]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
mm: remove use-once cache bias from LRU balancing
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
64e3d12f 49#include <linux/pagevec.h>
268bb0ce 50#include <linux/prefetch.h>
b1de0d13 51#include <linux/printk.h>
f9fe48be 52#include <linux/dax.h>
eb414681 53#include <linux/psi.h>
1da177e4
LT
54
55#include <asm/tlbflush.h>
56#include <asm/div64.h>
57
58#include <linux/swapops.h>
117aad1e 59#include <linux/balloon_compaction.h>
1da177e4 60
0f8053a5
NP
61#include "internal.h"
62
33906bc5
MG
63#define CREATE_TRACE_POINTS
64#include <trace/events/vmscan.h>
65
1da177e4 66struct scan_control {
22fba335
KM
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
ee814fe2
JW
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
9e3b2f8c 75
f16015fb
JW
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
66e1707b 81
b91ac374
JW
82 /* Can active pages be deactivated as part of reclaim? */
83#define DEACTIVATE_ANON 1
84#define DEACTIVATE_FILE 2
85 unsigned int may_deactivate:2;
86 unsigned int force_deactivate:1;
87 unsigned int skipped_deactivate:1;
88
1276ad68 89 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
90 unsigned int may_writepage:1;
91
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap:1;
94
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap:1;
97
d6622f63
YX
98 /*
99 * Cgroups are not reclaimed below their configured memory.low,
100 * unless we threaten to OOM. If any cgroups are skipped due to
101 * memory.low and nothing was reclaimed, go back for memory.low.
102 */
103 unsigned int memcg_low_reclaim:1;
104 unsigned int memcg_low_skipped:1;
241994ed 105
ee814fe2
JW
106 unsigned int hibernation_mode:1;
107
108 /* One of the zones is ready for compaction */
109 unsigned int compaction_ready:1;
110
b91ac374
JW
111 /* There is easily reclaimable cold cache in the current node */
112 unsigned int cache_trim_mode:1;
113
53138cea
JW
114 /* The file pages on the current node are dangerously low */
115 unsigned int file_is_tiny:1;
116
bb451fdf
GT
117 /* Allocation order */
118 s8 order;
119
120 /* Scan (total_size >> priority) pages at once */
121 s8 priority;
122
123 /* The highest zone to isolate pages for reclaim from */
124 s8 reclaim_idx;
125
126 /* This context's GFP mask */
127 gfp_t gfp_mask;
128
ee814fe2
JW
129 /* Incremented by the number of inactive pages that were scanned */
130 unsigned long nr_scanned;
131
132 /* Number of pages freed so far during a call to shrink_zones() */
133 unsigned long nr_reclaimed;
d108c772
AR
134
135 struct {
136 unsigned int dirty;
137 unsigned int unqueued_dirty;
138 unsigned int congested;
139 unsigned int writeback;
140 unsigned int immediate;
141 unsigned int file_taken;
142 unsigned int taken;
143 } nr;
e5ca8071
YS
144
145 /* for recording the reclaimed slab by now */
146 struct reclaim_state reclaim_state;
1da177e4
LT
147};
148
1da177e4
LT
149#ifdef ARCH_HAS_PREFETCHW
150#define prefetchw_prev_lru_page(_page, _base, _field) \
151 do { \
152 if ((_page)->lru.prev != _base) { \
153 struct page *prev; \
154 \
155 prev = lru_to_page(&(_page->lru)); \
156 prefetchw(&prev->_field); \
157 } \
158 } while (0)
159#else
160#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
161#endif
162
163/*
c843966c 164 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
165 */
166int vm_swappiness = 60;
d0480be4
WSH
167/*
168 * The total number of pages which are beyond the high watermark within all
169 * zones.
170 */
171unsigned long vm_total_pages;
1da177e4 172
0a432dcb
YS
173static void set_task_reclaim_state(struct task_struct *task,
174 struct reclaim_state *rs)
175{
176 /* Check for an overwrite */
177 WARN_ON_ONCE(rs && task->reclaim_state);
178
179 /* Check for the nulling of an already-nulled member */
180 WARN_ON_ONCE(!rs && !task->reclaim_state);
181
182 task->reclaim_state = rs;
183}
184
1da177e4
LT
185static LIST_HEAD(shrinker_list);
186static DECLARE_RWSEM(shrinker_rwsem);
187
0a432dcb 188#ifdef CONFIG_MEMCG
7e010df5
KT
189/*
190 * We allow subsystems to populate their shrinker-related
191 * LRU lists before register_shrinker_prepared() is called
192 * for the shrinker, since we don't want to impose
193 * restrictions on their internal registration order.
194 * In this case shrink_slab_memcg() may find corresponding
195 * bit is set in the shrinkers map.
196 *
197 * This value is used by the function to detect registering
198 * shrinkers and to skip do_shrink_slab() calls for them.
199 */
200#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
201
b4c2b231
KT
202static DEFINE_IDR(shrinker_idr);
203static int shrinker_nr_max;
204
205static int prealloc_memcg_shrinker(struct shrinker *shrinker)
206{
207 int id, ret = -ENOMEM;
208
209 down_write(&shrinker_rwsem);
210 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 211 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
212 if (id < 0)
213 goto unlock;
214
0a4465d3
KT
215 if (id >= shrinker_nr_max) {
216 if (memcg_expand_shrinker_maps(id)) {
217 idr_remove(&shrinker_idr, id);
218 goto unlock;
219 }
220
b4c2b231 221 shrinker_nr_max = id + 1;
0a4465d3 222 }
b4c2b231
KT
223 shrinker->id = id;
224 ret = 0;
225unlock:
226 up_write(&shrinker_rwsem);
227 return ret;
228}
229
230static void unregister_memcg_shrinker(struct shrinker *shrinker)
231{
232 int id = shrinker->id;
233
234 BUG_ON(id < 0);
235
236 down_write(&shrinker_rwsem);
237 idr_remove(&shrinker_idr, id);
238 up_write(&shrinker_rwsem);
239}
b4c2b231 240
b5ead35e 241static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 242{
b5ead35e 243 return sc->target_mem_cgroup;
89b5fae5 244}
97c9341f
TH
245
246/**
b5ead35e 247 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
248 * @sc: scan_control in question
249 *
250 * The normal page dirty throttling mechanism in balance_dirty_pages() is
251 * completely broken with the legacy memcg and direct stalling in
252 * shrink_page_list() is used for throttling instead, which lacks all the
253 * niceties such as fairness, adaptive pausing, bandwidth proportional
254 * allocation and configurability.
255 *
256 * This function tests whether the vmscan currently in progress can assume
257 * that the normal dirty throttling mechanism is operational.
258 */
b5ead35e 259static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 260{
b5ead35e 261 if (!cgroup_reclaim(sc))
97c9341f
TH
262 return true;
263#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 264 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
265 return true;
266#endif
267 return false;
268}
91a45470 269#else
0a432dcb
YS
270static int prealloc_memcg_shrinker(struct shrinker *shrinker)
271{
272 return 0;
273}
274
275static void unregister_memcg_shrinker(struct shrinker *shrinker)
276{
277}
278
b5ead35e 279static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 280{
b5ead35e 281 return false;
89b5fae5 282}
97c9341f 283
b5ead35e 284static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
285{
286 return true;
287}
91a45470
KH
288#endif
289
5a1c84b4
MG
290/*
291 * This misses isolated pages which are not accounted for to save counters.
292 * As the data only determines if reclaim or compaction continues, it is
293 * not expected that isolated pages will be a dominating factor.
294 */
295unsigned long zone_reclaimable_pages(struct zone *zone)
296{
297 unsigned long nr;
298
299 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
300 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
301 if (get_nr_swap_pages() > 0)
302 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
303 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
304
305 return nr;
306}
307
fd538803
MH
308/**
309 * lruvec_lru_size - Returns the number of pages on the given LRU list.
310 * @lruvec: lru vector
311 * @lru: lru to use
312 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
313 */
314unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 315{
de3b0150 316 unsigned long size = 0;
fd538803
MH
317 int zid;
318
de3b0150 319 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 320 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 321
fd538803
MH
322 if (!managed_zone(zone))
323 continue;
324
325 if (!mem_cgroup_disabled())
de3b0150 326 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 327 else
de3b0150 328 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 329 }
de3b0150 330 return size;
b4536f0c
MH
331}
332
1da177e4 333/*
1d3d4437 334 * Add a shrinker callback to be called from the vm.
1da177e4 335 */
8e04944f 336int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 337{
b9726c26 338 unsigned int size = sizeof(*shrinker->nr_deferred);
1d3d4437 339
1d3d4437
GC
340 if (shrinker->flags & SHRINKER_NUMA_AWARE)
341 size *= nr_node_ids;
342
343 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
344 if (!shrinker->nr_deferred)
345 return -ENOMEM;
b4c2b231
KT
346
347 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
348 if (prealloc_memcg_shrinker(shrinker))
349 goto free_deferred;
350 }
351
8e04944f 352 return 0;
b4c2b231
KT
353
354free_deferred:
355 kfree(shrinker->nr_deferred);
356 shrinker->nr_deferred = NULL;
357 return -ENOMEM;
8e04944f
TH
358}
359
360void free_prealloced_shrinker(struct shrinker *shrinker)
361{
b4c2b231
KT
362 if (!shrinker->nr_deferred)
363 return;
364
365 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
366 unregister_memcg_shrinker(shrinker);
367
8e04944f
TH
368 kfree(shrinker->nr_deferred);
369 shrinker->nr_deferred = NULL;
370}
1d3d4437 371
8e04944f
TH
372void register_shrinker_prepared(struct shrinker *shrinker)
373{
8e1f936b
RR
374 down_write(&shrinker_rwsem);
375 list_add_tail(&shrinker->list, &shrinker_list);
42a9a53b 376#ifdef CONFIG_MEMCG
8df4a44c
KT
377 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
378 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 379#endif
8e1f936b 380 up_write(&shrinker_rwsem);
8e04944f
TH
381}
382
383int register_shrinker(struct shrinker *shrinker)
384{
385 int err = prealloc_shrinker(shrinker);
386
387 if (err)
388 return err;
389 register_shrinker_prepared(shrinker);
1d3d4437 390 return 0;
1da177e4 391}
8e1f936b 392EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
393
394/*
395 * Remove one
396 */
8e1f936b 397void unregister_shrinker(struct shrinker *shrinker)
1da177e4 398{
bb422a73
TH
399 if (!shrinker->nr_deferred)
400 return;
b4c2b231
KT
401 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
402 unregister_memcg_shrinker(shrinker);
1da177e4
LT
403 down_write(&shrinker_rwsem);
404 list_del(&shrinker->list);
405 up_write(&shrinker_rwsem);
ae393321 406 kfree(shrinker->nr_deferred);
bb422a73 407 shrinker->nr_deferred = NULL;
1da177e4 408}
8e1f936b 409EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
410
411#define SHRINK_BATCH 128
1d3d4437 412
cb731d6c 413static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 414 struct shrinker *shrinker, int priority)
1d3d4437
GC
415{
416 unsigned long freed = 0;
417 unsigned long long delta;
418 long total_scan;
d5bc5fd3 419 long freeable;
1d3d4437
GC
420 long nr;
421 long new_nr;
422 int nid = shrinkctl->nid;
423 long batch_size = shrinker->batch ? shrinker->batch
424 : SHRINK_BATCH;
5f33a080 425 long scanned = 0, next_deferred;
1d3d4437 426
ac7fb3ad
KT
427 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
428 nid = 0;
429
d5bc5fd3 430 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
431 if (freeable == 0 || freeable == SHRINK_EMPTY)
432 return freeable;
1d3d4437
GC
433
434 /*
435 * copy the current shrinker scan count into a local variable
436 * and zero it so that other concurrent shrinker invocations
437 * don't also do this scanning work.
438 */
439 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
440
441 total_scan = nr;
4b85afbd
JW
442 if (shrinker->seeks) {
443 delta = freeable >> priority;
444 delta *= 4;
445 do_div(delta, shrinker->seeks);
446 } else {
447 /*
448 * These objects don't require any IO to create. Trim
449 * them aggressively under memory pressure to keep
450 * them from causing refetches in the IO caches.
451 */
452 delta = freeable / 2;
453 }
172b06c3 454
1d3d4437
GC
455 total_scan += delta;
456 if (total_scan < 0) {
d75f773c 457 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
a0b02131 458 shrinker->scan_objects, total_scan);
d5bc5fd3 459 total_scan = freeable;
5f33a080
SL
460 next_deferred = nr;
461 } else
462 next_deferred = total_scan;
1d3d4437
GC
463
464 /*
465 * We need to avoid excessive windup on filesystem shrinkers
466 * due to large numbers of GFP_NOFS allocations causing the
467 * shrinkers to return -1 all the time. This results in a large
468 * nr being built up so when a shrink that can do some work
469 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 470 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
471 * memory.
472 *
473 * Hence only allow the shrinker to scan the entire cache when
474 * a large delta change is calculated directly.
475 */
d5bc5fd3
VD
476 if (delta < freeable / 4)
477 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
478
479 /*
480 * Avoid risking looping forever due to too large nr value:
481 * never try to free more than twice the estimate number of
482 * freeable entries.
483 */
d5bc5fd3
VD
484 if (total_scan > freeable * 2)
485 total_scan = freeable * 2;
1d3d4437
GC
486
487 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 488 freeable, delta, total_scan, priority);
1d3d4437 489
0b1fb40a
VD
490 /*
491 * Normally, we should not scan less than batch_size objects in one
492 * pass to avoid too frequent shrinker calls, but if the slab has less
493 * than batch_size objects in total and we are really tight on memory,
494 * we will try to reclaim all available objects, otherwise we can end
495 * up failing allocations although there are plenty of reclaimable
496 * objects spread over several slabs with usage less than the
497 * batch_size.
498 *
499 * We detect the "tight on memory" situations by looking at the total
500 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 501 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
502 * scanning at high prio and therefore should try to reclaim as much as
503 * possible.
504 */
505 while (total_scan >= batch_size ||
d5bc5fd3 506 total_scan >= freeable) {
a0b02131 507 unsigned long ret;
0b1fb40a 508 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 509
0b1fb40a 510 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 511 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
512 ret = shrinker->scan_objects(shrinker, shrinkctl);
513 if (ret == SHRINK_STOP)
514 break;
515 freed += ret;
1d3d4437 516
d460acb5
CW
517 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
518 total_scan -= shrinkctl->nr_scanned;
519 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
520
521 cond_resched();
522 }
523
5f33a080
SL
524 if (next_deferred >= scanned)
525 next_deferred -= scanned;
526 else
527 next_deferred = 0;
1d3d4437
GC
528 /*
529 * move the unused scan count back into the shrinker in a
530 * manner that handles concurrent updates. If we exhausted the
531 * scan, there is no need to do an update.
532 */
5f33a080
SL
533 if (next_deferred > 0)
534 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
535 &shrinker->nr_deferred[nid]);
536 else
537 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
538
df9024a8 539 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 540 return freed;
1495f230
YH
541}
542
0a432dcb 543#ifdef CONFIG_MEMCG
b0dedc49
KT
544static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
545 struct mem_cgroup *memcg, int priority)
546{
547 struct memcg_shrinker_map *map;
b8e57efa
KT
548 unsigned long ret, freed = 0;
549 int i;
b0dedc49 550
0a432dcb 551 if (!mem_cgroup_online(memcg))
b0dedc49
KT
552 return 0;
553
554 if (!down_read_trylock(&shrinker_rwsem))
555 return 0;
556
557 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
558 true);
559 if (unlikely(!map))
560 goto unlock;
561
562 for_each_set_bit(i, map->map, shrinker_nr_max) {
563 struct shrink_control sc = {
564 .gfp_mask = gfp_mask,
565 .nid = nid,
566 .memcg = memcg,
567 };
568 struct shrinker *shrinker;
569
570 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
571 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
572 if (!shrinker)
573 clear_bit(i, map->map);
b0dedc49
KT
574 continue;
575 }
576
0a432dcb
YS
577 /* Call non-slab shrinkers even though kmem is disabled */
578 if (!memcg_kmem_enabled() &&
579 !(shrinker->flags & SHRINKER_NONSLAB))
580 continue;
581
b0dedc49 582 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6
KT
583 if (ret == SHRINK_EMPTY) {
584 clear_bit(i, map->map);
585 /*
586 * After the shrinker reported that it had no objects to
587 * free, but before we cleared the corresponding bit in
588 * the memcg shrinker map, a new object might have been
589 * added. To make sure, we have the bit set in this
590 * case, we invoke the shrinker one more time and reset
591 * the bit if it reports that it is not empty anymore.
592 * The memory barrier here pairs with the barrier in
593 * memcg_set_shrinker_bit():
594 *
595 * list_lru_add() shrink_slab_memcg()
596 * list_add_tail() clear_bit()
597 * <MB> <MB>
598 * set_bit() do_shrink_slab()
599 */
600 smp_mb__after_atomic();
601 ret = do_shrink_slab(&sc, shrinker, priority);
602 if (ret == SHRINK_EMPTY)
603 ret = 0;
604 else
605 memcg_set_shrinker_bit(memcg, nid, i);
606 }
b0dedc49
KT
607 freed += ret;
608
609 if (rwsem_is_contended(&shrinker_rwsem)) {
610 freed = freed ? : 1;
611 break;
612 }
613 }
614unlock:
615 up_read(&shrinker_rwsem);
616 return freed;
617}
0a432dcb 618#else /* CONFIG_MEMCG */
b0dedc49
KT
619static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
620 struct mem_cgroup *memcg, int priority)
621{
622 return 0;
623}
0a432dcb 624#endif /* CONFIG_MEMCG */
b0dedc49 625
6b4f7799 626/**
cb731d6c 627 * shrink_slab - shrink slab caches
6b4f7799
JW
628 * @gfp_mask: allocation context
629 * @nid: node whose slab caches to target
cb731d6c 630 * @memcg: memory cgroup whose slab caches to target
9092c71b 631 * @priority: the reclaim priority
1da177e4 632 *
6b4f7799 633 * Call the shrink functions to age shrinkable caches.
1da177e4 634 *
6b4f7799
JW
635 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
636 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 637 *
aeed1d32
VD
638 * @memcg specifies the memory cgroup to target. Unaware shrinkers
639 * are called only if it is the root cgroup.
cb731d6c 640 *
9092c71b
JB
641 * @priority is sc->priority, we take the number of objects and >> by priority
642 * in order to get the scan target.
b15e0905 643 *
6b4f7799 644 * Returns the number of reclaimed slab objects.
1da177e4 645 */
cb731d6c
VD
646static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
647 struct mem_cgroup *memcg,
9092c71b 648 int priority)
1da177e4 649{
b8e57efa 650 unsigned long ret, freed = 0;
1da177e4
LT
651 struct shrinker *shrinker;
652
fa1e512f
YS
653 /*
654 * The root memcg might be allocated even though memcg is disabled
655 * via "cgroup_disable=memory" boot parameter. This could make
656 * mem_cgroup_is_root() return false, then just run memcg slab
657 * shrink, but skip global shrink. This may result in premature
658 * oom.
659 */
660 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 661 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 662
e830c63a 663 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 664 goto out;
1da177e4
LT
665
666 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
667 struct shrink_control sc = {
668 .gfp_mask = gfp_mask,
669 .nid = nid,
cb731d6c 670 .memcg = memcg,
6b4f7799 671 };
ec97097b 672
9b996468
KT
673 ret = do_shrink_slab(&sc, shrinker, priority);
674 if (ret == SHRINK_EMPTY)
675 ret = 0;
676 freed += ret;
e496612c
MK
677 /*
678 * Bail out if someone want to register a new shrinker to
679 * prevent the regsitration from being stalled for long periods
680 * by parallel ongoing shrinking.
681 */
682 if (rwsem_is_contended(&shrinker_rwsem)) {
683 freed = freed ? : 1;
684 break;
685 }
1da177e4 686 }
6b4f7799 687
1da177e4 688 up_read(&shrinker_rwsem);
f06590bd
MK
689out:
690 cond_resched();
24f7c6b9 691 return freed;
1da177e4
LT
692}
693
cb731d6c
VD
694void drop_slab_node(int nid)
695{
696 unsigned long freed;
697
698 do {
699 struct mem_cgroup *memcg = NULL;
700
701 freed = 0;
aeed1d32 702 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 703 do {
9092c71b 704 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
705 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
706 } while (freed > 10);
707}
708
709void drop_slab(void)
710{
711 int nid;
712
713 for_each_online_node(nid)
714 drop_slab_node(nid);
715}
716
1da177e4
LT
717static inline int is_page_cache_freeable(struct page *page)
718{
ceddc3a5
JW
719 /*
720 * A freeable page cache page is referenced only by the caller
67891fff
MW
721 * that isolated the page, the page cache and optional buffer
722 * heads at page->private.
ceddc3a5 723 */
67891fff 724 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
bd4c82c2 725 HPAGE_PMD_NR : 1;
67891fff 726 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
727}
728
cb16556d 729static int may_write_to_inode(struct inode *inode)
1da177e4 730{
930d9152 731 if (current->flags & PF_SWAPWRITE)
1da177e4 732 return 1;
703c2708 733 if (!inode_write_congested(inode))
1da177e4 734 return 1;
703c2708 735 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
736 return 1;
737 return 0;
738}
739
740/*
741 * We detected a synchronous write error writing a page out. Probably
742 * -ENOSPC. We need to propagate that into the address_space for a subsequent
743 * fsync(), msync() or close().
744 *
745 * The tricky part is that after writepage we cannot touch the mapping: nothing
746 * prevents it from being freed up. But we have a ref on the page and once
747 * that page is locked, the mapping is pinned.
748 *
749 * We're allowed to run sleeping lock_page() here because we know the caller has
750 * __GFP_FS.
751 */
752static void handle_write_error(struct address_space *mapping,
753 struct page *page, int error)
754{
7eaceacc 755 lock_page(page);
3e9f45bd
GC
756 if (page_mapping(page) == mapping)
757 mapping_set_error(mapping, error);
1da177e4
LT
758 unlock_page(page);
759}
760
04e62a29
CL
761/* possible outcome of pageout() */
762typedef enum {
763 /* failed to write page out, page is locked */
764 PAGE_KEEP,
765 /* move page to the active list, page is locked */
766 PAGE_ACTIVATE,
767 /* page has been sent to the disk successfully, page is unlocked */
768 PAGE_SUCCESS,
769 /* page is clean and locked */
770 PAGE_CLEAN,
771} pageout_t;
772
1da177e4 773/*
1742f19f
AM
774 * pageout is called by shrink_page_list() for each dirty page.
775 * Calls ->writepage().
1da177e4 776 */
cb16556d 777static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
778{
779 /*
780 * If the page is dirty, only perform writeback if that write
781 * will be non-blocking. To prevent this allocation from being
782 * stalled by pagecache activity. But note that there may be
783 * stalls if we need to run get_block(). We could test
784 * PagePrivate for that.
785 *
8174202b 786 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
787 * this page's queue, we can perform writeback even if that
788 * will block.
789 *
790 * If the page is swapcache, write it back even if that would
791 * block, for some throttling. This happens by accident, because
792 * swap_backing_dev_info is bust: it doesn't reflect the
793 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
794 */
795 if (!is_page_cache_freeable(page))
796 return PAGE_KEEP;
797 if (!mapping) {
798 /*
799 * Some data journaling orphaned pages can have
800 * page->mapping == NULL while being dirty with clean buffers.
801 */
266cf658 802 if (page_has_private(page)) {
1da177e4
LT
803 if (try_to_free_buffers(page)) {
804 ClearPageDirty(page);
b1de0d13 805 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
806 return PAGE_CLEAN;
807 }
808 }
809 return PAGE_KEEP;
810 }
811 if (mapping->a_ops->writepage == NULL)
812 return PAGE_ACTIVATE;
cb16556d 813 if (!may_write_to_inode(mapping->host))
1da177e4
LT
814 return PAGE_KEEP;
815
816 if (clear_page_dirty_for_io(page)) {
817 int res;
818 struct writeback_control wbc = {
819 .sync_mode = WB_SYNC_NONE,
820 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
821 .range_start = 0,
822 .range_end = LLONG_MAX,
1da177e4
LT
823 .for_reclaim = 1,
824 };
825
826 SetPageReclaim(page);
827 res = mapping->a_ops->writepage(page, &wbc);
828 if (res < 0)
829 handle_write_error(mapping, page, res);
994fc28c 830 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
831 ClearPageReclaim(page);
832 return PAGE_ACTIVATE;
833 }
c661b078 834
1da177e4
LT
835 if (!PageWriteback(page)) {
836 /* synchronous write or broken a_ops? */
837 ClearPageReclaim(page);
838 }
3aa23851 839 trace_mm_vmscan_writepage(page);
c4a25635 840 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
841 return PAGE_SUCCESS;
842 }
843
844 return PAGE_CLEAN;
845}
846
a649fd92 847/*
e286781d
NP
848 * Same as remove_mapping, but if the page is removed from the mapping, it
849 * gets returned with a refcount of 0.
a649fd92 850 */
a528910e 851static int __remove_mapping(struct address_space *mapping, struct page *page,
b910718a 852 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 853{
c4843a75 854 unsigned long flags;
bd4c82c2 855 int refcount;
c4843a75 856
28e4d965
NP
857 BUG_ON(!PageLocked(page));
858 BUG_ON(mapping != page_mapping(page));
49d2e9cc 859
b93b0163 860 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 861 /*
0fd0e6b0
NP
862 * The non racy check for a busy page.
863 *
864 * Must be careful with the order of the tests. When someone has
865 * a ref to the page, it may be possible that they dirty it then
866 * drop the reference. So if PageDirty is tested before page_count
867 * here, then the following race may occur:
868 *
869 * get_user_pages(&page);
870 * [user mapping goes away]
871 * write_to(page);
872 * !PageDirty(page) [good]
873 * SetPageDirty(page);
874 * put_page(page);
875 * !page_count(page) [good, discard it]
876 *
877 * [oops, our write_to data is lost]
878 *
879 * Reversing the order of the tests ensures such a situation cannot
880 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 881 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
882 *
883 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 884 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 885 */
906d278d 886 refcount = 1 + compound_nr(page);
bd4c82c2 887 if (!page_ref_freeze(page, refcount))
49d2e9cc 888 goto cannot_free;
1c4c3b99 889 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 890 if (unlikely(PageDirty(page))) {
bd4c82c2 891 page_ref_unfreeze(page, refcount);
49d2e9cc 892 goto cannot_free;
e286781d 893 }
49d2e9cc
CL
894
895 if (PageSwapCache(page)) {
896 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 897 mem_cgroup_swapout(page, swap);
4e17ec25 898 __delete_from_swap_cache(page, swap);
b93b0163 899 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 900 put_swap_page(page, swap);
e286781d 901 } else {
6072d13c 902 void (*freepage)(struct page *);
a528910e 903 void *shadow = NULL;
6072d13c
LT
904
905 freepage = mapping->a_ops->freepage;
a528910e
JW
906 /*
907 * Remember a shadow entry for reclaimed file cache in
908 * order to detect refaults, thus thrashing, later on.
909 *
910 * But don't store shadows in an address space that is
911 * already exiting. This is not just an optizimation,
912 * inode reclaim needs to empty out the radix tree or
913 * the nodes are lost. Don't plant shadows behind its
914 * back.
f9fe48be
RZ
915 *
916 * We also don't store shadows for DAX mappings because the
917 * only page cache pages found in these are zero pages
918 * covering holes, and because we don't want to mix DAX
919 * exceptional entries and shadow exceptional entries in the
b93b0163 920 * same address_space.
a528910e 921 */
9de4f22a 922 if (reclaimed && page_is_file_lru(page) &&
f9fe48be 923 !mapping_exiting(mapping) && !dax_mapping(mapping))
b910718a 924 shadow = workingset_eviction(page, target_memcg);
62cccb8c 925 __delete_from_page_cache(page, shadow);
b93b0163 926 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
927
928 if (freepage != NULL)
929 freepage(page);
49d2e9cc
CL
930 }
931
49d2e9cc
CL
932 return 1;
933
934cannot_free:
b93b0163 935 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
936 return 0;
937}
938
e286781d
NP
939/*
940 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
941 * someone else has a ref on the page, abort and return 0. If it was
942 * successfully detached, return 1. Assumes the caller has a single ref on
943 * this page.
944 */
945int remove_mapping(struct address_space *mapping, struct page *page)
946{
b910718a 947 if (__remove_mapping(mapping, page, false, NULL)) {
e286781d
NP
948 /*
949 * Unfreezing the refcount with 1 rather than 2 effectively
950 * drops the pagecache ref for us without requiring another
951 * atomic operation.
952 */
fe896d18 953 page_ref_unfreeze(page, 1);
e286781d
NP
954 return 1;
955 }
956 return 0;
957}
958
894bc310
LS
959/**
960 * putback_lru_page - put previously isolated page onto appropriate LRU list
961 * @page: page to be put back to appropriate lru list
962 *
963 * Add previously isolated @page to appropriate LRU list.
964 * Page may still be unevictable for other reasons.
965 *
966 * lru_lock must not be held, interrupts must be enabled.
967 */
894bc310
LS
968void putback_lru_page(struct page *page)
969{
9c4e6b1a 970 lru_cache_add(page);
894bc310
LS
971 put_page(page); /* drop ref from isolate */
972}
973
dfc8d636
JW
974enum page_references {
975 PAGEREF_RECLAIM,
976 PAGEREF_RECLAIM_CLEAN,
64574746 977 PAGEREF_KEEP,
dfc8d636
JW
978 PAGEREF_ACTIVATE,
979};
980
981static enum page_references page_check_references(struct page *page,
982 struct scan_control *sc)
983{
64574746 984 int referenced_ptes, referenced_page;
dfc8d636 985 unsigned long vm_flags;
dfc8d636 986
c3ac9a8a
JW
987 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
988 &vm_flags);
64574746 989 referenced_page = TestClearPageReferenced(page);
dfc8d636 990
dfc8d636
JW
991 /*
992 * Mlock lost the isolation race with us. Let try_to_unmap()
993 * move the page to the unevictable list.
994 */
995 if (vm_flags & VM_LOCKED)
996 return PAGEREF_RECLAIM;
997
64574746 998 if (referenced_ptes) {
e4898273 999 if (PageSwapBacked(page))
64574746
JW
1000 return PAGEREF_ACTIVATE;
1001 /*
1002 * All mapped pages start out with page table
1003 * references from the instantiating fault, so we need
1004 * to look twice if a mapped file page is used more
1005 * than once.
1006 *
1007 * Mark it and spare it for another trip around the
1008 * inactive list. Another page table reference will
1009 * lead to its activation.
1010 *
1011 * Note: the mark is set for activated pages as well
1012 * so that recently deactivated but used pages are
1013 * quickly recovered.
1014 */
1015 SetPageReferenced(page);
1016
34dbc67a 1017 if (referenced_page || referenced_ptes > 1)
64574746
JW
1018 return PAGEREF_ACTIVATE;
1019
c909e993
KK
1020 /*
1021 * Activate file-backed executable pages after first usage.
1022 */
1023 if (vm_flags & VM_EXEC)
1024 return PAGEREF_ACTIVATE;
1025
64574746
JW
1026 return PAGEREF_KEEP;
1027 }
dfc8d636
JW
1028
1029 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1030 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1031 return PAGEREF_RECLAIM_CLEAN;
1032
1033 return PAGEREF_RECLAIM;
dfc8d636
JW
1034}
1035
e2be15f6
MG
1036/* Check if a page is dirty or under writeback */
1037static void page_check_dirty_writeback(struct page *page,
1038 bool *dirty, bool *writeback)
1039{
b4597226
MG
1040 struct address_space *mapping;
1041
e2be15f6
MG
1042 /*
1043 * Anonymous pages are not handled by flushers and must be written
1044 * from reclaim context. Do not stall reclaim based on them
1045 */
9de4f22a 1046 if (!page_is_file_lru(page) ||
802a3a92 1047 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1048 *dirty = false;
1049 *writeback = false;
1050 return;
1051 }
1052
1053 /* By default assume that the page flags are accurate */
1054 *dirty = PageDirty(page);
1055 *writeback = PageWriteback(page);
b4597226
MG
1056
1057 /* Verify dirty/writeback state if the filesystem supports it */
1058 if (!page_has_private(page))
1059 return;
1060
1061 mapping = page_mapping(page);
1062 if (mapping && mapping->a_ops->is_dirty_writeback)
1063 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1064}
1065
1da177e4 1066/*
1742f19f 1067 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1068 */
730ec8c0
MS
1069static unsigned int shrink_page_list(struct list_head *page_list,
1070 struct pglist_data *pgdat,
1071 struct scan_control *sc,
1072 enum ttu_flags ttu_flags,
1073 struct reclaim_stat *stat,
1074 bool ignore_references)
1da177e4
LT
1075{
1076 LIST_HEAD(ret_pages);
abe4c3b5 1077 LIST_HEAD(free_pages);
730ec8c0
MS
1078 unsigned int nr_reclaimed = 0;
1079 unsigned int pgactivate = 0;
1da177e4 1080
060f005f 1081 memset(stat, 0, sizeof(*stat));
1da177e4
LT
1082 cond_resched();
1083
1da177e4
LT
1084 while (!list_empty(page_list)) {
1085 struct address_space *mapping;
1086 struct page *page;
8940b34a 1087 enum page_references references = PAGEREF_RECLAIM;
4b793062 1088 bool dirty, writeback, may_enter_fs;
98879b3b 1089 unsigned int nr_pages;
1da177e4
LT
1090
1091 cond_resched();
1092
1093 page = lru_to_page(page_list);
1094 list_del(&page->lru);
1095
529ae9aa 1096 if (!trylock_page(page))
1da177e4
LT
1097 goto keep;
1098
309381fe 1099 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1100
d8c6546b 1101 nr_pages = compound_nr(page);
98879b3b
YS
1102
1103 /* Account the number of base pages even though THP */
1104 sc->nr_scanned += nr_pages;
80e43426 1105
39b5f29a 1106 if (unlikely(!page_evictable(page)))
ad6b6704 1107 goto activate_locked;
894bc310 1108
a6dc60f8 1109 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1110 goto keep_locked;
1111
c661b078
AW
1112 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1113 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1114
e2be15f6 1115 /*
894befec 1116 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1117 * reclaim_congested which affects wait_iff_congested. kswapd
1118 * will stall and start writing pages if the tail of the LRU
1119 * is all dirty unqueued pages.
1120 */
1121 page_check_dirty_writeback(page, &dirty, &writeback);
1122 if (dirty || writeback)
060f005f 1123 stat->nr_dirty++;
e2be15f6
MG
1124
1125 if (dirty && !writeback)
060f005f 1126 stat->nr_unqueued_dirty++;
e2be15f6 1127
d04e8acd
MG
1128 /*
1129 * Treat this page as congested if the underlying BDI is or if
1130 * pages are cycling through the LRU so quickly that the
1131 * pages marked for immediate reclaim are making it to the
1132 * end of the LRU a second time.
1133 */
e2be15f6 1134 mapping = page_mapping(page);
1da58ee2 1135 if (((dirty || writeback) && mapping &&
703c2708 1136 inode_write_congested(mapping->host)) ||
d04e8acd 1137 (writeback && PageReclaim(page)))
060f005f 1138 stat->nr_congested++;
e2be15f6 1139
283aba9f
MG
1140 /*
1141 * If a page at the tail of the LRU is under writeback, there
1142 * are three cases to consider.
1143 *
1144 * 1) If reclaim is encountering an excessive number of pages
1145 * under writeback and this page is both under writeback and
1146 * PageReclaim then it indicates that pages are being queued
1147 * for IO but are being recycled through the LRU before the
1148 * IO can complete. Waiting on the page itself risks an
1149 * indefinite stall if it is impossible to writeback the
1150 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1151 * note that the LRU is being scanned too quickly and the
1152 * caller can stall after page list has been processed.
283aba9f 1153 *
97c9341f 1154 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1155 * not marked for immediate reclaim, or the caller does not
1156 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1157 * not to fs). In this case mark the page for immediate
97c9341f 1158 * reclaim and continue scanning.
283aba9f 1159 *
ecf5fc6e
MH
1160 * Require may_enter_fs because we would wait on fs, which
1161 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1162 * enter reclaim, and deadlock if it waits on a page for
1163 * which it is needed to do the write (loop masks off
1164 * __GFP_IO|__GFP_FS for this reason); but more thought
1165 * would probably show more reasons.
1166 *
7fadc820 1167 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1168 * PageReclaim. memcg does not have any dirty pages
1169 * throttling so we could easily OOM just because too many
1170 * pages are in writeback and there is nothing else to
1171 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1172 *
1173 * In cases 1) and 2) we activate the pages to get them out of
1174 * the way while we continue scanning for clean pages on the
1175 * inactive list and refilling from the active list. The
1176 * observation here is that waiting for disk writes is more
1177 * expensive than potentially causing reloads down the line.
1178 * Since they're marked for immediate reclaim, they won't put
1179 * memory pressure on the cache working set any longer than it
1180 * takes to write them to disk.
283aba9f 1181 */
c661b078 1182 if (PageWriteback(page)) {
283aba9f
MG
1183 /* Case 1 above */
1184 if (current_is_kswapd() &&
1185 PageReclaim(page) &&
599d0c95 1186 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1187 stat->nr_immediate++;
c55e8d03 1188 goto activate_locked;
283aba9f
MG
1189
1190 /* Case 2 above */
b5ead35e 1191 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1192 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1193 /*
1194 * This is slightly racy - end_page_writeback()
1195 * might have just cleared PageReclaim, then
1196 * setting PageReclaim here end up interpreted
1197 * as PageReadahead - but that does not matter
1198 * enough to care. What we do want is for this
1199 * page to have PageReclaim set next time memcg
1200 * reclaim reaches the tests above, so it will
1201 * then wait_on_page_writeback() to avoid OOM;
1202 * and it's also appropriate in global reclaim.
1203 */
1204 SetPageReclaim(page);
060f005f 1205 stat->nr_writeback++;
c55e8d03 1206 goto activate_locked;
283aba9f
MG
1207
1208 /* Case 3 above */
1209 } else {
7fadc820 1210 unlock_page(page);
283aba9f 1211 wait_on_page_writeback(page);
7fadc820
HD
1212 /* then go back and try same page again */
1213 list_add_tail(&page->lru, page_list);
1214 continue;
e62e384e 1215 }
c661b078 1216 }
1da177e4 1217
8940b34a 1218 if (!ignore_references)
02c6de8d
MK
1219 references = page_check_references(page, sc);
1220
dfc8d636
JW
1221 switch (references) {
1222 case PAGEREF_ACTIVATE:
1da177e4 1223 goto activate_locked;
64574746 1224 case PAGEREF_KEEP:
98879b3b 1225 stat->nr_ref_keep += nr_pages;
64574746 1226 goto keep_locked;
dfc8d636
JW
1227 case PAGEREF_RECLAIM:
1228 case PAGEREF_RECLAIM_CLEAN:
1229 ; /* try to reclaim the page below */
1230 }
1da177e4 1231
1da177e4
LT
1232 /*
1233 * Anonymous process memory has backing store?
1234 * Try to allocate it some swap space here.
802a3a92 1235 * Lazyfree page could be freed directly
1da177e4 1236 */
bd4c82c2
HY
1237 if (PageAnon(page) && PageSwapBacked(page)) {
1238 if (!PageSwapCache(page)) {
1239 if (!(sc->gfp_mask & __GFP_IO))
1240 goto keep_locked;
1241 if (PageTransHuge(page)) {
1242 /* cannot split THP, skip it */
1243 if (!can_split_huge_page(page, NULL))
1244 goto activate_locked;
1245 /*
1246 * Split pages without a PMD map right
1247 * away. Chances are some or all of the
1248 * tail pages can be freed without IO.
1249 */
1250 if (!compound_mapcount(page) &&
1251 split_huge_page_to_list(page,
1252 page_list))
1253 goto activate_locked;
1254 }
1255 if (!add_to_swap(page)) {
1256 if (!PageTransHuge(page))
98879b3b 1257 goto activate_locked_split;
bd4c82c2
HY
1258 /* Fallback to swap normal pages */
1259 if (split_huge_page_to_list(page,
1260 page_list))
1261 goto activate_locked;
fe490cc0
HY
1262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263 count_vm_event(THP_SWPOUT_FALLBACK);
1264#endif
bd4c82c2 1265 if (!add_to_swap(page))
98879b3b 1266 goto activate_locked_split;
bd4c82c2 1267 }
0f074658 1268
4b793062 1269 may_enter_fs = true;
1da177e4 1270
bd4c82c2
HY
1271 /* Adding to swap updated mapping */
1272 mapping = page_mapping(page);
1273 }
7751b2da
KS
1274 } else if (unlikely(PageTransHuge(page))) {
1275 /* Split file THP */
1276 if (split_huge_page_to_list(page, page_list))
1277 goto keep_locked;
e2be15f6 1278 }
1da177e4 1279
98879b3b
YS
1280 /*
1281 * THP may get split above, need minus tail pages and update
1282 * nr_pages to avoid accounting tail pages twice.
1283 *
1284 * The tail pages that are added into swap cache successfully
1285 * reach here.
1286 */
1287 if ((nr_pages > 1) && !PageTransHuge(page)) {
1288 sc->nr_scanned -= (nr_pages - 1);
1289 nr_pages = 1;
1290 }
1291
1da177e4
LT
1292 /*
1293 * The page is mapped into the page tables of one or more
1294 * processes. Try to unmap it here.
1295 */
802a3a92 1296 if (page_mapped(page)) {
bd4c82c2 1297 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1f318a9b 1298 bool was_swapbacked = PageSwapBacked(page);
bd4c82c2
HY
1299
1300 if (unlikely(PageTransHuge(page)))
1301 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1302
bd4c82c2 1303 if (!try_to_unmap(page, flags)) {
98879b3b 1304 stat->nr_unmap_fail += nr_pages;
1f318a9b
JK
1305 if (!was_swapbacked && PageSwapBacked(page))
1306 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1307 goto activate_locked;
1da177e4
LT
1308 }
1309 }
1310
1311 if (PageDirty(page)) {
ee72886d 1312 /*
4eda4823
JW
1313 * Only kswapd can writeback filesystem pages
1314 * to avoid risk of stack overflow. But avoid
1315 * injecting inefficient single-page IO into
1316 * flusher writeback as much as possible: only
1317 * write pages when we've encountered many
1318 * dirty pages, and when we've already scanned
1319 * the rest of the LRU for clean pages and see
1320 * the same dirty pages again (PageReclaim).
ee72886d 1321 */
9de4f22a 1322 if (page_is_file_lru(page) &&
4eda4823
JW
1323 (!current_is_kswapd() || !PageReclaim(page) ||
1324 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1325 /*
1326 * Immediately reclaim when written back.
1327 * Similar in principal to deactivate_page()
1328 * except we already have the page isolated
1329 * and know it's dirty
1330 */
c4a25635 1331 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1332 SetPageReclaim(page);
1333
c55e8d03 1334 goto activate_locked;
ee72886d
MG
1335 }
1336
dfc8d636 1337 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1338 goto keep_locked;
4dd4b920 1339 if (!may_enter_fs)
1da177e4 1340 goto keep_locked;
52a8363e 1341 if (!sc->may_writepage)
1da177e4
LT
1342 goto keep_locked;
1343
d950c947
MG
1344 /*
1345 * Page is dirty. Flush the TLB if a writable entry
1346 * potentially exists to avoid CPU writes after IO
1347 * starts and then write it out here.
1348 */
1349 try_to_unmap_flush_dirty();
cb16556d 1350 switch (pageout(page, mapping)) {
1da177e4
LT
1351 case PAGE_KEEP:
1352 goto keep_locked;
1353 case PAGE_ACTIVATE:
1354 goto activate_locked;
1355 case PAGE_SUCCESS:
7d3579e8 1356 if (PageWriteback(page))
41ac1999 1357 goto keep;
7d3579e8 1358 if (PageDirty(page))
1da177e4 1359 goto keep;
7d3579e8 1360
1da177e4
LT
1361 /*
1362 * A synchronous write - probably a ramdisk. Go
1363 * ahead and try to reclaim the page.
1364 */
529ae9aa 1365 if (!trylock_page(page))
1da177e4
LT
1366 goto keep;
1367 if (PageDirty(page) || PageWriteback(page))
1368 goto keep_locked;
1369 mapping = page_mapping(page);
1370 case PAGE_CLEAN:
1371 ; /* try to free the page below */
1372 }
1373 }
1374
1375 /*
1376 * If the page has buffers, try to free the buffer mappings
1377 * associated with this page. If we succeed we try to free
1378 * the page as well.
1379 *
1380 * We do this even if the page is PageDirty().
1381 * try_to_release_page() does not perform I/O, but it is
1382 * possible for a page to have PageDirty set, but it is actually
1383 * clean (all its buffers are clean). This happens if the
1384 * buffers were written out directly, with submit_bh(). ext3
894bc310 1385 * will do this, as well as the blockdev mapping.
1da177e4
LT
1386 * try_to_release_page() will discover that cleanness and will
1387 * drop the buffers and mark the page clean - it can be freed.
1388 *
1389 * Rarely, pages can have buffers and no ->mapping. These are
1390 * the pages which were not successfully invalidated in
1391 * truncate_complete_page(). We try to drop those buffers here
1392 * and if that worked, and the page is no longer mapped into
1393 * process address space (page_count == 1) it can be freed.
1394 * Otherwise, leave the page on the LRU so it is swappable.
1395 */
266cf658 1396 if (page_has_private(page)) {
1da177e4
LT
1397 if (!try_to_release_page(page, sc->gfp_mask))
1398 goto activate_locked;
e286781d
NP
1399 if (!mapping && page_count(page) == 1) {
1400 unlock_page(page);
1401 if (put_page_testzero(page))
1402 goto free_it;
1403 else {
1404 /*
1405 * rare race with speculative reference.
1406 * the speculative reference will free
1407 * this page shortly, so we may
1408 * increment nr_reclaimed here (and
1409 * leave it off the LRU).
1410 */
1411 nr_reclaimed++;
1412 continue;
1413 }
1414 }
1da177e4
LT
1415 }
1416
802a3a92
SL
1417 if (PageAnon(page) && !PageSwapBacked(page)) {
1418 /* follow __remove_mapping for reference */
1419 if (!page_ref_freeze(page, 1))
1420 goto keep_locked;
1421 if (PageDirty(page)) {
1422 page_ref_unfreeze(page, 1);
1423 goto keep_locked;
1424 }
1da177e4 1425
802a3a92 1426 count_vm_event(PGLAZYFREED);
2262185c 1427 count_memcg_page_event(page, PGLAZYFREED);
b910718a
JW
1428 } else if (!mapping || !__remove_mapping(mapping, page, true,
1429 sc->target_mem_cgroup))
802a3a92 1430 goto keep_locked;
9a1ea439
HD
1431
1432 unlock_page(page);
e286781d 1433free_it:
98879b3b
YS
1434 /*
1435 * THP may get swapped out in a whole, need account
1436 * all base pages.
1437 */
1438 nr_reclaimed += nr_pages;
abe4c3b5
MG
1439
1440 /*
1441 * Is there need to periodically free_page_list? It would
1442 * appear not as the counts should be low
1443 */
7ae88534 1444 if (unlikely(PageTransHuge(page)))
ff45fc3c 1445 destroy_compound_page(page);
7ae88534 1446 else
bd4c82c2 1447 list_add(&page->lru, &free_pages);
1da177e4
LT
1448 continue;
1449
98879b3b
YS
1450activate_locked_split:
1451 /*
1452 * The tail pages that are failed to add into swap cache
1453 * reach here. Fixup nr_scanned and nr_pages.
1454 */
1455 if (nr_pages > 1) {
1456 sc->nr_scanned -= (nr_pages - 1);
1457 nr_pages = 1;
1458 }
1da177e4 1459activate_locked:
68a22394 1460 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1461 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1462 PageMlocked(page)))
a2c43eed 1463 try_to_free_swap(page);
309381fe 1464 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1465 if (!PageMlocked(page)) {
9de4f22a 1466 int type = page_is_file_lru(page);
ad6b6704 1467 SetPageActive(page);
98879b3b 1468 stat->nr_activate[type] += nr_pages;
2262185c 1469 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1470 }
1da177e4
LT
1471keep_locked:
1472 unlock_page(page);
1473keep:
1474 list_add(&page->lru, &ret_pages);
309381fe 1475 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1476 }
abe4c3b5 1477
98879b3b
YS
1478 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1479
747db954 1480 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1481 try_to_unmap_flush();
2d4894b5 1482 free_unref_page_list(&free_pages);
abe4c3b5 1483
1da177e4 1484 list_splice(&ret_pages, page_list);
886cf190 1485 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1486
05ff5137 1487 return nr_reclaimed;
1da177e4
LT
1488}
1489
730ec8c0 1490unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1491 struct list_head *page_list)
1492{
1493 struct scan_control sc = {
1494 .gfp_mask = GFP_KERNEL,
1495 .priority = DEF_PRIORITY,
1496 .may_unmap = 1,
1497 };
1f318a9b 1498 struct reclaim_stat stat;
730ec8c0 1499 unsigned int nr_reclaimed;
02c6de8d
MK
1500 struct page *page, *next;
1501 LIST_HEAD(clean_pages);
1502
1503 list_for_each_entry_safe(page, next, page_list, lru) {
9de4f22a 1504 if (page_is_file_lru(page) && !PageDirty(page) &&
a58f2cef 1505 !__PageMovable(page) && !PageUnevictable(page)) {
02c6de8d
MK
1506 ClearPageActive(page);
1507 list_move(&page->lru, &clean_pages);
1508 }
1509 }
1510
1f318a9b
JK
1511 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1512 TTU_IGNORE_ACCESS, &stat, true);
02c6de8d 1513 list_splice(&clean_pages, page_list);
1f318a9b
JK
1514 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed);
1515 /*
1516 * Since lazyfree pages are isolated from file LRU from the beginning,
1517 * they will rotate back to anonymous LRU in the end if it failed to
1518 * discard so isolated count will be mismatched.
1519 * Compensate the isolated count for both LRU lists.
1520 */
1521 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1522 stat.nr_lazyfree_fail);
1523 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1524 -stat.nr_lazyfree_fail);
1525 return nr_reclaimed;
02c6de8d
MK
1526}
1527
5ad333eb
AW
1528/*
1529 * Attempt to remove the specified page from its LRU. Only take this page
1530 * if it is of the appropriate PageActive status. Pages which are being
1531 * freed elsewhere are also ignored.
1532 *
1533 * page: page to consider
1534 * mode: one of the LRU isolation modes defined above
1535 *
1536 * returns 0 on success, -ve errno on failure.
1537 */
f3fd4a61 1538int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1539{
1540 int ret = -EINVAL;
1541
1542 /* Only take pages on the LRU. */
1543 if (!PageLRU(page))
1544 return ret;
1545
e46a2879
MK
1546 /* Compaction should not handle unevictable pages but CMA can do so */
1547 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1548 return ret;
1549
5ad333eb 1550 ret = -EBUSY;
08e552c6 1551
c8244935
MG
1552 /*
1553 * To minimise LRU disruption, the caller can indicate that it only
1554 * wants to isolate pages it will be able to operate on without
1555 * blocking - clean pages for the most part.
1556 *
c8244935
MG
1557 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1558 * that it is possible to migrate without blocking
1559 */
1276ad68 1560 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1561 /* All the caller can do on PageWriteback is block */
1562 if (PageWriteback(page))
1563 return ret;
1564
1565 if (PageDirty(page)) {
1566 struct address_space *mapping;
69d763fc 1567 bool migrate_dirty;
c8244935 1568
c8244935
MG
1569 /*
1570 * Only pages without mappings or that have a
1571 * ->migratepage callback are possible to migrate
69d763fc
MG
1572 * without blocking. However, we can be racing with
1573 * truncation so it's necessary to lock the page
1574 * to stabilise the mapping as truncation holds
1575 * the page lock until after the page is removed
1576 * from the page cache.
c8244935 1577 */
69d763fc
MG
1578 if (!trylock_page(page))
1579 return ret;
1580
c8244935 1581 mapping = page_mapping(page);
145e1a71 1582 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1583 unlock_page(page);
1584 if (!migrate_dirty)
c8244935
MG
1585 return ret;
1586 }
1587 }
39deaf85 1588
f80c0673
MK
1589 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1590 return ret;
1591
5ad333eb
AW
1592 if (likely(get_page_unless_zero(page))) {
1593 /*
1594 * Be careful not to clear PageLRU until after we're
1595 * sure the page is not being freed elsewhere -- the
1596 * page release code relies on it.
1597 */
1598 ClearPageLRU(page);
1599 ret = 0;
1600 }
1601
1602 return ret;
1603}
1604
7ee36a14
MG
1605
1606/*
1607 * Update LRU sizes after isolating pages. The LRU size updates must
1608 * be complete before mem_cgroup_update_lru_size due to a santity check.
1609 */
1610static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1611 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1612{
7ee36a14
MG
1613 int zid;
1614
7ee36a14
MG
1615 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1616 if (!nr_zone_taken[zid])
1617 continue;
1618
a892cb6b 1619 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
1620 }
1621
7ee36a14
MG
1622}
1623
f4b7e272
AR
1624/**
1625 * pgdat->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1626 * shrink the lists perform better by taking out a batch of pages
1627 * and working on them outside the LRU lock.
1628 *
1629 * For pagecache intensive workloads, this function is the hottest
1630 * spot in the kernel (apart from copy_*_user functions).
1631 *
1632 * Appropriate locks must be held before calling this function.
1633 *
791b48b6 1634 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1635 * @lruvec: The LRU vector to pull pages from.
1da177e4 1636 * @dst: The temp list to put pages on to.
f626012d 1637 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1638 * @sc: The scan_control struct for this reclaim session
3cb99451 1639 * @lru: LRU list id for isolating
1da177e4
LT
1640 *
1641 * returns how many pages were moved onto *@dst.
1642 */
69e05944 1643static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1644 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1645 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1646 enum lru_list lru)
1da177e4 1647{
75b00af7 1648 struct list_head *src = &lruvec->lists[lru];
69e05944 1649 unsigned long nr_taken = 0;
599d0c95 1650 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1651 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1652 unsigned long skipped = 0;
791b48b6 1653 unsigned long scan, total_scan, nr_pages;
b2e18757 1654 LIST_HEAD(pages_skipped);
a9e7c39f 1655 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1656
98879b3b 1657 total_scan = 0;
791b48b6 1658 scan = 0;
98879b3b 1659 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1660 struct page *page;
5ad333eb 1661
1da177e4
LT
1662 page = lru_to_page(src);
1663 prefetchw_prev_lru_page(page, src, flags);
1664
309381fe 1665 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1666
d8c6546b 1667 nr_pages = compound_nr(page);
98879b3b
YS
1668 total_scan += nr_pages;
1669
b2e18757
MG
1670 if (page_zonenum(page) > sc->reclaim_idx) {
1671 list_move(&page->lru, &pages_skipped);
98879b3b 1672 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1673 continue;
1674 }
1675
791b48b6
MK
1676 /*
1677 * Do not count skipped pages because that makes the function
1678 * return with no isolated pages if the LRU mostly contains
1679 * ineligible pages. This causes the VM to not reclaim any
1680 * pages, triggering a premature OOM.
98879b3b
YS
1681 *
1682 * Account all tail pages of THP. This would not cause
1683 * premature OOM since __isolate_lru_page() returns -EBUSY
1684 * only when the page is being freed somewhere else.
791b48b6 1685 */
98879b3b 1686 scan += nr_pages;
f3fd4a61 1687 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1688 case 0:
599d0c95
MG
1689 nr_taken += nr_pages;
1690 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1691 list_move(&page->lru, dst);
5ad333eb
AW
1692 break;
1693
1694 case -EBUSY:
1695 /* else it is being freed elsewhere */
1696 list_move(&page->lru, src);
1697 continue;
46453a6e 1698
5ad333eb
AW
1699 default:
1700 BUG();
1701 }
1da177e4
LT
1702 }
1703
b2e18757
MG
1704 /*
1705 * Splice any skipped pages to the start of the LRU list. Note that
1706 * this disrupts the LRU order when reclaiming for lower zones but
1707 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1708 * scanning would soon rescan the same pages to skip and put the
1709 * system at risk of premature OOM.
1710 */
7cc30fcf
MG
1711 if (!list_empty(&pages_skipped)) {
1712 int zid;
1713
3db65812 1714 list_splice(&pages_skipped, src);
7cc30fcf
MG
1715 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1716 if (!nr_skipped[zid])
1717 continue;
1718
1719 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1720 skipped += nr_skipped[zid];
7cc30fcf
MG
1721 }
1722 }
791b48b6 1723 *nr_scanned = total_scan;
1265e3a6 1724 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1725 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1726 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1727 return nr_taken;
1728}
1729
62695a84
NP
1730/**
1731 * isolate_lru_page - tries to isolate a page from its LRU list
1732 * @page: page to isolate from its LRU list
1733 *
1734 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1735 * vmstat statistic corresponding to whatever LRU list the page was on.
1736 *
1737 * Returns 0 if the page was removed from an LRU list.
1738 * Returns -EBUSY if the page was not on an LRU list.
1739 *
1740 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1741 * the active list, it will have PageActive set. If it was found on
1742 * the unevictable list, it will have the PageUnevictable bit set. That flag
1743 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1744 *
1745 * The vmstat statistic corresponding to the list on which the page was
1746 * found will be decremented.
1747 *
1748 * Restrictions:
a5d09bed 1749 *
62695a84
NP
1750 * (1) Must be called with an elevated refcount on the page. This is a
1751 * fundamentnal difference from isolate_lru_pages (which is called
1752 * without a stable reference).
1753 * (2) the lru_lock must not be held.
1754 * (3) interrupts must be enabled.
1755 */
1756int isolate_lru_page(struct page *page)
1757{
1758 int ret = -EBUSY;
1759
309381fe 1760 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1761 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1762
62695a84 1763 if (PageLRU(page)) {
f4b7e272 1764 pg_data_t *pgdat = page_pgdat(page);
fa9add64 1765 struct lruvec *lruvec;
62695a84 1766
f4b7e272
AR
1767 spin_lock_irq(&pgdat->lru_lock);
1768 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0c917313 1769 if (PageLRU(page)) {
894bc310 1770 int lru = page_lru(page);
0c917313 1771 get_page(page);
62695a84 1772 ClearPageLRU(page);
fa9add64
HD
1773 del_page_from_lru_list(page, lruvec, lru);
1774 ret = 0;
62695a84 1775 }
f4b7e272 1776 spin_unlock_irq(&pgdat->lru_lock);
62695a84
NP
1777 }
1778 return ret;
1779}
1780
35cd7815 1781/*
d37dd5dc 1782 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 1783 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
1784 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1785 * the LRU list will go small and be scanned faster than necessary, leading to
1786 * unnecessary swapping, thrashing and OOM.
35cd7815 1787 */
599d0c95 1788static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1789 struct scan_control *sc)
1790{
1791 unsigned long inactive, isolated;
1792
1793 if (current_is_kswapd())
1794 return 0;
1795
b5ead35e 1796 if (!writeback_throttling_sane(sc))
35cd7815
RR
1797 return 0;
1798
1799 if (file) {
599d0c95
MG
1800 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1801 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1802 } else {
599d0c95
MG
1803 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1804 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1805 }
1806
3cf23841
FW
1807 /*
1808 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1809 * won't get blocked by normal direct-reclaimers, forming a circular
1810 * deadlock.
1811 */
d0164adc 1812 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1813 inactive >>= 3;
1814
35cd7815
RR
1815 return isolated > inactive;
1816}
1817
a222f341
KT
1818/*
1819 * This moves pages from @list to corresponding LRU list.
1820 *
1821 * We move them the other way if the page is referenced by one or more
1822 * processes, from rmap.
1823 *
1824 * If the pages are mostly unmapped, the processing is fast and it is
1825 * appropriate to hold zone_lru_lock across the whole operation. But if
1826 * the pages are mapped, the processing is slow (page_referenced()) so we
1827 * should drop zone_lru_lock around each page. It's impossible to balance
1828 * this, so instead we remove the pages from the LRU while processing them.
1829 * It is safe to rely on PG_active against the non-LRU pages in here because
1830 * nobody will play with that bit on a non-LRU page.
1831 *
1832 * The downside is that we have to touch page->_refcount against each page.
1833 * But we had to alter page->flags anyway.
1834 *
1835 * Returns the number of pages moved to the given lruvec.
1836 */
1837
1838static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1839 struct list_head *list)
66635629 1840{
599d0c95 1841 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
a222f341 1842 int nr_pages, nr_moved = 0;
3f79768f 1843 LIST_HEAD(pages_to_free);
a222f341
KT
1844 struct page *page;
1845 enum lru_list lru;
66635629 1846
a222f341
KT
1847 while (!list_empty(list)) {
1848 page = lru_to_page(list);
309381fe 1849 VM_BUG_ON_PAGE(PageLRU(page), page);
39b5f29a 1850 if (unlikely(!page_evictable(page))) {
a222f341 1851 list_del(&page->lru);
599d0c95 1852 spin_unlock_irq(&pgdat->lru_lock);
66635629 1853 putback_lru_page(page);
599d0c95 1854 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1855 continue;
1856 }
599d0c95 1857 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1858
7a608572 1859 SetPageLRU(page);
66635629 1860 lru = page_lru(page);
a222f341
KT
1861
1862 nr_pages = hpage_nr_pages(page);
1863 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1864 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1865
2bcf8879
HD
1866 if (put_page_testzero(page)) {
1867 __ClearPageLRU(page);
1868 __ClearPageActive(page);
fa9add64 1869 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1870
1871 if (unlikely(PageCompound(page))) {
599d0c95 1872 spin_unlock_irq(&pgdat->lru_lock);
ff45fc3c 1873 destroy_compound_page(page);
599d0c95 1874 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1875 } else
1876 list_add(&page->lru, &pages_to_free);
a222f341
KT
1877 } else {
1878 nr_moved += nr_pages;
66635629
MG
1879 }
1880 }
66635629 1881
3f79768f
HD
1882 /*
1883 * To save our caller's stack, now use input list for pages to free.
1884 */
a222f341
KT
1885 list_splice(&pages_to_free, list);
1886
1887 return nr_moved;
66635629
MG
1888}
1889
399ba0b9
N
1890/*
1891 * If a kernel thread (such as nfsd for loop-back mounts) services
a37b0715 1892 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
399ba0b9
N
1893 * In that case we should only throttle if the backing device it is
1894 * writing to is congested. In other cases it is safe to throttle.
1895 */
1896static int current_may_throttle(void)
1897{
a37b0715 1898 return !(current->flags & PF_LOCAL_THROTTLE) ||
399ba0b9
N
1899 current->backing_dev_info == NULL ||
1900 bdi_write_congested(current->backing_dev_info);
1901}
1902
1da177e4 1903/*
b2e18757 1904 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1905 * of reclaimed pages
1da177e4 1906 */
66635629 1907static noinline_for_stack unsigned long
1a93be0e 1908shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1909 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1910{
1911 LIST_HEAD(page_list);
e247dbce 1912 unsigned long nr_scanned;
730ec8c0 1913 unsigned int nr_reclaimed = 0;
e247dbce 1914 unsigned long nr_taken;
060f005f 1915 struct reclaim_stat stat;
497a6c1b 1916 bool file = is_file_lru(lru);
f46b7912 1917 enum vm_event_item item;
599d0c95 1918 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1919 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1920 bool stalled = false;
78dc583d 1921
599d0c95 1922 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1923 if (stalled)
1924 return 0;
1925
1926 /* wait a bit for the reclaimer. */
1927 msleep(100);
1928 stalled = true;
35cd7815
RR
1929
1930 /* We are about to die and free our memory. Return now. */
1931 if (fatal_signal_pending(current))
1932 return SWAP_CLUSTER_MAX;
1933 }
1934
1da177e4 1935 lru_add_drain();
f80c0673 1936
599d0c95 1937 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1938
5dc35979 1939 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 1940 &nr_scanned, sc, lru);
95d918fc 1941
599d0c95 1942 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1943 reclaim_stat->recent_scanned[file] += nr_taken;
f46b7912 1944 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 1945 if (!cgroup_reclaim(sc))
f46b7912
KT
1946 __count_vm_events(item, nr_scanned);
1947 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
1948 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1949
599d0c95 1950 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1951
d563c050 1952 if (nr_taken == 0)
66635629 1953 return 0;
5ad333eb 1954
a128ca71 1955 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1956 &stat, false);
c661b078 1957
599d0c95 1958 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1959
497a6c1b
JW
1960 move_pages_to_lru(lruvec, &page_list);
1961
1962 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1963 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1964 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
f46b7912 1965 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 1966 if (!cgroup_reclaim(sc))
f46b7912
KT
1967 __count_vm_events(item, nr_reclaimed);
1968 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 1969 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
3f79768f 1970
599d0c95 1971 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1972
747db954 1973 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1974 free_unref_page_list(&page_list);
e11da5b4 1975
1c610d5f
AR
1976 /*
1977 * If dirty pages are scanned that are not queued for IO, it
1978 * implies that flushers are not doing their job. This can
1979 * happen when memory pressure pushes dirty pages to the end of
1980 * the LRU before the dirty limits are breached and the dirty
1981 * data has expired. It can also happen when the proportion of
1982 * dirty pages grows not through writes but through memory
1983 * pressure reclaiming all the clean cache. And in some cases,
1984 * the flushers simply cannot keep up with the allocation
1985 * rate. Nudge the flusher threads in case they are asleep.
1986 */
1987 if (stat.nr_unqueued_dirty == nr_taken)
1988 wakeup_flusher_threads(WB_REASON_VMSCAN);
1989
d108c772
AR
1990 sc->nr.dirty += stat.nr_dirty;
1991 sc->nr.congested += stat.nr_congested;
1992 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1993 sc->nr.writeback += stat.nr_writeback;
1994 sc->nr.immediate += stat.nr_immediate;
1995 sc->nr.taken += nr_taken;
1996 if (file)
1997 sc->nr.file_taken += nr_taken;
8e950282 1998
599d0c95 1999 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2000 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2001 return nr_reclaimed;
1da177e4
LT
2002}
2003
f626012d 2004static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2005 struct lruvec *lruvec,
f16015fb 2006 struct scan_control *sc,
9e3b2f8c 2007 enum lru_list lru)
1da177e4 2008{
44c241f1 2009 unsigned long nr_taken;
f626012d 2010 unsigned long nr_scanned;
6fe6b7e3 2011 unsigned long vm_flags;
1da177e4 2012 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2013 LIST_HEAD(l_active);
b69408e8 2014 LIST_HEAD(l_inactive);
1da177e4 2015 struct page *page;
1a93be0e 2016 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
2017 unsigned nr_deactivate, nr_activate;
2018 unsigned nr_rotated = 0;
3cb99451 2019 int file = is_file_lru(lru);
599d0c95 2020 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2021
2022 lru_add_drain();
f80c0673 2023
599d0c95 2024 spin_lock_irq(&pgdat->lru_lock);
925b7673 2025
5dc35979 2026 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2027 &nr_scanned, sc, lru);
89b5fae5 2028
599d0c95 2029 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2030 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2031
599d0c95 2032 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2033 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2034
599d0c95 2035 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2036
1da177e4
LT
2037 while (!list_empty(&l_hold)) {
2038 cond_resched();
2039 page = lru_to_page(&l_hold);
2040 list_del(&page->lru);
7e9cd484 2041
39b5f29a 2042 if (unlikely(!page_evictable(page))) {
894bc310
LS
2043 putback_lru_page(page);
2044 continue;
2045 }
2046
cc715d99
MG
2047 if (unlikely(buffer_heads_over_limit)) {
2048 if (page_has_private(page) && trylock_page(page)) {
2049 if (page_has_private(page))
2050 try_to_release_page(page, 0);
2051 unlock_page(page);
2052 }
2053 }
2054
c3ac9a8a
JW
2055 if (page_referenced(page, 0, sc->target_mem_cgroup,
2056 &vm_flags)) {
9992af10 2057 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2058 /*
2059 * Identify referenced, file-backed active pages and
2060 * give them one more trip around the active list. So
2061 * that executable code get better chances to stay in
2062 * memory under moderate memory pressure. Anon pages
2063 * are not likely to be evicted by use-once streaming
2064 * IO, plus JVM can create lots of anon VM_EXEC pages,
2065 * so we ignore them here.
2066 */
9de4f22a 2067 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
8cab4754
WF
2068 list_add(&page->lru, &l_active);
2069 continue;
2070 }
2071 }
7e9cd484 2072
5205e56e 2073 ClearPageActive(page); /* we are de-activating */
1899ad18 2074 SetPageWorkingset(page);
1da177e4
LT
2075 list_add(&page->lru, &l_inactive);
2076 }
2077
b555749a 2078 /*
8cab4754 2079 * Move pages back to the lru list.
b555749a 2080 */
599d0c95 2081 spin_lock_irq(&pgdat->lru_lock);
556adecb 2082 /*
8cab4754
WF
2083 * Count referenced pages from currently used mappings as rotated,
2084 * even though only some of them are actually re-activated. This
2085 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2086 * get_scan_count.
7e9cd484 2087 */
b7c46d15 2088 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2089
a222f341
KT
2090 nr_activate = move_pages_to_lru(lruvec, &l_active);
2091 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2092 /* Keep all free pages in l_active list */
2093 list_splice(&l_inactive, &l_active);
9851ac13
KT
2094
2095 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2096 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2097
599d0c95
MG
2098 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2099 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2100
f372d89e
KT
2101 mem_cgroup_uncharge_list(&l_active);
2102 free_unref_page_list(&l_active);
9d998b4f
MH
2103 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2104 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2105}
2106
1a4e58cc
MK
2107unsigned long reclaim_pages(struct list_head *page_list)
2108{
f661d007 2109 int nid = NUMA_NO_NODE;
730ec8c0 2110 unsigned int nr_reclaimed = 0;
1a4e58cc
MK
2111 LIST_HEAD(node_page_list);
2112 struct reclaim_stat dummy_stat;
2113 struct page *page;
2114 struct scan_control sc = {
2115 .gfp_mask = GFP_KERNEL,
2116 .priority = DEF_PRIORITY,
2117 .may_writepage = 1,
2118 .may_unmap = 1,
2119 .may_swap = 1,
2120 };
2121
2122 while (!list_empty(page_list)) {
2123 page = lru_to_page(page_list);
f661d007 2124 if (nid == NUMA_NO_NODE) {
1a4e58cc
MK
2125 nid = page_to_nid(page);
2126 INIT_LIST_HEAD(&node_page_list);
2127 }
2128
2129 if (nid == page_to_nid(page)) {
2130 ClearPageActive(page);
2131 list_move(&page->lru, &node_page_list);
2132 continue;
2133 }
2134
2135 nr_reclaimed += shrink_page_list(&node_page_list,
2136 NODE_DATA(nid),
2137 &sc, 0,
2138 &dummy_stat, false);
2139 while (!list_empty(&node_page_list)) {
2140 page = lru_to_page(&node_page_list);
2141 list_del(&page->lru);
2142 putback_lru_page(page);
2143 }
2144
f661d007 2145 nid = NUMA_NO_NODE;
1a4e58cc
MK
2146 }
2147
2148 if (!list_empty(&node_page_list)) {
2149 nr_reclaimed += shrink_page_list(&node_page_list,
2150 NODE_DATA(nid),
2151 &sc, 0,
2152 &dummy_stat, false);
2153 while (!list_empty(&node_page_list)) {
2154 page = lru_to_page(&node_page_list);
2155 list_del(&page->lru);
2156 putback_lru_page(page);
2157 }
2158 }
2159
2160 return nr_reclaimed;
2161}
2162
b91ac374
JW
2163static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2164 struct lruvec *lruvec, struct scan_control *sc)
2165{
2166 if (is_active_lru(lru)) {
2167 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2168 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2169 else
2170 sc->skipped_deactivate = 1;
2171 return 0;
2172 }
2173
2174 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2175}
2176
59dc76b0
RR
2177/*
2178 * The inactive anon list should be small enough that the VM never has
2179 * to do too much work.
14797e23 2180 *
59dc76b0
RR
2181 * The inactive file list should be small enough to leave most memory
2182 * to the established workingset on the scan-resistant active list,
2183 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2184 *
59dc76b0
RR
2185 * Both inactive lists should also be large enough that each inactive
2186 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2187 *
2a2e4885
JW
2188 * If that fails and refaulting is observed, the inactive list grows.
2189 *
59dc76b0 2190 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2191 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2192 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2193 *
59dc76b0
RR
2194 * total target max
2195 * memory ratio inactive
2196 * -------------------------------------
2197 * 10MB 1 5MB
2198 * 100MB 1 50MB
2199 * 1GB 3 250MB
2200 * 10GB 10 0.9GB
2201 * 100GB 31 3GB
2202 * 1TB 101 10GB
2203 * 10TB 320 32GB
56e49d21 2204 */
b91ac374 2205static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2206{
b91ac374 2207 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2208 unsigned long inactive, active;
2209 unsigned long inactive_ratio;
59dc76b0 2210 unsigned long gb;
e3790144 2211
b91ac374
JW
2212 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2213 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2214
b91ac374
JW
2215 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2216 if (gb)
2217 inactive_ratio = int_sqrt(10 * gb);
2218 else
2219 inactive_ratio = 1;
fd538803 2220
59dc76b0 2221 return inactive * inactive_ratio < active;
b39415b2
RR
2222}
2223
9a265114
JW
2224enum scan_balance {
2225 SCAN_EQUAL,
2226 SCAN_FRACT,
2227 SCAN_ANON,
2228 SCAN_FILE,
2229};
2230
4f98a2fe
RR
2231/*
2232 * Determine how aggressively the anon and file LRU lists should be
2233 * scanned. The relative value of each set of LRU lists is determined
2234 * by looking at the fraction of the pages scanned we did rotate back
2235 * onto the active list instead of evict.
2236 *
be7bd59d
WL
2237 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2238 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2239 */
afaf07a6
JW
2240static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2241 unsigned long *nr)
4f98a2fe 2242{
afaf07a6 2243 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
33377678 2244 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2245 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2246 u64 fraction[2];
2247 u64 denominator = 0; /* gcc */
599d0c95 2248 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2249 unsigned long anon_prio, file_prio;
9a265114 2250 enum scan_balance scan_balance;
0bf1457f 2251 unsigned long anon, file;
4f98a2fe 2252 unsigned long ap, fp;
4111304d 2253 enum lru_list lru;
76a33fc3
SL
2254
2255 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2256 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2257 scan_balance = SCAN_FILE;
76a33fc3
SL
2258 goto out;
2259 }
4f98a2fe 2260
10316b31
JW
2261 /*
2262 * Global reclaim will swap to prevent OOM even with no
2263 * swappiness, but memcg users want to use this knob to
2264 * disable swapping for individual groups completely when
2265 * using the memory controller's swap limit feature would be
2266 * too expensive.
2267 */
b5ead35e 2268 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2269 scan_balance = SCAN_FILE;
10316b31
JW
2270 goto out;
2271 }
2272
2273 /*
2274 * Do not apply any pressure balancing cleverness when the
2275 * system is close to OOM, scan both anon and file equally
2276 * (unless the swappiness setting disagrees with swapping).
2277 */
02695175 2278 if (!sc->priority && swappiness) {
9a265114 2279 scan_balance = SCAN_EQUAL;
10316b31
JW
2280 goto out;
2281 }
2282
62376251 2283 /*
53138cea 2284 * If the system is almost out of file pages, force-scan anon.
62376251 2285 */
b91ac374 2286 if (sc->file_is_tiny) {
53138cea
JW
2287 scan_balance = SCAN_ANON;
2288 goto out;
62376251
JW
2289 }
2290
7c5bd705 2291 /*
b91ac374
JW
2292 * If there is enough inactive page cache, we do not reclaim
2293 * anything from the anonymous working right now.
7c5bd705 2294 */
b91ac374 2295 if (sc->cache_trim_mode) {
9a265114 2296 scan_balance = SCAN_FILE;
7c5bd705
JW
2297 goto out;
2298 }
2299
9a265114
JW
2300 scan_balance = SCAN_FRACT;
2301
58c37f6e
KM
2302 /*
2303 * With swappiness at 100, anonymous and file have the same priority.
2304 * This scanning priority is essentially the inverse of IO cost.
2305 */
02695175 2306 anon_prio = swappiness;
75b00af7 2307 file_prio = 200 - anon_prio;
58c37f6e 2308
4f98a2fe
RR
2309 /*
2310 * OK, so we have swap space and a fair amount of page cache
2311 * pages. We use the recently rotated / recently scanned
2312 * ratios to determine how valuable each cache is.
2313 *
2314 * Because workloads change over time (and to avoid overflow)
2315 * we keep these statistics as a floating average, which ends
2316 * up weighing recent references more than old ones.
2317 *
2318 * anon in [0], file in [1]
2319 */
2ab051e1 2320
fd538803
MH
2321 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2322 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2323 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2324 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2325
599d0c95 2326 spin_lock_irq(&pgdat->lru_lock);
6e901571 2327 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2328 reclaim_stat->recent_scanned[0] /= 2;
2329 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2330 }
2331
6e901571 2332 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2333 reclaim_stat->recent_scanned[1] /= 2;
2334 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2335 }
2336
4f98a2fe 2337 /*
00d8089c
RR
2338 * The amount of pressure on anon vs file pages is inversely
2339 * proportional to the fraction of recently scanned pages on
2340 * each list that were recently referenced and in active use.
4f98a2fe 2341 */
fe35004f 2342 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2343 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2344
fe35004f 2345 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2346 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2347 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2348
76a33fc3
SL
2349 fraction[0] = ap;
2350 fraction[1] = fp;
2351 denominator = ap + fp + 1;
2352out:
688035f7
JW
2353 for_each_evictable_lru(lru) {
2354 int file = is_file_lru(lru);
9783aa99 2355 unsigned long lruvec_size;
688035f7 2356 unsigned long scan;
1bc63fb1 2357 unsigned long protection;
9783aa99
CD
2358
2359 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
1bc63fb1
CD
2360 protection = mem_cgroup_protection(memcg,
2361 sc->memcg_low_reclaim);
9783aa99 2362
1bc63fb1 2363 if (protection) {
9783aa99
CD
2364 /*
2365 * Scale a cgroup's reclaim pressure by proportioning
2366 * its current usage to its memory.low or memory.min
2367 * setting.
2368 *
2369 * This is important, as otherwise scanning aggression
2370 * becomes extremely binary -- from nothing as we
2371 * approach the memory protection threshold, to totally
2372 * nominal as we exceed it. This results in requiring
2373 * setting extremely liberal protection thresholds. It
2374 * also means we simply get no protection at all if we
2375 * set it too low, which is not ideal.
1bc63fb1
CD
2376 *
2377 * If there is any protection in place, we reduce scan
2378 * pressure by how much of the total memory used is
2379 * within protection thresholds.
9783aa99 2380 *
9de7ca46
CD
2381 * There is one special case: in the first reclaim pass,
2382 * we skip over all groups that are within their low
2383 * protection. If that fails to reclaim enough pages to
2384 * satisfy the reclaim goal, we come back and override
2385 * the best-effort low protection. However, we still
2386 * ideally want to honor how well-behaved groups are in
2387 * that case instead of simply punishing them all
2388 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2389 * memory they are using, reducing the scan pressure
2390 * again by how much of the total memory used is under
2391 * hard protection.
9783aa99 2392 */
1bc63fb1
CD
2393 unsigned long cgroup_size = mem_cgroup_size(memcg);
2394
2395 /* Avoid TOCTOU with earlier protection check */
2396 cgroup_size = max(cgroup_size, protection);
2397
2398 scan = lruvec_size - lruvec_size * protection /
2399 cgroup_size;
9783aa99
CD
2400
2401 /*
1bc63fb1 2402 * Minimally target SWAP_CLUSTER_MAX pages to keep
9de7ca46
CD
2403 * reclaim moving forwards, avoiding decremeting
2404 * sc->priority further than desirable.
9783aa99 2405 */
1bc63fb1 2406 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2407 } else {
2408 scan = lruvec_size;
2409 }
2410
2411 scan >>= sc->priority;
6b4f7799 2412
688035f7
JW
2413 /*
2414 * If the cgroup's already been deleted, make sure to
2415 * scrape out the remaining cache.
2416 */
2417 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2418 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2419
688035f7
JW
2420 switch (scan_balance) {
2421 case SCAN_EQUAL:
2422 /* Scan lists relative to size */
2423 break;
2424 case SCAN_FRACT:
9a265114 2425 /*
688035f7
JW
2426 * Scan types proportional to swappiness and
2427 * their relative recent reclaim efficiency.
76073c64
GS
2428 * Make sure we don't miss the last page on
2429 * the offlined memory cgroups because of a
2430 * round-off error.
9a265114 2431 */
76073c64
GS
2432 scan = mem_cgroup_online(memcg) ?
2433 div64_u64(scan * fraction[file], denominator) :
2434 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2435 denominator);
688035f7
JW
2436 break;
2437 case SCAN_FILE:
2438 case SCAN_ANON:
2439 /* Scan one type exclusively */
e072bff6 2440 if ((scan_balance == SCAN_FILE) != file)
688035f7 2441 scan = 0;
688035f7
JW
2442 break;
2443 default:
2444 /* Look ma, no brain */
2445 BUG();
9a265114 2446 }
688035f7 2447
688035f7 2448 nr[lru] = scan;
76a33fc3 2449 }
6e08a369 2450}
4f98a2fe 2451
afaf07a6 2452static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2453{
2454 unsigned long nr[NR_LRU_LISTS];
e82e0561 2455 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2456 unsigned long nr_to_scan;
2457 enum lru_list lru;
2458 unsigned long nr_reclaimed = 0;
2459 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2460 struct blk_plug plug;
1a501907 2461 bool scan_adjusted;
9b4f98cd 2462
afaf07a6 2463 get_scan_count(lruvec, sc, nr);
9b4f98cd 2464
e82e0561
MG
2465 /* Record the original scan target for proportional adjustments later */
2466 memcpy(targets, nr, sizeof(nr));
2467
1a501907
MG
2468 /*
2469 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2470 * event that can occur when there is little memory pressure e.g.
2471 * multiple streaming readers/writers. Hence, we do not abort scanning
2472 * when the requested number of pages are reclaimed when scanning at
2473 * DEF_PRIORITY on the assumption that the fact we are direct
2474 * reclaiming implies that kswapd is not keeping up and it is best to
2475 * do a batch of work at once. For memcg reclaim one check is made to
2476 * abort proportional reclaim if either the file or anon lru has already
2477 * dropped to zero at the first pass.
2478 */
b5ead35e 2479 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2480 sc->priority == DEF_PRIORITY);
2481
9b4f98cd
JW
2482 blk_start_plug(&plug);
2483 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2484 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2485 unsigned long nr_anon, nr_file, percentage;
2486 unsigned long nr_scanned;
2487
9b4f98cd
JW
2488 for_each_evictable_lru(lru) {
2489 if (nr[lru]) {
2490 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2491 nr[lru] -= nr_to_scan;
2492
2493 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2494 lruvec, sc);
9b4f98cd
JW
2495 }
2496 }
e82e0561 2497
bd041733
MH
2498 cond_resched();
2499
e82e0561
MG
2500 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2501 continue;
2502
e82e0561
MG
2503 /*
2504 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2505 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2506 * proportionally what was requested by get_scan_count(). We
2507 * stop reclaiming one LRU and reduce the amount scanning
2508 * proportional to the original scan target.
2509 */
2510 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2511 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2512
1a501907
MG
2513 /*
2514 * It's just vindictive to attack the larger once the smaller
2515 * has gone to zero. And given the way we stop scanning the
2516 * smaller below, this makes sure that we only make one nudge
2517 * towards proportionality once we've got nr_to_reclaim.
2518 */
2519 if (!nr_file || !nr_anon)
2520 break;
2521
e82e0561
MG
2522 if (nr_file > nr_anon) {
2523 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2524 targets[LRU_ACTIVE_ANON] + 1;
2525 lru = LRU_BASE;
2526 percentage = nr_anon * 100 / scan_target;
2527 } else {
2528 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2529 targets[LRU_ACTIVE_FILE] + 1;
2530 lru = LRU_FILE;
2531 percentage = nr_file * 100 / scan_target;
2532 }
2533
2534 /* Stop scanning the smaller of the LRU */
2535 nr[lru] = 0;
2536 nr[lru + LRU_ACTIVE] = 0;
2537
2538 /*
2539 * Recalculate the other LRU scan count based on its original
2540 * scan target and the percentage scanning already complete
2541 */
2542 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2543 nr_scanned = targets[lru] - nr[lru];
2544 nr[lru] = targets[lru] * (100 - percentage) / 100;
2545 nr[lru] -= min(nr[lru], nr_scanned);
2546
2547 lru += LRU_ACTIVE;
2548 nr_scanned = targets[lru] - nr[lru];
2549 nr[lru] = targets[lru] * (100 - percentage) / 100;
2550 nr[lru] -= min(nr[lru], nr_scanned);
2551
2552 scan_adjusted = true;
9b4f98cd
JW
2553 }
2554 blk_finish_plug(&plug);
2555 sc->nr_reclaimed += nr_reclaimed;
2556
2557 /*
2558 * Even if we did not try to evict anon pages at all, we want to
2559 * rebalance the anon lru active/inactive ratio.
2560 */
b91ac374 2561 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
2562 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2563 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2564}
2565
23b9da55 2566/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2567static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2568{
d84da3f9 2569 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2570 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2571 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2572 return true;
2573
2574 return false;
2575}
2576
3e7d3449 2577/*
23b9da55
MG
2578 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2579 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2580 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 2581 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 2582 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2583 */
a9dd0a83 2584static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 2585 unsigned long nr_reclaimed,
3e7d3449
MG
2586 struct scan_control *sc)
2587{
2588 unsigned long pages_for_compaction;
2589 unsigned long inactive_lru_pages;
a9dd0a83 2590 int z;
3e7d3449
MG
2591
2592 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2593 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2594 return false;
2595
5ee04716
VB
2596 /*
2597 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2598 * number of pages that were scanned. This will return to the caller
2599 * with the risk reclaim/compaction and the resulting allocation attempt
2600 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2601 * allocations through requiring that the full LRU list has been scanned
2602 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2603 * scan, but that approximation was wrong, and there were corner cases
2604 * where always a non-zero amount of pages were scanned.
2605 */
2606 if (!nr_reclaimed)
2607 return false;
3e7d3449 2608
3e7d3449 2609 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2610 for (z = 0; z <= sc->reclaim_idx; z++) {
2611 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2612 if (!managed_zone(zone))
a9dd0a83
MG
2613 continue;
2614
2615 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2616 case COMPACT_SUCCESS:
a9dd0a83
MG
2617 case COMPACT_CONTINUE:
2618 return false;
2619 default:
2620 /* check next zone */
2621 ;
2622 }
3e7d3449 2623 }
1c6c1597
HD
2624
2625 /*
2626 * If we have not reclaimed enough pages for compaction and the
2627 * inactive lists are large enough, continue reclaiming
2628 */
2629 pages_for_compaction = compact_gap(sc->order);
2630 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2631 if (get_nr_swap_pages() > 0)
2632 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2633
5ee04716 2634 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
2635}
2636
0f6a5cff 2637static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2638{
0f6a5cff 2639 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 2640 struct mem_cgroup *memcg;
1da177e4 2641
0f6a5cff 2642 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 2643 do {
afaf07a6 2644 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
2645 unsigned long reclaimed;
2646 unsigned long scanned;
5660048c 2647
0f6a5cff 2648 switch (mem_cgroup_protected(target_memcg, memcg)) {
d2af3397
JW
2649 case MEMCG_PROT_MIN:
2650 /*
2651 * Hard protection.
2652 * If there is no reclaimable memory, OOM.
2653 */
2654 continue;
2655 case MEMCG_PROT_LOW:
2656 /*
2657 * Soft protection.
2658 * Respect the protection only as long as
2659 * there is an unprotected supply
2660 * of reclaimable memory from other cgroups.
2661 */
2662 if (!sc->memcg_low_reclaim) {
2663 sc->memcg_low_skipped = 1;
bf8d5d52 2664 continue;
241994ed 2665 }
d2af3397
JW
2666 memcg_memory_event(memcg, MEMCG_LOW);
2667 break;
2668 case MEMCG_PROT_NONE:
2669 /*
2670 * All protection thresholds breached. We may
2671 * still choose to vary the scan pressure
2672 * applied based on by how much the cgroup in
2673 * question has exceeded its protection
2674 * thresholds (see get_scan_count).
2675 */
2676 break;
2677 }
241994ed 2678
d2af3397
JW
2679 reclaimed = sc->nr_reclaimed;
2680 scanned = sc->nr_scanned;
afaf07a6
JW
2681
2682 shrink_lruvec(lruvec, sc);
70ddf637 2683
d2af3397
JW
2684 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2685 sc->priority);
6b4f7799 2686
d2af3397
JW
2687 /* Record the group's reclaim efficiency */
2688 vmpressure(sc->gfp_mask, memcg, false,
2689 sc->nr_scanned - scanned,
2690 sc->nr_reclaimed - reclaimed);
70ddf637 2691
0f6a5cff
JW
2692 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2693}
2694
6c9e0907 2695static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
2696{
2697 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 2698 unsigned long nr_reclaimed, nr_scanned;
1b05117d 2699 struct lruvec *target_lruvec;
0f6a5cff 2700 bool reclaimable = false;
b91ac374 2701 unsigned long file;
0f6a5cff 2702
1b05117d
JW
2703 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2704
0f6a5cff
JW
2705again:
2706 memset(&sc->nr, 0, sizeof(sc->nr));
2707
2708 nr_reclaimed = sc->nr_reclaimed;
2709 nr_scanned = sc->nr_scanned;
2710
b91ac374
JW
2711 /*
2712 * Target desirable inactive:active list ratios for the anon
2713 * and file LRU lists.
2714 */
2715 if (!sc->force_deactivate) {
2716 unsigned long refaults;
2717
2718 if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2719 sc->may_deactivate |= DEACTIVATE_ANON;
2720 else
2721 sc->may_deactivate &= ~DEACTIVATE_ANON;
2722
2723 /*
2724 * When refaults are being observed, it means a new
2725 * workingset is being established. Deactivate to get
2726 * rid of any stale active pages quickly.
2727 */
2728 refaults = lruvec_page_state(target_lruvec,
2729 WORKINGSET_ACTIVATE);
2730 if (refaults != target_lruvec->refaults ||
2731 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2732 sc->may_deactivate |= DEACTIVATE_FILE;
2733 else
2734 sc->may_deactivate &= ~DEACTIVATE_FILE;
2735 } else
2736 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2737
2738 /*
2739 * If we have plenty of inactive file pages that aren't
2740 * thrashing, try to reclaim those first before touching
2741 * anonymous pages.
2742 */
2743 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2744 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2745 sc->cache_trim_mode = 1;
2746 else
2747 sc->cache_trim_mode = 0;
2748
53138cea
JW
2749 /*
2750 * Prevent the reclaimer from falling into the cache trap: as
2751 * cache pages start out inactive, every cache fault will tip
2752 * the scan balance towards the file LRU. And as the file LRU
2753 * shrinks, so does the window for rotation from references.
2754 * This means we have a runaway feedback loop where a tiny
2755 * thrashing file LRU becomes infinitely more attractive than
2756 * anon pages. Try to detect this based on file LRU size.
2757 */
2758 if (!cgroup_reclaim(sc)) {
53138cea 2759 unsigned long total_high_wmark = 0;
b91ac374
JW
2760 unsigned long free, anon;
2761 int z;
53138cea
JW
2762
2763 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2764 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2765 node_page_state(pgdat, NR_INACTIVE_FILE);
2766
2767 for (z = 0; z < MAX_NR_ZONES; z++) {
2768 struct zone *zone = &pgdat->node_zones[z];
2769 if (!managed_zone(zone))
2770 continue;
2771
2772 total_high_wmark += high_wmark_pages(zone);
2773 }
2774
b91ac374
JW
2775 /*
2776 * Consider anon: if that's low too, this isn't a
2777 * runaway file reclaim problem, but rather just
2778 * extreme pressure. Reclaim as per usual then.
2779 */
2780 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2781
2782 sc->file_is_tiny =
2783 file + free <= total_high_wmark &&
2784 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2785 anon >> sc->priority;
53138cea
JW
2786 }
2787
0f6a5cff 2788 shrink_node_memcgs(pgdat, sc);
2344d7e4 2789
d2af3397
JW
2790 if (reclaim_state) {
2791 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2792 reclaim_state->reclaimed_slab = 0;
2793 }
d108c772 2794
d2af3397 2795 /* Record the subtree's reclaim efficiency */
1b05117d 2796 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
2797 sc->nr_scanned - nr_scanned,
2798 sc->nr_reclaimed - nr_reclaimed);
d108c772 2799
d2af3397
JW
2800 if (sc->nr_reclaimed - nr_reclaimed)
2801 reclaimable = true;
d108c772 2802
d2af3397
JW
2803 if (current_is_kswapd()) {
2804 /*
2805 * If reclaim is isolating dirty pages under writeback,
2806 * it implies that the long-lived page allocation rate
2807 * is exceeding the page laundering rate. Either the
2808 * global limits are not being effective at throttling
2809 * processes due to the page distribution throughout
2810 * zones or there is heavy usage of a slow backing
2811 * device. The only option is to throttle from reclaim
2812 * context which is not ideal as there is no guarantee
2813 * the dirtying process is throttled in the same way
2814 * balance_dirty_pages() manages.
2815 *
2816 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2817 * count the number of pages under pages flagged for
2818 * immediate reclaim and stall if any are encountered
2819 * in the nr_immediate check below.
2820 */
2821 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2822 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2823
d2af3397
JW
2824 /* Allow kswapd to start writing pages during reclaim.*/
2825 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2826 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 2827
d108c772 2828 /*
d2af3397
JW
2829 * If kswapd scans pages marked marked for immediate
2830 * reclaim and under writeback (nr_immediate), it
2831 * implies that pages are cycling through the LRU
2832 * faster than they are written so also forcibly stall.
d108c772 2833 */
d2af3397
JW
2834 if (sc->nr.immediate)
2835 congestion_wait(BLK_RW_ASYNC, HZ/10);
2836 }
2837
2838 /*
1b05117d
JW
2839 * Tag a node/memcg as congested if all the dirty pages
2840 * scanned were backed by a congested BDI and
2841 * wait_iff_congested will stall.
2842 *
d2af3397
JW
2843 * Legacy memcg will stall in page writeback so avoid forcibly
2844 * stalling in wait_iff_congested().
2845 */
1b05117d
JW
2846 if ((current_is_kswapd() ||
2847 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 2848 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 2849 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
2850
2851 /*
2852 * Stall direct reclaim for IO completions if underlying BDIs
2853 * and node is congested. Allow kswapd to continue until it
2854 * starts encountering unqueued dirty pages or cycling through
2855 * the LRU too quickly.
2856 */
1b05117d
JW
2857 if (!current_is_kswapd() && current_may_throttle() &&
2858 !sc->hibernation_mode &&
2859 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
d2af3397 2860 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2861
d2af3397
JW
2862 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2863 sc))
2864 goto again;
2344d7e4 2865
c73322d0
JW
2866 /*
2867 * Kswapd gives up on balancing particular nodes after too
2868 * many failures to reclaim anything from them and goes to
2869 * sleep. On reclaim progress, reset the failure counter. A
2870 * successful direct reclaim run will revive a dormant kswapd.
2871 */
2872 if (reclaimable)
2873 pgdat->kswapd_failures = 0;
f16015fb
JW
2874}
2875
53853e2d 2876/*
fdd4c614
VB
2877 * Returns true if compaction should go ahead for a costly-order request, or
2878 * the allocation would already succeed without compaction. Return false if we
2879 * should reclaim first.
53853e2d 2880 */
4f588331 2881static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2882{
31483b6a 2883 unsigned long watermark;
fdd4c614 2884 enum compact_result suitable;
fe4b1b24 2885
fdd4c614
VB
2886 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2887 if (suitable == COMPACT_SUCCESS)
2888 /* Allocation should succeed already. Don't reclaim. */
2889 return true;
2890 if (suitable == COMPACT_SKIPPED)
2891 /* Compaction cannot yet proceed. Do reclaim. */
2892 return false;
fe4b1b24 2893
53853e2d 2894 /*
fdd4c614
VB
2895 * Compaction is already possible, but it takes time to run and there
2896 * are potentially other callers using the pages just freed. So proceed
2897 * with reclaim to make a buffer of free pages available to give
2898 * compaction a reasonable chance of completing and allocating the page.
2899 * Note that we won't actually reclaim the whole buffer in one attempt
2900 * as the target watermark in should_continue_reclaim() is lower. But if
2901 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2902 */
fdd4c614 2903 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2904
fdd4c614 2905 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2906}
2907
1da177e4
LT
2908/*
2909 * This is the direct reclaim path, for page-allocating processes. We only
2910 * try to reclaim pages from zones which will satisfy the caller's allocation
2911 * request.
2912 *
1da177e4
LT
2913 * If a zone is deemed to be full of pinned pages then just give it a light
2914 * scan then give up on it.
2915 */
0a0337e0 2916static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2917{
dd1a239f 2918 struct zoneref *z;
54a6eb5c 2919 struct zone *zone;
0608f43d
AM
2920 unsigned long nr_soft_reclaimed;
2921 unsigned long nr_soft_scanned;
619d0d76 2922 gfp_t orig_mask;
79dafcdc 2923 pg_data_t *last_pgdat = NULL;
1cfb419b 2924
cc715d99
MG
2925 /*
2926 * If the number of buffer_heads in the machine exceeds the maximum
2927 * allowed level, force direct reclaim to scan the highmem zone as
2928 * highmem pages could be pinning lowmem pages storing buffer_heads
2929 */
619d0d76 2930 orig_mask = sc->gfp_mask;
b2e18757 2931 if (buffer_heads_over_limit) {
cc715d99 2932 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2933 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2934 }
cc715d99 2935
d4debc66 2936 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2937 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2938 /*
2939 * Take care memory controller reclaiming has small influence
2940 * to global LRU.
2941 */
b5ead35e 2942 if (!cgroup_reclaim(sc)) {
344736f2
VD
2943 if (!cpuset_zone_allowed(zone,
2944 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2945 continue;
65ec02cb 2946
0b06496a
JW
2947 /*
2948 * If we already have plenty of memory free for
2949 * compaction in this zone, don't free any more.
2950 * Even though compaction is invoked for any
2951 * non-zero order, only frequent costly order
2952 * reclamation is disruptive enough to become a
2953 * noticeable problem, like transparent huge
2954 * page allocations.
2955 */
2956 if (IS_ENABLED(CONFIG_COMPACTION) &&
2957 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2958 compaction_ready(zone, sc)) {
0b06496a
JW
2959 sc->compaction_ready = true;
2960 continue;
e0887c19 2961 }
0b06496a 2962
79dafcdc
MG
2963 /*
2964 * Shrink each node in the zonelist once. If the
2965 * zonelist is ordered by zone (not the default) then a
2966 * node may be shrunk multiple times but in that case
2967 * the user prefers lower zones being preserved.
2968 */
2969 if (zone->zone_pgdat == last_pgdat)
2970 continue;
2971
0608f43d
AM
2972 /*
2973 * This steals pages from memory cgroups over softlimit
2974 * and returns the number of reclaimed pages and
2975 * scanned pages. This works for global memory pressure
2976 * and balancing, not for a memcg's limit.
2977 */
2978 nr_soft_scanned = 0;
ef8f2327 2979 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2980 sc->order, sc->gfp_mask,
2981 &nr_soft_scanned);
2982 sc->nr_reclaimed += nr_soft_reclaimed;
2983 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2984 /* need some check for avoid more shrink_zone() */
1cfb419b 2985 }
408d8544 2986
79dafcdc
MG
2987 /* See comment about same check for global reclaim above */
2988 if (zone->zone_pgdat == last_pgdat)
2989 continue;
2990 last_pgdat = zone->zone_pgdat;
970a39a3 2991 shrink_node(zone->zone_pgdat, sc);
1da177e4 2992 }
e0c23279 2993
619d0d76
WY
2994 /*
2995 * Restore to original mask to avoid the impact on the caller if we
2996 * promoted it to __GFP_HIGHMEM.
2997 */
2998 sc->gfp_mask = orig_mask;
1da177e4 2999}
4f98a2fe 3000
b910718a 3001static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3002{
b910718a
JW
3003 struct lruvec *target_lruvec;
3004 unsigned long refaults;
2a2e4885 3005
b910718a
JW
3006 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3007 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE);
3008 target_lruvec->refaults = refaults;
2a2e4885
JW
3009}
3010
1da177e4
LT
3011/*
3012 * This is the main entry point to direct page reclaim.
3013 *
3014 * If a full scan of the inactive list fails to free enough memory then we
3015 * are "out of memory" and something needs to be killed.
3016 *
3017 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3018 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3019 * caller can't do much about. We kick the writeback threads and take explicit
3020 * naps in the hope that some of these pages can be written. But if the
3021 * allocating task holds filesystem locks which prevent writeout this might not
3022 * work, and the allocation attempt will fail.
a41f24ea
NA
3023 *
3024 * returns: 0, if no pages reclaimed
3025 * else, the number of pages reclaimed
1da177e4 3026 */
dac1d27b 3027static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3028 struct scan_control *sc)
1da177e4 3029{
241994ed 3030 int initial_priority = sc->priority;
2a2e4885
JW
3031 pg_data_t *last_pgdat;
3032 struct zoneref *z;
3033 struct zone *zone;
241994ed 3034retry:
873b4771
KK
3035 delayacct_freepages_start();
3036
b5ead35e 3037 if (!cgroup_reclaim(sc))
7cc30fcf 3038 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3039
9e3b2f8c 3040 do {
70ddf637
AV
3041 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3042 sc->priority);
66e1707b 3043 sc->nr_scanned = 0;
0a0337e0 3044 shrink_zones(zonelist, sc);
c6a8a8c5 3045
bb21c7ce 3046 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3047 break;
3048
3049 if (sc->compaction_ready)
3050 break;
1da177e4 3051
0e50ce3b
MK
3052 /*
3053 * If we're getting trouble reclaiming, start doing
3054 * writepage even in laptop mode.
3055 */
3056 if (sc->priority < DEF_PRIORITY - 2)
3057 sc->may_writepage = 1;
0b06496a 3058 } while (--sc->priority >= 0);
bb21c7ce 3059
2a2e4885
JW
3060 last_pgdat = NULL;
3061 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3062 sc->nodemask) {
3063 if (zone->zone_pgdat == last_pgdat)
3064 continue;
3065 last_pgdat = zone->zone_pgdat;
1b05117d 3066
2a2e4885 3067 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3068
3069 if (cgroup_reclaim(sc)) {
3070 struct lruvec *lruvec;
3071
3072 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3073 zone->zone_pgdat);
3074 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3075 }
2a2e4885
JW
3076 }
3077
873b4771
KK
3078 delayacct_freepages_end();
3079
bb21c7ce
KM
3080 if (sc->nr_reclaimed)
3081 return sc->nr_reclaimed;
3082
0cee34fd 3083 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3084 if (sc->compaction_ready)
7335084d
MG
3085 return 1;
3086
b91ac374
JW
3087 /*
3088 * We make inactive:active ratio decisions based on the node's
3089 * composition of memory, but a restrictive reclaim_idx or a
3090 * memory.low cgroup setting can exempt large amounts of
3091 * memory from reclaim. Neither of which are very common, so
3092 * instead of doing costly eligibility calculations of the
3093 * entire cgroup subtree up front, we assume the estimates are
3094 * good, and retry with forcible deactivation if that fails.
3095 */
3096 if (sc->skipped_deactivate) {
3097 sc->priority = initial_priority;
3098 sc->force_deactivate = 1;
3099 sc->skipped_deactivate = 0;
3100 goto retry;
3101 }
3102
241994ed 3103 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3104 if (sc->memcg_low_skipped) {
241994ed 3105 sc->priority = initial_priority;
b91ac374 3106 sc->force_deactivate = 0;
d6622f63
YX
3107 sc->memcg_low_reclaim = 1;
3108 sc->memcg_low_skipped = 0;
241994ed
JW
3109 goto retry;
3110 }
3111
bb21c7ce 3112 return 0;
1da177e4
LT
3113}
3114
c73322d0 3115static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3116{
3117 struct zone *zone;
3118 unsigned long pfmemalloc_reserve = 0;
3119 unsigned long free_pages = 0;
3120 int i;
3121 bool wmark_ok;
3122
c73322d0
JW
3123 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3124 return true;
3125
5515061d
MG
3126 for (i = 0; i <= ZONE_NORMAL; i++) {
3127 zone = &pgdat->node_zones[i];
d450abd8
JW
3128 if (!managed_zone(zone))
3129 continue;
3130
3131 if (!zone_reclaimable_pages(zone))
675becce
MG
3132 continue;
3133
5515061d
MG
3134 pfmemalloc_reserve += min_wmark_pages(zone);
3135 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3136 }
3137
675becce
MG
3138 /* If there are no reserves (unexpected config) then do not throttle */
3139 if (!pfmemalloc_reserve)
3140 return true;
3141
5515061d
MG
3142 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3143
3144 /* kswapd must be awake if processes are being throttled */
3145 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3146 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3147 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3148
5515061d
MG
3149 wake_up_interruptible(&pgdat->kswapd_wait);
3150 }
3151
3152 return wmark_ok;
3153}
3154
3155/*
3156 * Throttle direct reclaimers if backing storage is backed by the network
3157 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3158 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3159 * when the low watermark is reached.
3160 *
3161 * Returns true if a fatal signal was delivered during throttling. If this
3162 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3163 */
50694c28 3164static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3165 nodemask_t *nodemask)
3166{
675becce 3167 struct zoneref *z;
5515061d 3168 struct zone *zone;
675becce 3169 pg_data_t *pgdat = NULL;
5515061d
MG
3170
3171 /*
3172 * Kernel threads should not be throttled as they may be indirectly
3173 * responsible for cleaning pages necessary for reclaim to make forward
3174 * progress. kjournald for example may enter direct reclaim while
3175 * committing a transaction where throttling it could forcing other
3176 * processes to block on log_wait_commit().
3177 */
3178 if (current->flags & PF_KTHREAD)
50694c28
MG
3179 goto out;
3180
3181 /*
3182 * If a fatal signal is pending, this process should not throttle.
3183 * It should return quickly so it can exit and free its memory
3184 */
3185 if (fatal_signal_pending(current))
3186 goto out;
5515061d 3187
675becce
MG
3188 /*
3189 * Check if the pfmemalloc reserves are ok by finding the first node
3190 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3191 * GFP_KERNEL will be required for allocating network buffers when
3192 * swapping over the network so ZONE_HIGHMEM is unusable.
3193 *
3194 * Throttling is based on the first usable node and throttled processes
3195 * wait on a queue until kswapd makes progress and wakes them. There
3196 * is an affinity then between processes waking up and where reclaim
3197 * progress has been made assuming the process wakes on the same node.
3198 * More importantly, processes running on remote nodes will not compete
3199 * for remote pfmemalloc reserves and processes on different nodes
3200 * should make reasonable progress.
3201 */
3202 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3203 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3204 if (zone_idx(zone) > ZONE_NORMAL)
3205 continue;
3206
3207 /* Throttle based on the first usable node */
3208 pgdat = zone->zone_pgdat;
c73322d0 3209 if (allow_direct_reclaim(pgdat))
675becce
MG
3210 goto out;
3211 break;
3212 }
3213
3214 /* If no zone was usable by the allocation flags then do not throttle */
3215 if (!pgdat)
50694c28 3216 goto out;
5515061d 3217
68243e76
MG
3218 /* Account for the throttling */
3219 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3220
5515061d
MG
3221 /*
3222 * If the caller cannot enter the filesystem, it's possible that it
3223 * is due to the caller holding an FS lock or performing a journal
3224 * transaction in the case of a filesystem like ext[3|4]. In this case,
3225 * it is not safe to block on pfmemalloc_wait as kswapd could be
3226 * blocked waiting on the same lock. Instead, throttle for up to a
3227 * second before continuing.
3228 */
3229 if (!(gfp_mask & __GFP_FS)) {
3230 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3231 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3232
3233 goto check_pending;
5515061d
MG
3234 }
3235
3236 /* Throttle until kswapd wakes the process */
3237 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3238 allow_direct_reclaim(pgdat));
50694c28
MG
3239
3240check_pending:
3241 if (fatal_signal_pending(current))
3242 return true;
3243
3244out:
3245 return false;
5515061d
MG
3246}
3247
dac1d27b 3248unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3249 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3250{
33906bc5 3251 unsigned long nr_reclaimed;
66e1707b 3252 struct scan_control sc = {
ee814fe2 3253 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3254 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3255 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3256 .order = order,
3257 .nodemask = nodemask,
3258 .priority = DEF_PRIORITY,
66e1707b 3259 .may_writepage = !laptop_mode,
a6dc60f8 3260 .may_unmap = 1,
2e2e4259 3261 .may_swap = 1,
66e1707b
BS
3262 };
3263
bb451fdf
GT
3264 /*
3265 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3266 * Confirm they are large enough for max values.
3267 */
3268 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3269 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3270 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3271
5515061d 3272 /*
50694c28
MG
3273 * Do not enter reclaim if fatal signal was delivered while throttled.
3274 * 1 is returned so that the page allocator does not OOM kill at this
3275 * point.
5515061d 3276 */
f2f43e56 3277 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3278 return 1;
3279
1732d2b0 3280 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3281 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3282
3115cd91 3283 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3284
3285 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3286 set_task_reclaim_state(current, NULL);
33906bc5
MG
3287
3288 return nr_reclaimed;
66e1707b
BS
3289}
3290
c255a458 3291#ifdef CONFIG_MEMCG
66e1707b 3292
d2e5fb92 3293/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3294unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3295 gfp_t gfp_mask, bool noswap,
ef8f2327 3296 pg_data_t *pgdat,
0ae5e89c 3297 unsigned long *nr_scanned)
4e416953 3298{
afaf07a6 3299 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3300 struct scan_control sc = {
b8f5c566 3301 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3302 .target_mem_cgroup = memcg,
4e416953
BS
3303 .may_writepage = !laptop_mode,
3304 .may_unmap = 1,
b2e18757 3305 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3306 .may_swap = !noswap,
4e416953 3307 };
0ae5e89c 3308
d2e5fb92
MH
3309 WARN_ON_ONCE(!current->reclaim_state);
3310
4e416953
BS
3311 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3312 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3313
9e3b2f8c 3314 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3315 sc.gfp_mask);
bdce6d9e 3316
4e416953
BS
3317 /*
3318 * NOTE: Although we can get the priority field, using it
3319 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3320 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3321 * will pick up pages from other mem cgroup's as well. We hack
3322 * the priority and make it zero.
3323 */
afaf07a6 3324 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3325
3326 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3327
0ae5e89c 3328 *nr_scanned = sc.nr_scanned;
0308f7cf 3329
4e416953
BS
3330 return sc.nr_reclaimed;
3331}
3332
72835c86 3333unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3334 unsigned long nr_pages,
a7885eb8 3335 gfp_t gfp_mask,
b70a2a21 3336 bool may_swap)
66e1707b 3337{
bdce6d9e 3338 unsigned long nr_reclaimed;
eb414681 3339 unsigned long pflags;
499118e9 3340 unsigned int noreclaim_flag;
66e1707b 3341 struct scan_control sc = {
b70a2a21 3342 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3343 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3344 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3345 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3346 .target_mem_cgroup = memcg,
3347 .priority = DEF_PRIORITY,
3348 .may_writepage = !laptop_mode,
3349 .may_unmap = 1,
b70a2a21 3350 .may_swap = may_swap,
a09ed5e0 3351 };
889976db 3352 /*
fa40d1ee
SB
3353 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3354 * equal pressure on all the nodes. This is based on the assumption that
3355 * the reclaim does not bail out early.
889976db 3356 */
fa40d1ee 3357 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3358
fa40d1ee 3359 set_task_reclaim_state(current, &sc.reclaim_state);
bdce6d9e 3360
3481c37f 3361 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
bdce6d9e 3362
eb414681 3363 psi_memstall_enter(&pflags);
499118e9 3364 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3365
3115cd91 3366 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3367
499118e9 3368 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3369 psi_memstall_leave(&pflags);
bdce6d9e
KM
3370
3371 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3372 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3373
3374 return nr_reclaimed;
66e1707b
BS
3375}
3376#endif
3377
1d82de61 3378static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3379 struct scan_control *sc)
f16015fb 3380{
b95a2f2d 3381 struct mem_cgroup *memcg;
b91ac374 3382 struct lruvec *lruvec;
f16015fb 3383
b95a2f2d
JW
3384 if (!total_swap_pages)
3385 return;
3386
b91ac374
JW
3387 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3388 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3389 return;
3390
b95a2f2d
JW
3391 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3392 do {
b91ac374
JW
3393 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3394 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3395 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3396 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3397 } while (memcg);
f16015fb
JW
3398}
3399
97a225e6 3400static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3401{
3402 int i;
3403 struct zone *zone;
3404
3405 /*
3406 * Check for watermark boosts top-down as the higher zones
3407 * are more likely to be boosted. Both watermarks and boosts
3408 * should not be checked at the time time as reclaim would
3409 * start prematurely when there is no boosting and a lower
3410 * zone is balanced.
3411 */
97a225e6 3412 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3413 zone = pgdat->node_zones + i;
3414 if (!managed_zone(zone))
3415 continue;
3416
3417 if (zone->watermark_boost)
3418 return true;
3419 }
3420
3421 return false;
3422}
3423
e716f2eb
MG
3424/*
3425 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3426 * and highest_zoneidx
e716f2eb 3427 */
97a225e6 3428static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3429{
e716f2eb
MG
3430 int i;
3431 unsigned long mark = -1;
3432 struct zone *zone;
60cefed4 3433
1c30844d
MG
3434 /*
3435 * Check watermarks bottom-up as lower zones are more likely to
3436 * meet watermarks.
3437 */
97a225e6 3438 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3439 zone = pgdat->node_zones + i;
6256c6b4 3440
e716f2eb
MG
3441 if (!managed_zone(zone))
3442 continue;
3443
3444 mark = high_wmark_pages(zone);
97a225e6 3445 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3446 return true;
3447 }
3448
3449 /*
97a225e6 3450 * If a node has no populated zone within highest_zoneidx, it does not
e716f2eb
MG
3451 * need balancing by definition. This can happen if a zone-restricted
3452 * allocation tries to wake a remote kswapd.
3453 */
3454 if (mark == -1)
3455 return true;
3456
3457 return false;
60cefed4
JW
3458}
3459
631b6e08
MG
3460/* Clear pgdat state for congested, dirty or under writeback. */
3461static void clear_pgdat_congested(pg_data_t *pgdat)
3462{
1b05117d
JW
3463 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3464
3465 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3466 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3467 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3468}
3469
5515061d
MG
3470/*
3471 * Prepare kswapd for sleeping. This verifies that there are no processes
3472 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3473 *
3474 * Returns true if kswapd is ready to sleep
3475 */
97a225e6
JK
3476static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3477 int highest_zoneidx)
f50de2d3 3478{
5515061d 3479 /*
9e5e3661 3480 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3481 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3482 * race between when kswapd checks the watermarks and a process gets
3483 * throttled. There is also a potential race if processes get
3484 * throttled, kswapd wakes, a large process exits thereby balancing the
3485 * zones, which causes kswapd to exit balance_pgdat() before reaching
3486 * the wake up checks. If kswapd is going to sleep, no process should
3487 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3488 * the wake up is premature, processes will wake kswapd and get
3489 * throttled again. The difference from wake ups in balance_pgdat() is
3490 * that here we are under prepare_to_wait().
5515061d 3491 */
9e5e3661
VB
3492 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3493 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3494
c73322d0
JW
3495 /* Hopeless node, leave it to direct reclaim */
3496 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3497 return true;
3498
97a225e6 3499 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
3500 clear_pgdat_congested(pgdat);
3501 return true;
1d82de61
MG
3502 }
3503
333b0a45 3504 return false;
f50de2d3
MG
3505}
3506
75485363 3507/*
1d82de61
MG
3508 * kswapd shrinks a node of pages that are at or below the highest usable
3509 * zone that is currently unbalanced.
b8e83b94
MG
3510 *
3511 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3512 * reclaim or if the lack of progress was due to pages under writeback.
3513 * This is used to determine if the scanning priority needs to be raised.
75485363 3514 */
1d82de61 3515static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3516 struct scan_control *sc)
75485363 3517{
1d82de61
MG
3518 struct zone *zone;
3519 int z;
75485363 3520
1d82de61
MG
3521 /* Reclaim a number of pages proportional to the number of zones */
3522 sc->nr_to_reclaim = 0;
970a39a3 3523 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3524 zone = pgdat->node_zones + z;
6aa303de 3525 if (!managed_zone(zone))
1d82de61 3526 continue;
7c954f6d 3527
1d82de61
MG
3528 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3529 }
7c954f6d
MG
3530
3531 /*
1d82de61
MG
3532 * Historically care was taken to put equal pressure on all zones but
3533 * now pressure is applied based on node LRU order.
7c954f6d 3534 */
970a39a3 3535 shrink_node(pgdat, sc);
283aba9f 3536
7c954f6d 3537 /*
1d82de61
MG
3538 * Fragmentation may mean that the system cannot be rebalanced for
3539 * high-order allocations. If twice the allocation size has been
3540 * reclaimed then recheck watermarks only at order-0 to prevent
3541 * excessive reclaim. Assume that a process requested a high-order
3542 * can direct reclaim/compact.
7c954f6d 3543 */
9861a62c 3544 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3545 sc->order = 0;
7c954f6d 3546
b8e83b94 3547 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3548}
3549
1da177e4 3550/*
1d82de61
MG
3551 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3552 * that are eligible for use by the caller until at least one zone is
3553 * balanced.
1da177e4 3554 *
1d82de61 3555 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3556 *
3557 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3558 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3559 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3560 * or lower is eligible for reclaim until at least one usable zone is
3561 * balanced.
1da177e4 3562 */
97a225e6 3563static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 3564{
1da177e4 3565 int i;
0608f43d
AM
3566 unsigned long nr_soft_reclaimed;
3567 unsigned long nr_soft_scanned;
eb414681 3568 unsigned long pflags;
1c30844d
MG
3569 unsigned long nr_boost_reclaim;
3570 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3571 bool boosted;
1d82de61 3572 struct zone *zone;
179e9639
AM
3573 struct scan_control sc = {
3574 .gfp_mask = GFP_KERNEL,
ee814fe2 3575 .order = order,
a6dc60f8 3576 .may_unmap = 1,
179e9639 3577 };
93781325 3578
1732d2b0 3579 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 3580 psi_memstall_enter(&pflags);
93781325
OS
3581 __fs_reclaim_acquire();
3582
f8891e5e 3583 count_vm_event(PAGEOUTRUN);
1da177e4 3584
1c30844d
MG
3585 /*
3586 * Account for the reclaim boost. Note that the zone boost is left in
3587 * place so that parallel allocations that are near the watermark will
3588 * stall or direct reclaim until kswapd is finished.
3589 */
3590 nr_boost_reclaim = 0;
97a225e6 3591 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3592 zone = pgdat->node_zones + i;
3593 if (!managed_zone(zone))
3594 continue;
3595
3596 nr_boost_reclaim += zone->watermark_boost;
3597 zone_boosts[i] = zone->watermark_boost;
3598 }
3599 boosted = nr_boost_reclaim;
3600
3601restart:
3602 sc.priority = DEF_PRIORITY;
9e3b2f8c 3603 do {
c73322d0 3604 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3605 bool raise_priority = true;
1c30844d 3606 bool balanced;
93781325 3607 bool ret;
b8e83b94 3608
97a225e6 3609 sc.reclaim_idx = highest_zoneidx;
1da177e4 3610
86c79f6b 3611 /*
84c7a777
MG
3612 * If the number of buffer_heads exceeds the maximum allowed
3613 * then consider reclaiming from all zones. This has a dual
3614 * purpose -- on 64-bit systems it is expected that
3615 * buffer_heads are stripped during active rotation. On 32-bit
3616 * systems, highmem pages can pin lowmem memory and shrinking
3617 * buffers can relieve lowmem pressure. Reclaim may still not
3618 * go ahead if all eligible zones for the original allocation
3619 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3620 */
3621 if (buffer_heads_over_limit) {
3622 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3623 zone = pgdat->node_zones + i;
6aa303de 3624 if (!managed_zone(zone))
86c79f6b 3625 continue;
cc715d99 3626
970a39a3 3627 sc.reclaim_idx = i;
e1dbeda6 3628 break;
1da177e4 3629 }
1da177e4 3630 }
dafcb73e 3631
86c79f6b 3632 /*
1c30844d
MG
3633 * If the pgdat is imbalanced then ignore boosting and preserve
3634 * the watermarks for a later time and restart. Note that the
3635 * zone watermarks will be still reset at the end of balancing
3636 * on the grounds that the normal reclaim should be enough to
3637 * re-evaluate if boosting is required when kswapd next wakes.
3638 */
97a225e6 3639 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
3640 if (!balanced && nr_boost_reclaim) {
3641 nr_boost_reclaim = 0;
3642 goto restart;
3643 }
3644
3645 /*
3646 * If boosting is not active then only reclaim if there are no
3647 * eligible zones. Note that sc.reclaim_idx is not used as
3648 * buffer_heads_over_limit may have adjusted it.
86c79f6b 3649 */
1c30844d 3650 if (!nr_boost_reclaim && balanced)
e716f2eb 3651 goto out;
e1dbeda6 3652
1c30844d
MG
3653 /* Limit the priority of boosting to avoid reclaim writeback */
3654 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3655 raise_priority = false;
3656
3657 /*
3658 * Do not writeback or swap pages for boosted reclaim. The
3659 * intent is to relieve pressure not issue sub-optimal IO
3660 * from reclaim context. If no pages are reclaimed, the
3661 * reclaim will be aborted.
3662 */
3663 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3664 sc.may_swap = !nr_boost_reclaim;
1c30844d 3665
1d82de61
MG
3666 /*
3667 * Do some background aging of the anon list, to give
3668 * pages a chance to be referenced before reclaiming. All
3669 * pages are rotated regardless of classzone as this is
3670 * about consistent aging.
3671 */
ef8f2327 3672 age_active_anon(pgdat, &sc);
1d82de61 3673
b7ea3c41
MG
3674 /*
3675 * If we're getting trouble reclaiming, start doing writepage
3676 * even in laptop mode.
3677 */
047d72c3 3678 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3679 sc.may_writepage = 1;
3680
1d82de61
MG
3681 /* Call soft limit reclaim before calling shrink_node. */
3682 sc.nr_scanned = 0;
3683 nr_soft_scanned = 0;
ef8f2327 3684 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3685 sc.gfp_mask, &nr_soft_scanned);
3686 sc.nr_reclaimed += nr_soft_reclaimed;
3687
1da177e4 3688 /*
1d82de61
MG
3689 * There should be no need to raise the scanning priority if
3690 * enough pages are already being scanned that that high
3691 * watermark would be met at 100% efficiency.
1da177e4 3692 */
970a39a3 3693 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3694 raise_priority = false;
5515061d
MG
3695
3696 /*
3697 * If the low watermark is met there is no need for processes
3698 * to be throttled on pfmemalloc_wait as they should not be
3699 * able to safely make forward progress. Wake them
3700 */
3701 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3702 allow_direct_reclaim(pgdat))
cfc51155 3703 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3704
b8e83b94 3705 /* Check if kswapd should be suspending */
93781325
OS
3706 __fs_reclaim_release();
3707 ret = try_to_freeze();
3708 __fs_reclaim_acquire();
3709 if (ret || kthread_should_stop())
b8e83b94 3710 break;
8357376d 3711
73ce02e9 3712 /*
b8e83b94
MG
3713 * Raise priority if scanning rate is too low or there was no
3714 * progress in reclaiming pages
73ce02e9 3715 */
c73322d0 3716 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
3717 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3718
3719 /*
3720 * If reclaim made no progress for a boost, stop reclaim as
3721 * IO cannot be queued and it could be an infinite loop in
3722 * extreme circumstances.
3723 */
3724 if (nr_boost_reclaim && !nr_reclaimed)
3725 break;
3726
c73322d0 3727 if (raise_priority || !nr_reclaimed)
b8e83b94 3728 sc.priority--;
1d82de61 3729 } while (sc.priority >= 1);
1da177e4 3730
c73322d0
JW
3731 if (!sc.nr_reclaimed)
3732 pgdat->kswapd_failures++;
3733
b8e83b94 3734out:
1c30844d
MG
3735 /* If reclaim was boosted, account for the reclaim done in this pass */
3736 if (boosted) {
3737 unsigned long flags;
3738
97a225e6 3739 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3740 if (!zone_boosts[i])
3741 continue;
3742
3743 /* Increments are under the zone lock */
3744 zone = pgdat->node_zones + i;
3745 spin_lock_irqsave(&zone->lock, flags);
3746 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3747 spin_unlock_irqrestore(&zone->lock, flags);
3748 }
3749
3750 /*
3751 * As there is now likely space, wakeup kcompact to defragment
3752 * pageblocks.
3753 */
97a225e6 3754 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
3755 }
3756
2a2e4885 3757 snapshot_refaults(NULL, pgdat);
93781325 3758 __fs_reclaim_release();
eb414681 3759 psi_memstall_leave(&pflags);
1732d2b0 3760 set_task_reclaim_state(current, NULL);
e5ca8071 3761
0abdee2b 3762 /*
1d82de61
MG
3763 * Return the order kswapd stopped reclaiming at as
3764 * prepare_kswapd_sleep() takes it into account. If another caller
3765 * entered the allocator slow path while kswapd was awake, order will
3766 * remain at the higher level.
0abdee2b 3767 */
1d82de61 3768 return sc.order;
1da177e4
LT
3769}
3770
e716f2eb 3771/*
97a225e6
JK
3772 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3773 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3774 * not a valid index then either kswapd runs for first time or kswapd couldn't
3775 * sleep after previous reclaim attempt (node is still unbalanced). In that
3776 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 3777 */
97a225e6
JK
3778static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3779 enum zone_type prev_highest_zoneidx)
e716f2eb 3780{
97a225e6 3781 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 3782
97a225e6 3783 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
3784}
3785
38087d9b 3786static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 3787 unsigned int highest_zoneidx)
f0bc0a60
KM
3788{
3789 long remaining = 0;
3790 DEFINE_WAIT(wait);
3791
3792 if (freezing(current) || kthread_should_stop())
3793 return;
3794
3795 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3796
333b0a45
SG
3797 /*
3798 * Try to sleep for a short interval. Note that kcompactd will only be
3799 * woken if it is possible to sleep for a short interval. This is
3800 * deliberate on the assumption that if reclaim cannot keep an
3801 * eligible zone balanced that it's also unlikely that compaction will
3802 * succeed.
3803 */
97a225e6 3804 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
3805 /*
3806 * Compaction records what page blocks it recently failed to
3807 * isolate pages from and skips them in the future scanning.
3808 * When kswapd is going to sleep, it is reasonable to assume
3809 * that pages and compaction may succeed so reset the cache.
3810 */
3811 reset_isolation_suitable(pgdat);
3812
3813 /*
3814 * We have freed the memory, now we should compact it to make
3815 * allocation of the requested order possible.
3816 */
97a225e6 3817 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 3818
f0bc0a60 3819 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3820
3821 /*
97a225e6 3822 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
3823 * order. The values will either be from a wakeup request or
3824 * the previous request that slept prematurely.
3825 */
3826 if (remaining) {
97a225e6
JK
3827 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3828 kswapd_highest_zoneidx(pgdat,
3829 highest_zoneidx));
5644e1fb
QC
3830
3831 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3832 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
3833 }
3834
f0bc0a60
KM
3835 finish_wait(&pgdat->kswapd_wait, &wait);
3836 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3837 }
3838
3839 /*
3840 * After a short sleep, check if it was a premature sleep. If not, then
3841 * go fully to sleep until explicitly woken up.
3842 */
d9f21d42 3843 if (!remaining &&
97a225e6 3844 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
3845 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3846
3847 /*
3848 * vmstat counters are not perfectly accurate and the estimated
3849 * value for counters such as NR_FREE_PAGES can deviate from the
3850 * true value by nr_online_cpus * threshold. To avoid the zone
3851 * watermarks being breached while under pressure, we reduce the
3852 * per-cpu vmstat threshold while kswapd is awake and restore
3853 * them before going back to sleep.
3854 */
3855 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3856
3857 if (!kthread_should_stop())
3858 schedule();
3859
f0bc0a60
KM
3860 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3861 } else {
3862 if (remaining)
3863 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3864 else
3865 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3866 }
3867 finish_wait(&pgdat->kswapd_wait, &wait);
3868}
3869
1da177e4
LT
3870/*
3871 * The background pageout daemon, started as a kernel thread
4f98a2fe 3872 * from the init process.
1da177e4
LT
3873 *
3874 * This basically trickles out pages so that we have _some_
3875 * free memory available even if there is no other activity
3876 * that frees anything up. This is needed for things like routing
3877 * etc, where we otherwise might have all activity going on in
3878 * asynchronous contexts that cannot page things out.
3879 *
3880 * If there are applications that are active memory-allocators
3881 * (most normal use), this basically shouldn't matter.
3882 */
3883static int kswapd(void *p)
3884{
e716f2eb 3885 unsigned int alloc_order, reclaim_order;
97a225e6 3886 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
1da177e4
LT
3887 pg_data_t *pgdat = (pg_data_t*)p;
3888 struct task_struct *tsk = current;
a70f7302 3889 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3890
174596a0 3891 if (!cpumask_empty(cpumask))
c5f59f08 3892 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3893
3894 /*
3895 * Tell the memory management that we're a "memory allocator",
3896 * and that if we need more memory we should get access to it
3897 * regardless (see "__alloc_pages()"). "kswapd" should
3898 * never get caught in the normal page freeing logic.
3899 *
3900 * (Kswapd normally doesn't need memory anyway, but sometimes
3901 * you need a small amount of memory in order to be able to
3902 * page out something else, and this flag essentially protects
3903 * us from recursively trying to free more memory as we're
3904 * trying to free the first piece of memory in the first place).
3905 */
930d9152 3906 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3907 set_freezable();
1da177e4 3908
5644e1fb 3909 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 3910 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 3911 for ( ; ; ) {
6f6313d4 3912 bool ret;
3e1d1d28 3913
5644e1fb 3914 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
3915 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3916 highest_zoneidx);
e716f2eb 3917
38087d9b
MG
3918kswapd_try_sleep:
3919 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 3920 highest_zoneidx);
215ddd66 3921
97a225e6 3922 /* Read the new order and highest_zoneidx */
5644e1fb 3923 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
3924 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3925 highest_zoneidx);
5644e1fb 3926 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 3927 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 3928
8fe23e05
DR
3929 ret = try_to_freeze();
3930 if (kthread_should_stop())
3931 break;
3932
3933 /*
3934 * We can speed up thawing tasks if we don't call balance_pgdat
3935 * after returning from the refrigerator
3936 */
38087d9b
MG
3937 if (ret)
3938 continue;
3939
3940 /*
3941 * Reclaim begins at the requested order but if a high-order
3942 * reclaim fails then kswapd falls back to reclaiming for
3943 * order-0. If that happens, kswapd will consider sleeping
3944 * for the order it finished reclaiming at (reclaim_order)
3945 * but kcompactd is woken to compact for the original
3946 * request (alloc_order).
3947 */
97a225e6 3948 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 3949 alloc_order);
97a225e6
JK
3950 reclaim_order = balance_pgdat(pgdat, alloc_order,
3951 highest_zoneidx);
38087d9b
MG
3952 if (reclaim_order < alloc_order)
3953 goto kswapd_try_sleep;
1da177e4 3954 }
b0a8cc58 3955
71abdc15 3956 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 3957
1da177e4
LT
3958 return 0;
3959}
3960
3961/*
5ecd9d40
DR
3962 * A zone is low on free memory or too fragmented for high-order memory. If
3963 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3964 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3965 * has failed or is not needed, still wake up kcompactd if only compaction is
3966 * needed.
1da177e4 3967 */
5ecd9d40 3968void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 3969 enum zone_type highest_zoneidx)
1da177e4
LT
3970{
3971 pg_data_t *pgdat;
5644e1fb 3972 enum zone_type curr_idx;
1da177e4 3973
6aa303de 3974 if (!managed_zone(zone))
1da177e4
LT
3975 return;
3976
5ecd9d40 3977 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3978 return;
5644e1fb 3979
88f5acf8 3980 pgdat = zone->zone_pgdat;
97a225e6 3981 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 3982
97a225e6
JK
3983 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3984 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
3985
3986 if (READ_ONCE(pgdat->kswapd_order) < order)
3987 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 3988
8d0986e2 3989 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3990 return;
e1a55637 3991
5ecd9d40
DR
3992 /* Hopeless node, leave it to direct reclaim if possible */
3993 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
3994 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3995 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
3996 /*
3997 * There may be plenty of free memory available, but it's too
3998 * fragmented for high-order allocations. Wake up kcompactd
3999 * and rely on compaction_suitable() to determine if it's
4000 * needed. If it fails, it will defer subsequent attempts to
4001 * ratelimit its work.
4002 */
4003 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4004 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4005 return;
5ecd9d40 4006 }
88f5acf8 4007
97a225e6 4008 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4009 gfp_flags);
8d0986e2 4010 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4011}
4012
c6f37f12 4013#ifdef CONFIG_HIBERNATION
1da177e4 4014/*
7b51755c 4015 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4016 * freed pages.
4017 *
4018 * Rather than trying to age LRUs the aim is to preserve the overall
4019 * LRU order by reclaiming preferentially
4020 * inactive > active > active referenced > active mapped
1da177e4 4021 */
7b51755c 4022unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4023{
d6277db4 4024 struct scan_control sc = {
ee814fe2 4025 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4026 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4027 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4028 .priority = DEF_PRIORITY,
d6277db4 4029 .may_writepage = 1,
ee814fe2
JW
4030 .may_unmap = 1,
4031 .may_swap = 1,
7b51755c 4032 .hibernation_mode = 1,
1da177e4 4033 };
a09ed5e0 4034 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4035 unsigned long nr_reclaimed;
499118e9 4036 unsigned int noreclaim_flag;
1da177e4 4037
d92a8cfc 4038 fs_reclaim_acquire(sc.gfp_mask);
93781325 4039 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4040 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4041
3115cd91 4042 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4043
1732d2b0 4044 set_task_reclaim_state(current, NULL);
499118e9 4045 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4046 fs_reclaim_release(sc.gfp_mask);
d6277db4 4047
7b51755c 4048 return nr_reclaimed;
1da177e4 4049}
c6f37f12 4050#endif /* CONFIG_HIBERNATION */
1da177e4 4051
3218ae14
YG
4052/*
4053 * This kswapd start function will be called by init and node-hot-add.
4054 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4055 */
4056int kswapd_run(int nid)
4057{
4058 pg_data_t *pgdat = NODE_DATA(nid);
4059 int ret = 0;
4060
4061 if (pgdat->kswapd)
4062 return 0;
4063
4064 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4065 if (IS_ERR(pgdat->kswapd)) {
4066 /* failure at boot is fatal */
c6202adf 4067 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
4068 pr_err("Failed to start kswapd on node %d\n", nid);
4069 ret = PTR_ERR(pgdat->kswapd);
d72515b8 4070 pgdat->kswapd = NULL;
3218ae14
YG
4071 }
4072 return ret;
4073}
4074
8fe23e05 4075/*
d8adde17 4076 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4077 * hold mem_hotplug_begin/end().
8fe23e05
DR
4078 */
4079void kswapd_stop(int nid)
4080{
4081 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4082
d8adde17 4083 if (kswapd) {
8fe23e05 4084 kthread_stop(kswapd);
d8adde17
JL
4085 NODE_DATA(nid)->kswapd = NULL;
4086 }
8fe23e05
DR
4087}
4088
1da177e4
LT
4089static int __init kswapd_init(void)
4090{
6b700b5b 4091 int nid;
69e05944 4092
1da177e4 4093 swap_setup();
48fb2e24 4094 for_each_node_state(nid, N_MEMORY)
3218ae14 4095 kswapd_run(nid);
1da177e4
LT
4096 return 0;
4097}
4098
4099module_init(kswapd_init)
9eeff239
CL
4100
4101#ifdef CONFIG_NUMA
4102/*
a5f5f91d 4103 * Node reclaim mode
9eeff239 4104 *
a5f5f91d 4105 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4106 * the watermarks.
9eeff239 4107 */
a5f5f91d 4108int node_reclaim_mode __read_mostly;
9eeff239 4109
648b5cf3
AS
4110#define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */
4111#define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */
1b2ffb78 4112
a92f7126 4113/*
a5f5f91d 4114 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4115 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4116 * a zone.
4117 */
a5f5f91d 4118#define NODE_RECLAIM_PRIORITY 4
a92f7126 4119
9614634f 4120/*
a5f5f91d 4121 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4122 * occur.
4123 */
4124int sysctl_min_unmapped_ratio = 1;
4125
0ff38490
CL
4126/*
4127 * If the number of slab pages in a zone grows beyond this percentage then
4128 * slab reclaim needs to occur.
4129 */
4130int sysctl_min_slab_ratio = 5;
4131
11fb9989 4132static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4133{
11fb9989
MG
4134 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4135 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4136 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4137
4138 /*
4139 * It's possible for there to be more file mapped pages than
4140 * accounted for by the pages on the file LRU lists because
4141 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4142 */
4143 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4144}
4145
4146/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4147static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4148{
d031a157
AM
4149 unsigned long nr_pagecache_reclaimable;
4150 unsigned long delta = 0;
90afa5de
MG
4151
4152 /*
95bbc0c7 4153 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4154 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4155 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4156 * a better estimate
4157 */
a5f5f91d
MG
4158 if (node_reclaim_mode & RECLAIM_UNMAP)
4159 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4160 else
a5f5f91d 4161 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4162
4163 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4164 if (!(node_reclaim_mode & RECLAIM_WRITE))
4165 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4166
4167 /* Watch for any possible underflows due to delta */
4168 if (unlikely(delta > nr_pagecache_reclaimable))
4169 delta = nr_pagecache_reclaimable;
4170
4171 return nr_pagecache_reclaimable - delta;
4172}
4173
9eeff239 4174/*
a5f5f91d 4175 * Try to free up some pages from this node through reclaim.
9eeff239 4176 */
a5f5f91d 4177static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4178{
7fb2d46d 4179 /* Minimum pages needed in order to stay on node */
69e05944 4180 const unsigned long nr_pages = 1 << order;
9eeff239 4181 struct task_struct *p = current;
499118e9 4182 unsigned int noreclaim_flag;
179e9639 4183 struct scan_control sc = {
62b726c1 4184 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4185 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4186 .order = order,
a5f5f91d
MG
4187 .priority = NODE_RECLAIM_PRIORITY,
4188 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4189 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4190 .may_swap = 1,
f2f43e56 4191 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4192 };
9eeff239 4193
132bb8cf
YS
4194 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4195 sc.gfp_mask);
4196
9eeff239 4197 cond_resched();
93781325 4198 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4199 /*
95bbc0c7 4200 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4201 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4202 * and RECLAIM_UNMAP.
d4f7796e 4203 */
499118e9
VB
4204 noreclaim_flag = memalloc_noreclaim_save();
4205 p->flags |= PF_SWAPWRITE;
1732d2b0 4206 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4207
a5f5f91d 4208 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4209 /*
894befec 4210 * Free memory by calling shrink node with increasing
0ff38490
CL
4211 * priorities until we have enough memory freed.
4212 */
0ff38490 4213 do {
970a39a3 4214 shrink_node(pgdat, &sc);
9e3b2f8c 4215 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4216 }
c84db23c 4217
1732d2b0 4218 set_task_reclaim_state(p, NULL);
499118e9
VB
4219 current->flags &= ~PF_SWAPWRITE;
4220 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4221 fs_reclaim_release(sc.gfp_mask);
132bb8cf
YS
4222
4223 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4224
a79311c1 4225 return sc.nr_reclaimed >= nr_pages;
9eeff239 4226}
179e9639 4227
a5f5f91d 4228int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4229{
d773ed6b 4230 int ret;
179e9639
AM
4231
4232 /*
a5f5f91d 4233 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4234 * slab pages if we are over the defined limits.
34aa1330 4235 *
9614634f
CL
4236 * A small portion of unmapped file backed pages is needed for
4237 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4238 * thrown out if the node is overallocated. So we do not reclaim
4239 * if less than a specified percentage of the node is used by
9614634f 4240 * unmapped file backed pages.
179e9639 4241 */
a5f5f91d 4242 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 4243 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 4244 return NODE_RECLAIM_FULL;
179e9639
AM
4245
4246 /*
d773ed6b 4247 * Do not scan if the allocation should not be delayed.
179e9639 4248 */
d0164adc 4249 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4250 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4251
4252 /*
a5f5f91d 4253 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4254 * have associated processors. This will favor the local processor
4255 * over remote processors and spread off node memory allocations
4256 * as wide as possible.
4257 */
a5f5f91d
MG
4258 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4259 return NODE_RECLAIM_NOSCAN;
d773ed6b 4260
a5f5f91d
MG
4261 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4262 return NODE_RECLAIM_NOSCAN;
fa5e084e 4263
a5f5f91d
MG
4264 ret = __node_reclaim(pgdat, gfp_mask, order);
4265 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4266
24cf7251
MG
4267 if (!ret)
4268 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4269
d773ed6b 4270 return ret;
179e9639 4271}
9eeff239 4272#endif
894bc310 4273
89e004ea 4274/**
64e3d12f
KHY
4275 * check_move_unevictable_pages - check pages for evictability and move to
4276 * appropriate zone lru list
4277 * @pvec: pagevec with lru pages to check
89e004ea 4278 *
64e3d12f
KHY
4279 * Checks pages for evictability, if an evictable page is in the unevictable
4280 * lru list, moves it to the appropriate evictable lru list. This function
4281 * should be only used for lru pages.
89e004ea 4282 */
64e3d12f 4283void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4284{
925b7673 4285 struct lruvec *lruvec;
785b99fe 4286 struct pglist_data *pgdat = NULL;
24513264
HD
4287 int pgscanned = 0;
4288 int pgrescued = 0;
4289 int i;
89e004ea 4290
64e3d12f
KHY
4291 for (i = 0; i < pvec->nr; i++) {
4292 struct page *page = pvec->pages[i];
785b99fe 4293 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4294
24513264 4295 pgscanned++;
785b99fe
MG
4296 if (pagepgdat != pgdat) {
4297 if (pgdat)
4298 spin_unlock_irq(&pgdat->lru_lock);
4299 pgdat = pagepgdat;
4300 spin_lock_irq(&pgdat->lru_lock);
24513264 4301 }
785b99fe 4302 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4303
24513264
HD
4304 if (!PageLRU(page) || !PageUnevictable(page))
4305 continue;
89e004ea 4306
39b5f29a 4307 if (page_evictable(page)) {
24513264
HD
4308 enum lru_list lru = page_lru_base_type(page);
4309
309381fe 4310 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4311 ClearPageUnevictable(page);
fa9add64
HD
4312 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4313 add_page_to_lru_list(page, lruvec, lru);
24513264 4314 pgrescued++;
89e004ea 4315 }
24513264 4316 }
89e004ea 4317
785b99fe 4318 if (pgdat) {
24513264
HD
4319 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4320 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4321 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4322 }
89e004ea 4323}
64e3d12f 4324EXPORT_SYMBOL_GPL(check_move_unevictable_pages);