]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
ocfs2: remove set but not used variable 'last_hash'
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
64e3d12f 49#include <linux/pagevec.h>
268bb0ce 50#include <linux/prefetch.h>
b1de0d13 51#include <linux/printk.h>
f9fe48be 52#include <linux/dax.h>
eb414681 53#include <linux/psi.h>
1da177e4
LT
54
55#include <asm/tlbflush.h>
56#include <asm/div64.h>
57
58#include <linux/swapops.h>
117aad1e 59#include <linux/balloon_compaction.h>
1da177e4 60
0f8053a5
NP
61#include "internal.h"
62
33906bc5
MG
63#define CREATE_TRACE_POINTS
64#include <trace/events/vmscan.h>
65
1da177e4 66struct scan_control {
22fba335
KM
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
ee814fe2
JW
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
9e3b2f8c 75
f16015fb
JW
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
66e1707b 81
1276ad68 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
83 unsigned int may_writepage:1;
84
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
87
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
90
1c30844d
MG
91 /* e.g. boosted watermark reclaim leaves slabs alone */
92 unsigned int may_shrinkslab:1;
93
d6622f63
YX
94 /*
95 * Cgroups are not reclaimed below their configured memory.low,
96 * unless we threaten to OOM. If any cgroups are skipped due to
97 * memory.low and nothing was reclaimed, go back for memory.low.
98 */
99 unsigned int memcg_low_reclaim:1;
100 unsigned int memcg_low_skipped:1;
241994ed 101
ee814fe2
JW
102 unsigned int hibernation_mode:1;
103
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
106
bb451fdf
GT
107 /* Allocation order */
108 s8 order;
109
110 /* Scan (total_size >> priority) pages at once */
111 s8 priority;
112
113 /* The highest zone to isolate pages for reclaim from */
114 s8 reclaim_idx;
115
116 /* This context's GFP mask */
117 gfp_t gfp_mask;
118
ee814fe2
JW
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned;
121
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed;
d108c772
AR
124
125 struct {
126 unsigned int dirty;
127 unsigned int unqueued_dirty;
128 unsigned int congested;
129 unsigned int writeback;
130 unsigned int immediate;
131 unsigned int file_taken;
132 unsigned int taken;
133 } nr;
e5ca8071
YS
134
135 /* for recording the reclaimed slab by now */
136 struct reclaim_state reclaim_state;
1da177e4
LT
137};
138
1da177e4
LT
139#ifdef ARCH_HAS_PREFETCH
140#define prefetch_prev_lru_page(_page, _base, _field) \
141 do { \
142 if ((_page)->lru.prev != _base) { \
143 struct page *prev; \
144 \
145 prev = lru_to_page(&(_page->lru)); \
146 prefetch(&prev->_field); \
147 } \
148 } while (0)
149#else
150#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
151#endif
152
153#ifdef ARCH_HAS_PREFETCHW
154#define prefetchw_prev_lru_page(_page, _base, _field) \
155 do { \
156 if ((_page)->lru.prev != _base) { \
157 struct page *prev; \
158 \
159 prev = lru_to_page(&(_page->lru)); \
160 prefetchw(&prev->_field); \
161 } \
162 } while (0)
163#else
164#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165#endif
166
167/*
168 * From 0 .. 100. Higher means more swappy.
169 */
170int vm_swappiness = 60;
d0480be4
WSH
171/*
172 * The total number of pages which are beyond the high watermark within all
173 * zones.
174 */
175unsigned long vm_total_pages;
1da177e4
LT
176
177static LIST_HEAD(shrinker_list);
178static DECLARE_RWSEM(shrinker_rwsem);
179
b4c2b231 180#ifdef CONFIG_MEMCG_KMEM
7e010df5
KT
181
182/*
183 * We allow subsystems to populate their shrinker-related
184 * LRU lists before register_shrinker_prepared() is called
185 * for the shrinker, since we don't want to impose
186 * restrictions on their internal registration order.
187 * In this case shrink_slab_memcg() may find corresponding
188 * bit is set in the shrinkers map.
189 *
190 * This value is used by the function to detect registering
191 * shrinkers and to skip do_shrink_slab() calls for them.
192 */
193#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
194
b4c2b231
KT
195static DEFINE_IDR(shrinker_idr);
196static int shrinker_nr_max;
197
198static int prealloc_memcg_shrinker(struct shrinker *shrinker)
199{
200 int id, ret = -ENOMEM;
201
202 down_write(&shrinker_rwsem);
203 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 204 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
205 if (id < 0)
206 goto unlock;
207
0a4465d3
KT
208 if (id >= shrinker_nr_max) {
209 if (memcg_expand_shrinker_maps(id)) {
210 idr_remove(&shrinker_idr, id);
211 goto unlock;
212 }
213
b4c2b231 214 shrinker_nr_max = id + 1;
0a4465d3 215 }
b4c2b231
KT
216 shrinker->id = id;
217 ret = 0;
218unlock:
219 up_write(&shrinker_rwsem);
220 return ret;
221}
222
223static void unregister_memcg_shrinker(struct shrinker *shrinker)
224{
225 int id = shrinker->id;
226
227 BUG_ON(id < 0);
228
229 down_write(&shrinker_rwsem);
230 idr_remove(&shrinker_idr, id);
231 up_write(&shrinker_rwsem);
232}
233#else /* CONFIG_MEMCG_KMEM */
234static int prealloc_memcg_shrinker(struct shrinker *shrinker)
235{
236 return 0;
237}
238
239static void unregister_memcg_shrinker(struct shrinker *shrinker)
240{
241}
242#endif /* CONFIG_MEMCG_KMEM */
243
1732d2b0
AM
244static void set_task_reclaim_state(struct task_struct *task,
245 struct reclaim_state *rs)
246{
247 /* Check for an overwrite */
248 WARN_ON_ONCE(rs && task->reclaim_state);
249
250 /* Check for the nulling of an already-nulled member */
251 WARN_ON_ONCE(!rs && !task->reclaim_state);
252
253 task->reclaim_state = rs;
254}
255
c255a458 256#ifdef CONFIG_MEMCG
89b5fae5
JW
257static bool global_reclaim(struct scan_control *sc)
258{
f16015fb 259 return !sc->target_mem_cgroup;
89b5fae5 260}
97c9341f
TH
261
262/**
263 * sane_reclaim - is the usual dirty throttling mechanism operational?
264 * @sc: scan_control in question
265 *
266 * The normal page dirty throttling mechanism in balance_dirty_pages() is
267 * completely broken with the legacy memcg and direct stalling in
268 * shrink_page_list() is used for throttling instead, which lacks all the
269 * niceties such as fairness, adaptive pausing, bandwidth proportional
270 * allocation and configurability.
271 *
272 * This function tests whether the vmscan currently in progress can assume
273 * that the normal dirty throttling mechanism is operational.
274 */
275static bool sane_reclaim(struct scan_control *sc)
276{
277 struct mem_cgroup *memcg = sc->target_mem_cgroup;
278
279 if (!memcg)
280 return true;
281#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 282 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
283 return true;
284#endif
285 return false;
286}
e3c1ac58
AR
287
288static void set_memcg_congestion(pg_data_t *pgdat,
289 struct mem_cgroup *memcg,
290 bool congested)
291{
292 struct mem_cgroup_per_node *mn;
293
294 if (!memcg)
295 return;
296
297 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
298 WRITE_ONCE(mn->congested, congested);
299}
300
301static bool memcg_congested(pg_data_t *pgdat,
302 struct mem_cgroup *memcg)
303{
304 struct mem_cgroup_per_node *mn;
305
306 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
307 return READ_ONCE(mn->congested);
308
309}
91a45470 310#else
89b5fae5
JW
311static bool global_reclaim(struct scan_control *sc)
312{
313 return true;
314}
97c9341f
TH
315
316static bool sane_reclaim(struct scan_control *sc)
317{
318 return true;
319}
e3c1ac58
AR
320
321static inline void set_memcg_congestion(struct pglist_data *pgdat,
322 struct mem_cgroup *memcg, bool congested)
323{
324}
325
326static inline bool memcg_congested(struct pglist_data *pgdat,
327 struct mem_cgroup *memcg)
328{
329 return false;
330
331}
91a45470
KH
332#endif
333
5a1c84b4
MG
334/*
335 * This misses isolated pages which are not accounted for to save counters.
336 * As the data only determines if reclaim or compaction continues, it is
337 * not expected that isolated pages will be a dominating factor.
338 */
339unsigned long zone_reclaimable_pages(struct zone *zone)
340{
341 unsigned long nr;
342
343 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
344 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
345 if (get_nr_swap_pages() > 0)
346 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
347 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
348
349 return nr;
350}
351
fd538803
MH
352/**
353 * lruvec_lru_size - Returns the number of pages on the given LRU list.
354 * @lruvec: lru vector
355 * @lru: lru to use
356 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
357 */
358unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 359{
fd538803
MH
360 unsigned long lru_size;
361 int zid;
362
c3c787e8 363 if (!mem_cgroup_disabled())
205b20cc 364 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
fd538803
MH
365 else
366 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 367
fd538803
MH
368 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
369 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
370 unsigned long size;
c9f299d9 371
fd538803
MH
372 if (!managed_zone(zone))
373 continue;
374
375 if (!mem_cgroup_disabled())
376 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
377 else
378 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
379 NR_ZONE_LRU_BASE + lru);
380 lru_size -= min(size, lru_size);
381 }
382
383 return lru_size;
b4536f0c 384
b4536f0c
MH
385}
386
1da177e4 387/*
1d3d4437 388 * Add a shrinker callback to be called from the vm.
1da177e4 389 */
8e04944f 390int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 391{
b9726c26 392 unsigned int size = sizeof(*shrinker->nr_deferred);
1d3d4437 393
1d3d4437
GC
394 if (shrinker->flags & SHRINKER_NUMA_AWARE)
395 size *= nr_node_ids;
396
397 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
398 if (!shrinker->nr_deferred)
399 return -ENOMEM;
b4c2b231
KT
400
401 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
402 if (prealloc_memcg_shrinker(shrinker))
403 goto free_deferred;
404 }
405
8e04944f 406 return 0;
b4c2b231
KT
407
408free_deferred:
409 kfree(shrinker->nr_deferred);
410 shrinker->nr_deferred = NULL;
411 return -ENOMEM;
8e04944f
TH
412}
413
414void free_prealloced_shrinker(struct shrinker *shrinker)
415{
b4c2b231
KT
416 if (!shrinker->nr_deferred)
417 return;
418
419 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
420 unregister_memcg_shrinker(shrinker);
421
8e04944f
TH
422 kfree(shrinker->nr_deferred);
423 shrinker->nr_deferred = NULL;
424}
1d3d4437 425
8e04944f
TH
426void register_shrinker_prepared(struct shrinker *shrinker)
427{
8e1f936b
RR
428 down_write(&shrinker_rwsem);
429 list_add_tail(&shrinker->list, &shrinker_list);
7e010df5 430#ifdef CONFIG_MEMCG_KMEM
8df4a44c
KT
431 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
432 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 433#endif
8e1f936b 434 up_write(&shrinker_rwsem);
8e04944f
TH
435}
436
437int register_shrinker(struct shrinker *shrinker)
438{
439 int err = prealloc_shrinker(shrinker);
440
441 if (err)
442 return err;
443 register_shrinker_prepared(shrinker);
1d3d4437 444 return 0;
1da177e4 445}
8e1f936b 446EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
447
448/*
449 * Remove one
450 */
8e1f936b 451void unregister_shrinker(struct shrinker *shrinker)
1da177e4 452{
bb422a73
TH
453 if (!shrinker->nr_deferred)
454 return;
b4c2b231
KT
455 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
456 unregister_memcg_shrinker(shrinker);
1da177e4
LT
457 down_write(&shrinker_rwsem);
458 list_del(&shrinker->list);
459 up_write(&shrinker_rwsem);
ae393321 460 kfree(shrinker->nr_deferred);
bb422a73 461 shrinker->nr_deferred = NULL;
1da177e4 462}
8e1f936b 463EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
464
465#define SHRINK_BATCH 128
1d3d4437 466
cb731d6c 467static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 468 struct shrinker *shrinker, int priority)
1d3d4437
GC
469{
470 unsigned long freed = 0;
471 unsigned long long delta;
472 long total_scan;
d5bc5fd3 473 long freeable;
1d3d4437
GC
474 long nr;
475 long new_nr;
476 int nid = shrinkctl->nid;
477 long batch_size = shrinker->batch ? shrinker->batch
478 : SHRINK_BATCH;
5f33a080 479 long scanned = 0, next_deferred;
1d3d4437 480
ac7fb3ad
KT
481 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
482 nid = 0;
483
d5bc5fd3 484 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
485 if (freeable == 0 || freeable == SHRINK_EMPTY)
486 return freeable;
1d3d4437
GC
487
488 /*
489 * copy the current shrinker scan count into a local variable
490 * and zero it so that other concurrent shrinker invocations
491 * don't also do this scanning work.
492 */
493 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
494
495 total_scan = nr;
4b85afbd
JW
496 if (shrinker->seeks) {
497 delta = freeable >> priority;
498 delta *= 4;
499 do_div(delta, shrinker->seeks);
500 } else {
501 /*
502 * These objects don't require any IO to create. Trim
503 * them aggressively under memory pressure to keep
504 * them from causing refetches in the IO caches.
505 */
506 delta = freeable / 2;
507 }
172b06c3 508
1d3d4437
GC
509 total_scan += delta;
510 if (total_scan < 0) {
d75f773c 511 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
a0b02131 512 shrinker->scan_objects, total_scan);
d5bc5fd3 513 total_scan = freeable;
5f33a080
SL
514 next_deferred = nr;
515 } else
516 next_deferred = total_scan;
1d3d4437
GC
517
518 /*
519 * We need to avoid excessive windup on filesystem shrinkers
520 * due to large numbers of GFP_NOFS allocations causing the
521 * shrinkers to return -1 all the time. This results in a large
522 * nr being built up so when a shrink that can do some work
523 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 524 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
525 * memory.
526 *
527 * Hence only allow the shrinker to scan the entire cache when
528 * a large delta change is calculated directly.
529 */
d5bc5fd3
VD
530 if (delta < freeable / 4)
531 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
532
533 /*
534 * Avoid risking looping forever due to too large nr value:
535 * never try to free more than twice the estimate number of
536 * freeable entries.
537 */
d5bc5fd3
VD
538 if (total_scan > freeable * 2)
539 total_scan = freeable * 2;
1d3d4437
GC
540
541 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 542 freeable, delta, total_scan, priority);
1d3d4437 543
0b1fb40a
VD
544 /*
545 * Normally, we should not scan less than batch_size objects in one
546 * pass to avoid too frequent shrinker calls, but if the slab has less
547 * than batch_size objects in total and we are really tight on memory,
548 * we will try to reclaim all available objects, otherwise we can end
549 * up failing allocations although there are plenty of reclaimable
550 * objects spread over several slabs with usage less than the
551 * batch_size.
552 *
553 * We detect the "tight on memory" situations by looking at the total
554 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 555 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
556 * scanning at high prio and therefore should try to reclaim as much as
557 * possible.
558 */
559 while (total_scan >= batch_size ||
d5bc5fd3 560 total_scan >= freeable) {
a0b02131 561 unsigned long ret;
0b1fb40a 562 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 563
0b1fb40a 564 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 565 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
566 ret = shrinker->scan_objects(shrinker, shrinkctl);
567 if (ret == SHRINK_STOP)
568 break;
569 freed += ret;
1d3d4437 570
d460acb5
CW
571 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
572 total_scan -= shrinkctl->nr_scanned;
573 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
574
575 cond_resched();
576 }
577
5f33a080
SL
578 if (next_deferred >= scanned)
579 next_deferred -= scanned;
580 else
581 next_deferred = 0;
1d3d4437
GC
582 /*
583 * move the unused scan count back into the shrinker in a
584 * manner that handles concurrent updates. If we exhausted the
585 * scan, there is no need to do an update.
586 */
5f33a080
SL
587 if (next_deferred > 0)
588 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
589 &shrinker->nr_deferred[nid]);
590 else
591 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
592
df9024a8 593 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 594 return freed;
1495f230
YH
595}
596
b0dedc49
KT
597#ifdef CONFIG_MEMCG_KMEM
598static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
599 struct mem_cgroup *memcg, int priority)
600{
601 struct memcg_shrinker_map *map;
b8e57efa
KT
602 unsigned long ret, freed = 0;
603 int i;
b0dedc49
KT
604
605 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
606 return 0;
607
608 if (!down_read_trylock(&shrinker_rwsem))
609 return 0;
610
611 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
612 true);
613 if (unlikely(!map))
614 goto unlock;
615
616 for_each_set_bit(i, map->map, shrinker_nr_max) {
617 struct shrink_control sc = {
618 .gfp_mask = gfp_mask,
619 .nid = nid,
620 .memcg = memcg,
621 };
622 struct shrinker *shrinker;
623
624 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
625 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
626 if (!shrinker)
627 clear_bit(i, map->map);
b0dedc49
KT
628 continue;
629 }
630
b0dedc49 631 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6
KT
632 if (ret == SHRINK_EMPTY) {
633 clear_bit(i, map->map);
634 /*
635 * After the shrinker reported that it had no objects to
636 * free, but before we cleared the corresponding bit in
637 * the memcg shrinker map, a new object might have been
638 * added. To make sure, we have the bit set in this
639 * case, we invoke the shrinker one more time and reset
640 * the bit if it reports that it is not empty anymore.
641 * The memory barrier here pairs with the barrier in
642 * memcg_set_shrinker_bit():
643 *
644 * list_lru_add() shrink_slab_memcg()
645 * list_add_tail() clear_bit()
646 * <MB> <MB>
647 * set_bit() do_shrink_slab()
648 */
649 smp_mb__after_atomic();
650 ret = do_shrink_slab(&sc, shrinker, priority);
651 if (ret == SHRINK_EMPTY)
652 ret = 0;
653 else
654 memcg_set_shrinker_bit(memcg, nid, i);
655 }
b0dedc49
KT
656 freed += ret;
657
658 if (rwsem_is_contended(&shrinker_rwsem)) {
659 freed = freed ? : 1;
660 break;
661 }
662 }
663unlock:
664 up_read(&shrinker_rwsem);
665 return freed;
666}
667#else /* CONFIG_MEMCG_KMEM */
668static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
669 struct mem_cgroup *memcg, int priority)
670{
671 return 0;
672}
673#endif /* CONFIG_MEMCG_KMEM */
674
6b4f7799 675/**
cb731d6c 676 * shrink_slab - shrink slab caches
6b4f7799
JW
677 * @gfp_mask: allocation context
678 * @nid: node whose slab caches to target
cb731d6c 679 * @memcg: memory cgroup whose slab caches to target
9092c71b 680 * @priority: the reclaim priority
1da177e4 681 *
6b4f7799 682 * Call the shrink functions to age shrinkable caches.
1da177e4 683 *
6b4f7799
JW
684 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
685 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 686 *
aeed1d32
VD
687 * @memcg specifies the memory cgroup to target. Unaware shrinkers
688 * are called only if it is the root cgroup.
cb731d6c 689 *
9092c71b
JB
690 * @priority is sc->priority, we take the number of objects and >> by priority
691 * in order to get the scan target.
b15e0905 692 *
6b4f7799 693 * Returns the number of reclaimed slab objects.
1da177e4 694 */
cb731d6c
VD
695static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
696 struct mem_cgroup *memcg,
9092c71b 697 int priority)
1da177e4 698{
b8e57efa 699 unsigned long ret, freed = 0;
1da177e4
LT
700 struct shrinker *shrinker;
701
aeed1d32 702 if (!mem_cgroup_is_root(memcg))
b0dedc49 703 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 704
e830c63a 705 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 706 goto out;
1da177e4
LT
707
708 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
709 struct shrink_control sc = {
710 .gfp_mask = gfp_mask,
711 .nid = nid,
cb731d6c 712 .memcg = memcg,
6b4f7799 713 };
ec97097b 714
9b996468
KT
715 ret = do_shrink_slab(&sc, shrinker, priority);
716 if (ret == SHRINK_EMPTY)
717 ret = 0;
718 freed += ret;
e496612c
MK
719 /*
720 * Bail out if someone want to register a new shrinker to
721 * prevent the regsitration from being stalled for long periods
722 * by parallel ongoing shrinking.
723 */
724 if (rwsem_is_contended(&shrinker_rwsem)) {
725 freed = freed ? : 1;
726 break;
727 }
1da177e4 728 }
6b4f7799 729
1da177e4 730 up_read(&shrinker_rwsem);
f06590bd
MK
731out:
732 cond_resched();
24f7c6b9 733 return freed;
1da177e4
LT
734}
735
cb731d6c
VD
736void drop_slab_node(int nid)
737{
738 unsigned long freed;
739
740 do {
741 struct mem_cgroup *memcg = NULL;
742
743 freed = 0;
aeed1d32 744 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 745 do {
9092c71b 746 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
747 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
748 } while (freed > 10);
749}
750
751void drop_slab(void)
752{
753 int nid;
754
755 for_each_online_node(nid)
756 drop_slab_node(nid);
757}
758
1da177e4
LT
759static inline int is_page_cache_freeable(struct page *page)
760{
ceddc3a5
JW
761 /*
762 * A freeable page cache page is referenced only by the caller
67891fff
MW
763 * that isolated the page, the page cache and optional buffer
764 * heads at page->private.
ceddc3a5 765 */
67891fff 766 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
bd4c82c2 767 HPAGE_PMD_NR : 1;
67891fff 768 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
769}
770
703c2708 771static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 772{
930d9152 773 if (current->flags & PF_SWAPWRITE)
1da177e4 774 return 1;
703c2708 775 if (!inode_write_congested(inode))
1da177e4 776 return 1;
703c2708 777 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
778 return 1;
779 return 0;
780}
781
782/*
783 * We detected a synchronous write error writing a page out. Probably
784 * -ENOSPC. We need to propagate that into the address_space for a subsequent
785 * fsync(), msync() or close().
786 *
787 * The tricky part is that after writepage we cannot touch the mapping: nothing
788 * prevents it from being freed up. But we have a ref on the page and once
789 * that page is locked, the mapping is pinned.
790 *
791 * We're allowed to run sleeping lock_page() here because we know the caller has
792 * __GFP_FS.
793 */
794static void handle_write_error(struct address_space *mapping,
795 struct page *page, int error)
796{
7eaceacc 797 lock_page(page);
3e9f45bd
GC
798 if (page_mapping(page) == mapping)
799 mapping_set_error(mapping, error);
1da177e4
LT
800 unlock_page(page);
801}
802
04e62a29
CL
803/* possible outcome of pageout() */
804typedef enum {
805 /* failed to write page out, page is locked */
806 PAGE_KEEP,
807 /* move page to the active list, page is locked */
808 PAGE_ACTIVATE,
809 /* page has been sent to the disk successfully, page is unlocked */
810 PAGE_SUCCESS,
811 /* page is clean and locked */
812 PAGE_CLEAN,
813} pageout_t;
814
1da177e4 815/*
1742f19f
AM
816 * pageout is called by shrink_page_list() for each dirty page.
817 * Calls ->writepage().
1da177e4 818 */
c661b078 819static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 820 struct scan_control *sc)
1da177e4
LT
821{
822 /*
823 * If the page is dirty, only perform writeback if that write
824 * will be non-blocking. To prevent this allocation from being
825 * stalled by pagecache activity. But note that there may be
826 * stalls if we need to run get_block(). We could test
827 * PagePrivate for that.
828 *
8174202b 829 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
830 * this page's queue, we can perform writeback even if that
831 * will block.
832 *
833 * If the page is swapcache, write it back even if that would
834 * block, for some throttling. This happens by accident, because
835 * swap_backing_dev_info is bust: it doesn't reflect the
836 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
837 */
838 if (!is_page_cache_freeable(page))
839 return PAGE_KEEP;
840 if (!mapping) {
841 /*
842 * Some data journaling orphaned pages can have
843 * page->mapping == NULL while being dirty with clean buffers.
844 */
266cf658 845 if (page_has_private(page)) {
1da177e4
LT
846 if (try_to_free_buffers(page)) {
847 ClearPageDirty(page);
b1de0d13 848 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
849 return PAGE_CLEAN;
850 }
851 }
852 return PAGE_KEEP;
853 }
854 if (mapping->a_ops->writepage == NULL)
855 return PAGE_ACTIVATE;
703c2708 856 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
857 return PAGE_KEEP;
858
859 if (clear_page_dirty_for_io(page)) {
860 int res;
861 struct writeback_control wbc = {
862 .sync_mode = WB_SYNC_NONE,
863 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
864 .range_start = 0,
865 .range_end = LLONG_MAX,
1da177e4
LT
866 .for_reclaim = 1,
867 };
868
869 SetPageReclaim(page);
870 res = mapping->a_ops->writepage(page, &wbc);
871 if (res < 0)
872 handle_write_error(mapping, page, res);
994fc28c 873 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
874 ClearPageReclaim(page);
875 return PAGE_ACTIVATE;
876 }
c661b078 877
1da177e4
LT
878 if (!PageWriteback(page)) {
879 /* synchronous write or broken a_ops? */
880 ClearPageReclaim(page);
881 }
3aa23851 882 trace_mm_vmscan_writepage(page);
c4a25635 883 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
884 return PAGE_SUCCESS;
885 }
886
887 return PAGE_CLEAN;
888}
889
a649fd92 890/*
e286781d
NP
891 * Same as remove_mapping, but if the page is removed from the mapping, it
892 * gets returned with a refcount of 0.
a649fd92 893 */
a528910e
JW
894static int __remove_mapping(struct address_space *mapping, struct page *page,
895 bool reclaimed)
49d2e9cc 896{
c4843a75 897 unsigned long flags;
bd4c82c2 898 int refcount;
c4843a75 899
28e4d965
NP
900 BUG_ON(!PageLocked(page));
901 BUG_ON(mapping != page_mapping(page));
49d2e9cc 902
b93b0163 903 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 904 /*
0fd0e6b0
NP
905 * The non racy check for a busy page.
906 *
907 * Must be careful with the order of the tests. When someone has
908 * a ref to the page, it may be possible that they dirty it then
909 * drop the reference. So if PageDirty is tested before page_count
910 * here, then the following race may occur:
911 *
912 * get_user_pages(&page);
913 * [user mapping goes away]
914 * write_to(page);
915 * !PageDirty(page) [good]
916 * SetPageDirty(page);
917 * put_page(page);
918 * !page_count(page) [good, discard it]
919 *
920 * [oops, our write_to data is lost]
921 *
922 * Reversing the order of the tests ensures such a situation cannot
923 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 924 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
925 *
926 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 927 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 928 */
bd4c82c2
HY
929 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
930 refcount = 1 + HPAGE_PMD_NR;
931 else
932 refcount = 2;
933 if (!page_ref_freeze(page, refcount))
49d2e9cc 934 goto cannot_free;
1c4c3b99 935 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 936 if (unlikely(PageDirty(page))) {
bd4c82c2 937 page_ref_unfreeze(page, refcount);
49d2e9cc 938 goto cannot_free;
e286781d 939 }
49d2e9cc
CL
940
941 if (PageSwapCache(page)) {
942 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 943 mem_cgroup_swapout(page, swap);
4e17ec25 944 __delete_from_swap_cache(page, swap);
b93b0163 945 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 946 put_swap_page(page, swap);
e286781d 947 } else {
6072d13c 948 void (*freepage)(struct page *);
a528910e 949 void *shadow = NULL;
6072d13c
LT
950
951 freepage = mapping->a_ops->freepage;
a528910e
JW
952 /*
953 * Remember a shadow entry for reclaimed file cache in
954 * order to detect refaults, thus thrashing, later on.
955 *
956 * But don't store shadows in an address space that is
957 * already exiting. This is not just an optizimation,
958 * inode reclaim needs to empty out the radix tree or
959 * the nodes are lost. Don't plant shadows behind its
960 * back.
f9fe48be
RZ
961 *
962 * We also don't store shadows for DAX mappings because the
963 * only page cache pages found in these are zero pages
964 * covering holes, and because we don't want to mix DAX
965 * exceptional entries and shadow exceptional entries in the
b93b0163 966 * same address_space.
a528910e
JW
967 */
968 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 969 !mapping_exiting(mapping) && !dax_mapping(mapping))
a7ca12f9 970 shadow = workingset_eviction(page);
62cccb8c 971 __delete_from_page_cache(page, shadow);
b93b0163 972 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
973
974 if (freepage != NULL)
975 freepage(page);
49d2e9cc
CL
976 }
977
49d2e9cc
CL
978 return 1;
979
980cannot_free:
b93b0163 981 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
982 return 0;
983}
984
e286781d
NP
985/*
986 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
987 * someone else has a ref on the page, abort and return 0. If it was
988 * successfully detached, return 1. Assumes the caller has a single ref on
989 * this page.
990 */
991int remove_mapping(struct address_space *mapping, struct page *page)
992{
a528910e 993 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
994 /*
995 * Unfreezing the refcount with 1 rather than 2 effectively
996 * drops the pagecache ref for us without requiring another
997 * atomic operation.
998 */
fe896d18 999 page_ref_unfreeze(page, 1);
e286781d
NP
1000 return 1;
1001 }
1002 return 0;
1003}
1004
894bc310
LS
1005/**
1006 * putback_lru_page - put previously isolated page onto appropriate LRU list
1007 * @page: page to be put back to appropriate lru list
1008 *
1009 * Add previously isolated @page to appropriate LRU list.
1010 * Page may still be unevictable for other reasons.
1011 *
1012 * lru_lock must not be held, interrupts must be enabled.
1013 */
894bc310
LS
1014void putback_lru_page(struct page *page)
1015{
9c4e6b1a 1016 lru_cache_add(page);
894bc310
LS
1017 put_page(page); /* drop ref from isolate */
1018}
1019
dfc8d636
JW
1020enum page_references {
1021 PAGEREF_RECLAIM,
1022 PAGEREF_RECLAIM_CLEAN,
64574746 1023 PAGEREF_KEEP,
dfc8d636
JW
1024 PAGEREF_ACTIVATE,
1025};
1026
1027static enum page_references page_check_references(struct page *page,
1028 struct scan_control *sc)
1029{
64574746 1030 int referenced_ptes, referenced_page;
dfc8d636 1031 unsigned long vm_flags;
dfc8d636 1032
c3ac9a8a
JW
1033 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1034 &vm_flags);
64574746 1035 referenced_page = TestClearPageReferenced(page);
dfc8d636 1036
dfc8d636
JW
1037 /*
1038 * Mlock lost the isolation race with us. Let try_to_unmap()
1039 * move the page to the unevictable list.
1040 */
1041 if (vm_flags & VM_LOCKED)
1042 return PAGEREF_RECLAIM;
1043
64574746 1044 if (referenced_ptes) {
e4898273 1045 if (PageSwapBacked(page))
64574746
JW
1046 return PAGEREF_ACTIVATE;
1047 /*
1048 * All mapped pages start out with page table
1049 * references from the instantiating fault, so we need
1050 * to look twice if a mapped file page is used more
1051 * than once.
1052 *
1053 * Mark it and spare it for another trip around the
1054 * inactive list. Another page table reference will
1055 * lead to its activation.
1056 *
1057 * Note: the mark is set for activated pages as well
1058 * so that recently deactivated but used pages are
1059 * quickly recovered.
1060 */
1061 SetPageReferenced(page);
1062
34dbc67a 1063 if (referenced_page || referenced_ptes > 1)
64574746
JW
1064 return PAGEREF_ACTIVATE;
1065
c909e993
KK
1066 /*
1067 * Activate file-backed executable pages after first usage.
1068 */
1069 if (vm_flags & VM_EXEC)
1070 return PAGEREF_ACTIVATE;
1071
64574746
JW
1072 return PAGEREF_KEEP;
1073 }
dfc8d636
JW
1074
1075 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1076 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1077 return PAGEREF_RECLAIM_CLEAN;
1078
1079 return PAGEREF_RECLAIM;
dfc8d636
JW
1080}
1081
e2be15f6
MG
1082/* Check if a page is dirty or under writeback */
1083static void page_check_dirty_writeback(struct page *page,
1084 bool *dirty, bool *writeback)
1085{
b4597226
MG
1086 struct address_space *mapping;
1087
e2be15f6
MG
1088 /*
1089 * Anonymous pages are not handled by flushers and must be written
1090 * from reclaim context. Do not stall reclaim based on them
1091 */
802a3a92
SL
1092 if (!page_is_file_cache(page) ||
1093 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1094 *dirty = false;
1095 *writeback = false;
1096 return;
1097 }
1098
1099 /* By default assume that the page flags are accurate */
1100 *dirty = PageDirty(page);
1101 *writeback = PageWriteback(page);
b4597226
MG
1102
1103 /* Verify dirty/writeback state if the filesystem supports it */
1104 if (!page_has_private(page))
1105 return;
1106
1107 mapping = page_mapping(page);
1108 if (mapping && mapping->a_ops->is_dirty_writeback)
1109 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1110}
1111
1da177e4 1112/*
1742f19f 1113 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1114 */
1742f19f 1115static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 1116 struct pglist_data *pgdat,
f84f6e2b 1117 struct scan_control *sc,
02c6de8d 1118 enum ttu_flags ttu_flags,
3c710c1a 1119 struct reclaim_stat *stat,
02c6de8d 1120 bool force_reclaim)
1da177e4
LT
1121{
1122 LIST_HEAD(ret_pages);
abe4c3b5 1123 LIST_HEAD(free_pages);
3c710c1a 1124 unsigned nr_reclaimed = 0;
886cf190 1125 unsigned pgactivate = 0;
1da177e4 1126
060f005f 1127 memset(stat, 0, sizeof(*stat));
1da177e4
LT
1128 cond_resched();
1129
1da177e4
LT
1130 while (!list_empty(page_list)) {
1131 struct address_space *mapping;
1132 struct page *page;
1133 int may_enter_fs;
02c6de8d 1134 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 1135 bool dirty, writeback;
98879b3b 1136 unsigned int nr_pages;
1da177e4
LT
1137
1138 cond_resched();
1139
1140 page = lru_to_page(page_list);
1141 list_del(&page->lru);
1142
529ae9aa 1143 if (!trylock_page(page))
1da177e4
LT
1144 goto keep;
1145
309381fe 1146 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1147
98879b3b
YS
1148 nr_pages = 1 << compound_order(page);
1149
1150 /* Account the number of base pages even though THP */
1151 sc->nr_scanned += nr_pages;
80e43426 1152
39b5f29a 1153 if (unlikely(!page_evictable(page)))
ad6b6704 1154 goto activate_locked;
894bc310 1155
a6dc60f8 1156 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1157 goto keep_locked;
1158
c661b078
AW
1159 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1160 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1161
e2be15f6 1162 /*
894befec 1163 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1164 * reclaim_congested which affects wait_iff_congested. kswapd
1165 * will stall and start writing pages if the tail of the LRU
1166 * is all dirty unqueued pages.
1167 */
1168 page_check_dirty_writeback(page, &dirty, &writeback);
1169 if (dirty || writeback)
060f005f 1170 stat->nr_dirty++;
e2be15f6
MG
1171
1172 if (dirty && !writeback)
060f005f 1173 stat->nr_unqueued_dirty++;
e2be15f6 1174
d04e8acd
MG
1175 /*
1176 * Treat this page as congested if the underlying BDI is or if
1177 * pages are cycling through the LRU so quickly that the
1178 * pages marked for immediate reclaim are making it to the
1179 * end of the LRU a second time.
1180 */
e2be15f6 1181 mapping = page_mapping(page);
1da58ee2 1182 if (((dirty || writeback) && mapping &&
703c2708 1183 inode_write_congested(mapping->host)) ||
d04e8acd 1184 (writeback && PageReclaim(page)))
060f005f 1185 stat->nr_congested++;
e2be15f6 1186
283aba9f
MG
1187 /*
1188 * If a page at the tail of the LRU is under writeback, there
1189 * are three cases to consider.
1190 *
1191 * 1) If reclaim is encountering an excessive number of pages
1192 * under writeback and this page is both under writeback and
1193 * PageReclaim then it indicates that pages are being queued
1194 * for IO but are being recycled through the LRU before the
1195 * IO can complete. Waiting on the page itself risks an
1196 * indefinite stall if it is impossible to writeback the
1197 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1198 * note that the LRU is being scanned too quickly and the
1199 * caller can stall after page list has been processed.
283aba9f 1200 *
97c9341f 1201 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1202 * not marked for immediate reclaim, or the caller does not
1203 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1204 * not to fs). In this case mark the page for immediate
97c9341f 1205 * reclaim and continue scanning.
283aba9f 1206 *
ecf5fc6e
MH
1207 * Require may_enter_fs because we would wait on fs, which
1208 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1209 * enter reclaim, and deadlock if it waits on a page for
1210 * which it is needed to do the write (loop masks off
1211 * __GFP_IO|__GFP_FS for this reason); but more thought
1212 * would probably show more reasons.
1213 *
7fadc820 1214 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1215 * PageReclaim. memcg does not have any dirty pages
1216 * throttling so we could easily OOM just because too many
1217 * pages are in writeback and there is nothing else to
1218 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1219 *
1220 * In cases 1) and 2) we activate the pages to get them out of
1221 * the way while we continue scanning for clean pages on the
1222 * inactive list and refilling from the active list. The
1223 * observation here is that waiting for disk writes is more
1224 * expensive than potentially causing reloads down the line.
1225 * Since they're marked for immediate reclaim, they won't put
1226 * memory pressure on the cache working set any longer than it
1227 * takes to write them to disk.
283aba9f 1228 */
c661b078 1229 if (PageWriteback(page)) {
283aba9f
MG
1230 /* Case 1 above */
1231 if (current_is_kswapd() &&
1232 PageReclaim(page) &&
599d0c95 1233 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1234 stat->nr_immediate++;
c55e8d03 1235 goto activate_locked;
283aba9f
MG
1236
1237 /* Case 2 above */
97c9341f 1238 } else if (sane_reclaim(sc) ||
ecf5fc6e 1239 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1240 /*
1241 * This is slightly racy - end_page_writeback()
1242 * might have just cleared PageReclaim, then
1243 * setting PageReclaim here end up interpreted
1244 * as PageReadahead - but that does not matter
1245 * enough to care. What we do want is for this
1246 * page to have PageReclaim set next time memcg
1247 * reclaim reaches the tests above, so it will
1248 * then wait_on_page_writeback() to avoid OOM;
1249 * and it's also appropriate in global reclaim.
1250 */
1251 SetPageReclaim(page);
060f005f 1252 stat->nr_writeback++;
c55e8d03 1253 goto activate_locked;
283aba9f
MG
1254
1255 /* Case 3 above */
1256 } else {
7fadc820 1257 unlock_page(page);
283aba9f 1258 wait_on_page_writeback(page);
7fadc820
HD
1259 /* then go back and try same page again */
1260 list_add_tail(&page->lru, page_list);
1261 continue;
e62e384e 1262 }
c661b078 1263 }
1da177e4 1264
02c6de8d
MK
1265 if (!force_reclaim)
1266 references = page_check_references(page, sc);
1267
dfc8d636
JW
1268 switch (references) {
1269 case PAGEREF_ACTIVATE:
1da177e4 1270 goto activate_locked;
64574746 1271 case PAGEREF_KEEP:
98879b3b 1272 stat->nr_ref_keep += nr_pages;
64574746 1273 goto keep_locked;
dfc8d636
JW
1274 case PAGEREF_RECLAIM:
1275 case PAGEREF_RECLAIM_CLEAN:
1276 ; /* try to reclaim the page below */
1277 }
1da177e4 1278
1da177e4
LT
1279 /*
1280 * Anonymous process memory has backing store?
1281 * Try to allocate it some swap space here.
802a3a92 1282 * Lazyfree page could be freed directly
1da177e4 1283 */
bd4c82c2
HY
1284 if (PageAnon(page) && PageSwapBacked(page)) {
1285 if (!PageSwapCache(page)) {
1286 if (!(sc->gfp_mask & __GFP_IO))
1287 goto keep_locked;
1288 if (PageTransHuge(page)) {
1289 /* cannot split THP, skip it */
1290 if (!can_split_huge_page(page, NULL))
1291 goto activate_locked;
1292 /*
1293 * Split pages without a PMD map right
1294 * away. Chances are some or all of the
1295 * tail pages can be freed without IO.
1296 */
1297 if (!compound_mapcount(page) &&
1298 split_huge_page_to_list(page,
1299 page_list))
1300 goto activate_locked;
1301 }
1302 if (!add_to_swap(page)) {
1303 if (!PageTransHuge(page))
98879b3b 1304 goto activate_locked_split;
bd4c82c2
HY
1305 /* Fallback to swap normal pages */
1306 if (split_huge_page_to_list(page,
1307 page_list))
1308 goto activate_locked;
fe490cc0
HY
1309#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1310 count_vm_event(THP_SWPOUT_FALLBACK);
1311#endif
bd4c82c2 1312 if (!add_to_swap(page))
98879b3b 1313 goto activate_locked_split;
bd4c82c2 1314 }
0f074658 1315
bd4c82c2 1316 may_enter_fs = 1;
1da177e4 1317
bd4c82c2
HY
1318 /* Adding to swap updated mapping */
1319 mapping = page_mapping(page);
1320 }
7751b2da
KS
1321 } else if (unlikely(PageTransHuge(page))) {
1322 /* Split file THP */
1323 if (split_huge_page_to_list(page, page_list))
1324 goto keep_locked;
e2be15f6 1325 }
1da177e4 1326
98879b3b
YS
1327 /*
1328 * THP may get split above, need minus tail pages and update
1329 * nr_pages to avoid accounting tail pages twice.
1330 *
1331 * The tail pages that are added into swap cache successfully
1332 * reach here.
1333 */
1334 if ((nr_pages > 1) && !PageTransHuge(page)) {
1335 sc->nr_scanned -= (nr_pages - 1);
1336 nr_pages = 1;
1337 }
1338
1da177e4
LT
1339 /*
1340 * The page is mapped into the page tables of one or more
1341 * processes. Try to unmap it here.
1342 */
802a3a92 1343 if (page_mapped(page)) {
bd4c82c2
HY
1344 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1345
1346 if (unlikely(PageTransHuge(page)))
1347 flags |= TTU_SPLIT_HUGE_PMD;
1348 if (!try_to_unmap(page, flags)) {
98879b3b 1349 stat->nr_unmap_fail += nr_pages;
1da177e4 1350 goto activate_locked;
1da177e4
LT
1351 }
1352 }
1353
1354 if (PageDirty(page)) {
ee72886d 1355 /*
4eda4823
JW
1356 * Only kswapd can writeback filesystem pages
1357 * to avoid risk of stack overflow. But avoid
1358 * injecting inefficient single-page IO into
1359 * flusher writeback as much as possible: only
1360 * write pages when we've encountered many
1361 * dirty pages, and when we've already scanned
1362 * the rest of the LRU for clean pages and see
1363 * the same dirty pages again (PageReclaim).
ee72886d 1364 */
f84f6e2b 1365 if (page_is_file_cache(page) &&
4eda4823
JW
1366 (!current_is_kswapd() || !PageReclaim(page) ||
1367 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1368 /*
1369 * Immediately reclaim when written back.
1370 * Similar in principal to deactivate_page()
1371 * except we already have the page isolated
1372 * and know it's dirty
1373 */
c4a25635 1374 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1375 SetPageReclaim(page);
1376
c55e8d03 1377 goto activate_locked;
ee72886d
MG
1378 }
1379
dfc8d636 1380 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1381 goto keep_locked;
4dd4b920 1382 if (!may_enter_fs)
1da177e4 1383 goto keep_locked;
52a8363e 1384 if (!sc->may_writepage)
1da177e4
LT
1385 goto keep_locked;
1386
d950c947
MG
1387 /*
1388 * Page is dirty. Flush the TLB if a writable entry
1389 * potentially exists to avoid CPU writes after IO
1390 * starts and then write it out here.
1391 */
1392 try_to_unmap_flush_dirty();
7d3579e8 1393 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1394 case PAGE_KEEP:
1395 goto keep_locked;
1396 case PAGE_ACTIVATE:
1397 goto activate_locked;
1398 case PAGE_SUCCESS:
7d3579e8 1399 if (PageWriteback(page))
41ac1999 1400 goto keep;
7d3579e8 1401 if (PageDirty(page))
1da177e4 1402 goto keep;
7d3579e8 1403
1da177e4
LT
1404 /*
1405 * A synchronous write - probably a ramdisk. Go
1406 * ahead and try to reclaim the page.
1407 */
529ae9aa 1408 if (!trylock_page(page))
1da177e4
LT
1409 goto keep;
1410 if (PageDirty(page) || PageWriteback(page))
1411 goto keep_locked;
1412 mapping = page_mapping(page);
1413 case PAGE_CLEAN:
1414 ; /* try to free the page below */
1415 }
1416 }
1417
1418 /*
1419 * If the page has buffers, try to free the buffer mappings
1420 * associated with this page. If we succeed we try to free
1421 * the page as well.
1422 *
1423 * We do this even if the page is PageDirty().
1424 * try_to_release_page() does not perform I/O, but it is
1425 * possible for a page to have PageDirty set, but it is actually
1426 * clean (all its buffers are clean). This happens if the
1427 * buffers were written out directly, with submit_bh(). ext3
894bc310 1428 * will do this, as well as the blockdev mapping.
1da177e4
LT
1429 * try_to_release_page() will discover that cleanness and will
1430 * drop the buffers and mark the page clean - it can be freed.
1431 *
1432 * Rarely, pages can have buffers and no ->mapping. These are
1433 * the pages which were not successfully invalidated in
1434 * truncate_complete_page(). We try to drop those buffers here
1435 * and if that worked, and the page is no longer mapped into
1436 * process address space (page_count == 1) it can be freed.
1437 * Otherwise, leave the page on the LRU so it is swappable.
1438 */
266cf658 1439 if (page_has_private(page)) {
1da177e4
LT
1440 if (!try_to_release_page(page, sc->gfp_mask))
1441 goto activate_locked;
e286781d
NP
1442 if (!mapping && page_count(page) == 1) {
1443 unlock_page(page);
1444 if (put_page_testzero(page))
1445 goto free_it;
1446 else {
1447 /*
1448 * rare race with speculative reference.
1449 * the speculative reference will free
1450 * this page shortly, so we may
1451 * increment nr_reclaimed here (and
1452 * leave it off the LRU).
1453 */
1454 nr_reclaimed++;
1455 continue;
1456 }
1457 }
1da177e4
LT
1458 }
1459
802a3a92
SL
1460 if (PageAnon(page) && !PageSwapBacked(page)) {
1461 /* follow __remove_mapping for reference */
1462 if (!page_ref_freeze(page, 1))
1463 goto keep_locked;
1464 if (PageDirty(page)) {
1465 page_ref_unfreeze(page, 1);
1466 goto keep_locked;
1467 }
1da177e4 1468
802a3a92 1469 count_vm_event(PGLAZYFREED);
2262185c 1470 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1471 } else if (!mapping || !__remove_mapping(mapping, page, true))
1472 goto keep_locked;
9a1ea439
HD
1473
1474 unlock_page(page);
e286781d 1475free_it:
98879b3b
YS
1476 /*
1477 * THP may get swapped out in a whole, need account
1478 * all base pages.
1479 */
1480 nr_reclaimed += nr_pages;
abe4c3b5
MG
1481
1482 /*
1483 * Is there need to periodically free_page_list? It would
1484 * appear not as the counts should be low
1485 */
bd4c82c2
HY
1486 if (unlikely(PageTransHuge(page))) {
1487 mem_cgroup_uncharge(page);
1488 (*get_compound_page_dtor(page))(page);
1489 } else
1490 list_add(&page->lru, &free_pages);
1da177e4
LT
1491 continue;
1492
98879b3b
YS
1493activate_locked_split:
1494 /*
1495 * The tail pages that are failed to add into swap cache
1496 * reach here. Fixup nr_scanned and nr_pages.
1497 */
1498 if (nr_pages > 1) {
1499 sc->nr_scanned -= (nr_pages - 1);
1500 nr_pages = 1;
1501 }
1da177e4 1502activate_locked:
68a22394 1503 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1504 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1505 PageMlocked(page)))
a2c43eed 1506 try_to_free_swap(page);
309381fe 1507 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1508 if (!PageMlocked(page)) {
886cf190 1509 int type = page_is_file_cache(page);
ad6b6704 1510 SetPageActive(page);
98879b3b 1511 stat->nr_activate[type] += nr_pages;
2262185c 1512 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1513 }
1da177e4
LT
1514keep_locked:
1515 unlock_page(page);
1516keep:
1517 list_add(&page->lru, &ret_pages);
309381fe 1518 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1519 }
abe4c3b5 1520
98879b3b
YS
1521 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1522
747db954 1523 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1524 try_to_unmap_flush();
2d4894b5 1525 free_unref_page_list(&free_pages);
abe4c3b5 1526
1da177e4 1527 list_splice(&ret_pages, page_list);
886cf190 1528 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1529
05ff5137 1530 return nr_reclaimed;
1da177e4
LT
1531}
1532
02c6de8d
MK
1533unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1534 struct list_head *page_list)
1535{
1536 struct scan_control sc = {
1537 .gfp_mask = GFP_KERNEL,
1538 .priority = DEF_PRIORITY,
1539 .may_unmap = 1,
1540 };
060f005f 1541 struct reclaim_stat dummy_stat;
3c710c1a 1542 unsigned long ret;
02c6de8d
MK
1543 struct page *page, *next;
1544 LIST_HEAD(clean_pages);
1545
1546 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1547 if (page_is_file_cache(page) && !PageDirty(page) &&
a58f2cef 1548 !__PageMovable(page) && !PageUnevictable(page)) {
02c6de8d
MK
1549 ClearPageActive(page);
1550 list_move(&page->lru, &clean_pages);
1551 }
1552 }
1553
599d0c95 1554 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
060f005f 1555 TTU_IGNORE_ACCESS, &dummy_stat, true);
02c6de8d 1556 list_splice(&clean_pages, page_list);
599d0c95 1557 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1558 return ret;
1559}
1560
5ad333eb
AW
1561/*
1562 * Attempt to remove the specified page from its LRU. Only take this page
1563 * if it is of the appropriate PageActive status. Pages which are being
1564 * freed elsewhere are also ignored.
1565 *
1566 * page: page to consider
1567 * mode: one of the LRU isolation modes defined above
1568 *
1569 * returns 0 on success, -ve errno on failure.
1570 */
f3fd4a61 1571int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1572{
1573 int ret = -EINVAL;
1574
1575 /* Only take pages on the LRU. */
1576 if (!PageLRU(page))
1577 return ret;
1578
e46a2879
MK
1579 /* Compaction should not handle unevictable pages but CMA can do so */
1580 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1581 return ret;
1582
5ad333eb 1583 ret = -EBUSY;
08e552c6 1584
c8244935
MG
1585 /*
1586 * To minimise LRU disruption, the caller can indicate that it only
1587 * wants to isolate pages it will be able to operate on without
1588 * blocking - clean pages for the most part.
1589 *
c8244935
MG
1590 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1591 * that it is possible to migrate without blocking
1592 */
1276ad68 1593 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1594 /* All the caller can do on PageWriteback is block */
1595 if (PageWriteback(page))
1596 return ret;
1597
1598 if (PageDirty(page)) {
1599 struct address_space *mapping;
69d763fc 1600 bool migrate_dirty;
c8244935 1601
c8244935
MG
1602 /*
1603 * Only pages without mappings or that have a
1604 * ->migratepage callback are possible to migrate
69d763fc
MG
1605 * without blocking. However, we can be racing with
1606 * truncation so it's necessary to lock the page
1607 * to stabilise the mapping as truncation holds
1608 * the page lock until after the page is removed
1609 * from the page cache.
c8244935 1610 */
69d763fc
MG
1611 if (!trylock_page(page))
1612 return ret;
1613
c8244935 1614 mapping = page_mapping(page);
145e1a71 1615 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1616 unlock_page(page);
1617 if (!migrate_dirty)
c8244935
MG
1618 return ret;
1619 }
1620 }
39deaf85 1621
f80c0673
MK
1622 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1623 return ret;
1624
5ad333eb
AW
1625 if (likely(get_page_unless_zero(page))) {
1626 /*
1627 * Be careful not to clear PageLRU until after we're
1628 * sure the page is not being freed elsewhere -- the
1629 * page release code relies on it.
1630 */
1631 ClearPageLRU(page);
1632 ret = 0;
1633 }
1634
1635 return ret;
1636}
1637
7ee36a14
MG
1638
1639/*
1640 * Update LRU sizes after isolating pages. The LRU size updates must
1641 * be complete before mem_cgroup_update_lru_size due to a santity check.
1642 */
1643static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1644 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1645{
7ee36a14
MG
1646 int zid;
1647
7ee36a14
MG
1648 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1649 if (!nr_zone_taken[zid])
1650 continue;
1651
1652 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1653#ifdef CONFIG_MEMCG
b4536f0c 1654 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1655#endif
b4536f0c
MH
1656 }
1657
7ee36a14
MG
1658}
1659
f4b7e272
AR
1660/**
1661 * pgdat->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1662 * shrink the lists perform better by taking out a batch of pages
1663 * and working on them outside the LRU lock.
1664 *
1665 * For pagecache intensive workloads, this function is the hottest
1666 * spot in the kernel (apart from copy_*_user functions).
1667 *
1668 * Appropriate locks must be held before calling this function.
1669 *
791b48b6 1670 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1671 * @lruvec: The LRU vector to pull pages from.
1da177e4 1672 * @dst: The temp list to put pages on to.
f626012d 1673 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1674 * @sc: The scan_control struct for this reclaim session
5ad333eb 1675 * @mode: One of the LRU isolation modes
3cb99451 1676 * @lru: LRU list id for isolating
1da177e4
LT
1677 *
1678 * returns how many pages were moved onto *@dst.
1679 */
69e05944 1680static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1681 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1682 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1683 enum lru_list lru)
1da177e4 1684{
75b00af7 1685 struct list_head *src = &lruvec->lists[lru];
69e05944 1686 unsigned long nr_taken = 0;
599d0c95 1687 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1688 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1689 unsigned long skipped = 0;
791b48b6 1690 unsigned long scan, total_scan, nr_pages;
b2e18757 1691 LIST_HEAD(pages_skipped);
a9e7c39f 1692 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1693
98879b3b 1694 total_scan = 0;
791b48b6 1695 scan = 0;
98879b3b 1696 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1697 struct page *page;
5ad333eb 1698
1da177e4
LT
1699 page = lru_to_page(src);
1700 prefetchw_prev_lru_page(page, src, flags);
1701
309381fe 1702 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1703
98879b3b
YS
1704 nr_pages = 1 << compound_order(page);
1705 total_scan += nr_pages;
1706
b2e18757
MG
1707 if (page_zonenum(page) > sc->reclaim_idx) {
1708 list_move(&page->lru, &pages_skipped);
98879b3b 1709 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1710 continue;
1711 }
1712
791b48b6
MK
1713 /*
1714 * Do not count skipped pages because that makes the function
1715 * return with no isolated pages if the LRU mostly contains
1716 * ineligible pages. This causes the VM to not reclaim any
1717 * pages, triggering a premature OOM.
98879b3b
YS
1718 *
1719 * Account all tail pages of THP. This would not cause
1720 * premature OOM since __isolate_lru_page() returns -EBUSY
1721 * only when the page is being freed somewhere else.
791b48b6 1722 */
98879b3b 1723 scan += nr_pages;
f3fd4a61 1724 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1725 case 0:
599d0c95
MG
1726 nr_taken += nr_pages;
1727 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1728 list_move(&page->lru, dst);
5ad333eb
AW
1729 break;
1730
1731 case -EBUSY:
1732 /* else it is being freed elsewhere */
1733 list_move(&page->lru, src);
1734 continue;
46453a6e 1735
5ad333eb
AW
1736 default:
1737 BUG();
1738 }
1da177e4
LT
1739 }
1740
b2e18757
MG
1741 /*
1742 * Splice any skipped pages to the start of the LRU list. Note that
1743 * this disrupts the LRU order when reclaiming for lower zones but
1744 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1745 * scanning would soon rescan the same pages to skip and put the
1746 * system at risk of premature OOM.
1747 */
7cc30fcf
MG
1748 if (!list_empty(&pages_skipped)) {
1749 int zid;
1750
3db65812 1751 list_splice(&pages_skipped, src);
7cc30fcf
MG
1752 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1753 if (!nr_skipped[zid])
1754 continue;
1755
1756 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1757 skipped += nr_skipped[zid];
7cc30fcf
MG
1758 }
1759 }
791b48b6 1760 *nr_scanned = total_scan;
1265e3a6 1761 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1762 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1763 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1764 return nr_taken;
1765}
1766
62695a84
NP
1767/**
1768 * isolate_lru_page - tries to isolate a page from its LRU list
1769 * @page: page to isolate from its LRU list
1770 *
1771 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1772 * vmstat statistic corresponding to whatever LRU list the page was on.
1773 *
1774 * Returns 0 if the page was removed from an LRU list.
1775 * Returns -EBUSY if the page was not on an LRU list.
1776 *
1777 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1778 * the active list, it will have PageActive set. If it was found on
1779 * the unevictable list, it will have the PageUnevictable bit set. That flag
1780 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1781 *
1782 * The vmstat statistic corresponding to the list on which the page was
1783 * found will be decremented.
1784 *
1785 * Restrictions:
a5d09bed 1786 *
62695a84
NP
1787 * (1) Must be called with an elevated refcount on the page. This is a
1788 * fundamentnal difference from isolate_lru_pages (which is called
1789 * without a stable reference).
1790 * (2) the lru_lock must not be held.
1791 * (3) interrupts must be enabled.
1792 */
1793int isolate_lru_page(struct page *page)
1794{
1795 int ret = -EBUSY;
1796
309381fe 1797 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1798 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1799
62695a84 1800 if (PageLRU(page)) {
f4b7e272 1801 pg_data_t *pgdat = page_pgdat(page);
fa9add64 1802 struct lruvec *lruvec;
62695a84 1803
f4b7e272
AR
1804 spin_lock_irq(&pgdat->lru_lock);
1805 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0c917313 1806 if (PageLRU(page)) {
894bc310 1807 int lru = page_lru(page);
0c917313 1808 get_page(page);
62695a84 1809 ClearPageLRU(page);
fa9add64
HD
1810 del_page_from_lru_list(page, lruvec, lru);
1811 ret = 0;
62695a84 1812 }
f4b7e272 1813 spin_unlock_irq(&pgdat->lru_lock);
62695a84
NP
1814 }
1815 return ret;
1816}
1817
35cd7815 1818/*
d37dd5dc
FW
1819 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1820 * then get resheduled. When there are massive number of tasks doing page
1821 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1822 * the LRU list will go small and be scanned faster than necessary, leading to
1823 * unnecessary swapping, thrashing and OOM.
35cd7815 1824 */
599d0c95 1825static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1826 struct scan_control *sc)
1827{
1828 unsigned long inactive, isolated;
1829
1830 if (current_is_kswapd())
1831 return 0;
1832
97c9341f 1833 if (!sane_reclaim(sc))
35cd7815
RR
1834 return 0;
1835
1836 if (file) {
599d0c95
MG
1837 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1838 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1839 } else {
599d0c95
MG
1840 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1841 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1842 }
1843
3cf23841
FW
1844 /*
1845 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1846 * won't get blocked by normal direct-reclaimers, forming a circular
1847 * deadlock.
1848 */
d0164adc 1849 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1850 inactive >>= 3;
1851
35cd7815
RR
1852 return isolated > inactive;
1853}
1854
a222f341
KT
1855/*
1856 * This moves pages from @list to corresponding LRU list.
1857 *
1858 * We move them the other way if the page is referenced by one or more
1859 * processes, from rmap.
1860 *
1861 * If the pages are mostly unmapped, the processing is fast and it is
1862 * appropriate to hold zone_lru_lock across the whole operation. But if
1863 * the pages are mapped, the processing is slow (page_referenced()) so we
1864 * should drop zone_lru_lock around each page. It's impossible to balance
1865 * this, so instead we remove the pages from the LRU while processing them.
1866 * It is safe to rely on PG_active against the non-LRU pages in here because
1867 * nobody will play with that bit on a non-LRU page.
1868 *
1869 * The downside is that we have to touch page->_refcount against each page.
1870 * But we had to alter page->flags anyway.
1871 *
1872 * Returns the number of pages moved to the given lruvec.
1873 */
1874
1875static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1876 struct list_head *list)
66635629 1877{
599d0c95 1878 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
a222f341 1879 int nr_pages, nr_moved = 0;
3f79768f 1880 LIST_HEAD(pages_to_free);
a222f341
KT
1881 struct page *page;
1882 enum lru_list lru;
66635629 1883
a222f341
KT
1884 while (!list_empty(list)) {
1885 page = lru_to_page(list);
309381fe 1886 VM_BUG_ON_PAGE(PageLRU(page), page);
39b5f29a 1887 if (unlikely(!page_evictable(page))) {
a222f341 1888 list_del(&page->lru);
599d0c95 1889 spin_unlock_irq(&pgdat->lru_lock);
66635629 1890 putback_lru_page(page);
599d0c95 1891 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1892 continue;
1893 }
599d0c95 1894 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1895
7a608572 1896 SetPageLRU(page);
66635629 1897 lru = page_lru(page);
a222f341
KT
1898
1899 nr_pages = hpage_nr_pages(page);
1900 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1901 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1902
2bcf8879
HD
1903 if (put_page_testzero(page)) {
1904 __ClearPageLRU(page);
1905 __ClearPageActive(page);
fa9add64 1906 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1907
1908 if (unlikely(PageCompound(page))) {
599d0c95 1909 spin_unlock_irq(&pgdat->lru_lock);
747db954 1910 mem_cgroup_uncharge(page);
2bcf8879 1911 (*get_compound_page_dtor(page))(page);
599d0c95 1912 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1913 } else
1914 list_add(&page->lru, &pages_to_free);
a222f341
KT
1915 } else {
1916 nr_moved += nr_pages;
66635629
MG
1917 }
1918 }
66635629 1919
3f79768f
HD
1920 /*
1921 * To save our caller's stack, now use input list for pages to free.
1922 */
a222f341
KT
1923 list_splice(&pages_to_free, list);
1924
1925 return nr_moved;
66635629
MG
1926}
1927
399ba0b9
N
1928/*
1929 * If a kernel thread (such as nfsd for loop-back mounts) services
1930 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1931 * In that case we should only throttle if the backing device it is
1932 * writing to is congested. In other cases it is safe to throttle.
1933 */
1934static int current_may_throttle(void)
1935{
1936 return !(current->flags & PF_LESS_THROTTLE) ||
1937 current->backing_dev_info == NULL ||
1938 bdi_write_congested(current->backing_dev_info);
1939}
1940
1da177e4 1941/*
b2e18757 1942 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1943 * of reclaimed pages
1da177e4 1944 */
66635629 1945static noinline_for_stack unsigned long
1a93be0e 1946shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1947 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1948{
1949 LIST_HEAD(page_list);
e247dbce 1950 unsigned long nr_scanned;
05ff5137 1951 unsigned long nr_reclaimed = 0;
e247dbce 1952 unsigned long nr_taken;
060f005f 1953 struct reclaim_stat stat;
3cb99451 1954 int file = is_file_lru(lru);
f46b7912 1955 enum vm_event_item item;
599d0c95 1956 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1957 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1958 bool stalled = false;
78dc583d 1959
599d0c95 1960 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1961 if (stalled)
1962 return 0;
1963
1964 /* wait a bit for the reclaimer. */
1965 msleep(100);
1966 stalled = true;
35cd7815
RR
1967
1968 /* We are about to die and free our memory. Return now. */
1969 if (fatal_signal_pending(current))
1970 return SWAP_CLUSTER_MAX;
1971 }
1972
1da177e4 1973 lru_add_drain();
f80c0673 1974
599d0c95 1975 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1976
5dc35979 1977 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 1978 &nr_scanned, sc, lru);
95d918fc 1979
599d0c95 1980 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1981 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1982
f46b7912
KT
1983 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1984 if (global_reclaim(sc))
1985 __count_vm_events(item, nr_scanned);
1986 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
599d0c95 1987 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1988
d563c050 1989 if (nr_taken == 0)
66635629 1990 return 0;
5ad333eb 1991
a128ca71 1992 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1993 &stat, false);
c661b078 1994
599d0c95 1995 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1996
f46b7912
KT
1997 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1998 if (global_reclaim(sc))
1999 __count_vm_events(item, nr_reclaimed);
2000 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
b17f18af
KT
2001 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2002 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
a74609fa 2003
a222f341 2004 move_pages_to_lru(lruvec, &page_list);
3f79768f 2005
599d0c95 2006 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 2007
599d0c95 2008 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 2009
747db954 2010 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2011 free_unref_page_list(&page_list);
e11da5b4 2012
1c610d5f
AR
2013 /*
2014 * If dirty pages are scanned that are not queued for IO, it
2015 * implies that flushers are not doing their job. This can
2016 * happen when memory pressure pushes dirty pages to the end of
2017 * the LRU before the dirty limits are breached and the dirty
2018 * data has expired. It can also happen when the proportion of
2019 * dirty pages grows not through writes but through memory
2020 * pressure reclaiming all the clean cache. And in some cases,
2021 * the flushers simply cannot keep up with the allocation
2022 * rate. Nudge the flusher threads in case they are asleep.
2023 */
2024 if (stat.nr_unqueued_dirty == nr_taken)
2025 wakeup_flusher_threads(WB_REASON_VMSCAN);
2026
d108c772
AR
2027 sc->nr.dirty += stat.nr_dirty;
2028 sc->nr.congested += stat.nr_congested;
2029 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2030 sc->nr.writeback += stat.nr_writeback;
2031 sc->nr.immediate += stat.nr_immediate;
2032 sc->nr.taken += nr_taken;
2033 if (file)
2034 sc->nr.file_taken += nr_taken;
8e950282 2035
599d0c95 2036 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2037 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2038 return nr_reclaimed;
1da177e4
LT
2039}
2040
f626012d 2041static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2042 struct lruvec *lruvec,
f16015fb 2043 struct scan_control *sc,
9e3b2f8c 2044 enum lru_list lru)
1da177e4 2045{
44c241f1 2046 unsigned long nr_taken;
f626012d 2047 unsigned long nr_scanned;
6fe6b7e3 2048 unsigned long vm_flags;
1da177e4 2049 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2050 LIST_HEAD(l_active);
b69408e8 2051 LIST_HEAD(l_inactive);
1da177e4 2052 struct page *page;
1a93be0e 2053 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
2054 unsigned nr_deactivate, nr_activate;
2055 unsigned nr_rotated = 0;
3cb99451 2056 int file = is_file_lru(lru);
599d0c95 2057 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2058
2059 lru_add_drain();
f80c0673 2060
599d0c95 2061 spin_lock_irq(&pgdat->lru_lock);
925b7673 2062
5dc35979 2063 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2064 &nr_scanned, sc, lru);
89b5fae5 2065
599d0c95 2066 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2067 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2068
599d0c95 2069 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2070 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2071
599d0c95 2072 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2073
1da177e4
LT
2074 while (!list_empty(&l_hold)) {
2075 cond_resched();
2076 page = lru_to_page(&l_hold);
2077 list_del(&page->lru);
7e9cd484 2078
39b5f29a 2079 if (unlikely(!page_evictable(page))) {
894bc310
LS
2080 putback_lru_page(page);
2081 continue;
2082 }
2083
cc715d99
MG
2084 if (unlikely(buffer_heads_over_limit)) {
2085 if (page_has_private(page) && trylock_page(page)) {
2086 if (page_has_private(page))
2087 try_to_release_page(page, 0);
2088 unlock_page(page);
2089 }
2090 }
2091
c3ac9a8a
JW
2092 if (page_referenced(page, 0, sc->target_mem_cgroup,
2093 &vm_flags)) {
9992af10 2094 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2095 /*
2096 * Identify referenced, file-backed active pages and
2097 * give them one more trip around the active list. So
2098 * that executable code get better chances to stay in
2099 * memory under moderate memory pressure. Anon pages
2100 * are not likely to be evicted by use-once streaming
2101 * IO, plus JVM can create lots of anon VM_EXEC pages,
2102 * so we ignore them here.
2103 */
41e20983 2104 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2105 list_add(&page->lru, &l_active);
2106 continue;
2107 }
2108 }
7e9cd484 2109
5205e56e 2110 ClearPageActive(page); /* we are de-activating */
1899ad18 2111 SetPageWorkingset(page);
1da177e4
LT
2112 list_add(&page->lru, &l_inactive);
2113 }
2114
b555749a 2115 /*
8cab4754 2116 * Move pages back to the lru list.
b555749a 2117 */
599d0c95 2118 spin_lock_irq(&pgdat->lru_lock);
556adecb 2119 /*
8cab4754
WF
2120 * Count referenced pages from currently used mappings as rotated,
2121 * even though only some of them are actually re-activated. This
2122 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2123 * get_scan_count.
7e9cd484 2124 */
b7c46d15 2125 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2126
a222f341
KT
2127 nr_activate = move_pages_to_lru(lruvec, &l_active);
2128 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2129 /* Keep all free pages in l_active list */
2130 list_splice(&l_inactive, &l_active);
9851ac13
KT
2131
2132 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2133 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2134
599d0c95
MG
2135 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2136 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2137
f372d89e
KT
2138 mem_cgroup_uncharge_list(&l_active);
2139 free_unref_page_list(&l_active);
9d998b4f
MH
2140 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2141 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2142}
2143
59dc76b0
RR
2144/*
2145 * The inactive anon list should be small enough that the VM never has
2146 * to do too much work.
14797e23 2147 *
59dc76b0
RR
2148 * The inactive file list should be small enough to leave most memory
2149 * to the established workingset on the scan-resistant active list,
2150 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2151 *
59dc76b0
RR
2152 * Both inactive lists should also be large enough that each inactive
2153 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2154 *
2a2e4885
JW
2155 * If that fails and refaulting is observed, the inactive list grows.
2156 *
59dc76b0 2157 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2158 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2159 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2160 *
59dc76b0
RR
2161 * total target max
2162 * memory ratio inactive
2163 * -------------------------------------
2164 * 10MB 1 5MB
2165 * 100MB 1 50MB
2166 * 1GB 3 250MB
2167 * 10GB 10 0.9GB
2168 * 100GB 31 3GB
2169 * 1TB 101 10GB
2170 * 10TB 320 32GB
56e49d21 2171 */
f8d1a311 2172static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2c012a4a 2173 struct scan_control *sc, bool trace)
56e49d21 2174{
fd538803 2175 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2176 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2177 enum lru_list inactive_lru = file * LRU_FILE;
2178 unsigned long inactive, active;
2179 unsigned long inactive_ratio;
2180 unsigned long refaults;
59dc76b0 2181 unsigned long gb;
e3790144 2182
59dc76b0
RR
2183 /*
2184 * If we don't have swap space, anonymous page deactivation
2185 * is pointless.
2186 */
2187 if (!file && !total_swap_pages)
2188 return false;
56e49d21 2189
fd538803
MH
2190 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2191 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2192
2a2e4885
JW
2193 /*
2194 * When refaults are being observed, it means a new workingset
2195 * is being established. Disable active list protection to get
2196 * rid of the stale workingset quickly.
2197 */
205b20cc 2198 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2c012a4a 2199 if (file && lruvec->refaults != refaults) {
2a2e4885
JW
2200 inactive_ratio = 0;
2201 } else {
2202 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2203 if (gb)
2204 inactive_ratio = int_sqrt(10 * gb);
2205 else
2206 inactive_ratio = 1;
2207 }
59dc76b0 2208
2c012a4a 2209 if (trace)
2a2e4885
JW
2210 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2211 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2212 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2213 inactive_ratio, file);
fd538803 2214
59dc76b0 2215 return inactive * inactive_ratio < active;
b39415b2
RR
2216}
2217
4f98a2fe 2218static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
3b991208 2219 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 2220{
b39415b2 2221 if (is_active_lru(lru)) {
3b991208 2222 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
1a93be0e 2223 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2224 return 0;
2225 }
2226
1a93be0e 2227 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2228}
2229
9a265114
JW
2230enum scan_balance {
2231 SCAN_EQUAL,
2232 SCAN_FRACT,
2233 SCAN_ANON,
2234 SCAN_FILE,
2235};
2236
4f98a2fe
RR
2237/*
2238 * Determine how aggressively the anon and file LRU lists should be
2239 * scanned. The relative value of each set of LRU lists is determined
2240 * by looking at the fraction of the pages scanned we did rotate back
2241 * onto the active list instead of evict.
2242 *
be7bd59d
WL
2243 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2244 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2245 */
33377678 2246static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2247 struct scan_control *sc, unsigned long *nr,
2248 unsigned long *lru_pages)
4f98a2fe 2249{
33377678 2250 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2251 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2252 u64 fraction[2];
2253 u64 denominator = 0; /* gcc */
599d0c95 2254 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2255 unsigned long anon_prio, file_prio;
9a265114 2256 enum scan_balance scan_balance;
0bf1457f 2257 unsigned long anon, file;
4f98a2fe 2258 unsigned long ap, fp;
4111304d 2259 enum lru_list lru;
76a33fc3
SL
2260
2261 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2262 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2263 scan_balance = SCAN_FILE;
76a33fc3
SL
2264 goto out;
2265 }
4f98a2fe 2266
10316b31
JW
2267 /*
2268 * Global reclaim will swap to prevent OOM even with no
2269 * swappiness, but memcg users want to use this knob to
2270 * disable swapping for individual groups completely when
2271 * using the memory controller's swap limit feature would be
2272 * too expensive.
2273 */
02695175 2274 if (!global_reclaim(sc) && !swappiness) {
9a265114 2275 scan_balance = SCAN_FILE;
10316b31
JW
2276 goto out;
2277 }
2278
2279 /*
2280 * Do not apply any pressure balancing cleverness when the
2281 * system is close to OOM, scan both anon and file equally
2282 * (unless the swappiness setting disagrees with swapping).
2283 */
02695175 2284 if (!sc->priority && swappiness) {
9a265114 2285 scan_balance = SCAN_EQUAL;
10316b31
JW
2286 goto out;
2287 }
2288
62376251
JW
2289 /*
2290 * Prevent the reclaimer from falling into the cache trap: as
2291 * cache pages start out inactive, every cache fault will tip
2292 * the scan balance towards the file LRU. And as the file LRU
2293 * shrinks, so does the window for rotation from references.
2294 * This means we have a runaway feedback loop where a tiny
2295 * thrashing file LRU becomes infinitely more attractive than
2296 * anon pages. Try to detect this based on file LRU size.
2297 */
2298 if (global_reclaim(sc)) {
599d0c95
MG
2299 unsigned long pgdatfile;
2300 unsigned long pgdatfree;
2301 int z;
2302 unsigned long total_high_wmark = 0;
2ab051e1 2303
599d0c95
MG
2304 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2305 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2306 node_page_state(pgdat, NR_INACTIVE_FILE);
2307
2308 for (z = 0; z < MAX_NR_ZONES; z++) {
2309 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2310 if (!managed_zone(zone))
599d0c95
MG
2311 continue;
2312
2313 total_high_wmark += high_wmark_pages(zone);
2314 }
62376251 2315
599d0c95 2316 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2317 /*
2318 * Force SCAN_ANON if there are enough inactive
2319 * anonymous pages on the LRU in eligible zones.
2320 * Otherwise, the small LRU gets thrashed.
2321 */
3b991208 2322 if (!inactive_list_is_low(lruvec, false, sc, false) &&
06226226
DR
2323 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2324 >> sc->priority) {
2325 scan_balance = SCAN_ANON;
2326 goto out;
2327 }
62376251
JW
2328 }
2329 }
2330
7c5bd705 2331 /*
316bda0e
VD
2332 * If there is enough inactive page cache, i.e. if the size of the
2333 * inactive list is greater than that of the active list *and* the
2334 * inactive list actually has some pages to scan on this priority, we
2335 * do not reclaim anything from the anonymous working set right now.
2336 * Without the second condition we could end up never scanning an
2337 * lruvec even if it has plenty of old anonymous pages unless the
2338 * system is under heavy pressure.
7c5bd705 2339 */
3b991208 2340 if (!inactive_list_is_low(lruvec, true, sc, false) &&
71ab6cfe 2341 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2342 scan_balance = SCAN_FILE;
7c5bd705
JW
2343 goto out;
2344 }
2345
9a265114
JW
2346 scan_balance = SCAN_FRACT;
2347
58c37f6e
KM
2348 /*
2349 * With swappiness at 100, anonymous and file have the same priority.
2350 * This scanning priority is essentially the inverse of IO cost.
2351 */
02695175 2352 anon_prio = swappiness;
75b00af7 2353 file_prio = 200 - anon_prio;
58c37f6e 2354
4f98a2fe
RR
2355 /*
2356 * OK, so we have swap space and a fair amount of page cache
2357 * pages. We use the recently rotated / recently scanned
2358 * ratios to determine how valuable each cache is.
2359 *
2360 * Because workloads change over time (and to avoid overflow)
2361 * we keep these statistics as a floating average, which ends
2362 * up weighing recent references more than old ones.
2363 *
2364 * anon in [0], file in [1]
2365 */
2ab051e1 2366
fd538803
MH
2367 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2368 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2369 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2370 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2371
599d0c95 2372 spin_lock_irq(&pgdat->lru_lock);
6e901571 2373 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2374 reclaim_stat->recent_scanned[0] /= 2;
2375 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2376 }
2377
6e901571 2378 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2379 reclaim_stat->recent_scanned[1] /= 2;
2380 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2381 }
2382
4f98a2fe 2383 /*
00d8089c
RR
2384 * The amount of pressure on anon vs file pages is inversely
2385 * proportional to the fraction of recently scanned pages on
2386 * each list that were recently referenced and in active use.
4f98a2fe 2387 */
fe35004f 2388 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2389 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2390
fe35004f 2391 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2392 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2393 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2394
76a33fc3
SL
2395 fraction[0] = ap;
2396 fraction[1] = fp;
2397 denominator = ap + fp + 1;
2398out:
688035f7
JW
2399 *lru_pages = 0;
2400 for_each_evictable_lru(lru) {
2401 int file = is_file_lru(lru);
2402 unsigned long size;
2403 unsigned long scan;
6b4f7799 2404
688035f7
JW
2405 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2406 scan = size >> sc->priority;
2407 /*
2408 * If the cgroup's already been deleted, make sure to
2409 * scrape out the remaining cache.
2410 */
2411 if (!scan && !mem_cgroup_online(memcg))
2412 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2413
688035f7
JW
2414 switch (scan_balance) {
2415 case SCAN_EQUAL:
2416 /* Scan lists relative to size */
2417 break;
2418 case SCAN_FRACT:
9a265114 2419 /*
688035f7
JW
2420 * Scan types proportional to swappiness and
2421 * their relative recent reclaim efficiency.
68600f62
RG
2422 * Make sure we don't miss the last page
2423 * because of a round-off error.
9a265114 2424 */
68600f62
RG
2425 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2426 denominator);
688035f7
JW
2427 break;
2428 case SCAN_FILE:
2429 case SCAN_ANON:
2430 /* Scan one type exclusively */
2431 if ((scan_balance == SCAN_FILE) != file) {
2432 size = 0;
2433 scan = 0;
2434 }
2435 break;
2436 default:
2437 /* Look ma, no brain */
2438 BUG();
9a265114 2439 }
688035f7
JW
2440
2441 *lru_pages += size;
2442 nr[lru] = scan;
76a33fc3 2443 }
6e08a369 2444}
4f98a2fe 2445
9b4f98cd 2446/*
a9dd0a83 2447 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2448 */
a9dd0a83 2449static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2450 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2451{
ef8f2327 2452 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2453 unsigned long nr[NR_LRU_LISTS];
e82e0561 2454 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2455 unsigned long nr_to_scan;
2456 enum lru_list lru;
2457 unsigned long nr_reclaimed = 0;
2458 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2459 struct blk_plug plug;
1a501907 2460 bool scan_adjusted;
9b4f98cd 2461
33377678 2462 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2463
e82e0561
MG
2464 /* Record the original scan target for proportional adjustments later */
2465 memcpy(targets, nr, sizeof(nr));
2466
1a501907
MG
2467 /*
2468 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2469 * event that can occur when there is little memory pressure e.g.
2470 * multiple streaming readers/writers. Hence, we do not abort scanning
2471 * when the requested number of pages are reclaimed when scanning at
2472 * DEF_PRIORITY on the assumption that the fact we are direct
2473 * reclaiming implies that kswapd is not keeping up and it is best to
2474 * do a batch of work at once. For memcg reclaim one check is made to
2475 * abort proportional reclaim if either the file or anon lru has already
2476 * dropped to zero at the first pass.
2477 */
2478 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2479 sc->priority == DEF_PRIORITY);
2480
9b4f98cd
JW
2481 blk_start_plug(&plug);
2482 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2483 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2484 unsigned long nr_anon, nr_file, percentage;
2485 unsigned long nr_scanned;
2486
9b4f98cd
JW
2487 for_each_evictable_lru(lru) {
2488 if (nr[lru]) {
2489 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2490 nr[lru] -= nr_to_scan;
2491
2492 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2493 lruvec, sc);
9b4f98cd
JW
2494 }
2495 }
e82e0561 2496
bd041733
MH
2497 cond_resched();
2498
e82e0561
MG
2499 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2500 continue;
2501
e82e0561
MG
2502 /*
2503 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2504 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2505 * proportionally what was requested by get_scan_count(). We
2506 * stop reclaiming one LRU and reduce the amount scanning
2507 * proportional to the original scan target.
2508 */
2509 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2510 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2511
1a501907
MG
2512 /*
2513 * It's just vindictive to attack the larger once the smaller
2514 * has gone to zero. And given the way we stop scanning the
2515 * smaller below, this makes sure that we only make one nudge
2516 * towards proportionality once we've got nr_to_reclaim.
2517 */
2518 if (!nr_file || !nr_anon)
2519 break;
2520
e82e0561
MG
2521 if (nr_file > nr_anon) {
2522 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2523 targets[LRU_ACTIVE_ANON] + 1;
2524 lru = LRU_BASE;
2525 percentage = nr_anon * 100 / scan_target;
2526 } else {
2527 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2528 targets[LRU_ACTIVE_FILE] + 1;
2529 lru = LRU_FILE;
2530 percentage = nr_file * 100 / scan_target;
2531 }
2532
2533 /* Stop scanning the smaller of the LRU */
2534 nr[lru] = 0;
2535 nr[lru + LRU_ACTIVE] = 0;
2536
2537 /*
2538 * Recalculate the other LRU scan count based on its original
2539 * scan target and the percentage scanning already complete
2540 */
2541 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2542 nr_scanned = targets[lru] - nr[lru];
2543 nr[lru] = targets[lru] * (100 - percentage) / 100;
2544 nr[lru] -= min(nr[lru], nr_scanned);
2545
2546 lru += LRU_ACTIVE;
2547 nr_scanned = targets[lru] - nr[lru];
2548 nr[lru] = targets[lru] * (100 - percentage) / 100;
2549 nr[lru] -= min(nr[lru], nr_scanned);
2550
2551 scan_adjusted = true;
9b4f98cd
JW
2552 }
2553 blk_finish_plug(&plug);
2554 sc->nr_reclaimed += nr_reclaimed;
2555
2556 /*
2557 * Even if we did not try to evict anon pages at all, we want to
2558 * rebalance the anon lru active/inactive ratio.
2559 */
3b991208 2560 if (inactive_list_is_low(lruvec, false, sc, true))
9b4f98cd
JW
2561 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2562 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2563}
2564
23b9da55 2565/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2566static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2567{
d84da3f9 2568 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2569 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2570 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2571 return true;
2572
2573 return false;
2574}
2575
3e7d3449 2576/*
23b9da55
MG
2577 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2578 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2579 * true if more pages should be reclaimed such that when the page allocator
2580 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2581 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2582 */
a9dd0a83 2583static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2584 unsigned long nr_reclaimed,
2585 unsigned long nr_scanned,
2586 struct scan_control *sc)
2587{
2588 unsigned long pages_for_compaction;
2589 unsigned long inactive_lru_pages;
a9dd0a83 2590 int z;
3e7d3449
MG
2591
2592 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2593 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2594 return false;
2595
2876592f 2596 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2597 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2598 /*
dcda9b04 2599 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2600 * full LRU list has been scanned and we are still failing
2601 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2602 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2603 */
2604 if (!nr_reclaimed && !nr_scanned)
2605 return false;
2606 } else {
2607 /*
dcda9b04 2608 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2609 * fail without consequence, stop if we failed to reclaim
2610 * any pages from the last SWAP_CLUSTER_MAX number of
2611 * pages that were scanned. This will return to the
2612 * caller faster at the risk reclaim/compaction and
2613 * the resulting allocation attempt fails
2614 */
2615 if (!nr_reclaimed)
2616 return false;
2617 }
3e7d3449
MG
2618
2619 /*
2620 * If we have not reclaimed enough pages for compaction and the
2621 * inactive lists are large enough, continue reclaiming
2622 */
9861a62c 2623 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2624 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2625 if (get_nr_swap_pages() > 0)
a9dd0a83 2626 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2627 if (sc->nr_reclaimed < pages_for_compaction &&
2628 inactive_lru_pages > pages_for_compaction)
2629 return true;
2630
2631 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2632 for (z = 0; z <= sc->reclaim_idx; z++) {
2633 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2634 if (!managed_zone(zone))
a9dd0a83
MG
2635 continue;
2636
2637 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2638 case COMPACT_SUCCESS:
a9dd0a83
MG
2639 case COMPACT_CONTINUE:
2640 return false;
2641 default:
2642 /* check next zone */
2643 ;
2644 }
3e7d3449 2645 }
a9dd0a83 2646 return true;
3e7d3449
MG
2647}
2648
e3c1ac58
AR
2649static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2650{
2651 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2652 (memcg && memcg_congested(pgdat, memcg));
2653}
2654
970a39a3 2655static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2656{
cb731d6c 2657 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2658 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2659 bool reclaimable = false;
1da177e4 2660
9b4f98cd
JW
2661 do {
2662 struct mem_cgroup *root = sc->target_mem_cgroup;
2663 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2664 .pgdat = pgdat,
9b4f98cd
JW
2665 .priority = sc->priority,
2666 };
a9dd0a83 2667 unsigned long node_lru_pages = 0;
694fbc0f 2668 struct mem_cgroup *memcg;
3e7d3449 2669
d108c772
AR
2670 memset(&sc->nr, 0, sizeof(sc->nr));
2671
9b4f98cd
JW
2672 nr_reclaimed = sc->nr_reclaimed;
2673 nr_scanned = sc->nr_scanned;
1da177e4 2674
694fbc0f
AM
2675 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2676 do {
6b4f7799 2677 unsigned long lru_pages;
8e8ae645 2678 unsigned long reclaimed;
cb731d6c 2679 unsigned long scanned;
5660048c 2680
bf8d5d52
RG
2681 switch (mem_cgroup_protected(root, memcg)) {
2682 case MEMCG_PROT_MIN:
2683 /*
2684 * Hard protection.
2685 * If there is no reclaimable memory, OOM.
2686 */
2687 continue;
2688 case MEMCG_PROT_LOW:
2689 /*
2690 * Soft protection.
2691 * Respect the protection only as long as
2692 * there is an unprotected supply
2693 * of reclaimable memory from other cgroups.
2694 */
d6622f63
YX
2695 if (!sc->memcg_low_reclaim) {
2696 sc->memcg_low_skipped = 1;
241994ed 2697 continue;
d6622f63 2698 }
e27be240 2699 memcg_memory_event(memcg, MEMCG_LOW);
bf8d5d52
RG
2700 break;
2701 case MEMCG_PROT_NONE:
2702 break;
241994ed
JW
2703 }
2704
8e8ae645 2705 reclaimed = sc->nr_reclaimed;
cb731d6c 2706 scanned = sc->nr_scanned;
a9dd0a83
MG
2707 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2708 node_lru_pages += lru_pages;
f16015fb 2709
1c30844d
MG
2710 if (sc->may_shrinkslab) {
2711 shrink_slab(sc->gfp_mask, pgdat->node_id,
aeed1d32 2712 memcg, sc->priority);
1c30844d 2713 }
cb731d6c 2714
8e8ae645
JW
2715 /* Record the group's reclaim efficiency */
2716 vmpressure(sc->gfp_mask, memcg, false,
2717 sc->nr_scanned - scanned,
2718 sc->nr_reclaimed - reclaimed);
2719
9b4f98cd 2720 /*
2bb0f34f
YS
2721 * Kswapd have to scan all memory cgroups to fulfill
2722 * the overall scan target for the node.
a394cb8e
MH
2723 *
2724 * Limit reclaim, on the other hand, only cares about
2725 * nr_to_reclaim pages to be reclaimed and it will
2726 * retry with decreasing priority if one round over the
2727 * whole hierarchy is not sufficient.
9b4f98cd 2728 */
2bb0f34f 2729 if (!current_is_kswapd() &&
a394cb8e 2730 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2731 mem_cgroup_iter_break(root, memcg);
2732 break;
2733 }
241994ed 2734 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2735
cb731d6c
VD
2736 if (reclaim_state) {
2737 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2738 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2739 }
2740
8e8ae645
JW
2741 /* Record the subtree's reclaim efficiency */
2742 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2743 sc->nr_scanned - nr_scanned,
2744 sc->nr_reclaimed - nr_reclaimed);
2745
2344d7e4
JW
2746 if (sc->nr_reclaimed - nr_reclaimed)
2747 reclaimable = true;
2748
e3c1ac58
AR
2749 if (current_is_kswapd()) {
2750 /*
2751 * If reclaim is isolating dirty pages under writeback,
2752 * it implies that the long-lived page allocation rate
2753 * is exceeding the page laundering rate. Either the
2754 * global limits are not being effective at throttling
2755 * processes due to the page distribution throughout
2756 * zones or there is heavy usage of a slow backing
2757 * device. The only option is to throttle from reclaim
2758 * context which is not ideal as there is no guarantee
2759 * the dirtying process is throttled in the same way
2760 * balance_dirty_pages() manages.
2761 *
2762 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2763 * count the number of pages under pages flagged for
2764 * immediate reclaim and stall if any are encountered
2765 * in the nr_immediate check below.
2766 */
2767 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2768 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2769
d108c772
AR
2770 /*
2771 * Tag a node as congested if all the dirty pages
2772 * scanned were backed by a congested BDI and
2773 * wait_iff_congested will stall.
2774 */
2775 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2776 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2777
2778 /* Allow kswapd to start writing pages during reclaim.*/
2779 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2780 set_bit(PGDAT_DIRTY, &pgdat->flags);
2781
2782 /*
2783 * If kswapd scans pages marked marked for immediate
2784 * reclaim and under writeback (nr_immediate), it
2785 * implies that pages are cycling through the LRU
2786 * faster than they are written so also forcibly stall.
2787 */
2788 if (sc->nr.immediate)
2789 congestion_wait(BLK_RW_ASYNC, HZ/10);
2790 }
2791
e3c1ac58
AR
2792 /*
2793 * Legacy memcg will stall in page writeback so avoid forcibly
2794 * stalling in wait_iff_congested().
2795 */
2796 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2797 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2798 set_memcg_congestion(pgdat, root, true);
2799
d108c772
AR
2800 /*
2801 * Stall direct reclaim for IO completions if underlying BDIs
2802 * and node is congested. Allow kswapd to continue until it
2803 * starts encountering unqueued dirty pages or cycling through
2804 * the LRU too quickly.
2805 */
2806 if (!sc->hibernation_mode && !current_is_kswapd() &&
e3c1ac58
AR
2807 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2808 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2809
a9dd0a83 2810 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2811 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2812
c73322d0
JW
2813 /*
2814 * Kswapd gives up on balancing particular nodes after too
2815 * many failures to reclaim anything from them and goes to
2816 * sleep. On reclaim progress, reset the failure counter. A
2817 * successful direct reclaim run will revive a dormant kswapd.
2818 */
2819 if (reclaimable)
2820 pgdat->kswapd_failures = 0;
2821
2344d7e4 2822 return reclaimable;
f16015fb
JW
2823}
2824
53853e2d 2825/*
fdd4c614
VB
2826 * Returns true if compaction should go ahead for a costly-order request, or
2827 * the allocation would already succeed without compaction. Return false if we
2828 * should reclaim first.
53853e2d 2829 */
4f588331 2830static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2831{
31483b6a 2832 unsigned long watermark;
fdd4c614 2833 enum compact_result suitable;
fe4b1b24 2834
fdd4c614
VB
2835 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2836 if (suitable == COMPACT_SUCCESS)
2837 /* Allocation should succeed already. Don't reclaim. */
2838 return true;
2839 if (suitable == COMPACT_SKIPPED)
2840 /* Compaction cannot yet proceed. Do reclaim. */
2841 return false;
fe4b1b24 2842
53853e2d 2843 /*
fdd4c614
VB
2844 * Compaction is already possible, but it takes time to run and there
2845 * are potentially other callers using the pages just freed. So proceed
2846 * with reclaim to make a buffer of free pages available to give
2847 * compaction a reasonable chance of completing and allocating the page.
2848 * Note that we won't actually reclaim the whole buffer in one attempt
2849 * as the target watermark in should_continue_reclaim() is lower. But if
2850 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2851 */
fdd4c614 2852 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2853
fdd4c614 2854 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2855}
2856
1da177e4
LT
2857/*
2858 * This is the direct reclaim path, for page-allocating processes. We only
2859 * try to reclaim pages from zones which will satisfy the caller's allocation
2860 * request.
2861 *
1da177e4
LT
2862 * If a zone is deemed to be full of pinned pages then just give it a light
2863 * scan then give up on it.
2864 */
0a0337e0 2865static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2866{
dd1a239f 2867 struct zoneref *z;
54a6eb5c 2868 struct zone *zone;
0608f43d
AM
2869 unsigned long nr_soft_reclaimed;
2870 unsigned long nr_soft_scanned;
619d0d76 2871 gfp_t orig_mask;
79dafcdc 2872 pg_data_t *last_pgdat = NULL;
1cfb419b 2873
cc715d99
MG
2874 /*
2875 * If the number of buffer_heads in the machine exceeds the maximum
2876 * allowed level, force direct reclaim to scan the highmem zone as
2877 * highmem pages could be pinning lowmem pages storing buffer_heads
2878 */
619d0d76 2879 orig_mask = sc->gfp_mask;
b2e18757 2880 if (buffer_heads_over_limit) {
cc715d99 2881 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2882 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2883 }
cc715d99 2884
d4debc66 2885 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2886 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2887 /*
2888 * Take care memory controller reclaiming has small influence
2889 * to global LRU.
2890 */
89b5fae5 2891 if (global_reclaim(sc)) {
344736f2
VD
2892 if (!cpuset_zone_allowed(zone,
2893 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2894 continue;
65ec02cb 2895
0b06496a
JW
2896 /*
2897 * If we already have plenty of memory free for
2898 * compaction in this zone, don't free any more.
2899 * Even though compaction is invoked for any
2900 * non-zero order, only frequent costly order
2901 * reclamation is disruptive enough to become a
2902 * noticeable problem, like transparent huge
2903 * page allocations.
2904 */
2905 if (IS_ENABLED(CONFIG_COMPACTION) &&
2906 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2907 compaction_ready(zone, sc)) {
0b06496a
JW
2908 sc->compaction_ready = true;
2909 continue;
e0887c19 2910 }
0b06496a 2911
79dafcdc
MG
2912 /*
2913 * Shrink each node in the zonelist once. If the
2914 * zonelist is ordered by zone (not the default) then a
2915 * node may be shrunk multiple times but in that case
2916 * the user prefers lower zones being preserved.
2917 */
2918 if (zone->zone_pgdat == last_pgdat)
2919 continue;
2920
0608f43d
AM
2921 /*
2922 * This steals pages from memory cgroups over softlimit
2923 * and returns the number of reclaimed pages and
2924 * scanned pages. This works for global memory pressure
2925 * and balancing, not for a memcg's limit.
2926 */
2927 nr_soft_scanned = 0;
ef8f2327 2928 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2929 sc->order, sc->gfp_mask,
2930 &nr_soft_scanned);
2931 sc->nr_reclaimed += nr_soft_reclaimed;
2932 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2933 /* need some check for avoid more shrink_zone() */
1cfb419b 2934 }
408d8544 2935
79dafcdc
MG
2936 /* See comment about same check for global reclaim above */
2937 if (zone->zone_pgdat == last_pgdat)
2938 continue;
2939 last_pgdat = zone->zone_pgdat;
970a39a3 2940 shrink_node(zone->zone_pgdat, sc);
1da177e4 2941 }
e0c23279 2942
619d0d76
WY
2943 /*
2944 * Restore to original mask to avoid the impact on the caller if we
2945 * promoted it to __GFP_HIGHMEM.
2946 */
2947 sc->gfp_mask = orig_mask;
1da177e4 2948}
4f98a2fe 2949
2a2e4885
JW
2950static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2951{
2952 struct mem_cgroup *memcg;
2953
2954 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2955 do {
2956 unsigned long refaults;
2957 struct lruvec *lruvec;
2958
2a2e4885 2959 lruvec = mem_cgroup_lruvec(pgdat, memcg);
205b20cc 2960 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2a2e4885
JW
2961 lruvec->refaults = refaults;
2962 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2963}
2964
1da177e4
LT
2965/*
2966 * This is the main entry point to direct page reclaim.
2967 *
2968 * If a full scan of the inactive list fails to free enough memory then we
2969 * are "out of memory" and something needs to be killed.
2970 *
2971 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2972 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2973 * caller can't do much about. We kick the writeback threads and take explicit
2974 * naps in the hope that some of these pages can be written. But if the
2975 * allocating task holds filesystem locks which prevent writeout this might not
2976 * work, and the allocation attempt will fail.
a41f24ea
NA
2977 *
2978 * returns: 0, if no pages reclaimed
2979 * else, the number of pages reclaimed
1da177e4 2980 */
dac1d27b 2981static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2982 struct scan_control *sc)
1da177e4 2983{
241994ed 2984 int initial_priority = sc->priority;
2a2e4885
JW
2985 pg_data_t *last_pgdat;
2986 struct zoneref *z;
2987 struct zone *zone;
241994ed 2988retry:
873b4771
KK
2989 delayacct_freepages_start();
2990
89b5fae5 2991 if (global_reclaim(sc))
7cc30fcf 2992 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2993
9e3b2f8c 2994 do {
70ddf637
AV
2995 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2996 sc->priority);
66e1707b 2997 sc->nr_scanned = 0;
0a0337e0 2998 shrink_zones(zonelist, sc);
c6a8a8c5 2999
bb21c7ce 3000 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3001 break;
3002
3003 if (sc->compaction_ready)
3004 break;
1da177e4 3005
0e50ce3b
MK
3006 /*
3007 * If we're getting trouble reclaiming, start doing
3008 * writepage even in laptop mode.
3009 */
3010 if (sc->priority < DEF_PRIORITY - 2)
3011 sc->may_writepage = 1;
0b06496a 3012 } while (--sc->priority >= 0);
bb21c7ce 3013
2a2e4885
JW
3014 last_pgdat = NULL;
3015 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3016 sc->nodemask) {
3017 if (zone->zone_pgdat == last_pgdat)
3018 continue;
3019 last_pgdat = zone->zone_pgdat;
3020 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
e3c1ac58 3021 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2a2e4885
JW
3022 }
3023
873b4771
KK
3024 delayacct_freepages_end();
3025
bb21c7ce
KM
3026 if (sc->nr_reclaimed)
3027 return sc->nr_reclaimed;
3028
0cee34fd 3029 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3030 if (sc->compaction_ready)
7335084d
MG
3031 return 1;
3032
241994ed 3033 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3034 if (sc->memcg_low_skipped) {
241994ed 3035 sc->priority = initial_priority;
d6622f63
YX
3036 sc->memcg_low_reclaim = 1;
3037 sc->memcg_low_skipped = 0;
241994ed
JW
3038 goto retry;
3039 }
3040
bb21c7ce 3041 return 0;
1da177e4
LT
3042}
3043
c73322d0 3044static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3045{
3046 struct zone *zone;
3047 unsigned long pfmemalloc_reserve = 0;
3048 unsigned long free_pages = 0;
3049 int i;
3050 bool wmark_ok;
3051
c73322d0
JW
3052 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3053 return true;
3054
5515061d
MG
3055 for (i = 0; i <= ZONE_NORMAL; i++) {
3056 zone = &pgdat->node_zones[i];
d450abd8
JW
3057 if (!managed_zone(zone))
3058 continue;
3059
3060 if (!zone_reclaimable_pages(zone))
675becce
MG
3061 continue;
3062
5515061d
MG
3063 pfmemalloc_reserve += min_wmark_pages(zone);
3064 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3065 }
3066
675becce
MG
3067 /* If there are no reserves (unexpected config) then do not throttle */
3068 if (!pfmemalloc_reserve)
3069 return true;
3070
5515061d
MG
3071 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3072
3073 /* kswapd must be awake if processes are being throttled */
3074 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 3075 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
3076 (enum zone_type)ZONE_NORMAL);
3077 wake_up_interruptible(&pgdat->kswapd_wait);
3078 }
3079
3080 return wmark_ok;
3081}
3082
3083/*
3084 * Throttle direct reclaimers if backing storage is backed by the network
3085 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3086 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3087 * when the low watermark is reached.
3088 *
3089 * Returns true if a fatal signal was delivered during throttling. If this
3090 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3091 */
50694c28 3092static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3093 nodemask_t *nodemask)
3094{
675becce 3095 struct zoneref *z;
5515061d 3096 struct zone *zone;
675becce 3097 pg_data_t *pgdat = NULL;
5515061d
MG
3098
3099 /*
3100 * Kernel threads should not be throttled as they may be indirectly
3101 * responsible for cleaning pages necessary for reclaim to make forward
3102 * progress. kjournald for example may enter direct reclaim while
3103 * committing a transaction where throttling it could forcing other
3104 * processes to block on log_wait_commit().
3105 */
3106 if (current->flags & PF_KTHREAD)
50694c28
MG
3107 goto out;
3108
3109 /*
3110 * If a fatal signal is pending, this process should not throttle.
3111 * It should return quickly so it can exit and free its memory
3112 */
3113 if (fatal_signal_pending(current))
3114 goto out;
5515061d 3115
675becce
MG
3116 /*
3117 * Check if the pfmemalloc reserves are ok by finding the first node
3118 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3119 * GFP_KERNEL will be required for allocating network buffers when
3120 * swapping over the network so ZONE_HIGHMEM is unusable.
3121 *
3122 * Throttling is based on the first usable node and throttled processes
3123 * wait on a queue until kswapd makes progress and wakes them. There
3124 * is an affinity then between processes waking up and where reclaim
3125 * progress has been made assuming the process wakes on the same node.
3126 * More importantly, processes running on remote nodes will not compete
3127 * for remote pfmemalloc reserves and processes on different nodes
3128 * should make reasonable progress.
3129 */
3130 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3131 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3132 if (zone_idx(zone) > ZONE_NORMAL)
3133 continue;
3134
3135 /* Throttle based on the first usable node */
3136 pgdat = zone->zone_pgdat;
c73322d0 3137 if (allow_direct_reclaim(pgdat))
675becce
MG
3138 goto out;
3139 break;
3140 }
3141
3142 /* If no zone was usable by the allocation flags then do not throttle */
3143 if (!pgdat)
50694c28 3144 goto out;
5515061d 3145
68243e76
MG
3146 /* Account for the throttling */
3147 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3148
5515061d
MG
3149 /*
3150 * If the caller cannot enter the filesystem, it's possible that it
3151 * is due to the caller holding an FS lock or performing a journal
3152 * transaction in the case of a filesystem like ext[3|4]. In this case,
3153 * it is not safe to block on pfmemalloc_wait as kswapd could be
3154 * blocked waiting on the same lock. Instead, throttle for up to a
3155 * second before continuing.
3156 */
3157 if (!(gfp_mask & __GFP_FS)) {
3158 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3159 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3160
3161 goto check_pending;
5515061d
MG
3162 }
3163
3164 /* Throttle until kswapd wakes the process */
3165 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3166 allow_direct_reclaim(pgdat));
50694c28
MG
3167
3168check_pending:
3169 if (fatal_signal_pending(current))
3170 return true;
3171
3172out:
3173 return false;
5515061d
MG
3174}
3175
dac1d27b 3176unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3177 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3178{
33906bc5 3179 unsigned long nr_reclaimed;
66e1707b 3180 struct scan_control sc = {
ee814fe2 3181 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3182 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3183 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3184 .order = order,
3185 .nodemask = nodemask,
3186 .priority = DEF_PRIORITY,
66e1707b 3187 .may_writepage = !laptop_mode,
a6dc60f8 3188 .may_unmap = 1,
2e2e4259 3189 .may_swap = 1,
1c30844d 3190 .may_shrinkslab = 1,
66e1707b
BS
3191 };
3192
bb451fdf
GT
3193 /*
3194 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3195 * Confirm they are large enough for max values.
3196 */
3197 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3198 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3199 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3200
5515061d 3201 /*
50694c28
MG
3202 * Do not enter reclaim if fatal signal was delivered while throttled.
3203 * 1 is returned so that the page allocator does not OOM kill at this
3204 * point.
5515061d 3205 */
f2f43e56 3206 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3207 return 1;
3208
1732d2b0 3209 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3210 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3211
3115cd91 3212 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3213
3214 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3215 set_task_reclaim_state(current, NULL);
33906bc5
MG
3216
3217 return nr_reclaimed;
66e1707b
BS
3218}
3219
c255a458 3220#ifdef CONFIG_MEMCG
66e1707b 3221
a9dd0a83 3222unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3223 gfp_t gfp_mask, bool noswap,
ef8f2327 3224 pg_data_t *pgdat,
0ae5e89c 3225 unsigned long *nr_scanned)
4e416953
BS
3226{
3227 struct scan_control sc = {
b8f5c566 3228 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3229 .target_mem_cgroup = memcg,
4e416953
BS
3230 .may_writepage = !laptop_mode,
3231 .may_unmap = 1,
b2e18757 3232 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3233 .may_swap = !noswap,
1c30844d 3234 .may_shrinkslab = 1,
4e416953 3235 };
6b4f7799 3236 unsigned long lru_pages;
0ae5e89c 3237
1732d2b0 3238 set_task_reclaim_state(current, &sc.reclaim_state);
4e416953
BS
3239 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3240 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3241
9e3b2f8c 3242 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3243 sc.gfp_mask);
bdce6d9e 3244
4e416953
BS
3245 /*
3246 * NOTE: Although we can get the priority field, using it
3247 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3248 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3249 * will pick up pages from other mem cgroup's as well. We hack
3250 * the priority and make it zero.
3251 */
ef8f2327 3252 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3253
3254 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3255
1732d2b0 3256 set_task_reclaim_state(current, NULL);
0ae5e89c 3257 *nr_scanned = sc.nr_scanned;
0308f7cf 3258
4e416953
BS
3259 return sc.nr_reclaimed;
3260}
3261
72835c86 3262unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3263 unsigned long nr_pages,
a7885eb8 3264 gfp_t gfp_mask,
b70a2a21 3265 bool may_swap)
66e1707b 3266{
4e416953 3267 struct zonelist *zonelist;
bdce6d9e 3268 unsigned long nr_reclaimed;
eb414681 3269 unsigned long pflags;
889976db 3270 int nid;
499118e9 3271 unsigned int noreclaim_flag;
66e1707b 3272 struct scan_control sc = {
b70a2a21 3273 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3274 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3275 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3276 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3277 .target_mem_cgroup = memcg,
3278 .priority = DEF_PRIORITY,
3279 .may_writepage = !laptop_mode,
3280 .may_unmap = 1,
b70a2a21 3281 .may_swap = may_swap,
1c30844d 3282 .may_shrinkslab = 1,
a09ed5e0 3283 };
66e1707b 3284
1732d2b0 3285 set_task_reclaim_state(current, &sc.reclaim_state);
889976db
YH
3286 /*
3287 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3288 * take care of from where we get pages. So the node where we start the
3289 * scan does not need to be the current node.
3290 */
72835c86 3291 nid = mem_cgroup_select_victim_node(memcg);
889976db 3292
c9634cf0 3293 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e 3294
3481c37f 3295 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
bdce6d9e 3296
eb414681 3297 psi_memstall_enter(&pflags);
499118e9 3298 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3299
3115cd91 3300 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3301
499118e9 3302 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3303 psi_memstall_leave(&pflags);
bdce6d9e
KM
3304
3305 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3306 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3307
3308 return nr_reclaimed;
66e1707b
BS
3309}
3310#endif
3311
1d82de61 3312static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3313 struct scan_control *sc)
f16015fb 3314{
b95a2f2d 3315 struct mem_cgroup *memcg;
f16015fb 3316
b95a2f2d
JW
3317 if (!total_swap_pages)
3318 return;
3319
3320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3321 do {
ef8f2327 3322 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3323
3b991208 3324 if (inactive_list_is_low(lruvec, false, sc, true))
1a93be0e 3325 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3326 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3327
3328 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3329 } while (memcg);
f16015fb
JW
3330}
3331
1c30844d
MG
3332static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3333{
3334 int i;
3335 struct zone *zone;
3336
3337 /*
3338 * Check for watermark boosts top-down as the higher zones
3339 * are more likely to be boosted. Both watermarks and boosts
3340 * should not be checked at the time time as reclaim would
3341 * start prematurely when there is no boosting and a lower
3342 * zone is balanced.
3343 */
3344 for (i = classzone_idx; i >= 0; i--) {
3345 zone = pgdat->node_zones + i;
3346 if (!managed_zone(zone))
3347 continue;
3348
3349 if (zone->watermark_boost)
3350 return true;
3351 }
3352
3353 return false;
3354}
3355
e716f2eb
MG
3356/*
3357 * Returns true if there is an eligible zone balanced for the request order
3358 * and classzone_idx
3359 */
3360static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3361{
e716f2eb
MG
3362 int i;
3363 unsigned long mark = -1;
3364 struct zone *zone;
60cefed4 3365
1c30844d
MG
3366 /*
3367 * Check watermarks bottom-up as lower zones are more likely to
3368 * meet watermarks.
3369 */
e716f2eb
MG
3370 for (i = 0; i <= classzone_idx; i++) {
3371 zone = pgdat->node_zones + i;
6256c6b4 3372
e716f2eb
MG
3373 if (!managed_zone(zone))
3374 continue;
3375
3376 mark = high_wmark_pages(zone);
3377 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3378 return true;
3379 }
3380
3381 /*
3382 * If a node has no populated zone within classzone_idx, it does not
3383 * need balancing by definition. This can happen if a zone-restricted
3384 * allocation tries to wake a remote kswapd.
3385 */
3386 if (mark == -1)
3387 return true;
3388
3389 return false;
60cefed4
JW
3390}
3391
631b6e08
MG
3392/* Clear pgdat state for congested, dirty or under writeback. */
3393static void clear_pgdat_congested(pg_data_t *pgdat)
3394{
3395 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3396 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3397 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3398}
3399
5515061d
MG
3400/*
3401 * Prepare kswapd for sleeping. This verifies that there are no processes
3402 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3403 *
3404 * Returns true if kswapd is ready to sleep
3405 */
d9f21d42 3406static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3407{
5515061d 3408 /*
9e5e3661 3409 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3410 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3411 * race between when kswapd checks the watermarks and a process gets
3412 * throttled. There is also a potential race if processes get
3413 * throttled, kswapd wakes, a large process exits thereby balancing the
3414 * zones, which causes kswapd to exit balance_pgdat() before reaching
3415 * the wake up checks. If kswapd is going to sleep, no process should
3416 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3417 * the wake up is premature, processes will wake kswapd and get
3418 * throttled again. The difference from wake ups in balance_pgdat() is
3419 * that here we are under prepare_to_wait().
5515061d 3420 */
9e5e3661
VB
3421 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3422 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3423
c73322d0
JW
3424 /* Hopeless node, leave it to direct reclaim */
3425 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3426 return true;
3427
e716f2eb
MG
3428 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3429 clear_pgdat_congested(pgdat);
3430 return true;
1d82de61
MG
3431 }
3432
333b0a45 3433 return false;
f50de2d3
MG
3434}
3435
75485363 3436/*
1d82de61
MG
3437 * kswapd shrinks a node of pages that are at or below the highest usable
3438 * zone that is currently unbalanced.
b8e83b94
MG
3439 *
3440 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3441 * reclaim or if the lack of progress was due to pages under writeback.
3442 * This is used to determine if the scanning priority needs to be raised.
75485363 3443 */
1d82de61 3444static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3445 struct scan_control *sc)
75485363 3446{
1d82de61
MG
3447 struct zone *zone;
3448 int z;
75485363 3449
1d82de61
MG
3450 /* Reclaim a number of pages proportional to the number of zones */
3451 sc->nr_to_reclaim = 0;
970a39a3 3452 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3453 zone = pgdat->node_zones + z;
6aa303de 3454 if (!managed_zone(zone))
1d82de61 3455 continue;
7c954f6d 3456
1d82de61
MG
3457 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3458 }
7c954f6d
MG
3459
3460 /*
1d82de61
MG
3461 * Historically care was taken to put equal pressure on all zones but
3462 * now pressure is applied based on node LRU order.
7c954f6d 3463 */
970a39a3 3464 shrink_node(pgdat, sc);
283aba9f 3465
7c954f6d 3466 /*
1d82de61
MG
3467 * Fragmentation may mean that the system cannot be rebalanced for
3468 * high-order allocations. If twice the allocation size has been
3469 * reclaimed then recheck watermarks only at order-0 to prevent
3470 * excessive reclaim. Assume that a process requested a high-order
3471 * can direct reclaim/compact.
7c954f6d 3472 */
9861a62c 3473 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3474 sc->order = 0;
7c954f6d 3475
b8e83b94 3476 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3477}
3478
1da177e4 3479/*
1d82de61
MG
3480 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3481 * that are eligible for use by the caller until at least one zone is
3482 * balanced.
1da177e4 3483 *
1d82de61 3484 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3485 *
3486 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3487 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3488 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3489 * or lower is eligible for reclaim until at least one usable zone is
3490 * balanced.
1da177e4 3491 */
accf6242 3492static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3493{
1da177e4 3494 int i;
0608f43d
AM
3495 unsigned long nr_soft_reclaimed;
3496 unsigned long nr_soft_scanned;
eb414681 3497 unsigned long pflags;
1c30844d
MG
3498 unsigned long nr_boost_reclaim;
3499 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3500 bool boosted;
1d82de61 3501 struct zone *zone;
179e9639
AM
3502 struct scan_control sc = {
3503 .gfp_mask = GFP_KERNEL,
ee814fe2 3504 .order = order,
a6dc60f8 3505 .may_unmap = 1,
179e9639 3506 };
93781325 3507
1732d2b0 3508 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 3509 psi_memstall_enter(&pflags);
93781325
OS
3510 __fs_reclaim_acquire();
3511
f8891e5e 3512 count_vm_event(PAGEOUTRUN);
1da177e4 3513
1c30844d
MG
3514 /*
3515 * Account for the reclaim boost. Note that the zone boost is left in
3516 * place so that parallel allocations that are near the watermark will
3517 * stall or direct reclaim until kswapd is finished.
3518 */
3519 nr_boost_reclaim = 0;
3520 for (i = 0; i <= classzone_idx; i++) {
3521 zone = pgdat->node_zones + i;
3522 if (!managed_zone(zone))
3523 continue;
3524
3525 nr_boost_reclaim += zone->watermark_boost;
3526 zone_boosts[i] = zone->watermark_boost;
3527 }
3528 boosted = nr_boost_reclaim;
3529
3530restart:
3531 sc.priority = DEF_PRIORITY;
9e3b2f8c 3532 do {
c73322d0 3533 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3534 bool raise_priority = true;
1c30844d 3535 bool balanced;
93781325 3536 bool ret;
b8e83b94 3537
84c7a777 3538 sc.reclaim_idx = classzone_idx;
1da177e4 3539
86c79f6b 3540 /*
84c7a777
MG
3541 * If the number of buffer_heads exceeds the maximum allowed
3542 * then consider reclaiming from all zones. This has a dual
3543 * purpose -- on 64-bit systems it is expected that
3544 * buffer_heads are stripped during active rotation. On 32-bit
3545 * systems, highmem pages can pin lowmem memory and shrinking
3546 * buffers can relieve lowmem pressure. Reclaim may still not
3547 * go ahead if all eligible zones for the original allocation
3548 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3549 */
3550 if (buffer_heads_over_limit) {
3551 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3552 zone = pgdat->node_zones + i;
6aa303de 3553 if (!managed_zone(zone))
86c79f6b 3554 continue;
cc715d99 3555
970a39a3 3556 sc.reclaim_idx = i;
e1dbeda6 3557 break;
1da177e4 3558 }
1da177e4 3559 }
dafcb73e 3560
86c79f6b 3561 /*
1c30844d
MG
3562 * If the pgdat is imbalanced then ignore boosting and preserve
3563 * the watermarks for a later time and restart. Note that the
3564 * zone watermarks will be still reset at the end of balancing
3565 * on the grounds that the normal reclaim should be enough to
3566 * re-evaluate if boosting is required when kswapd next wakes.
3567 */
3568 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3569 if (!balanced && nr_boost_reclaim) {
3570 nr_boost_reclaim = 0;
3571 goto restart;
3572 }
3573
3574 /*
3575 * If boosting is not active then only reclaim if there are no
3576 * eligible zones. Note that sc.reclaim_idx is not used as
3577 * buffer_heads_over_limit may have adjusted it.
86c79f6b 3578 */
1c30844d 3579 if (!nr_boost_reclaim && balanced)
e716f2eb 3580 goto out;
e1dbeda6 3581
1c30844d
MG
3582 /* Limit the priority of boosting to avoid reclaim writeback */
3583 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3584 raise_priority = false;
3585
3586 /*
3587 * Do not writeback or swap pages for boosted reclaim. The
3588 * intent is to relieve pressure not issue sub-optimal IO
3589 * from reclaim context. If no pages are reclaimed, the
3590 * reclaim will be aborted.
3591 */
3592 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3593 sc.may_swap = !nr_boost_reclaim;
3594 sc.may_shrinkslab = !nr_boost_reclaim;
3595
1d82de61
MG
3596 /*
3597 * Do some background aging of the anon list, to give
3598 * pages a chance to be referenced before reclaiming. All
3599 * pages are rotated regardless of classzone as this is
3600 * about consistent aging.
3601 */
ef8f2327 3602 age_active_anon(pgdat, &sc);
1d82de61 3603
b7ea3c41
MG
3604 /*
3605 * If we're getting trouble reclaiming, start doing writepage
3606 * even in laptop mode.
3607 */
047d72c3 3608 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3609 sc.may_writepage = 1;
3610
1d82de61
MG
3611 /* Call soft limit reclaim before calling shrink_node. */
3612 sc.nr_scanned = 0;
3613 nr_soft_scanned = 0;
ef8f2327 3614 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3615 sc.gfp_mask, &nr_soft_scanned);
3616 sc.nr_reclaimed += nr_soft_reclaimed;
3617
1da177e4 3618 /*
1d82de61
MG
3619 * There should be no need to raise the scanning priority if
3620 * enough pages are already being scanned that that high
3621 * watermark would be met at 100% efficiency.
1da177e4 3622 */
970a39a3 3623 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3624 raise_priority = false;
5515061d
MG
3625
3626 /*
3627 * If the low watermark is met there is no need for processes
3628 * to be throttled on pfmemalloc_wait as they should not be
3629 * able to safely make forward progress. Wake them
3630 */
3631 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3632 allow_direct_reclaim(pgdat))
cfc51155 3633 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3634
b8e83b94 3635 /* Check if kswapd should be suspending */
93781325
OS
3636 __fs_reclaim_release();
3637 ret = try_to_freeze();
3638 __fs_reclaim_acquire();
3639 if (ret || kthread_should_stop())
b8e83b94 3640 break;
8357376d 3641
73ce02e9 3642 /*
b8e83b94
MG
3643 * Raise priority if scanning rate is too low or there was no
3644 * progress in reclaiming pages
73ce02e9 3645 */
c73322d0 3646 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
3647 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3648
3649 /*
3650 * If reclaim made no progress for a boost, stop reclaim as
3651 * IO cannot be queued and it could be an infinite loop in
3652 * extreme circumstances.
3653 */
3654 if (nr_boost_reclaim && !nr_reclaimed)
3655 break;
3656
c73322d0 3657 if (raise_priority || !nr_reclaimed)
b8e83b94 3658 sc.priority--;
1d82de61 3659 } while (sc.priority >= 1);
1da177e4 3660
c73322d0
JW
3661 if (!sc.nr_reclaimed)
3662 pgdat->kswapd_failures++;
3663
b8e83b94 3664out:
1c30844d
MG
3665 /* If reclaim was boosted, account for the reclaim done in this pass */
3666 if (boosted) {
3667 unsigned long flags;
3668
3669 for (i = 0; i <= classzone_idx; i++) {
3670 if (!zone_boosts[i])
3671 continue;
3672
3673 /* Increments are under the zone lock */
3674 zone = pgdat->node_zones + i;
3675 spin_lock_irqsave(&zone->lock, flags);
3676 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3677 spin_unlock_irqrestore(&zone->lock, flags);
3678 }
3679
3680 /*
3681 * As there is now likely space, wakeup kcompact to defragment
3682 * pageblocks.
3683 */
3684 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3685 }
3686
2a2e4885 3687 snapshot_refaults(NULL, pgdat);
93781325 3688 __fs_reclaim_release();
eb414681 3689 psi_memstall_leave(&pflags);
1732d2b0 3690 set_task_reclaim_state(current, NULL);
e5ca8071 3691
0abdee2b 3692 /*
1d82de61
MG
3693 * Return the order kswapd stopped reclaiming at as
3694 * prepare_kswapd_sleep() takes it into account. If another caller
3695 * entered the allocator slow path while kswapd was awake, order will
3696 * remain at the higher level.
0abdee2b 3697 */
1d82de61 3698 return sc.order;
1da177e4
LT
3699}
3700
e716f2eb 3701/*
dffcac2c
SB
3702 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3703 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3704 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3705 * after previous reclaim attempt (node is still unbalanced). In that case
3706 * return the zone index of the previous kswapd reclaim cycle.
e716f2eb
MG
3707 */
3708static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
dffcac2c 3709 enum zone_type prev_classzone_idx)
e716f2eb
MG
3710{
3711 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
dffcac2c
SB
3712 return prev_classzone_idx;
3713 return pgdat->kswapd_classzone_idx;
e716f2eb
MG
3714}
3715
38087d9b
MG
3716static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3717 unsigned int classzone_idx)
f0bc0a60
KM
3718{
3719 long remaining = 0;
3720 DEFINE_WAIT(wait);
3721
3722 if (freezing(current) || kthread_should_stop())
3723 return;
3724
3725 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3726
333b0a45
SG
3727 /*
3728 * Try to sleep for a short interval. Note that kcompactd will only be
3729 * woken if it is possible to sleep for a short interval. This is
3730 * deliberate on the assumption that if reclaim cannot keep an
3731 * eligible zone balanced that it's also unlikely that compaction will
3732 * succeed.
3733 */
d9f21d42 3734 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3735 /*
3736 * Compaction records what page blocks it recently failed to
3737 * isolate pages from and skips them in the future scanning.
3738 * When kswapd is going to sleep, it is reasonable to assume
3739 * that pages and compaction may succeed so reset the cache.
3740 */
3741 reset_isolation_suitable(pgdat);
3742
3743 /*
3744 * We have freed the memory, now we should compact it to make
3745 * allocation of the requested order possible.
3746 */
38087d9b 3747 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3748
f0bc0a60 3749 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3750
3751 /*
3752 * If woken prematurely then reset kswapd_classzone_idx and
3753 * order. The values will either be from a wakeup request or
3754 * the previous request that slept prematurely.
3755 */
3756 if (remaining) {
e716f2eb 3757 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3758 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3759 }
3760
f0bc0a60
KM
3761 finish_wait(&pgdat->kswapd_wait, &wait);
3762 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3763 }
3764
3765 /*
3766 * After a short sleep, check if it was a premature sleep. If not, then
3767 * go fully to sleep until explicitly woken up.
3768 */
d9f21d42
MG
3769 if (!remaining &&
3770 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3771 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3772
3773 /*
3774 * vmstat counters are not perfectly accurate and the estimated
3775 * value for counters such as NR_FREE_PAGES can deviate from the
3776 * true value by nr_online_cpus * threshold. To avoid the zone
3777 * watermarks being breached while under pressure, we reduce the
3778 * per-cpu vmstat threshold while kswapd is awake and restore
3779 * them before going back to sleep.
3780 */
3781 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3782
3783 if (!kthread_should_stop())
3784 schedule();
3785
f0bc0a60
KM
3786 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3787 } else {
3788 if (remaining)
3789 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3790 else
3791 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3792 }
3793 finish_wait(&pgdat->kswapd_wait, &wait);
3794}
3795
1da177e4
LT
3796/*
3797 * The background pageout daemon, started as a kernel thread
4f98a2fe 3798 * from the init process.
1da177e4
LT
3799 *
3800 * This basically trickles out pages so that we have _some_
3801 * free memory available even if there is no other activity
3802 * that frees anything up. This is needed for things like routing
3803 * etc, where we otherwise might have all activity going on in
3804 * asynchronous contexts that cannot page things out.
3805 *
3806 * If there are applications that are active memory-allocators
3807 * (most normal use), this basically shouldn't matter.
3808 */
3809static int kswapd(void *p)
3810{
e716f2eb
MG
3811 unsigned int alloc_order, reclaim_order;
3812 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3813 pg_data_t *pgdat = (pg_data_t*)p;
3814 struct task_struct *tsk = current;
a70f7302 3815 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3816
174596a0 3817 if (!cpumask_empty(cpumask))
c5f59f08 3818 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3819
3820 /*
3821 * Tell the memory management that we're a "memory allocator",
3822 * and that if we need more memory we should get access to it
3823 * regardless (see "__alloc_pages()"). "kswapd" should
3824 * never get caught in the normal page freeing logic.
3825 *
3826 * (Kswapd normally doesn't need memory anyway, but sometimes
3827 * you need a small amount of memory in order to be able to
3828 * page out something else, and this flag essentially protects
3829 * us from recursively trying to free more memory as we're
3830 * trying to free the first piece of memory in the first place).
3831 */
930d9152 3832 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3833 set_freezable();
1da177e4 3834
e716f2eb
MG
3835 pgdat->kswapd_order = 0;
3836 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3837 for ( ; ; ) {
6f6313d4 3838 bool ret;
3e1d1d28 3839
e716f2eb
MG
3840 alloc_order = reclaim_order = pgdat->kswapd_order;
3841 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3842
38087d9b
MG
3843kswapd_try_sleep:
3844 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3845 classzone_idx);
215ddd66 3846
38087d9b
MG
3847 /* Read the new order and classzone_idx */
3848 alloc_order = reclaim_order = pgdat->kswapd_order;
dffcac2c 3849 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b 3850 pgdat->kswapd_order = 0;
e716f2eb 3851 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3852
8fe23e05
DR
3853 ret = try_to_freeze();
3854 if (kthread_should_stop())
3855 break;
3856
3857 /*
3858 * We can speed up thawing tasks if we don't call balance_pgdat
3859 * after returning from the refrigerator
3860 */
38087d9b
MG
3861 if (ret)
3862 continue;
3863
3864 /*
3865 * Reclaim begins at the requested order but if a high-order
3866 * reclaim fails then kswapd falls back to reclaiming for
3867 * order-0. If that happens, kswapd will consider sleeping
3868 * for the order it finished reclaiming at (reclaim_order)
3869 * but kcompactd is woken to compact for the original
3870 * request (alloc_order).
3871 */
e5146b12
MG
3872 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3873 alloc_order);
38087d9b
MG
3874 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3875 if (reclaim_order < alloc_order)
3876 goto kswapd_try_sleep;
1da177e4 3877 }
b0a8cc58 3878
71abdc15 3879 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 3880
1da177e4
LT
3881 return 0;
3882}
3883
3884/*
5ecd9d40
DR
3885 * A zone is low on free memory or too fragmented for high-order memory. If
3886 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3887 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3888 * has failed or is not needed, still wake up kcompactd if only compaction is
3889 * needed.
1da177e4 3890 */
5ecd9d40
DR
3891void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3892 enum zone_type classzone_idx)
1da177e4
LT
3893{
3894 pg_data_t *pgdat;
3895
6aa303de 3896 if (!managed_zone(zone))
1da177e4
LT
3897 return;
3898
5ecd9d40 3899 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3900 return;
88f5acf8 3901 pgdat = zone->zone_pgdat;
dffcac2c
SB
3902
3903 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3904 pgdat->kswapd_classzone_idx = classzone_idx;
3905 else
3906 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3907 classzone_idx);
38087d9b 3908 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3909 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3910 return;
e1a55637 3911
5ecd9d40
DR
3912 /* Hopeless node, leave it to direct reclaim if possible */
3913 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
1c30844d
MG
3914 (pgdat_balanced(pgdat, order, classzone_idx) &&
3915 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
5ecd9d40
DR
3916 /*
3917 * There may be plenty of free memory available, but it's too
3918 * fragmented for high-order allocations. Wake up kcompactd
3919 * and rely on compaction_suitable() to determine if it's
3920 * needed. If it fails, it will defer subsequent attempts to
3921 * ratelimit its work.
3922 */
3923 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3924 wakeup_kcompactd(pgdat, order, classzone_idx);
e716f2eb 3925 return;
5ecd9d40 3926 }
88f5acf8 3927
5ecd9d40
DR
3928 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3929 gfp_flags);
8d0986e2 3930 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3931}
3932
c6f37f12 3933#ifdef CONFIG_HIBERNATION
1da177e4 3934/*
7b51755c 3935 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3936 * freed pages.
3937 *
3938 * Rather than trying to age LRUs the aim is to preserve the overall
3939 * LRU order by reclaiming preferentially
3940 * inactive > active > active referenced > active mapped
1da177e4 3941 */
7b51755c 3942unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3943{
d6277db4 3944 struct scan_control sc = {
ee814fe2 3945 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3946 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3947 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3948 .priority = DEF_PRIORITY,
d6277db4 3949 .may_writepage = 1,
ee814fe2
JW
3950 .may_unmap = 1,
3951 .may_swap = 1,
7b51755c 3952 .hibernation_mode = 1,
1da177e4 3953 };
a09ed5e0 3954 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 3955 unsigned long nr_reclaimed;
499118e9 3956 unsigned int noreclaim_flag;
1da177e4 3957
d92a8cfc 3958 fs_reclaim_acquire(sc.gfp_mask);
93781325 3959 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 3960 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 3961
3115cd91 3962 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3963
1732d2b0 3964 set_task_reclaim_state(current, NULL);
499118e9 3965 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3966 fs_reclaim_release(sc.gfp_mask);
d6277db4 3967
7b51755c 3968 return nr_reclaimed;
1da177e4 3969}
c6f37f12 3970#endif /* CONFIG_HIBERNATION */
1da177e4 3971
1da177e4
LT
3972/* It's optimal to keep kswapds on the same CPUs as their memory, but
3973 not required for correctness. So if the last cpu in a node goes
3974 away, we get changed to run anywhere: as the first one comes back,
3975 restore their cpu bindings. */
517bbed9 3976static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3977{
58c0a4a7 3978 int nid;
1da177e4 3979
517bbed9
SAS
3980 for_each_node_state(nid, N_MEMORY) {
3981 pg_data_t *pgdat = NODE_DATA(nid);
3982 const struct cpumask *mask;
a70f7302 3983
517bbed9 3984 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3985
517bbed9
SAS
3986 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3987 /* One of our CPUs online: restore mask */
3988 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3989 }
517bbed9 3990 return 0;
1da177e4 3991}
1da177e4 3992
3218ae14
YG
3993/*
3994 * This kswapd start function will be called by init and node-hot-add.
3995 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3996 */
3997int kswapd_run(int nid)
3998{
3999 pg_data_t *pgdat = NODE_DATA(nid);
4000 int ret = 0;
4001
4002 if (pgdat->kswapd)
4003 return 0;
4004
4005 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4006 if (IS_ERR(pgdat->kswapd)) {
4007 /* failure at boot is fatal */
c6202adf 4008 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
4009 pr_err("Failed to start kswapd on node %d\n", nid);
4010 ret = PTR_ERR(pgdat->kswapd);
d72515b8 4011 pgdat->kswapd = NULL;
3218ae14
YG
4012 }
4013 return ret;
4014}
4015
8fe23e05 4016/*
d8adde17 4017 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4018 * hold mem_hotplug_begin/end().
8fe23e05
DR
4019 */
4020void kswapd_stop(int nid)
4021{
4022 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4023
d8adde17 4024 if (kswapd) {
8fe23e05 4025 kthread_stop(kswapd);
d8adde17
JL
4026 NODE_DATA(nid)->kswapd = NULL;
4027 }
8fe23e05
DR
4028}
4029
1da177e4
LT
4030static int __init kswapd_init(void)
4031{
517bbed9 4032 int nid, ret;
69e05944 4033
1da177e4 4034 swap_setup();
48fb2e24 4035 for_each_node_state(nid, N_MEMORY)
3218ae14 4036 kswapd_run(nid);
517bbed9
SAS
4037 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4038 "mm/vmscan:online", kswapd_cpu_online,
4039 NULL);
4040 WARN_ON(ret < 0);
1da177e4
LT
4041 return 0;
4042}
4043
4044module_init(kswapd_init)
9eeff239
CL
4045
4046#ifdef CONFIG_NUMA
4047/*
a5f5f91d 4048 * Node reclaim mode
9eeff239 4049 *
a5f5f91d 4050 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4051 * the watermarks.
9eeff239 4052 */
a5f5f91d 4053int node_reclaim_mode __read_mostly;
9eeff239 4054
1b2ffb78 4055#define RECLAIM_OFF 0
7d03431c 4056#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 4057#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 4058#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 4059
a92f7126 4060/*
a5f5f91d 4061 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4062 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4063 * a zone.
4064 */
a5f5f91d 4065#define NODE_RECLAIM_PRIORITY 4
a92f7126 4066
9614634f 4067/*
a5f5f91d 4068 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4069 * occur.
4070 */
4071int sysctl_min_unmapped_ratio = 1;
4072
0ff38490
CL
4073/*
4074 * If the number of slab pages in a zone grows beyond this percentage then
4075 * slab reclaim needs to occur.
4076 */
4077int sysctl_min_slab_ratio = 5;
4078
11fb9989 4079static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4080{
11fb9989
MG
4081 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4082 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4083 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4084
4085 /*
4086 * It's possible for there to be more file mapped pages than
4087 * accounted for by the pages on the file LRU lists because
4088 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4089 */
4090 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4091}
4092
4093/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4094static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4095{
d031a157
AM
4096 unsigned long nr_pagecache_reclaimable;
4097 unsigned long delta = 0;
90afa5de
MG
4098
4099 /*
95bbc0c7 4100 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4101 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4102 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4103 * a better estimate
4104 */
a5f5f91d
MG
4105 if (node_reclaim_mode & RECLAIM_UNMAP)
4106 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4107 else
a5f5f91d 4108 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4109
4110 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4111 if (!(node_reclaim_mode & RECLAIM_WRITE))
4112 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4113
4114 /* Watch for any possible underflows due to delta */
4115 if (unlikely(delta > nr_pagecache_reclaimable))
4116 delta = nr_pagecache_reclaimable;
4117
4118 return nr_pagecache_reclaimable - delta;
4119}
4120
9eeff239 4121/*
a5f5f91d 4122 * Try to free up some pages from this node through reclaim.
9eeff239 4123 */
a5f5f91d 4124static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4125{
7fb2d46d 4126 /* Minimum pages needed in order to stay on node */
69e05944 4127 const unsigned long nr_pages = 1 << order;
9eeff239 4128 struct task_struct *p = current;
499118e9 4129 unsigned int noreclaim_flag;
179e9639 4130 struct scan_control sc = {
62b726c1 4131 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4132 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4133 .order = order,
a5f5f91d
MG
4134 .priority = NODE_RECLAIM_PRIORITY,
4135 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4136 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4137 .may_swap = 1,
f2f43e56 4138 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4139 };
9eeff239 4140
132bb8cf
YS
4141 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4142 sc.gfp_mask);
4143
9eeff239 4144 cond_resched();
93781325 4145 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4146 /*
95bbc0c7 4147 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4148 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4149 * and RECLAIM_UNMAP.
d4f7796e 4150 */
499118e9
VB
4151 noreclaim_flag = memalloc_noreclaim_save();
4152 p->flags |= PF_SWAPWRITE;
1732d2b0 4153 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4154
a5f5f91d 4155 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4156 /*
894befec 4157 * Free memory by calling shrink node with increasing
0ff38490
CL
4158 * priorities until we have enough memory freed.
4159 */
0ff38490 4160 do {
970a39a3 4161 shrink_node(pgdat, &sc);
9e3b2f8c 4162 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4163 }
c84db23c 4164
1732d2b0 4165 set_task_reclaim_state(p, NULL);
499118e9
VB
4166 current->flags &= ~PF_SWAPWRITE;
4167 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4168 fs_reclaim_release(sc.gfp_mask);
132bb8cf
YS
4169
4170 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4171
a79311c1 4172 return sc.nr_reclaimed >= nr_pages;
9eeff239 4173}
179e9639 4174
a5f5f91d 4175int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4176{
d773ed6b 4177 int ret;
179e9639
AM
4178
4179 /*
a5f5f91d 4180 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4181 * slab pages if we are over the defined limits.
34aa1330 4182 *
9614634f
CL
4183 * A small portion of unmapped file backed pages is needed for
4184 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4185 * thrown out if the node is overallocated. So we do not reclaim
4186 * if less than a specified percentage of the node is used by
9614634f 4187 * unmapped file backed pages.
179e9639 4188 */
a5f5f91d 4189 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 4190 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 4191 return NODE_RECLAIM_FULL;
179e9639
AM
4192
4193 /*
d773ed6b 4194 * Do not scan if the allocation should not be delayed.
179e9639 4195 */
d0164adc 4196 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4197 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4198
4199 /*
a5f5f91d 4200 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4201 * have associated processors. This will favor the local processor
4202 * over remote processors and spread off node memory allocations
4203 * as wide as possible.
4204 */
a5f5f91d
MG
4205 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4206 return NODE_RECLAIM_NOSCAN;
d773ed6b 4207
a5f5f91d
MG
4208 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4209 return NODE_RECLAIM_NOSCAN;
fa5e084e 4210
a5f5f91d
MG
4211 ret = __node_reclaim(pgdat, gfp_mask, order);
4212 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4213
24cf7251
MG
4214 if (!ret)
4215 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4216
d773ed6b 4217 return ret;
179e9639 4218}
9eeff239 4219#endif
894bc310 4220
894bc310
LS
4221/*
4222 * page_evictable - test whether a page is evictable
4223 * @page: the page to test
894bc310
LS
4224 *
4225 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 4226 * lists vs unevictable list.
894bc310
LS
4227 *
4228 * Reasons page might not be evictable:
ba9ddf49 4229 * (1) page's mapping marked unevictable
b291f000 4230 * (2) page is part of an mlocked VMA
ba9ddf49 4231 *
894bc310 4232 */
39b5f29a 4233int page_evictable(struct page *page)
894bc310 4234{
e92bb4dd
HY
4235 int ret;
4236
4237 /* Prevent address_space of inode and swap cache from being freed */
4238 rcu_read_lock();
4239 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4240 rcu_read_unlock();
4241 return ret;
894bc310 4242}
89e004ea
LS
4243
4244/**
64e3d12f
KHY
4245 * check_move_unevictable_pages - check pages for evictability and move to
4246 * appropriate zone lru list
4247 * @pvec: pagevec with lru pages to check
89e004ea 4248 *
64e3d12f
KHY
4249 * Checks pages for evictability, if an evictable page is in the unevictable
4250 * lru list, moves it to the appropriate evictable lru list. This function
4251 * should be only used for lru pages.
89e004ea 4252 */
64e3d12f 4253void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4254{
925b7673 4255 struct lruvec *lruvec;
785b99fe 4256 struct pglist_data *pgdat = NULL;
24513264
HD
4257 int pgscanned = 0;
4258 int pgrescued = 0;
4259 int i;
89e004ea 4260
64e3d12f
KHY
4261 for (i = 0; i < pvec->nr; i++) {
4262 struct page *page = pvec->pages[i];
785b99fe 4263 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4264
24513264 4265 pgscanned++;
785b99fe
MG
4266 if (pagepgdat != pgdat) {
4267 if (pgdat)
4268 spin_unlock_irq(&pgdat->lru_lock);
4269 pgdat = pagepgdat;
4270 spin_lock_irq(&pgdat->lru_lock);
24513264 4271 }
785b99fe 4272 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4273
24513264
HD
4274 if (!PageLRU(page) || !PageUnevictable(page))
4275 continue;
89e004ea 4276
39b5f29a 4277 if (page_evictable(page)) {
24513264
HD
4278 enum lru_list lru = page_lru_base_type(page);
4279
309381fe 4280 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4281 ClearPageUnevictable(page);
fa9add64
HD
4282 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4283 add_page_to_lru_list(page, lruvec, lru);
24513264 4284 pgrescued++;
89e004ea 4285 }
24513264 4286 }
89e004ea 4287
785b99fe 4288 if (pgdat) {
24513264
HD
4289 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4290 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4291 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4292 }
89e004ea 4293}
64e3d12f 4294EXPORT_SYMBOL_GPL(check_move_unevictable_pages);