291}
8e1f936b 292EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
293
294#define SHRINK_BATCH 128
1d3d4437 295
cb731d6c 296static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 297 struct shrinker *shrinker, int priority)
1d3d4437
GC
298{
299 unsigned long freed = 0;
300 unsigned long long delta;
301 long total_scan;
d5bc5fd3 302 long freeable;
1d3d4437
GC
303 long nr;
304 long new_nr;
305 int nid = shrinkctl->nid;
306 long batch_size = shrinker->batch ? shrinker->batch
307 : SHRINK_BATCH;
5f33a080 308 long scanned = 0, next_deferred;
1d3d4437 309
d5bc5fd3
VD
310 freeable = shrinker->count_objects(shrinker, shrinkctl);
311 if (freeable == 0)
1d3d4437
GC
312 return 0;
313
314 /*
315 * copy the current shrinker scan count into a local variable
316 * and zero it so that other concurrent shrinker invocations
317 * don't also do this scanning work.
318 */
319 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
320
321 total_scan = nr;
9092c71b
JB
322 delta = freeable >> priority;
323 delta *= 4;
324 do_div(delta, shrinker->seeks);
1d3d4437
GC
325 total_scan += delta;
326 if (total_scan < 0) {
8612c663 327 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 328 shrinker->scan_objects, total_scan);
d5bc5fd3 329 total_scan = freeable;
5f33a080
SL
330 next_deferred = nr;
331 } else
332 next_deferred = total_scan;
1d3d4437
GC
333
334 /*
335 * We need to avoid excessive windup on filesystem shrinkers
336 * due to large numbers of GFP_NOFS allocations causing the
337 * shrinkers to return -1 all the time. This results in a large
338 * nr being built up so when a shrink that can do some work
339 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 340 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
341 * memory.
342 *
343 * Hence only allow the shrinker to scan the entire cache when
344 * a large delta change is calculated directly.
345 */
d5bc5fd3
VD
346 if (delta < freeable / 4)
347 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
348
349 /*
350 * Avoid risking looping forever due to too large nr value:
351 * never try to free more than twice the estimate number of
352 * freeable entries.
353 */
d5bc5fd3
VD
354 if (total_scan > freeable * 2)
355 total_scan = freeable * 2;
1d3d4437
GC
356
357 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 358 freeable, delta, total_scan, priority);
1d3d4437 359
0b1fb40a
VD
360 /*
361 * Normally, we should not scan less than batch_size objects in one
362 * pass to avoid too frequent shrinker calls, but if the slab has less
363 * than batch_size objects in total and we are really tight on memory,
364 * we will try to reclaim all available objects, otherwise we can end
365 * up failing allocations although there are plenty of reclaimable
366 * objects spread over several slabs with usage less than the
367 * batch_size.
368 *
369 * We detect the "tight on memory" situations by looking at the total
370 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 371 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
372 * scanning at high prio and therefore should try to reclaim as much as
373 * possible.
374 */
375 while (total_scan >= batch_size ||
d5bc5fd3 376 total_scan >= freeable) {
a0b02131 377 unsigned long ret;
0b1fb40a 378 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 379
0b1fb40a 380 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 381 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
382 ret = shrinker->scan_objects(shrinker, shrinkctl);
383 if (ret == SHRINK_STOP)
384 break;
385 freed += ret;
1d3d4437 386
d460acb5
CW
387 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
388 total_scan -= shrinkctl->nr_scanned;
389 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
390
391 cond_resched();
392 }
393
5f33a080
SL
394 if (next_deferred >= scanned)
395 next_deferred -= scanned;
396 else
397 next_deferred = 0;
1d3d4437
GC
398 /*
399 * move the unused scan count back into the shrinker in a
400 * manner that handles concurrent updates. If we exhausted the
401 * scan, there is no need to do an update.
402 */
5f33a080
SL
403 if (next_deferred > 0)
404 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
405 &shrinker->nr_deferred[nid]);
406 else
407 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
408
df9024a8 409 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 410 return freed;
1495f230
YH
411}
412
6b4f7799 413/**
cb731d6c 414 * shrink_slab - shrink slab caches
6b4f7799
JW
415 * @gfp_mask: allocation context
416 * @nid: node whose slab caches to target
cb731d6c 417 * @memcg: memory cgroup whose slab caches to target
9092c71b 418 * @priority: the reclaim priority
1da177e4 419 *
6b4f7799 420 * Call the shrink functions to age shrinkable caches.
1da177e4 421 *
6b4f7799
JW
422 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
423 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 424 *
cb731d6c
VD
425 * @memcg specifies the memory cgroup to target. If it is not NULL,
426 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
427 * objects from the memory cgroup specified. Otherwise, only unaware
428 * shrinkers are called.
cb731d6c 429 *
9092c71b
JB
430 * @priority is sc->priority, we take the number of objects and >> by priority
431 * in order to get the scan target.
b15e0905 432 *
6b4f7799 433 * Returns the number of reclaimed slab objects.
1da177e4 434 */
cb731d6c
VD
435static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
436 struct mem_cgroup *memcg,
9092c71b 437 int priority)
1da177e4
LT
438{
439 struct shrinker *shrinker;
24f7c6b9 440 unsigned long freed = 0;
1da177e4 441
0fc9f58a 442 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
443 return 0;
444
f06590bd 445 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
446 /*
447 * If we would return 0, our callers would understand that we
448 * have nothing else to shrink and give up trying. By returning
449 * 1 we keep it going and assume we'll be able to shrink next
450 * time.
451 */
452 freed = 1;
f06590bd
MK
453 goto out;
454 }
1da177e4
LT
455
456 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
457 struct shrink_control sc = {
458 .gfp_mask = gfp_mask,
459 .nid = nid,
cb731d6c 460 .memcg = memcg,
6b4f7799 461 };
ec97097b 462
0fc9f58a
VD
463 /*
464 * If kernel memory accounting is disabled, we ignore
465 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
466 * passing NULL for memcg.
467 */
468 if (memcg_kmem_enabled() &&
469 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
470 continue;
471
6b4f7799
JW
472 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
473 sc.nid = 0;
1da177e4 474
9092c71b 475 freed += do_shrink_slab(&sc, shrinker, priority);
e496612c
MK
476 /*
477 * Bail out if someone want to register a new shrinker to
478 * prevent the regsitration from being stalled for long periods
479 * by parallel ongoing shrinking.
480 */
481 if (rwsem_is_contended(&shrinker_rwsem)) {
482 freed = freed ? : 1;
483 break;
484 }
1da177e4 485 }
6b4f7799 486
1da177e4 487 up_read(&shrinker_rwsem);
f06590bd
MK
488out:
489 cond_resched();
24f7c6b9 490 return freed;
1da177e4
LT
491}
492
cb731d6c
VD
493void drop_slab_node(int nid)
494{
495 unsigned long freed;
496
497 do {
498 struct mem_cgroup *memcg = NULL;
499
500 freed = 0;
501 do {
9092c71b 502 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
503 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
504 } while (freed > 10);
505}
506
507void drop_slab(void)
508{
509 int nid;
510
511 for_each_online_node(nid)
512 drop_slab_node(nid);
513}
514
1da177e4
LT
515static inline int is_page_cache_freeable(struct page *page)
516{
ceddc3a5
JW
517 /*
518 * A freeable page cache page is referenced only by the caller
519 * that isolated the page, the page cache radix tree and
520 * optional buffer heads at page->private.
521 */
bd4c82c2
HY
522 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
523 HPAGE_PMD_NR : 1;
524 return page_count(page) - page_has_private(page) == 1 + radix_pins;
1da177e4
LT
525}
526
703c2708 527static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 528{
930d9152 529 if (current->flags & PF_SWAPWRITE)
1da177e4 530 return 1;
703c2708 531 if (!inode_write_congested(inode))
1da177e4 532 return 1;
703c2708 533 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
534 return 1;
535 return 0;
536}
537
538/*
539 * We detected a synchronous write error writing a page out. Probably
540 * -ENOSPC. We need to propagate that into the address_space for a subsequent
541 * fsync(), msync() or close().
542 *
543 * The tricky part is that after writepage we cannot touch the mapping: nothing
544 * prevents it from being freed up. But we have a ref on the page and once
545 * that page is locked, the mapping is pinned.
546 *
547 * We're allowed to run sleeping lock_page() here because we know the caller has
548 * __GFP_FS.
549 */
550static void handle_write_error(struct address_space *mapping,
551 struct page *page, int error)
552{
7eaceacc 553 lock_page(page);
3e9f45bd
GC
554 if (page_mapping(page) == mapping)
555 mapping_set_error(mapping, error);
1da177e4
LT
556 unlock_page(page);
557}
558
04e62a29
CL
559/* possible outcome of pageout() */
560typedef enum {
561 /* failed to write page out, page is locked */
562 PAGE_KEEP,
563 /* move page to the active list, page is locked */
564 PAGE_ACTIVATE,
565 /* page has been sent to the disk successfully, page is unlocked */
566 PAGE_SUCCESS,
567 /* page is clean and locked */
568 PAGE_CLEAN,
569} pageout_t;
570
1da177e4 571/*
1742f19f
AM
572 * pageout is called by shrink_page_list() for each dirty page.
573 * Calls ->writepage().
1da177e4 574 */
c661b078 575static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 576 struct scan_control *sc)
1da177e4
LT
577{
578 /*
579 * If the page is dirty, only perform writeback if that write
580 * will be non-blocking. To prevent this allocation from being
581 * stalled by pagecache activity. But note that there may be
582 * stalls if we need to run get_block(). We could test
583 * PagePrivate for that.
584 *
8174202b 585 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
586 * this page's queue, we can perform writeback even if that
587 * will block.
588 *
589 * If the page is swapcache, write it back even if that would
590 * block, for some throttling. This happens by accident, because
591 * swap_backing_dev_info is bust: it doesn't reflect the
592 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
593 */
594 if (!is_page_cache_freeable(page))
595 return PAGE_KEEP;
596 if (!mapping) {
597 /*
598 * Some data journaling orphaned pages can have
599 * page->mapping == NULL while being dirty with clean buffers.
600 */
266cf658 601 if (page_has_private(page)) {
1da177e4
LT
602 if (try_to_free_buffers(page)) {
603 ClearPageDirty(page);
b1de0d13 604 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
605 return PAGE_CLEAN;
606 }
607 }
608 return PAGE_KEEP;
609 }
610 if (mapping->a_ops->writepage == NULL)
611 return PAGE_ACTIVATE;
703c2708 612 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
613 return PAGE_KEEP;
614
615 if (clear_page_dirty_for_io(page)) {
616 int res;
617 struct writeback_control wbc = {
618 .sync_mode = WB_SYNC_NONE,
619 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
620 .range_start = 0,
621 .range_end = LLONG_MAX,
1da177e4
LT
622 .for_reclaim = 1,
623 };
624
625 SetPageReclaim(page);
626 res = mapping->a_ops->writepage(page, &wbc);
627 if (res < 0)
628 handle_write_error(mapping, page, res);
994fc28c 629 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
630 ClearPageReclaim(page);
631 return PAGE_ACTIVATE;
632 }
c661b078 633
1da177e4
LT
634 if (!PageWriteback(page)) {
635 /* synchronous write or broken a_ops? */
636 ClearPageReclaim(page);
637 }
3aa23851 638 trace_mm_vmscan_writepage(page);
c4a25635 639 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
640 return PAGE_SUCCESS;
641 }
642
643 return PAGE_CLEAN;
644}
645
a649fd92 646/*
e286781d
NP
647 * Same as remove_mapping, but if the page is removed from the mapping, it
648 * gets returned with a refcount of 0.
a649fd92 649 */
a528910e
JW
650static int __remove_mapping(struct address_space *mapping, struct page *page,
651 bool reclaimed)
49d2e9cc 652{
c4843a75 653 unsigned long flags;
bd4c82c2 654 int refcount;
c4843a75 655
28e4d965
NP
656 BUG_ON(!PageLocked(page));
657 BUG_ON(mapping != page_mapping(page));
49d2e9cc 658
c4843a75 659 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 660 /*
0fd0e6b0
NP
661 * The non racy check for a busy page.
662 *
663 * Must be careful with the order of the tests. When someone has
664 * a ref to the page, it may be possible that they dirty it then
665 * drop the reference. So if PageDirty is tested before page_count
666 * here, then the following race may occur:
667 *
668 * get_user_pages(&page);
669 * [user mapping goes away]
670 * write_to(page);
671 * !PageDirty(page) [good]
672 * SetPageDirty(page);
673 * put_page(page);
674 * !page_count(page) [good, discard it]
675 *
676 * [oops, our write_to data is lost]
677 *
678 * Reversing the order of the tests ensures such a situation cannot
679 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 680 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
681 *
682 * Note that if SetPageDirty is always performed via set_page_dirty,
683 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 684 */
bd4c82c2
HY
685 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
686 refcount = 1 + HPAGE_PMD_NR;
687 else
688 refcount = 2;
689 if (!page_ref_freeze(page, refcount))
49d2e9cc 690 goto cannot_free;
e286781d
NP
691 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
692 if (unlikely(PageDirty(page))) {
bd4c82c2 693 page_ref_unfreeze(page, refcount);
49d2e9cc 694 goto cannot_free;
e286781d 695 }
49d2e9cc
CL
696
697 if (PageSwapCache(page)) {
698 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 699 mem_cgroup_swapout(page, swap);
49d2e9cc 700 __delete_from_swap_cache(page);
c4843a75 701 spin_unlock_irqrestore(&mapping->tree_lock, flags);
75f6d6d2 702 put_swap_page(page, swap);
e286781d 703 } else {
6072d13c 704 void (*freepage)(struct page *);
a528910e 705 void *shadow = NULL;
6072d13c
LT
706
707 freepage = mapping->a_ops->freepage;
a528910e
JW
708 /*
709 * Remember a shadow entry for reclaimed file cache in
710 * order to detect refaults, thus thrashing, later on.
711 *
712 * But don't store shadows in an address space that is
713 * already exiting. This is not just an optizimation,
714 * inode reclaim needs to empty out the radix tree or
715 * the nodes are lost. Don't plant shadows behind its
716 * back.
f9fe48be
RZ
717 *
718 * We also don't store shadows for DAX mappings because the
719 * only page cache pages found in these are zero pages
720 * covering holes, and because we don't want to mix DAX
721 * exceptional entries and shadow exceptional entries in the
722 * same page_tree.
a528910e
JW
723 */
724 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 725 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 726 shadow = workingset_eviction(mapping, page);
62cccb8c 727 __delete_from_page_cache(page, shadow);
c4843a75 728 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
729
730 if (freepage != NULL)
731 freepage(page);
49d2e9cc
CL
732 }
733
49d2e9cc
CL
734 return 1;
735
736cannot_free:
c4843a75 737 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
738 return 0;
739}
740
e286781d
NP
741/*
742 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
743 * someone else has a ref on the page, abort and return 0. If it was
744 * successfully detached, return 1. Assumes the caller has a single ref on
745 * this page.
746 */
747int remove_mapping(struct address_space *mapping, struct page *page)
748{
a528910e 749 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
750 /*
751 * Unfreezing the refcount with 1 rather than 2 effectively
752 * drops the pagecache ref for us without requiring another
753 * atomic operation.
754 */
fe896d18 755 page_ref_unfreeze(page, 1);
e286781d
NP
756 return 1;
757 }
758 return 0;
759}
760
894bc310
LS
761/**
762 * putback_lru_page - put previously isolated page onto appropriate LRU list
763 * @page: page to be put back to appropriate lru list
764 *
765 * Add previously isolated @page to appropriate LRU list.
766 * Page may still be unevictable for other reasons.
767 *
768 * lru_lock must not be held, interrupts must be enabled.
769 */
894bc310
LS
770void putback_lru_page(struct page *page)
771{
9c4e6b1a 772 lru_cache_add(page);
894bc310
LS
773 put_page(page); /* drop ref from isolate */
774}
775
dfc8d636
JW
776enum page_references {
777 PAGEREF_RECLAIM,
778 PAGEREF_RECLAIM_CLEAN,
64574746 779 PAGEREF_KEEP,
dfc8d636
JW
780 PAGEREF_ACTIVATE,
781};
782
783static enum page_references page_check_references(struct page *page,
784 struct scan_control *sc)
785{
64574746 786 int referenced_ptes, referenced_page;
dfc8d636 787 unsigned long vm_flags;
dfc8d636 788
c3ac9a8a
JW
789 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
790 &vm_flags);
64574746 791 referenced_page = TestClearPageReferenced(page);
dfc8d636 792
dfc8d636
JW
793 /*
794 * Mlock lost the isolation race with us. Let try_to_unmap()
795 * move the page to the unevictable list.
796 */
797 if (vm_flags & VM_LOCKED)
798 return PAGEREF_RECLAIM;
799
64574746 800 if (referenced_ptes) {
e4898273 801 if (PageSwapBacked(page))
64574746
JW
802 return PAGEREF_ACTIVATE;
803 /*
804 * All mapped pages start out with page table
805 * references from the instantiating fault, so we need
806 * to look twice if a mapped file page is used more
807 * than once.
808 *
809 * Mark it and spare it for another trip around the
810 * inactive list. Another page table reference will
811 * lead to its activation.
812 *
813 * Note: the mark is set for activated pages as well
814 * so that recently deactivated but used pages are
815 * quickly recovered.
816 */
817 SetPageReferenced(page);
818
34dbc67a 819 if (referenced_page || referenced_ptes > 1)
64574746
JW
820 return PAGEREF_ACTIVATE;
821
c909e993
KK
822 /*
823 * Activate file-backed executable pages after first usage.
824 */
825 if (vm_flags & VM_EXEC)
826 return PAGEREF_ACTIVATE;
827
64574746
JW
828 return PAGEREF_KEEP;
829 }
dfc8d636
JW
830
831 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 832 if (referenced_page && !PageSwapBacked(page))
64574746
JW
833 return PAGEREF_RECLAIM_CLEAN;
834
835 return PAGEREF_RECLAIM;
dfc8d636
JW
836}
837
e2be15f6
MG
838/* Check if a page is dirty or under writeback */
839static void page_check_dirty_writeback(struct page *page,
840 bool *dirty, bool *writeback)
841{
b4597226
MG
842 struct address_space *mapping;
843
e2be15f6
MG
844 /*
845 * Anonymous pages are not handled by flushers and must be written
846 * from reclaim context. Do not stall reclaim based on them
847 */
802a3a92
SL
848 if (!page_is_file_cache(page) ||
849 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
850 *dirty = false;
851 *writeback = false;
852 return;
853 }
854
855 /* By default assume that the page flags are accurate */
856 *dirty = PageDirty(page);
857 *writeback = PageWriteback(page);
b4597226
MG
858
859 /* Verify dirty/writeback state if the filesystem supports it */
860 if (!page_has_private(page))
861 return;
862
863 mapping = page_mapping(page);
864 if (mapping && mapping->a_ops->is_dirty_writeback)
865 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
866}
867
3c710c1a
MH
868struct reclaim_stat {
869 unsigned nr_dirty;
870 unsigned nr_unqueued_dirty;
871 unsigned nr_congested;
872 unsigned nr_writeback;
873 unsigned nr_immediate;
5bccd166
MH
874 unsigned nr_activate;
875 unsigned nr_ref_keep;
876 unsigned nr_unmap_fail;
3c710c1a
MH
877};
878
1da177e4 879/*
1742f19f 880 * shrink_page_list() returns the number of reclaimed pages
1da177e4 881 */
1742f19f 882static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 883 struct pglist_data *pgdat,
f84f6e2b 884 struct scan_control *sc,
02c6de8d 885 enum ttu_flags ttu_flags,
3c710c1a 886 struct reclaim_stat *stat,
02c6de8d 887 bool force_reclaim)
1da177e4
LT
888{
889 LIST_HEAD(ret_pages);
abe4c3b5 890 LIST_HEAD(free_pages);
1da177e4 891 int pgactivate = 0;
3c710c1a
MH
892 unsigned nr_unqueued_dirty = 0;
893 unsigned nr_dirty = 0;
894 unsigned nr_congested = 0;
895 unsigned nr_reclaimed = 0;
896 unsigned nr_writeback = 0;
897 unsigned nr_immediate = 0;
5bccd166
MH
898 unsigned nr_ref_keep = 0;
899 unsigned nr_unmap_fail = 0;
1da177e4
LT
900
901 cond_resched();
902
1da177e4
LT
903 while (!list_empty(page_list)) {
904 struct address_space *mapping;
905 struct page *page;
906 int may_enter_fs;
02c6de8d 907 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 908 bool dirty, writeback;
1da177e4
LT
909
910 cond_resched();
911
912 page = lru_to_page(page_list);
913 list_del(&page->lru);
914
529ae9aa 915 if (!trylock_page(page))
1da177e4
LT
916 goto keep;
917
309381fe 918 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
919
920 sc->nr_scanned++;
80e43426 921
39b5f29a 922 if (unlikely(!page_evictable(page)))
ad6b6704 923 goto activate_locked;
894bc310 924
a6dc60f8 925 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
926 goto keep_locked;
927
1da177e4 928 /* Double the slab pressure for mapped and swapcache pages */
802a3a92
SL
929 if ((page_mapped(page) || PageSwapCache(page)) &&
930 !(PageAnon(page) && !PageSwapBacked(page)))
1da177e4
LT
931 sc->nr_scanned++;
932
c661b078
AW
933 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
934 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
935
e2be15f6
MG
936 /*
937 * The number of dirty pages determines if a zone is marked
938 * reclaim_congested which affects wait_iff_congested. kswapd
939 * will stall and start writing pages if the tail of the LRU
940 * is all dirty unqueued pages.
941 */
942 page_check_dirty_writeback(page, &dirty, &writeback);
943 if (dirty || writeback)
944 nr_dirty++;
945
946 if (dirty && !writeback)
947 nr_unqueued_dirty++;
948
d04e8acd
MG
949 /*
950 * Treat this page as congested if the underlying BDI is or if
951 * pages are cycling through the LRU so quickly that the
952 * pages marked for immediate reclaim are making it to the
953 * end of the LRU a second time.
954 */
e2be15f6 955 mapping = page_mapping(page);
1da58ee2 956 if (((dirty || writeback) && mapping &&
703c2708 957 inode_write_congested(mapping->host)) ||
d04e8acd 958 (writeback && PageReclaim(page)))
e2be15f6
MG
959 nr_congested++;
960
283aba9f
MG
961 /*
962 * If a page at the tail of the LRU is under writeback, there
963 * are three cases to consider.
964 *
965 * 1) If reclaim is encountering an excessive number of pages
966 * under writeback and this page is both under writeback and
967 * PageReclaim then it indicates that pages are being queued
968 * for IO but are being recycled through the LRU before the
969 * IO can complete. Waiting on the page itself risks an
970 * indefinite stall if it is impossible to writeback the
971 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
972 * note that the LRU is being scanned too quickly and the
973 * caller can stall after page list has been processed.
283aba9f 974 *
97c9341f 975 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
976 * not marked for immediate reclaim, or the caller does not
977 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
978 * not to fs). In this case mark the page for immediate
97c9341f 979 * reclaim and continue scanning.
283aba9f 980 *
ecf5fc6e
MH
981 * Require may_enter_fs because we would wait on fs, which
982 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
983 * enter reclaim, and deadlock if it waits on a page for
984 * which it is needed to do the write (loop masks off
985 * __GFP_IO|__GFP_FS for this reason); but more thought
986 * would probably show more reasons.
987 *
7fadc820 988 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
989 * PageReclaim. memcg does not have any dirty pages
990 * throttling so we could easily OOM just because too many
991 * pages are in writeback and there is nothing else to
992 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
993 *
994 * In cases 1) and 2) we activate the pages to get them out of
995 * the way while we continue scanning for clean pages on the
996 * inactive list and refilling from the active list. The
997 * observation here is that waiting for disk writes is more
998 * expensive than potentially causing reloads down the line.
999 * Since they're marked for immediate reclaim, they won't put
1000 * memory pressure on the cache working set any longer than it
1001 * takes to write them to disk.
283aba9f 1002 */
c661b078 1003 if (PageWriteback(page)) {
283aba9f
MG
1004 /* Case 1 above */
1005 if (current_is_kswapd() &&
1006 PageReclaim(page) &&
599d0c95 1007 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e 1008 nr_immediate++;
c55e8d03 1009 goto activate_locked;
283aba9f
MG
1010
1011 /* Case 2 above */
97c9341f 1012 } else if (sane_reclaim(sc) ||
ecf5fc6e 1013 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1014 /*
1015 * This is slightly racy - end_page_writeback()
1016 * might have just cleared PageReclaim, then
1017 * setting PageReclaim here end up interpreted
1018 * as PageReadahead - but that does not matter
1019 * enough to care. What we do want is for this
1020 * page to have PageReclaim set next time memcg
1021 * reclaim reaches the tests above, so it will
1022 * then wait_on_page_writeback() to avoid OOM;
1023 * and it's also appropriate in global reclaim.
1024 */
1025 SetPageReclaim(page);
e62e384e 1026 nr_writeback++;
c55e8d03 1027 goto activate_locked;
283aba9f
MG
1028
1029 /* Case 3 above */
1030 } else {
7fadc820 1031 unlock_page(page);
283aba9f 1032 wait_on_page_writeback(page);
7fadc820
HD
1033 /* then go back and try same page again */
1034 list_add_tail(&page->lru, page_list);
1035 continue;
e62e384e 1036 }
c661b078 1037 }
1da177e4 1038
02c6de8d
MK
1039 if (!force_reclaim)
1040 references = page_check_references(page, sc);
1041
dfc8d636
JW
1042 switch (references) {
1043 case PAGEREF_ACTIVATE:
1da177e4 1044 goto activate_locked;
64574746 1045 case PAGEREF_KEEP:
5bccd166 1046 nr_ref_keep++;
64574746 1047 goto keep_locked;
dfc8d636
JW
1048 case PAGEREF_RECLAIM:
1049 case PAGEREF_RECLAIM_CLEAN:
1050 ; /* try to reclaim the page below */
1051 }
1da177e4 1052
1da177e4
LT
1053 /*
1054 * Anonymous process memory has backing store?
1055 * Try to allocate it some swap space here.
802a3a92 1056 * Lazyfree page could be freed directly
1da177e4 1057 */
bd4c82c2
HY
1058 if (PageAnon(page) && PageSwapBacked(page)) {
1059 if (!PageSwapCache(page)) {
1060 if (!(sc->gfp_mask & __GFP_IO))
1061 goto keep_locked;
1062 if (PageTransHuge(page)) {
1063 /* cannot split THP, skip it */
1064 if (!can_split_huge_page(page, NULL))
1065 goto activate_locked;
1066 /*
1067 * Split pages without a PMD map right
1068 * away. Chances are some or all of the
1069 * tail pages can be freed without IO.
1070 */
1071 if (!compound_mapcount(page) &&
1072 split_huge_page_to_list(page,
1073 page_list))
1074 goto activate_locked;
1075 }
1076 if (!add_to_swap(page)) {
1077 if (!PageTransHuge(page))
1078 goto activate_locked;
1079 /* Fallback to swap normal pages */
1080 if (split_huge_page_to_list(page,
1081 page_list))
1082 goto activate_locked;
fe490cc0
HY
1083#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1084 count_vm_event(THP_SWPOUT_FALLBACK);
1085#endif
bd4c82c2
HY
1086 if (!add_to_swap(page))
1087 goto activate_locked;
1088 }
0f074658 1089
bd4c82c2 1090 may_enter_fs = 1;
1da177e4 1091
bd4c82c2
HY
1092 /* Adding to swap updated mapping */
1093 mapping = page_mapping(page);
1094 }
7751b2da
KS
1095 } else if (unlikely(PageTransHuge(page))) {
1096 /* Split file THP */
1097 if (split_huge_page_to_list(page, page_list))
1098 goto keep_locked;
e2be15f6 1099 }
1da177e4
LT
1100
1101 /*
1102 * The page is mapped into the page tables of one or more
1103 * processes. Try to unmap it here.
1104 */
802a3a92 1105 if (page_mapped(page)) {
bd4c82c2
HY
1106 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1107
1108 if (unlikely(PageTransHuge(page)))
1109 flags |= TTU_SPLIT_HUGE_PMD;
1110 if (!try_to_unmap(page, flags)) {
5bccd166 1111 nr_unmap_fail++;
1da177e4 1112 goto activate_locked;
1da177e4
LT
1113 }
1114 }
1115
1116 if (PageDirty(page)) {
ee72886d 1117 /*
4eda4823
JW
1118 * Only kswapd can writeback filesystem pages
1119 * to avoid risk of stack overflow. But avoid
1120 * injecting inefficient single-page IO into
1121 * flusher writeback as much as possible: only
1122 * write pages when we've encountered many
1123 * dirty pages, and when we've already scanned
1124 * the rest of the LRU for clean pages and see
1125 * the same dirty pages again (PageReclaim).
ee72886d 1126 */
f84f6e2b 1127 if (page_is_file_cache(page) &&
4eda4823
JW
1128 (!current_is_kswapd() || !PageReclaim(page) ||
1129 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1130 /*
1131 * Immediately reclaim when written back.
1132 * Similar in principal to deactivate_page()
1133 * except we already have the page isolated
1134 * and know it's dirty
1135 */
c4a25635 1136 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1137 SetPageReclaim(page);
1138
c55e8d03 1139 goto activate_locked;
ee72886d
MG
1140 }
1141
dfc8d636 1142 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1143 goto keep_locked;
4dd4b920 1144 if (!may_enter_fs)
1da177e4 1145 goto keep_locked;
52a8363e 1146 if (!sc->may_writepage)
1da177e4
LT
1147 goto keep_locked;
1148
d950c947
MG
1149 /*
1150 * Page is dirty. Flush the TLB if a writable entry
1151 * potentially exists to avoid CPU writes after IO
1152 * starts and then write it out here.
1153 */
1154 try_to_unmap_flush_dirty();
7d3579e8 1155 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1156 case PAGE_KEEP:
1157 goto keep_locked;
1158 case PAGE_ACTIVATE:
1159 goto activate_locked;
1160 case PAGE_SUCCESS:
7d3579e8 1161 if (PageWriteback(page))
41ac1999 1162 goto keep;
7d3579e8 1163 if (PageDirty(page))
1da177e4 1164 goto keep;
7d3579e8 1165
1da177e4
LT
1166 /*
1167 * A synchronous write - probably a ramdisk. Go
1168 * ahead and try to reclaim the page.
1169 */
529ae9aa 1170 if (!trylock_page(page))
1da177e4
LT
1171 goto keep;
1172 if (PageDirty(page) || PageWriteback(page))
1173 goto keep_locked;
1174 mapping = page_mapping(page);
1175 case PAGE_CLEAN:
1176 ; /* try to free the page below */
1177 }
1178 }
1179
1180 /*
1181 * If the page has buffers, try to free the buffer mappings
1182 * associated with this page. If we succeed we try to free
1183 * the page as well.
1184 *
1185 * We do this even if the page is PageDirty().
1186 * try_to_release_page() does not perform I/O, but it is
1187 * possible for a page to have PageDirty set, but it is actually
1188 * clean (all its buffers are clean). This happens if the
1189 * buffers were written out directly, with submit_bh(). ext3
894bc310 1190 * will do this, as well as the blockdev mapping.
1da177e4
LT
1191 * try_to_release_page() will discover that cleanness and will
1192 * drop the buffers and mark the page clean - it can be freed.
1193 *
1194 * Rarely, pages can have buffers and no ->mapping. These are
1195 * the pages which were not successfully invalidated in
1196 * truncate_complete_page(). We try to drop those buffers here
1197 * and if that worked, and the page is no longer mapped into
1198 * process address space (page_count == 1) it can be freed.
1199 * Otherwise, leave the page on the LRU so it is swappable.
1200 */
266cf658 1201 if (page_has_private(page)) {
1da177e4
LT
1202 if (!try_to_release_page(page, sc->gfp_mask))
1203 goto activate_locked;
e286781d
NP
1204 if (!mapping && page_count(page) == 1) {
1205 unlock_page(page);
1206 if (put_page_testzero(page))
1207 goto free_it;
1208 else {
1209 /*
1210 * rare race with speculative reference.
1211 * the speculative reference will free
1212 * this page shortly, so we may
1213 * increment nr_reclaimed here (and
1214 * leave it off the LRU).
1215 */
1216 nr_reclaimed++;
1217 continue;
1218 }
1219 }
1da177e4
LT
1220 }
1221
802a3a92
SL
1222 if (PageAnon(page) && !PageSwapBacked(page)) {
1223 /* follow __remove_mapping for reference */
1224 if (!page_ref_freeze(page, 1))
1225 goto keep_locked;
1226 if (PageDirty(page)) {
1227 page_ref_unfreeze(page, 1);
1228 goto keep_locked;
1229 }
1da177e4 1230
802a3a92 1231 count_vm_event(PGLAZYFREED);
2262185c 1232 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1233 } else if (!mapping || !__remove_mapping(mapping, page, true))
1234 goto keep_locked;
a978d6f5
NP
1235 /*
1236 * At this point, we have no other references and there is
1237 * no way to pick any more up (removed from LRU, removed
1238 * from pagecache). Can use non-atomic bitops now (and
1239 * we obviously don't have to worry about waking up a process
1240 * waiting on the page lock, because there are no references.
1241 */
48c935ad 1242 __ClearPageLocked(page);
e286781d 1243free_it:
05ff5137 1244 nr_reclaimed++;
abe4c3b5
MG
1245
1246 /*
1247 * Is there need to periodically free_page_list? It would
1248 * appear not as the counts should be low
1249 */
bd4c82c2
HY
1250 if (unlikely(PageTransHuge(page))) {
1251 mem_cgroup_uncharge(page);
1252 (*get_compound_page_dtor(page))(page);
1253 } else
1254 list_add(&page->lru, &free_pages);
1da177e4
LT
1255 continue;
1256
1257activate_locked:
68a22394 1258 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1259 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1260 PageMlocked(page)))
a2c43eed 1261 try_to_free_swap(page);
309381fe 1262 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704
MK
1263 if (!PageMlocked(page)) {
1264 SetPageActive(page);
1265 pgactivate++;
2262185c 1266 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1267 }
1da177e4
LT
1268keep_locked:
1269 unlock_page(page);
1270keep:
1271 list_add(&page->lru, &ret_pages);
309381fe 1272 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1273 }
abe4c3b5 1274
747db954 1275 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1276 try_to_unmap_flush();
2d4894b5 1277 free_unref_page_list(&free_pages);
abe4c3b5 1278
1da177e4 1279 list_splice(&ret_pages, page_list);
f8891e5e 1280 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1281
3c710c1a
MH
1282 if (stat) {
1283 stat->nr_dirty = nr_dirty;
1284 stat->nr_congested = nr_congested;
1285 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1286 stat->nr_writeback = nr_writeback;
1287 stat->nr_immediate = nr_immediate;
5bccd166
MH
1288 stat->nr_activate = pgactivate;
1289 stat->nr_ref_keep = nr_ref_keep;
1290 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1291 }
05ff5137 1292 return nr_reclaimed;
1da177e4
LT
1293}
1294
02c6de8d
MK
1295unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1296 struct list_head *page_list)
1297{
1298 struct scan_control sc = {
1299 .gfp_mask = GFP_KERNEL,
1300 .priority = DEF_PRIORITY,
1301 .may_unmap = 1,
1302 };
3c710c1a 1303 unsigned long ret;
02c6de8d
MK
1304 struct page *page, *next;
1305 LIST_HEAD(clean_pages);
1306
1307 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1308 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1309 !__PageMovable(page)) {
02c6de8d
MK
1310 ClearPageActive(page);
1311 list_move(&page->lru, &clean_pages);
1312 }
1313 }
1314
599d0c95 1315 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
a128ca71 1316 TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1317 list_splice(&clean_pages, page_list);
599d0c95 1318 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1319 return ret;
1320}
1321
5ad333eb
AW
1322/*
1323 * Attempt to remove the specified page from its LRU. Only take this page
1324 * if it is of the appropriate PageActive status. Pages which are being
1325 * freed elsewhere are also ignored.
1326 *
1327 * page: page to consider
1328 * mode: one of the LRU isolation modes defined above
1329 *
1330 * returns 0 on success, -ve errno on failure.
1331 */
f3fd4a61 1332int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1333{
1334 int ret = -EINVAL;
1335
1336 /* Only take pages on the LRU. */
1337 if (!PageLRU(page))
1338 return ret;
1339
e46a2879
MK
1340 /* Compaction should not handle unevictable pages but CMA can do so */
1341 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1342 return ret;
1343
5ad333eb 1344 ret = -EBUSY;
08e552c6 1345
c8244935
MG
1346 /*
1347 * To minimise LRU disruption, the caller can indicate that it only
1348 * wants to isolate pages it will be able to operate on without
1349 * blocking - clean pages for the most part.
1350 *
c8244935
MG
1351 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1352 * that it is possible to migrate without blocking
1353 */
1276ad68 1354 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1355 /* All the caller can do on PageWriteback is block */
1356 if (PageWriteback(page))
1357 return ret;
1358
1359 if (PageDirty(page)) {
1360 struct address_space *mapping;
69d763fc 1361 bool migrate_dirty;
c8244935 1362
c8244935
MG
1363 /*
1364 * Only pages without mappings or that have a
1365 * ->migratepage callback are possible to migrate
69d763fc
MG
1366 * without blocking. However, we can be racing with
1367 * truncation so it's necessary to lock the page
1368 * to stabilise the mapping as truncation holds
1369 * the page lock until after the page is removed
1370 * from the page cache.
c8244935 1371 */
69d763fc
MG
1372 if (!trylock_page(page))
1373 return ret;
1374
c8244935 1375 mapping = page_mapping(page);
69d763fc
MG
1376 migrate_dirty = mapping && mapping->a_ops->migratepage;
1377 unlock_page(page);
1378 if (!migrate_dirty)
c8244935
MG
1379 return ret;
1380 }
1381 }
39deaf85 1382
f80c0673
MK
1383 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1384 return ret;
1385
5ad333eb
AW
1386 if (likely(get_page_unless_zero(page))) {
1387 /*
1388 * Be careful not to clear PageLRU until after we're
1389 * sure the page is not being freed elsewhere -- the
1390 * page release code relies on it.
1391 */
1392 ClearPageLRU(page);
1393 ret = 0;
1394 }
1395
1396 return ret;
1397}
1398
7ee36a14
MG
1399
1400/*
1401 * Update LRU sizes after isolating pages. The LRU size updates must
1402 * be complete before mem_cgroup_update_lru_size due to a santity check.
1403 */
1404static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1405 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1406{
7ee36a14
MG
1407 int zid;
1408
7ee36a14
MG
1409 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1410 if (!nr_zone_taken[zid])
1411 continue;
1412
1413 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1414#ifdef CONFIG_MEMCG
b4536f0c 1415 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1416#endif
b4536f0c
MH
1417 }
1418
7ee36a14
MG
1419}
1420
1da177e4 1421/*
a52633d8 1422 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1423 * shrink the lists perform better by taking out a batch of pages
1424 * and working on them outside the LRU lock.
1425 *
1426 * For pagecache intensive workloads, this function is the hottest
1427 * spot in the kernel (apart from copy_*_user functions).
1428 *
1429 * Appropriate locks must be held before calling this function.
1430 *
791b48b6 1431 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1432 * @lruvec: The LRU vector to pull pages from.
1da177e4 1433 * @dst: The temp list to put pages on to.
f626012d 1434 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1435 * @sc: The scan_control struct for this reclaim session
5ad333eb 1436 * @mode: One of the LRU isolation modes
3cb99451 1437 * @lru: LRU list id for isolating
1da177e4
LT
1438 *
1439 * returns how many pages were moved onto *@dst.
1440 */
69e05944 1441static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1442 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1443 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1444 isolate_mode_t mode, enum lru_list lru)
1da177e4 1445{
75b00af7 1446 struct list_head *src = &lruvec->lists[lru];
69e05944 1447 unsigned long nr_taken = 0;
599d0c95 1448 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1449 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1450 unsigned long skipped = 0;
791b48b6 1451 unsigned long scan, total_scan, nr_pages;
b2e18757 1452 LIST_HEAD(pages_skipped);
1da177e4 1453
791b48b6
MK
1454 scan = 0;
1455 for (total_scan = 0;
1456 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1457 total_scan++) {
5ad333eb 1458 struct page *page;
5ad333eb 1459
1da177e4
LT
1460 page = lru_to_page(src);
1461 prefetchw_prev_lru_page(page, src, flags);
1462
309381fe 1463 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1464
b2e18757
MG
1465 if (page_zonenum(page) > sc->reclaim_idx) {
1466 list_move(&page->lru, &pages_skipped);
7cc30fcf 1467 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1468 continue;
1469 }
1470
791b48b6
MK
1471 /*
1472 * Do not count skipped pages because that makes the function
1473 * return with no isolated pages if the LRU mostly contains
1474 * ineligible pages. This causes the VM to not reclaim any
1475 * pages, triggering a premature OOM.
1476 */
1477 scan++;
f3fd4a61 1478 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1479 case 0:
599d0c95
MG
1480 nr_pages = hpage_nr_pages(page);
1481 nr_taken += nr_pages;
1482 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1483 list_move(&page->lru, dst);
5ad333eb
AW
1484 break;
1485
1486 case -EBUSY:
1487 /* else it is being freed elsewhere */
1488 list_move(&page->lru, src);
1489 continue;
46453a6e 1490
5ad333eb
AW
1491 default:
1492 BUG();
1493 }
1da177e4
LT
1494 }
1495
b2e18757
MG
1496 /*
1497 * Splice any skipped pages to the start of the LRU list. Note that
1498 * this disrupts the LRU order when reclaiming for lower zones but
1499 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1500 * scanning would soon rescan the same pages to skip and put the
1501 * system at risk of premature OOM.
1502 */
7cc30fcf
MG
1503 if (!list_empty(&pages_skipped)) {
1504 int zid;
1505
3db65812 1506 list_splice(&pages_skipped, src);
7cc30fcf
MG
1507 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1508 if (!nr_skipped[zid])
1509 continue;
1510
1511 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1512 skipped += nr_skipped[zid];
7cc30fcf
MG
1513 }
1514 }
791b48b6 1515 *nr_scanned = total_scan;
1265e3a6 1516 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1517 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1518 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1519 return nr_taken;
1520}
1521
62695a84
NP
1522/**
1523 * isolate_lru_page - tries to isolate a page from its LRU list
1524 * @page: page to isolate from its LRU list
1525 *
1526 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1527 * vmstat statistic corresponding to whatever LRU list the page was on.
1528 *
1529 * Returns 0 if the page was removed from an LRU list.
1530 * Returns -EBUSY if the page was not on an LRU list.
1531 *
1532 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1533 * the active list, it will have PageActive set. If it was found on
1534 * the unevictable list, it will have the PageUnevictable bit set. That flag
1535 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1536 *
1537 * The vmstat statistic corresponding to the list on which the page was
1538 * found will be decremented.
1539 *
1540 * Restrictions:
a5d09bed 1541 *
62695a84
NP
1542 * (1) Must be called with an elevated refcount on the page. This is a
1543 * fundamentnal difference from isolate_lru_pages (which is called
1544 * without a stable reference).
1545 * (2) the lru_lock must not be held.
1546 * (3) interrupts must be enabled.
1547 */
1548int isolate_lru_page(struct page *page)
1549{
1550 int ret = -EBUSY;
1551
309381fe 1552 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1553 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1554
62695a84
NP
1555 if (PageLRU(page)) {
1556 struct zone *zone = page_zone(page);
fa9add64 1557 struct lruvec *lruvec;
62695a84 1558
a52633d8 1559 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1560 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1561 if (PageLRU(page)) {
894bc310 1562 int lru = page_lru(page);
0c917313 1563 get_page(page);
62695a84 1564 ClearPageLRU(page);
fa9add64
HD
1565 del_page_from_lru_list(page, lruvec, lru);
1566 ret = 0;
62695a84 1567 }
a52633d8 1568 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1569 }
1570 return ret;
1571}
1572
35cd7815 1573/*
d37dd5dc
FW
1574 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1575 * then get resheduled. When there are massive number of tasks doing page
1576 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1577 * the LRU list will go small and be scanned faster than necessary, leading to
1578 * unnecessary swapping, thrashing and OOM.
35cd7815 1579 */
599d0c95 1580static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1581 struct scan_control *sc)
1582{
1583 unsigned long inactive, isolated;
1584
1585 if (current_is_kswapd())
1586 return 0;
1587
97c9341f 1588 if (!sane_reclaim(sc))
35cd7815
RR
1589 return 0;
1590
1591 if (file) {
599d0c95
MG
1592 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1593 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1594 } else {
599d0c95
MG
1595 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1596 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1597 }
1598
3cf23841
FW
1599 /*
1600 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1601 * won't get blocked by normal direct-reclaimers, forming a circular
1602 * deadlock.
1603 */
d0164adc 1604 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1605 inactive >>= 3;
1606
35cd7815
RR
1607 return isolated > inactive;
1608}
1609
66635629 1610static noinline_for_stack void
75b00af7 1611putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1612{
27ac81d8 1613 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1614 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1615 LIST_HEAD(pages_to_free);
66635629 1616
66635629
MG
1617 /*
1618 * Put back any unfreeable pages.
1619 */
66635629 1620 while (!list_empty(page_list)) {
3f79768f 1621 struct page *page = lru_to_page(page_list);
66635629 1622 int lru;
3f79768f 1623
309381fe 1624 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1625 list_del(&page->lru);
39b5f29a 1626 if (unlikely(!page_evictable(page))) {
599d0c95 1627 spin_unlock_irq(&pgdat->lru_lock);
66635629 1628 putback_lru_page(page);
599d0c95 1629 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1630 continue;
1631 }
fa9add64 1632
599d0c95 1633 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1634
7a608572 1635 SetPageLRU(page);
66635629 1636 lru = page_lru(page);
fa9add64
HD
1637 add_page_to_lru_list(page, lruvec, lru);
1638
66635629
MG
1639 if (is_active_lru(lru)) {
1640 int file = is_file_lru(lru);
9992af10
RR
1641 int numpages = hpage_nr_pages(page);
1642 reclaim_stat->recent_rotated[file] += numpages;
66635629 1643 }
2bcf8879
HD
1644 if (put_page_testzero(page)) {
1645 __ClearPageLRU(page);
1646 __ClearPageActive(page);
fa9add64 1647 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1648
1649 if (unlikely(PageCompound(page))) {
599d0c95 1650 spin_unlock_irq(&pgdat->lru_lock);
747db954 1651 mem_cgroup_uncharge(page);
2bcf8879 1652 (*get_compound_page_dtor(page))(page);
599d0c95 1653 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1654 } else
1655 list_add(&page->lru, &pages_to_free);
66635629
MG
1656 }
1657 }
66635629 1658
3f79768f
HD
1659 /*
1660 * To save our caller's stack, now use input list for pages to free.
1661 */
1662 list_splice(&pages_to_free, page_list);
66635629
MG
1663}
1664
399ba0b9
N
1665/*
1666 * If a kernel thread (such as nfsd for loop-back mounts) services
1667 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1668 * In that case we should only throttle if the backing device it is
1669 * writing to is congested. In other cases it is safe to throttle.
1670 */
1671static int current_may_throttle(void)
1672{
1673 return !(current->flags & PF_LESS_THROTTLE) ||
1674 current->backing_dev_info == NULL ||
1675 bdi_write_congested(current->backing_dev_info);
1676}
1677
1da177e4 1678/*
b2e18757 1679 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1680 * of reclaimed pages
1da177e4 1681 */
66635629 1682static noinline_for_stack unsigned long
1a93be0e 1683shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1684 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1685{
1686 LIST_HEAD(page_list);
e247dbce 1687 unsigned long nr_scanned;
05ff5137 1688 unsigned long nr_reclaimed = 0;
e247dbce 1689 unsigned long nr_taken;
3c710c1a 1690 struct reclaim_stat stat = {};
f3fd4a61 1691 isolate_mode_t isolate_mode = 0;
3cb99451 1692 int file = is_file_lru(lru);
599d0c95 1693 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1694 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1695 bool stalled = false;
78dc583d 1696
599d0c95 1697 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1698 if (stalled)
1699 return 0;
1700
1701 /* wait a bit for the reclaimer. */
1702 msleep(100);
1703 stalled = true;
35cd7815
RR
1704
1705 /* We are about to die and free our memory. Return now. */
1706 if (fatal_signal_pending(current))
1707 return SWAP_CLUSTER_MAX;
1708 }
1709
1da177e4 1710 lru_add_drain();
f80c0673
MK
1711
1712 if (!sc->may_unmap)
61317289 1713 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1714
599d0c95 1715 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1716
5dc35979
KK
1717 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1718 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1719
599d0c95 1720 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1721 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1722
2262185c
RG
1723 if (current_is_kswapd()) {
1724 if (global_reclaim(sc))
599d0c95 1725 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
2262185c
RG
1726 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1727 nr_scanned);
1728 } else {
1729 if (global_reclaim(sc))
599d0c95 1730 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
2262185c
RG
1731 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1732 nr_scanned);
e247dbce 1733 }
599d0c95 1734 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1735
d563c050 1736 if (nr_taken == 0)
66635629 1737 return 0;
5ad333eb 1738
a128ca71 1739 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1740 &stat, false);
c661b078 1741
599d0c95 1742 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1743
2262185c
RG
1744 if (current_is_kswapd()) {
1745 if (global_reclaim(sc))
599d0c95 1746 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
2262185c
RG
1747 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1748 nr_reclaimed);
1749 } else {
1750 if (global_reclaim(sc))
599d0c95 1751 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
2262185c
RG
1752 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1753 nr_reclaimed);
904249aa 1754 }
a74609fa 1755
27ac81d8 1756 putback_inactive_pages(lruvec, &page_list);
3f79768f 1757
599d0c95 1758 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1759
599d0c95 1760 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1761
747db954 1762 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1763 free_unref_page_list(&page_list);
e11da5b4 1764
92df3a72
MG
1765 /*
1766 * If reclaim is isolating dirty pages under writeback, it implies
1767 * that the long-lived page allocation rate is exceeding the page
1768 * laundering rate. Either the global limits are not being effective
1769 * at throttling processes due to the page distribution throughout
1770 * zones or there is heavy usage of a slow backing device. The
1771 * only option is to throttle from reclaim context which is not ideal
1772 * as there is no guarantee the dirtying process is throttled in the
1773 * same way balance_dirty_pages() manages.
1774 *
8e950282
MG
1775 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1776 * of pages under pages flagged for immediate reclaim and stall if any
1777 * are encountered in the nr_immediate check below.
92df3a72 1778 */
3c710c1a 1779 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
599d0c95 1780 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1781
1c610d5f
AR
1782 /*
1783 * If dirty pages are scanned that are not queued for IO, it
1784 * implies that flushers are not doing their job. This can
1785 * happen when memory pressure pushes dirty pages to the end of
1786 * the LRU before the dirty limits are breached and the dirty
1787 * data has expired. It can also happen when the proportion of
1788 * dirty pages grows not through writes but through memory
1789 * pressure reclaiming all the clean cache. And in some cases,
1790 * the flushers simply cannot keep up with the allocation
1791 * rate. Nudge the flusher threads in case they are asleep.
1792 */
1793 if (stat.nr_unqueued_dirty == nr_taken)
1794 wakeup_flusher_threads(WB_REASON_VMSCAN);
1795
d43006d5 1796 /*
97c9341f
TH
1797 * Legacy memcg will stall in page writeback so avoid forcibly
1798 * stalling here.
d43006d5 1799 */
97c9341f 1800 if (sane_reclaim(sc)) {
8e950282
MG
1801 /*
1802 * Tag a zone as congested if all the dirty pages scanned were
1803 * backed by a congested BDI and wait_iff_congested will stall.
1804 */
3c710c1a 1805 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
599d0c95 1806 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1807
1c610d5f
AR
1808 /* Allow kswapd to start writing pages during reclaim. */
1809 if (stat.nr_unqueued_dirty == nr_taken)
599d0c95 1810 set_bit(PGDAT_DIRTY, &pgdat->flags);
b1a6f21e
MG
1811
1812 /*
b738d764
LT
1813 * If kswapd scans pages marked marked for immediate
1814 * reclaim and under writeback (nr_immediate), it implies
1815 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1816 * they are written so also forcibly stall.
1817 */
3c710c1a 1818 if (stat.nr_immediate && current_may_throttle())
b1a6f21e 1819 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1820 }
d43006d5 1821
8e950282
MG
1822 /*
1823 * Stall direct reclaim for IO completions if underlying BDIs or zone
1824 * is congested. Allow kswapd to continue until it starts encountering
1825 * unqueued dirty pages or cycling through the LRU too quickly.
1826 */
399ba0b9
N
1827 if (!sc->hibernation_mode && !current_is_kswapd() &&
1828 current_may_throttle())
599d0c95 1829 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1830
599d0c95
MG
1831 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1832 nr_scanned, nr_reclaimed,
5bccd166
MH
1833 stat.nr_dirty, stat.nr_writeback,
1834 stat.nr_congested, stat.nr_immediate,
1835 stat.nr_activate, stat.nr_ref_keep,
1836 stat.nr_unmap_fail,
ba5e9579 1837 sc->priority, file);
05ff5137 1838 return nr_reclaimed;
1da177e4
LT
1839}
1840
1841/*
1842 * This moves pages from the active list to the inactive list.
1843 *
1844 * We move them the other way if the page is referenced by one or more
1845 * processes, from rmap.
1846 *
1847 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1848 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1849 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1850 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1851 * this, so instead we remove the pages from the LRU while processing them.
1852 * It is safe to rely on PG_active against the non-LRU pages in here because
1853 * nobody will play with that bit on a non-LRU page.
1854 *
0139aa7b 1855 * The downside is that we have to touch page->_refcount against each page.
1da177e4 1856 * But we had to alter page->flags anyway.
9d998b4f
MH
1857 *
1858 * Returns the number of pages moved to the given lru.
1da177e4 1859 */
1cfb419b 1860
9d998b4f 1861static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1862 struct list_head *list,
2bcf8879 1863 struct list_head *pages_to_free,
3eb4140f
WF
1864 enum lru_list lru)
1865{
599d0c95 1866 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1867 struct page *page;
fa9add64 1868 int nr_pages;
9d998b4f 1869 int nr_moved = 0;
3eb4140f 1870
3eb4140f
WF
1871 while (!list_empty(list)) {
1872 page = lru_to_page(list);
599d0c95 1873 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1874
309381fe 1875 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1876 SetPageLRU(page);
1877
fa9add64 1878 nr_pages = hpage_nr_pages(page);
599d0c95 1879 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1880 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 1881
2bcf8879
HD
1882 if (put_page_testzero(page)) {
1883 __ClearPageLRU(page);
1884 __ClearPageActive(page);
fa9add64 1885 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1886
1887 if (unlikely(PageCompound(page))) {
599d0c95 1888 spin_unlock_irq(&pgdat->lru_lock);
747db954 1889 mem_cgroup_uncharge(page);
2bcf8879 1890 (*get_compound_page_dtor(page))(page);
599d0c95 1891 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1892 } else
1893 list_add(&page->lru, pages_to_free);
9d998b4f
MH
1894 } else {
1895 nr_moved += nr_pages;
3eb4140f
WF
1896 }
1897 }
9d5e6a9f 1898
2262185c 1899 if (!is_active_lru(lru)) {
f0958906 1900 __count_vm_events(PGDEACTIVATE, nr_moved);
2262185c
RG
1901 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1902 nr_moved);
1903 }
9d998b4f
MH
1904
1905 return nr_moved;
3eb4140f 1906}
1cfb419b 1907
f626012d 1908static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1909 struct lruvec *lruvec,
f16015fb 1910 struct scan_control *sc,
9e3b2f8c 1911 enum lru_list lru)
1da177e4 1912{
44c241f1 1913 unsigned long nr_taken;
f626012d 1914 unsigned long nr_scanned;
6fe6b7e3 1915 unsigned long vm_flags;
1da177e4 1916 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1917 LIST_HEAD(l_active);
b69408e8 1918 LIST_HEAD(l_inactive);
1da177e4 1919 struct page *page;
1a93be0e 1920 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
1921 unsigned nr_deactivate, nr_activate;
1922 unsigned nr_rotated = 0;
f3fd4a61 1923 isolate_mode_t isolate_mode = 0;
3cb99451 1924 int file = is_file_lru(lru);
599d0c95 1925 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1926
1927 lru_add_drain();
f80c0673
MK
1928
1929 if (!sc->may_unmap)
61317289 1930 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1931
599d0c95 1932 spin_lock_irq(&pgdat->lru_lock);
925b7673 1933
5dc35979
KK
1934 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1935 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1936
599d0c95 1937 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1938 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1939
599d0c95 1940 __count_vm_events(PGREFILL, nr_scanned);
2262185c 1941 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 1942
599d0c95 1943 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 1944
1da177e4
LT
1945 while (!list_empty(&l_hold)) {
1946 cond_resched();
1947 page = lru_to_page(&l_hold);
1948 list_del(&page->lru);
7e9cd484 1949
39b5f29a 1950 if (unlikely(!page_evictable(page))) {
894bc310
LS
1951 putback_lru_page(page);
1952 continue;
1953 }
1954
cc715d99
MG
1955 if (unlikely(buffer_heads_over_limit)) {
1956 if (page_has_private(page) && trylock_page(page)) {
1957 if (page_has_private(page))
1958 try_to_release_page(page, 0);
1959 unlock_page(page);
1960 }
1961 }
1962
c3ac9a8a
JW
1963 if (page_referenced(page, 0, sc->target_mem_cgroup,
1964 &vm_flags)) {
9992af10 1965 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1966 /*
1967 * Identify referenced, file-backed active pages and
1968 * give them one more trip around the active list. So
1969 * that executable code get better chances to stay in
1970 * memory under moderate memory pressure. Anon pages
1971 * are not likely to be evicted by use-once streaming
1972 * IO, plus JVM can create lots of anon VM_EXEC pages,
1973 * so we ignore them here.
1974 */
41e20983 1975 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1976 list_add(&page->lru, &l_active);
1977 continue;
1978 }
1979 }
7e9cd484 1980
5205e56e 1981 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1982 list_add(&page->lru, &l_inactive);
1983 }
1984
b555749a 1985 /*
8cab4754 1986 * Move pages back to the lru list.
b555749a 1987 */
599d0c95 1988 spin_lock_irq(&pgdat->lru_lock);
556adecb 1989 /*
8cab4754
WF
1990 * Count referenced pages from currently used mappings as rotated,
1991 * even though only some of them are actually re-activated. This
1992 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1993 * get_scan_count.
7e9cd484 1994 */
b7c46d15 1995 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1996
9d998b4f
MH
1997 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1998 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
1999 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2000 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2001
747db954 2002 mem_cgroup_uncharge_list(&l_hold);
2d4894b5 2003 free_unref_page_list(&l_hold);
9d998b4f
MH
2004 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2005 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2006}
2007
59dc76b0
RR
2008/*
2009 * The inactive anon list should be small enough that the VM never has
2010 * to do too much work.
14797e23 2011 *
59dc76b0
RR
2012 * The inactive file list should be small enough to leave most memory
2013 * to the established workingset on the scan-resistant active list,
2014 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2015 *
59dc76b0
RR
2016 * Both inactive lists should also be large enough that each inactive
2017 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2018 *
2a2e4885
JW
2019 * If that fails and refaulting is observed, the inactive list grows.
2020 *
59dc76b0 2021 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2022 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2023 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2024 *
59dc76b0
RR
2025 * total target max
2026 * memory ratio inactive
2027 * -------------------------------------
2028 * 10MB 1 5MB
2029 * 100MB 1 50MB
2030 * 1GB 3 250MB
2031 * 10GB 10 0.9GB
2032 * 100GB 31 3GB
2033 * 1TB 101 10GB
2034 * 10TB 320 32GB
56e49d21 2035 */
f8d1a311 2036static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2a2e4885
JW
2037 struct mem_cgroup *memcg,
2038 struct scan_control *sc, bool actual_reclaim)
56e49d21 2039{
fd538803 2040 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2041 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2042 enum lru_list inactive_lru = file * LRU_FILE;
2043 unsigned long inactive, active;
2044 unsigned long inactive_ratio;
2045 unsigned long refaults;
59dc76b0 2046 unsigned long gb;
e3790144 2047
59dc76b0
RR
2048 /*
2049 * If we don't have swap space, anonymous page deactivation
2050 * is pointless.
2051 */
2052 if (!file && !total_swap_pages)
2053 return false;
56e49d21 2054
fd538803
MH
2055 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2056 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2057
2a2e4885 2058 if (memcg)
ccda7f43 2059 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
b39415b2 2060 else
2a2e4885
JW
2061 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2062
2063 /*
2064 * When refaults are being observed, it means a new workingset
2065 * is being established. Disable active list protection to get
2066 * rid of the stale workingset quickly.
2067 */
2068 if (file && actual_reclaim && lruvec->refaults != refaults) {
2069 inactive_ratio = 0;
2070 } else {
2071 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2072 if (gb)
2073 inactive_ratio = int_sqrt(10 * gb);
2074 else
2075 inactive_ratio = 1;
2076 }
59dc76b0 2077
2a2e4885
JW
2078 if (actual_reclaim)
2079 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2080 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2081 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2082 inactive_ratio, file);
fd538803 2083
59dc76b0 2084 return inactive * inactive_ratio < active;
b39415b2
RR
2085}
2086
4f98a2fe 2087static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2a2e4885
JW
2088 struct lruvec *lruvec, struct mem_cgroup *memcg,
2089 struct scan_control *sc)
b69408e8 2090{
b39415b2 2091 if (is_active_lru(lru)) {
2a2e4885
JW
2092 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2093 memcg, sc, true))
1a93be0e 2094 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2095 return 0;
2096 }
2097
1a93be0e 2098 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2099}
2100
9a265114
JW
2101enum scan_balance {
2102 SCAN_EQUAL,
2103 SCAN_FRACT,
2104 SCAN_ANON,
2105 SCAN_FILE,
2106};
2107
4f98a2fe
RR
2108/*
2109 * Determine how aggressively the anon and file LRU lists should be
2110 * scanned. The relative value of each set of LRU lists is determined
2111 * by looking at the fraction of the pages scanned we did rotate back
2112 * onto the active list instead of evict.
2113 *
be7bd59d
WL
2114 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2115 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2116 */
33377678 2117static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2118 struct scan_control *sc, unsigned long *nr,
2119 unsigned long *lru_pages)
4f98a2fe 2120{
33377678 2121 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2122 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2123 u64 fraction[2];
2124 u64 denominator = 0; /* gcc */
599d0c95 2125 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2126 unsigned long anon_prio, file_prio;
9a265114 2127 enum scan_balance scan_balance;
0bf1457f 2128 unsigned long anon, file;
4f98a2fe 2129 unsigned long ap, fp;
4111304d 2130 enum lru_list lru;
76a33fc3
SL
2131
2132 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2133 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2134 scan_balance = SCAN_FILE;
76a33fc3
SL
2135 goto out;
2136 }
4f98a2fe 2137
10316b31
JW
2138 /*
2139 * Global reclaim will swap to prevent OOM even with no
2140 * swappiness, but memcg users want to use this knob to
2141 * disable swapping for individual groups completely when
2142 * using the memory controller's swap limit feature would be
2143 * too expensive.
2144 */
02695175 2145 if (!global_reclaim(sc) && !swappiness) {
9a265114 2146 scan_balance = SCAN_FILE;
10316b31
JW
2147 goto out;
2148 }
2149
2150 /*
2151 * Do not apply any pressure balancing cleverness when the
2152 * system is close to OOM, scan both anon and file equally
2153 * (unless the swappiness setting disagrees with swapping).
2154 */
02695175 2155 if (!sc->priority && swappiness) {
9a265114 2156 scan_balance = SCAN_EQUAL;
10316b31
JW
2157 goto out;
2158 }
2159
62376251
JW
2160 /*
2161 * Prevent the reclaimer from falling into the cache trap: as
2162 * cache pages start out inactive, every cache fault will tip
2163 * the scan balance towards the file LRU. And as the file LRU
2164 * shrinks, so does the window for rotation from references.
2165 * This means we have a runaway feedback loop where a tiny
2166 * thrashing file LRU becomes infinitely more attractive than
2167 * anon pages. Try to detect this based on file LRU size.
2168 */
2169 if (global_reclaim(sc)) {
599d0c95
MG
2170 unsigned long pgdatfile;
2171 unsigned long pgdatfree;
2172 int z;
2173 unsigned long total_high_wmark = 0;
2ab051e1 2174
599d0c95
MG
2175 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2176 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2177 node_page_state(pgdat, NR_INACTIVE_FILE);
2178
2179 for (z = 0; z < MAX_NR_ZONES; z++) {
2180 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2181 if (!managed_zone(zone))
599d0c95
MG
2182 continue;
2183
2184 total_high_wmark += high_wmark_pages(zone);
2185 }
62376251 2186
599d0c95 2187 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2188 /*
2189 * Force SCAN_ANON if there are enough inactive
2190 * anonymous pages on the LRU in eligible zones.
2191 * Otherwise, the small LRU gets thrashed.
2192 */
2193 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2194 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2195 >> sc->priority) {
2196 scan_balance = SCAN_ANON;
2197 goto out;
2198 }
62376251
JW
2199 }
2200 }
2201
7c5bd705 2202 /*
316bda0e
VD
2203 * If there is enough inactive page cache, i.e. if the size of the
2204 * inactive list is greater than that of the active list *and* the
2205 * inactive list actually has some pages to scan on this priority, we
2206 * do not reclaim anything from the anonymous working set right now.
2207 * Without the second condition we could end up never scanning an
2208 * lruvec even if it has plenty of old anonymous pages unless the
2209 * system is under heavy pressure.
7c5bd705 2210 */
2a2e4885 2211 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
71ab6cfe 2212 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2213 scan_balance = SCAN_FILE;
7c5bd705
JW
2214 goto out;
2215 }
2216
9a265114
JW
2217 scan_balance = SCAN_FRACT;
2218
58c37f6e
KM
2219 /*
2220 * With swappiness at 100, anonymous and file have the same priority.
2221 * This scanning priority is essentially the inverse of IO cost.
2222 */
02695175 2223 anon_prio = swappiness;
75b00af7 2224 file_prio = 200 - anon_prio;
58c37f6e 2225
4f98a2fe
RR
2226 /*
2227 * OK, so we have swap space and a fair amount of page cache
2228 * pages. We use the recently rotated / recently scanned
2229 * ratios to determine how valuable each cache is.
2230 *
2231 * Because workloads change over time (and to avoid overflow)
2232 * we keep these statistics as a floating average, which ends
2233 * up weighing recent references more than old ones.
2234 *
2235 * anon in [0], file in [1]
2236 */
2ab051e1 2237
fd538803
MH
2238 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2239 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2240 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2241 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2242
599d0c95 2243 spin_lock_irq(&pgdat->lru_lock);
6e901571 2244 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2245 reclaim_stat->recent_scanned[0] /= 2;
2246 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2247 }
2248
6e901571 2249 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2250 reclaim_stat->recent_scanned[1] /= 2;
2251 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2252 }
2253
4f98a2fe 2254 /*
00d8089c
RR
2255 * The amount of pressure on anon vs file pages is inversely
2256 * proportional to the fraction of recently scanned pages on
2257 * each list that were recently referenced and in active use.
4f98a2fe 2258 */
fe35004f 2259 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2260 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2261
fe35004f 2262 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2263 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2264 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2265
76a33fc3
SL
2266 fraction[0] = ap;
2267 fraction[1] = fp;
2268 denominator = ap + fp + 1;
2269out:
688035f7
JW
2270 *lru_pages = 0;
2271 for_each_evictable_lru(lru) {
2272 int file = is_file_lru(lru);
2273 unsigned long size;
2274 unsigned long scan;
6b4f7799 2275
688035f7
JW
2276 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2277 scan = size >> sc->priority;
2278 /*
2279 * If the cgroup's already been deleted, make sure to
2280 * scrape out the remaining cache.
2281 */
2282 if (!scan && !mem_cgroup_online(memcg))
2283 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2284
688035f7
JW
2285 switch (scan_balance) {
2286 case SCAN_EQUAL:
2287 /* Scan lists relative to size */
2288 break;
2289 case SCAN_FRACT:
9a265114 2290 /*
688035f7
JW
2291 * Scan types proportional to swappiness and
2292 * their relative recent reclaim efficiency.
9a265114 2293 */
688035f7
JW
2294 scan = div64_u64(scan * fraction[file],
2295 denominator);
2296 break;
2297 case SCAN_FILE:
2298 case SCAN_ANON:
2299 /* Scan one type exclusively */
2300 if ((scan_balance == SCAN_FILE) != file) {
2301 size = 0;
2302 scan = 0;
2303 }
2304 break;
2305 default:
2306 /* Look ma, no brain */
2307 BUG();
9a265114 2308 }
688035f7
JW
2309
2310 *lru_pages += size;
2311 nr[lru] = scan;
76a33fc3 2312 }
6e08a369 2313}
4f98a2fe 2314
9b4f98cd 2315/*
a9dd0a83 2316 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2317 */
a9dd0a83 2318static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2319 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2320{
ef8f2327 2321 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2322 unsigned long nr[NR_LRU_LISTS];
e82e0561 2323 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2324 unsigned long nr_to_scan;
2325 enum lru_list lru;
2326 unsigned long nr_reclaimed = 0;
2327 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2328 struct blk_plug plug;
1a501907 2329 bool scan_adjusted;
9b4f98cd 2330
33377678 2331 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2332
e82e0561
MG
2333 /* Record the original scan target for proportional adjustments later */
2334 memcpy(targets, nr, sizeof(nr));
2335
1a501907
MG
2336 /*
2337 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2338 * event that can occur when there is little memory pressure e.g.
2339 * multiple streaming readers/writers. Hence, we do not abort scanning
2340 * when the requested number of pages are reclaimed when scanning at
2341 * DEF_PRIORITY on the assumption that the fact we are direct
2342 * reclaiming implies that kswapd is not keeping up and it is best to
2343 * do a batch of work at once. For memcg reclaim one check is made to
2344 * abort proportional reclaim if either the file or anon lru has already
2345 * dropped to zero at the first pass.
2346 */
2347 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2348 sc->priority == DEF_PRIORITY);
2349
9b4f98cd
JW
2350 blk_start_plug(&plug);
2351 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2352 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2353 unsigned long nr_anon, nr_file, percentage;
2354 unsigned long nr_scanned;
2355
9b4f98cd
JW
2356 for_each_evictable_lru(lru) {
2357 if (nr[lru]) {
2358 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2359 nr[lru] -= nr_to_scan;
2360
2361 nr_reclaimed += shrink_list(lru, nr_to_scan,
2a2e4885 2362 lruvec, memcg, sc);
9b4f98cd
JW
2363 }
2364 }
e82e0561 2365
bd041733
MH
2366 cond_resched();
2367
e82e0561
MG
2368 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2369 continue;
2370
e82e0561
MG
2371 /*
2372 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2373 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2374 * proportionally what was requested by get_scan_count(). We
2375 * stop reclaiming one LRU and reduce the amount scanning
2376 * proportional to the original scan target.
2377 */
2378 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2379 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2380
1a501907
MG
2381 /*
2382 * It's just vindictive to attack the larger once the smaller
2383 * has gone to zero. And given the way we stop scanning the
2384 * smaller below, this makes sure that we only make one nudge
2385 * towards proportionality once we've got nr_to_reclaim.
2386 */
2387 if (!nr_file || !nr_anon)
2388 break;
2389
e82e0561
MG
2390 if (nr_file > nr_anon) {
2391 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2392 targets[LRU_ACTIVE_ANON] + 1;
2393 lru = LRU_BASE;
2394 percentage = nr_anon * 100 / scan_target;
2395 } else {
2396 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2397 targets[LRU_ACTIVE_FILE] + 1;
2398 lru = LRU_FILE;
2399 percentage = nr_file * 100 / scan_target;
2400 }
2401
2402 /* Stop scanning the smaller of the LRU */
2403 nr[lru] = 0;
2404 nr[lru + LRU_ACTIVE] = 0;
2405
2406 /*
2407 * Recalculate the other LRU scan count based on its original
2408 * scan target and the percentage scanning already complete
2409 */
2410 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2411 nr_scanned = targets[lru] - nr[lru];
2412 nr[lru] = targets[lru] * (100 - percentage) / 100;
2413 nr[lru] -= min(nr[lru], nr_scanned);
2414
2415 lru += LRU_ACTIVE;
2416 nr_scanned = targets[lru] - nr[lru];
2417 nr[lru] = targets[lru] * (100 - percentage) / 100;
2418 nr[lru] -= min(nr[lru], nr_scanned);
2419
2420 scan_adjusted = true;
9b4f98cd
JW
2421 }
2422 blk_finish_plug(&plug);
2423 sc->nr_reclaimed += nr_reclaimed;
2424
2425 /*
2426 * Even if we did not try to evict anon pages at all, we want to
2427 * rebalance the anon lru active/inactive ratio.
2428 */
2a2e4885 2429 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
9b4f98cd
JW
2430 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2431 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2432}
2433
23b9da55 2434/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2435static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2436{
d84da3f9 2437 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2438 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2439 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2440 return true;
2441
2442 return false;
2443}
2444
3e7d3449 2445/*
23b9da55
MG
2446 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2447 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2448 * true if more pages should be reclaimed such that when the page allocator
2449 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2450 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2451 */
a9dd0a83 2452static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2453 unsigned long nr_reclaimed,
2454 unsigned long nr_scanned,
2455 struct scan_control *sc)
2456{
2457 unsigned long pages_for_compaction;
2458 unsigned long inactive_lru_pages;
a9dd0a83 2459 int z;
3e7d3449
MG
2460
2461 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2462 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2463 return false;
2464
2876592f 2465 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2466 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2467 /*
dcda9b04 2468 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2469 * full LRU list has been scanned and we are still failing
2470 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2471 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2472 */
2473 if (!nr_reclaimed && !nr_scanned)
2474 return false;
2475 } else {
2476 /*
dcda9b04 2477 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2478 * fail without consequence, stop if we failed to reclaim
2479 * any pages from the last SWAP_CLUSTER_MAX number of
2480 * pages that were scanned. This will return to the
2481 * caller faster at the risk reclaim/compaction and
2482 * the resulting allocation attempt fails
2483 */
2484 if (!nr_reclaimed)
2485 return false;
2486 }
3e7d3449
MG
2487
2488 /*
2489 * If we have not reclaimed enough pages for compaction and the
2490 * inactive lists are large enough, continue reclaiming
2491 */
9861a62c 2492 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2493 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2494 if (get_nr_swap_pages() > 0)
a9dd0a83 2495 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2496 if (sc->nr_reclaimed < pages_for_compaction &&
2497 inactive_lru_pages > pages_for_compaction)
2498 return true;
2499
2500 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2501 for (z = 0; z <= sc->reclaim_idx; z++) {
2502 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2503 if (!managed_zone(zone))
a9dd0a83
MG
2504 continue;
2505
2506 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2507 case COMPACT_SUCCESS:
a9dd0a83
MG
2508 case COMPACT_CONTINUE:
2509 return false;
2510 default:
2511 /* check next zone */
2512 ;
2513 }
3e7d3449 2514 }
a9dd0a83 2515 return true;
3e7d3449
MG
2516}
2517
970a39a3 2518static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2519{
cb731d6c 2520 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2521 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2522 bool reclaimable = false;
1da177e4 2523
9b4f98cd
JW
2524 do {
2525 struct mem_cgroup *root = sc->target_mem_cgroup;
2526 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2527 .pgdat = pgdat,
9b4f98cd
JW
2528 .priority = sc->priority,
2529 };
a9dd0a83 2530 unsigned long node_lru_pages = 0;
694fbc0f 2531 struct mem_cgroup *memcg;
3e7d3449 2532
9b4f98cd
JW
2533 nr_reclaimed = sc->nr_reclaimed;
2534 nr_scanned = sc->nr_scanned;
1da177e4 2535
694fbc0f
AM
2536 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2537 do {
6b4f7799 2538 unsigned long lru_pages;
8e8ae645 2539 unsigned long reclaimed;
cb731d6c 2540 unsigned long scanned;
5660048c 2541
241994ed 2542 if (mem_cgroup_low(root, memcg)) {
d6622f63
YX
2543 if (!sc->memcg_low_reclaim) {
2544 sc->memcg_low_skipped = 1;
241994ed 2545 continue;
d6622f63 2546 }
31176c78 2547 mem_cgroup_event(memcg, MEMCG_LOW);
241994ed
JW
2548 }
2549
8e8ae645 2550 reclaimed = sc->nr_reclaimed;
cb731d6c 2551 scanned = sc->nr_scanned;
a9dd0a83
MG
2552 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2553 node_lru_pages += lru_pages;
f16015fb 2554
b5afba29 2555 if (memcg)
a9dd0a83 2556 shrink_slab(sc->gfp_mask, pgdat->node_id,
9092c71b 2557 memcg, sc->priority);
cb731d6c 2558
8e8ae645
JW
2559 /* Record the group's reclaim efficiency */
2560 vmpressure(sc->gfp_mask, memcg, false,
2561 sc->nr_scanned - scanned,
2562 sc->nr_reclaimed - reclaimed);
2563
9b4f98cd 2564 /*
a394cb8e
MH
2565 * Direct reclaim and kswapd have to scan all memory
2566 * cgroups to fulfill the overall scan target for the
a9dd0a83 2567 * node.
a394cb8e
MH
2568 *
2569 * Limit reclaim, on the other hand, only cares about
2570 * nr_to_reclaim pages to be reclaimed and it will
2571 * retry with decreasing priority if one round over the
2572 * whole hierarchy is not sufficient.
9b4f98cd 2573 */
a394cb8e
MH
2574 if (!global_reclaim(sc) &&
2575 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2576 mem_cgroup_iter_break(root, memcg);
2577 break;
2578 }
241994ed 2579 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2580
b2e18757 2581 if (global_reclaim(sc))
a9dd0a83 2582 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
9092c71b 2583 sc->priority);
cb731d6c
VD
2584
2585 if (reclaim_state) {
2586 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2587 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2588 }
2589
8e8ae645
JW
2590 /* Record the subtree's reclaim efficiency */
2591 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2592 sc->nr_scanned - nr_scanned,
2593 sc->nr_reclaimed - nr_reclaimed);
2594
2344d7e4
JW
2595 if (sc->nr_reclaimed - nr_reclaimed)
2596 reclaimable = true;
2597
a9dd0a83 2598 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2599 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2600
c73322d0
JW
2601 /*
2602 * Kswapd gives up on balancing particular nodes after too
2603 * many failures to reclaim anything from them and goes to
2604 * sleep. On reclaim progress, reset the failure counter. A
2605 * successful direct reclaim run will revive a dormant kswapd.
2606 */
2607 if (reclaimable)
2608 pgdat->kswapd_failures = 0;
2609
2344d7e4 2610 return reclaimable;
f16015fb
JW
2611}
2612
53853e2d 2613/*
fdd4c614
VB
2614 * Returns true if compaction should go ahead for a costly-order request, or
2615 * the allocation would already succeed without compaction. Return false if we
2616 * should reclaim first.
53853e2d 2617 */
4f588331 2618static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2619{
31483b6a 2620 unsigned long watermark;
fdd4c614 2621 enum compact_result suitable;
fe4b1b24 2622
fdd4c614
VB
2623 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2624 if (suitable == COMPACT_SUCCESS)
2625 /* Allocation should succeed already. Don't reclaim. */
2626 return true;
2627 if (suitable == COMPACT_SKIPPED)
2628 /* Compaction cannot yet proceed. Do reclaim. */
2629 return false;
fe4b1b24 2630
53853e2d 2631 /*
fdd4c614
VB
2632 * Compaction is already possible, but it takes time to run and there
2633 * are potentially other callers using the pages just freed. So proceed
2634 * with reclaim to make a buffer of free pages available to give
2635 * compaction a reasonable chance of completing and allocating the page.
2636 * Note that we won't actually reclaim the whole buffer in one attempt
2637 * as the target watermark in should_continue_reclaim() is lower. But if
2638 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2639 */
fdd4c614 2640 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2641
fdd4c614 2642 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2643}
2644
1da177e4
LT
2645/*
2646 * This is the direct reclaim path, for page-allocating processes. We only
2647 * try to reclaim pages from zones which will satisfy the caller's allocation
2648 * request.
2649 *
1da177e4
LT
2650 * If a zone is deemed to be full of pinned pages then just give it a light
2651 * scan then give up on it.
2652 */
0a0337e0 2653static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2654{
dd1a239f 2655 struct zoneref *z;
54a6eb5c 2656 struct zone *zone;
0608f43d
AM
2657 unsigned long nr_soft_reclaimed;
2658 unsigned long nr_soft_scanned;
619d0d76 2659 gfp_t orig_mask;
79dafcdc 2660 pg_data_t *last_pgdat = NULL;
1cfb419b 2661
cc715d99
MG
2662 /*
2663 * If the number of buffer_heads in the machine exceeds the maximum
2664 * allowed level, force direct reclaim to scan the highmem zone as
2665 * highmem pages could be pinning lowmem pages storing buffer_heads
2666 */
619d0d76 2667 orig_mask = sc->gfp_mask;
b2e18757 2668 if (buffer_heads_over_limit) {
cc715d99 2669 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2670 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2671 }
cc715d99 2672
d4debc66 2673 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2674 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2675 /*
2676 * Take care memory controller reclaiming has small influence
2677 * to global LRU.
2678 */
89b5fae5 2679 if (global_reclaim(sc)) {
344736f2
VD
2680 if (!cpuset_zone_allowed(zone,
2681 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2682 continue;
65ec02cb 2683
0b06496a
JW
2684 /*
2685 * If we already have plenty of memory free for
2686 * compaction in this zone, don't free any more.
2687 * Even though compaction is invoked for any
2688 * non-zero order, only frequent costly order
2689 * reclamation is disruptive enough to become a
2690 * noticeable problem, like transparent huge
2691 * page allocations.
2692 */
2693 if (IS_ENABLED(CONFIG_COMPACTION) &&
2694 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2695 compaction_ready(zone, sc)) {
0b06496a
JW
2696 sc->compaction_ready = true;
2697 continue;
e0887c19 2698 }
0b06496a 2699
79dafcdc
MG
2700 /*
2701 * Shrink each node in the zonelist once. If the
2702 * zonelist is ordered by zone (not the default) then a
2703 * node may be shrunk multiple times but in that case
2704 * the user prefers lower zones being preserved.
2705 */
2706 if (zone->zone_pgdat == last_pgdat)
2707 continue;
2708
0608f43d
AM
2709 /*
2710 * This steals pages from memory cgroups over softlimit
2711 * and returns the number of reclaimed pages and
2712 * scanned pages. This works for global memory pressure
2713 * and balancing, not for a memcg's limit.
2714 */
2715 nr_soft_scanned = 0;
ef8f2327 2716 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2717 sc->order, sc->gfp_mask,
2718 &nr_soft_scanned);
2719 sc->nr_reclaimed += nr_soft_reclaimed;
2720 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2721 /* need some check for avoid more shrink_zone() */
1cfb419b 2722 }
408d8544 2723
79dafcdc
MG
2724 /* See comment about same check for global reclaim above */
2725 if (zone->zone_pgdat == last_pgdat)
2726 continue;
2727 last_pgdat = zone->zone_pgdat;
970a39a3 2728 shrink_node(zone->zone_pgdat, sc);
1da177e4 2729 }
e0c23279 2730
619d0d76
WY
2731 /*
2732 * Restore to original mask to avoid the impact on the caller if we
2733 * promoted it to __GFP_HIGHMEM.
2734 */
2735 sc->gfp_mask = orig_mask;
1da177e4 2736}
4f98a2fe 2737
2a2e4885
JW
2738static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2739{
2740 struct mem_cgroup *memcg;
2741
2742 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2743 do {
2744 unsigned long refaults;
2745 struct lruvec *lruvec;
2746
2747 if (memcg)
ccda7f43 2748 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2a2e4885
JW
2749 else
2750 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2751
2752 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2753 lruvec->refaults = refaults;
2754 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2755}
2756
1da177e4
LT
2757/*
2758 * This is the main entry point to direct page reclaim.
2759 *
2760 * If a full scan of the inactive list fails to free enough memory then we
2761 * are "out of memory" and something needs to be killed.
2762 *
2763 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2764 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2765 * caller can't do much about. We kick the writeback threads and take explicit
2766 * naps in the hope that some of these pages can be written. But if the
2767 * allocating task holds filesystem locks which prevent writeout this might not
2768 * work, and the allocation attempt will fail.
a41f24ea
NA
2769 *
2770 * returns: 0, if no pages reclaimed
2771 * else, the number of pages reclaimed
1da177e4 2772 */
dac1d27b 2773static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2774 struct scan_control *sc)
1da177e4 2775{
241994ed 2776 int initial_priority = sc->priority;
2a2e4885
JW
2777 pg_data_t *last_pgdat;
2778 struct zoneref *z;
2779 struct zone *zone;
241994ed 2780retry:
873b4771
KK
2781 delayacct_freepages_start();
2782
89b5fae5 2783 if (global_reclaim(sc))
7cc30fcf 2784 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2785
9e3b2f8c 2786 do {
70ddf637
AV
2787 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2788 sc->priority);
66e1707b 2789 sc->nr_scanned = 0;
0a0337e0 2790 shrink_zones(zonelist, sc);
c6a8a8c5 2791
bb21c7ce 2792 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2793 break;
2794
2795 if (sc->compaction_ready)
2796 break;
1da177e4 2797
0e50ce3b
MK
2798 /*
2799 * If we're getting trouble reclaiming, start doing
2800 * writepage even in laptop mode.
2801 */
2802 if (sc->priority < DEF_PRIORITY - 2)
2803 sc->may_writepage = 1;
0b06496a 2804 } while (--sc->priority >= 0);
bb21c7ce 2805
2a2e4885
JW
2806 last_pgdat = NULL;
2807 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2808 sc->nodemask) {
2809 if (zone->zone_pgdat == last_pgdat)
2810 continue;
2811 last_pgdat = zone->zone_pgdat;
2812 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2813 }
2814
873b4771
KK
2815 delayacct_freepages_end();
2816
bb21c7ce
KM
2817 if (sc->nr_reclaimed)
2818 return sc->nr_reclaimed;
2819
0cee34fd 2820 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2821 if (sc->compaction_ready)
7335084d
MG
2822 return 1;
2823
241994ed 2824 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 2825 if (sc->memcg_low_skipped) {
241994ed 2826 sc->priority = initial_priority;
d6622f63
YX
2827 sc->memcg_low_reclaim = 1;
2828 sc->memcg_low_skipped = 0;
241994ed
JW
2829 goto retry;
2830 }
2831
bb21c7ce 2832 return 0;
1da177e4
LT
2833}
2834
c73322d0 2835static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
2836{
2837 struct zone *zone;
2838 unsigned long pfmemalloc_reserve = 0;
2839 unsigned long free_pages = 0;
2840 int i;
2841 bool wmark_ok;
2842
c73322d0
JW
2843 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2844 return true;
2845
5515061d
MG
2846 for (i = 0; i <= ZONE_NORMAL; i++) {
2847 zone = &pgdat->node_zones[i];
d450abd8
JW
2848 if (!managed_zone(zone))
2849 continue;
2850
2851 if (!zone_reclaimable_pages(zone))
675becce
MG
2852 continue;
2853
5515061d
MG
2854 pfmemalloc_reserve += min_wmark_pages(zone);
2855 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2856 }
2857
675becce
MG
2858 /* If there are no reserves (unexpected config) then do not throttle */
2859 if (!pfmemalloc_reserve)
2860 return true;
2861
5515061d
MG
2862 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2863
2864 /* kswapd must be awake if processes are being throttled */
2865 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2866 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2867 (enum zone_type)ZONE_NORMAL);
2868 wake_up_interruptible(&pgdat->kswapd_wait);
2869 }
2870
2871 return wmark_ok;
2872}
2873
2874/*
2875 * Throttle direct reclaimers if backing storage is backed by the network
2876 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2877 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2878 * when the low watermark is reached.
2879 *
2880 * Returns true if a fatal signal was delivered during throttling. If this
2881 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2882 */
50694c28 2883static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2884 nodemask_t *nodemask)
2885{
675becce 2886 struct zoneref *z;
5515061d 2887 struct zone *zone;
675becce 2888 pg_data_t *pgdat = NULL;
5515061d
MG
2889
2890 /*
2891 * Kernel threads should not be throttled as they may be indirectly
2892 * responsible for cleaning pages necessary for reclaim to make forward
2893 * progress. kjournald for example may enter direct reclaim while
2894 * committing a transaction where throttling it could forcing other
2895 * processes to block on log_wait_commit().
2896 */
2897 if (current->flags & PF_KTHREAD)
50694c28
MG
2898 goto out;
2899
2900 /*
2901 * If a fatal signal is pending, this process should not throttle.
2902 * It should return quickly so it can exit and free its memory
2903 */
2904 if (fatal_signal_pending(current))
2905 goto out;
5515061d 2906
675becce
MG
2907 /*
2908 * Check if the pfmemalloc reserves are ok by finding the first node
2909 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2910 * GFP_KERNEL will be required for allocating network buffers when
2911 * swapping over the network so ZONE_HIGHMEM is unusable.
2912 *
2913 * Throttling is based on the first usable node and throttled processes
2914 * wait on a queue until kswapd makes progress and wakes them. There
2915 * is an affinity then between processes waking up and where reclaim
2916 * progress has been made assuming the process wakes on the same node.
2917 * More importantly, processes running on remote nodes will not compete
2918 * for remote pfmemalloc reserves and processes on different nodes
2919 * should make reasonable progress.
2920 */
2921 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2922 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2923 if (zone_idx(zone) > ZONE_NORMAL)
2924 continue;
2925
2926 /* Throttle based on the first usable node */
2927 pgdat = zone->zone_pgdat;
c73322d0 2928 if (allow_direct_reclaim(pgdat))
675becce
MG
2929 goto out;
2930 break;
2931 }
2932
2933 /* If no zone was usable by the allocation flags then do not throttle */
2934 if (!pgdat)
50694c28 2935 goto out;
5515061d 2936
68243e76
MG
2937 /* Account for the throttling */
2938 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2939
5515061d
MG
2940 /*
2941 * If the caller cannot enter the filesystem, it's possible that it
2942 * is due to the caller holding an FS lock or performing a journal
2943 * transaction in the case of a filesystem like ext[3|4]. In this case,
2944 * it is not safe to block on pfmemalloc_wait as kswapd could be
2945 * blocked waiting on the same lock. Instead, throttle for up to a
2946 * second before continuing.
2947 */
2948 if (!(gfp_mask & __GFP_FS)) {
2949 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 2950 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
2951
2952 goto check_pending;
5515061d
MG
2953 }
2954
2955 /* Throttle until kswapd wakes the process */
2956 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 2957 allow_direct_reclaim(pgdat));
50694c28
MG
2958
2959check_pending:
2960 if (fatal_signal_pending(current))
2961 return true;
2962
2963out:
2964 return false;
5515061d
MG
2965}
2966
dac1d27b 2967unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2968 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2969{
33906bc5 2970 unsigned long nr_reclaimed;
66e1707b 2971 struct scan_control sc = {
ee814fe2 2972 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 2973 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 2974 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
2975 .order = order,
2976 .nodemask = nodemask,
2977 .priority = DEF_PRIORITY,
66e1707b 2978 .may_writepage = !laptop_mode,
a6dc60f8 2979 .may_unmap = 1,
2e2e4259 2980 .may_swap = 1,
66e1707b
BS
2981 };
2982
5515061d 2983 /*
50694c28
MG
2984 * Do not enter reclaim if fatal signal was delivered while throttled.
2985 * 1 is returned so that the page allocator does not OOM kill at this
2986 * point.
5515061d 2987 */
f2f43e56 2988 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
2989 return 1;
2990
33906bc5
MG
2991 trace_mm_vmscan_direct_reclaim_begin(order,
2992 sc.may_writepage,
f2f43e56 2993 sc.gfp_mask,
e5146b12 2994 sc.reclaim_idx);
33906bc5 2995
3115cd91 2996 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2997
2998 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2999
3000 return nr_reclaimed;
66e1707b
BS
3001}
3002
c255a458 3003#ifdef CONFIG_MEMCG
66e1707b 3004
a9dd0a83 3005unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3006 gfp_t gfp_mask, bool noswap,
ef8f2327 3007 pg_data_t *pgdat,
0ae5e89c 3008 unsigned long *nr_scanned)
4e416953
BS
3009{
3010 struct scan_control sc = {
b8f5c566 3011 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3012 .target_mem_cgroup = memcg,
4e416953
BS
3013 .may_writepage = !laptop_mode,
3014 .may_unmap = 1,
b2e18757 3015 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3016 .may_swap = !noswap,
4e416953 3017 };
6b4f7799 3018 unsigned long lru_pages;
0ae5e89c 3019
4e416953
BS
3020 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3021 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3022
9e3b2f8c 3023 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 3024 sc.may_writepage,
e5146b12
MG
3025 sc.gfp_mask,
3026 sc.reclaim_idx);
bdce6d9e 3027
4e416953
BS
3028 /*
3029 * NOTE: Although we can get the priority field, using it
3030 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3031 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3032 * will pick up pages from other mem cgroup's as well. We hack
3033 * the priority and make it zero.
3034 */
ef8f2327 3035 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3036
3037 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3038
0ae5e89c 3039 *nr_scanned = sc.nr_scanned;
4e416953
BS
3040 return sc.nr_reclaimed;
3041}
3042
72835c86 3043unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3044 unsigned long nr_pages,
a7885eb8 3045 gfp_t gfp_mask,
b70a2a21 3046 bool may_swap)
66e1707b 3047{
4e416953 3048 struct zonelist *zonelist;
bdce6d9e 3049 unsigned long nr_reclaimed;
889976db 3050 int nid;
499118e9 3051 unsigned int noreclaim_flag;
66e1707b 3052 struct scan_control sc = {
b70a2a21 3053 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3054 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3055 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3056 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3057 .target_mem_cgroup = memcg,
3058 .priority = DEF_PRIORITY,
3059 .may_writepage = !laptop_mode,
3060 .may_unmap = 1,
b70a2a21 3061 .may_swap = may_swap,
a09ed5e0 3062 };
66e1707b 3063
889976db
YH
3064 /*
3065 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3066 * take care of from where we get pages. So the node where we start the
3067 * scan does not need to be the current node.
3068 */
72835c86 3069 nid = mem_cgroup_select_victim_node(memcg);
889976db 3070
c9634cf0 3071 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3072
3073 trace_mm_vmscan_memcg_reclaim_begin(0,
3074 sc.may_writepage,
e5146b12
MG
3075 sc.gfp_mask,
3076 sc.reclaim_idx);
bdce6d9e 3077
499118e9 3078 noreclaim_flag = memalloc_noreclaim_save();
3115cd91 3079 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
499118e9 3080 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e
KM
3081
3082 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3083
3084 return nr_reclaimed;
66e1707b
BS
3085}
3086#endif
3087
1d82de61 3088static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3089 struct scan_control *sc)
f16015fb 3090{
b95a2f2d 3091 struct mem_cgroup *memcg;
f16015fb 3092
b95a2f2d
JW
3093 if (!total_swap_pages)
3094 return;
3095
3096 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3097 do {
ef8f2327 3098 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3099
2a2e4885 3100 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
1a93be0e 3101 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3102 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3103
3104 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3105 } while (memcg);
f16015fb
JW
3106}
3107
e716f2eb
MG
3108/*
3109 * Returns true if there is an eligible zone balanced for the request order
3110 * and classzone_idx
3111 */
3112static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3113{
e716f2eb
MG
3114 int i;
3115 unsigned long mark = -1;
3116 struct zone *zone;
60cefed4 3117
e716f2eb
MG
3118 for (i = 0; i <= classzone_idx; i++) {
3119 zone = pgdat->node_zones + i;
6256c6b4 3120
e716f2eb
MG
3121 if (!managed_zone(zone))
3122 continue;
3123
3124 mark = high_wmark_pages(zone);
3125 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3126 return true;
3127 }
3128
3129 /*
3130 * If a node has no populated zone within classzone_idx, it does not
3131 * need balancing by definition. This can happen if a zone-restricted
3132 * allocation tries to wake a remote kswapd.
3133 */
3134 if (mark == -1)
3135 return true;
3136
3137 return false;
60cefed4
JW
3138}
3139
631b6e08
MG
3140/* Clear pgdat state for congested, dirty or under writeback. */
3141static void clear_pgdat_congested(pg_data_t *pgdat)
3142{
3143 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3144 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3145 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3146}
3147
5515061d
MG
3148/*
3149 * Prepare kswapd for sleeping. This verifies that there are no processes
3150 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3151 *
3152 * Returns true if kswapd is ready to sleep
3153 */
d9f21d42 3154static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3155{
5515061d 3156 /*
9e5e3661 3157 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3158 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3159 * race between when kswapd checks the watermarks and a process gets
3160 * throttled. There is also a potential race if processes get
3161 * throttled, kswapd wakes, a large process exits thereby balancing the
3162 * zones, which causes kswapd to exit balance_pgdat() before reaching
3163 * the wake up checks. If kswapd is going to sleep, no process should
3164 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3165 * the wake up is premature, processes will wake kswapd and get
3166 * throttled again. The difference from wake ups in balance_pgdat() is
3167 * that here we are under prepare_to_wait().
5515061d 3168 */
9e5e3661
VB
3169 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3170 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3171
c73322d0
JW
3172 /* Hopeless node, leave it to direct reclaim */
3173 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3174 return true;
3175
e716f2eb
MG
3176 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3177 clear_pgdat_congested(pgdat);
3178 return true;
1d82de61
MG
3179 }
3180
333b0a45 3181 return false;
f50de2d3
MG
3182}
3183
75485363 3184/*
1d82de61
MG
3185 * kswapd shrinks a node of pages that are at or below the highest usable
3186 * zone that is currently unbalanced.
b8e83b94
MG
3187 *
3188 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3189 * reclaim or if the lack of progress was due to pages under writeback.
3190 * This is used to determine if the scanning priority needs to be raised.
75485363 3191 */
1d82de61 3192static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3193 struct scan_control *sc)
75485363 3194{
1d82de61
MG
3195 struct zone *zone;
3196 int z;
75485363 3197
1d82de61
MG
3198 /* Reclaim a number of pages proportional to the number of zones */
3199 sc->nr_to_reclaim = 0;
970a39a3 3200 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3201 zone = pgdat->node_zones + z;
6aa303de 3202 if (!managed_zone(zone))
1d82de61 3203 continue;
7c954f6d 3204
1d82de61
MG
3205 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3206 }
7c954f6d
MG
3207
3208 /*
1d82de61
MG
3209 * Historically care was taken to put equal pressure on all zones but
3210 * now pressure is applied based on node LRU order.
7c954f6d 3211 */
970a39a3 3212 shrink_node(pgdat, sc);
283aba9f 3213
7c954f6d 3214 /*
1d82de61
MG
3215 * Fragmentation may mean that the system cannot be rebalanced for
3216 * high-order allocations. If twice the allocation size has been
3217 * reclaimed then recheck watermarks only at order-0 to prevent
3218 * excessive reclaim. Assume that a process requested a high-order
3219 * can direct reclaim/compact.
7c954f6d 3220 */
9861a62c 3221 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3222 sc->order = 0;
7c954f6d 3223
b8e83b94 3224 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3225}
3226
1da177e4 3227/*
1d82de61
MG
3228 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3229 * that are eligible for use by the caller until at least one zone is
3230 * balanced.
1da177e4 3231 *
1d82de61 3232 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3233 *
3234 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3235 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3236 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3237 * or lower is eligible for reclaim until at least one usable zone is
3238 * balanced.
1da177e4 3239 */
accf6242 3240static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3241{
1da177e4 3242 int i;
0608f43d
AM
3243 unsigned long nr_soft_reclaimed;
3244 unsigned long nr_soft_scanned;
1d82de61 3245 struct zone *zone;
179e9639
AM
3246 struct scan_control sc = {
3247 .gfp_mask = GFP_KERNEL,
ee814fe2 3248 .order = order,
b8e83b94 3249 .priority = DEF_PRIORITY,
ee814fe2 3250 .may_writepage = !laptop_mode,
a6dc60f8 3251 .may_unmap = 1,
2e2e4259 3252 .may_swap = 1,
179e9639 3253 };
f8891e5e 3254 count_vm_event(PAGEOUTRUN);
1da177e4 3255
9e3b2f8c 3256 do {
c73322d0 3257 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94
MG
3258 bool raise_priority = true;
3259
84c7a777 3260 sc.reclaim_idx = classzone_idx;
1da177e4 3261
86c79f6b 3262 /*
84c7a777
MG
3263 * If the number of buffer_heads exceeds the maximum allowed
3264 * then consider reclaiming from all zones. This has a dual
3265 * purpose -- on 64-bit systems it is expected that
3266 * buffer_heads are stripped during active rotation. On 32-bit
3267 * systems, highmem pages can pin lowmem memory and shrinking
3268 * buffers can relieve lowmem pressure. Reclaim may still not
3269 * go ahead if all eligible zones for the original allocation
3270 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3271 */
3272 if (buffer_heads_over_limit) {
3273 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3274 zone = pgdat->node_zones + i;
6aa303de 3275 if (!managed_zone(zone))
86c79f6b 3276 continue;
cc715d99 3277
970a39a3 3278 sc.reclaim_idx = i;
e1dbeda6 3279 break;
1da177e4 3280 }
1da177e4 3281 }
dafcb73e 3282
86c79f6b 3283 /*
e716f2eb
MG
3284 * Only reclaim if there are no eligible zones. Note that
3285 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3286 * have adjusted it.
86c79f6b 3287 */
e716f2eb
MG
3288 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3289 goto out;
e1dbeda6 3290
1d82de61
MG
3291 /*
3292 * Do some background aging of the anon list, to give
3293 * pages a chance to be referenced before reclaiming. All
3294 * pages are rotated regardless of classzone as this is
3295 * about consistent aging.
3296 */
ef8f2327 3297 age_active_anon(pgdat, &sc);
1d82de61 3298
b7ea3c41
MG
3299 /*
3300 * If we're getting trouble reclaiming, start doing writepage
3301 * even in laptop mode.
3302 */
047d72c3 3303 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3304 sc.may_writepage = 1;
3305
1d82de61
MG
3306 /* Call soft limit reclaim before calling shrink_node. */
3307 sc.nr_scanned = 0;
3308 nr_soft_scanned = 0;
ef8f2327 3309 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3310 sc.gfp_mask, &nr_soft_scanned);
3311 sc.nr_reclaimed += nr_soft_reclaimed;
3312
1da177e4 3313 /*
1d82de61
MG
3314 * There should be no need to raise the scanning priority if
3315 * enough pages are already being scanned that that high
3316 * watermark would be met at 100% efficiency.
1da177e4 3317 */
970a39a3 3318 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3319 raise_priority = false;
5515061d
MG
3320
3321 /*
3322 * If the low watermark is met there is no need for processes
3323 * to be throttled on pfmemalloc_wait as they should not be
3324 * able to safely make forward progress. Wake them
3325 */
3326 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3327 allow_direct_reclaim(pgdat))
cfc51155 3328 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3329
b8e83b94
MG
3330 /* Check if kswapd should be suspending */
3331 if (try_to_freeze() || kthread_should_stop())
3332 break;
8357376d 3333
73ce02e9 3334 /*
b8e83b94
MG
3335 * Raise priority if scanning rate is too low or there was no
3336 * progress in reclaiming pages
73ce02e9 3337 */
c73322d0
JW
3338 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3339 if (raise_priority || !nr_reclaimed)
b8e83b94 3340 sc.priority--;
1d82de61 3341 } while (sc.priority >= 1);
1da177e4 3342
c73322d0
JW
3343 if (!sc.nr_reclaimed)
3344 pgdat->kswapd_failures++;
3345
b8e83b94 3346out:
2a2e4885 3347 snapshot_refaults(NULL, pgdat);
0abdee2b 3348 /*
1d82de61
MG
3349 * Return the order kswapd stopped reclaiming at as
3350 * prepare_kswapd_sleep() takes it into account. If another caller
3351 * entered the allocator slow path while kswapd was awake, order will
3352 * remain at the higher level.
0abdee2b 3353 */
1d82de61 3354 return sc.order;
1da177e4
LT
3355}
3356
e716f2eb
MG
3357/*
3358 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3359 * allocation request woke kswapd for. When kswapd has not woken recently,
3360 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3361 * given classzone and returns it or the highest classzone index kswapd
3362 * was recently woke for.
3363 */
3364static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3365 enum zone_type classzone_idx)
3366{
3367 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3368 return classzone_idx;
3369
3370 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3371}
3372
38087d9b
MG
3373static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3374 unsigned int classzone_idx)
f0bc0a60
KM
3375{
3376 long remaining = 0;
3377 DEFINE_WAIT(wait);
3378
3379 if (freezing(current) || kthread_should_stop())
3380 return;
3381
3382 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3383
333b0a45
SG
3384 /*
3385 * Try to sleep for a short interval. Note that kcompactd will only be
3386 * woken if it is possible to sleep for a short interval. This is
3387 * deliberate on the assumption that if reclaim cannot keep an
3388 * eligible zone balanced that it's also unlikely that compaction will
3389 * succeed.
3390 */
d9f21d42 3391 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3392 /*
3393 * Compaction records what page blocks it recently failed to
3394 * isolate pages from and skips them in the future scanning.
3395 * When kswapd is going to sleep, it is reasonable to assume
3396 * that pages and compaction may succeed so reset the cache.
3397 */
3398 reset_isolation_suitable(pgdat);
3399
3400 /*
3401 * We have freed the memory, now we should compact it to make
3402 * allocation of the requested order possible.
3403 */
38087d9b 3404 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3405
f0bc0a60 3406 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3407
3408 /*
3409 * If woken prematurely then reset kswapd_classzone_idx and
3410 * order. The values will either be from a wakeup request or
3411 * the previous request that slept prematurely.
3412 */
3413 if (remaining) {
e716f2eb 3414 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3415 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3416 }
3417
f0bc0a60
KM
3418 finish_wait(&pgdat->kswapd_wait, &wait);
3419 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3420 }
3421
3422 /*
3423 * After a short sleep, check if it was a premature sleep. If not, then
3424 * go fully to sleep until explicitly woken up.
3425 */
d9f21d42
MG
3426 if (!remaining &&
3427 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3428 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3429
3430 /*
3431 * vmstat counters are not perfectly accurate and the estimated
3432 * value for counters such as NR_FREE_PAGES can deviate from the
3433 * true value by nr_online_cpus * threshold. To avoid the zone
3434 * watermarks being breached while under pressure, we reduce the
3435 * per-cpu vmstat threshold while kswapd is awake and restore
3436 * them before going back to sleep.
3437 */
3438 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3439
3440 if (!kthread_should_stop())
3441 schedule();
3442
f0bc0a60
KM
3443 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3444 } else {
3445 if (remaining)
3446 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3447 else
3448 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3449 }
3450 finish_wait(&pgdat->kswapd_wait, &wait);
3451}
3452
1da177e4
LT
3453/*
3454 * The background pageout daemon, started as a kernel thread
4f98a2fe 3455 * from the init process.
1da177e4
LT
3456 *
3457 * This basically trickles out pages so that we have _some_
3458 * free memory available even if there is no other activity
3459 * that frees anything up. This is needed for things like routing
3460 * etc, where we otherwise might have all activity going on in
3461 * asynchronous contexts that cannot page things out.
3462 *
3463 * If there are applications that are active memory-allocators
3464 * (most normal use), this basically shouldn't matter.
3465 */
3466static int kswapd(void *p)
3467{
e716f2eb
MG
3468 unsigned int alloc_order, reclaim_order;
3469 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3470 pg_data_t *pgdat = (pg_data_t*)p;
3471 struct task_struct *tsk = current;
f0bc0a60 3472
1da177e4
LT
3473 struct reclaim_state reclaim_state = {
3474 .reclaimed_slab = 0,
3475 };
a70f7302 3476 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3477
174596a0 3478 if (!cpumask_empty(cpumask))
c5f59f08 3479 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3480 current->reclaim_state = &reclaim_state;
3481
3482 /*
3483 * Tell the memory management that we're a "memory allocator",
3484 * and that if we need more memory we should get access to it
3485 * regardless (see "__alloc_pages()"). "kswapd" should
3486 * never get caught in the normal page freeing logic.
3487 *
3488 * (Kswapd normally doesn't need memory anyway, but sometimes
3489 * you need a small amount of memory in order to be able to
3490 * page out something else, and this flag essentially protects
3491 * us from recursively trying to free more memory as we're
3492 * trying to free the first piece of memory in the first place).
3493 */
930d9152 3494 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3495 set_freezable();
1da177e4 3496
e716f2eb
MG
3497 pgdat->kswapd_order = 0;
3498 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3499 for ( ; ; ) {
6f6313d4 3500 bool ret;
3e1d1d28 3501
e716f2eb
MG
3502 alloc_order = reclaim_order = pgdat->kswapd_order;
3503 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3504
38087d9b
MG
3505kswapd_try_sleep:
3506 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3507 classzone_idx);
215ddd66 3508
38087d9b
MG
3509 /* Read the new order and classzone_idx */
3510 alloc_order = reclaim_order = pgdat->kswapd_order;
e716f2eb 3511 classzone_idx = kswapd_classzone_idx(pgdat, 0);
38087d9b 3512 pgdat->kswapd_order = 0;
e716f2eb 3513 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3514
8fe23e05
DR
3515 ret = try_to_freeze();
3516 if (kthread_should_stop())
3517 break;
3518
3519 /*
3520 * We can speed up thawing tasks if we don't call balance_pgdat
3521 * after returning from the refrigerator
3522 */
38087d9b
MG
3523 if (ret)
3524 continue;
3525
3526 /*
3527 * Reclaim begins at the requested order but if a high-order
3528 * reclaim fails then kswapd falls back to reclaiming for
3529 * order-0. If that happens, kswapd will consider sleeping
3530 * for the order it finished reclaiming at (reclaim_order)
3531 * but kcompactd is woken to compact for the original
3532 * request (alloc_order).
3533 */
e5146b12
MG
3534 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3535 alloc_order);
d92a8cfc 3536 fs_reclaim_acquire(GFP_KERNEL);
38087d9b 3537 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
d92a8cfc 3538 fs_reclaim_release(GFP_KERNEL);
38087d9b
MG
3539 if (reclaim_order < alloc_order)
3540 goto kswapd_try_sleep;
1da177e4 3541 }
b0a8cc58 3542
71abdc15 3543 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3544 current->reclaim_state = NULL;
71abdc15 3545
1da177e4
LT
3546 return 0;
3547}
3548
3549/*
3550 * A zone is low on free memory, so wake its kswapd task to service it.
3551 */
99504748 3552void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3553{
3554 pg_data_t *pgdat;
3555
6aa303de 3556 if (!managed_zone(zone))
1da177e4
LT
3557 return;
3558
344736f2 3559 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3560 return;
88f5acf8 3561 pgdat = zone->zone_pgdat;
e716f2eb
MG
3562 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3563 classzone_idx);
38087d9b 3564 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3565 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3566 return;
e1a55637 3567
c73322d0
JW
3568 /* Hopeless node, leave it to direct reclaim */
3569 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3570 return;
3571
e716f2eb
MG
3572 if (pgdat_balanced(pgdat, order, classzone_idx))
3573 return;
88f5acf8 3574
e716f2eb 3575 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
8d0986e2 3576 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3577}
3578
c6f37f12 3579#ifdef CONFIG_HIBERNATION
1da177e4 3580/*
7b51755c 3581 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3582 * freed pages.
3583 *
3584 * Rather than trying to age LRUs the aim is to preserve the overall
3585 * LRU order by reclaiming preferentially
3586 * inactive > active > active referenced > active mapped
1da177e4 3587 */
7b51755c 3588unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3589{
d6277db4 3590 struct reclaim_state reclaim_state;
d6277db4 3591 struct scan_control sc = {
ee814fe2 3592 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3593 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3594 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3595 .priority = DEF_PRIORITY,
d6277db4 3596 .may_writepage = 1,
ee814fe2
JW
3597 .may_unmap = 1,
3598 .may_swap = 1,
7b51755c 3599 .hibernation_mode = 1,
1da177e4 3600 };
a09ed5e0 3601 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3602 struct task_struct *p = current;
3603 unsigned long nr_reclaimed;
499118e9 3604 unsigned int noreclaim_flag;
1da177e4 3605
499118e9 3606 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3607 fs_reclaim_acquire(sc.gfp_mask);
7b51755c
KM
3608 reclaim_state.reclaimed_slab = 0;
3609 p->reclaim_state = &reclaim_state;
d6277db4 3610
3115cd91 3611 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3612
7b51755c 3613 p->reclaim_state = NULL;
d92a8cfc 3614 fs_reclaim_release(sc.gfp_mask);
499118e9 3615 memalloc_noreclaim_restore(noreclaim_flag);
d6277db4 3616
7b51755c 3617 return nr_reclaimed;
1da177e4 3618}
c6f37f12 3619#endif /* CONFIG_HIBERNATION */
1da177e4 3620
1da177e4
LT
3621/* It's optimal to keep kswapds on the same CPUs as their memory, but
3622 not required for correctness. So if the last cpu in a node goes
3623 away, we get changed to run anywhere: as the first one comes back,
3624 restore their cpu bindings. */
517bbed9 3625static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3626{
58c0a4a7 3627 int nid;
1da177e4 3628
517bbed9
SAS
3629 for_each_node_state(nid, N_MEMORY) {
3630 pg_data_t *pgdat = NODE_DATA(nid);
3631 const struct cpumask *mask;
a70f7302 3632
517bbed9 3633 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3634
517bbed9
SAS
3635 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3636 /* One of our CPUs online: restore mask */
3637 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3638 }
517bbed9 3639 return 0;
1da177e4 3640}
1da177e4 3641
3218ae14
YG
3642/*
3643 * This kswapd start function will be called by init and node-hot-add.
3644 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3645 */
3646int kswapd_run(int nid)
3647{
3648 pg_data_t *pgdat = NODE_DATA(nid);
3649 int ret = 0;
3650
3651 if (pgdat->kswapd)
3652 return 0;
3653
3654 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3655 if (IS_ERR(pgdat->kswapd)) {
3656 /* failure at boot is fatal */
c6202adf 3657 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
3658 pr_err("Failed to start kswapd on node %d\n", nid);
3659 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3660 pgdat->kswapd = NULL;
3218ae14
YG
3661 }
3662 return ret;
3663}
3664
8fe23e05 3665/*
d8adde17 3666 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3667 * hold mem_hotplug_begin/end().
8fe23e05
DR
3668 */
3669void kswapd_stop(int nid)
3670{
3671 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3672
d8adde17 3673 if (kswapd) {
8fe23e05 3674 kthread_stop(kswapd);
d8adde17
JL
3675 NODE_DATA(nid)->kswapd = NULL;
3676 }
8fe23e05
DR
3677}
3678
1da177e4
LT
3679static int __init kswapd_init(void)
3680{
517bbed9 3681 int nid, ret;
69e05944 3682
1da177e4 3683 swap_setup();
48fb2e24 3684 for_each_node_state(nid, N_MEMORY)
3218ae14 3685 kswapd_run(nid);
517bbed9
SAS
3686 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3687 "mm/vmscan:online", kswapd_cpu_online,
3688 NULL);
3689 WARN_ON(ret < 0);
1da177e4
LT
3690 return 0;
3691}
3692
3693module_init(kswapd_init)
9eeff239
CL
3694
3695#ifdef CONFIG_NUMA
3696/*
a5f5f91d 3697 * Node reclaim mode
9eeff239 3698 *
a5f5f91d 3699 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3700 * the watermarks.
9eeff239 3701 */
a5f5f91d 3702int node_reclaim_mode __read_mostly;
9eeff239 3703
1b2ffb78 3704#define RECLAIM_OFF 0
7d03431c 3705#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3706#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3707#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3708
a92f7126 3709/*
a5f5f91d 3710 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3711 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3712 * a zone.
3713 */
a5f5f91d 3714#define NODE_RECLAIM_PRIORITY 4
a92f7126 3715
9614634f 3716/*
a5f5f91d 3717 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3718 * occur.
3719 */
3720int sysctl_min_unmapped_ratio = 1;
3721
0ff38490
CL
3722/*
3723 * If the number of slab pages in a zone grows beyond this percentage then
3724 * slab reclaim needs to occur.
3725 */
3726int sysctl_min_slab_ratio = 5;
3727
11fb9989 3728static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3729{
11fb9989
MG
3730 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3731 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3732 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3733
3734 /*
3735 * It's possible for there to be more file mapped pages than
3736 * accounted for by the pages on the file LRU lists because
3737 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3738 */
3739 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3740}
3741
3742/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3743static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3744{
d031a157
AM
3745 unsigned long nr_pagecache_reclaimable;
3746 unsigned long delta = 0;
90afa5de
MG
3747
3748 /*
95bbc0c7 3749 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3750 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3751 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3752 * a better estimate
3753 */
a5f5f91d
MG
3754 if (node_reclaim_mode & RECLAIM_UNMAP)
3755 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3756 else
a5f5f91d 3757 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3758
3759 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3760 if (!(node_reclaim_mode & RECLAIM_WRITE))
3761 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3762
3763 /* Watch for any possible underflows due to delta */
3764 if (unlikely(delta > nr_pagecache_reclaimable))
3765 delta = nr_pagecache_reclaimable;
3766
3767 return nr_pagecache_reclaimable - delta;
3768}
3769
9eeff239 3770/*
a5f5f91d 3771 * Try to free up some pages from this node through reclaim.
9eeff239 3772 */
a5f5f91d 3773static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3774{
7fb2d46d 3775 /* Minimum pages needed in order to stay on node */
69e05944 3776 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3777 struct task_struct *p = current;
3778 struct reclaim_state reclaim_state;
499118e9 3779 unsigned int noreclaim_flag;
179e9639 3780 struct scan_control sc = {
62b726c1 3781 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 3782 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 3783 .order = order,
a5f5f91d
MG
3784 .priority = NODE_RECLAIM_PRIORITY,
3785 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3786 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3787 .may_swap = 1,
f2f43e56 3788 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 3789 };
9eeff239 3790
9eeff239 3791 cond_resched();
d4f7796e 3792 /*
95bbc0c7 3793 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3794 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3795 * and RECLAIM_UNMAP.
d4f7796e 3796 */
499118e9
VB
3797 noreclaim_flag = memalloc_noreclaim_save();
3798 p->flags |= PF_SWAPWRITE;
d92a8cfc 3799 fs_reclaim_acquire(sc.gfp_mask);
9eeff239
CL
3800 reclaim_state.reclaimed_slab = 0;
3801 p->reclaim_state = &reclaim_state;
c84db23c 3802
a5f5f91d 3803 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490
CL
3804 /*
3805 * Free memory by calling shrink zone with increasing
3806 * priorities until we have enough memory freed.
3807 */
0ff38490 3808 do {
970a39a3 3809 shrink_node(pgdat, &sc);
9e3b2f8c 3810 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3811 }
c84db23c 3812
9eeff239 3813 p->reclaim_state = NULL;
d92a8cfc 3814 fs_reclaim_release(gfp_mask);
499118e9
VB
3815 current->flags &= ~PF_SWAPWRITE;
3816 memalloc_noreclaim_restore(noreclaim_flag);
a79311c1 3817 return sc.nr_reclaimed >= nr_pages;
9eeff239 3818}
179e9639 3819
a5f5f91d 3820int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3821{
d773ed6b 3822 int ret;
179e9639
AM
3823
3824 /*
a5f5f91d 3825 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3826 * slab pages if we are over the defined limits.
34aa1330 3827 *
9614634f
CL
3828 * A small portion of unmapped file backed pages is needed for
3829 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3830 * thrown out if the node is overallocated. So we do not reclaim
3831 * if less than a specified percentage of the node is used by
9614634f 3832 * unmapped file backed pages.
179e9639 3833 */
a5f5f91d 3834 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 3835 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 3836 return NODE_RECLAIM_FULL;
179e9639
AM
3837
3838 /*
d773ed6b 3839 * Do not scan if the allocation should not be delayed.
179e9639 3840 */
d0164adc 3841 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3842 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3843
3844 /*
a5f5f91d 3845 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3846 * have associated processors. This will favor the local processor
3847 * over remote processors and spread off node memory allocations
3848 * as wide as possible.
3849 */
a5f5f91d
MG
3850 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3851 return NODE_RECLAIM_NOSCAN;
d773ed6b 3852
a5f5f91d
MG
3853 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3854 return NODE_RECLAIM_NOSCAN;
fa5e084e 3855
a5f5f91d
MG
3856 ret = __node_reclaim(pgdat, gfp_mask, order);
3857 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3858
24cf7251
MG
3859 if (!ret)
3860 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3861
d773ed6b 3862 return ret;
179e9639 3863}
9eeff239 3864#endif
894bc310 3865
894bc310
LS
3866/*
3867 * page_evictable - test whether a page is evictable
3868 * @page: the page to test
894bc310
LS
3869 *
3870 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3871 * lists vs unevictable list.
894bc310
LS
3872 *
3873 * Reasons page might not be evictable:
ba9ddf49 3874 * (1) page's mapping marked unevictable
b291f000 3875 * (2) page is part of an mlocked VMA
ba9ddf49 3876 *
894bc310 3877 */
39b5f29a 3878int page_evictable(struct page *page)
894bc310 3879{
e92bb4dd
HY
3880 int ret;
3881
3882 /* Prevent address_space of inode and swap cache from being freed */
3883 rcu_read_lock();
3884 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3885 rcu_read_unlock();
3886 return ret;
894bc310 3887}
89e004ea 3888
85046579 3889#ifdef CONFIG_SHMEM
89e004ea 3890/**
24513264
HD
3891 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3892 * @pages: array of pages to check
3893 * @nr_pages: number of pages to check
89e004ea 3894 *
24513264 3895 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3896 *
3897 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3898 */
24513264 3899void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3900{
925b7673 3901 struct lruvec *lruvec;
785b99fe 3902 struct pglist_data *pgdat = NULL;
24513264
HD
3903 int pgscanned = 0;
3904 int pgrescued = 0;
3905 int i;
89e004ea 3906
24513264
HD
3907 for (i = 0; i < nr_pages; i++) {
3908 struct page *page = pages[i];
785b99fe 3909 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 3910
24513264 3911 pgscanned++;
785b99fe
MG
3912 if (pagepgdat != pgdat) {
3913 if (pgdat)
3914 spin_unlock_irq(&pgdat->lru_lock);
3915 pgdat = pagepgdat;
3916 spin_lock_irq(&pgdat->lru_lock);
24513264 3917 }
785b99fe 3918 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 3919
24513264
HD
3920 if (!PageLRU(page) || !PageUnevictable(page))
3921 continue;
89e004ea 3922
39b5f29a 3923 if (page_evictable(page)) {
24513264
HD
3924 enum lru_list lru = page_lru_base_type(page);
3925
309381fe 3926 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3927 ClearPageUnevictable(page);
fa9add64
HD
3928 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3929 add_page_to_lru_list(page, lruvec, lru);
24513264 3930 pgrescued++;
89e004ea 3931 }
24513264 3932 }
89e004ea 3933
785b99fe 3934 if (pgdat) {
24513264
HD
3935 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3936 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 3937 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 3938 }
89e004ea 3939}
85046579 3940#endif /* CONFIG_SHMEM */