]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/vmscan.c
shrinker: convert remaining shrinkers to count/scan API
[thirdparty/kernel/stable.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
70ddf637 22#include <linux/vmpressure.h>
e129b5c2 23#include <linux/vmstat.h>
1da177e4
LT
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
1da177e4
LT
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
1da177e4 57struct scan_control {
1da177e4
LT
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
a79311c1
RR
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
63
22fba335
KM
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
7b51755c
KM
67 unsigned long hibernation_mode;
68
1da177e4 69 /* This context's GFP mask */
6daa0e28 70 gfp_t gfp_mask;
1da177e4
LT
71
72 int may_writepage;
73
a6dc60f8
JW
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
f1fd1067 76
2e2e4259
KM
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
79
5ad333eb 80 int order;
66e1707b 81
9e3b2f8c
KK
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
84
f16015fb
JW
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
66e1707b 90
327c0e96
KH
91 /*
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
94 */
95 nodemask_t *nodemask;
1da177e4
LT
96};
97
1da177e4
LT
98#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100#ifdef ARCH_HAS_PREFETCH
101#define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
108 } \
109 } while (0)
110#else
111#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112#endif
113
114#ifdef ARCH_HAS_PREFETCHW
115#define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
122 } \
123 } while (0)
124#else
125#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126#endif
127
128/*
129 * From 0 .. 100. Higher means more swappy.
130 */
131int vm_swappiness = 60;
b21e0b90 132unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
133
134static LIST_HEAD(shrinker_list);
135static DECLARE_RWSEM(shrinker_rwsem);
136
c255a458 137#ifdef CONFIG_MEMCG
89b5fae5
JW
138static bool global_reclaim(struct scan_control *sc)
139{
f16015fb 140 return !sc->target_mem_cgroup;
89b5fae5 141}
91a45470 142#else
89b5fae5
JW
143static bool global_reclaim(struct scan_control *sc)
144{
145 return true;
146}
91a45470
KH
147#endif
148
4d7dcca2 149static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 150{
c3c787e8 151 if (!mem_cgroup_disabled())
4d7dcca2 152 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 153
074291fe 154 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
155}
156
1da177e4 157/*
1d3d4437 158 * Add a shrinker callback to be called from the vm.
1da177e4 159 */
1d3d4437 160int register_shrinker(struct shrinker *shrinker)
1da177e4 161{
1d3d4437
GC
162 size_t size = sizeof(*shrinker->nr_deferred);
163
164 /*
165 * If we only have one possible node in the system anyway, save
166 * ourselves the trouble and disable NUMA aware behavior. This way we
167 * will save memory and some small loop time later.
168 */
169 if (nr_node_ids == 1)
170 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
171
172 if (shrinker->flags & SHRINKER_NUMA_AWARE)
173 size *= nr_node_ids;
174
175 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
176 if (!shrinker->nr_deferred)
177 return -ENOMEM;
178
8e1f936b
RR
179 down_write(&shrinker_rwsem);
180 list_add_tail(&shrinker->list, &shrinker_list);
181 up_write(&shrinker_rwsem);
1d3d4437 182 return 0;
1da177e4 183}
8e1f936b 184EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
185
186/*
187 * Remove one
188 */
8e1f936b 189void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
190{
191 down_write(&shrinker_rwsem);
192 list_del(&shrinker->list);
193 up_write(&shrinker_rwsem);
1da177e4 194}
8e1f936b 195EXPORT_SYMBOL(unregister_shrinker);
1da177e4 196
1495f230
YH
197static inline int do_shrinker_shrink(struct shrinker *shrinker,
198 struct shrink_control *sc,
199 unsigned long nr_to_scan)
200{
201 sc->nr_to_scan = nr_to_scan;
202 return (*shrinker->shrink)(shrinker, sc);
203}
204
1da177e4 205#define SHRINK_BATCH 128
1d3d4437
GC
206
207static unsigned long
208shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
209 unsigned long nr_pages_scanned, unsigned long lru_pages)
210{
211 unsigned long freed = 0;
212 unsigned long long delta;
213 long total_scan;
214 long max_pass;
215 long nr;
216 long new_nr;
217 int nid = shrinkctl->nid;
218 long batch_size = shrinker->batch ? shrinker->batch
219 : SHRINK_BATCH;
220
221 if (shrinker->count_objects)
222 max_pass = shrinker->count_objects(shrinker, shrinkctl);
223 else
224 max_pass = do_shrinker_shrink(shrinker, shrinkctl, 0);
225 if (max_pass == 0)
226 return 0;
227
228 /*
229 * copy the current shrinker scan count into a local variable
230 * and zero it so that other concurrent shrinker invocations
231 * don't also do this scanning work.
232 */
233 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
234
235 total_scan = nr;
236 delta = (4 * nr_pages_scanned) / shrinker->seeks;
237 delta *= max_pass;
238 do_div(delta, lru_pages + 1);
239 total_scan += delta;
240 if (total_scan < 0) {
241 printk(KERN_ERR
242 "shrink_slab: %pF negative objects to delete nr=%ld\n",
243 shrinker->shrink, total_scan);
244 total_scan = max_pass;
245 }
246
247 /*
248 * We need to avoid excessive windup on filesystem shrinkers
249 * due to large numbers of GFP_NOFS allocations causing the
250 * shrinkers to return -1 all the time. This results in a large
251 * nr being built up so when a shrink that can do some work
252 * comes along it empties the entire cache due to nr >>>
253 * max_pass. This is bad for sustaining a working set in
254 * memory.
255 *
256 * Hence only allow the shrinker to scan the entire cache when
257 * a large delta change is calculated directly.
258 */
259 if (delta < max_pass / 4)
260 total_scan = min(total_scan, max_pass / 2);
261
262 /*
263 * Avoid risking looping forever due to too large nr value:
264 * never try to free more than twice the estimate number of
265 * freeable entries.
266 */
267 if (total_scan > max_pass * 2)
268 total_scan = max_pass * 2;
269
270 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
271 nr_pages_scanned, lru_pages,
272 max_pass, delta, total_scan);
273
274 while (total_scan >= batch_size) {
275
276 if (shrinker->scan_objects) {
277 unsigned long ret;
278 shrinkctl->nr_to_scan = batch_size;
279 ret = shrinker->scan_objects(shrinker, shrinkctl);
280
281 if (ret == SHRINK_STOP)
282 break;
283 freed += ret;
284 } else {
285 int nr_before;
286 long ret;
287
288 nr_before = do_shrinker_shrink(shrinker, shrinkctl, 0);
289 ret = do_shrinker_shrink(shrinker, shrinkctl,
290 batch_size);
291 if (ret == -1)
292 break;
293 if (ret < nr_before)
294 freed += nr_before - ret;
295 }
296
297 count_vm_events(SLABS_SCANNED, batch_size);
298 total_scan -= batch_size;
299
300 cond_resched();
301 }
302
303 /*
304 * move the unused scan count back into the shrinker in a
305 * manner that handles concurrent updates. If we exhausted the
306 * scan, there is no need to do an update.
307 */
308 if (total_scan > 0)
309 new_nr = atomic_long_add_return(total_scan,
310 &shrinker->nr_deferred[nid]);
311 else
312 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
313
314 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
315 return freed;
316}
317
1da177e4
LT
318/*
319 * Call the shrink functions to age shrinkable caches
320 *
321 * Here we assume it costs one seek to replace a lru page and that it also
322 * takes a seek to recreate a cache object. With this in mind we age equal
323 * percentages of the lru and ageable caches. This should balance the seeks
324 * generated by these structures.
325 *
183ff22b 326 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
327 * slab to avoid swapping.
328 *
329 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
330 *
331 * `lru_pages' represents the number of on-LRU pages in all the zones which
332 * are eligible for the caller's allocation attempt. It is used for balancing
333 * slab reclaim versus page reclaim.
b15e0905 334 *
335 * Returns the number of slab objects which we shrunk.
1da177e4 336 */
24f7c6b9 337unsigned long shrink_slab(struct shrink_control *shrinkctl,
1495f230 338 unsigned long nr_pages_scanned,
a09ed5e0 339 unsigned long lru_pages)
1da177e4
LT
340{
341 struct shrinker *shrinker;
24f7c6b9 342 unsigned long freed = 0;
1da177e4 343
1495f230
YH
344 if (nr_pages_scanned == 0)
345 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 346
f06590bd 347 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
348 /*
349 * If we would return 0, our callers would understand that we
350 * have nothing else to shrink and give up trying. By returning
351 * 1 we keep it going and assume we'll be able to shrink next
352 * time.
353 */
354 freed = 1;
f06590bd
MK
355 goto out;
356 }
1da177e4
LT
357
358 list_for_each_entry(shrinker, &shrinker_list, list) {
1d3d4437
GC
359 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
360 if (!node_online(shrinkctl->nid))
361 continue;
635697c6 362
1d3d4437
GC
363 if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
364 (shrinkctl->nid != 0))
365 break;
ea164d73 366
1d3d4437
GC
367 freed += shrink_slab_node(shrinkctl, shrinker,
368 nr_pages_scanned, lru_pages);
3567b59a 369
1da177e4 370 }
1da177e4
LT
371 }
372 up_read(&shrinker_rwsem);
f06590bd
MK
373out:
374 cond_resched();
24f7c6b9 375 return freed;
1da177e4
LT
376}
377
1da177e4
LT
378static inline int is_page_cache_freeable(struct page *page)
379{
ceddc3a5
JW
380 /*
381 * A freeable page cache page is referenced only by the caller
382 * that isolated the page, the page cache radix tree and
383 * optional buffer heads at page->private.
384 */
edcf4748 385 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
386}
387
7d3579e8
KM
388static int may_write_to_queue(struct backing_dev_info *bdi,
389 struct scan_control *sc)
1da177e4 390{
930d9152 391 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
392 return 1;
393 if (!bdi_write_congested(bdi))
394 return 1;
395 if (bdi == current->backing_dev_info)
396 return 1;
397 return 0;
398}
399
400/*
401 * We detected a synchronous write error writing a page out. Probably
402 * -ENOSPC. We need to propagate that into the address_space for a subsequent
403 * fsync(), msync() or close().
404 *
405 * The tricky part is that after writepage we cannot touch the mapping: nothing
406 * prevents it from being freed up. But we have a ref on the page and once
407 * that page is locked, the mapping is pinned.
408 *
409 * We're allowed to run sleeping lock_page() here because we know the caller has
410 * __GFP_FS.
411 */
412static void handle_write_error(struct address_space *mapping,
413 struct page *page, int error)
414{
7eaceacc 415 lock_page(page);
3e9f45bd
GC
416 if (page_mapping(page) == mapping)
417 mapping_set_error(mapping, error);
1da177e4
LT
418 unlock_page(page);
419}
420
04e62a29
CL
421/* possible outcome of pageout() */
422typedef enum {
423 /* failed to write page out, page is locked */
424 PAGE_KEEP,
425 /* move page to the active list, page is locked */
426 PAGE_ACTIVATE,
427 /* page has been sent to the disk successfully, page is unlocked */
428 PAGE_SUCCESS,
429 /* page is clean and locked */
430 PAGE_CLEAN,
431} pageout_t;
432
1da177e4 433/*
1742f19f
AM
434 * pageout is called by shrink_page_list() for each dirty page.
435 * Calls ->writepage().
1da177e4 436 */
c661b078 437static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 438 struct scan_control *sc)
1da177e4
LT
439{
440 /*
441 * If the page is dirty, only perform writeback if that write
442 * will be non-blocking. To prevent this allocation from being
443 * stalled by pagecache activity. But note that there may be
444 * stalls if we need to run get_block(). We could test
445 * PagePrivate for that.
446 *
6aceb53b 447 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
448 * this page's queue, we can perform writeback even if that
449 * will block.
450 *
451 * If the page is swapcache, write it back even if that would
452 * block, for some throttling. This happens by accident, because
453 * swap_backing_dev_info is bust: it doesn't reflect the
454 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
455 */
456 if (!is_page_cache_freeable(page))
457 return PAGE_KEEP;
458 if (!mapping) {
459 /*
460 * Some data journaling orphaned pages can have
461 * page->mapping == NULL while being dirty with clean buffers.
462 */
266cf658 463 if (page_has_private(page)) {
1da177e4
LT
464 if (try_to_free_buffers(page)) {
465 ClearPageDirty(page);
d40cee24 466 printk("%s: orphaned page\n", __func__);
1da177e4
LT
467 return PAGE_CLEAN;
468 }
469 }
470 return PAGE_KEEP;
471 }
472 if (mapping->a_ops->writepage == NULL)
473 return PAGE_ACTIVATE;
0e093d99 474 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
475 return PAGE_KEEP;
476
477 if (clear_page_dirty_for_io(page)) {
478 int res;
479 struct writeback_control wbc = {
480 .sync_mode = WB_SYNC_NONE,
481 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
482 .range_start = 0,
483 .range_end = LLONG_MAX,
1da177e4
LT
484 .for_reclaim = 1,
485 };
486
487 SetPageReclaim(page);
488 res = mapping->a_ops->writepage(page, &wbc);
489 if (res < 0)
490 handle_write_error(mapping, page, res);
994fc28c 491 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
492 ClearPageReclaim(page);
493 return PAGE_ACTIVATE;
494 }
c661b078 495
1da177e4
LT
496 if (!PageWriteback(page)) {
497 /* synchronous write or broken a_ops? */
498 ClearPageReclaim(page);
499 }
23b9da55 500 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 501 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
502 return PAGE_SUCCESS;
503 }
504
505 return PAGE_CLEAN;
506}
507
a649fd92 508/*
e286781d
NP
509 * Same as remove_mapping, but if the page is removed from the mapping, it
510 * gets returned with a refcount of 0.
a649fd92 511 */
e286781d 512static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 513{
28e4d965
NP
514 BUG_ON(!PageLocked(page));
515 BUG_ON(mapping != page_mapping(page));
49d2e9cc 516
19fd6231 517 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 518 /*
0fd0e6b0
NP
519 * The non racy check for a busy page.
520 *
521 * Must be careful with the order of the tests. When someone has
522 * a ref to the page, it may be possible that they dirty it then
523 * drop the reference. So if PageDirty is tested before page_count
524 * here, then the following race may occur:
525 *
526 * get_user_pages(&page);
527 * [user mapping goes away]
528 * write_to(page);
529 * !PageDirty(page) [good]
530 * SetPageDirty(page);
531 * put_page(page);
532 * !page_count(page) [good, discard it]
533 *
534 * [oops, our write_to data is lost]
535 *
536 * Reversing the order of the tests ensures such a situation cannot
537 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
538 * load is not satisfied before that of page->_count.
539 *
540 * Note that if SetPageDirty is always performed via set_page_dirty,
541 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 542 */
e286781d 543 if (!page_freeze_refs(page, 2))
49d2e9cc 544 goto cannot_free;
e286781d
NP
545 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
546 if (unlikely(PageDirty(page))) {
547 page_unfreeze_refs(page, 2);
49d2e9cc 548 goto cannot_free;
e286781d 549 }
49d2e9cc
CL
550
551 if (PageSwapCache(page)) {
552 swp_entry_t swap = { .val = page_private(page) };
553 __delete_from_swap_cache(page);
19fd6231 554 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 555 swapcache_free(swap, page);
e286781d 556 } else {
6072d13c
LT
557 void (*freepage)(struct page *);
558
559 freepage = mapping->a_ops->freepage;
560
e64a782f 561 __delete_from_page_cache(page);
19fd6231 562 spin_unlock_irq(&mapping->tree_lock);
e767e056 563 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
564
565 if (freepage != NULL)
566 freepage(page);
49d2e9cc
CL
567 }
568
49d2e9cc
CL
569 return 1;
570
571cannot_free:
19fd6231 572 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
573 return 0;
574}
575
e286781d
NP
576/*
577 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
578 * someone else has a ref on the page, abort and return 0. If it was
579 * successfully detached, return 1. Assumes the caller has a single ref on
580 * this page.
581 */
582int remove_mapping(struct address_space *mapping, struct page *page)
583{
584 if (__remove_mapping(mapping, page)) {
585 /*
586 * Unfreezing the refcount with 1 rather than 2 effectively
587 * drops the pagecache ref for us without requiring another
588 * atomic operation.
589 */
590 page_unfreeze_refs(page, 1);
591 return 1;
592 }
593 return 0;
594}
595
894bc310
LS
596/**
597 * putback_lru_page - put previously isolated page onto appropriate LRU list
598 * @page: page to be put back to appropriate lru list
599 *
600 * Add previously isolated @page to appropriate LRU list.
601 * Page may still be unevictable for other reasons.
602 *
603 * lru_lock must not be held, interrupts must be enabled.
604 */
894bc310
LS
605void putback_lru_page(struct page *page)
606{
607 int lru;
bbfd28ee 608 int was_unevictable = PageUnevictable(page);
894bc310
LS
609
610 VM_BUG_ON(PageLRU(page));
611
612redo:
613 ClearPageUnevictable(page);
614
39b5f29a 615 if (page_evictable(page)) {
894bc310
LS
616 /*
617 * For evictable pages, we can use the cache.
618 * In event of a race, worst case is we end up with an
619 * unevictable page on [in]active list.
620 * We know how to handle that.
621 */
c53954a0
MG
622 lru = page_lru_base_type(page);
623 lru_cache_add(page);
894bc310
LS
624 } else {
625 /*
626 * Put unevictable pages directly on zone's unevictable
627 * list.
628 */
629 lru = LRU_UNEVICTABLE;
630 add_page_to_unevictable_list(page);
6a7b9548 631 /*
21ee9f39
MK
632 * When racing with an mlock or AS_UNEVICTABLE clearing
633 * (page is unlocked) make sure that if the other thread
634 * does not observe our setting of PG_lru and fails
24513264 635 * isolation/check_move_unevictable_pages,
21ee9f39 636 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
637 * the page back to the evictable list.
638 *
21ee9f39 639 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
640 */
641 smp_mb();
894bc310 642 }
894bc310
LS
643
644 /*
645 * page's status can change while we move it among lru. If an evictable
646 * page is on unevictable list, it never be freed. To avoid that,
647 * check after we added it to the list, again.
648 */
39b5f29a 649 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
894bc310
LS
650 if (!isolate_lru_page(page)) {
651 put_page(page);
652 goto redo;
653 }
654 /* This means someone else dropped this page from LRU
655 * So, it will be freed or putback to LRU again. There is
656 * nothing to do here.
657 */
658 }
659
bbfd28ee
LS
660 if (was_unevictable && lru != LRU_UNEVICTABLE)
661 count_vm_event(UNEVICTABLE_PGRESCUED);
662 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
663 count_vm_event(UNEVICTABLE_PGCULLED);
664
894bc310
LS
665 put_page(page); /* drop ref from isolate */
666}
667
dfc8d636
JW
668enum page_references {
669 PAGEREF_RECLAIM,
670 PAGEREF_RECLAIM_CLEAN,
64574746 671 PAGEREF_KEEP,
dfc8d636
JW
672 PAGEREF_ACTIVATE,
673};
674
675static enum page_references page_check_references(struct page *page,
676 struct scan_control *sc)
677{
64574746 678 int referenced_ptes, referenced_page;
dfc8d636 679 unsigned long vm_flags;
dfc8d636 680
c3ac9a8a
JW
681 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
682 &vm_flags);
64574746 683 referenced_page = TestClearPageReferenced(page);
dfc8d636 684
dfc8d636
JW
685 /*
686 * Mlock lost the isolation race with us. Let try_to_unmap()
687 * move the page to the unevictable list.
688 */
689 if (vm_flags & VM_LOCKED)
690 return PAGEREF_RECLAIM;
691
64574746 692 if (referenced_ptes) {
e4898273 693 if (PageSwapBacked(page))
64574746
JW
694 return PAGEREF_ACTIVATE;
695 /*
696 * All mapped pages start out with page table
697 * references from the instantiating fault, so we need
698 * to look twice if a mapped file page is used more
699 * than once.
700 *
701 * Mark it and spare it for another trip around the
702 * inactive list. Another page table reference will
703 * lead to its activation.
704 *
705 * Note: the mark is set for activated pages as well
706 * so that recently deactivated but used pages are
707 * quickly recovered.
708 */
709 SetPageReferenced(page);
710
34dbc67a 711 if (referenced_page || referenced_ptes > 1)
64574746
JW
712 return PAGEREF_ACTIVATE;
713
c909e993
KK
714 /*
715 * Activate file-backed executable pages after first usage.
716 */
717 if (vm_flags & VM_EXEC)
718 return PAGEREF_ACTIVATE;
719
64574746
JW
720 return PAGEREF_KEEP;
721 }
dfc8d636
JW
722
723 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 724 if (referenced_page && !PageSwapBacked(page))
64574746
JW
725 return PAGEREF_RECLAIM_CLEAN;
726
727 return PAGEREF_RECLAIM;
dfc8d636
JW
728}
729
e2be15f6
MG
730/* Check if a page is dirty or under writeback */
731static void page_check_dirty_writeback(struct page *page,
732 bool *dirty, bool *writeback)
733{
b4597226
MG
734 struct address_space *mapping;
735
e2be15f6
MG
736 /*
737 * Anonymous pages are not handled by flushers and must be written
738 * from reclaim context. Do not stall reclaim based on them
739 */
740 if (!page_is_file_cache(page)) {
741 *dirty = false;
742 *writeback = false;
743 return;
744 }
745
746 /* By default assume that the page flags are accurate */
747 *dirty = PageDirty(page);
748 *writeback = PageWriteback(page);
b4597226
MG
749
750 /* Verify dirty/writeback state if the filesystem supports it */
751 if (!page_has_private(page))
752 return;
753
754 mapping = page_mapping(page);
755 if (mapping && mapping->a_ops->is_dirty_writeback)
756 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
757}
758
1da177e4 759/*
1742f19f 760 * shrink_page_list() returns the number of reclaimed pages
1da177e4 761 */
1742f19f 762static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 763 struct zone *zone,
f84f6e2b 764 struct scan_control *sc,
02c6de8d 765 enum ttu_flags ttu_flags,
8e950282 766 unsigned long *ret_nr_dirty,
d43006d5 767 unsigned long *ret_nr_unqueued_dirty,
8e950282 768 unsigned long *ret_nr_congested,
02c6de8d 769 unsigned long *ret_nr_writeback,
b1a6f21e 770 unsigned long *ret_nr_immediate,
02c6de8d 771 bool force_reclaim)
1da177e4
LT
772{
773 LIST_HEAD(ret_pages);
abe4c3b5 774 LIST_HEAD(free_pages);
1da177e4 775 int pgactivate = 0;
d43006d5 776 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
777 unsigned long nr_dirty = 0;
778 unsigned long nr_congested = 0;
05ff5137 779 unsigned long nr_reclaimed = 0;
92df3a72 780 unsigned long nr_writeback = 0;
b1a6f21e 781 unsigned long nr_immediate = 0;
1da177e4
LT
782
783 cond_resched();
784
69980e31 785 mem_cgroup_uncharge_start();
1da177e4
LT
786 while (!list_empty(page_list)) {
787 struct address_space *mapping;
788 struct page *page;
789 int may_enter_fs;
02c6de8d 790 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 791 bool dirty, writeback;
1da177e4
LT
792
793 cond_resched();
794
795 page = lru_to_page(page_list);
796 list_del(&page->lru);
797
529ae9aa 798 if (!trylock_page(page))
1da177e4
LT
799 goto keep;
800
725d704e 801 VM_BUG_ON(PageActive(page));
6a18adb3 802 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
803
804 sc->nr_scanned++;
80e43426 805
39b5f29a 806 if (unlikely(!page_evictable(page)))
b291f000 807 goto cull_mlocked;
894bc310 808
a6dc60f8 809 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
810 goto keep_locked;
811
1da177e4
LT
812 /* Double the slab pressure for mapped and swapcache pages */
813 if (page_mapped(page) || PageSwapCache(page))
814 sc->nr_scanned++;
815
c661b078
AW
816 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
817 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
818
e2be15f6
MG
819 /*
820 * The number of dirty pages determines if a zone is marked
821 * reclaim_congested which affects wait_iff_congested. kswapd
822 * will stall and start writing pages if the tail of the LRU
823 * is all dirty unqueued pages.
824 */
825 page_check_dirty_writeback(page, &dirty, &writeback);
826 if (dirty || writeback)
827 nr_dirty++;
828
829 if (dirty && !writeback)
830 nr_unqueued_dirty++;
831
d04e8acd
MG
832 /*
833 * Treat this page as congested if the underlying BDI is or if
834 * pages are cycling through the LRU so quickly that the
835 * pages marked for immediate reclaim are making it to the
836 * end of the LRU a second time.
837 */
e2be15f6 838 mapping = page_mapping(page);
d04e8acd
MG
839 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
840 (writeback && PageReclaim(page)))
e2be15f6
MG
841 nr_congested++;
842
283aba9f
MG
843 /*
844 * If a page at the tail of the LRU is under writeback, there
845 * are three cases to consider.
846 *
847 * 1) If reclaim is encountering an excessive number of pages
848 * under writeback and this page is both under writeback and
849 * PageReclaim then it indicates that pages are being queued
850 * for IO but are being recycled through the LRU before the
851 * IO can complete. Waiting on the page itself risks an
852 * indefinite stall if it is impossible to writeback the
853 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
854 * note that the LRU is being scanned too quickly and the
855 * caller can stall after page list has been processed.
283aba9f
MG
856 *
857 * 2) Global reclaim encounters a page, memcg encounters a
858 * page that is not marked for immediate reclaim or
859 * the caller does not have __GFP_IO. In this case mark
860 * the page for immediate reclaim and continue scanning.
861 *
862 * __GFP_IO is checked because a loop driver thread might
863 * enter reclaim, and deadlock if it waits on a page for
864 * which it is needed to do the write (loop masks off
865 * __GFP_IO|__GFP_FS for this reason); but more thought
866 * would probably show more reasons.
867 *
868 * Don't require __GFP_FS, since we're not going into the
869 * FS, just waiting on its writeback completion. Worryingly,
870 * ext4 gfs2 and xfs allocate pages with
871 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
872 * may_enter_fs here is liable to OOM on them.
873 *
874 * 3) memcg encounters a page that is not already marked
875 * PageReclaim. memcg does not have any dirty pages
876 * throttling so we could easily OOM just because too many
877 * pages are in writeback and there is nothing else to
878 * reclaim. Wait for the writeback to complete.
879 */
c661b078 880 if (PageWriteback(page)) {
283aba9f
MG
881 /* Case 1 above */
882 if (current_is_kswapd() &&
883 PageReclaim(page) &&
884 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
885 nr_immediate++;
886 goto keep_locked;
283aba9f
MG
887
888 /* Case 2 above */
889 } else if (global_reclaim(sc) ||
c3b94f44
HD
890 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
891 /*
892 * This is slightly racy - end_page_writeback()
893 * might have just cleared PageReclaim, then
894 * setting PageReclaim here end up interpreted
895 * as PageReadahead - but that does not matter
896 * enough to care. What we do want is for this
897 * page to have PageReclaim set next time memcg
898 * reclaim reaches the tests above, so it will
899 * then wait_on_page_writeback() to avoid OOM;
900 * and it's also appropriate in global reclaim.
901 */
902 SetPageReclaim(page);
e62e384e 903 nr_writeback++;
283aba9f 904
c3b94f44 905 goto keep_locked;
283aba9f
MG
906
907 /* Case 3 above */
908 } else {
909 wait_on_page_writeback(page);
e62e384e 910 }
c661b078 911 }
1da177e4 912
02c6de8d
MK
913 if (!force_reclaim)
914 references = page_check_references(page, sc);
915
dfc8d636
JW
916 switch (references) {
917 case PAGEREF_ACTIVATE:
1da177e4 918 goto activate_locked;
64574746
JW
919 case PAGEREF_KEEP:
920 goto keep_locked;
dfc8d636
JW
921 case PAGEREF_RECLAIM:
922 case PAGEREF_RECLAIM_CLEAN:
923 ; /* try to reclaim the page below */
924 }
1da177e4 925
1da177e4
LT
926 /*
927 * Anonymous process memory has backing store?
928 * Try to allocate it some swap space here.
929 */
b291f000 930 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
931 if (!(sc->gfp_mask & __GFP_IO))
932 goto keep_locked;
5bc7b8ac 933 if (!add_to_swap(page, page_list))
1da177e4 934 goto activate_locked;
63eb6b93 935 may_enter_fs = 1;
1da177e4 936
e2be15f6
MG
937 /* Adding to swap updated mapping */
938 mapping = page_mapping(page);
939 }
1da177e4
LT
940
941 /*
942 * The page is mapped into the page tables of one or more
943 * processes. Try to unmap it here.
944 */
945 if (page_mapped(page) && mapping) {
02c6de8d 946 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
947 case SWAP_FAIL:
948 goto activate_locked;
949 case SWAP_AGAIN:
950 goto keep_locked;
b291f000
NP
951 case SWAP_MLOCK:
952 goto cull_mlocked;
1da177e4
LT
953 case SWAP_SUCCESS:
954 ; /* try to free the page below */
955 }
956 }
957
958 if (PageDirty(page)) {
ee72886d
MG
959 /*
960 * Only kswapd can writeback filesystem pages to
d43006d5
MG
961 * avoid risk of stack overflow but only writeback
962 * if many dirty pages have been encountered.
ee72886d 963 */
f84f6e2b 964 if (page_is_file_cache(page) &&
9e3b2f8c 965 (!current_is_kswapd() ||
d43006d5 966 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
967 /*
968 * Immediately reclaim when written back.
969 * Similar in principal to deactivate_page()
970 * except we already have the page isolated
971 * and know it's dirty
972 */
973 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
974 SetPageReclaim(page);
975
ee72886d
MG
976 goto keep_locked;
977 }
978
dfc8d636 979 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 980 goto keep_locked;
4dd4b920 981 if (!may_enter_fs)
1da177e4 982 goto keep_locked;
52a8363e 983 if (!sc->may_writepage)
1da177e4
LT
984 goto keep_locked;
985
986 /* Page is dirty, try to write it out here */
7d3579e8 987 switch (pageout(page, mapping, sc)) {
1da177e4
LT
988 case PAGE_KEEP:
989 goto keep_locked;
990 case PAGE_ACTIVATE:
991 goto activate_locked;
992 case PAGE_SUCCESS:
7d3579e8 993 if (PageWriteback(page))
41ac1999 994 goto keep;
7d3579e8 995 if (PageDirty(page))
1da177e4 996 goto keep;
7d3579e8 997
1da177e4
LT
998 /*
999 * A synchronous write - probably a ramdisk. Go
1000 * ahead and try to reclaim the page.
1001 */
529ae9aa 1002 if (!trylock_page(page))
1da177e4
LT
1003 goto keep;
1004 if (PageDirty(page) || PageWriteback(page))
1005 goto keep_locked;
1006 mapping = page_mapping(page);
1007 case PAGE_CLEAN:
1008 ; /* try to free the page below */
1009 }
1010 }
1011
1012 /*
1013 * If the page has buffers, try to free the buffer mappings
1014 * associated with this page. If we succeed we try to free
1015 * the page as well.
1016 *
1017 * We do this even if the page is PageDirty().
1018 * try_to_release_page() does not perform I/O, but it is
1019 * possible for a page to have PageDirty set, but it is actually
1020 * clean (all its buffers are clean). This happens if the
1021 * buffers were written out directly, with submit_bh(). ext3
894bc310 1022 * will do this, as well as the blockdev mapping.
1da177e4
LT
1023 * try_to_release_page() will discover that cleanness and will
1024 * drop the buffers and mark the page clean - it can be freed.
1025 *
1026 * Rarely, pages can have buffers and no ->mapping. These are
1027 * the pages which were not successfully invalidated in
1028 * truncate_complete_page(). We try to drop those buffers here
1029 * and if that worked, and the page is no longer mapped into
1030 * process address space (page_count == 1) it can be freed.
1031 * Otherwise, leave the page on the LRU so it is swappable.
1032 */
266cf658 1033 if (page_has_private(page)) {
1da177e4
LT
1034 if (!try_to_release_page(page, sc->gfp_mask))
1035 goto activate_locked;
e286781d
NP
1036 if (!mapping && page_count(page) == 1) {
1037 unlock_page(page);
1038 if (put_page_testzero(page))
1039 goto free_it;
1040 else {
1041 /*
1042 * rare race with speculative reference.
1043 * the speculative reference will free
1044 * this page shortly, so we may
1045 * increment nr_reclaimed here (and
1046 * leave it off the LRU).
1047 */
1048 nr_reclaimed++;
1049 continue;
1050 }
1051 }
1da177e4
LT
1052 }
1053
e286781d 1054 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 1055 goto keep_locked;
1da177e4 1056
a978d6f5
NP
1057 /*
1058 * At this point, we have no other references and there is
1059 * no way to pick any more up (removed from LRU, removed
1060 * from pagecache). Can use non-atomic bitops now (and
1061 * we obviously don't have to worry about waking up a process
1062 * waiting on the page lock, because there are no references.
1063 */
1064 __clear_page_locked(page);
e286781d 1065free_it:
05ff5137 1066 nr_reclaimed++;
abe4c3b5
MG
1067
1068 /*
1069 * Is there need to periodically free_page_list? It would
1070 * appear not as the counts should be low
1071 */
1072 list_add(&page->lru, &free_pages);
1da177e4
LT
1073 continue;
1074
b291f000 1075cull_mlocked:
63d6c5ad
HD
1076 if (PageSwapCache(page))
1077 try_to_free_swap(page);
b291f000
NP
1078 unlock_page(page);
1079 putback_lru_page(page);
1080 continue;
1081
1da177e4 1082activate_locked:
68a22394
RR
1083 /* Not a candidate for swapping, so reclaim swap space. */
1084 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1085 try_to_free_swap(page);
894bc310 1086 VM_BUG_ON(PageActive(page));
1da177e4
LT
1087 SetPageActive(page);
1088 pgactivate++;
1089keep_locked:
1090 unlock_page(page);
1091keep:
1092 list_add(&page->lru, &ret_pages);
b291f000 1093 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 1094 }
abe4c3b5 1095
cc59850e 1096 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 1097
1da177e4 1098 list_splice(&ret_pages, page_list);
f8891e5e 1099 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1100 mem_cgroup_uncharge_end();
8e950282
MG
1101 *ret_nr_dirty += nr_dirty;
1102 *ret_nr_congested += nr_congested;
d43006d5 1103 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1104 *ret_nr_writeback += nr_writeback;
b1a6f21e 1105 *ret_nr_immediate += nr_immediate;
05ff5137 1106 return nr_reclaimed;
1da177e4
LT
1107}
1108
02c6de8d
MK
1109unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1110 struct list_head *page_list)
1111{
1112 struct scan_control sc = {
1113 .gfp_mask = GFP_KERNEL,
1114 .priority = DEF_PRIORITY,
1115 .may_unmap = 1,
1116 };
8e950282 1117 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1118 struct page *page, *next;
1119 LIST_HEAD(clean_pages);
1120
1121 list_for_each_entry_safe(page, next, page_list, lru) {
1122 if (page_is_file_cache(page) && !PageDirty(page)) {
1123 ClearPageActive(page);
1124 list_move(&page->lru, &clean_pages);
1125 }
1126 }
1127
1128 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1129 TTU_UNMAP|TTU_IGNORE_ACCESS,
1130 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d
MK
1131 list_splice(&clean_pages, page_list);
1132 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1133 return ret;
1134}
1135
5ad333eb
AW
1136/*
1137 * Attempt to remove the specified page from its LRU. Only take this page
1138 * if it is of the appropriate PageActive status. Pages which are being
1139 * freed elsewhere are also ignored.
1140 *
1141 * page: page to consider
1142 * mode: one of the LRU isolation modes defined above
1143 *
1144 * returns 0 on success, -ve errno on failure.
1145 */
f3fd4a61 1146int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1147{
1148 int ret = -EINVAL;
1149
1150 /* Only take pages on the LRU. */
1151 if (!PageLRU(page))
1152 return ret;
1153
e46a2879
MK
1154 /* Compaction should not handle unevictable pages but CMA can do so */
1155 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1156 return ret;
1157
5ad333eb 1158 ret = -EBUSY;
08e552c6 1159
c8244935
MG
1160 /*
1161 * To minimise LRU disruption, the caller can indicate that it only
1162 * wants to isolate pages it will be able to operate on without
1163 * blocking - clean pages for the most part.
1164 *
1165 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1166 * is used by reclaim when it is cannot write to backing storage
1167 *
1168 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1169 * that it is possible to migrate without blocking
1170 */
1171 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1172 /* All the caller can do on PageWriteback is block */
1173 if (PageWriteback(page))
1174 return ret;
1175
1176 if (PageDirty(page)) {
1177 struct address_space *mapping;
1178
1179 /* ISOLATE_CLEAN means only clean pages */
1180 if (mode & ISOLATE_CLEAN)
1181 return ret;
1182
1183 /*
1184 * Only pages without mappings or that have a
1185 * ->migratepage callback are possible to migrate
1186 * without blocking
1187 */
1188 mapping = page_mapping(page);
1189 if (mapping && !mapping->a_ops->migratepage)
1190 return ret;
1191 }
1192 }
39deaf85 1193
f80c0673
MK
1194 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1195 return ret;
1196
5ad333eb
AW
1197 if (likely(get_page_unless_zero(page))) {
1198 /*
1199 * Be careful not to clear PageLRU until after we're
1200 * sure the page is not being freed elsewhere -- the
1201 * page release code relies on it.
1202 */
1203 ClearPageLRU(page);
1204 ret = 0;
1205 }
1206
1207 return ret;
1208}
1209
1da177e4
LT
1210/*
1211 * zone->lru_lock is heavily contended. Some of the functions that
1212 * shrink the lists perform better by taking out a batch of pages
1213 * and working on them outside the LRU lock.
1214 *
1215 * For pagecache intensive workloads, this function is the hottest
1216 * spot in the kernel (apart from copy_*_user functions).
1217 *
1218 * Appropriate locks must be held before calling this function.
1219 *
1220 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1221 * @lruvec: The LRU vector to pull pages from.
1da177e4 1222 * @dst: The temp list to put pages on to.
f626012d 1223 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1224 * @sc: The scan_control struct for this reclaim session
5ad333eb 1225 * @mode: One of the LRU isolation modes
3cb99451 1226 * @lru: LRU list id for isolating
1da177e4
LT
1227 *
1228 * returns how many pages were moved onto *@dst.
1229 */
69e05944 1230static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1231 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1232 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1233 isolate_mode_t mode, enum lru_list lru)
1da177e4 1234{
75b00af7 1235 struct list_head *src = &lruvec->lists[lru];
69e05944 1236 unsigned long nr_taken = 0;
c9b02d97 1237 unsigned long scan;
1da177e4 1238
c9b02d97 1239 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1240 struct page *page;
fa9add64 1241 int nr_pages;
5ad333eb 1242
1da177e4
LT
1243 page = lru_to_page(src);
1244 prefetchw_prev_lru_page(page, src, flags);
1245
725d704e 1246 VM_BUG_ON(!PageLRU(page));
8d438f96 1247
f3fd4a61 1248 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1249 case 0:
fa9add64
HD
1250 nr_pages = hpage_nr_pages(page);
1251 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1252 list_move(&page->lru, dst);
fa9add64 1253 nr_taken += nr_pages;
5ad333eb
AW
1254 break;
1255
1256 case -EBUSY:
1257 /* else it is being freed elsewhere */
1258 list_move(&page->lru, src);
1259 continue;
46453a6e 1260
5ad333eb
AW
1261 default:
1262 BUG();
1263 }
1da177e4
LT
1264 }
1265
f626012d 1266 *nr_scanned = scan;
75b00af7
HD
1267 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1268 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1269 return nr_taken;
1270}
1271
62695a84
NP
1272/**
1273 * isolate_lru_page - tries to isolate a page from its LRU list
1274 * @page: page to isolate from its LRU list
1275 *
1276 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1277 * vmstat statistic corresponding to whatever LRU list the page was on.
1278 *
1279 * Returns 0 if the page was removed from an LRU list.
1280 * Returns -EBUSY if the page was not on an LRU list.
1281 *
1282 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1283 * the active list, it will have PageActive set. If it was found on
1284 * the unevictable list, it will have the PageUnevictable bit set. That flag
1285 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1286 *
1287 * The vmstat statistic corresponding to the list on which the page was
1288 * found will be decremented.
1289 *
1290 * Restrictions:
1291 * (1) Must be called with an elevated refcount on the page. This is a
1292 * fundamentnal difference from isolate_lru_pages (which is called
1293 * without a stable reference).
1294 * (2) the lru_lock must not be held.
1295 * (3) interrupts must be enabled.
1296 */
1297int isolate_lru_page(struct page *page)
1298{
1299 int ret = -EBUSY;
1300
0c917313
KK
1301 VM_BUG_ON(!page_count(page));
1302
62695a84
NP
1303 if (PageLRU(page)) {
1304 struct zone *zone = page_zone(page);
fa9add64 1305 struct lruvec *lruvec;
62695a84
NP
1306
1307 spin_lock_irq(&zone->lru_lock);
fa9add64 1308 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1309 if (PageLRU(page)) {
894bc310 1310 int lru = page_lru(page);
0c917313 1311 get_page(page);
62695a84 1312 ClearPageLRU(page);
fa9add64
HD
1313 del_page_from_lru_list(page, lruvec, lru);
1314 ret = 0;
62695a84
NP
1315 }
1316 spin_unlock_irq(&zone->lru_lock);
1317 }
1318 return ret;
1319}
1320
35cd7815 1321/*
d37dd5dc
FW
1322 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1323 * then get resheduled. When there are massive number of tasks doing page
1324 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1325 * the LRU list will go small and be scanned faster than necessary, leading to
1326 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1327 */
1328static int too_many_isolated(struct zone *zone, int file,
1329 struct scan_control *sc)
1330{
1331 unsigned long inactive, isolated;
1332
1333 if (current_is_kswapd())
1334 return 0;
1335
89b5fae5 1336 if (!global_reclaim(sc))
35cd7815
RR
1337 return 0;
1338
1339 if (file) {
1340 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1341 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1342 } else {
1343 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1344 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1345 }
1346
3cf23841
FW
1347 /*
1348 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1349 * won't get blocked by normal direct-reclaimers, forming a circular
1350 * deadlock.
1351 */
1352 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1353 inactive >>= 3;
1354
35cd7815
RR
1355 return isolated > inactive;
1356}
1357
66635629 1358static noinline_for_stack void
75b00af7 1359putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1360{
27ac81d8
KK
1361 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1362 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1363 LIST_HEAD(pages_to_free);
66635629 1364
66635629
MG
1365 /*
1366 * Put back any unfreeable pages.
1367 */
66635629 1368 while (!list_empty(page_list)) {
3f79768f 1369 struct page *page = lru_to_page(page_list);
66635629 1370 int lru;
3f79768f 1371
66635629
MG
1372 VM_BUG_ON(PageLRU(page));
1373 list_del(&page->lru);
39b5f29a 1374 if (unlikely(!page_evictable(page))) {
66635629
MG
1375 spin_unlock_irq(&zone->lru_lock);
1376 putback_lru_page(page);
1377 spin_lock_irq(&zone->lru_lock);
1378 continue;
1379 }
fa9add64
HD
1380
1381 lruvec = mem_cgroup_page_lruvec(page, zone);
1382
7a608572 1383 SetPageLRU(page);
66635629 1384 lru = page_lru(page);
fa9add64
HD
1385 add_page_to_lru_list(page, lruvec, lru);
1386
66635629
MG
1387 if (is_active_lru(lru)) {
1388 int file = is_file_lru(lru);
9992af10
RR
1389 int numpages = hpage_nr_pages(page);
1390 reclaim_stat->recent_rotated[file] += numpages;
66635629 1391 }
2bcf8879
HD
1392 if (put_page_testzero(page)) {
1393 __ClearPageLRU(page);
1394 __ClearPageActive(page);
fa9add64 1395 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1396
1397 if (unlikely(PageCompound(page))) {
1398 spin_unlock_irq(&zone->lru_lock);
1399 (*get_compound_page_dtor(page))(page);
1400 spin_lock_irq(&zone->lru_lock);
1401 } else
1402 list_add(&page->lru, &pages_to_free);
66635629
MG
1403 }
1404 }
66635629 1405
3f79768f
HD
1406 /*
1407 * To save our caller's stack, now use input list for pages to free.
1408 */
1409 list_splice(&pages_to_free, page_list);
66635629
MG
1410}
1411
1da177e4 1412/*
1742f19f
AM
1413 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1414 * of reclaimed pages
1da177e4 1415 */
66635629 1416static noinline_for_stack unsigned long
1a93be0e 1417shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1418 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1419{
1420 LIST_HEAD(page_list);
e247dbce 1421 unsigned long nr_scanned;
05ff5137 1422 unsigned long nr_reclaimed = 0;
e247dbce 1423 unsigned long nr_taken;
8e950282
MG
1424 unsigned long nr_dirty = 0;
1425 unsigned long nr_congested = 0;
e2be15f6 1426 unsigned long nr_unqueued_dirty = 0;
92df3a72 1427 unsigned long nr_writeback = 0;
b1a6f21e 1428 unsigned long nr_immediate = 0;
f3fd4a61 1429 isolate_mode_t isolate_mode = 0;
3cb99451 1430 int file = is_file_lru(lru);
1a93be0e
KK
1431 struct zone *zone = lruvec_zone(lruvec);
1432 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1433
35cd7815 1434 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1435 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1436
1437 /* We are about to die and free our memory. Return now. */
1438 if (fatal_signal_pending(current))
1439 return SWAP_CLUSTER_MAX;
1440 }
1441
1da177e4 1442 lru_add_drain();
f80c0673
MK
1443
1444 if (!sc->may_unmap)
61317289 1445 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1446 if (!sc->may_writepage)
61317289 1447 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1448
1da177e4 1449 spin_lock_irq(&zone->lru_lock);
b35ea17b 1450
5dc35979
KK
1451 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1452 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1453
1454 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1455 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1456
89b5fae5 1457 if (global_reclaim(sc)) {
e247dbce
KM
1458 zone->pages_scanned += nr_scanned;
1459 if (current_is_kswapd())
75b00af7 1460 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1461 else
75b00af7 1462 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1463 }
d563c050 1464 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1465
d563c050 1466 if (nr_taken == 0)
66635629 1467 return 0;
5ad333eb 1468
02c6de8d 1469 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1470 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1471 &nr_writeback, &nr_immediate,
1472 false);
c661b078 1473
3f79768f
HD
1474 spin_lock_irq(&zone->lru_lock);
1475
95d918fc 1476 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1477
904249aa
YH
1478 if (global_reclaim(sc)) {
1479 if (current_is_kswapd())
1480 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1481 nr_reclaimed);
1482 else
1483 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1484 nr_reclaimed);
1485 }
a74609fa 1486
27ac81d8 1487 putback_inactive_pages(lruvec, &page_list);
3f79768f 1488
95d918fc 1489 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1490
1491 spin_unlock_irq(&zone->lru_lock);
1492
1493 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1494
92df3a72
MG
1495 /*
1496 * If reclaim is isolating dirty pages under writeback, it implies
1497 * that the long-lived page allocation rate is exceeding the page
1498 * laundering rate. Either the global limits are not being effective
1499 * at throttling processes due to the page distribution throughout
1500 * zones or there is heavy usage of a slow backing device. The
1501 * only option is to throttle from reclaim context which is not ideal
1502 * as there is no guarantee the dirtying process is throttled in the
1503 * same way balance_dirty_pages() manages.
1504 *
8e950282
MG
1505 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1506 * of pages under pages flagged for immediate reclaim and stall if any
1507 * are encountered in the nr_immediate check below.
92df3a72 1508 */
918fc718 1509 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1510 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1511
d43006d5 1512 /*
b1a6f21e
MG
1513 * memcg will stall in page writeback so only consider forcibly
1514 * stalling for global reclaim
d43006d5 1515 */
b1a6f21e 1516 if (global_reclaim(sc)) {
8e950282
MG
1517 /*
1518 * Tag a zone as congested if all the dirty pages scanned were
1519 * backed by a congested BDI and wait_iff_congested will stall.
1520 */
1521 if (nr_dirty && nr_dirty == nr_congested)
1522 zone_set_flag(zone, ZONE_CONGESTED);
1523
b1a6f21e
MG
1524 /*
1525 * If dirty pages are scanned that are not queued for IO, it
1526 * implies that flushers are not keeping up. In this case, flag
1527 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1528 * pages from reclaim context. It will forcibly stall in the
1529 * next check.
1530 */
1531 if (nr_unqueued_dirty == nr_taken)
1532 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1533
1534 /*
1535 * In addition, if kswapd scans pages marked marked for
1536 * immediate reclaim and under writeback (nr_immediate), it
1537 * implies that pages are cycling through the LRU faster than
1538 * they are written so also forcibly stall.
1539 */
1540 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1541 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1542 }
d43006d5 1543
8e950282
MG
1544 /*
1545 * Stall direct reclaim for IO completions if underlying BDIs or zone
1546 * is congested. Allow kswapd to continue until it starts encountering
1547 * unqueued dirty pages or cycling through the LRU too quickly.
1548 */
1549 if (!sc->hibernation_mode && !current_is_kswapd())
1550 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1551
e11da5b4
MG
1552 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1553 zone_idx(zone),
1554 nr_scanned, nr_reclaimed,
9e3b2f8c 1555 sc->priority,
23b9da55 1556 trace_shrink_flags(file));
05ff5137 1557 return nr_reclaimed;
1da177e4
LT
1558}
1559
1560/*
1561 * This moves pages from the active list to the inactive list.
1562 *
1563 * We move them the other way if the page is referenced by one or more
1564 * processes, from rmap.
1565 *
1566 * If the pages are mostly unmapped, the processing is fast and it is
1567 * appropriate to hold zone->lru_lock across the whole operation. But if
1568 * the pages are mapped, the processing is slow (page_referenced()) so we
1569 * should drop zone->lru_lock around each page. It's impossible to balance
1570 * this, so instead we remove the pages from the LRU while processing them.
1571 * It is safe to rely on PG_active against the non-LRU pages in here because
1572 * nobody will play with that bit on a non-LRU page.
1573 *
1574 * The downside is that we have to touch page->_count against each page.
1575 * But we had to alter page->flags anyway.
1576 */
1cfb419b 1577
fa9add64 1578static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1579 struct list_head *list,
2bcf8879 1580 struct list_head *pages_to_free,
3eb4140f
WF
1581 enum lru_list lru)
1582{
fa9add64 1583 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1584 unsigned long pgmoved = 0;
3eb4140f 1585 struct page *page;
fa9add64 1586 int nr_pages;
3eb4140f 1587
3eb4140f
WF
1588 while (!list_empty(list)) {
1589 page = lru_to_page(list);
fa9add64 1590 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f
WF
1591
1592 VM_BUG_ON(PageLRU(page));
1593 SetPageLRU(page);
1594
fa9add64
HD
1595 nr_pages = hpage_nr_pages(page);
1596 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1597 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1598 pgmoved += nr_pages;
3eb4140f 1599
2bcf8879
HD
1600 if (put_page_testzero(page)) {
1601 __ClearPageLRU(page);
1602 __ClearPageActive(page);
fa9add64 1603 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1604
1605 if (unlikely(PageCompound(page))) {
1606 spin_unlock_irq(&zone->lru_lock);
1607 (*get_compound_page_dtor(page))(page);
1608 spin_lock_irq(&zone->lru_lock);
1609 } else
1610 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1611 }
1612 }
1613 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1614 if (!is_active_lru(lru))
1615 __count_vm_events(PGDEACTIVATE, pgmoved);
1616}
1cfb419b 1617
f626012d 1618static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1619 struct lruvec *lruvec,
f16015fb 1620 struct scan_control *sc,
9e3b2f8c 1621 enum lru_list lru)
1da177e4 1622{
44c241f1 1623 unsigned long nr_taken;
f626012d 1624 unsigned long nr_scanned;
6fe6b7e3 1625 unsigned long vm_flags;
1da177e4 1626 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1627 LIST_HEAD(l_active);
b69408e8 1628 LIST_HEAD(l_inactive);
1da177e4 1629 struct page *page;
1a93be0e 1630 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1631 unsigned long nr_rotated = 0;
f3fd4a61 1632 isolate_mode_t isolate_mode = 0;
3cb99451 1633 int file = is_file_lru(lru);
1a93be0e 1634 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1635
1636 lru_add_drain();
f80c0673
MK
1637
1638 if (!sc->may_unmap)
61317289 1639 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1640 if (!sc->may_writepage)
61317289 1641 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1642
1da177e4 1643 spin_lock_irq(&zone->lru_lock);
925b7673 1644
5dc35979
KK
1645 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1646 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1647 if (global_reclaim(sc))
f626012d 1648 zone->pages_scanned += nr_scanned;
89b5fae5 1649
b7c46d15 1650 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1651
f626012d 1652 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1653 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1654 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1655 spin_unlock_irq(&zone->lru_lock);
1656
1da177e4
LT
1657 while (!list_empty(&l_hold)) {
1658 cond_resched();
1659 page = lru_to_page(&l_hold);
1660 list_del(&page->lru);
7e9cd484 1661
39b5f29a 1662 if (unlikely(!page_evictable(page))) {
894bc310
LS
1663 putback_lru_page(page);
1664 continue;
1665 }
1666
cc715d99
MG
1667 if (unlikely(buffer_heads_over_limit)) {
1668 if (page_has_private(page) && trylock_page(page)) {
1669 if (page_has_private(page))
1670 try_to_release_page(page, 0);
1671 unlock_page(page);
1672 }
1673 }
1674
c3ac9a8a
JW
1675 if (page_referenced(page, 0, sc->target_mem_cgroup,
1676 &vm_flags)) {
9992af10 1677 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1678 /*
1679 * Identify referenced, file-backed active pages and
1680 * give them one more trip around the active list. So
1681 * that executable code get better chances to stay in
1682 * memory under moderate memory pressure. Anon pages
1683 * are not likely to be evicted by use-once streaming
1684 * IO, plus JVM can create lots of anon VM_EXEC pages,
1685 * so we ignore them here.
1686 */
41e20983 1687 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1688 list_add(&page->lru, &l_active);
1689 continue;
1690 }
1691 }
7e9cd484 1692
5205e56e 1693 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1694 list_add(&page->lru, &l_inactive);
1695 }
1696
b555749a 1697 /*
8cab4754 1698 * Move pages back to the lru list.
b555749a 1699 */
2a1dc509 1700 spin_lock_irq(&zone->lru_lock);
556adecb 1701 /*
8cab4754
WF
1702 * Count referenced pages from currently used mappings as rotated,
1703 * even though only some of them are actually re-activated. This
1704 * helps balance scan pressure between file and anonymous pages in
1705 * get_scan_ratio.
7e9cd484 1706 */
b7c46d15 1707 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1708
fa9add64
HD
1709 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1710 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1711 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1712 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1713
1714 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1715}
1716
74e3f3c3 1717#ifdef CONFIG_SWAP
14797e23 1718static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1719{
1720 unsigned long active, inactive;
1721
1722 active = zone_page_state(zone, NR_ACTIVE_ANON);
1723 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1724
1725 if (inactive * zone->inactive_ratio < active)
1726 return 1;
1727
1728 return 0;
1729}
1730
14797e23
KM
1731/**
1732 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1733 * @lruvec: LRU vector to check
14797e23
KM
1734 *
1735 * Returns true if the zone does not have enough inactive anon pages,
1736 * meaning some active anon pages need to be deactivated.
1737 */
c56d5c7d 1738static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1739{
74e3f3c3
MK
1740 /*
1741 * If we don't have swap space, anonymous page deactivation
1742 * is pointless.
1743 */
1744 if (!total_swap_pages)
1745 return 0;
1746
c3c787e8 1747 if (!mem_cgroup_disabled())
c56d5c7d 1748 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1749
c56d5c7d 1750 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1751}
74e3f3c3 1752#else
c56d5c7d 1753static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1754{
1755 return 0;
1756}
1757#endif
14797e23 1758
56e49d21
RR
1759/**
1760 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1761 * @lruvec: LRU vector to check
56e49d21
RR
1762 *
1763 * When the system is doing streaming IO, memory pressure here
1764 * ensures that active file pages get deactivated, until more
1765 * than half of the file pages are on the inactive list.
1766 *
1767 * Once we get to that situation, protect the system's working
1768 * set from being evicted by disabling active file page aging.
1769 *
1770 * This uses a different ratio than the anonymous pages, because
1771 * the page cache uses a use-once replacement algorithm.
1772 */
c56d5c7d 1773static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1774{
e3790144
JW
1775 unsigned long inactive;
1776 unsigned long active;
1777
1778 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1779 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1780
e3790144 1781 return active > inactive;
56e49d21
RR
1782}
1783
75b00af7 1784static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1785{
75b00af7 1786 if (is_file_lru(lru))
c56d5c7d 1787 return inactive_file_is_low(lruvec);
b39415b2 1788 else
c56d5c7d 1789 return inactive_anon_is_low(lruvec);
b39415b2
RR
1790}
1791
4f98a2fe 1792static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1793 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1794{
b39415b2 1795 if (is_active_lru(lru)) {
75b00af7 1796 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1797 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1798 return 0;
1799 }
1800
1a93be0e 1801 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1802}
1803
3d58ab5c 1804static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1805{
89b5fae5 1806 if (global_reclaim(sc))
1f4c025b 1807 return vm_swappiness;
3d58ab5c 1808 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1809}
1810
9a265114
JW
1811enum scan_balance {
1812 SCAN_EQUAL,
1813 SCAN_FRACT,
1814 SCAN_ANON,
1815 SCAN_FILE,
1816};
1817
4f98a2fe
RR
1818/*
1819 * Determine how aggressively the anon and file LRU lists should be
1820 * scanned. The relative value of each set of LRU lists is determined
1821 * by looking at the fraction of the pages scanned we did rotate back
1822 * onto the active list instead of evict.
1823 *
be7bd59d
WL
1824 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1825 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1826 */
90126375 1827static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1828 unsigned long *nr)
4f98a2fe 1829{
9a265114
JW
1830 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1831 u64 fraction[2];
1832 u64 denominator = 0; /* gcc */
1833 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1834 unsigned long anon_prio, file_prio;
9a265114
JW
1835 enum scan_balance scan_balance;
1836 unsigned long anon, file, free;
1837 bool force_scan = false;
4f98a2fe 1838 unsigned long ap, fp;
4111304d 1839 enum lru_list lru;
246e87a9 1840
f11c0ca5
JW
1841 /*
1842 * If the zone or memcg is small, nr[l] can be 0. This
1843 * results in no scanning on this priority and a potential
1844 * priority drop. Global direct reclaim can go to the next
1845 * zone and tends to have no problems. Global kswapd is for
1846 * zone balancing and it needs to scan a minimum amount. When
1847 * reclaiming for a memcg, a priority drop can cause high
1848 * latencies, so it's better to scan a minimum amount there as
1849 * well.
1850 */
90126375 1851 if (current_is_kswapd() && zone->all_unreclaimable)
a4d3e9e7 1852 force_scan = true;
89b5fae5 1853 if (!global_reclaim(sc))
a4d3e9e7 1854 force_scan = true;
76a33fc3
SL
1855
1856 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1857 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1858 scan_balance = SCAN_FILE;
76a33fc3
SL
1859 goto out;
1860 }
4f98a2fe 1861
10316b31
JW
1862 /*
1863 * Global reclaim will swap to prevent OOM even with no
1864 * swappiness, but memcg users want to use this knob to
1865 * disable swapping for individual groups completely when
1866 * using the memory controller's swap limit feature would be
1867 * too expensive.
1868 */
1869 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
9a265114 1870 scan_balance = SCAN_FILE;
10316b31
JW
1871 goto out;
1872 }
1873
1874 /*
1875 * Do not apply any pressure balancing cleverness when the
1876 * system is close to OOM, scan both anon and file equally
1877 * (unless the swappiness setting disagrees with swapping).
1878 */
1879 if (!sc->priority && vmscan_swappiness(sc)) {
9a265114 1880 scan_balance = SCAN_EQUAL;
10316b31
JW
1881 goto out;
1882 }
1883
4d7dcca2
HD
1884 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1885 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1886 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1887 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1888
11d16c25
JW
1889 /*
1890 * If it's foreseeable that reclaiming the file cache won't be
1891 * enough to get the zone back into a desirable shape, we have
1892 * to swap. Better start now and leave the - probably heavily
1893 * thrashing - remaining file pages alone.
1894 */
89b5fae5 1895 if (global_reclaim(sc)) {
11d16c25 1896 free = zone_page_state(zone, NR_FREE_PAGES);
90126375 1897 if (unlikely(file + free <= high_wmark_pages(zone))) {
9a265114 1898 scan_balance = SCAN_ANON;
76a33fc3 1899 goto out;
eeee9a8c 1900 }
4f98a2fe
RR
1901 }
1902
7c5bd705
JW
1903 /*
1904 * There is enough inactive page cache, do not reclaim
1905 * anything from the anonymous working set right now.
1906 */
1907 if (!inactive_file_is_low(lruvec)) {
9a265114 1908 scan_balance = SCAN_FILE;
7c5bd705
JW
1909 goto out;
1910 }
1911
9a265114
JW
1912 scan_balance = SCAN_FRACT;
1913
58c37f6e
KM
1914 /*
1915 * With swappiness at 100, anonymous and file have the same priority.
1916 * This scanning priority is essentially the inverse of IO cost.
1917 */
3d58ab5c 1918 anon_prio = vmscan_swappiness(sc);
75b00af7 1919 file_prio = 200 - anon_prio;
58c37f6e 1920
4f98a2fe
RR
1921 /*
1922 * OK, so we have swap space and a fair amount of page cache
1923 * pages. We use the recently rotated / recently scanned
1924 * ratios to determine how valuable each cache is.
1925 *
1926 * Because workloads change over time (and to avoid overflow)
1927 * we keep these statistics as a floating average, which ends
1928 * up weighing recent references more than old ones.
1929 *
1930 * anon in [0], file in [1]
1931 */
90126375 1932 spin_lock_irq(&zone->lru_lock);
6e901571 1933 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1934 reclaim_stat->recent_scanned[0] /= 2;
1935 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1936 }
1937
6e901571 1938 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1939 reclaim_stat->recent_scanned[1] /= 2;
1940 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1941 }
1942
4f98a2fe 1943 /*
00d8089c
RR
1944 * The amount of pressure on anon vs file pages is inversely
1945 * proportional to the fraction of recently scanned pages on
1946 * each list that were recently referenced and in active use.
4f98a2fe 1947 */
fe35004f 1948 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1949 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1950
fe35004f 1951 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1952 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1953 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1954
76a33fc3
SL
1955 fraction[0] = ap;
1956 fraction[1] = fp;
1957 denominator = ap + fp + 1;
1958out:
4111304d
HD
1959 for_each_evictable_lru(lru) {
1960 int file = is_file_lru(lru);
d778df51 1961 unsigned long size;
76a33fc3 1962 unsigned long scan;
6e08a369 1963
d778df51 1964 size = get_lru_size(lruvec, lru);
10316b31 1965 scan = size >> sc->priority;
9a265114 1966
10316b31
JW
1967 if (!scan && force_scan)
1968 scan = min(size, SWAP_CLUSTER_MAX);
9a265114
JW
1969
1970 switch (scan_balance) {
1971 case SCAN_EQUAL:
1972 /* Scan lists relative to size */
1973 break;
1974 case SCAN_FRACT:
1975 /*
1976 * Scan types proportional to swappiness and
1977 * their relative recent reclaim efficiency.
1978 */
1979 scan = div64_u64(scan * fraction[file], denominator);
1980 break;
1981 case SCAN_FILE:
1982 case SCAN_ANON:
1983 /* Scan one type exclusively */
1984 if ((scan_balance == SCAN_FILE) != file)
1985 scan = 0;
1986 break;
1987 default:
1988 /* Look ma, no brain */
1989 BUG();
1990 }
4111304d 1991 nr[lru] = scan;
76a33fc3 1992 }
6e08a369 1993}
4f98a2fe 1994
9b4f98cd
JW
1995/*
1996 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1997 */
1998static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1999{
2000 unsigned long nr[NR_LRU_LISTS];
e82e0561 2001 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2002 unsigned long nr_to_scan;
2003 enum lru_list lru;
2004 unsigned long nr_reclaimed = 0;
2005 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2006 struct blk_plug plug;
e82e0561 2007 bool scan_adjusted = false;
9b4f98cd
JW
2008
2009 get_scan_count(lruvec, sc, nr);
2010
e82e0561
MG
2011 /* Record the original scan target for proportional adjustments later */
2012 memcpy(targets, nr, sizeof(nr));
2013
9b4f98cd
JW
2014 blk_start_plug(&plug);
2015 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2016 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2017 unsigned long nr_anon, nr_file, percentage;
2018 unsigned long nr_scanned;
2019
9b4f98cd
JW
2020 for_each_evictable_lru(lru) {
2021 if (nr[lru]) {
2022 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2023 nr[lru] -= nr_to_scan;
2024
2025 nr_reclaimed += shrink_list(lru, nr_to_scan,
2026 lruvec, sc);
2027 }
2028 }
e82e0561
MG
2029
2030 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2031 continue;
2032
9b4f98cd 2033 /*
e82e0561
MG
2034 * For global direct reclaim, reclaim only the number of pages
2035 * requested. Less care is taken to scan proportionally as it
2036 * is more important to minimise direct reclaim stall latency
2037 * than it is to properly age the LRU lists.
9b4f98cd 2038 */
e82e0561 2039 if (global_reclaim(sc) && !current_is_kswapd())
9b4f98cd 2040 break;
e82e0561
MG
2041
2042 /*
2043 * For kswapd and memcg, reclaim at least the number of pages
2044 * requested. Ensure that the anon and file LRUs shrink
2045 * proportionally what was requested by get_scan_count(). We
2046 * stop reclaiming one LRU and reduce the amount scanning
2047 * proportional to the original scan target.
2048 */
2049 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2050 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2051
2052 if (nr_file > nr_anon) {
2053 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2054 targets[LRU_ACTIVE_ANON] + 1;
2055 lru = LRU_BASE;
2056 percentage = nr_anon * 100 / scan_target;
2057 } else {
2058 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2059 targets[LRU_ACTIVE_FILE] + 1;
2060 lru = LRU_FILE;
2061 percentage = nr_file * 100 / scan_target;
2062 }
2063
2064 /* Stop scanning the smaller of the LRU */
2065 nr[lru] = 0;
2066 nr[lru + LRU_ACTIVE] = 0;
2067
2068 /*
2069 * Recalculate the other LRU scan count based on its original
2070 * scan target and the percentage scanning already complete
2071 */
2072 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2073 nr_scanned = targets[lru] - nr[lru];
2074 nr[lru] = targets[lru] * (100 - percentage) / 100;
2075 nr[lru] -= min(nr[lru], nr_scanned);
2076
2077 lru += LRU_ACTIVE;
2078 nr_scanned = targets[lru] - nr[lru];
2079 nr[lru] = targets[lru] * (100 - percentage) / 100;
2080 nr[lru] -= min(nr[lru], nr_scanned);
2081
2082 scan_adjusted = true;
9b4f98cd
JW
2083 }
2084 blk_finish_plug(&plug);
2085 sc->nr_reclaimed += nr_reclaimed;
2086
2087 /*
2088 * Even if we did not try to evict anon pages at all, we want to
2089 * rebalance the anon lru active/inactive ratio.
2090 */
2091 if (inactive_anon_is_low(lruvec))
2092 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2093 sc, LRU_ACTIVE_ANON);
2094
2095 throttle_vm_writeout(sc->gfp_mask);
2096}
2097
23b9da55 2098/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2099static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2100{
d84da3f9 2101 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2102 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2103 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2104 return true;
2105
2106 return false;
2107}
2108
3e7d3449 2109/*
23b9da55
MG
2110 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2111 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2112 * true if more pages should be reclaimed such that when the page allocator
2113 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2114 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2115 */
9b4f98cd 2116static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2117 unsigned long nr_reclaimed,
2118 unsigned long nr_scanned,
2119 struct scan_control *sc)
2120{
2121 unsigned long pages_for_compaction;
2122 unsigned long inactive_lru_pages;
2123
2124 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2125 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2126 return false;
2127
2876592f
MG
2128 /* Consider stopping depending on scan and reclaim activity */
2129 if (sc->gfp_mask & __GFP_REPEAT) {
2130 /*
2131 * For __GFP_REPEAT allocations, stop reclaiming if the
2132 * full LRU list has been scanned and we are still failing
2133 * to reclaim pages. This full LRU scan is potentially
2134 * expensive but a __GFP_REPEAT caller really wants to succeed
2135 */
2136 if (!nr_reclaimed && !nr_scanned)
2137 return false;
2138 } else {
2139 /*
2140 * For non-__GFP_REPEAT allocations which can presumably
2141 * fail without consequence, stop if we failed to reclaim
2142 * any pages from the last SWAP_CLUSTER_MAX number of
2143 * pages that were scanned. This will return to the
2144 * caller faster at the risk reclaim/compaction and
2145 * the resulting allocation attempt fails
2146 */
2147 if (!nr_reclaimed)
2148 return false;
2149 }
3e7d3449
MG
2150
2151 /*
2152 * If we have not reclaimed enough pages for compaction and the
2153 * inactive lists are large enough, continue reclaiming
2154 */
2155 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2156 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2157 if (get_nr_swap_pages() > 0)
9b4f98cd 2158 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2159 if (sc->nr_reclaimed < pages_for_compaction &&
2160 inactive_lru_pages > pages_for_compaction)
2161 return true;
2162
2163 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2164 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2165 case COMPACT_PARTIAL:
2166 case COMPACT_CONTINUE:
2167 return false;
2168 default:
2169 return true;
2170 }
2171}
2172
9b4f98cd 2173static void shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2174{
f0fdc5e8 2175 unsigned long nr_reclaimed, nr_scanned;
1da177e4 2176
9b4f98cd
JW
2177 do {
2178 struct mem_cgroup *root = sc->target_mem_cgroup;
2179 struct mem_cgroup_reclaim_cookie reclaim = {
2180 .zone = zone,
2181 .priority = sc->priority,
2182 };
2183 struct mem_cgroup *memcg;
3e7d3449 2184
9b4f98cd
JW
2185 nr_reclaimed = sc->nr_reclaimed;
2186 nr_scanned = sc->nr_scanned;
1da177e4 2187
9b4f98cd
JW
2188 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2189 do {
2190 struct lruvec *lruvec;
5660048c 2191
9b4f98cd 2192 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 2193
9b4f98cd 2194 shrink_lruvec(lruvec, sc);
f16015fb 2195
9b4f98cd 2196 /*
a394cb8e
MH
2197 * Direct reclaim and kswapd have to scan all memory
2198 * cgroups to fulfill the overall scan target for the
9b4f98cd 2199 * zone.
a394cb8e
MH
2200 *
2201 * Limit reclaim, on the other hand, only cares about
2202 * nr_to_reclaim pages to be reclaimed and it will
2203 * retry with decreasing priority if one round over the
2204 * whole hierarchy is not sufficient.
9b4f98cd 2205 */
a394cb8e
MH
2206 if (!global_reclaim(sc) &&
2207 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2208 mem_cgroup_iter_break(root, memcg);
2209 break;
2210 }
2211 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2212 } while (memcg);
70ddf637
AV
2213
2214 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2215 sc->nr_scanned - nr_scanned,
2216 sc->nr_reclaimed - nr_reclaimed);
2217
9b4f98cd
JW
2218 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2219 sc->nr_scanned - nr_scanned, sc));
f16015fb
JW
2220}
2221
fe4b1b24
MG
2222/* Returns true if compaction should go ahead for a high-order request */
2223static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2224{
2225 unsigned long balance_gap, watermark;
2226 bool watermark_ok;
2227
2228 /* Do not consider compaction for orders reclaim is meant to satisfy */
2229 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2230 return false;
2231
2232 /*
2233 * Compaction takes time to run and there are potentially other
2234 * callers using the pages just freed. Continue reclaiming until
2235 * there is a buffer of free pages available to give compaction
2236 * a reasonable chance of completing and allocating the page
2237 */
2238 balance_gap = min(low_wmark_pages(zone),
b40da049 2239 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
fe4b1b24
MG
2240 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2241 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2242 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2243
2244 /*
2245 * If compaction is deferred, reclaim up to a point where
2246 * compaction will have a chance of success when re-enabled
2247 */
aff62249 2248 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2249 return watermark_ok;
2250
2251 /* If compaction is not ready to start, keep reclaiming */
2252 if (!compaction_suitable(zone, sc->order))
2253 return false;
2254
2255 return watermark_ok;
2256}
2257
1da177e4
LT
2258/*
2259 * This is the direct reclaim path, for page-allocating processes. We only
2260 * try to reclaim pages from zones which will satisfy the caller's allocation
2261 * request.
2262 *
41858966
MG
2263 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2264 * Because:
1da177e4
LT
2265 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2266 * allocation or
41858966
MG
2267 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2268 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2269 * zone defense algorithm.
1da177e4 2270 *
1da177e4
LT
2271 * If a zone is deemed to be full of pinned pages then just give it a light
2272 * scan then give up on it.
e0c23279
MG
2273 *
2274 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2275 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2276 * the caller that it should consider retrying the allocation instead of
2277 * further reclaim.
1da177e4 2278 */
9e3b2f8c 2279static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2280{
dd1a239f 2281 struct zoneref *z;
54a6eb5c 2282 struct zone *zone;
d149e3b2
YH
2283 unsigned long nr_soft_reclaimed;
2284 unsigned long nr_soft_scanned;
0cee34fd 2285 bool aborted_reclaim = false;
1cfb419b 2286
cc715d99
MG
2287 /*
2288 * If the number of buffer_heads in the machine exceeds the maximum
2289 * allowed level, force direct reclaim to scan the highmem zone as
2290 * highmem pages could be pinning lowmem pages storing buffer_heads
2291 */
2292 if (buffer_heads_over_limit)
2293 sc->gfp_mask |= __GFP_HIGHMEM;
2294
d4debc66
MG
2295 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2296 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2297 if (!populated_zone(zone))
1da177e4 2298 continue;
1cfb419b
KH
2299 /*
2300 * Take care memory controller reclaiming has small influence
2301 * to global LRU.
2302 */
89b5fae5 2303 if (global_reclaim(sc)) {
1cfb419b
KH
2304 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2305 continue;
9e3b2f8c
KK
2306 if (zone->all_unreclaimable &&
2307 sc->priority != DEF_PRIORITY)
1cfb419b 2308 continue; /* Let kswapd poll it */
d84da3f9 2309 if (IS_ENABLED(CONFIG_COMPACTION)) {
e0887c19 2310 /*
e0c23279
MG
2311 * If we already have plenty of memory free for
2312 * compaction in this zone, don't free any more.
2313 * Even though compaction is invoked for any
2314 * non-zero order, only frequent costly order
2315 * reclamation is disruptive enough to become a
c7cfa37b
CA
2316 * noticeable problem, like transparent huge
2317 * page allocations.
e0887c19 2318 */
fe4b1b24 2319 if (compaction_ready(zone, sc)) {
0cee34fd 2320 aborted_reclaim = true;
e0887c19 2321 continue;
e0c23279 2322 }
e0887c19 2323 }
ac34a1a3
KH
2324 /*
2325 * This steals pages from memory cgroups over softlimit
2326 * and returns the number of reclaimed pages and
2327 * scanned pages. This works for global memory pressure
2328 * and balancing, not for a memcg's limit.
2329 */
2330 nr_soft_scanned = 0;
2331 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2332 sc->order, sc->gfp_mask,
2333 &nr_soft_scanned);
2334 sc->nr_reclaimed += nr_soft_reclaimed;
2335 sc->nr_scanned += nr_soft_scanned;
2336 /* need some check for avoid more shrink_zone() */
1cfb419b 2337 }
408d8544 2338
9e3b2f8c 2339 shrink_zone(zone, sc);
1da177e4 2340 }
e0c23279 2341
0cee34fd 2342 return aborted_reclaim;
d1908362
MK
2343}
2344
2345static bool zone_reclaimable(struct zone *zone)
2346{
2347 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2348}
2349
929bea7c 2350/* All zones in zonelist are unreclaimable? */
d1908362
MK
2351static bool all_unreclaimable(struct zonelist *zonelist,
2352 struct scan_control *sc)
2353{
2354 struct zoneref *z;
2355 struct zone *zone;
d1908362
MK
2356
2357 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2358 gfp_zone(sc->gfp_mask), sc->nodemask) {
2359 if (!populated_zone(zone))
2360 continue;
2361 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2362 continue;
929bea7c
KM
2363 if (!zone->all_unreclaimable)
2364 return false;
d1908362
MK
2365 }
2366
929bea7c 2367 return true;
1da177e4 2368}
4f98a2fe 2369
1da177e4
LT
2370/*
2371 * This is the main entry point to direct page reclaim.
2372 *
2373 * If a full scan of the inactive list fails to free enough memory then we
2374 * are "out of memory" and something needs to be killed.
2375 *
2376 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2377 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2378 * caller can't do much about. We kick the writeback threads and take explicit
2379 * naps in the hope that some of these pages can be written. But if the
2380 * allocating task holds filesystem locks which prevent writeout this might not
2381 * work, and the allocation attempt will fail.
a41f24ea
NA
2382 *
2383 * returns: 0, if no pages reclaimed
2384 * else, the number of pages reclaimed
1da177e4 2385 */
dac1d27b 2386static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2387 struct scan_control *sc,
2388 struct shrink_control *shrink)
1da177e4 2389{
69e05944 2390 unsigned long total_scanned = 0;
1da177e4 2391 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2392 struct zoneref *z;
54a6eb5c 2393 struct zone *zone;
22fba335 2394 unsigned long writeback_threshold;
0cee34fd 2395 bool aborted_reclaim;
1da177e4 2396
873b4771
KK
2397 delayacct_freepages_start();
2398
89b5fae5 2399 if (global_reclaim(sc))
1cfb419b 2400 count_vm_event(ALLOCSTALL);
1da177e4 2401
9e3b2f8c 2402 do {
70ddf637
AV
2403 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2404 sc->priority);
66e1707b 2405 sc->nr_scanned = 0;
9e3b2f8c 2406 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2407
66e1707b 2408 /*
5a1c9cbc
MG
2409 * Don't shrink slabs when reclaiming memory from over limit
2410 * cgroups but do shrink slab at least once when aborting
2411 * reclaim for compaction to avoid unevenly scanning file/anon
2412 * LRU pages over slab pages.
66e1707b 2413 */
89b5fae5 2414 if (global_reclaim(sc)) {
c6a8a8c5 2415 unsigned long lru_pages = 0;
0ce3d744
DC
2416
2417 nodes_clear(shrink->nodes_to_scan);
d4debc66
MG
2418 for_each_zone_zonelist(zone, z, zonelist,
2419 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2420 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2421 continue;
2422
2423 lru_pages += zone_reclaimable_pages(zone);
0ce3d744
DC
2424 node_set(zone_to_nid(zone),
2425 shrink->nodes_to_scan);
c6a8a8c5
KM
2426 }
2427
1495f230 2428 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2429 if (reclaim_state) {
a79311c1 2430 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2431 reclaim_state->reclaimed_slab = 0;
2432 }
1da177e4 2433 }
66e1707b 2434 total_scanned += sc->nr_scanned;
bb21c7ce 2435 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2436 goto out;
1da177e4 2437
0e50ce3b
MK
2438 /*
2439 * If we're getting trouble reclaiming, start doing
2440 * writepage even in laptop mode.
2441 */
2442 if (sc->priority < DEF_PRIORITY - 2)
2443 sc->may_writepage = 1;
2444
1da177e4
LT
2445 /*
2446 * Try to write back as many pages as we just scanned. This
2447 * tends to cause slow streaming writers to write data to the
2448 * disk smoothly, at the dirtying rate, which is nice. But
2449 * that's undesirable in laptop mode, where we *want* lumpy
2450 * writeout. So in laptop mode, write out the whole world.
2451 */
22fba335
KM
2452 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2453 if (total_scanned > writeback_threshold) {
0e175a18
CW
2454 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2455 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2456 sc->may_writepage = 1;
1da177e4 2457 }
5a1c9cbc 2458 } while (--sc->priority >= 0 && !aborted_reclaim);
bb21c7ce 2459
1da177e4 2460out:
873b4771
KK
2461 delayacct_freepages_end();
2462
bb21c7ce
KM
2463 if (sc->nr_reclaimed)
2464 return sc->nr_reclaimed;
2465
929bea7c
KM
2466 /*
2467 * As hibernation is going on, kswapd is freezed so that it can't mark
2468 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2469 * check.
2470 */
2471 if (oom_killer_disabled)
2472 return 0;
2473
0cee34fd
MG
2474 /* Aborted reclaim to try compaction? don't OOM, then */
2475 if (aborted_reclaim)
7335084d
MG
2476 return 1;
2477
bb21c7ce 2478 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2479 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2480 return 1;
2481
2482 return 0;
1da177e4
LT
2483}
2484
5515061d
MG
2485static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2486{
2487 struct zone *zone;
2488 unsigned long pfmemalloc_reserve = 0;
2489 unsigned long free_pages = 0;
2490 int i;
2491 bool wmark_ok;
2492
2493 for (i = 0; i <= ZONE_NORMAL; i++) {
2494 zone = &pgdat->node_zones[i];
2495 pfmemalloc_reserve += min_wmark_pages(zone);
2496 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2497 }
2498
2499 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2500
2501 /* kswapd must be awake if processes are being throttled */
2502 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2503 pgdat->classzone_idx = min(pgdat->classzone_idx,
2504 (enum zone_type)ZONE_NORMAL);
2505 wake_up_interruptible(&pgdat->kswapd_wait);
2506 }
2507
2508 return wmark_ok;
2509}
2510
2511/*
2512 * Throttle direct reclaimers if backing storage is backed by the network
2513 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2514 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2515 * when the low watermark is reached.
2516 *
2517 * Returns true if a fatal signal was delivered during throttling. If this
2518 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2519 */
50694c28 2520static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2521 nodemask_t *nodemask)
2522{
2523 struct zone *zone;
2524 int high_zoneidx = gfp_zone(gfp_mask);
2525 pg_data_t *pgdat;
2526
2527 /*
2528 * Kernel threads should not be throttled as they may be indirectly
2529 * responsible for cleaning pages necessary for reclaim to make forward
2530 * progress. kjournald for example may enter direct reclaim while
2531 * committing a transaction where throttling it could forcing other
2532 * processes to block on log_wait_commit().
2533 */
2534 if (current->flags & PF_KTHREAD)
50694c28
MG
2535 goto out;
2536
2537 /*
2538 * If a fatal signal is pending, this process should not throttle.
2539 * It should return quickly so it can exit and free its memory
2540 */
2541 if (fatal_signal_pending(current))
2542 goto out;
5515061d
MG
2543
2544 /* Check if the pfmemalloc reserves are ok */
2545 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2546 pgdat = zone->zone_pgdat;
2547 if (pfmemalloc_watermark_ok(pgdat))
50694c28 2548 goto out;
5515061d 2549
68243e76
MG
2550 /* Account for the throttling */
2551 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2552
5515061d
MG
2553 /*
2554 * If the caller cannot enter the filesystem, it's possible that it
2555 * is due to the caller holding an FS lock or performing a journal
2556 * transaction in the case of a filesystem like ext[3|4]. In this case,
2557 * it is not safe to block on pfmemalloc_wait as kswapd could be
2558 * blocked waiting on the same lock. Instead, throttle for up to a
2559 * second before continuing.
2560 */
2561 if (!(gfp_mask & __GFP_FS)) {
2562 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2563 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2564
2565 goto check_pending;
5515061d
MG
2566 }
2567
2568 /* Throttle until kswapd wakes the process */
2569 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2570 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2571
2572check_pending:
2573 if (fatal_signal_pending(current))
2574 return true;
2575
2576out:
2577 return false;
5515061d
MG
2578}
2579
dac1d27b 2580unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2581 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2582{
33906bc5 2583 unsigned long nr_reclaimed;
66e1707b 2584 struct scan_control sc = {
21caf2fc 2585 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2586 .may_writepage = !laptop_mode,
22fba335 2587 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2588 .may_unmap = 1,
2e2e4259 2589 .may_swap = 1,
66e1707b 2590 .order = order,
9e3b2f8c 2591 .priority = DEF_PRIORITY,
f16015fb 2592 .target_mem_cgroup = NULL,
327c0e96 2593 .nodemask = nodemask,
66e1707b 2594 };
a09ed5e0
YH
2595 struct shrink_control shrink = {
2596 .gfp_mask = sc.gfp_mask,
2597 };
66e1707b 2598
5515061d 2599 /*
50694c28
MG
2600 * Do not enter reclaim if fatal signal was delivered while throttled.
2601 * 1 is returned so that the page allocator does not OOM kill at this
2602 * point.
5515061d 2603 */
50694c28 2604 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2605 return 1;
2606
33906bc5
MG
2607 trace_mm_vmscan_direct_reclaim_begin(order,
2608 sc.may_writepage,
2609 gfp_mask);
2610
a09ed5e0 2611 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2612
2613 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2614
2615 return nr_reclaimed;
66e1707b
BS
2616}
2617
c255a458 2618#ifdef CONFIG_MEMCG
66e1707b 2619
72835c86 2620unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2621 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2622 struct zone *zone,
2623 unsigned long *nr_scanned)
4e416953
BS
2624{
2625 struct scan_control sc = {
0ae5e89c 2626 .nr_scanned = 0,
b8f5c566 2627 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2628 .may_writepage = !laptop_mode,
2629 .may_unmap = 1,
2630 .may_swap = !noswap,
4e416953 2631 .order = 0,
9e3b2f8c 2632 .priority = 0,
72835c86 2633 .target_mem_cgroup = memcg,
4e416953 2634 };
f9be23d6 2635 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2636
4e416953
BS
2637 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2638 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2639
9e3b2f8c 2640 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2641 sc.may_writepage,
2642 sc.gfp_mask);
2643
4e416953
BS
2644 /*
2645 * NOTE: Although we can get the priority field, using it
2646 * here is not a good idea, since it limits the pages we can scan.
2647 * if we don't reclaim here, the shrink_zone from balance_pgdat
2648 * will pick up pages from other mem cgroup's as well. We hack
2649 * the priority and make it zero.
2650 */
f9be23d6 2651 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2652
2653 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2654
0ae5e89c 2655 *nr_scanned = sc.nr_scanned;
4e416953
BS
2656 return sc.nr_reclaimed;
2657}
2658
72835c86 2659unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2660 gfp_t gfp_mask,
185efc0f 2661 bool noswap)
66e1707b 2662{
4e416953 2663 struct zonelist *zonelist;
bdce6d9e 2664 unsigned long nr_reclaimed;
889976db 2665 int nid;
66e1707b 2666 struct scan_control sc = {
66e1707b 2667 .may_writepage = !laptop_mode,
a6dc60f8 2668 .may_unmap = 1,
2e2e4259 2669 .may_swap = !noswap,
22fba335 2670 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2671 .order = 0,
9e3b2f8c 2672 .priority = DEF_PRIORITY,
72835c86 2673 .target_mem_cgroup = memcg,
327c0e96 2674 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2675 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2676 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2677 };
2678 struct shrink_control shrink = {
2679 .gfp_mask = sc.gfp_mask,
66e1707b 2680 };
66e1707b 2681
889976db
YH
2682 /*
2683 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2684 * take care of from where we get pages. So the node where we start the
2685 * scan does not need to be the current node.
2686 */
72835c86 2687 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2688
2689 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2690
2691 trace_mm_vmscan_memcg_reclaim_begin(0,
2692 sc.may_writepage,
2693 sc.gfp_mask);
2694
a09ed5e0 2695 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2696
2697 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2698
2699 return nr_reclaimed;
66e1707b
BS
2700}
2701#endif
2702
9e3b2f8c 2703static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2704{
b95a2f2d 2705 struct mem_cgroup *memcg;
f16015fb 2706
b95a2f2d
JW
2707 if (!total_swap_pages)
2708 return;
2709
2710 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2711 do {
c56d5c7d 2712 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2713
c56d5c7d 2714 if (inactive_anon_is_low(lruvec))
1a93be0e 2715 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2716 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2717
2718 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2719 } while (memcg);
f16015fb
JW
2720}
2721
60cefed4
JW
2722static bool zone_balanced(struct zone *zone, int order,
2723 unsigned long balance_gap, int classzone_idx)
2724{
2725 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2726 balance_gap, classzone_idx, 0))
2727 return false;
2728
d84da3f9
KS
2729 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2730 !compaction_suitable(zone, order))
60cefed4
JW
2731 return false;
2732
2733 return true;
2734}
2735
1741c877 2736/*
4ae0a48b
ZC
2737 * pgdat_balanced() is used when checking if a node is balanced.
2738 *
2739 * For order-0, all zones must be balanced!
2740 *
2741 * For high-order allocations only zones that meet watermarks and are in a
2742 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2743 * total of balanced pages must be at least 25% of the zones allowed by
2744 * classzone_idx for the node to be considered balanced. Forcing all zones to
2745 * be balanced for high orders can cause excessive reclaim when there are
2746 * imbalanced zones.
1741c877
MG
2747 * The choice of 25% is due to
2748 * o a 16M DMA zone that is balanced will not balance a zone on any
2749 * reasonable sized machine
2750 * o On all other machines, the top zone must be at least a reasonable
25985edc 2751 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2752 * would need to be at least 256M for it to be balance a whole node.
2753 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2754 * to balance a node on its own. These seemed like reasonable ratios.
2755 */
4ae0a48b 2756static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2757{
b40da049 2758 unsigned long managed_pages = 0;
4ae0a48b 2759 unsigned long balanced_pages = 0;
1741c877
MG
2760 int i;
2761
4ae0a48b
ZC
2762 /* Check the watermark levels */
2763 for (i = 0; i <= classzone_idx; i++) {
2764 struct zone *zone = pgdat->node_zones + i;
1741c877 2765
4ae0a48b
ZC
2766 if (!populated_zone(zone))
2767 continue;
2768
b40da049 2769 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2770
2771 /*
2772 * A special case here:
2773 *
2774 * balance_pgdat() skips over all_unreclaimable after
2775 * DEF_PRIORITY. Effectively, it considers them balanced so
2776 * they must be considered balanced here as well!
2777 */
2778 if (zone->all_unreclaimable) {
b40da049 2779 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2780 continue;
2781 }
2782
2783 if (zone_balanced(zone, order, 0, i))
b40da049 2784 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2785 else if (!order)
2786 return false;
2787 }
2788
2789 if (order)
b40da049 2790 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2791 else
2792 return true;
1741c877
MG
2793}
2794
5515061d
MG
2795/*
2796 * Prepare kswapd for sleeping. This verifies that there are no processes
2797 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2798 *
2799 * Returns true if kswapd is ready to sleep
2800 */
2801static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2802 int classzone_idx)
f50de2d3 2803{
f50de2d3
MG
2804 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2805 if (remaining)
5515061d
MG
2806 return false;
2807
2808 /*
2809 * There is a potential race between when kswapd checks its watermarks
2810 * and a process gets throttled. There is also a potential race if
2811 * processes get throttled, kswapd wakes, a large process exits therby
2812 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2813 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2814 * so wake them now if necessary. If necessary, processes will wake
2815 * kswapd and get throttled again
2816 */
2817 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2818 wake_up(&pgdat->pfmemalloc_wait);
2819 return false;
2820 }
f50de2d3 2821
4ae0a48b 2822 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2823}
2824
75485363
MG
2825/*
2826 * kswapd shrinks the zone by the number of pages required to reach
2827 * the high watermark.
b8e83b94
MG
2828 *
2829 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2830 * reclaim or if the lack of progress was due to pages under writeback.
2831 * This is used to determine if the scanning priority needs to be raised.
75485363 2832 */
b8e83b94 2833static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2834 int classzone_idx,
75485363 2835 struct scan_control *sc,
2ab44f43
MG
2836 unsigned long lru_pages,
2837 unsigned long *nr_attempted)
75485363
MG
2838{
2839 unsigned long nr_slab;
7c954f6d
MG
2840 int testorder = sc->order;
2841 unsigned long balance_gap;
75485363
MG
2842 struct reclaim_state *reclaim_state = current->reclaim_state;
2843 struct shrink_control shrink = {
2844 .gfp_mask = sc->gfp_mask,
2845 };
7c954f6d 2846 bool lowmem_pressure;
75485363
MG
2847
2848 /* Reclaim above the high watermark. */
2849 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2850
2851 /*
2852 * Kswapd reclaims only single pages with compaction enabled. Trying
2853 * too hard to reclaim until contiguous free pages have become
2854 * available can hurt performance by evicting too much useful data
2855 * from memory. Do not reclaim more than needed for compaction.
2856 */
2857 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2858 compaction_suitable(zone, sc->order) !=
2859 COMPACT_SKIPPED)
2860 testorder = 0;
2861
2862 /*
2863 * We put equal pressure on every zone, unless one zone has way too
2864 * many pages free already. The "too many pages" is defined as the
2865 * high wmark plus a "gap" where the gap is either the low
2866 * watermark or 1% of the zone, whichever is smaller.
2867 */
2868 balance_gap = min(low_wmark_pages(zone),
2869 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2870 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2871
2872 /*
2873 * If there is no low memory pressure or the zone is balanced then no
2874 * reclaim is necessary
2875 */
2876 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2877 if (!lowmem_pressure && zone_balanced(zone, testorder,
2878 balance_gap, classzone_idx))
2879 return true;
2880
75485363 2881 shrink_zone(zone, sc);
0ce3d744
DC
2882 nodes_clear(shrink.nodes_to_scan);
2883 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
75485363
MG
2884
2885 reclaim_state->reclaimed_slab = 0;
2886 nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2887 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2888
2ab44f43
MG
2889 /* Account for the number of pages attempted to reclaim */
2890 *nr_attempted += sc->nr_to_reclaim;
2891
75485363
MG
2892 if (nr_slab == 0 && !zone_reclaimable(zone))
2893 zone->all_unreclaimable = 1;
b8e83b94 2894
283aba9f
MG
2895 zone_clear_flag(zone, ZONE_WRITEBACK);
2896
7c954f6d
MG
2897 /*
2898 * If a zone reaches its high watermark, consider it to be no longer
2899 * congested. It's possible there are dirty pages backed by congested
2900 * BDIs but as pressure is relieved, speculatively avoid congestion
2901 * waits.
2902 */
2903 if (!zone->all_unreclaimable &&
2904 zone_balanced(zone, testorder, 0, classzone_idx)) {
2905 zone_clear_flag(zone, ZONE_CONGESTED);
2906 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2907 }
2908
b8e83b94 2909 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2910}
2911
1da177e4
LT
2912/*
2913 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2914 * they are all at high_wmark_pages(zone).
1da177e4 2915 *
0abdee2b 2916 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2917 *
2918 * There is special handling here for zones which are full of pinned pages.
2919 * This can happen if the pages are all mlocked, or if they are all used by
2920 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2921 * What we do is to detect the case where all pages in the zone have been
2922 * scanned twice and there has been zero successful reclaim. Mark the zone as
2923 * dead and from now on, only perform a short scan. Basically we're polling
2924 * the zone for when the problem goes away.
2925 *
2926 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2927 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2928 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2929 * lower zones regardless of the number of free pages in the lower zones. This
2930 * interoperates with the page allocator fallback scheme to ensure that aging
2931 * of pages is balanced across the zones.
1da177e4 2932 */
99504748 2933static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2934 int *classzone_idx)
1da177e4 2935{
1da177e4 2936 int i;
99504748 2937 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0ae5e89c
YH
2938 unsigned long nr_soft_reclaimed;
2939 unsigned long nr_soft_scanned;
179e9639
AM
2940 struct scan_control sc = {
2941 .gfp_mask = GFP_KERNEL,
b8e83b94 2942 .priority = DEF_PRIORITY,
a6dc60f8 2943 .may_unmap = 1,
2e2e4259 2944 .may_swap = 1,
b8e83b94 2945 .may_writepage = !laptop_mode,
5ad333eb 2946 .order = order,
f16015fb 2947 .target_mem_cgroup = NULL,
179e9639 2948 };
f8891e5e 2949 count_vm_event(PAGEOUTRUN);
1da177e4 2950
9e3b2f8c 2951 do {
1da177e4 2952 unsigned long lru_pages = 0;
2ab44f43 2953 unsigned long nr_attempted = 0;
b8e83b94 2954 bool raise_priority = true;
2ab44f43 2955 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
2956
2957 sc.nr_reclaimed = 0;
1da177e4 2958
d6277db4
RW
2959 /*
2960 * Scan in the highmem->dma direction for the highest
2961 * zone which needs scanning
2962 */
2963 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2964 struct zone *zone = pgdat->node_zones + i;
1da177e4 2965
d6277db4
RW
2966 if (!populated_zone(zone))
2967 continue;
1da177e4 2968
9e3b2f8c
KK
2969 if (zone->all_unreclaimable &&
2970 sc.priority != DEF_PRIORITY)
d6277db4 2971 continue;
1da177e4 2972
556adecb
RR
2973 /*
2974 * Do some background aging of the anon list, to give
2975 * pages a chance to be referenced before reclaiming.
2976 */
9e3b2f8c 2977 age_active_anon(zone, &sc);
556adecb 2978
cc715d99
MG
2979 /*
2980 * If the number of buffer_heads in the machine
2981 * exceeds the maximum allowed level and this node
2982 * has a highmem zone, force kswapd to reclaim from
2983 * it to relieve lowmem pressure.
2984 */
2985 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2986 end_zone = i;
2987 break;
2988 }
2989
60cefed4 2990 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 2991 end_zone = i;
e1dbeda6 2992 break;
439423f6 2993 } else {
d43006d5
MG
2994 /*
2995 * If balanced, clear the dirty and congested
2996 * flags
2997 */
439423f6 2998 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 2999 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 3000 }
1da177e4 3001 }
dafcb73e 3002
b8e83b94 3003 if (i < 0)
e1dbeda6
AM
3004 goto out;
3005
1da177e4
LT
3006 for (i = 0; i <= end_zone; i++) {
3007 struct zone *zone = pgdat->node_zones + i;
3008
2ab44f43
MG
3009 if (!populated_zone(zone))
3010 continue;
3011
adea02a1 3012 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
3013
3014 /*
3015 * If any zone is currently balanced then kswapd will
3016 * not call compaction as it is expected that the
3017 * necessary pages are already available.
3018 */
3019 if (pgdat_needs_compaction &&
3020 zone_watermark_ok(zone, order,
3021 low_wmark_pages(zone),
3022 *classzone_idx, 0))
3023 pgdat_needs_compaction = false;
1da177e4
LT
3024 }
3025
b7ea3c41
MG
3026 /*
3027 * If we're getting trouble reclaiming, start doing writepage
3028 * even in laptop mode.
3029 */
3030 if (sc.priority < DEF_PRIORITY - 2)
3031 sc.may_writepage = 1;
3032
1da177e4
LT
3033 /*
3034 * Now scan the zone in the dma->highmem direction, stopping
3035 * at the last zone which needs scanning.
3036 *
3037 * We do this because the page allocator works in the opposite
3038 * direction. This prevents the page allocator from allocating
3039 * pages behind kswapd's direction of progress, which would
3040 * cause too much scanning of the lower zones.
3041 */
3042 for (i = 0; i <= end_zone; i++) {
3043 struct zone *zone = pgdat->node_zones + i;
3044
f3fe6512 3045 if (!populated_zone(zone))
1da177e4
LT
3046 continue;
3047
9e3b2f8c
KK
3048 if (zone->all_unreclaimable &&
3049 sc.priority != DEF_PRIORITY)
1da177e4
LT
3050 continue;
3051
1da177e4 3052 sc.nr_scanned = 0;
4e416953 3053
0ae5e89c 3054 nr_soft_scanned = 0;
4e416953
BS
3055 /*
3056 * Call soft limit reclaim before calling shrink_zone.
4e416953 3057 */
0ae5e89c
YH
3058 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3059 order, sc.gfp_mask,
3060 &nr_soft_scanned);
3061 sc.nr_reclaimed += nr_soft_reclaimed;
00918b6a 3062
32a4330d 3063 /*
7c954f6d
MG
3064 * There should be no need to raise the scanning
3065 * priority if enough pages are already being scanned
3066 * that that high watermark would be met at 100%
3067 * efficiency.
fe2c2a10 3068 */
7c954f6d
MG
3069 if (kswapd_shrink_zone(zone, end_zone, &sc,
3070 lru_pages, &nr_attempted))
3071 raise_priority = false;
1da177e4 3072 }
5515061d
MG
3073
3074 /*
3075 * If the low watermark is met there is no need for processes
3076 * to be throttled on pfmemalloc_wait as they should not be
3077 * able to safely make forward progress. Wake them
3078 */
3079 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3080 pfmemalloc_watermark_ok(pgdat))
3081 wake_up(&pgdat->pfmemalloc_wait);
3082
1da177e4 3083 /*
b8e83b94
MG
3084 * Fragmentation may mean that the system cannot be rebalanced
3085 * for high-order allocations in all zones. If twice the
3086 * allocation size has been reclaimed and the zones are still
3087 * not balanced then recheck the watermarks at order-0 to
3088 * prevent kswapd reclaiming excessively. Assume that a
3089 * process requested a high-order can direct reclaim/compact.
1da177e4 3090 */
b8e83b94
MG
3091 if (order && sc.nr_reclaimed >= 2UL << order)
3092 order = sc.order = 0;
8357376d 3093
b8e83b94
MG
3094 /* Check if kswapd should be suspending */
3095 if (try_to_freeze() || kthread_should_stop())
3096 break;
8357376d 3097
2ab44f43
MG
3098 /*
3099 * Compact if necessary and kswapd is reclaiming at least the
3100 * high watermark number of pages as requsted
3101 */
3102 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3103 compact_pgdat(pgdat, order);
3104
73ce02e9 3105 /*
b8e83b94
MG
3106 * Raise priority if scanning rate is too low or there was no
3107 * progress in reclaiming pages
73ce02e9 3108 */
b8e83b94
MG
3109 if (raise_priority || !sc.nr_reclaimed)
3110 sc.priority--;
9aa41348 3111 } while (sc.priority >= 1 &&
b8e83b94 3112 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3113
b8e83b94 3114out:
0abdee2b 3115 /*
5515061d 3116 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3117 * makes a decision on the order we were last reclaiming at. However,
3118 * if another caller entered the allocator slow path while kswapd
3119 * was awake, order will remain at the higher level
3120 */
dc83edd9 3121 *classzone_idx = end_zone;
0abdee2b 3122 return order;
1da177e4
LT
3123}
3124
dc83edd9 3125static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3126{
3127 long remaining = 0;
3128 DEFINE_WAIT(wait);
3129
3130 if (freezing(current) || kthread_should_stop())
3131 return;
3132
3133 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3134
3135 /* Try to sleep for a short interval */
5515061d 3136 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3137 remaining = schedule_timeout(HZ/10);
3138 finish_wait(&pgdat->kswapd_wait, &wait);
3139 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3140 }
3141
3142 /*
3143 * After a short sleep, check if it was a premature sleep. If not, then
3144 * go fully to sleep until explicitly woken up.
3145 */
5515061d 3146 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3147 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3148
3149 /*
3150 * vmstat counters are not perfectly accurate and the estimated
3151 * value for counters such as NR_FREE_PAGES can deviate from the
3152 * true value by nr_online_cpus * threshold. To avoid the zone
3153 * watermarks being breached while under pressure, we reduce the
3154 * per-cpu vmstat threshold while kswapd is awake and restore
3155 * them before going back to sleep.
3156 */
3157 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3158
62997027
MG
3159 /*
3160 * Compaction records what page blocks it recently failed to
3161 * isolate pages from and skips them in the future scanning.
3162 * When kswapd is going to sleep, it is reasonable to assume
3163 * that pages and compaction may succeed so reset the cache.
3164 */
3165 reset_isolation_suitable(pgdat);
3166
1c7e7f6c
AK
3167 if (!kthread_should_stop())
3168 schedule();
3169
f0bc0a60
KM
3170 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3171 } else {
3172 if (remaining)
3173 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3174 else
3175 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3176 }
3177 finish_wait(&pgdat->kswapd_wait, &wait);
3178}
3179
1da177e4
LT
3180/*
3181 * The background pageout daemon, started as a kernel thread
4f98a2fe 3182 * from the init process.
1da177e4
LT
3183 *
3184 * This basically trickles out pages so that we have _some_
3185 * free memory available even if there is no other activity
3186 * that frees anything up. This is needed for things like routing
3187 * etc, where we otherwise might have all activity going on in
3188 * asynchronous contexts that cannot page things out.
3189 *
3190 * If there are applications that are active memory-allocators
3191 * (most normal use), this basically shouldn't matter.
3192 */
3193static int kswapd(void *p)
3194{
215ddd66 3195 unsigned long order, new_order;
d2ebd0f6 3196 unsigned balanced_order;
215ddd66 3197 int classzone_idx, new_classzone_idx;
d2ebd0f6 3198 int balanced_classzone_idx;
1da177e4
LT
3199 pg_data_t *pgdat = (pg_data_t*)p;
3200 struct task_struct *tsk = current;
f0bc0a60 3201
1da177e4
LT
3202 struct reclaim_state reclaim_state = {
3203 .reclaimed_slab = 0,
3204 };
a70f7302 3205 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3206
cf40bd16
NP
3207 lockdep_set_current_reclaim_state(GFP_KERNEL);
3208
174596a0 3209 if (!cpumask_empty(cpumask))
c5f59f08 3210 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3211 current->reclaim_state = &reclaim_state;
3212
3213 /*
3214 * Tell the memory management that we're a "memory allocator",
3215 * and that if we need more memory we should get access to it
3216 * regardless (see "__alloc_pages()"). "kswapd" should
3217 * never get caught in the normal page freeing logic.
3218 *
3219 * (Kswapd normally doesn't need memory anyway, but sometimes
3220 * you need a small amount of memory in order to be able to
3221 * page out something else, and this flag essentially protects
3222 * us from recursively trying to free more memory as we're
3223 * trying to free the first piece of memory in the first place).
3224 */
930d9152 3225 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3226 set_freezable();
1da177e4 3227
215ddd66 3228 order = new_order = 0;
d2ebd0f6 3229 balanced_order = 0;
215ddd66 3230 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3231 balanced_classzone_idx = classzone_idx;
1da177e4 3232 for ( ; ; ) {
6f6313d4 3233 bool ret;
3e1d1d28 3234
215ddd66
MG
3235 /*
3236 * If the last balance_pgdat was unsuccessful it's unlikely a
3237 * new request of a similar or harder type will succeed soon
3238 * so consider going to sleep on the basis we reclaimed at
3239 */
d2ebd0f6
AS
3240 if (balanced_classzone_idx >= new_classzone_idx &&
3241 balanced_order == new_order) {
215ddd66
MG
3242 new_order = pgdat->kswapd_max_order;
3243 new_classzone_idx = pgdat->classzone_idx;
3244 pgdat->kswapd_max_order = 0;
3245 pgdat->classzone_idx = pgdat->nr_zones - 1;
3246 }
3247
99504748 3248 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3249 /*
3250 * Don't sleep if someone wants a larger 'order'
99504748 3251 * allocation or has tigher zone constraints
1da177e4
LT
3252 */
3253 order = new_order;
99504748 3254 classzone_idx = new_classzone_idx;
1da177e4 3255 } else {
d2ebd0f6
AS
3256 kswapd_try_to_sleep(pgdat, balanced_order,
3257 balanced_classzone_idx);
1da177e4 3258 order = pgdat->kswapd_max_order;
99504748 3259 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3260 new_order = order;
3261 new_classzone_idx = classzone_idx;
4d40502e 3262 pgdat->kswapd_max_order = 0;
215ddd66 3263 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3264 }
1da177e4 3265
8fe23e05
DR
3266 ret = try_to_freeze();
3267 if (kthread_should_stop())
3268 break;
3269
3270 /*
3271 * We can speed up thawing tasks if we don't call balance_pgdat
3272 * after returning from the refrigerator
3273 */
33906bc5
MG
3274 if (!ret) {
3275 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3276 balanced_classzone_idx = classzone_idx;
3277 balanced_order = balance_pgdat(pgdat, order,
3278 &balanced_classzone_idx);
33906bc5 3279 }
1da177e4 3280 }
b0a8cc58
TY
3281
3282 current->reclaim_state = NULL;
1da177e4
LT
3283 return 0;
3284}
3285
3286/*
3287 * A zone is low on free memory, so wake its kswapd task to service it.
3288 */
99504748 3289void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3290{
3291 pg_data_t *pgdat;
3292
f3fe6512 3293 if (!populated_zone(zone))
1da177e4
LT
3294 return;
3295
88f5acf8 3296 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3297 return;
88f5acf8 3298 pgdat = zone->zone_pgdat;
99504748 3299 if (pgdat->kswapd_max_order < order) {
1da177e4 3300 pgdat->kswapd_max_order = order;
99504748
MG
3301 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3302 }
8d0986e2 3303 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3304 return;
88f5acf8
MG
3305 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3306 return;
3307
3308 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3309 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3310}
3311
adea02a1
WF
3312/*
3313 * The reclaimable count would be mostly accurate.
3314 * The less reclaimable pages may be
3315 * - mlocked pages, which will be moved to unevictable list when encountered
3316 * - mapped pages, which may require several travels to be reclaimed
3317 * - dirty pages, which is not "instantly" reclaimable
3318 */
3319unsigned long global_reclaimable_pages(void)
4f98a2fe 3320{
adea02a1
WF
3321 int nr;
3322
3323 nr = global_page_state(NR_ACTIVE_FILE) +
3324 global_page_state(NR_INACTIVE_FILE);
3325
ec8acf20 3326 if (get_nr_swap_pages() > 0)
adea02a1
WF
3327 nr += global_page_state(NR_ACTIVE_ANON) +
3328 global_page_state(NR_INACTIVE_ANON);
3329
3330 return nr;
3331}
3332
3333unsigned long zone_reclaimable_pages(struct zone *zone)
3334{
3335 int nr;
3336
3337 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3338 zone_page_state(zone, NR_INACTIVE_FILE);
3339
ec8acf20 3340 if (get_nr_swap_pages() > 0)
adea02a1
WF
3341 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3342 zone_page_state(zone, NR_INACTIVE_ANON);
3343
3344 return nr;
4f98a2fe
RR
3345}
3346
c6f37f12 3347#ifdef CONFIG_HIBERNATION
1da177e4 3348/*
7b51755c 3349 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3350 * freed pages.
3351 *
3352 * Rather than trying to age LRUs the aim is to preserve the overall
3353 * LRU order by reclaiming preferentially
3354 * inactive > active > active referenced > active mapped
1da177e4 3355 */
7b51755c 3356unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3357{
d6277db4 3358 struct reclaim_state reclaim_state;
d6277db4 3359 struct scan_control sc = {
7b51755c
KM
3360 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3361 .may_swap = 1,
3362 .may_unmap = 1,
d6277db4 3363 .may_writepage = 1,
7b51755c
KM
3364 .nr_to_reclaim = nr_to_reclaim,
3365 .hibernation_mode = 1,
7b51755c 3366 .order = 0,
9e3b2f8c 3367 .priority = DEF_PRIORITY,
1da177e4 3368 };
a09ed5e0
YH
3369 struct shrink_control shrink = {
3370 .gfp_mask = sc.gfp_mask,
3371 };
3372 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3373 struct task_struct *p = current;
3374 unsigned long nr_reclaimed;
1da177e4 3375
7b51755c
KM
3376 p->flags |= PF_MEMALLOC;
3377 lockdep_set_current_reclaim_state(sc.gfp_mask);
3378 reclaim_state.reclaimed_slab = 0;
3379 p->reclaim_state = &reclaim_state;
d6277db4 3380
a09ed5e0 3381 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3382
7b51755c
KM
3383 p->reclaim_state = NULL;
3384 lockdep_clear_current_reclaim_state();
3385 p->flags &= ~PF_MEMALLOC;
d6277db4 3386
7b51755c 3387 return nr_reclaimed;
1da177e4 3388}
c6f37f12 3389#endif /* CONFIG_HIBERNATION */
1da177e4 3390
1da177e4
LT
3391/* It's optimal to keep kswapds on the same CPUs as their memory, but
3392 not required for correctness. So if the last cpu in a node goes
3393 away, we get changed to run anywhere: as the first one comes back,
3394 restore their cpu bindings. */
fcb35a9b
GKH
3395static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3396 void *hcpu)
1da177e4 3397{
58c0a4a7 3398 int nid;
1da177e4 3399
8bb78442 3400 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3401 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3402 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3403 const struct cpumask *mask;
3404
3405 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3406
3e597945 3407 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3408 /* One of our CPUs online: restore mask */
c5f59f08 3409 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3410 }
3411 }
3412 return NOTIFY_OK;
3413}
1da177e4 3414
3218ae14
YG
3415/*
3416 * This kswapd start function will be called by init and node-hot-add.
3417 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3418 */
3419int kswapd_run(int nid)
3420{
3421 pg_data_t *pgdat = NODE_DATA(nid);
3422 int ret = 0;
3423
3424 if (pgdat->kswapd)
3425 return 0;
3426
3427 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3428 if (IS_ERR(pgdat->kswapd)) {
3429 /* failure at boot is fatal */
3430 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3431 pr_err("Failed to start kswapd on node %d\n", nid);
3432 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3433 pgdat->kswapd = NULL;
3218ae14
YG
3434 }
3435 return ret;
3436}
3437
8fe23e05 3438/*
d8adde17
JL
3439 * Called by memory hotplug when all memory in a node is offlined. Caller must
3440 * hold lock_memory_hotplug().
8fe23e05
DR
3441 */
3442void kswapd_stop(int nid)
3443{
3444 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3445
d8adde17 3446 if (kswapd) {
8fe23e05 3447 kthread_stop(kswapd);
d8adde17
JL
3448 NODE_DATA(nid)->kswapd = NULL;
3449 }
8fe23e05
DR
3450}
3451
1da177e4
LT
3452static int __init kswapd_init(void)
3453{
3218ae14 3454 int nid;
69e05944 3455
1da177e4 3456 swap_setup();
48fb2e24 3457 for_each_node_state(nid, N_MEMORY)
3218ae14 3458 kswapd_run(nid);
1da177e4
LT
3459 hotcpu_notifier(cpu_callback, 0);
3460 return 0;
3461}
3462
3463module_init(kswapd_init)
9eeff239
CL
3464
3465#ifdef CONFIG_NUMA
3466/*
3467 * Zone reclaim mode
3468 *
3469 * If non-zero call zone_reclaim when the number of free pages falls below
3470 * the watermarks.
9eeff239
CL
3471 */
3472int zone_reclaim_mode __read_mostly;
3473
1b2ffb78 3474#define RECLAIM_OFF 0
7d03431c 3475#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3476#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3477#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3478
a92f7126
CL
3479/*
3480 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3481 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3482 * a zone.
3483 */
3484#define ZONE_RECLAIM_PRIORITY 4
3485
9614634f
CL
3486/*
3487 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3488 * occur.
3489 */
3490int sysctl_min_unmapped_ratio = 1;
3491
0ff38490
CL
3492/*
3493 * If the number of slab pages in a zone grows beyond this percentage then
3494 * slab reclaim needs to occur.
3495 */
3496int sysctl_min_slab_ratio = 5;
3497
90afa5de
MG
3498static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3499{
3500 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3501 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3502 zone_page_state(zone, NR_ACTIVE_FILE);
3503
3504 /*
3505 * It's possible for there to be more file mapped pages than
3506 * accounted for by the pages on the file LRU lists because
3507 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3508 */
3509 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3510}
3511
3512/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3513static long zone_pagecache_reclaimable(struct zone *zone)
3514{
3515 long nr_pagecache_reclaimable;
3516 long delta = 0;
3517
3518 /*
3519 * If RECLAIM_SWAP is set, then all file pages are considered
3520 * potentially reclaimable. Otherwise, we have to worry about
3521 * pages like swapcache and zone_unmapped_file_pages() provides
3522 * a better estimate
3523 */
3524 if (zone_reclaim_mode & RECLAIM_SWAP)
3525 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3526 else
3527 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3528
3529 /* If we can't clean pages, remove dirty pages from consideration */
3530 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3531 delta += zone_page_state(zone, NR_FILE_DIRTY);
3532
3533 /* Watch for any possible underflows due to delta */
3534 if (unlikely(delta > nr_pagecache_reclaimable))
3535 delta = nr_pagecache_reclaimable;
3536
3537 return nr_pagecache_reclaimable - delta;
3538}
3539
9eeff239
CL
3540/*
3541 * Try to free up some pages from this zone through reclaim.
3542 */
179e9639 3543static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3544{
7fb2d46d 3545 /* Minimum pages needed in order to stay on node */
69e05944 3546 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3547 struct task_struct *p = current;
3548 struct reclaim_state reclaim_state;
179e9639
AM
3549 struct scan_control sc = {
3550 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3551 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3552 .may_swap = 1,
62b726c1 3553 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3554 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3555 .order = order,
9e3b2f8c 3556 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3557 };
a09ed5e0
YH
3558 struct shrink_control shrink = {
3559 .gfp_mask = sc.gfp_mask,
3560 };
15748048 3561 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3562
9eeff239 3563 cond_resched();
d4f7796e
CL
3564 /*
3565 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3566 * and we also need to be able to write out pages for RECLAIM_WRITE
3567 * and RECLAIM_SWAP.
3568 */
3569 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3570 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3571 reclaim_state.reclaimed_slab = 0;
3572 p->reclaim_state = &reclaim_state;
c84db23c 3573
90afa5de 3574 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3575 /*
3576 * Free memory by calling shrink zone with increasing
3577 * priorities until we have enough memory freed.
3578 */
0ff38490 3579 do {
9e3b2f8c
KK
3580 shrink_zone(zone, &sc);
3581 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3582 }
c84db23c 3583
15748048
KM
3584 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3585 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3586 /*
7fb2d46d 3587 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3588 * many pages were freed in this zone. So we take the current
3589 * number of slab pages and shake the slab until it is reduced
3590 * by the same nr_pages that we used for reclaiming unmapped
3591 * pages.
2a16e3f4 3592 */
0ce3d744
DC
3593 nodes_clear(shrink.nodes_to_scan);
3594 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
4dc4b3d9
KM
3595 for (;;) {
3596 unsigned long lru_pages = zone_reclaimable_pages(zone);
3597
3598 /* No reclaimable slab or very low memory pressure */
1495f230 3599 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3600 break;
3601
3602 /* Freed enough memory */
3603 nr_slab_pages1 = zone_page_state(zone,
3604 NR_SLAB_RECLAIMABLE);
3605 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3606 break;
3607 }
83e33a47
CL
3608
3609 /*
3610 * Update nr_reclaimed by the number of slab pages we
3611 * reclaimed from this zone.
3612 */
15748048
KM
3613 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3614 if (nr_slab_pages1 < nr_slab_pages0)
3615 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3616 }
3617
9eeff239 3618 p->reclaim_state = NULL;
d4f7796e 3619 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3620 lockdep_clear_current_reclaim_state();
a79311c1 3621 return sc.nr_reclaimed >= nr_pages;
9eeff239 3622}
179e9639
AM
3623
3624int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3625{
179e9639 3626 int node_id;
d773ed6b 3627 int ret;
179e9639
AM
3628
3629 /*
0ff38490
CL
3630 * Zone reclaim reclaims unmapped file backed pages and
3631 * slab pages if we are over the defined limits.
34aa1330 3632 *
9614634f
CL
3633 * A small portion of unmapped file backed pages is needed for
3634 * file I/O otherwise pages read by file I/O will be immediately
3635 * thrown out if the zone is overallocated. So we do not reclaim
3636 * if less than a specified percentage of the zone is used by
3637 * unmapped file backed pages.
179e9639 3638 */
90afa5de
MG
3639 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3640 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3641 return ZONE_RECLAIM_FULL;
179e9639 3642
93e4a89a 3643 if (zone->all_unreclaimable)
fa5e084e 3644 return ZONE_RECLAIM_FULL;
d773ed6b 3645
179e9639 3646 /*
d773ed6b 3647 * Do not scan if the allocation should not be delayed.
179e9639 3648 */
d773ed6b 3649 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3650 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3651
3652 /*
3653 * Only run zone reclaim on the local zone or on zones that do not
3654 * have associated processors. This will favor the local processor
3655 * over remote processors and spread off node memory allocations
3656 * as wide as possible.
3657 */
89fa3024 3658 node_id = zone_to_nid(zone);
37c0708d 3659 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3660 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3661
3662 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3663 return ZONE_RECLAIM_NOSCAN;
3664
d773ed6b
DR
3665 ret = __zone_reclaim(zone, gfp_mask, order);
3666 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3667
24cf7251
MG
3668 if (!ret)
3669 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3670
d773ed6b 3671 return ret;
179e9639 3672}
9eeff239 3673#endif
894bc310 3674
894bc310
LS
3675/*
3676 * page_evictable - test whether a page is evictable
3677 * @page: the page to test
894bc310
LS
3678 *
3679 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3680 * lists vs unevictable list.
894bc310
LS
3681 *
3682 * Reasons page might not be evictable:
ba9ddf49 3683 * (1) page's mapping marked unevictable
b291f000 3684 * (2) page is part of an mlocked VMA
ba9ddf49 3685 *
894bc310 3686 */
39b5f29a 3687int page_evictable(struct page *page)
894bc310 3688{
39b5f29a 3689 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3690}
89e004ea 3691
85046579 3692#ifdef CONFIG_SHMEM
89e004ea 3693/**
24513264
HD
3694 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3695 * @pages: array of pages to check
3696 * @nr_pages: number of pages to check
89e004ea 3697 *
24513264 3698 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3699 *
3700 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3701 */
24513264 3702void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3703{
925b7673 3704 struct lruvec *lruvec;
24513264
HD
3705 struct zone *zone = NULL;
3706 int pgscanned = 0;
3707 int pgrescued = 0;
3708 int i;
89e004ea 3709
24513264
HD
3710 for (i = 0; i < nr_pages; i++) {
3711 struct page *page = pages[i];
3712 struct zone *pagezone;
89e004ea 3713
24513264
HD
3714 pgscanned++;
3715 pagezone = page_zone(page);
3716 if (pagezone != zone) {
3717 if (zone)
3718 spin_unlock_irq(&zone->lru_lock);
3719 zone = pagezone;
3720 spin_lock_irq(&zone->lru_lock);
3721 }
fa9add64 3722 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3723
24513264
HD
3724 if (!PageLRU(page) || !PageUnevictable(page))
3725 continue;
89e004ea 3726
39b5f29a 3727 if (page_evictable(page)) {
24513264
HD
3728 enum lru_list lru = page_lru_base_type(page);
3729
3730 VM_BUG_ON(PageActive(page));
3731 ClearPageUnevictable(page);
fa9add64
HD
3732 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3733 add_page_to_lru_list(page, lruvec, lru);
24513264 3734 pgrescued++;
89e004ea 3735 }
24513264 3736 }
89e004ea 3737
24513264
HD
3738 if (zone) {
3739 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3740 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3741 spin_unlock_irq(&zone->lru_lock);
89e004ea 3742 }
89e004ea 3743}
85046579 3744#endif /* CONFIG_SHMEM */
af936a16 3745
264e56d8 3746static void warn_scan_unevictable_pages(void)
af936a16 3747{
264e56d8 3748 printk_once(KERN_WARNING
25bd91bd 3749 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3750 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3751 "one, please send an email to linux-mm@kvack.org.\n",
3752 current->comm);
af936a16
LS
3753}
3754
3755/*
3756 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3757 * all nodes' unevictable lists for evictable pages
3758 */
3759unsigned long scan_unevictable_pages;
3760
3761int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3762 void __user *buffer,
af936a16
LS
3763 size_t *length, loff_t *ppos)
3764{
264e56d8 3765 warn_scan_unevictable_pages();
8d65af78 3766 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3767 scan_unevictable_pages = 0;
3768 return 0;
3769}
3770
e4455abb 3771#ifdef CONFIG_NUMA
af936a16
LS
3772/*
3773 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3774 * a specified node's per zone unevictable lists for evictable pages.
3775 */
3776
10fbcf4c
KS
3777static ssize_t read_scan_unevictable_node(struct device *dev,
3778 struct device_attribute *attr,
af936a16
LS
3779 char *buf)
3780{
264e56d8 3781 warn_scan_unevictable_pages();
af936a16
LS
3782 return sprintf(buf, "0\n"); /* always zero; should fit... */
3783}
3784
10fbcf4c
KS
3785static ssize_t write_scan_unevictable_node(struct device *dev,
3786 struct device_attribute *attr,
af936a16
LS
3787 const char *buf, size_t count)
3788{
264e56d8 3789 warn_scan_unevictable_pages();
af936a16
LS
3790 return 1;
3791}
3792
3793
10fbcf4c 3794static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3795 read_scan_unevictable_node,
3796 write_scan_unevictable_node);
3797
3798int scan_unevictable_register_node(struct node *node)
3799{
10fbcf4c 3800 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3801}
3802
3803void scan_unevictable_unregister_node(struct node *node)
3804{
10fbcf4c 3805 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3806}
e4455abb 3807#endif