]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
mm/damon: remove return value from before_terminate callback
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
26aa2d19 44#include <linux/migrate.h>
873b4771 45#include <linux/delayacct.h>
af936a16 46#include <linux/sysctl.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
55#include <asm/div64.h>
56
57#include <linux/swapops.h>
117aad1e 58#include <linux/balloon_compaction.h>
1da177e4 59
0f8053a5
NP
60#include "internal.h"
61
33906bc5
MG
62#define CREATE_TRACE_POINTS
63#include <trace/events/vmscan.h>
64
1da177e4 65struct scan_control {
22fba335
KM
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
ee814fe2
JW
69 /*
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 * are scanned.
72 */
73 nodemask_t *nodemask;
9e3b2f8c 74
f16015fb
JW
75 /*
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
78 */
79 struct mem_cgroup *target_mem_cgroup;
66e1707b 80
7cf111bc
JW
81 /*
82 * Scan pressure balancing between anon and file LRUs
83 */
84 unsigned long anon_cost;
85 unsigned long file_cost;
86
b91ac374
JW
87 /* Can active pages be deactivated as part of reclaim? */
88#define DEACTIVATE_ANON 1
89#define DEACTIVATE_FILE 2
90 unsigned int may_deactivate:2;
91 unsigned int force_deactivate:1;
92 unsigned int skipped_deactivate:1;
93
1276ad68 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
95 unsigned int may_writepage:1;
96
97 /* Can mapped pages be reclaimed? */
98 unsigned int may_unmap:1;
99
100 /* Can pages be swapped as part of reclaim? */
101 unsigned int may_swap:1;
102
d6622f63 103 /*
f56ce412
JW
104 * Cgroup memory below memory.low is protected as long as we
105 * don't threaten to OOM. If any cgroup is reclaimed at
106 * reduced force or passed over entirely due to its memory.low
107 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 * result, then go back for one more cycle that reclaims the protected
109 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
110 */
111 unsigned int memcg_low_reclaim:1;
112 unsigned int memcg_low_skipped:1;
241994ed 113
ee814fe2
JW
114 unsigned int hibernation_mode:1;
115
116 /* One of the zones is ready for compaction */
117 unsigned int compaction_ready:1;
118
b91ac374
JW
119 /* There is easily reclaimable cold cache in the current node */
120 unsigned int cache_trim_mode:1;
121
53138cea
JW
122 /* The file pages on the current node are dangerously low */
123 unsigned int file_is_tiny:1;
124
26aa2d19
DH
125 /* Always discard instead of demoting to lower tier memory */
126 unsigned int no_demotion:1;
127
bb451fdf
GT
128 /* Allocation order */
129 s8 order;
130
131 /* Scan (total_size >> priority) pages at once */
132 s8 priority;
133
134 /* The highest zone to isolate pages for reclaim from */
135 s8 reclaim_idx;
136
137 /* This context's GFP mask */
138 gfp_t gfp_mask;
139
ee814fe2
JW
140 /* Incremented by the number of inactive pages that were scanned */
141 unsigned long nr_scanned;
142
143 /* Number of pages freed so far during a call to shrink_zones() */
144 unsigned long nr_reclaimed;
d108c772
AR
145
146 struct {
147 unsigned int dirty;
148 unsigned int unqueued_dirty;
149 unsigned int congested;
150 unsigned int writeback;
151 unsigned int immediate;
152 unsigned int file_taken;
153 unsigned int taken;
154 } nr;
e5ca8071
YS
155
156 /* for recording the reclaimed slab by now */
157 struct reclaim_state reclaim_state;
1da177e4
LT
158};
159
1da177e4
LT
160#ifdef ARCH_HAS_PREFETCHW
161#define prefetchw_prev_lru_page(_page, _base, _field) \
162 do { \
163 if ((_page)->lru.prev != _base) { \
164 struct page *prev; \
165 \
166 prev = lru_to_page(&(_page->lru)); \
167 prefetchw(&prev->_field); \
168 } \
169 } while (0)
170#else
171#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172#endif
173
174/*
c843966c 175 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
176 */
177int vm_swappiness = 60;
1da177e4 178
0a432dcb
YS
179static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
181{
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
184
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
187
188 task->reclaim_state = rs;
189}
190
1da177e4
LT
191static LIST_HEAD(shrinker_list);
192static DECLARE_RWSEM(shrinker_rwsem);
193
0a432dcb 194#ifdef CONFIG_MEMCG
a2fb1261 195static int shrinker_nr_max;
2bfd3637 196
3c6f17e6 197/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
198static inline int shrinker_map_size(int nr_items)
199{
200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201}
2bfd3637 202
3c6f17e6
YS
203static inline int shrinker_defer_size(int nr_items)
204{
205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206}
207
468ab843
YS
208static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 int nid)
210{
211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 lockdep_is_held(&shrinker_rwsem));
213}
214
e4262c4f 215static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
216 int map_size, int defer_size,
217 int old_map_size, int old_defer_size)
2bfd3637 218{
e4262c4f 219 struct shrinker_info *new, *old;
2bfd3637
YS
220 struct mem_cgroup_per_node *pn;
221 int nid;
3c6f17e6 222 int size = map_size + defer_size;
2bfd3637 223
2bfd3637
YS
224 for_each_node(nid) {
225 pn = memcg->nodeinfo[nid];
468ab843 226 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
227 /* Not yet online memcg */
228 if (!old)
229 return 0;
230
231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 if (!new)
233 return -ENOMEM;
234
3c6f17e6
YS
235 new->nr_deferred = (atomic_long_t *)(new + 1);
236 new->map = (void *)new->nr_deferred + defer_size;
237
238 /* map: set all old bits, clear all new bits */
239 memset(new->map, (int)0xff, old_map_size);
240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 /* nr_deferred: copy old values, clear all new values */
242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 memset((void *)new->nr_deferred + old_defer_size, 0,
244 defer_size - old_defer_size);
2bfd3637 245
e4262c4f 246 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 247 kvfree_rcu(old, rcu);
2bfd3637
YS
248 }
249
250 return 0;
251}
252
e4262c4f 253void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
254{
255 struct mem_cgroup_per_node *pn;
e4262c4f 256 struct shrinker_info *info;
2bfd3637
YS
257 int nid;
258
2bfd3637
YS
259 for_each_node(nid) {
260 pn = memcg->nodeinfo[nid];
e4262c4f
YS
261 info = rcu_dereference_protected(pn->shrinker_info, true);
262 kvfree(info);
263 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
264 }
265}
266
e4262c4f 267int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 268{
e4262c4f 269 struct shrinker_info *info;
2bfd3637 270 int nid, size, ret = 0;
3c6f17e6 271 int map_size, defer_size = 0;
2bfd3637 272
d27cf2aa 273 down_write(&shrinker_rwsem);
3c6f17e6
YS
274 map_size = shrinker_map_size(shrinker_nr_max);
275 defer_size = shrinker_defer_size(shrinker_nr_max);
276 size = map_size + defer_size;
2bfd3637 277 for_each_node(nid) {
e4262c4f
YS
278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 if (!info) {
280 free_shrinker_info(memcg);
2bfd3637
YS
281 ret = -ENOMEM;
282 break;
283 }
3c6f17e6
YS
284 info->nr_deferred = (atomic_long_t *)(info + 1);
285 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 287 }
d27cf2aa 288 up_write(&shrinker_rwsem);
2bfd3637
YS
289
290 return ret;
291}
292
3c6f17e6
YS
293static inline bool need_expand(int nr_max)
294{
295 return round_up(nr_max, BITS_PER_LONG) >
296 round_up(shrinker_nr_max, BITS_PER_LONG);
297}
298
e4262c4f 299static int expand_shrinker_info(int new_id)
2bfd3637 300{
3c6f17e6 301 int ret = 0;
a2fb1261 302 int new_nr_max = new_id + 1;
3c6f17e6
YS
303 int map_size, defer_size = 0;
304 int old_map_size, old_defer_size = 0;
2bfd3637
YS
305 struct mem_cgroup *memcg;
306
3c6f17e6 307 if (!need_expand(new_nr_max))
a2fb1261 308 goto out;
2bfd3637 309
2bfd3637 310 if (!root_mem_cgroup)
d27cf2aa
YS
311 goto out;
312
313 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 314
3c6f17e6
YS
315 map_size = shrinker_map_size(new_nr_max);
316 defer_size = shrinker_defer_size(new_nr_max);
317 old_map_size = shrinker_map_size(shrinker_nr_max);
318 old_defer_size = shrinker_defer_size(shrinker_nr_max);
319
2bfd3637
YS
320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 do {
3c6f17e6
YS
322 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 old_map_size, old_defer_size);
2bfd3637
YS
324 if (ret) {
325 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 326 goto out;
2bfd3637
YS
327 }
328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 329out:
2bfd3637 330 if (!ret)
a2fb1261 331 shrinker_nr_max = new_nr_max;
d27cf2aa 332
2bfd3637
YS
333 return ret;
334}
335
336void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337{
338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 339 struct shrinker_info *info;
2bfd3637
YS
340
341 rcu_read_lock();
e4262c4f 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
343 /* Pairs with smp mb in shrink_slab() */
344 smp_mb__before_atomic();
e4262c4f 345 set_bit(shrinker_id, info->map);
2bfd3637
YS
346 rcu_read_unlock();
347 }
348}
349
b4c2b231 350static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
351
352static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353{
354 int id, ret = -ENOMEM;
355
476b30a0
YS
356 if (mem_cgroup_disabled())
357 return -ENOSYS;
358
b4c2b231
KT
359 down_write(&shrinker_rwsem);
360 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
362 if (id < 0)
363 goto unlock;
364
0a4465d3 365 if (id >= shrinker_nr_max) {
e4262c4f 366 if (expand_shrinker_info(id)) {
0a4465d3
KT
367 idr_remove(&shrinker_idr, id);
368 goto unlock;
369 }
0a4465d3 370 }
b4c2b231
KT
371 shrinker->id = id;
372 ret = 0;
373unlock:
374 up_write(&shrinker_rwsem);
375 return ret;
376}
377
378static void unregister_memcg_shrinker(struct shrinker *shrinker)
379{
380 int id = shrinker->id;
381
382 BUG_ON(id < 0);
383
41ca668a
YS
384 lockdep_assert_held(&shrinker_rwsem);
385
b4c2b231 386 idr_remove(&shrinker_idr, id);
b4c2b231 387}
b4c2b231 388
86750830
YS
389static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 struct mem_cgroup *memcg)
391{
392 struct shrinker_info *info;
393
394 info = shrinker_info_protected(memcg, nid);
395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396}
397
398static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 struct mem_cgroup *memcg)
400{
401 struct shrinker_info *info;
402
403 info = shrinker_info_protected(memcg, nid);
404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405}
406
a178015c
YS
407void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408{
409 int i, nid;
410 long nr;
411 struct mem_cgroup *parent;
412 struct shrinker_info *child_info, *parent_info;
413
414 parent = parent_mem_cgroup(memcg);
415 if (!parent)
416 parent = root_mem_cgroup;
417
418 /* Prevent from concurrent shrinker_info expand */
419 down_read(&shrinker_rwsem);
420 for_each_node(nid) {
421 child_info = shrinker_info_protected(memcg, nid);
422 parent_info = shrinker_info_protected(parent, nid);
423 for (i = 0; i < shrinker_nr_max; i++) {
424 nr = atomic_long_read(&child_info->nr_deferred[i]);
425 atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 }
427 }
428 up_read(&shrinker_rwsem);
429}
430
b5ead35e 431static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 432{
b5ead35e 433 return sc->target_mem_cgroup;
89b5fae5 434}
97c9341f
TH
435
436/**
b5ead35e 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
438 * @sc: scan_control in question
439 *
440 * The normal page dirty throttling mechanism in balance_dirty_pages() is
441 * completely broken with the legacy memcg and direct stalling in
442 * shrink_page_list() is used for throttling instead, which lacks all the
443 * niceties such as fairness, adaptive pausing, bandwidth proportional
444 * allocation and configurability.
445 *
446 * This function tests whether the vmscan currently in progress can assume
447 * that the normal dirty throttling mechanism is operational.
448 */
b5ead35e 449static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 450{
b5ead35e 451 if (!cgroup_reclaim(sc))
97c9341f
TH
452 return true;
453#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
455 return true;
456#endif
457 return false;
458}
91a45470 459#else
0a432dcb
YS
460static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461{
476b30a0 462 return -ENOSYS;
0a432dcb
YS
463}
464
465static void unregister_memcg_shrinker(struct shrinker *shrinker)
466{
467}
468
86750830
YS
469static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 struct mem_cgroup *memcg)
471{
472 return 0;
473}
474
475static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 struct mem_cgroup *memcg)
477{
478 return 0;
479}
480
b5ead35e 481static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 482{
b5ead35e 483 return false;
89b5fae5 484}
97c9341f 485
b5ead35e 486static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
487{
488 return true;
489}
91a45470
KH
490#endif
491
86750830
YS
492static long xchg_nr_deferred(struct shrinker *shrinker,
493 struct shrink_control *sc)
494{
495 int nid = sc->nid;
496
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 nid = 0;
499
500 if (sc->memcg &&
501 (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 return xchg_nr_deferred_memcg(nid, shrinker,
503 sc->memcg);
504
505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506}
507
508
509static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 struct shrink_control *sc)
511{
512 int nid = sc->nid;
513
514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 nid = 0;
516
517 if (sc->memcg &&
518 (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 return add_nr_deferred_memcg(nr, nid, shrinker,
520 sc->memcg);
521
522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523}
524
26aa2d19
DH
525static bool can_demote(int nid, struct scan_control *sc)
526{
20b51af1
HY
527 if (!numa_demotion_enabled)
528 return false;
3a235693
DH
529 if (sc) {
530 if (sc->no_demotion)
531 return false;
532 /* It is pointless to do demotion in memcg reclaim */
533 if (cgroup_reclaim(sc))
534 return false;
535 }
26aa2d19
DH
536 if (next_demotion_node(nid) == NUMA_NO_NODE)
537 return false;
538
20b51af1 539 return true;
26aa2d19
DH
540}
541
a2a36488
KB
542static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 int nid,
544 struct scan_control *sc)
545{
546 if (memcg == NULL) {
547 /*
548 * For non-memcg reclaim, is there
549 * space in any swap device?
550 */
551 if (get_nr_swap_pages() > 0)
552 return true;
553 } else {
554 /* Is the memcg below its swap limit? */
555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 return true;
557 }
558
559 /*
560 * The page can not be swapped.
561 *
562 * Can it be reclaimed from this node via demotion?
563 */
564 return can_demote(nid, sc);
565}
566
5a1c84b4
MG
567/*
568 * This misses isolated pages which are not accounted for to save counters.
569 * As the data only determines if reclaim or compaction continues, it is
570 * not expected that isolated pages will be a dominating factor.
571 */
572unsigned long zone_reclaimable_pages(struct zone *zone)
573{
574 unsigned long nr;
575
576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581
582 return nr;
583}
584
fd538803
MH
585/**
586 * lruvec_lru_size - Returns the number of pages on the given LRU list.
587 * @lruvec: lru vector
588 * @lru: lru to use
589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590 */
2091339d
YZ
591static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 int zone_idx)
c9f299d9 593{
de3b0150 594 unsigned long size = 0;
fd538803
MH
595 int zid;
596
de3b0150 597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 599
fd538803
MH
600 if (!managed_zone(zone))
601 continue;
602
603 if (!mem_cgroup_disabled())
de3b0150 604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 605 else
de3b0150 606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 607 }
de3b0150 608 return size;
b4536f0c
MH
609}
610
1da177e4 611/*
1d3d4437 612 * Add a shrinker callback to be called from the vm.
1da177e4 613 */
8e04944f 614int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 615{
476b30a0
YS
616 unsigned int size;
617 int err;
618
619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 err = prealloc_memcg_shrinker(shrinker);
621 if (err != -ENOSYS)
622 return err;
1d3d4437 623
476b30a0
YS
624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 }
626
627 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
628 if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 size *= nr_node_ids;
630
631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 if (!shrinker->nr_deferred)
633 return -ENOMEM;
b4c2b231 634
8e04944f
TH
635 return 0;
636}
637
638void free_prealloced_shrinker(struct shrinker *shrinker)
639{
41ca668a
YS
640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 down_write(&shrinker_rwsem);
b4c2b231 642 unregister_memcg_shrinker(shrinker);
41ca668a 643 up_write(&shrinker_rwsem);
476b30a0 644 return;
41ca668a 645 }
b4c2b231 646
8e04944f
TH
647 kfree(shrinker->nr_deferred);
648 shrinker->nr_deferred = NULL;
649}
1d3d4437 650
8e04944f
TH
651void register_shrinker_prepared(struct shrinker *shrinker)
652{
8e1f936b
RR
653 down_write(&shrinker_rwsem);
654 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 655 shrinker->flags |= SHRINKER_REGISTERED;
8e1f936b 656 up_write(&shrinker_rwsem);
8e04944f
TH
657}
658
659int register_shrinker(struct shrinker *shrinker)
660{
661 int err = prealloc_shrinker(shrinker);
662
663 if (err)
664 return err;
665 register_shrinker_prepared(shrinker);
1d3d4437 666 return 0;
1da177e4 667}
8e1f936b 668EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
669
670/*
671 * Remove one
672 */
8e1f936b 673void unregister_shrinker(struct shrinker *shrinker)
1da177e4 674{
41ca668a 675 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 676 return;
41ca668a 677
1da177e4
LT
678 down_write(&shrinker_rwsem);
679 list_del(&shrinker->list);
41ca668a
YS
680 shrinker->flags &= ~SHRINKER_REGISTERED;
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 unregister_memcg_shrinker(shrinker);
1da177e4 683 up_write(&shrinker_rwsem);
41ca668a 684
ae393321 685 kfree(shrinker->nr_deferred);
bb422a73 686 shrinker->nr_deferred = NULL;
1da177e4 687}
8e1f936b 688EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
689
690#define SHRINK_BATCH 128
1d3d4437 691
cb731d6c 692static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 693 struct shrinker *shrinker, int priority)
1d3d4437
GC
694{
695 unsigned long freed = 0;
696 unsigned long long delta;
697 long total_scan;
d5bc5fd3 698 long freeable;
1d3d4437
GC
699 long nr;
700 long new_nr;
1d3d4437
GC
701 long batch_size = shrinker->batch ? shrinker->batch
702 : SHRINK_BATCH;
5f33a080 703 long scanned = 0, next_deferred;
1d3d4437 704
d5bc5fd3 705 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
706 if (freeable == 0 || freeable == SHRINK_EMPTY)
707 return freeable;
1d3d4437
GC
708
709 /*
710 * copy the current shrinker scan count into a local variable
711 * and zero it so that other concurrent shrinker invocations
712 * don't also do this scanning work.
713 */
86750830 714 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 715
4b85afbd
JW
716 if (shrinker->seeks) {
717 delta = freeable >> priority;
718 delta *= 4;
719 do_div(delta, shrinker->seeks);
720 } else {
721 /*
722 * These objects don't require any IO to create. Trim
723 * them aggressively under memory pressure to keep
724 * them from causing refetches in the IO caches.
725 */
726 delta = freeable / 2;
727 }
172b06c3 728
18bb473e 729 total_scan = nr >> priority;
1d3d4437 730 total_scan += delta;
18bb473e 731 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
732
733 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 734 freeable, delta, total_scan, priority);
1d3d4437 735
0b1fb40a
VD
736 /*
737 * Normally, we should not scan less than batch_size objects in one
738 * pass to avoid too frequent shrinker calls, but if the slab has less
739 * than batch_size objects in total and we are really tight on memory,
740 * we will try to reclaim all available objects, otherwise we can end
741 * up failing allocations although there are plenty of reclaimable
742 * objects spread over several slabs with usage less than the
743 * batch_size.
744 *
745 * We detect the "tight on memory" situations by looking at the total
746 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 747 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
748 * scanning at high prio and therefore should try to reclaim as much as
749 * possible.
750 */
751 while (total_scan >= batch_size ||
d5bc5fd3 752 total_scan >= freeable) {
a0b02131 753 unsigned long ret;
0b1fb40a 754 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 755
0b1fb40a 756 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 757 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
758 ret = shrinker->scan_objects(shrinker, shrinkctl);
759 if (ret == SHRINK_STOP)
760 break;
761 freed += ret;
1d3d4437 762
d460acb5
CW
763 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
764 total_scan -= shrinkctl->nr_scanned;
765 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
766
767 cond_resched();
768 }
769
18bb473e
YS
770 /*
771 * The deferred work is increased by any new work (delta) that wasn't
772 * done, decreased by old deferred work that was done now.
773 *
774 * And it is capped to two times of the freeable items.
775 */
776 next_deferred = max_t(long, (nr + delta - scanned), 0);
777 next_deferred = min(next_deferred, (2 * freeable));
778
1d3d4437
GC
779 /*
780 * move the unused scan count back into the shrinker in a
86750830 781 * manner that handles concurrent updates.
1d3d4437 782 */
86750830 783 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 784
8efb4b59 785 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 786 return freed;
1495f230
YH
787}
788
0a432dcb 789#ifdef CONFIG_MEMCG
b0dedc49
KT
790static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
791 struct mem_cgroup *memcg, int priority)
792{
e4262c4f 793 struct shrinker_info *info;
b8e57efa
KT
794 unsigned long ret, freed = 0;
795 int i;
b0dedc49 796
0a432dcb 797 if (!mem_cgroup_online(memcg))
b0dedc49
KT
798 return 0;
799
800 if (!down_read_trylock(&shrinker_rwsem))
801 return 0;
802
468ab843 803 info = shrinker_info_protected(memcg, nid);
e4262c4f 804 if (unlikely(!info))
b0dedc49
KT
805 goto unlock;
806
e4262c4f 807 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
808 struct shrink_control sc = {
809 .gfp_mask = gfp_mask,
810 .nid = nid,
811 .memcg = memcg,
812 };
813 struct shrinker *shrinker;
814
815 shrinker = idr_find(&shrinker_idr, i);
41ca668a 816 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 817 if (!shrinker)
e4262c4f 818 clear_bit(i, info->map);
b0dedc49
KT
819 continue;
820 }
821
0a432dcb
YS
822 /* Call non-slab shrinkers even though kmem is disabled */
823 if (!memcg_kmem_enabled() &&
824 !(shrinker->flags & SHRINKER_NONSLAB))
825 continue;
826
b0dedc49 827 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 828 if (ret == SHRINK_EMPTY) {
e4262c4f 829 clear_bit(i, info->map);
f90280d6
KT
830 /*
831 * After the shrinker reported that it had no objects to
832 * free, but before we cleared the corresponding bit in
833 * the memcg shrinker map, a new object might have been
834 * added. To make sure, we have the bit set in this
835 * case, we invoke the shrinker one more time and reset
836 * the bit if it reports that it is not empty anymore.
837 * The memory barrier here pairs with the barrier in
2bfd3637 838 * set_shrinker_bit():
f90280d6
KT
839 *
840 * list_lru_add() shrink_slab_memcg()
841 * list_add_tail() clear_bit()
842 * <MB> <MB>
843 * set_bit() do_shrink_slab()
844 */
845 smp_mb__after_atomic();
846 ret = do_shrink_slab(&sc, shrinker, priority);
847 if (ret == SHRINK_EMPTY)
848 ret = 0;
849 else
2bfd3637 850 set_shrinker_bit(memcg, nid, i);
f90280d6 851 }
b0dedc49
KT
852 freed += ret;
853
854 if (rwsem_is_contended(&shrinker_rwsem)) {
855 freed = freed ? : 1;
856 break;
857 }
858 }
859unlock:
860 up_read(&shrinker_rwsem);
861 return freed;
862}
0a432dcb 863#else /* CONFIG_MEMCG */
b0dedc49
KT
864static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
865 struct mem_cgroup *memcg, int priority)
866{
867 return 0;
868}
0a432dcb 869#endif /* CONFIG_MEMCG */
b0dedc49 870
6b4f7799 871/**
cb731d6c 872 * shrink_slab - shrink slab caches
6b4f7799
JW
873 * @gfp_mask: allocation context
874 * @nid: node whose slab caches to target
cb731d6c 875 * @memcg: memory cgroup whose slab caches to target
9092c71b 876 * @priority: the reclaim priority
1da177e4 877 *
6b4f7799 878 * Call the shrink functions to age shrinkable caches.
1da177e4 879 *
6b4f7799
JW
880 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
881 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 882 *
aeed1d32
VD
883 * @memcg specifies the memory cgroup to target. Unaware shrinkers
884 * are called only if it is the root cgroup.
cb731d6c 885 *
9092c71b
JB
886 * @priority is sc->priority, we take the number of objects and >> by priority
887 * in order to get the scan target.
b15e0905 888 *
6b4f7799 889 * Returns the number of reclaimed slab objects.
1da177e4 890 */
cb731d6c
VD
891static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
892 struct mem_cgroup *memcg,
9092c71b 893 int priority)
1da177e4 894{
b8e57efa 895 unsigned long ret, freed = 0;
1da177e4
LT
896 struct shrinker *shrinker;
897
fa1e512f
YS
898 /*
899 * The root memcg might be allocated even though memcg is disabled
900 * via "cgroup_disable=memory" boot parameter. This could make
901 * mem_cgroup_is_root() return false, then just run memcg slab
902 * shrink, but skip global shrink. This may result in premature
903 * oom.
904 */
905 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 906 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 907
e830c63a 908 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 909 goto out;
1da177e4
LT
910
911 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
912 struct shrink_control sc = {
913 .gfp_mask = gfp_mask,
914 .nid = nid,
cb731d6c 915 .memcg = memcg,
6b4f7799 916 };
ec97097b 917
9b996468
KT
918 ret = do_shrink_slab(&sc, shrinker, priority);
919 if (ret == SHRINK_EMPTY)
920 ret = 0;
921 freed += ret;
e496612c
MK
922 /*
923 * Bail out if someone want to register a new shrinker to
55b65a57 924 * prevent the registration from being stalled for long periods
e496612c
MK
925 * by parallel ongoing shrinking.
926 */
927 if (rwsem_is_contended(&shrinker_rwsem)) {
928 freed = freed ? : 1;
929 break;
930 }
1da177e4 931 }
6b4f7799 932
1da177e4 933 up_read(&shrinker_rwsem);
f06590bd
MK
934out:
935 cond_resched();
24f7c6b9 936 return freed;
1da177e4
LT
937}
938
cb731d6c
VD
939void drop_slab_node(int nid)
940{
941 unsigned long freed;
1399af7e 942 int shift = 0;
cb731d6c
VD
943
944 do {
945 struct mem_cgroup *memcg = NULL;
946
069c411d
CZ
947 if (fatal_signal_pending(current))
948 return;
949
cb731d6c 950 freed = 0;
aeed1d32 951 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 952 do {
9092c71b 953 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c 954 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1399af7e 955 } while ((freed >> shift++) > 1);
cb731d6c
VD
956}
957
958void drop_slab(void)
959{
960 int nid;
961
962 for_each_online_node(nid)
963 drop_slab_node(nid);
964}
965
1da177e4
LT
966static inline int is_page_cache_freeable(struct page *page)
967{
ceddc3a5
JW
968 /*
969 * A freeable page cache page is referenced only by the caller
67891fff
MW
970 * that isolated the page, the page cache and optional buffer
971 * heads at page->private.
ceddc3a5 972 */
3efe62e4 973 int page_cache_pins = thp_nr_pages(page);
67891fff 974 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
975}
976
cb16556d 977static int may_write_to_inode(struct inode *inode)
1da177e4 978{
930d9152 979 if (current->flags & PF_SWAPWRITE)
1da177e4 980 return 1;
703c2708 981 if (!inode_write_congested(inode))
1da177e4 982 return 1;
703c2708 983 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
984 return 1;
985 return 0;
986}
987
988/*
989 * We detected a synchronous write error writing a page out. Probably
990 * -ENOSPC. We need to propagate that into the address_space for a subsequent
991 * fsync(), msync() or close().
992 *
993 * The tricky part is that after writepage we cannot touch the mapping: nothing
994 * prevents it from being freed up. But we have a ref on the page and once
995 * that page is locked, the mapping is pinned.
996 *
997 * We're allowed to run sleeping lock_page() here because we know the caller has
998 * __GFP_FS.
999 */
1000static void handle_write_error(struct address_space *mapping,
1001 struct page *page, int error)
1002{
7eaceacc 1003 lock_page(page);
3e9f45bd
GC
1004 if (page_mapping(page) == mapping)
1005 mapping_set_error(mapping, error);
1da177e4
LT
1006 unlock_page(page);
1007}
1008
c3f4a9a2 1009void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
8cd7c588
MG
1010{
1011 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
c3f4a9a2 1012 long timeout, ret;
8cd7c588
MG
1013 DEFINE_WAIT(wait);
1014
1015 /*
1016 * Do not throttle IO workers, kthreads other than kswapd or
1017 * workqueues. They may be required for reclaim to make
1018 * forward progress (e.g. journalling workqueues or kthreads).
1019 */
1020 if (!current_is_kswapd() &&
1021 current->flags & (PF_IO_WORKER|PF_KTHREAD))
1022 return;
1023
c3f4a9a2
MG
1024 /*
1025 * These figures are pulled out of thin air.
1026 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1027 * parallel reclaimers which is a short-lived event so the timeout is
1028 * short. Failing to make progress or waiting on writeback are
1029 * potentially long-lived events so use a longer timeout. This is shaky
1030 * logic as a failure to make progress could be due to anything from
1031 * writeback to a slow device to excessive references pages at the tail
1032 * of the inactive LRU.
1033 */
1034 switch(reason) {
1035 case VMSCAN_THROTTLE_WRITEBACK:
1036 timeout = HZ/10;
1037
1038 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1039 WRITE_ONCE(pgdat->nr_reclaim_start,
1040 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1041 }
1042
1043 break;
1044 case VMSCAN_THROTTLE_NOPROGRESS:
a19594ca 1045 timeout = HZ/2;
c3f4a9a2
MG
1046 break;
1047 case VMSCAN_THROTTLE_ISOLATED:
1048 timeout = HZ/50;
1049 break;
1050 default:
1051 WARN_ON_ONCE(1);
1052 timeout = HZ;
1053 break;
8cd7c588
MG
1054 }
1055
1056 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1057 ret = schedule_timeout(timeout);
1058 finish_wait(wqh, &wait);
d818fca1 1059
c3f4a9a2 1060 if (reason == VMSCAN_THROTTLE_WRITEBACK)
d818fca1 1061 atomic_dec(&pgdat->nr_writeback_throttled);
8cd7c588
MG
1062
1063 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1064 jiffies_to_usecs(timeout - ret),
1065 reason);
1066}
1067
1068/*
1069 * Account for pages written if tasks are throttled waiting on dirty
1070 * pages to clean. If enough pages have been cleaned since throttling
1071 * started then wakeup the throttled tasks.
1072 */
1073void __acct_reclaim_writeback(pg_data_t *pgdat, struct page *page,
1074 int nr_throttled)
1075{
1076 unsigned long nr_written;
1077
1078 inc_node_page_state(page, NR_THROTTLED_WRITTEN);
1079
1080 /*
1081 * This is an inaccurate read as the per-cpu deltas may not
1082 * be synchronised. However, given that the system is
1083 * writeback throttled, it is not worth taking the penalty
1084 * of getting an accurate count. At worst, the throttle
1085 * timeout guarantees forward progress.
1086 */
1087 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1088 READ_ONCE(pgdat->nr_reclaim_start);
1089
1090 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1091 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1092}
1093
04e62a29
CL
1094/* possible outcome of pageout() */
1095typedef enum {
1096 /* failed to write page out, page is locked */
1097 PAGE_KEEP,
1098 /* move page to the active list, page is locked */
1099 PAGE_ACTIVATE,
1100 /* page has been sent to the disk successfully, page is unlocked */
1101 PAGE_SUCCESS,
1102 /* page is clean and locked */
1103 PAGE_CLEAN,
1104} pageout_t;
1105
1da177e4 1106/*
1742f19f
AM
1107 * pageout is called by shrink_page_list() for each dirty page.
1108 * Calls ->writepage().
1da177e4 1109 */
cb16556d 1110static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
1111{
1112 /*
1113 * If the page is dirty, only perform writeback if that write
1114 * will be non-blocking. To prevent this allocation from being
1115 * stalled by pagecache activity. But note that there may be
1116 * stalls if we need to run get_block(). We could test
1117 * PagePrivate for that.
1118 *
8174202b 1119 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
1120 * this page's queue, we can perform writeback even if that
1121 * will block.
1122 *
1123 * If the page is swapcache, write it back even if that would
1124 * block, for some throttling. This happens by accident, because
1125 * swap_backing_dev_info is bust: it doesn't reflect the
1126 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
1127 */
1128 if (!is_page_cache_freeable(page))
1129 return PAGE_KEEP;
1130 if (!mapping) {
1131 /*
1132 * Some data journaling orphaned pages can have
1133 * page->mapping == NULL while being dirty with clean buffers.
1134 */
266cf658 1135 if (page_has_private(page)) {
1da177e4
LT
1136 if (try_to_free_buffers(page)) {
1137 ClearPageDirty(page);
b1de0d13 1138 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
1139 return PAGE_CLEAN;
1140 }
1141 }
1142 return PAGE_KEEP;
1143 }
1144 if (mapping->a_ops->writepage == NULL)
1145 return PAGE_ACTIVATE;
cb16556d 1146 if (!may_write_to_inode(mapping->host))
1da177e4
LT
1147 return PAGE_KEEP;
1148
1149 if (clear_page_dirty_for_io(page)) {
1150 int res;
1151 struct writeback_control wbc = {
1152 .sync_mode = WB_SYNC_NONE,
1153 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1154 .range_start = 0,
1155 .range_end = LLONG_MAX,
1da177e4
LT
1156 .for_reclaim = 1,
1157 };
1158
1159 SetPageReclaim(page);
1160 res = mapping->a_ops->writepage(page, &wbc);
1161 if (res < 0)
1162 handle_write_error(mapping, page, res);
994fc28c 1163 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
1164 ClearPageReclaim(page);
1165 return PAGE_ACTIVATE;
1166 }
c661b078 1167
1da177e4
LT
1168 if (!PageWriteback(page)) {
1169 /* synchronous write or broken a_ops? */
1170 ClearPageReclaim(page);
1171 }
3aa23851 1172 trace_mm_vmscan_writepage(page);
c4a25635 1173 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
1174 return PAGE_SUCCESS;
1175 }
1176
1177 return PAGE_CLEAN;
1178}
1179
a649fd92 1180/*
e286781d
NP
1181 * Same as remove_mapping, but if the page is removed from the mapping, it
1182 * gets returned with a refcount of 0.
a649fd92 1183 */
a528910e 1184static int __remove_mapping(struct address_space *mapping, struct page *page,
b910718a 1185 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1186{
bd4c82c2 1187 int refcount;
aae466b0 1188 void *shadow = NULL;
c4843a75 1189
28e4d965
NP
1190 BUG_ON(!PageLocked(page));
1191 BUG_ON(mapping != page_mapping(page));
49d2e9cc 1192
30472509 1193 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1194 /*
0fd0e6b0
NP
1195 * The non racy check for a busy page.
1196 *
1197 * Must be careful with the order of the tests. When someone has
1198 * a ref to the page, it may be possible that they dirty it then
1199 * drop the reference. So if PageDirty is tested before page_count
1200 * here, then the following race may occur:
1201 *
1202 * get_user_pages(&page);
1203 * [user mapping goes away]
1204 * write_to(page);
1205 * !PageDirty(page) [good]
1206 * SetPageDirty(page);
1207 * put_page(page);
1208 * !page_count(page) [good, discard it]
1209 *
1210 * [oops, our write_to data is lost]
1211 *
1212 * Reversing the order of the tests ensures such a situation cannot
1213 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1214 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1215 *
1216 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1217 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1218 */
906d278d 1219 refcount = 1 + compound_nr(page);
bd4c82c2 1220 if (!page_ref_freeze(page, refcount))
49d2e9cc 1221 goto cannot_free;
1c4c3b99 1222 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 1223 if (unlikely(PageDirty(page))) {
bd4c82c2 1224 page_ref_unfreeze(page, refcount);
49d2e9cc 1225 goto cannot_free;
e286781d 1226 }
49d2e9cc
CL
1227
1228 if (PageSwapCache(page)) {
1229 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 1230 mem_cgroup_swapout(page, swap);
aae466b0
JK
1231 if (reclaimed && !mapping_exiting(mapping))
1232 shadow = workingset_eviction(page, target_memcg);
1233 __delete_from_swap_cache(page, swap, shadow);
30472509 1234 xa_unlock_irq(&mapping->i_pages);
75f6d6d2 1235 put_swap_page(page, swap);
e286781d 1236 } else {
6072d13c
LT
1237 void (*freepage)(struct page *);
1238
1239 freepage = mapping->a_ops->freepage;
a528910e
JW
1240 /*
1241 * Remember a shadow entry for reclaimed file cache in
1242 * order to detect refaults, thus thrashing, later on.
1243 *
1244 * But don't store shadows in an address space that is
238c3046 1245 * already exiting. This is not just an optimization,
a528910e
JW
1246 * inode reclaim needs to empty out the radix tree or
1247 * the nodes are lost. Don't plant shadows behind its
1248 * back.
f9fe48be
RZ
1249 *
1250 * We also don't store shadows for DAX mappings because the
1251 * only page cache pages found in these are zero pages
1252 * covering holes, and because we don't want to mix DAX
1253 * exceptional entries and shadow exceptional entries in the
b93b0163 1254 * same address_space.
a528910e 1255 */
9de4f22a 1256 if (reclaimed && page_is_file_lru(page) &&
f9fe48be 1257 !mapping_exiting(mapping) && !dax_mapping(mapping))
b910718a 1258 shadow = workingset_eviction(page, target_memcg);
62cccb8c 1259 __delete_from_page_cache(page, shadow);
30472509 1260 xa_unlock_irq(&mapping->i_pages);
6072d13c
LT
1261
1262 if (freepage != NULL)
1263 freepage(page);
49d2e9cc
CL
1264 }
1265
49d2e9cc
CL
1266 return 1;
1267
1268cannot_free:
30472509 1269 xa_unlock_irq(&mapping->i_pages);
49d2e9cc
CL
1270 return 0;
1271}
1272
e286781d
NP
1273/*
1274 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1275 * someone else has a ref on the page, abort and return 0. If it was
1276 * successfully detached, return 1. Assumes the caller has a single ref on
1277 * this page.
1278 */
1279int remove_mapping(struct address_space *mapping, struct page *page)
1280{
b910718a 1281 if (__remove_mapping(mapping, page, false, NULL)) {
e286781d
NP
1282 /*
1283 * Unfreezing the refcount with 1 rather than 2 effectively
1284 * drops the pagecache ref for us without requiring another
1285 * atomic operation.
1286 */
fe896d18 1287 page_ref_unfreeze(page, 1);
e286781d
NP
1288 return 1;
1289 }
1290 return 0;
1291}
1292
894bc310
LS
1293/**
1294 * putback_lru_page - put previously isolated page onto appropriate LRU list
1295 * @page: page to be put back to appropriate lru list
1296 *
1297 * Add previously isolated @page to appropriate LRU list.
1298 * Page may still be unevictable for other reasons.
1299 *
1300 * lru_lock must not be held, interrupts must be enabled.
1301 */
894bc310
LS
1302void putback_lru_page(struct page *page)
1303{
9c4e6b1a 1304 lru_cache_add(page);
894bc310
LS
1305 put_page(page); /* drop ref from isolate */
1306}
1307
dfc8d636
JW
1308enum page_references {
1309 PAGEREF_RECLAIM,
1310 PAGEREF_RECLAIM_CLEAN,
64574746 1311 PAGEREF_KEEP,
dfc8d636
JW
1312 PAGEREF_ACTIVATE,
1313};
1314
1315static enum page_references page_check_references(struct page *page,
1316 struct scan_control *sc)
1317{
64574746 1318 int referenced_ptes, referenced_page;
dfc8d636 1319 unsigned long vm_flags;
dfc8d636 1320
c3ac9a8a
JW
1321 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1322 &vm_flags);
64574746 1323 referenced_page = TestClearPageReferenced(page);
dfc8d636 1324
dfc8d636
JW
1325 /*
1326 * Mlock lost the isolation race with us. Let try_to_unmap()
1327 * move the page to the unevictable list.
1328 */
1329 if (vm_flags & VM_LOCKED)
1330 return PAGEREF_RECLAIM;
1331
64574746 1332 if (referenced_ptes) {
64574746
JW
1333 /*
1334 * All mapped pages start out with page table
1335 * references from the instantiating fault, so we need
1336 * to look twice if a mapped file page is used more
1337 * than once.
1338 *
1339 * Mark it and spare it for another trip around the
1340 * inactive list. Another page table reference will
1341 * lead to its activation.
1342 *
1343 * Note: the mark is set for activated pages as well
1344 * so that recently deactivated but used pages are
1345 * quickly recovered.
1346 */
1347 SetPageReferenced(page);
1348
34dbc67a 1349 if (referenced_page || referenced_ptes > 1)
64574746
JW
1350 return PAGEREF_ACTIVATE;
1351
c909e993
KK
1352 /*
1353 * Activate file-backed executable pages after first usage.
1354 */
b518154e 1355 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
c909e993
KK
1356 return PAGEREF_ACTIVATE;
1357
64574746
JW
1358 return PAGEREF_KEEP;
1359 }
dfc8d636
JW
1360
1361 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1362 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1363 return PAGEREF_RECLAIM_CLEAN;
1364
1365 return PAGEREF_RECLAIM;
dfc8d636
JW
1366}
1367
e2be15f6
MG
1368/* Check if a page is dirty or under writeback */
1369static void page_check_dirty_writeback(struct page *page,
1370 bool *dirty, bool *writeback)
1371{
b4597226
MG
1372 struct address_space *mapping;
1373
e2be15f6
MG
1374 /*
1375 * Anonymous pages are not handled by flushers and must be written
1376 * from reclaim context. Do not stall reclaim based on them
1377 */
9de4f22a 1378 if (!page_is_file_lru(page) ||
802a3a92 1379 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1380 *dirty = false;
1381 *writeback = false;
1382 return;
1383 }
1384
1385 /* By default assume that the page flags are accurate */
1386 *dirty = PageDirty(page);
1387 *writeback = PageWriteback(page);
b4597226
MG
1388
1389 /* Verify dirty/writeback state if the filesystem supports it */
1390 if (!page_has_private(page))
1391 return;
1392
1393 mapping = page_mapping(page);
1394 if (mapping && mapping->a_ops->is_dirty_writeback)
1395 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1396}
1397
26aa2d19
DH
1398static struct page *alloc_demote_page(struct page *page, unsigned long node)
1399{
1400 struct migration_target_control mtc = {
1401 /*
1402 * Allocate from 'node', or fail quickly and quietly.
1403 * When this happens, 'page' will likely just be discarded
1404 * instead of migrated.
1405 */
1406 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1407 __GFP_THISNODE | __GFP_NOWARN |
1408 __GFP_NOMEMALLOC | GFP_NOWAIT,
1409 .nid = node
1410 };
1411
1412 return alloc_migration_target(page, (unsigned long)&mtc);
1413}
1414
1415/*
1416 * Take pages on @demote_list and attempt to demote them to
1417 * another node. Pages which are not demoted are left on
1418 * @demote_pages.
1419 */
1420static unsigned int demote_page_list(struct list_head *demote_pages,
1421 struct pglist_data *pgdat)
1422{
1423 int target_nid = next_demotion_node(pgdat->node_id);
1424 unsigned int nr_succeeded;
26aa2d19
DH
1425
1426 if (list_empty(demote_pages))
1427 return 0;
1428
1429 if (target_nid == NUMA_NO_NODE)
1430 return 0;
1431
1432 /* Demotion ignores all cpuset and mempolicy settings */
cb75463c 1433 migrate_pages(demote_pages, alloc_demote_page, NULL,
26aa2d19
DH
1434 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1435 &nr_succeeded);
1436
668e4147
YS
1437 if (current_is_kswapd())
1438 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1439 else
1440 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1441
26aa2d19
DH
1442 return nr_succeeded;
1443}
1444
1da177e4 1445/*
1742f19f 1446 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1447 */
730ec8c0
MS
1448static unsigned int shrink_page_list(struct list_head *page_list,
1449 struct pglist_data *pgdat,
1450 struct scan_control *sc,
730ec8c0
MS
1451 struct reclaim_stat *stat,
1452 bool ignore_references)
1da177e4
LT
1453{
1454 LIST_HEAD(ret_pages);
abe4c3b5 1455 LIST_HEAD(free_pages);
26aa2d19 1456 LIST_HEAD(demote_pages);
730ec8c0
MS
1457 unsigned int nr_reclaimed = 0;
1458 unsigned int pgactivate = 0;
26aa2d19 1459 bool do_demote_pass;
1da177e4 1460
060f005f 1461 memset(stat, 0, sizeof(*stat));
1da177e4 1462 cond_resched();
26aa2d19 1463 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1464
26aa2d19 1465retry:
1da177e4
LT
1466 while (!list_empty(page_list)) {
1467 struct address_space *mapping;
1468 struct page *page;
8940b34a 1469 enum page_references references = PAGEREF_RECLAIM;
4b793062 1470 bool dirty, writeback, may_enter_fs;
98879b3b 1471 unsigned int nr_pages;
1da177e4
LT
1472
1473 cond_resched();
1474
1475 page = lru_to_page(page_list);
1476 list_del(&page->lru);
1477
529ae9aa 1478 if (!trylock_page(page))
1da177e4
LT
1479 goto keep;
1480
309381fe 1481 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1482
d8c6546b 1483 nr_pages = compound_nr(page);
98879b3b
YS
1484
1485 /* Account the number of base pages even though THP */
1486 sc->nr_scanned += nr_pages;
80e43426 1487
39b5f29a 1488 if (unlikely(!page_evictable(page)))
ad6b6704 1489 goto activate_locked;
894bc310 1490
a6dc60f8 1491 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1492 goto keep_locked;
1493
c661b078
AW
1494 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1495 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1496
e2be15f6 1497 /*
894befec 1498 * The number of dirty pages determines if a node is marked
8cd7c588
MG
1499 * reclaim_congested. kswapd will stall and start writing
1500 * pages if the tail of the LRU is all dirty unqueued pages.
e2be15f6
MG
1501 */
1502 page_check_dirty_writeback(page, &dirty, &writeback);
1503 if (dirty || writeback)
060f005f 1504 stat->nr_dirty++;
e2be15f6
MG
1505
1506 if (dirty && !writeback)
060f005f 1507 stat->nr_unqueued_dirty++;
e2be15f6 1508
d04e8acd
MG
1509 /*
1510 * Treat this page as congested if the underlying BDI is or if
1511 * pages are cycling through the LRU so quickly that the
1512 * pages marked for immediate reclaim are making it to the
1513 * end of the LRU a second time.
1514 */
e2be15f6 1515 mapping = page_mapping(page);
1da58ee2 1516 if (((dirty || writeback) && mapping &&
703c2708 1517 inode_write_congested(mapping->host)) ||
d04e8acd 1518 (writeback && PageReclaim(page)))
060f005f 1519 stat->nr_congested++;
e2be15f6 1520
283aba9f
MG
1521 /*
1522 * If a page at the tail of the LRU is under writeback, there
1523 * are three cases to consider.
1524 *
1525 * 1) If reclaim is encountering an excessive number of pages
1526 * under writeback and this page is both under writeback and
1527 * PageReclaim then it indicates that pages are being queued
1528 * for IO but are being recycled through the LRU before the
1529 * IO can complete. Waiting on the page itself risks an
1530 * indefinite stall if it is impossible to writeback the
1531 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1532 * note that the LRU is being scanned too quickly and the
1533 * caller can stall after page list has been processed.
283aba9f 1534 *
97c9341f 1535 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1536 * not marked for immediate reclaim, or the caller does not
1537 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1538 * not to fs). In this case mark the page for immediate
97c9341f 1539 * reclaim and continue scanning.
283aba9f 1540 *
ecf5fc6e
MH
1541 * Require may_enter_fs because we would wait on fs, which
1542 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1543 * enter reclaim, and deadlock if it waits on a page for
1544 * which it is needed to do the write (loop masks off
1545 * __GFP_IO|__GFP_FS for this reason); but more thought
1546 * would probably show more reasons.
1547 *
7fadc820 1548 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1549 * PageReclaim. memcg does not have any dirty pages
1550 * throttling so we could easily OOM just because too many
1551 * pages are in writeback and there is nothing else to
1552 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1553 *
1554 * In cases 1) and 2) we activate the pages to get them out of
1555 * the way while we continue scanning for clean pages on the
1556 * inactive list and refilling from the active list. The
1557 * observation here is that waiting for disk writes is more
1558 * expensive than potentially causing reloads down the line.
1559 * Since they're marked for immediate reclaim, they won't put
1560 * memory pressure on the cache working set any longer than it
1561 * takes to write them to disk.
283aba9f 1562 */
c661b078 1563 if (PageWriteback(page)) {
283aba9f
MG
1564 /* Case 1 above */
1565 if (current_is_kswapd() &&
1566 PageReclaim(page) &&
599d0c95 1567 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1568 stat->nr_immediate++;
c55e8d03 1569 goto activate_locked;
283aba9f
MG
1570
1571 /* Case 2 above */
b5ead35e 1572 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1573 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1574 /*
1575 * This is slightly racy - end_page_writeback()
1576 * might have just cleared PageReclaim, then
1577 * setting PageReclaim here end up interpreted
1578 * as PageReadahead - but that does not matter
1579 * enough to care. What we do want is for this
1580 * page to have PageReclaim set next time memcg
1581 * reclaim reaches the tests above, so it will
1582 * then wait_on_page_writeback() to avoid OOM;
1583 * and it's also appropriate in global reclaim.
1584 */
1585 SetPageReclaim(page);
060f005f 1586 stat->nr_writeback++;
c55e8d03 1587 goto activate_locked;
283aba9f
MG
1588
1589 /* Case 3 above */
1590 } else {
7fadc820 1591 unlock_page(page);
283aba9f 1592 wait_on_page_writeback(page);
7fadc820
HD
1593 /* then go back and try same page again */
1594 list_add_tail(&page->lru, page_list);
1595 continue;
e62e384e 1596 }
c661b078 1597 }
1da177e4 1598
8940b34a 1599 if (!ignore_references)
02c6de8d
MK
1600 references = page_check_references(page, sc);
1601
dfc8d636
JW
1602 switch (references) {
1603 case PAGEREF_ACTIVATE:
1da177e4 1604 goto activate_locked;
64574746 1605 case PAGEREF_KEEP:
98879b3b 1606 stat->nr_ref_keep += nr_pages;
64574746 1607 goto keep_locked;
dfc8d636
JW
1608 case PAGEREF_RECLAIM:
1609 case PAGEREF_RECLAIM_CLEAN:
1610 ; /* try to reclaim the page below */
1611 }
1da177e4 1612
26aa2d19
DH
1613 /*
1614 * Before reclaiming the page, try to relocate
1615 * its contents to another node.
1616 */
1617 if (do_demote_pass &&
1618 (thp_migration_supported() || !PageTransHuge(page))) {
1619 list_add(&page->lru, &demote_pages);
1620 unlock_page(page);
1621 continue;
1622 }
1623
1da177e4
LT
1624 /*
1625 * Anonymous process memory has backing store?
1626 * Try to allocate it some swap space here.
802a3a92 1627 * Lazyfree page could be freed directly
1da177e4 1628 */
bd4c82c2
HY
1629 if (PageAnon(page) && PageSwapBacked(page)) {
1630 if (!PageSwapCache(page)) {
1631 if (!(sc->gfp_mask & __GFP_IO))
1632 goto keep_locked;
feb889fb
LT
1633 if (page_maybe_dma_pinned(page))
1634 goto keep_locked;
bd4c82c2
HY
1635 if (PageTransHuge(page)) {
1636 /* cannot split THP, skip it */
1637 if (!can_split_huge_page(page, NULL))
1638 goto activate_locked;
1639 /*
1640 * Split pages without a PMD map right
1641 * away. Chances are some or all of the
1642 * tail pages can be freed without IO.
1643 */
1644 if (!compound_mapcount(page) &&
1645 split_huge_page_to_list(page,
1646 page_list))
1647 goto activate_locked;
1648 }
1649 if (!add_to_swap(page)) {
1650 if (!PageTransHuge(page))
98879b3b 1651 goto activate_locked_split;
bd4c82c2
HY
1652 /* Fallback to swap normal pages */
1653 if (split_huge_page_to_list(page,
1654 page_list))
1655 goto activate_locked;
fe490cc0
HY
1656#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1657 count_vm_event(THP_SWPOUT_FALLBACK);
1658#endif
bd4c82c2 1659 if (!add_to_swap(page))
98879b3b 1660 goto activate_locked_split;
bd4c82c2 1661 }
0f074658 1662
4b793062 1663 may_enter_fs = true;
1da177e4 1664
bd4c82c2
HY
1665 /* Adding to swap updated mapping */
1666 mapping = page_mapping(page);
1667 }
7751b2da
KS
1668 } else if (unlikely(PageTransHuge(page))) {
1669 /* Split file THP */
1670 if (split_huge_page_to_list(page, page_list))
1671 goto keep_locked;
e2be15f6 1672 }
1da177e4 1673
98879b3b
YS
1674 /*
1675 * THP may get split above, need minus tail pages and update
1676 * nr_pages to avoid accounting tail pages twice.
1677 *
1678 * The tail pages that are added into swap cache successfully
1679 * reach here.
1680 */
1681 if ((nr_pages > 1) && !PageTransHuge(page)) {
1682 sc->nr_scanned -= (nr_pages - 1);
1683 nr_pages = 1;
1684 }
1685
1da177e4
LT
1686 /*
1687 * The page is mapped into the page tables of one or more
1688 * processes. Try to unmap it here.
1689 */
802a3a92 1690 if (page_mapped(page)) {
013339df 1691 enum ttu_flags flags = TTU_BATCH_FLUSH;
1f318a9b 1692 bool was_swapbacked = PageSwapBacked(page);
bd4c82c2
HY
1693
1694 if (unlikely(PageTransHuge(page)))
1695 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1696
1fb08ac6
YS
1697 try_to_unmap(page, flags);
1698 if (page_mapped(page)) {
98879b3b 1699 stat->nr_unmap_fail += nr_pages;
1f318a9b
JK
1700 if (!was_swapbacked && PageSwapBacked(page))
1701 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1702 goto activate_locked;
1da177e4
LT
1703 }
1704 }
1705
1706 if (PageDirty(page)) {
ee72886d 1707 /*
4eda4823
JW
1708 * Only kswapd can writeback filesystem pages
1709 * to avoid risk of stack overflow. But avoid
1710 * injecting inefficient single-page IO into
1711 * flusher writeback as much as possible: only
1712 * write pages when we've encountered many
1713 * dirty pages, and when we've already scanned
1714 * the rest of the LRU for clean pages and see
1715 * the same dirty pages again (PageReclaim).
ee72886d 1716 */
9de4f22a 1717 if (page_is_file_lru(page) &&
4eda4823
JW
1718 (!current_is_kswapd() || !PageReclaim(page) ||
1719 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1720 /*
1721 * Immediately reclaim when written back.
1722 * Similar in principal to deactivate_page()
1723 * except we already have the page isolated
1724 * and know it's dirty
1725 */
c4a25635 1726 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1727 SetPageReclaim(page);
1728
c55e8d03 1729 goto activate_locked;
ee72886d
MG
1730 }
1731
dfc8d636 1732 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1733 goto keep_locked;
4dd4b920 1734 if (!may_enter_fs)
1da177e4 1735 goto keep_locked;
52a8363e 1736 if (!sc->may_writepage)
1da177e4
LT
1737 goto keep_locked;
1738
d950c947
MG
1739 /*
1740 * Page is dirty. Flush the TLB if a writable entry
1741 * potentially exists to avoid CPU writes after IO
1742 * starts and then write it out here.
1743 */
1744 try_to_unmap_flush_dirty();
cb16556d 1745 switch (pageout(page, mapping)) {
1da177e4
LT
1746 case PAGE_KEEP:
1747 goto keep_locked;
1748 case PAGE_ACTIVATE:
1749 goto activate_locked;
1750 case PAGE_SUCCESS:
6c357848 1751 stat->nr_pageout += thp_nr_pages(page);
96f8bf4f 1752
7d3579e8 1753 if (PageWriteback(page))
41ac1999 1754 goto keep;
7d3579e8 1755 if (PageDirty(page))
1da177e4 1756 goto keep;
7d3579e8 1757
1da177e4
LT
1758 /*
1759 * A synchronous write - probably a ramdisk. Go
1760 * ahead and try to reclaim the page.
1761 */
529ae9aa 1762 if (!trylock_page(page))
1da177e4
LT
1763 goto keep;
1764 if (PageDirty(page) || PageWriteback(page))
1765 goto keep_locked;
1766 mapping = page_mapping(page);
01359eb2 1767 fallthrough;
1da177e4
LT
1768 case PAGE_CLEAN:
1769 ; /* try to free the page below */
1770 }
1771 }
1772
1773 /*
1774 * If the page has buffers, try to free the buffer mappings
1775 * associated with this page. If we succeed we try to free
1776 * the page as well.
1777 *
1778 * We do this even if the page is PageDirty().
1779 * try_to_release_page() does not perform I/O, but it is
1780 * possible for a page to have PageDirty set, but it is actually
1781 * clean (all its buffers are clean). This happens if the
1782 * buffers were written out directly, with submit_bh(). ext3
894bc310 1783 * will do this, as well as the blockdev mapping.
1da177e4
LT
1784 * try_to_release_page() will discover that cleanness and will
1785 * drop the buffers and mark the page clean - it can be freed.
1786 *
1787 * Rarely, pages can have buffers and no ->mapping. These are
1788 * the pages which were not successfully invalidated in
d12b8951 1789 * truncate_cleanup_page(). We try to drop those buffers here
1da177e4
LT
1790 * and if that worked, and the page is no longer mapped into
1791 * process address space (page_count == 1) it can be freed.
1792 * Otherwise, leave the page on the LRU so it is swappable.
1793 */
266cf658 1794 if (page_has_private(page)) {
1da177e4
LT
1795 if (!try_to_release_page(page, sc->gfp_mask))
1796 goto activate_locked;
e286781d
NP
1797 if (!mapping && page_count(page) == 1) {
1798 unlock_page(page);
1799 if (put_page_testzero(page))
1800 goto free_it;
1801 else {
1802 /*
1803 * rare race with speculative reference.
1804 * the speculative reference will free
1805 * this page shortly, so we may
1806 * increment nr_reclaimed here (and
1807 * leave it off the LRU).
1808 */
1809 nr_reclaimed++;
1810 continue;
1811 }
1812 }
1da177e4
LT
1813 }
1814
802a3a92
SL
1815 if (PageAnon(page) && !PageSwapBacked(page)) {
1816 /* follow __remove_mapping for reference */
1817 if (!page_ref_freeze(page, 1))
1818 goto keep_locked;
d17be2d9
ML
1819 /*
1820 * The page has only one reference left, which is
1821 * from the isolation. After the caller puts the
1822 * page back on lru and drops the reference, the
1823 * page will be freed anyway. It doesn't matter
1824 * which lru it goes. So we don't bother checking
1825 * PageDirty here.
1826 */
802a3a92 1827 count_vm_event(PGLAZYFREED);
2262185c 1828 count_memcg_page_event(page, PGLAZYFREED);
b910718a
JW
1829 } else if (!mapping || !__remove_mapping(mapping, page, true,
1830 sc->target_mem_cgroup))
802a3a92 1831 goto keep_locked;
9a1ea439
HD
1832
1833 unlock_page(page);
e286781d 1834free_it:
98879b3b
YS
1835 /*
1836 * THP may get swapped out in a whole, need account
1837 * all base pages.
1838 */
1839 nr_reclaimed += nr_pages;
abe4c3b5
MG
1840
1841 /*
1842 * Is there need to periodically free_page_list? It would
1843 * appear not as the counts should be low
1844 */
7ae88534 1845 if (unlikely(PageTransHuge(page)))
ff45fc3c 1846 destroy_compound_page(page);
7ae88534 1847 else
bd4c82c2 1848 list_add(&page->lru, &free_pages);
1da177e4
LT
1849 continue;
1850
98879b3b
YS
1851activate_locked_split:
1852 /*
1853 * The tail pages that are failed to add into swap cache
1854 * reach here. Fixup nr_scanned and nr_pages.
1855 */
1856 if (nr_pages > 1) {
1857 sc->nr_scanned -= (nr_pages - 1);
1858 nr_pages = 1;
1859 }
1da177e4 1860activate_locked:
68a22394 1861 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1862 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1863 PageMlocked(page)))
a2c43eed 1864 try_to_free_swap(page);
309381fe 1865 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1866 if (!PageMlocked(page)) {
9de4f22a 1867 int type = page_is_file_lru(page);
ad6b6704 1868 SetPageActive(page);
98879b3b 1869 stat->nr_activate[type] += nr_pages;
2262185c 1870 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1871 }
1da177e4
LT
1872keep_locked:
1873 unlock_page(page);
1874keep:
1875 list_add(&page->lru, &ret_pages);
309381fe 1876 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1877 }
26aa2d19
DH
1878 /* 'page_list' is always empty here */
1879
1880 /* Migrate pages selected for demotion */
1881 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1882 /* Pages that could not be demoted are still in @demote_pages */
1883 if (!list_empty(&demote_pages)) {
1884 /* Pages which failed to demoted go back on @page_list for retry: */
1885 list_splice_init(&demote_pages, page_list);
1886 do_demote_pass = false;
1887 goto retry;
1888 }
abe4c3b5 1889
98879b3b
YS
1890 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1891
747db954 1892 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1893 try_to_unmap_flush();
2d4894b5 1894 free_unref_page_list(&free_pages);
abe4c3b5 1895
1da177e4 1896 list_splice(&ret_pages, page_list);
886cf190 1897 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1898
05ff5137 1899 return nr_reclaimed;
1da177e4
LT
1900}
1901
730ec8c0 1902unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1903 struct list_head *page_list)
1904{
1905 struct scan_control sc = {
1906 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
1907 .may_unmap = 1,
1908 };
1f318a9b 1909 struct reclaim_stat stat;
730ec8c0 1910 unsigned int nr_reclaimed;
02c6de8d
MK
1911 struct page *page, *next;
1912 LIST_HEAD(clean_pages);
2d2b8d2b 1913 unsigned int noreclaim_flag;
02c6de8d
MK
1914
1915 list_for_each_entry_safe(page, next, page_list, lru) {
ae37c7ff
OS
1916 if (!PageHuge(page) && page_is_file_lru(page) &&
1917 !PageDirty(page) && !__PageMovable(page) &&
1918 !PageUnevictable(page)) {
02c6de8d
MK
1919 ClearPageActive(page);
1920 list_move(&page->lru, &clean_pages);
1921 }
1922 }
1923
2d2b8d2b
YZ
1924 /*
1925 * We should be safe here since we are only dealing with file pages and
1926 * we are not kswapd and therefore cannot write dirty file pages. But
1927 * call memalloc_noreclaim_save() anyway, just in case these conditions
1928 * change in the future.
1929 */
1930 noreclaim_flag = memalloc_noreclaim_save();
1f318a9b 1931 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
013339df 1932 &stat, true);
2d2b8d2b
YZ
1933 memalloc_noreclaim_restore(noreclaim_flag);
1934
02c6de8d 1935 list_splice(&clean_pages, page_list);
2da9f630
NP
1936 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1937 -(long)nr_reclaimed);
1f318a9b
JK
1938 /*
1939 * Since lazyfree pages are isolated from file LRU from the beginning,
1940 * they will rotate back to anonymous LRU in the end if it failed to
1941 * discard so isolated count will be mismatched.
1942 * Compensate the isolated count for both LRU lists.
1943 */
1944 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1945 stat.nr_lazyfree_fail);
1946 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 1947 -(long)stat.nr_lazyfree_fail);
1f318a9b 1948 return nr_reclaimed;
02c6de8d
MK
1949}
1950
5ad333eb
AW
1951/*
1952 * Attempt to remove the specified page from its LRU. Only take this page
1953 * if it is of the appropriate PageActive status. Pages which are being
1954 * freed elsewhere are also ignored.
1955 *
1956 * page: page to consider
1957 * mode: one of the LRU isolation modes defined above
1958 *
c2135f7c 1959 * returns true on success, false on failure.
5ad333eb 1960 */
c2135f7c 1961bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
5ad333eb 1962{
5ad333eb
AW
1963 /* Only take pages on the LRU. */
1964 if (!PageLRU(page))
c2135f7c 1965 return false;
5ad333eb 1966
e46a2879
MK
1967 /* Compaction should not handle unevictable pages but CMA can do so */
1968 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
c2135f7c 1969 return false;
894bc310 1970
c8244935
MG
1971 /*
1972 * To minimise LRU disruption, the caller can indicate that it only
1973 * wants to isolate pages it will be able to operate on without
1974 * blocking - clean pages for the most part.
1975 *
c8244935
MG
1976 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1977 * that it is possible to migrate without blocking
1978 */
1276ad68 1979 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1980 /* All the caller can do on PageWriteback is block */
1981 if (PageWriteback(page))
c2135f7c 1982 return false;
c8244935
MG
1983
1984 if (PageDirty(page)) {
1985 struct address_space *mapping;
69d763fc 1986 bool migrate_dirty;
c8244935 1987
c8244935
MG
1988 /*
1989 * Only pages without mappings or that have a
1990 * ->migratepage callback are possible to migrate
69d763fc
MG
1991 * without blocking. However, we can be racing with
1992 * truncation so it's necessary to lock the page
1993 * to stabilise the mapping as truncation holds
1994 * the page lock until after the page is removed
1995 * from the page cache.
c8244935 1996 */
69d763fc 1997 if (!trylock_page(page))
c2135f7c 1998 return false;
69d763fc 1999
c8244935 2000 mapping = page_mapping(page);
145e1a71 2001 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
2002 unlock_page(page);
2003 if (!migrate_dirty)
c2135f7c 2004 return false;
c8244935
MG
2005 }
2006 }
39deaf85 2007
f80c0673 2008 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
c2135f7c 2009 return false;
f80c0673 2010
c2135f7c 2011 return true;
5ad333eb
AW
2012}
2013
7ee36a14
MG
2014/*
2015 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 2016 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
2017 */
2018static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 2019 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 2020{
7ee36a14
MG
2021 int zid;
2022
7ee36a14
MG
2023 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2024 if (!nr_zone_taken[zid])
2025 continue;
2026
a892cb6b 2027 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
2028 }
2029
7ee36a14
MG
2030}
2031
f611fab7 2032/*
15b44736
HD
2033 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2034 *
2035 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
2036 * shrink the lists perform better by taking out a batch of pages
2037 * and working on them outside the LRU lock.
2038 *
2039 * For pagecache intensive workloads, this function is the hottest
2040 * spot in the kernel (apart from copy_*_user functions).
2041 *
15b44736 2042 * Lru_lock must be held before calling this function.
1da177e4 2043 *
791b48b6 2044 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 2045 * @lruvec: The LRU vector to pull pages from.
1da177e4 2046 * @dst: The temp list to put pages on to.
f626012d 2047 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 2048 * @sc: The scan_control struct for this reclaim session
3cb99451 2049 * @lru: LRU list id for isolating
1da177e4
LT
2050 *
2051 * returns how many pages were moved onto *@dst.
2052 */
69e05944 2053static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 2054 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 2055 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 2056 enum lru_list lru)
1da177e4 2057{
75b00af7 2058 struct list_head *src = &lruvec->lists[lru];
69e05944 2059 unsigned long nr_taken = 0;
599d0c95 2060 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 2061 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 2062 unsigned long skipped = 0;
791b48b6 2063 unsigned long scan, total_scan, nr_pages;
b2e18757 2064 LIST_HEAD(pages_skipped);
a9e7c39f 2065 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 2066
98879b3b 2067 total_scan = 0;
791b48b6 2068 scan = 0;
98879b3b 2069 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 2070 struct page *page;
5ad333eb 2071
1da177e4
LT
2072 page = lru_to_page(src);
2073 prefetchw_prev_lru_page(page, src, flags);
2074
d8c6546b 2075 nr_pages = compound_nr(page);
98879b3b
YS
2076 total_scan += nr_pages;
2077
b2e18757
MG
2078 if (page_zonenum(page) > sc->reclaim_idx) {
2079 list_move(&page->lru, &pages_skipped);
98879b3b 2080 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
2081 continue;
2082 }
2083
791b48b6
MK
2084 /*
2085 * Do not count skipped pages because that makes the function
2086 * return with no isolated pages if the LRU mostly contains
2087 * ineligible pages. This causes the VM to not reclaim any
2088 * pages, triggering a premature OOM.
98879b3b
YS
2089 *
2090 * Account all tail pages of THP. This would not cause
2091 * premature OOM since __isolate_lru_page() returns -EBUSY
2092 * only when the page is being freed somewhere else.
791b48b6 2093 */
98879b3b 2094 scan += nr_pages;
c2135f7c
AS
2095 if (!__isolate_lru_page_prepare(page, mode)) {
2096 /* It is being freed elsewhere */
2097 list_move(&page->lru, src);
2098 continue;
2099 }
2100 /*
2101 * Be careful not to clear PageLRU until after we're
2102 * sure the page is not being freed elsewhere -- the
2103 * page release code relies on it.
2104 */
2105 if (unlikely(!get_page_unless_zero(page))) {
2106 list_move(&page->lru, src);
2107 continue;
2108 }
5ad333eb 2109
c2135f7c
AS
2110 if (!TestClearPageLRU(page)) {
2111 /* Another thread is already isolating this page */
2112 put_page(page);
5ad333eb 2113 list_move(&page->lru, src);
c2135f7c 2114 continue;
5ad333eb 2115 }
c2135f7c
AS
2116
2117 nr_taken += nr_pages;
2118 nr_zone_taken[page_zonenum(page)] += nr_pages;
2119 list_move(&page->lru, dst);
1da177e4
LT
2120 }
2121
b2e18757
MG
2122 /*
2123 * Splice any skipped pages to the start of the LRU list. Note that
2124 * this disrupts the LRU order when reclaiming for lower zones but
2125 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2126 * scanning would soon rescan the same pages to skip and put the
2127 * system at risk of premature OOM.
2128 */
7cc30fcf
MG
2129 if (!list_empty(&pages_skipped)) {
2130 int zid;
2131
3db65812 2132 list_splice(&pages_skipped, src);
7cc30fcf
MG
2133 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2134 if (!nr_skipped[zid])
2135 continue;
2136
2137 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2138 skipped += nr_skipped[zid];
7cc30fcf
MG
2139 }
2140 }
791b48b6 2141 *nr_scanned = total_scan;
1265e3a6 2142 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 2143 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 2144 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2145 return nr_taken;
2146}
2147
62695a84
NP
2148/**
2149 * isolate_lru_page - tries to isolate a page from its LRU list
2150 * @page: page to isolate from its LRU list
2151 *
2152 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2153 * vmstat statistic corresponding to whatever LRU list the page was on.
2154 *
2155 * Returns 0 if the page was removed from an LRU list.
2156 * Returns -EBUSY if the page was not on an LRU list.
2157 *
2158 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
2159 * the active list, it will have PageActive set. If it was found on
2160 * the unevictable list, it will have the PageUnevictable bit set. That flag
2161 * may need to be cleared by the caller before letting the page go.
62695a84
NP
2162 *
2163 * The vmstat statistic corresponding to the list on which the page was
2164 * found will be decremented.
2165 *
2166 * Restrictions:
a5d09bed 2167 *
62695a84 2168 * (1) Must be called with an elevated refcount on the page. This is a
01c4776b 2169 * fundamental difference from isolate_lru_pages (which is called
62695a84
NP
2170 * without a stable reference).
2171 * (2) the lru_lock must not be held.
2172 * (3) interrupts must be enabled.
2173 */
2174int isolate_lru_page(struct page *page)
2175{
2176 int ret = -EBUSY;
2177
309381fe 2178 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 2179 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 2180
d25b5bd8 2181 if (TestClearPageLRU(page)) {
fa9add64 2182 struct lruvec *lruvec;
62695a84 2183
d25b5bd8 2184 get_page(page);
6168d0da 2185 lruvec = lock_page_lruvec_irq(page);
46ae6b2c 2186 del_page_from_lru_list(page, lruvec);
6168d0da 2187 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2188 ret = 0;
62695a84 2189 }
d25b5bd8 2190
62695a84
NP
2191 return ret;
2192}
2193
35cd7815 2194/*
d37dd5dc 2195 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2196 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2197 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2198 * the LRU list will go small and be scanned faster than necessary, leading to
2199 * unnecessary swapping, thrashing and OOM.
35cd7815 2200 */
599d0c95 2201static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2202 struct scan_control *sc)
2203{
2204 unsigned long inactive, isolated;
d818fca1 2205 bool too_many;
35cd7815
RR
2206
2207 if (current_is_kswapd())
2208 return 0;
2209
b5ead35e 2210 if (!writeback_throttling_sane(sc))
35cd7815
RR
2211 return 0;
2212
2213 if (file) {
599d0c95
MG
2214 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2215 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2216 } else {
599d0c95
MG
2217 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2218 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2219 }
2220
3cf23841
FW
2221 /*
2222 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2223 * won't get blocked by normal direct-reclaimers, forming a circular
2224 * deadlock.
2225 */
d0164adc 2226 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2227 inactive >>= 3;
2228
d818fca1
MG
2229 too_many = isolated > inactive;
2230
2231 /* Wake up tasks throttled due to too_many_isolated. */
2232 if (!too_many)
2233 wake_throttle_isolated(pgdat);
2234
2235 return too_many;
35cd7815
RR
2236}
2237
a222f341 2238/*
15b44736
HD
2239 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2240 * On return, @list is reused as a list of pages to be freed by the caller.
a222f341
KT
2241 *
2242 * Returns the number of pages moved to the given lruvec.
2243 */
9ef56b78
MS
2244static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2245 struct list_head *list)
66635629 2246{
a222f341 2247 int nr_pages, nr_moved = 0;
3f79768f 2248 LIST_HEAD(pages_to_free);
a222f341 2249 struct page *page;
66635629 2250
a222f341
KT
2251 while (!list_empty(list)) {
2252 page = lru_to_page(list);
309381fe 2253 VM_BUG_ON_PAGE(PageLRU(page), page);
3d06afab 2254 list_del(&page->lru);
39b5f29a 2255 if (unlikely(!page_evictable(page))) {
6168d0da 2256 spin_unlock_irq(&lruvec->lru_lock);
66635629 2257 putback_lru_page(page);
6168d0da 2258 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2259 continue;
2260 }
fa9add64 2261
3d06afab
AS
2262 /*
2263 * The SetPageLRU needs to be kept here for list integrity.
2264 * Otherwise:
2265 * #0 move_pages_to_lru #1 release_pages
2266 * if !put_page_testzero
2267 * if (put_page_testzero())
2268 * !PageLRU //skip lru_lock
2269 * SetPageLRU()
2270 * list_add(&page->lru,)
2271 * list_add(&page->lru,)
2272 */
7a608572 2273 SetPageLRU(page);
a222f341 2274
3d06afab 2275 if (unlikely(put_page_testzero(page))) {
87560179 2276 __clear_page_lru_flags(page);
2bcf8879
HD
2277
2278 if (unlikely(PageCompound(page))) {
6168d0da 2279 spin_unlock_irq(&lruvec->lru_lock);
ff45fc3c 2280 destroy_compound_page(page);
6168d0da 2281 spin_lock_irq(&lruvec->lru_lock);
2bcf8879
HD
2282 } else
2283 list_add(&page->lru, &pages_to_free);
3d06afab
AS
2284
2285 continue;
66635629 2286 }
3d06afab 2287
afca9157
AS
2288 /*
2289 * All pages were isolated from the same lruvec (and isolation
2290 * inhibits memcg migration).
2291 */
7467c391 2292 VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
3a9c9788 2293 add_page_to_lru_list(page, lruvec);
3d06afab 2294 nr_pages = thp_nr_pages(page);
3d06afab
AS
2295 nr_moved += nr_pages;
2296 if (PageActive(page))
2297 workingset_age_nonresident(lruvec, nr_pages);
66635629 2298 }
66635629 2299
3f79768f
HD
2300 /*
2301 * To save our caller's stack, now use input list for pages to free.
2302 */
a222f341
KT
2303 list_splice(&pages_to_free, list);
2304
2305 return nr_moved;
66635629
MG
2306}
2307
399ba0b9
N
2308/*
2309 * If a kernel thread (such as nfsd for loop-back mounts) services
a37b0715 2310 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
399ba0b9
N
2311 * In that case we should only throttle if the backing device it is
2312 * writing to is congested. In other cases it is safe to throttle.
2313 */
2314static int current_may_throttle(void)
2315{
a37b0715 2316 return !(current->flags & PF_LOCAL_THROTTLE) ||
399ba0b9
N
2317 current->backing_dev_info == NULL ||
2318 bdi_write_congested(current->backing_dev_info);
2319}
2320
1da177e4 2321/*
b2e18757 2322 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2323 * of reclaimed pages
1da177e4 2324 */
9ef56b78 2325static unsigned long
1a93be0e 2326shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2327 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2328{
2329 LIST_HEAD(page_list);
e247dbce 2330 unsigned long nr_scanned;
730ec8c0 2331 unsigned int nr_reclaimed = 0;
e247dbce 2332 unsigned long nr_taken;
060f005f 2333 struct reclaim_stat stat;
497a6c1b 2334 bool file = is_file_lru(lru);
f46b7912 2335 enum vm_event_item item;
599d0c95 2336 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2337 bool stalled = false;
78dc583d 2338
599d0c95 2339 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2340 if (stalled)
2341 return 0;
2342
2343 /* wait a bit for the reclaimer. */
db73ee0d 2344 stalled = true;
c3f4a9a2 2345 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
35cd7815
RR
2346
2347 /* We are about to die and free our memory. Return now. */
2348 if (fatal_signal_pending(current))
2349 return SWAP_CLUSTER_MAX;
2350 }
2351
1da177e4 2352 lru_add_drain();
f80c0673 2353
6168d0da 2354 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2355
5dc35979 2356 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2357 &nr_scanned, sc, lru);
95d918fc 2358
599d0c95 2359 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2360 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2361 if (!cgroup_reclaim(sc))
f46b7912
KT
2362 __count_vm_events(item, nr_scanned);
2363 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2364 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2365
6168d0da 2366 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2367
d563c050 2368 if (nr_taken == 0)
66635629 2369 return 0;
5ad333eb 2370
013339df 2371 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2372
6168d0da 2373 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2374 move_pages_to_lru(lruvec, &page_list);
2375
2376 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2377 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2378 if (!cgroup_reclaim(sc))
f46b7912
KT
2379 __count_vm_events(item, nr_reclaimed);
2380 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2381 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2382 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2383
75cc3c91 2384 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2385 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2386 free_unref_page_list(&page_list);
e11da5b4 2387
1c610d5f
AR
2388 /*
2389 * If dirty pages are scanned that are not queued for IO, it
2390 * implies that flushers are not doing their job. This can
2391 * happen when memory pressure pushes dirty pages to the end of
2392 * the LRU before the dirty limits are breached and the dirty
2393 * data has expired. It can also happen when the proportion of
2394 * dirty pages grows not through writes but through memory
2395 * pressure reclaiming all the clean cache. And in some cases,
2396 * the flushers simply cannot keep up with the allocation
2397 * rate. Nudge the flusher threads in case they are asleep.
2398 */
2399 if (stat.nr_unqueued_dirty == nr_taken)
2400 wakeup_flusher_threads(WB_REASON_VMSCAN);
2401
d108c772
AR
2402 sc->nr.dirty += stat.nr_dirty;
2403 sc->nr.congested += stat.nr_congested;
2404 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2405 sc->nr.writeback += stat.nr_writeback;
2406 sc->nr.immediate += stat.nr_immediate;
2407 sc->nr.taken += nr_taken;
2408 if (file)
2409 sc->nr.file_taken += nr_taken;
8e950282 2410
599d0c95 2411 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2412 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2413 return nr_reclaimed;
1da177e4
LT
2414}
2415
15b44736
HD
2416/*
2417 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2418 *
2419 * We move them the other way if the page is referenced by one or more
2420 * processes.
2421 *
2422 * If the pages are mostly unmapped, the processing is fast and it is
2423 * appropriate to hold lru_lock across the whole operation. But if
2424 * the pages are mapped, the processing is slow (page_referenced()), so
2425 * we should drop lru_lock around each page. It's impossible to balance
2426 * this, so instead we remove the pages from the LRU while processing them.
2427 * It is safe to rely on PG_active against the non-LRU pages in here because
2428 * nobody will play with that bit on a non-LRU page.
2429 *
2430 * The downside is that we have to touch page->_refcount against each page.
2431 * But we had to alter page->flags anyway.
2432 */
f626012d 2433static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2434 struct lruvec *lruvec,
f16015fb 2435 struct scan_control *sc,
9e3b2f8c 2436 enum lru_list lru)
1da177e4 2437{
44c241f1 2438 unsigned long nr_taken;
f626012d 2439 unsigned long nr_scanned;
6fe6b7e3 2440 unsigned long vm_flags;
1da177e4 2441 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2442 LIST_HEAD(l_active);
b69408e8 2443 LIST_HEAD(l_inactive);
1da177e4 2444 struct page *page;
9d998b4f
MH
2445 unsigned nr_deactivate, nr_activate;
2446 unsigned nr_rotated = 0;
3cb99451 2447 int file = is_file_lru(lru);
599d0c95 2448 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2449
2450 lru_add_drain();
f80c0673 2451
6168d0da 2452 spin_lock_irq(&lruvec->lru_lock);
925b7673 2453
5dc35979 2454 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2455 &nr_scanned, sc, lru);
89b5fae5 2456
599d0c95 2457 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2458
912c0572
SB
2459 if (!cgroup_reclaim(sc))
2460 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2461 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2462
6168d0da 2463 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2464
1da177e4
LT
2465 while (!list_empty(&l_hold)) {
2466 cond_resched();
2467 page = lru_to_page(&l_hold);
2468 list_del(&page->lru);
7e9cd484 2469
39b5f29a 2470 if (unlikely(!page_evictable(page))) {
894bc310
LS
2471 putback_lru_page(page);
2472 continue;
2473 }
2474
cc715d99
MG
2475 if (unlikely(buffer_heads_over_limit)) {
2476 if (page_has_private(page) && trylock_page(page)) {
2477 if (page_has_private(page))
2478 try_to_release_page(page, 0);
2479 unlock_page(page);
2480 }
2481 }
2482
c3ac9a8a
JW
2483 if (page_referenced(page, 0, sc->target_mem_cgroup,
2484 &vm_flags)) {
8cab4754
WF
2485 /*
2486 * Identify referenced, file-backed active pages and
2487 * give them one more trip around the active list. So
2488 * that executable code get better chances to stay in
2489 * memory under moderate memory pressure. Anon pages
2490 * are not likely to be evicted by use-once streaming
2491 * IO, plus JVM can create lots of anon VM_EXEC pages,
2492 * so we ignore them here.
2493 */
9de4f22a 2494 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2495 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2496 list_add(&page->lru, &l_active);
2497 continue;
2498 }
2499 }
7e9cd484 2500
5205e56e 2501 ClearPageActive(page); /* we are de-activating */
1899ad18 2502 SetPageWorkingset(page);
1da177e4
LT
2503 list_add(&page->lru, &l_inactive);
2504 }
2505
b555749a 2506 /*
8cab4754 2507 * Move pages back to the lru list.
b555749a 2508 */
6168d0da 2509 spin_lock_irq(&lruvec->lru_lock);
556adecb 2510
a222f341
KT
2511 nr_activate = move_pages_to_lru(lruvec, &l_active);
2512 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2513 /* Keep all free pages in l_active list */
2514 list_splice(&l_inactive, &l_active);
9851ac13
KT
2515
2516 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2517 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2518
599d0c95 2519 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2520 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2521
f372d89e
KT
2522 mem_cgroup_uncharge_list(&l_active);
2523 free_unref_page_list(&l_active);
9d998b4f
MH
2524 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2525 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2526}
2527
1a4e58cc
MK
2528unsigned long reclaim_pages(struct list_head *page_list)
2529{
f661d007 2530 int nid = NUMA_NO_NODE;
730ec8c0 2531 unsigned int nr_reclaimed = 0;
1a4e58cc
MK
2532 LIST_HEAD(node_page_list);
2533 struct reclaim_stat dummy_stat;
2534 struct page *page;
2d2b8d2b 2535 unsigned int noreclaim_flag;
1a4e58cc
MK
2536 struct scan_control sc = {
2537 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2538 .may_writepage = 1,
2539 .may_unmap = 1,
2540 .may_swap = 1,
26aa2d19 2541 .no_demotion = 1,
1a4e58cc
MK
2542 };
2543
2d2b8d2b
YZ
2544 noreclaim_flag = memalloc_noreclaim_save();
2545
1a4e58cc
MK
2546 while (!list_empty(page_list)) {
2547 page = lru_to_page(page_list);
f661d007 2548 if (nid == NUMA_NO_NODE) {
1a4e58cc
MK
2549 nid = page_to_nid(page);
2550 INIT_LIST_HEAD(&node_page_list);
2551 }
2552
2553 if (nid == page_to_nid(page)) {
2554 ClearPageActive(page);
2555 list_move(&page->lru, &node_page_list);
2556 continue;
2557 }
2558
2559 nr_reclaimed += shrink_page_list(&node_page_list,
2560 NODE_DATA(nid),
013339df 2561 &sc, &dummy_stat, false);
1a4e58cc
MK
2562 while (!list_empty(&node_page_list)) {
2563 page = lru_to_page(&node_page_list);
2564 list_del(&page->lru);
2565 putback_lru_page(page);
2566 }
2567
f661d007 2568 nid = NUMA_NO_NODE;
1a4e58cc
MK
2569 }
2570
2571 if (!list_empty(&node_page_list)) {
2572 nr_reclaimed += shrink_page_list(&node_page_list,
2573 NODE_DATA(nid),
013339df 2574 &sc, &dummy_stat, false);
1a4e58cc
MK
2575 while (!list_empty(&node_page_list)) {
2576 page = lru_to_page(&node_page_list);
2577 list_del(&page->lru);
2578 putback_lru_page(page);
2579 }
2580 }
2581
2d2b8d2b
YZ
2582 memalloc_noreclaim_restore(noreclaim_flag);
2583
1a4e58cc
MK
2584 return nr_reclaimed;
2585}
2586
b91ac374
JW
2587static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2588 struct lruvec *lruvec, struct scan_control *sc)
2589{
2590 if (is_active_lru(lru)) {
2591 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2592 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2593 else
2594 sc->skipped_deactivate = 1;
2595 return 0;
2596 }
2597
2598 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2599}
2600
59dc76b0
RR
2601/*
2602 * The inactive anon list should be small enough that the VM never has
2603 * to do too much work.
14797e23 2604 *
59dc76b0
RR
2605 * The inactive file list should be small enough to leave most memory
2606 * to the established workingset on the scan-resistant active list,
2607 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2608 *
59dc76b0
RR
2609 * Both inactive lists should also be large enough that each inactive
2610 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2611 *
2a2e4885
JW
2612 * If that fails and refaulting is observed, the inactive list grows.
2613 *
59dc76b0 2614 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2615 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2616 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2617 *
59dc76b0
RR
2618 * total target max
2619 * memory ratio inactive
2620 * -------------------------------------
2621 * 10MB 1 5MB
2622 * 100MB 1 50MB
2623 * 1GB 3 250MB
2624 * 10GB 10 0.9GB
2625 * 100GB 31 3GB
2626 * 1TB 101 10GB
2627 * 10TB 320 32GB
56e49d21 2628 */
b91ac374 2629static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2630{
b91ac374 2631 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2632 unsigned long inactive, active;
2633 unsigned long inactive_ratio;
59dc76b0 2634 unsigned long gb;
e3790144 2635
b91ac374
JW
2636 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2637 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2638
b91ac374 2639 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2640 if (gb)
b91ac374
JW
2641 inactive_ratio = int_sqrt(10 * gb);
2642 else
2643 inactive_ratio = 1;
fd538803 2644
59dc76b0 2645 return inactive * inactive_ratio < active;
b39415b2
RR
2646}
2647
9a265114
JW
2648enum scan_balance {
2649 SCAN_EQUAL,
2650 SCAN_FRACT,
2651 SCAN_ANON,
2652 SCAN_FILE,
2653};
2654
4f98a2fe
RR
2655/*
2656 * Determine how aggressively the anon and file LRU lists should be
2657 * scanned. The relative value of each set of LRU lists is determined
2658 * by looking at the fraction of the pages scanned we did rotate back
2659 * onto the active list instead of evict.
2660 *
be7bd59d
WL
2661 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2662 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2663 */
afaf07a6
JW
2664static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2665 unsigned long *nr)
4f98a2fe 2666{
a2a36488 2667 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2668 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2669 unsigned long anon_cost, file_cost, total_cost;
33377678 2670 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2671 u64 fraction[ANON_AND_FILE];
9a265114 2672 u64 denominator = 0; /* gcc */
9a265114 2673 enum scan_balance scan_balance;
4f98a2fe 2674 unsigned long ap, fp;
4111304d 2675 enum lru_list lru;
76a33fc3
SL
2676
2677 /* If we have no swap space, do not bother scanning anon pages. */
a2a36488 2678 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2679 scan_balance = SCAN_FILE;
76a33fc3
SL
2680 goto out;
2681 }
4f98a2fe 2682
10316b31
JW
2683 /*
2684 * Global reclaim will swap to prevent OOM even with no
2685 * swappiness, but memcg users want to use this knob to
2686 * disable swapping for individual groups completely when
2687 * using the memory controller's swap limit feature would be
2688 * too expensive.
2689 */
b5ead35e 2690 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2691 scan_balance = SCAN_FILE;
10316b31
JW
2692 goto out;
2693 }
2694
2695 /*
2696 * Do not apply any pressure balancing cleverness when the
2697 * system is close to OOM, scan both anon and file equally
2698 * (unless the swappiness setting disagrees with swapping).
2699 */
02695175 2700 if (!sc->priority && swappiness) {
9a265114 2701 scan_balance = SCAN_EQUAL;
10316b31
JW
2702 goto out;
2703 }
2704
62376251 2705 /*
53138cea 2706 * If the system is almost out of file pages, force-scan anon.
62376251 2707 */
b91ac374 2708 if (sc->file_is_tiny) {
53138cea
JW
2709 scan_balance = SCAN_ANON;
2710 goto out;
62376251
JW
2711 }
2712
7c5bd705 2713 /*
b91ac374
JW
2714 * If there is enough inactive page cache, we do not reclaim
2715 * anything from the anonymous working right now.
7c5bd705 2716 */
b91ac374 2717 if (sc->cache_trim_mode) {
9a265114 2718 scan_balance = SCAN_FILE;
7c5bd705
JW
2719 goto out;
2720 }
2721
9a265114 2722 scan_balance = SCAN_FRACT;
58c37f6e 2723 /*
314b57fb
JW
2724 * Calculate the pressure balance between anon and file pages.
2725 *
2726 * The amount of pressure we put on each LRU is inversely
2727 * proportional to the cost of reclaiming each list, as
2728 * determined by the share of pages that are refaulting, times
2729 * the relative IO cost of bringing back a swapped out
2730 * anonymous page vs reloading a filesystem page (swappiness).
2731 *
d483a5dd
JW
2732 * Although we limit that influence to ensure no list gets
2733 * left behind completely: at least a third of the pressure is
2734 * applied, before swappiness.
2735 *
314b57fb 2736 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2737 */
d483a5dd
JW
2738 total_cost = sc->anon_cost + sc->file_cost;
2739 anon_cost = total_cost + sc->anon_cost;
2740 file_cost = total_cost + sc->file_cost;
2741 total_cost = anon_cost + file_cost;
58c37f6e 2742
d483a5dd
JW
2743 ap = swappiness * (total_cost + 1);
2744 ap /= anon_cost + 1;
4f98a2fe 2745
d483a5dd
JW
2746 fp = (200 - swappiness) * (total_cost + 1);
2747 fp /= file_cost + 1;
4f98a2fe 2748
76a33fc3
SL
2749 fraction[0] = ap;
2750 fraction[1] = fp;
a4fe1631 2751 denominator = ap + fp;
76a33fc3 2752out:
688035f7
JW
2753 for_each_evictable_lru(lru) {
2754 int file = is_file_lru(lru);
9783aa99 2755 unsigned long lruvec_size;
f56ce412 2756 unsigned long low, min;
688035f7 2757 unsigned long scan;
9783aa99
CD
2758
2759 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2760 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2761 &min, &low);
9783aa99 2762
f56ce412 2763 if (min || low) {
9783aa99
CD
2764 /*
2765 * Scale a cgroup's reclaim pressure by proportioning
2766 * its current usage to its memory.low or memory.min
2767 * setting.
2768 *
2769 * This is important, as otherwise scanning aggression
2770 * becomes extremely binary -- from nothing as we
2771 * approach the memory protection threshold, to totally
2772 * nominal as we exceed it. This results in requiring
2773 * setting extremely liberal protection thresholds. It
2774 * also means we simply get no protection at all if we
2775 * set it too low, which is not ideal.
1bc63fb1
CD
2776 *
2777 * If there is any protection in place, we reduce scan
2778 * pressure by how much of the total memory used is
2779 * within protection thresholds.
9783aa99 2780 *
9de7ca46
CD
2781 * There is one special case: in the first reclaim pass,
2782 * we skip over all groups that are within their low
2783 * protection. If that fails to reclaim enough pages to
2784 * satisfy the reclaim goal, we come back and override
2785 * the best-effort low protection. However, we still
2786 * ideally want to honor how well-behaved groups are in
2787 * that case instead of simply punishing them all
2788 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2789 * memory they are using, reducing the scan pressure
2790 * again by how much of the total memory used is under
2791 * hard protection.
9783aa99 2792 */
1bc63fb1 2793 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
2794 unsigned long protection;
2795
2796 /* memory.low scaling, make sure we retry before OOM */
2797 if (!sc->memcg_low_reclaim && low > min) {
2798 protection = low;
2799 sc->memcg_low_skipped = 1;
2800 } else {
2801 protection = min;
2802 }
1bc63fb1
CD
2803
2804 /* Avoid TOCTOU with earlier protection check */
2805 cgroup_size = max(cgroup_size, protection);
2806
2807 scan = lruvec_size - lruvec_size * protection /
32d4f4b7 2808 (cgroup_size + 1);
9783aa99
CD
2809
2810 /*
1bc63fb1 2811 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2812 * reclaim moving forwards, avoiding decrementing
9de7ca46 2813 * sc->priority further than desirable.
9783aa99 2814 */
1bc63fb1 2815 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2816 } else {
2817 scan = lruvec_size;
2818 }
2819
2820 scan >>= sc->priority;
6b4f7799 2821
688035f7
JW
2822 /*
2823 * If the cgroup's already been deleted, make sure to
2824 * scrape out the remaining cache.
2825 */
2826 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2827 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2828
688035f7
JW
2829 switch (scan_balance) {
2830 case SCAN_EQUAL:
2831 /* Scan lists relative to size */
2832 break;
2833 case SCAN_FRACT:
9a265114 2834 /*
688035f7
JW
2835 * Scan types proportional to swappiness and
2836 * their relative recent reclaim efficiency.
76073c64
GS
2837 * Make sure we don't miss the last page on
2838 * the offlined memory cgroups because of a
2839 * round-off error.
9a265114 2840 */
76073c64
GS
2841 scan = mem_cgroup_online(memcg) ?
2842 div64_u64(scan * fraction[file], denominator) :
2843 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2844 denominator);
688035f7
JW
2845 break;
2846 case SCAN_FILE:
2847 case SCAN_ANON:
2848 /* Scan one type exclusively */
e072bff6 2849 if ((scan_balance == SCAN_FILE) != file)
688035f7 2850 scan = 0;
688035f7
JW
2851 break;
2852 default:
2853 /* Look ma, no brain */
2854 BUG();
9a265114 2855 }
688035f7 2856
688035f7 2857 nr[lru] = scan;
76a33fc3 2858 }
6e08a369 2859}
4f98a2fe 2860
2f368a9f
DH
2861/*
2862 * Anonymous LRU management is a waste if there is
2863 * ultimately no way to reclaim the memory.
2864 */
2865static bool can_age_anon_pages(struct pglist_data *pgdat,
2866 struct scan_control *sc)
2867{
2868 /* Aging the anon LRU is valuable if swap is present: */
2869 if (total_swap_pages > 0)
2870 return true;
2871
2872 /* Also valuable if anon pages can be demoted: */
2873 return can_demote(pgdat->node_id, sc);
2874}
2875
afaf07a6 2876static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2877{
2878 unsigned long nr[NR_LRU_LISTS];
e82e0561 2879 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2880 unsigned long nr_to_scan;
2881 enum lru_list lru;
2882 unsigned long nr_reclaimed = 0;
2883 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2884 struct blk_plug plug;
1a501907 2885 bool scan_adjusted;
9b4f98cd 2886
afaf07a6 2887 get_scan_count(lruvec, sc, nr);
9b4f98cd 2888
e82e0561
MG
2889 /* Record the original scan target for proportional adjustments later */
2890 memcpy(targets, nr, sizeof(nr));
2891
1a501907
MG
2892 /*
2893 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2894 * event that can occur when there is little memory pressure e.g.
2895 * multiple streaming readers/writers. Hence, we do not abort scanning
2896 * when the requested number of pages are reclaimed when scanning at
2897 * DEF_PRIORITY on the assumption that the fact we are direct
2898 * reclaiming implies that kswapd is not keeping up and it is best to
2899 * do a batch of work at once. For memcg reclaim one check is made to
2900 * abort proportional reclaim if either the file or anon lru has already
2901 * dropped to zero at the first pass.
2902 */
b5ead35e 2903 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2904 sc->priority == DEF_PRIORITY);
2905
9b4f98cd
JW
2906 blk_start_plug(&plug);
2907 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2908 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2909 unsigned long nr_anon, nr_file, percentage;
2910 unsigned long nr_scanned;
2911
9b4f98cd
JW
2912 for_each_evictable_lru(lru) {
2913 if (nr[lru]) {
2914 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2915 nr[lru] -= nr_to_scan;
2916
2917 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2918 lruvec, sc);
9b4f98cd
JW
2919 }
2920 }
e82e0561 2921
bd041733
MH
2922 cond_resched();
2923
e82e0561
MG
2924 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2925 continue;
2926
e82e0561
MG
2927 /*
2928 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2929 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2930 * proportionally what was requested by get_scan_count(). We
2931 * stop reclaiming one LRU and reduce the amount scanning
2932 * proportional to the original scan target.
2933 */
2934 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2935 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2936
1a501907
MG
2937 /*
2938 * It's just vindictive to attack the larger once the smaller
2939 * has gone to zero. And given the way we stop scanning the
2940 * smaller below, this makes sure that we only make one nudge
2941 * towards proportionality once we've got nr_to_reclaim.
2942 */
2943 if (!nr_file || !nr_anon)
2944 break;
2945
e82e0561
MG
2946 if (nr_file > nr_anon) {
2947 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2948 targets[LRU_ACTIVE_ANON] + 1;
2949 lru = LRU_BASE;
2950 percentage = nr_anon * 100 / scan_target;
2951 } else {
2952 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2953 targets[LRU_ACTIVE_FILE] + 1;
2954 lru = LRU_FILE;
2955 percentage = nr_file * 100 / scan_target;
2956 }
2957
2958 /* Stop scanning the smaller of the LRU */
2959 nr[lru] = 0;
2960 nr[lru + LRU_ACTIVE] = 0;
2961
2962 /*
2963 * Recalculate the other LRU scan count based on its original
2964 * scan target and the percentage scanning already complete
2965 */
2966 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2967 nr_scanned = targets[lru] - nr[lru];
2968 nr[lru] = targets[lru] * (100 - percentage) / 100;
2969 nr[lru] -= min(nr[lru], nr_scanned);
2970
2971 lru += LRU_ACTIVE;
2972 nr_scanned = targets[lru] - nr[lru];
2973 nr[lru] = targets[lru] * (100 - percentage) / 100;
2974 nr[lru] -= min(nr[lru], nr_scanned);
2975
2976 scan_adjusted = true;
9b4f98cd
JW
2977 }
2978 blk_finish_plug(&plug);
2979 sc->nr_reclaimed += nr_reclaimed;
2980
2981 /*
2982 * Even if we did not try to evict anon pages at all, we want to
2983 * rebalance the anon lru active/inactive ratio.
2984 */
2f368a9f
DH
2985 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2986 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
2987 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2988 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2989}
2990
23b9da55 2991/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2992static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2993{
d84da3f9 2994 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2995 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2996 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2997 return true;
2998
2999 return false;
3000}
3001
3e7d3449 3002/*
23b9da55
MG
3003 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3004 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3005 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 3006 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 3007 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 3008 */
a9dd0a83 3009static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 3010 unsigned long nr_reclaimed,
3e7d3449
MG
3011 struct scan_control *sc)
3012{
3013 unsigned long pages_for_compaction;
3014 unsigned long inactive_lru_pages;
a9dd0a83 3015 int z;
3e7d3449
MG
3016
3017 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 3018 if (!in_reclaim_compaction(sc))
3e7d3449
MG
3019 return false;
3020
5ee04716
VB
3021 /*
3022 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3023 * number of pages that were scanned. This will return to the caller
3024 * with the risk reclaim/compaction and the resulting allocation attempt
3025 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3026 * allocations through requiring that the full LRU list has been scanned
3027 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3028 * scan, but that approximation was wrong, and there were corner cases
3029 * where always a non-zero amount of pages were scanned.
3030 */
3031 if (!nr_reclaimed)
3032 return false;
3e7d3449 3033
3e7d3449 3034 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
3035 for (z = 0; z <= sc->reclaim_idx; z++) {
3036 struct zone *zone = &pgdat->node_zones[z];
6aa303de 3037 if (!managed_zone(zone))
a9dd0a83
MG
3038 continue;
3039
3040 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 3041 case COMPACT_SUCCESS:
a9dd0a83
MG
3042 case COMPACT_CONTINUE:
3043 return false;
3044 default:
3045 /* check next zone */
3046 ;
3047 }
3e7d3449 3048 }
1c6c1597
HD
3049
3050 /*
3051 * If we have not reclaimed enough pages for compaction and the
3052 * inactive lists are large enough, continue reclaiming
3053 */
3054 pages_for_compaction = compact_gap(sc->order);
3055 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 3056 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
3057 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3058
5ee04716 3059 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
3060}
3061
0f6a5cff 3062static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 3063{
0f6a5cff 3064 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 3065 struct mem_cgroup *memcg;
1da177e4 3066
0f6a5cff 3067 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 3068 do {
afaf07a6 3069 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
3070 unsigned long reclaimed;
3071 unsigned long scanned;
5660048c 3072
e3336cab
XP
3073 /*
3074 * This loop can become CPU-bound when target memcgs
3075 * aren't eligible for reclaim - either because they
3076 * don't have any reclaimable pages, or because their
3077 * memory is explicitly protected. Avoid soft lockups.
3078 */
3079 cond_resched();
3080
45c7f7e1
CD
3081 mem_cgroup_calculate_protection(target_memcg, memcg);
3082
3083 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
3084 /*
3085 * Hard protection.
3086 * If there is no reclaimable memory, OOM.
3087 */
3088 continue;
45c7f7e1 3089 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
3090 /*
3091 * Soft protection.
3092 * Respect the protection only as long as
3093 * there is an unprotected supply
3094 * of reclaimable memory from other cgroups.
3095 */
3096 if (!sc->memcg_low_reclaim) {
3097 sc->memcg_low_skipped = 1;
bf8d5d52 3098 continue;
241994ed 3099 }
d2af3397 3100 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 3101 }
241994ed 3102
d2af3397
JW
3103 reclaimed = sc->nr_reclaimed;
3104 scanned = sc->nr_scanned;
afaf07a6
JW
3105
3106 shrink_lruvec(lruvec, sc);
70ddf637 3107
d2af3397
JW
3108 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3109 sc->priority);
6b4f7799 3110
d2af3397
JW
3111 /* Record the group's reclaim efficiency */
3112 vmpressure(sc->gfp_mask, memcg, false,
3113 sc->nr_scanned - scanned,
3114 sc->nr_reclaimed - reclaimed);
70ddf637 3115
0f6a5cff
JW
3116 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3117}
3118
6c9e0907 3119static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
3120{
3121 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 3122 unsigned long nr_reclaimed, nr_scanned;
1b05117d 3123 struct lruvec *target_lruvec;
0f6a5cff 3124 bool reclaimable = false;
b91ac374 3125 unsigned long file;
0f6a5cff 3126
1b05117d
JW
3127 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3128
0f6a5cff 3129again:
aa48e47e
SB
3130 /*
3131 * Flush the memory cgroup stats, so that we read accurate per-memcg
3132 * lruvec stats for heuristics.
3133 */
3134 mem_cgroup_flush_stats();
3135
0f6a5cff
JW
3136 memset(&sc->nr, 0, sizeof(sc->nr));
3137
3138 nr_reclaimed = sc->nr_reclaimed;
3139 nr_scanned = sc->nr_scanned;
3140
7cf111bc
JW
3141 /*
3142 * Determine the scan balance between anon and file LRUs.
3143 */
6168d0da 3144 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
3145 sc->anon_cost = target_lruvec->anon_cost;
3146 sc->file_cost = target_lruvec->file_cost;
6168d0da 3147 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 3148
b91ac374
JW
3149 /*
3150 * Target desirable inactive:active list ratios for the anon
3151 * and file LRU lists.
3152 */
3153 if (!sc->force_deactivate) {
3154 unsigned long refaults;
3155
170b04b7
JK
3156 refaults = lruvec_page_state(target_lruvec,
3157 WORKINGSET_ACTIVATE_ANON);
3158 if (refaults != target_lruvec->refaults[0] ||
3159 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
3160 sc->may_deactivate |= DEACTIVATE_ANON;
3161 else
3162 sc->may_deactivate &= ~DEACTIVATE_ANON;
3163
3164 /*
3165 * When refaults are being observed, it means a new
3166 * workingset is being established. Deactivate to get
3167 * rid of any stale active pages quickly.
3168 */
3169 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
3170 WORKINGSET_ACTIVATE_FILE);
3171 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
3172 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3173 sc->may_deactivate |= DEACTIVATE_FILE;
3174 else
3175 sc->may_deactivate &= ~DEACTIVATE_FILE;
3176 } else
3177 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3178
3179 /*
3180 * If we have plenty of inactive file pages that aren't
3181 * thrashing, try to reclaim those first before touching
3182 * anonymous pages.
3183 */
3184 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3185 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3186 sc->cache_trim_mode = 1;
3187 else
3188 sc->cache_trim_mode = 0;
3189
53138cea
JW
3190 /*
3191 * Prevent the reclaimer from falling into the cache trap: as
3192 * cache pages start out inactive, every cache fault will tip
3193 * the scan balance towards the file LRU. And as the file LRU
3194 * shrinks, so does the window for rotation from references.
3195 * This means we have a runaway feedback loop where a tiny
3196 * thrashing file LRU becomes infinitely more attractive than
3197 * anon pages. Try to detect this based on file LRU size.
3198 */
3199 if (!cgroup_reclaim(sc)) {
53138cea 3200 unsigned long total_high_wmark = 0;
b91ac374
JW
3201 unsigned long free, anon;
3202 int z;
53138cea
JW
3203
3204 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3205 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3206 node_page_state(pgdat, NR_INACTIVE_FILE);
3207
3208 for (z = 0; z < MAX_NR_ZONES; z++) {
3209 struct zone *zone = &pgdat->node_zones[z];
3210 if (!managed_zone(zone))
3211 continue;
3212
3213 total_high_wmark += high_wmark_pages(zone);
3214 }
3215
b91ac374
JW
3216 /*
3217 * Consider anon: if that's low too, this isn't a
3218 * runaway file reclaim problem, but rather just
3219 * extreme pressure. Reclaim as per usual then.
3220 */
3221 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3222
3223 sc->file_is_tiny =
3224 file + free <= total_high_wmark &&
3225 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3226 anon >> sc->priority;
53138cea
JW
3227 }
3228
0f6a5cff 3229 shrink_node_memcgs(pgdat, sc);
2344d7e4 3230
d2af3397
JW
3231 if (reclaim_state) {
3232 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3233 reclaim_state->reclaimed_slab = 0;
3234 }
d108c772 3235
d2af3397 3236 /* Record the subtree's reclaim efficiency */
1b05117d 3237 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
3238 sc->nr_scanned - nr_scanned,
3239 sc->nr_reclaimed - nr_reclaimed);
d108c772 3240
d2af3397
JW
3241 if (sc->nr_reclaimed - nr_reclaimed)
3242 reclaimable = true;
d108c772 3243
d2af3397
JW
3244 if (current_is_kswapd()) {
3245 /*
3246 * If reclaim is isolating dirty pages under writeback,
3247 * it implies that the long-lived page allocation rate
3248 * is exceeding the page laundering rate. Either the
3249 * global limits are not being effective at throttling
3250 * processes due to the page distribution throughout
3251 * zones or there is heavy usage of a slow backing
3252 * device. The only option is to throttle from reclaim
3253 * context which is not ideal as there is no guarantee
3254 * the dirtying process is throttled in the same way
3255 * balance_dirty_pages() manages.
3256 *
3257 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3258 * count the number of pages under pages flagged for
3259 * immediate reclaim and stall if any are encountered
3260 * in the nr_immediate check below.
3261 */
3262 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3263 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 3264
d2af3397
JW
3265 /* Allow kswapd to start writing pages during reclaim.*/
3266 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3267 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 3268
d108c772 3269 /*
1eba09c1 3270 * If kswapd scans pages marked for immediate
d2af3397
JW
3271 * reclaim and under writeback (nr_immediate), it
3272 * implies that pages are cycling through the LRU
8cd7c588
MG
3273 * faster than they are written so forcibly stall
3274 * until some pages complete writeback.
d108c772 3275 */
d2af3397 3276 if (sc->nr.immediate)
c3f4a9a2 3277 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d2af3397
JW
3278 }
3279
3280 /*
8cd7c588
MG
3281 * Tag a node/memcg as congested if all the dirty pages were marked
3282 * for writeback and immediate reclaim (counted in nr.congested).
1b05117d 3283 *
d2af3397 3284 * Legacy memcg will stall in page writeback so avoid forcibly
8cd7c588 3285 * stalling in reclaim_throttle().
d2af3397 3286 */
1b05117d
JW
3287 if ((current_is_kswapd() ||
3288 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 3289 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 3290 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
3291
3292 /*
8cd7c588
MG
3293 * Stall direct reclaim for IO completions if the lruvec is
3294 * node is congested. Allow kswapd to continue until it
d2af3397
JW
3295 * starts encountering unqueued dirty pages or cycling through
3296 * the LRU too quickly.
3297 */
1b05117d
JW
3298 if (!current_is_kswapd() && current_may_throttle() &&
3299 !sc->hibernation_mode &&
3300 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
c3f4a9a2 3301 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d108c772 3302
d2af3397
JW
3303 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3304 sc))
3305 goto again;
2344d7e4 3306
c73322d0
JW
3307 /*
3308 * Kswapd gives up on balancing particular nodes after too
3309 * many failures to reclaim anything from them and goes to
3310 * sleep. On reclaim progress, reset the failure counter. A
3311 * successful direct reclaim run will revive a dormant kswapd.
3312 */
3313 if (reclaimable)
3314 pgdat->kswapd_failures = 0;
f16015fb
JW
3315}
3316
53853e2d 3317/*
fdd4c614
VB
3318 * Returns true if compaction should go ahead for a costly-order request, or
3319 * the allocation would already succeed without compaction. Return false if we
3320 * should reclaim first.
53853e2d 3321 */
4f588331 3322static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 3323{
31483b6a 3324 unsigned long watermark;
fdd4c614 3325 enum compact_result suitable;
fe4b1b24 3326
fdd4c614
VB
3327 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3328 if (suitable == COMPACT_SUCCESS)
3329 /* Allocation should succeed already. Don't reclaim. */
3330 return true;
3331 if (suitable == COMPACT_SKIPPED)
3332 /* Compaction cannot yet proceed. Do reclaim. */
3333 return false;
fe4b1b24 3334
53853e2d 3335 /*
fdd4c614
VB
3336 * Compaction is already possible, but it takes time to run and there
3337 * are potentially other callers using the pages just freed. So proceed
3338 * with reclaim to make a buffer of free pages available to give
3339 * compaction a reasonable chance of completing and allocating the page.
3340 * Note that we won't actually reclaim the whole buffer in one attempt
3341 * as the target watermark in should_continue_reclaim() is lower. But if
3342 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 3343 */
fdd4c614 3344 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 3345
fdd4c614 3346 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
3347}
3348
69392a40
MG
3349static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3350{
66ce520b
MG
3351 /*
3352 * If reclaim is making progress greater than 12% efficiency then
3353 * wake all the NOPROGRESS throttled tasks.
3354 */
3355 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
69392a40
MG
3356 wait_queue_head_t *wqh;
3357
3358 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3359 if (waitqueue_active(wqh))
3360 wake_up(wqh);
3361
3362 return;
3363 }
3364
3365 /*
3366 * Do not throttle kswapd on NOPROGRESS as it will throttle on
3367 * VMSCAN_THROTTLE_WRITEBACK if there are too many pages under
3368 * writeback and marked for immediate reclaim at the tail of
3369 * the LRU.
3370 */
3371 if (current_is_kswapd())
3372 return;
3373
3374 /* Throttle if making no progress at high prioities. */
3375 if (sc->priority < DEF_PRIORITY - 2)
c3f4a9a2 3376 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
69392a40
MG
3377}
3378
1da177e4
LT
3379/*
3380 * This is the direct reclaim path, for page-allocating processes. We only
3381 * try to reclaim pages from zones which will satisfy the caller's allocation
3382 * request.
3383 *
1da177e4
LT
3384 * If a zone is deemed to be full of pinned pages then just give it a light
3385 * scan then give up on it.
3386 */
0a0337e0 3387static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 3388{
dd1a239f 3389 struct zoneref *z;
54a6eb5c 3390 struct zone *zone;
0608f43d
AM
3391 unsigned long nr_soft_reclaimed;
3392 unsigned long nr_soft_scanned;
619d0d76 3393 gfp_t orig_mask;
79dafcdc 3394 pg_data_t *last_pgdat = NULL;
1cfb419b 3395
cc715d99
MG
3396 /*
3397 * If the number of buffer_heads in the machine exceeds the maximum
3398 * allowed level, force direct reclaim to scan the highmem zone as
3399 * highmem pages could be pinning lowmem pages storing buffer_heads
3400 */
619d0d76 3401 orig_mask = sc->gfp_mask;
b2e18757 3402 if (buffer_heads_over_limit) {
cc715d99 3403 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 3404 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 3405 }
cc715d99 3406
d4debc66 3407 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 3408 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
3409 /*
3410 * Take care memory controller reclaiming has small influence
3411 * to global LRU.
3412 */
b5ead35e 3413 if (!cgroup_reclaim(sc)) {
344736f2
VD
3414 if (!cpuset_zone_allowed(zone,
3415 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3416 continue;
65ec02cb 3417
0b06496a
JW
3418 /*
3419 * If we already have plenty of memory free for
3420 * compaction in this zone, don't free any more.
3421 * Even though compaction is invoked for any
3422 * non-zero order, only frequent costly order
3423 * reclamation is disruptive enough to become a
3424 * noticeable problem, like transparent huge
3425 * page allocations.
3426 */
3427 if (IS_ENABLED(CONFIG_COMPACTION) &&
3428 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3429 compaction_ready(zone, sc)) {
0b06496a
JW
3430 sc->compaction_ready = true;
3431 continue;
e0887c19 3432 }
0b06496a 3433
79dafcdc
MG
3434 /*
3435 * Shrink each node in the zonelist once. If the
3436 * zonelist is ordered by zone (not the default) then a
3437 * node may be shrunk multiple times but in that case
3438 * the user prefers lower zones being preserved.
3439 */
3440 if (zone->zone_pgdat == last_pgdat)
3441 continue;
3442
0608f43d
AM
3443 /*
3444 * This steals pages from memory cgroups over softlimit
3445 * and returns the number of reclaimed pages and
3446 * scanned pages. This works for global memory pressure
3447 * and balancing, not for a memcg's limit.
3448 */
3449 nr_soft_scanned = 0;
ef8f2327 3450 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3451 sc->order, sc->gfp_mask,
3452 &nr_soft_scanned);
3453 sc->nr_reclaimed += nr_soft_reclaimed;
3454 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3455 /* need some check for avoid more shrink_zone() */
1cfb419b 3456 }
408d8544 3457
79dafcdc
MG
3458 /* See comment about same check for global reclaim above */
3459 if (zone->zone_pgdat == last_pgdat)
3460 continue;
3461 last_pgdat = zone->zone_pgdat;
970a39a3 3462 shrink_node(zone->zone_pgdat, sc);
69392a40 3463 consider_reclaim_throttle(zone->zone_pgdat, sc);
1da177e4 3464 }
e0c23279 3465
619d0d76
WY
3466 /*
3467 * Restore to original mask to avoid the impact on the caller if we
3468 * promoted it to __GFP_HIGHMEM.
3469 */
3470 sc->gfp_mask = orig_mask;
1da177e4 3471}
4f98a2fe 3472
b910718a 3473static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3474{
b910718a
JW
3475 struct lruvec *target_lruvec;
3476 unsigned long refaults;
2a2e4885 3477
b910718a 3478 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
3479 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3480 target_lruvec->refaults[0] = refaults;
3481 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3482 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
3483}
3484
1da177e4
LT
3485/*
3486 * This is the main entry point to direct page reclaim.
3487 *
3488 * If a full scan of the inactive list fails to free enough memory then we
3489 * are "out of memory" and something needs to be killed.
3490 *
3491 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3492 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3493 * caller can't do much about. We kick the writeback threads and take explicit
3494 * naps in the hope that some of these pages can be written. But if the
3495 * allocating task holds filesystem locks which prevent writeout this might not
3496 * work, and the allocation attempt will fail.
a41f24ea
NA
3497 *
3498 * returns: 0, if no pages reclaimed
3499 * else, the number of pages reclaimed
1da177e4 3500 */
dac1d27b 3501static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3502 struct scan_control *sc)
1da177e4 3503{
241994ed 3504 int initial_priority = sc->priority;
2a2e4885
JW
3505 pg_data_t *last_pgdat;
3506 struct zoneref *z;
3507 struct zone *zone;
241994ed 3508retry:
873b4771
KK
3509 delayacct_freepages_start();
3510
b5ead35e 3511 if (!cgroup_reclaim(sc))
7cc30fcf 3512 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3513
9e3b2f8c 3514 do {
70ddf637
AV
3515 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3516 sc->priority);
66e1707b 3517 sc->nr_scanned = 0;
0a0337e0 3518 shrink_zones(zonelist, sc);
c6a8a8c5 3519
bb21c7ce 3520 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3521 break;
3522
3523 if (sc->compaction_ready)
3524 break;
1da177e4 3525
0e50ce3b
MK
3526 /*
3527 * If we're getting trouble reclaiming, start doing
3528 * writepage even in laptop mode.
3529 */
3530 if (sc->priority < DEF_PRIORITY - 2)
3531 sc->may_writepage = 1;
0b06496a 3532 } while (--sc->priority >= 0);
bb21c7ce 3533
2a2e4885
JW
3534 last_pgdat = NULL;
3535 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3536 sc->nodemask) {
3537 if (zone->zone_pgdat == last_pgdat)
3538 continue;
3539 last_pgdat = zone->zone_pgdat;
1b05117d 3540
2a2e4885 3541 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3542
3543 if (cgroup_reclaim(sc)) {
3544 struct lruvec *lruvec;
3545
3546 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3547 zone->zone_pgdat);
3548 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3549 }
2a2e4885
JW
3550 }
3551
873b4771
KK
3552 delayacct_freepages_end();
3553
bb21c7ce
KM
3554 if (sc->nr_reclaimed)
3555 return sc->nr_reclaimed;
3556
0cee34fd 3557 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3558 if (sc->compaction_ready)
7335084d
MG
3559 return 1;
3560
b91ac374
JW
3561 /*
3562 * We make inactive:active ratio decisions based on the node's
3563 * composition of memory, but a restrictive reclaim_idx or a
3564 * memory.low cgroup setting can exempt large amounts of
3565 * memory from reclaim. Neither of which are very common, so
3566 * instead of doing costly eligibility calculations of the
3567 * entire cgroup subtree up front, we assume the estimates are
3568 * good, and retry with forcible deactivation if that fails.
3569 */
3570 if (sc->skipped_deactivate) {
3571 sc->priority = initial_priority;
3572 sc->force_deactivate = 1;
3573 sc->skipped_deactivate = 0;
3574 goto retry;
3575 }
3576
241994ed 3577 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3578 if (sc->memcg_low_skipped) {
241994ed 3579 sc->priority = initial_priority;
b91ac374 3580 sc->force_deactivate = 0;
d6622f63
YX
3581 sc->memcg_low_reclaim = 1;
3582 sc->memcg_low_skipped = 0;
241994ed
JW
3583 goto retry;
3584 }
3585
bb21c7ce 3586 return 0;
1da177e4
LT
3587}
3588
c73322d0 3589static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3590{
3591 struct zone *zone;
3592 unsigned long pfmemalloc_reserve = 0;
3593 unsigned long free_pages = 0;
3594 int i;
3595 bool wmark_ok;
3596
c73322d0
JW
3597 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3598 return true;
3599
5515061d
MG
3600 for (i = 0; i <= ZONE_NORMAL; i++) {
3601 zone = &pgdat->node_zones[i];
d450abd8
JW
3602 if (!managed_zone(zone))
3603 continue;
3604
3605 if (!zone_reclaimable_pages(zone))
675becce
MG
3606 continue;
3607
5515061d
MG
3608 pfmemalloc_reserve += min_wmark_pages(zone);
3609 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3610 }
3611
675becce
MG
3612 /* If there are no reserves (unexpected config) then do not throttle */
3613 if (!pfmemalloc_reserve)
3614 return true;
3615
5515061d
MG
3616 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3617
3618 /* kswapd must be awake if processes are being throttled */
3619 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3620 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3621 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3622
5515061d
MG
3623 wake_up_interruptible(&pgdat->kswapd_wait);
3624 }
3625
3626 return wmark_ok;
3627}
3628
3629/*
3630 * Throttle direct reclaimers if backing storage is backed by the network
3631 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3632 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3633 * when the low watermark is reached.
3634 *
3635 * Returns true if a fatal signal was delivered during throttling. If this
3636 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3637 */
50694c28 3638static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3639 nodemask_t *nodemask)
3640{
675becce 3641 struct zoneref *z;
5515061d 3642 struct zone *zone;
675becce 3643 pg_data_t *pgdat = NULL;
5515061d
MG
3644
3645 /*
3646 * Kernel threads should not be throttled as they may be indirectly
3647 * responsible for cleaning pages necessary for reclaim to make forward
3648 * progress. kjournald for example may enter direct reclaim while
3649 * committing a transaction where throttling it could forcing other
3650 * processes to block on log_wait_commit().
3651 */
3652 if (current->flags & PF_KTHREAD)
50694c28
MG
3653 goto out;
3654
3655 /*
3656 * If a fatal signal is pending, this process should not throttle.
3657 * It should return quickly so it can exit and free its memory
3658 */
3659 if (fatal_signal_pending(current))
3660 goto out;
5515061d 3661
675becce
MG
3662 /*
3663 * Check if the pfmemalloc reserves are ok by finding the first node
3664 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3665 * GFP_KERNEL will be required for allocating network buffers when
3666 * swapping over the network so ZONE_HIGHMEM is unusable.
3667 *
3668 * Throttling is based on the first usable node and throttled processes
3669 * wait on a queue until kswapd makes progress and wakes them. There
3670 * is an affinity then between processes waking up and where reclaim
3671 * progress has been made assuming the process wakes on the same node.
3672 * More importantly, processes running on remote nodes will not compete
3673 * for remote pfmemalloc reserves and processes on different nodes
3674 * should make reasonable progress.
3675 */
3676 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3677 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3678 if (zone_idx(zone) > ZONE_NORMAL)
3679 continue;
3680
3681 /* Throttle based on the first usable node */
3682 pgdat = zone->zone_pgdat;
c73322d0 3683 if (allow_direct_reclaim(pgdat))
675becce
MG
3684 goto out;
3685 break;
3686 }
3687
3688 /* If no zone was usable by the allocation flags then do not throttle */
3689 if (!pgdat)
50694c28 3690 goto out;
5515061d 3691
68243e76
MG
3692 /* Account for the throttling */
3693 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3694
5515061d
MG
3695 /*
3696 * If the caller cannot enter the filesystem, it's possible that it
3697 * is due to the caller holding an FS lock or performing a journal
3698 * transaction in the case of a filesystem like ext[3|4]. In this case,
3699 * it is not safe to block on pfmemalloc_wait as kswapd could be
3700 * blocked waiting on the same lock. Instead, throttle for up to a
3701 * second before continuing.
3702 */
2e786d9e 3703 if (!(gfp_mask & __GFP_FS))
5515061d 3704 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3705 allow_direct_reclaim(pgdat), HZ);
2e786d9e
ML
3706 else
3707 /* Throttle until kswapd wakes the process */
3708 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3709 allow_direct_reclaim(pgdat));
50694c28 3710
50694c28
MG
3711 if (fatal_signal_pending(current))
3712 return true;
3713
3714out:
3715 return false;
5515061d
MG
3716}
3717
dac1d27b 3718unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3719 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3720{
33906bc5 3721 unsigned long nr_reclaimed;
66e1707b 3722 struct scan_control sc = {
ee814fe2 3723 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3724 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3725 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3726 .order = order,
3727 .nodemask = nodemask,
3728 .priority = DEF_PRIORITY,
66e1707b 3729 .may_writepage = !laptop_mode,
a6dc60f8 3730 .may_unmap = 1,
2e2e4259 3731 .may_swap = 1,
66e1707b
BS
3732 };
3733
bb451fdf
GT
3734 /*
3735 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3736 * Confirm they are large enough for max values.
3737 */
3738 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3739 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3740 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3741
5515061d 3742 /*
50694c28
MG
3743 * Do not enter reclaim if fatal signal was delivered while throttled.
3744 * 1 is returned so that the page allocator does not OOM kill at this
3745 * point.
5515061d 3746 */
f2f43e56 3747 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3748 return 1;
3749
1732d2b0 3750 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3751 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3752
3115cd91 3753 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3754
3755 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3756 set_task_reclaim_state(current, NULL);
33906bc5
MG
3757
3758 return nr_reclaimed;
66e1707b
BS
3759}
3760
c255a458 3761#ifdef CONFIG_MEMCG
66e1707b 3762
d2e5fb92 3763/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3764unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3765 gfp_t gfp_mask, bool noswap,
ef8f2327 3766 pg_data_t *pgdat,
0ae5e89c 3767 unsigned long *nr_scanned)
4e416953 3768{
afaf07a6 3769 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3770 struct scan_control sc = {
b8f5c566 3771 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3772 .target_mem_cgroup = memcg,
4e416953
BS
3773 .may_writepage = !laptop_mode,
3774 .may_unmap = 1,
b2e18757 3775 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3776 .may_swap = !noswap,
4e416953 3777 };
0ae5e89c 3778
d2e5fb92
MH
3779 WARN_ON_ONCE(!current->reclaim_state);
3780
4e416953
BS
3781 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3782 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3783
9e3b2f8c 3784 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3785 sc.gfp_mask);
bdce6d9e 3786
4e416953
BS
3787 /*
3788 * NOTE: Although we can get the priority field, using it
3789 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3790 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3791 * will pick up pages from other mem cgroup's as well. We hack
3792 * the priority and make it zero.
3793 */
afaf07a6 3794 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3795
3796 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3797
0ae5e89c 3798 *nr_scanned = sc.nr_scanned;
0308f7cf 3799
4e416953
BS
3800 return sc.nr_reclaimed;
3801}
3802
72835c86 3803unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3804 unsigned long nr_pages,
a7885eb8 3805 gfp_t gfp_mask,
b70a2a21 3806 bool may_swap)
66e1707b 3807{
bdce6d9e 3808 unsigned long nr_reclaimed;
499118e9 3809 unsigned int noreclaim_flag;
66e1707b 3810 struct scan_control sc = {
b70a2a21 3811 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3812 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3813 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3814 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3815 .target_mem_cgroup = memcg,
3816 .priority = DEF_PRIORITY,
3817 .may_writepage = !laptop_mode,
3818 .may_unmap = 1,
b70a2a21 3819 .may_swap = may_swap,
a09ed5e0 3820 };
889976db 3821 /*
fa40d1ee
SB
3822 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3823 * equal pressure on all the nodes. This is based on the assumption that
3824 * the reclaim does not bail out early.
889976db 3825 */
fa40d1ee 3826 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3827
fa40d1ee 3828 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3829 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3830 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3831
3115cd91 3832 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3833
499118e9 3834 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3835 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3836 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3837
3838 return nr_reclaimed;
66e1707b
BS
3839}
3840#endif
3841
1d82de61 3842static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3843 struct scan_control *sc)
f16015fb 3844{
b95a2f2d 3845 struct mem_cgroup *memcg;
b91ac374 3846 struct lruvec *lruvec;
f16015fb 3847
2f368a9f 3848 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
3849 return;
3850
b91ac374
JW
3851 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3852 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3853 return;
3854
b95a2f2d
JW
3855 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3856 do {
b91ac374
JW
3857 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3858 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3859 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3860 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3861 } while (memcg);
f16015fb
JW
3862}
3863
97a225e6 3864static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3865{
3866 int i;
3867 struct zone *zone;
3868
3869 /*
3870 * Check for watermark boosts top-down as the higher zones
3871 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3872 * should not be checked at the same time as reclaim would
1c30844d
MG
3873 * start prematurely when there is no boosting and a lower
3874 * zone is balanced.
3875 */
97a225e6 3876 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3877 zone = pgdat->node_zones + i;
3878 if (!managed_zone(zone))
3879 continue;
3880
3881 if (zone->watermark_boost)
3882 return true;
3883 }
3884
3885 return false;
3886}
3887
e716f2eb
MG
3888/*
3889 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3890 * and highest_zoneidx
e716f2eb 3891 */
97a225e6 3892static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3893{
e716f2eb
MG
3894 int i;
3895 unsigned long mark = -1;
3896 struct zone *zone;
60cefed4 3897
1c30844d
MG
3898 /*
3899 * Check watermarks bottom-up as lower zones are more likely to
3900 * meet watermarks.
3901 */
97a225e6 3902 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3903 zone = pgdat->node_zones + i;
6256c6b4 3904
e716f2eb
MG
3905 if (!managed_zone(zone))
3906 continue;
3907
3908 mark = high_wmark_pages(zone);
97a225e6 3909 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3910 return true;
3911 }
3912
3913 /*
97a225e6 3914 * If a node has no populated zone within highest_zoneidx, it does not
e716f2eb
MG
3915 * need balancing by definition. This can happen if a zone-restricted
3916 * allocation tries to wake a remote kswapd.
3917 */
3918 if (mark == -1)
3919 return true;
3920
3921 return false;
60cefed4
JW
3922}
3923
631b6e08
MG
3924/* Clear pgdat state for congested, dirty or under writeback. */
3925static void clear_pgdat_congested(pg_data_t *pgdat)
3926{
1b05117d
JW
3927 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3928
3929 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3930 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3931 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3932}
3933
5515061d
MG
3934/*
3935 * Prepare kswapd for sleeping. This verifies that there are no processes
3936 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3937 *
3938 * Returns true if kswapd is ready to sleep
3939 */
97a225e6
JK
3940static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3941 int highest_zoneidx)
f50de2d3 3942{
5515061d 3943 /*
9e5e3661 3944 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3945 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3946 * race between when kswapd checks the watermarks and a process gets
3947 * throttled. There is also a potential race if processes get
3948 * throttled, kswapd wakes, a large process exits thereby balancing the
3949 * zones, which causes kswapd to exit balance_pgdat() before reaching
3950 * the wake up checks. If kswapd is going to sleep, no process should
3951 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3952 * the wake up is premature, processes will wake kswapd and get
3953 * throttled again. The difference from wake ups in balance_pgdat() is
3954 * that here we are under prepare_to_wait().
5515061d 3955 */
9e5e3661
VB
3956 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3957 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3958
c73322d0
JW
3959 /* Hopeless node, leave it to direct reclaim */
3960 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3961 return true;
3962
97a225e6 3963 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
3964 clear_pgdat_congested(pgdat);
3965 return true;
1d82de61
MG
3966 }
3967
333b0a45 3968 return false;
f50de2d3
MG
3969}
3970
75485363 3971/*
1d82de61
MG
3972 * kswapd shrinks a node of pages that are at or below the highest usable
3973 * zone that is currently unbalanced.
b8e83b94
MG
3974 *
3975 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3976 * reclaim or if the lack of progress was due to pages under writeback.
3977 * This is used to determine if the scanning priority needs to be raised.
75485363 3978 */
1d82de61 3979static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3980 struct scan_control *sc)
75485363 3981{
1d82de61
MG
3982 struct zone *zone;
3983 int z;
75485363 3984
1d82de61
MG
3985 /* Reclaim a number of pages proportional to the number of zones */
3986 sc->nr_to_reclaim = 0;
970a39a3 3987 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3988 zone = pgdat->node_zones + z;
6aa303de 3989 if (!managed_zone(zone))
1d82de61 3990 continue;
7c954f6d 3991
1d82de61
MG
3992 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3993 }
7c954f6d
MG
3994
3995 /*
1d82de61
MG
3996 * Historically care was taken to put equal pressure on all zones but
3997 * now pressure is applied based on node LRU order.
7c954f6d 3998 */
970a39a3 3999 shrink_node(pgdat, sc);
283aba9f 4000
7c954f6d 4001 /*
1d82de61
MG
4002 * Fragmentation may mean that the system cannot be rebalanced for
4003 * high-order allocations. If twice the allocation size has been
4004 * reclaimed then recheck watermarks only at order-0 to prevent
4005 * excessive reclaim. Assume that a process requested a high-order
4006 * can direct reclaim/compact.
7c954f6d 4007 */
9861a62c 4008 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 4009 sc->order = 0;
7c954f6d 4010
b8e83b94 4011 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
4012}
4013
c49c2c47
MG
4014/* Page allocator PCP high watermark is lowered if reclaim is active. */
4015static inline void
4016update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4017{
4018 int i;
4019 struct zone *zone;
4020
4021 for (i = 0; i <= highest_zoneidx; i++) {
4022 zone = pgdat->node_zones + i;
4023
4024 if (!managed_zone(zone))
4025 continue;
4026
4027 if (active)
4028 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4029 else
4030 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4031 }
4032}
4033
4034static inline void
4035set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4036{
4037 update_reclaim_active(pgdat, highest_zoneidx, true);
4038}
4039
4040static inline void
4041clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4042{
4043 update_reclaim_active(pgdat, highest_zoneidx, false);
4044}
4045
1da177e4 4046/*
1d82de61
MG
4047 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4048 * that are eligible for use by the caller until at least one zone is
4049 * balanced.
1da177e4 4050 *
1d82de61 4051 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
4052 *
4053 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 4054 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 4055 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
4056 * or lower is eligible for reclaim until at least one usable zone is
4057 * balanced.
1da177e4 4058 */
97a225e6 4059static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 4060{
1da177e4 4061 int i;
0608f43d
AM
4062 unsigned long nr_soft_reclaimed;
4063 unsigned long nr_soft_scanned;
eb414681 4064 unsigned long pflags;
1c30844d
MG
4065 unsigned long nr_boost_reclaim;
4066 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4067 bool boosted;
1d82de61 4068 struct zone *zone;
179e9639
AM
4069 struct scan_control sc = {
4070 .gfp_mask = GFP_KERNEL,
ee814fe2 4071 .order = order,
a6dc60f8 4072 .may_unmap = 1,
179e9639 4073 };
93781325 4074
1732d2b0 4075 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 4076 psi_memstall_enter(&pflags);
4f3eaf45 4077 __fs_reclaim_acquire(_THIS_IP_);
93781325 4078
f8891e5e 4079 count_vm_event(PAGEOUTRUN);
1da177e4 4080
1c30844d
MG
4081 /*
4082 * Account for the reclaim boost. Note that the zone boost is left in
4083 * place so that parallel allocations that are near the watermark will
4084 * stall or direct reclaim until kswapd is finished.
4085 */
4086 nr_boost_reclaim = 0;
97a225e6 4087 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4088 zone = pgdat->node_zones + i;
4089 if (!managed_zone(zone))
4090 continue;
4091
4092 nr_boost_reclaim += zone->watermark_boost;
4093 zone_boosts[i] = zone->watermark_boost;
4094 }
4095 boosted = nr_boost_reclaim;
4096
4097restart:
c49c2c47 4098 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 4099 sc.priority = DEF_PRIORITY;
9e3b2f8c 4100 do {
c73322d0 4101 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 4102 bool raise_priority = true;
1c30844d 4103 bool balanced;
93781325 4104 bool ret;
b8e83b94 4105
97a225e6 4106 sc.reclaim_idx = highest_zoneidx;
1da177e4 4107
86c79f6b 4108 /*
84c7a777
MG
4109 * If the number of buffer_heads exceeds the maximum allowed
4110 * then consider reclaiming from all zones. This has a dual
4111 * purpose -- on 64-bit systems it is expected that
4112 * buffer_heads are stripped during active rotation. On 32-bit
4113 * systems, highmem pages can pin lowmem memory and shrinking
4114 * buffers can relieve lowmem pressure. Reclaim may still not
4115 * go ahead if all eligible zones for the original allocation
4116 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
4117 */
4118 if (buffer_heads_over_limit) {
4119 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4120 zone = pgdat->node_zones + i;
6aa303de 4121 if (!managed_zone(zone))
86c79f6b 4122 continue;
cc715d99 4123
970a39a3 4124 sc.reclaim_idx = i;
e1dbeda6 4125 break;
1da177e4 4126 }
1da177e4 4127 }
dafcb73e 4128
86c79f6b 4129 /*
1c30844d
MG
4130 * If the pgdat is imbalanced then ignore boosting and preserve
4131 * the watermarks for a later time and restart. Note that the
4132 * zone watermarks will be still reset at the end of balancing
4133 * on the grounds that the normal reclaim should be enough to
4134 * re-evaluate if boosting is required when kswapd next wakes.
4135 */
97a225e6 4136 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
4137 if (!balanced && nr_boost_reclaim) {
4138 nr_boost_reclaim = 0;
4139 goto restart;
4140 }
4141
4142 /*
4143 * If boosting is not active then only reclaim if there are no
4144 * eligible zones. Note that sc.reclaim_idx is not used as
4145 * buffer_heads_over_limit may have adjusted it.
86c79f6b 4146 */
1c30844d 4147 if (!nr_boost_reclaim && balanced)
e716f2eb 4148 goto out;
e1dbeda6 4149
1c30844d
MG
4150 /* Limit the priority of boosting to avoid reclaim writeback */
4151 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4152 raise_priority = false;
4153
4154 /*
4155 * Do not writeback or swap pages for boosted reclaim. The
4156 * intent is to relieve pressure not issue sub-optimal IO
4157 * from reclaim context. If no pages are reclaimed, the
4158 * reclaim will be aborted.
4159 */
4160 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4161 sc.may_swap = !nr_boost_reclaim;
1c30844d 4162
1d82de61
MG
4163 /*
4164 * Do some background aging of the anon list, to give
4165 * pages a chance to be referenced before reclaiming. All
4166 * pages are rotated regardless of classzone as this is
4167 * about consistent aging.
4168 */
ef8f2327 4169 age_active_anon(pgdat, &sc);
1d82de61 4170
b7ea3c41
MG
4171 /*
4172 * If we're getting trouble reclaiming, start doing writepage
4173 * even in laptop mode.
4174 */
047d72c3 4175 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
4176 sc.may_writepage = 1;
4177
1d82de61
MG
4178 /* Call soft limit reclaim before calling shrink_node. */
4179 sc.nr_scanned = 0;
4180 nr_soft_scanned = 0;
ef8f2327 4181 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
4182 sc.gfp_mask, &nr_soft_scanned);
4183 sc.nr_reclaimed += nr_soft_reclaimed;
4184
1da177e4 4185 /*
1d82de61
MG
4186 * There should be no need to raise the scanning priority if
4187 * enough pages are already being scanned that that high
4188 * watermark would be met at 100% efficiency.
1da177e4 4189 */
970a39a3 4190 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 4191 raise_priority = false;
5515061d
MG
4192
4193 /*
4194 * If the low watermark is met there is no need for processes
4195 * to be throttled on pfmemalloc_wait as they should not be
4196 * able to safely make forward progress. Wake them
4197 */
4198 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 4199 allow_direct_reclaim(pgdat))
cfc51155 4200 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 4201
b8e83b94 4202 /* Check if kswapd should be suspending */
4f3eaf45 4203 __fs_reclaim_release(_THIS_IP_);
93781325 4204 ret = try_to_freeze();
4f3eaf45 4205 __fs_reclaim_acquire(_THIS_IP_);
93781325 4206 if (ret || kthread_should_stop())
b8e83b94 4207 break;
8357376d 4208
73ce02e9 4209 /*
b8e83b94
MG
4210 * Raise priority if scanning rate is too low or there was no
4211 * progress in reclaiming pages
73ce02e9 4212 */
c73322d0 4213 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
4214 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4215
4216 /*
4217 * If reclaim made no progress for a boost, stop reclaim as
4218 * IO cannot be queued and it could be an infinite loop in
4219 * extreme circumstances.
4220 */
4221 if (nr_boost_reclaim && !nr_reclaimed)
4222 break;
4223
c73322d0 4224 if (raise_priority || !nr_reclaimed)
b8e83b94 4225 sc.priority--;
1d82de61 4226 } while (sc.priority >= 1);
1da177e4 4227
c73322d0
JW
4228 if (!sc.nr_reclaimed)
4229 pgdat->kswapd_failures++;
4230
b8e83b94 4231out:
c49c2c47
MG
4232 clear_reclaim_active(pgdat, highest_zoneidx);
4233
1c30844d
MG
4234 /* If reclaim was boosted, account for the reclaim done in this pass */
4235 if (boosted) {
4236 unsigned long flags;
4237
97a225e6 4238 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4239 if (!zone_boosts[i])
4240 continue;
4241
4242 /* Increments are under the zone lock */
4243 zone = pgdat->node_zones + i;
4244 spin_lock_irqsave(&zone->lock, flags);
4245 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4246 spin_unlock_irqrestore(&zone->lock, flags);
4247 }
4248
4249 /*
4250 * As there is now likely space, wakeup kcompact to defragment
4251 * pageblocks.
4252 */
97a225e6 4253 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
4254 }
4255
2a2e4885 4256 snapshot_refaults(NULL, pgdat);
4f3eaf45 4257 __fs_reclaim_release(_THIS_IP_);
eb414681 4258 psi_memstall_leave(&pflags);
1732d2b0 4259 set_task_reclaim_state(current, NULL);
e5ca8071 4260
0abdee2b 4261 /*
1d82de61
MG
4262 * Return the order kswapd stopped reclaiming at as
4263 * prepare_kswapd_sleep() takes it into account. If another caller
4264 * entered the allocator slow path while kswapd was awake, order will
4265 * remain at the higher level.
0abdee2b 4266 */
1d82de61 4267 return sc.order;
1da177e4
LT
4268}
4269
e716f2eb 4270/*
97a225e6
JK
4271 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4272 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4273 * not a valid index then either kswapd runs for first time or kswapd couldn't
4274 * sleep after previous reclaim attempt (node is still unbalanced). In that
4275 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 4276 */
97a225e6
JK
4277static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4278 enum zone_type prev_highest_zoneidx)
e716f2eb 4279{
97a225e6 4280 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4281
97a225e6 4282 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
4283}
4284
38087d9b 4285static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 4286 unsigned int highest_zoneidx)
f0bc0a60
KM
4287{
4288 long remaining = 0;
4289 DEFINE_WAIT(wait);
4290
4291 if (freezing(current) || kthread_should_stop())
4292 return;
4293
4294 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4295
333b0a45
SG
4296 /*
4297 * Try to sleep for a short interval. Note that kcompactd will only be
4298 * woken if it is possible to sleep for a short interval. This is
4299 * deliberate on the assumption that if reclaim cannot keep an
4300 * eligible zone balanced that it's also unlikely that compaction will
4301 * succeed.
4302 */
97a225e6 4303 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
4304 /*
4305 * Compaction records what page blocks it recently failed to
4306 * isolate pages from and skips them in the future scanning.
4307 * When kswapd is going to sleep, it is reasonable to assume
4308 * that pages and compaction may succeed so reset the cache.
4309 */
4310 reset_isolation_suitable(pgdat);
4311
4312 /*
4313 * We have freed the memory, now we should compact it to make
4314 * allocation of the requested order possible.
4315 */
97a225e6 4316 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 4317
f0bc0a60 4318 remaining = schedule_timeout(HZ/10);
38087d9b
MG
4319
4320 /*
97a225e6 4321 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
4322 * order. The values will either be from a wakeup request or
4323 * the previous request that slept prematurely.
4324 */
4325 if (remaining) {
97a225e6
JK
4326 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4327 kswapd_highest_zoneidx(pgdat,
4328 highest_zoneidx));
5644e1fb
QC
4329
4330 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4331 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
4332 }
4333
f0bc0a60
KM
4334 finish_wait(&pgdat->kswapd_wait, &wait);
4335 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4336 }
4337
4338 /*
4339 * After a short sleep, check if it was a premature sleep. If not, then
4340 * go fully to sleep until explicitly woken up.
4341 */
d9f21d42 4342 if (!remaining &&
97a225e6 4343 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
4344 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4345
4346 /*
4347 * vmstat counters are not perfectly accurate and the estimated
4348 * value for counters such as NR_FREE_PAGES can deviate from the
4349 * true value by nr_online_cpus * threshold. To avoid the zone
4350 * watermarks being breached while under pressure, we reduce the
4351 * per-cpu vmstat threshold while kswapd is awake and restore
4352 * them before going back to sleep.
4353 */
4354 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
4355
4356 if (!kthread_should_stop())
4357 schedule();
4358
f0bc0a60
KM
4359 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4360 } else {
4361 if (remaining)
4362 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4363 else
4364 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4365 }
4366 finish_wait(&pgdat->kswapd_wait, &wait);
4367}
4368
1da177e4
LT
4369/*
4370 * The background pageout daemon, started as a kernel thread
4f98a2fe 4371 * from the init process.
1da177e4
LT
4372 *
4373 * This basically trickles out pages so that we have _some_
4374 * free memory available even if there is no other activity
4375 * that frees anything up. This is needed for things like routing
4376 * etc, where we otherwise might have all activity going on in
4377 * asynchronous contexts that cannot page things out.
4378 *
4379 * If there are applications that are active memory-allocators
4380 * (most normal use), this basically shouldn't matter.
4381 */
4382static int kswapd(void *p)
4383{
e716f2eb 4384 unsigned int alloc_order, reclaim_order;
97a225e6 4385 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 4386 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 4387 struct task_struct *tsk = current;
a70f7302 4388 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 4389
174596a0 4390 if (!cpumask_empty(cpumask))
c5f59f08 4391 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
4392
4393 /*
4394 * Tell the memory management that we're a "memory allocator",
4395 * and that if we need more memory we should get access to it
4396 * regardless (see "__alloc_pages()"). "kswapd" should
4397 * never get caught in the normal page freeing logic.
4398 *
4399 * (Kswapd normally doesn't need memory anyway, but sometimes
4400 * you need a small amount of memory in order to be able to
4401 * page out something else, and this flag essentially protects
4402 * us from recursively trying to free more memory as we're
4403 * trying to free the first piece of memory in the first place).
4404 */
930d9152 4405 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 4406 set_freezable();
1da177e4 4407
5644e1fb 4408 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4409 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
8cd7c588 4410 atomic_set(&pgdat->nr_writeback_throttled, 0);
1da177e4 4411 for ( ; ; ) {
6f6313d4 4412 bool ret;
3e1d1d28 4413
5644e1fb 4414 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4415 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4416 highest_zoneidx);
e716f2eb 4417
38087d9b
MG
4418kswapd_try_sleep:
4419 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 4420 highest_zoneidx);
215ddd66 4421
97a225e6 4422 /* Read the new order and highest_zoneidx */
2b47a24c 4423 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4424 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4425 highest_zoneidx);
5644e1fb 4426 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4427 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4428
8fe23e05
DR
4429 ret = try_to_freeze();
4430 if (kthread_should_stop())
4431 break;
4432
4433 /*
4434 * We can speed up thawing tasks if we don't call balance_pgdat
4435 * after returning from the refrigerator
4436 */
38087d9b
MG
4437 if (ret)
4438 continue;
4439
4440 /*
4441 * Reclaim begins at the requested order but if a high-order
4442 * reclaim fails then kswapd falls back to reclaiming for
4443 * order-0. If that happens, kswapd will consider sleeping
4444 * for the order it finished reclaiming at (reclaim_order)
4445 * but kcompactd is woken to compact for the original
4446 * request (alloc_order).
4447 */
97a225e6 4448 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 4449 alloc_order);
97a225e6
JK
4450 reclaim_order = balance_pgdat(pgdat, alloc_order,
4451 highest_zoneidx);
38087d9b
MG
4452 if (reclaim_order < alloc_order)
4453 goto kswapd_try_sleep;
1da177e4 4454 }
b0a8cc58 4455
71abdc15 4456 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 4457
1da177e4
LT
4458 return 0;
4459}
4460
4461/*
5ecd9d40
DR
4462 * A zone is low on free memory or too fragmented for high-order memory. If
4463 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4464 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4465 * has failed or is not needed, still wake up kcompactd if only compaction is
4466 * needed.
1da177e4 4467 */
5ecd9d40 4468void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 4469 enum zone_type highest_zoneidx)
1da177e4
LT
4470{
4471 pg_data_t *pgdat;
5644e1fb 4472 enum zone_type curr_idx;
1da177e4 4473
6aa303de 4474 if (!managed_zone(zone))
1da177e4
LT
4475 return;
4476
5ecd9d40 4477 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4478 return;
5644e1fb 4479
88f5acf8 4480 pgdat = zone->zone_pgdat;
97a225e6 4481 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4482
97a225e6
JK
4483 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4484 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
4485
4486 if (READ_ONCE(pgdat->kswapd_order) < order)
4487 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 4488
8d0986e2 4489 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4490 return;
e1a55637 4491
5ecd9d40
DR
4492 /* Hopeless node, leave it to direct reclaim if possible */
4493 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
4494 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4495 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
4496 /*
4497 * There may be plenty of free memory available, but it's too
4498 * fragmented for high-order allocations. Wake up kcompactd
4499 * and rely on compaction_suitable() to determine if it's
4500 * needed. If it fails, it will defer subsequent attempts to
4501 * ratelimit its work.
4502 */
4503 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4504 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4505 return;
5ecd9d40 4506 }
88f5acf8 4507
97a225e6 4508 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4509 gfp_flags);
8d0986e2 4510 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4511}
4512
c6f37f12 4513#ifdef CONFIG_HIBERNATION
1da177e4 4514/*
7b51755c 4515 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4516 * freed pages.
4517 *
4518 * Rather than trying to age LRUs the aim is to preserve the overall
4519 * LRU order by reclaiming preferentially
4520 * inactive > active > active referenced > active mapped
1da177e4 4521 */
7b51755c 4522unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4523{
d6277db4 4524 struct scan_control sc = {
ee814fe2 4525 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4526 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4527 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4528 .priority = DEF_PRIORITY,
d6277db4 4529 .may_writepage = 1,
ee814fe2
JW
4530 .may_unmap = 1,
4531 .may_swap = 1,
7b51755c 4532 .hibernation_mode = 1,
1da177e4 4533 };
a09ed5e0 4534 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4535 unsigned long nr_reclaimed;
499118e9 4536 unsigned int noreclaim_flag;
1da177e4 4537
d92a8cfc 4538 fs_reclaim_acquire(sc.gfp_mask);
93781325 4539 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4540 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4541
3115cd91 4542 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4543
1732d2b0 4544 set_task_reclaim_state(current, NULL);
499118e9 4545 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4546 fs_reclaim_release(sc.gfp_mask);
d6277db4 4547
7b51755c 4548 return nr_reclaimed;
1da177e4 4549}
c6f37f12 4550#endif /* CONFIG_HIBERNATION */
1da177e4 4551
3218ae14
YG
4552/*
4553 * This kswapd start function will be called by init and node-hot-add.
4554 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4555 */
b87c517a 4556void kswapd_run(int nid)
3218ae14
YG
4557{
4558 pg_data_t *pgdat = NODE_DATA(nid);
3218ae14
YG
4559
4560 if (pgdat->kswapd)
b87c517a 4561 return;
3218ae14
YG
4562
4563 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4564 if (IS_ERR(pgdat->kswapd)) {
4565 /* failure at boot is fatal */
c6202adf 4566 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9 4567 pr_err("Failed to start kswapd on node %d\n", nid);
d72515b8 4568 pgdat->kswapd = NULL;
3218ae14 4569 }
3218ae14
YG
4570}
4571
8fe23e05 4572/*
d8adde17 4573 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4574 * hold mem_hotplug_begin/end().
8fe23e05
DR
4575 */
4576void kswapd_stop(int nid)
4577{
4578 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4579
d8adde17 4580 if (kswapd) {
8fe23e05 4581 kthread_stop(kswapd);
d8adde17
JL
4582 NODE_DATA(nid)->kswapd = NULL;
4583 }
8fe23e05
DR
4584}
4585
1da177e4
LT
4586static int __init kswapd_init(void)
4587{
6b700b5b 4588 int nid;
69e05944 4589
1da177e4 4590 swap_setup();
48fb2e24 4591 for_each_node_state(nid, N_MEMORY)
3218ae14 4592 kswapd_run(nid);
1da177e4
LT
4593 return 0;
4594}
4595
4596module_init(kswapd_init)
9eeff239
CL
4597
4598#ifdef CONFIG_NUMA
4599/*
a5f5f91d 4600 * Node reclaim mode
9eeff239 4601 *
a5f5f91d 4602 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4603 * the watermarks.
9eeff239 4604 */
a5f5f91d 4605int node_reclaim_mode __read_mostly;
9eeff239 4606
a92f7126 4607/*
a5f5f91d 4608 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4609 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4610 * a zone.
4611 */
a5f5f91d 4612#define NODE_RECLAIM_PRIORITY 4
a92f7126 4613
9614634f 4614/*
a5f5f91d 4615 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4616 * occur.
4617 */
4618int sysctl_min_unmapped_ratio = 1;
4619
0ff38490
CL
4620/*
4621 * If the number of slab pages in a zone grows beyond this percentage then
4622 * slab reclaim needs to occur.
4623 */
4624int sysctl_min_slab_ratio = 5;
4625
11fb9989 4626static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4627{
11fb9989
MG
4628 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4629 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4630 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4631
4632 /*
4633 * It's possible for there to be more file mapped pages than
4634 * accounted for by the pages on the file LRU lists because
4635 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4636 */
4637 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4638}
4639
4640/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4641static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4642{
d031a157
AM
4643 unsigned long nr_pagecache_reclaimable;
4644 unsigned long delta = 0;
90afa5de
MG
4645
4646 /*
95bbc0c7 4647 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4648 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4649 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4650 * a better estimate
4651 */
a5f5f91d
MG
4652 if (node_reclaim_mode & RECLAIM_UNMAP)
4653 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4654 else
a5f5f91d 4655 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4656
4657 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4658 if (!(node_reclaim_mode & RECLAIM_WRITE))
4659 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4660
4661 /* Watch for any possible underflows due to delta */
4662 if (unlikely(delta > nr_pagecache_reclaimable))
4663 delta = nr_pagecache_reclaimable;
4664
4665 return nr_pagecache_reclaimable - delta;
4666}
4667
9eeff239 4668/*
a5f5f91d 4669 * Try to free up some pages from this node through reclaim.
9eeff239 4670 */
a5f5f91d 4671static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4672{
7fb2d46d 4673 /* Minimum pages needed in order to stay on node */
69e05944 4674 const unsigned long nr_pages = 1 << order;
9eeff239 4675 struct task_struct *p = current;
499118e9 4676 unsigned int noreclaim_flag;
179e9639 4677 struct scan_control sc = {
62b726c1 4678 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4679 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4680 .order = order,
a5f5f91d
MG
4681 .priority = NODE_RECLAIM_PRIORITY,
4682 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4683 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4684 .may_swap = 1,
f2f43e56 4685 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4686 };
57f29762 4687 unsigned long pflags;
9eeff239 4688
132bb8cf
YS
4689 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4690 sc.gfp_mask);
4691
9eeff239 4692 cond_resched();
57f29762 4693 psi_memstall_enter(&pflags);
93781325 4694 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4695 /*
95bbc0c7 4696 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4697 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4698 * and RECLAIM_UNMAP.
d4f7796e 4699 */
499118e9
VB
4700 noreclaim_flag = memalloc_noreclaim_save();
4701 p->flags |= PF_SWAPWRITE;
1732d2b0 4702 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4703
a5f5f91d 4704 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4705 /*
894befec 4706 * Free memory by calling shrink node with increasing
0ff38490
CL
4707 * priorities until we have enough memory freed.
4708 */
0ff38490 4709 do {
970a39a3 4710 shrink_node(pgdat, &sc);
9e3b2f8c 4711 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4712 }
c84db23c 4713
1732d2b0 4714 set_task_reclaim_state(p, NULL);
499118e9
VB
4715 current->flags &= ~PF_SWAPWRITE;
4716 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4717 fs_reclaim_release(sc.gfp_mask);
57f29762 4718 psi_memstall_leave(&pflags);
132bb8cf
YS
4719
4720 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4721
a79311c1 4722 return sc.nr_reclaimed >= nr_pages;
9eeff239 4723}
179e9639 4724
a5f5f91d 4725int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4726{
d773ed6b 4727 int ret;
179e9639
AM
4728
4729 /*
a5f5f91d 4730 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4731 * slab pages if we are over the defined limits.
34aa1330 4732 *
9614634f
CL
4733 * A small portion of unmapped file backed pages is needed for
4734 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4735 * thrown out if the node is overallocated. So we do not reclaim
4736 * if less than a specified percentage of the node is used by
9614634f 4737 * unmapped file backed pages.
179e9639 4738 */
a5f5f91d 4739 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4740 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4741 pgdat->min_slab_pages)
a5f5f91d 4742 return NODE_RECLAIM_FULL;
179e9639
AM
4743
4744 /*
d773ed6b 4745 * Do not scan if the allocation should not be delayed.
179e9639 4746 */
d0164adc 4747 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4748 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4749
4750 /*
a5f5f91d 4751 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4752 * have associated processors. This will favor the local processor
4753 * over remote processors and spread off node memory allocations
4754 * as wide as possible.
4755 */
a5f5f91d
MG
4756 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4757 return NODE_RECLAIM_NOSCAN;
d773ed6b 4758
a5f5f91d
MG
4759 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4760 return NODE_RECLAIM_NOSCAN;
fa5e084e 4761
a5f5f91d
MG
4762 ret = __node_reclaim(pgdat, gfp_mask, order);
4763 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4764
24cf7251
MG
4765 if (!ret)
4766 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4767
d773ed6b 4768 return ret;
179e9639 4769}
9eeff239 4770#endif
894bc310 4771
89e004ea 4772/**
64e3d12f
KHY
4773 * check_move_unevictable_pages - check pages for evictability and move to
4774 * appropriate zone lru list
4775 * @pvec: pagevec with lru pages to check
89e004ea 4776 *
64e3d12f
KHY
4777 * Checks pages for evictability, if an evictable page is in the unevictable
4778 * lru list, moves it to the appropriate evictable lru list. This function
4779 * should be only used for lru pages.
89e004ea 4780 */
64e3d12f 4781void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4782{
6168d0da 4783 struct lruvec *lruvec = NULL;
24513264
HD
4784 int pgscanned = 0;
4785 int pgrescued = 0;
4786 int i;
89e004ea 4787
64e3d12f
KHY
4788 for (i = 0; i < pvec->nr; i++) {
4789 struct page *page = pvec->pages[i];
8d8869ca
HD
4790 int nr_pages;
4791
4792 if (PageTransTail(page))
4793 continue;
4794
4795 nr_pages = thp_nr_pages(page);
4796 pgscanned += nr_pages;
89e004ea 4797
d25b5bd8
AS
4798 /* block memcg migration during page moving between lru */
4799 if (!TestClearPageLRU(page))
4800 continue;
4801
2a5e4e34 4802 lruvec = relock_page_lruvec_irq(page, lruvec);
d25b5bd8 4803 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4804 del_page_from_lru_list(page, lruvec);
24513264 4805 ClearPageUnevictable(page);
3a9c9788 4806 add_page_to_lru_list(page, lruvec);
8d8869ca 4807 pgrescued += nr_pages;
89e004ea 4808 }
d25b5bd8 4809 SetPageLRU(page);
24513264 4810 }
89e004ea 4811
6168d0da 4812 if (lruvec) {
24513264
HD
4813 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4814 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4815 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4816 } else if (pgscanned) {
4817 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4818 }
89e004ea 4819}
64e3d12f 4820EXPORT_SYMBOL_GPL(check_move_unevictable_pages);