]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
mm, memcg: make memory.emin the baseline for utilisation determination
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
64e3d12f 49#include <linux/pagevec.h>
268bb0ce 50#include <linux/prefetch.h>
b1de0d13 51#include <linux/printk.h>
f9fe48be 52#include <linux/dax.h>
eb414681 53#include <linux/psi.h>
1da177e4
LT
54
55#include <asm/tlbflush.h>
56#include <asm/div64.h>
57
58#include <linux/swapops.h>
117aad1e 59#include <linux/balloon_compaction.h>
1da177e4 60
0f8053a5
NP
61#include "internal.h"
62
33906bc5
MG
63#define CREATE_TRACE_POINTS
64#include <trace/events/vmscan.h>
65
1da177e4 66struct scan_control {
22fba335
KM
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
ee814fe2
JW
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
9e3b2f8c 75
f16015fb
JW
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
66e1707b 81
1276ad68 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
83 unsigned int may_writepage:1;
84
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
87
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
90
d6622f63
YX
91 /*
92 * Cgroups are not reclaimed below their configured memory.low,
93 * unless we threaten to OOM. If any cgroups are skipped due to
94 * memory.low and nothing was reclaimed, go back for memory.low.
95 */
96 unsigned int memcg_low_reclaim:1;
97 unsigned int memcg_low_skipped:1;
241994ed 98
ee814fe2
JW
99 unsigned int hibernation_mode:1;
100
101 /* One of the zones is ready for compaction */
102 unsigned int compaction_ready:1;
103
bb451fdf
GT
104 /* Allocation order */
105 s8 order;
106
107 /* Scan (total_size >> priority) pages at once */
108 s8 priority;
109
110 /* The highest zone to isolate pages for reclaim from */
111 s8 reclaim_idx;
112
113 /* This context's GFP mask */
114 gfp_t gfp_mask;
115
ee814fe2
JW
116 /* Incremented by the number of inactive pages that were scanned */
117 unsigned long nr_scanned;
118
119 /* Number of pages freed so far during a call to shrink_zones() */
120 unsigned long nr_reclaimed;
d108c772
AR
121
122 struct {
123 unsigned int dirty;
124 unsigned int unqueued_dirty;
125 unsigned int congested;
126 unsigned int writeback;
127 unsigned int immediate;
128 unsigned int file_taken;
129 unsigned int taken;
130 } nr;
e5ca8071
YS
131
132 /* for recording the reclaimed slab by now */
133 struct reclaim_state reclaim_state;
1da177e4
LT
134};
135
1da177e4
LT
136#ifdef ARCH_HAS_PREFETCH
137#define prefetch_prev_lru_page(_page, _base, _field) \
138 do { \
139 if ((_page)->lru.prev != _base) { \
140 struct page *prev; \
141 \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
144 } \
145 } while (0)
146#else
147#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148#endif
149
150#ifdef ARCH_HAS_PREFETCHW
151#define prefetchw_prev_lru_page(_page, _base, _field) \
152 do { \
153 if ((_page)->lru.prev != _base) { \
154 struct page *prev; \
155 \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
158 } \
159 } while (0)
160#else
161#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162#endif
163
164/*
165 * From 0 .. 100. Higher means more swappy.
166 */
167int vm_swappiness = 60;
d0480be4
WSH
168/*
169 * The total number of pages which are beyond the high watermark within all
170 * zones.
171 */
172unsigned long vm_total_pages;
1da177e4 173
0a432dcb
YS
174static void set_task_reclaim_state(struct task_struct *task,
175 struct reclaim_state *rs)
176{
177 /* Check for an overwrite */
178 WARN_ON_ONCE(rs && task->reclaim_state);
179
180 /* Check for the nulling of an already-nulled member */
181 WARN_ON_ONCE(!rs && !task->reclaim_state);
182
183 task->reclaim_state = rs;
184}
185
1da177e4
LT
186static LIST_HEAD(shrinker_list);
187static DECLARE_RWSEM(shrinker_rwsem);
188
0a432dcb 189#ifdef CONFIG_MEMCG
7e010df5
KT
190/*
191 * We allow subsystems to populate their shrinker-related
192 * LRU lists before register_shrinker_prepared() is called
193 * for the shrinker, since we don't want to impose
194 * restrictions on their internal registration order.
195 * In this case shrink_slab_memcg() may find corresponding
196 * bit is set in the shrinkers map.
197 *
198 * This value is used by the function to detect registering
199 * shrinkers and to skip do_shrink_slab() calls for them.
200 */
201#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
202
b4c2b231
KT
203static DEFINE_IDR(shrinker_idr);
204static int shrinker_nr_max;
205
206static int prealloc_memcg_shrinker(struct shrinker *shrinker)
207{
208 int id, ret = -ENOMEM;
209
210 down_write(&shrinker_rwsem);
211 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 212 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
213 if (id < 0)
214 goto unlock;
215
0a4465d3
KT
216 if (id >= shrinker_nr_max) {
217 if (memcg_expand_shrinker_maps(id)) {
218 idr_remove(&shrinker_idr, id);
219 goto unlock;
220 }
221
b4c2b231 222 shrinker_nr_max = id + 1;
0a4465d3 223 }
b4c2b231
KT
224 shrinker->id = id;
225 ret = 0;
226unlock:
227 up_write(&shrinker_rwsem);
228 return ret;
229}
230
231static void unregister_memcg_shrinker(struct shrinker *shrinker)
232{
233 int id = shrinker->id;
234
235 BUG_ON(id < 0);
236
237 down_write(&shrinker_rwsem);
238 idr_remove(&shrinker_idr, id);
239 up_write(&shrinker_rwsem);
240}
b4c2b231 241
89b5fae5
JW
242static bool global_reclaim(struct scan_control *sc)
243{
f16015fb 244 return !sc->target_mem_cgroup;
89b5fae5 245}
97c9341f
TH
246
247/**
248 * sane_reclaim - is the usual dirty throttling mechanism operational?
249 * @sc: scan_control in question
250 *
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
256 *
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
259 */
260static bool sane_reclaim(struct scan_control *sc)
261{
262 struct mem_cgroup *memcg = sc->target_mem_cgroup;
263
264 if (!memcg)
265 return true;
266#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
268 return true;
269#endif
270 return false;
271}
e3c1ac58
AR
272
273static void set_memcg_congestion(pg_data_t *pgdat,
274 struct mem_cgroup *memcg,
275 bool congested)
276{
277 struct mem_cgroup_per_node *mn;
278
279 if (!memcg)
280 return;
281
282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 WRITE_ONCE(mn->congested, congested);
284}
285
286static bool memcg_congested(pg_data_t *pgdat,
287 struct mem_cgroup *memcg)
288{
289 struct mem_cgroup_per_node *mn;
290
291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 return READ_ONCE(mn->congested);
293
294}
91a45470 295#else
0a432dcb
YS
296static int prealloc_memcg_shrinker(struct shrinker *shrinker)
297{
298 return 0;
299}
300
301static void unregister_memcg_shrinker(struct shrinker *shrinker)
302{
303}
304
89b5fae5
JW
305static bool global_reclaim(struct scan_control *sc)
306{
307 return true;
308}
97c9341f
TH
309
310static bool sane_reclaim(struct scan_control *sc)
311{
312 return true;
313}
e3c1ac58
AR
314
315static inline void set_memcg_congestion(struct pglist_data *pgdat,
316 struct mem_cgroup *memcg, bool congested)
317{
318}
319
320static inline bool memcg_congested(struct pglist_data *pgdat,
321 struct mem_cgroup *memcg)
322{
323 return false;
324
325}
91a45470
KH
326#endif
327
5a1c84b4
MG
328/*
329 * This misses isolated pages which are not accounted for to save counters.
330 * As the data only determines if reclaim or compaction continues, it is
331 * not expected that isolated pages will be a dominating factor.
332 */
333unsigned long zone_reclaimable_pages(struct zone *zone)
334{
335 unsigned long nr;
336
337 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
338 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
339 if (get_nr_swap_pages() > 0)
340 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
341 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
342
343 return nr;
344}
345
fd538803
MH
346/**
347 * lruvec_lru_size - Returns the number of pages on the given LRU list.
348 * @lruvec: lru vector
349 * @lru: lru to use
350 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
351 */
352unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 353{
fd538803
MH
354 unsigned long lru_size;
355 int zid;
356
c3c787e8 357 if (!mem_cgroup_disabled())
205b20cc 358 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
fd538803
MH
359 else
360 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 361
fd538803
MH
362 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
363 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
364 unsigned long size;
c9f299d9 365
fd538803
MH
366 if (!managed_zone(zone))
367 continue;
368
369 if (!mem_cgroup_disabled())
370 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
371 else
372 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
373 NR_ZONE_LRU_BASE + lru);
374 lru_size -= min(size, lru_size);
375 }
376
377 return lru_size;
b4536f0c 378
b4536f0c
MH
379}
380
1da177e4 381/*
1d3d4437 382 * Add a shrinker callback to be called from the vm.
1da177e4 383 */
8e04944f 384int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 385{
b9726c26 386 unsigned int size = sizeof(*shrinker->nr_deferred);
1d3d4437 387
1d3d4437
GC
388 if (shrinker->flags & SHRINKER_NUMA_AWARE)
389 size *= nr_node_ids;
390
391 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
392 if (!shrinker->nr_deferred)
393 return -ENOMEM;
b4c2b231
KT
394
395 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
396 if (prealloc_memcg_shrinker(shrinker))
397 goto free_deferred;
398 }
399
8e04944f 400 return 0;
b4c2b231
KT
401
402free_deferred:
403 kfree(shrinker->nr_deferred);
404 shrinker->nr_deferred = NULL;
405 return -ENOMEM;
8e04944f
TH
406}
407
408void free_prealloced_shrinker(struct shrinker *shrinker)
409{
b4c2b231
KT
410 if (!shrinker->nr_deferred)
411 return;
412
413 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
414 unregister_memcg_shrinker(shrinker);
415
8e04944f
TH
416 kfree(shrinker->nr_deferred);
417 shrinker->nr_deferred = NULL;
418}
1d3d4437 419
8e04944f
TH
420void register_shrinker_prepared(struct shrinker *shrinker)
421{
8e1f936b
RR
422 down_write(&shrinker_rwsem);
423 list_add_tail(&shrinker->list, &shrinker_list);
7e010df5 424#ifdef CONFIG_MEMCG_KMEM
8df4a44c
KT
425 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
426 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 427#endif
8e1f936b 428 up_write(&shrinker_rwsem);
8e04944f
TH
429}
430
431int register_shrinker(struct shrinker *shrinker)
432{
433 int err = prealloc_shrinker(shrinker);
434
435 if (err)
436 return err;
437 register_shrinker_prepared(shrinker);
1d3d4437 438 return 0;
1da177e4 439}
8e1f936b 440EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
441
442/*
443 * Remove one
444 */
8e1f936b 445void unregister_shrinker(struct shrinker *shrinker)
1da177e4 446{
bb422a73
TH
447 if (!shrinker->nr_deferred)
448 return;
b4c2b231
KT
449 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
450 unregister_memcg_shrinker(shrinker);
1da177e4
LT
451 down_write(&shrinker_rwsem);
452 list_del(&shrinker->list);
453 up_write(&shrinker_rwsem);
ae393321 454 kfree(shrinker->nr_deferred);
bb422a73 455 shrinker->nr_deferred = NULL;
1da177e4 456}
8e1f936b 457EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
458
459#define SHRINK_BATCH 128
1d3d4437 460
cb731d6c 461static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 462 struct shrinker *shrinker, int priority)
1d3d4437
GC
463{
464 unsigned long freed = 0;
465 unsigned long long delta;
466 long total_scan;
d5bc5fd3 467 long freeable;
1d3d4437
GC
468 long nr;
469 long new_nr;
470 int nid = shrinkctl->nid;
471 long batch_size = shrinker->batch ? shrinker->batch
472 : SHRINK_BATCH;
5f33a080 473 long scanned = 0, next_deferred;
1d3d4437 474
ac7fb3ad
KT
475 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
476 nid = 0;
477
d5bc5fd3 478 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
479 if (freeable == 0 || freeable == SHRINK_EMPTY)
480 return freeable;
1d3d4437
GC
481
482 /*
483 * copy the current shrinker scan count into a local variable
484 * and zero it so that other concurrent shrinker invocations
485 * don't also do this scanning work.
486 */
487 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
488
489 total_scan = nr;
4b85afbd
JW
490 if (shrinker->seeks) {
491 delta = freeable >> priority;
492 delta *= 4;
493 do_div(delta, shrinker->seeks);
494 } else {
495 /*
496 * These objects don't require any IO to create. Trim
497 * them aggressively under memory pressure to keep
498 * them from causing refetches in the IO caches.
499 */
500 delta = freeable / 2;
501 }
172b06c3 502
1d3d4437
GC
503 total_scan += delta;
504 if (total_scan < 0) {
d75f773c 505 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
a0b02131 506 shrinker->scan_objects, total_scan);
d5bc5fd3 507 total_scan = freeable;
5f33a080
SL
508 next_deferred = nr;
509 } else
510 next_deferred = total_scan;
1d3d4437
GC
511
512 /*
513 * We need to avoid excessive windup on filesystem shrinkers
514 * due to large numbers of GFP_NOFS allocations causing the
515 * shrinkers to return -1 all the time. This results in a large
516 * nr being built up so when a shrink that can do some work
517 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 518 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
519 * memory.
520 *
521 * Hence only allow the shrinker to scan the entire cache when
522 * a large delta change is calculated directly.
523 */
d5bc5fd3
VD
524 if (delta < freeable / 4)
525 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
526
527 /*
528 * Avoid risking looping forever due to too large nr value:
529 * never try to free more than twice the estimate number of
530 * freeable entries.
531 */
d5bc5fd3
VD
532 if (total_scan > freeable * 2)
533 total_scan = freeable * 2;
1d3d4437
GC
534
535 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 536 freeable, delta, total_scan, priority);
1d3d4437 537
0b1fb40a
VD
538 /*
539 * Normally, we should not scan less than batch_size objects in one
540 * pass to avoid too frequent shrinker calls, but if the slab has less
541 * than batch_size objects in total and we are really tight on memory,
542 * we will try to reclaim all available objects, otherwise we can end
543 * up failing allocations although there are plenty of reclaimable
544 * objects spread over several slabs with usage less than the
545 * batch_size.
546 *
547 * We detect the "tight on memory" situations by looking at the total
548 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 549 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
550 * scanning at high prio and therefore should try to reclaim as much as
551 * possible.
552 */
553 while (total_scan >= batch_size ||
d5bc5fd3 554 total_scan >= freeable) {
a0b02131 555 unsigned long ret;
0b1fb40a 556 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 557
0b1fb40a 558 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 559 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
560 ret = shrinker->scan_objects(shrinker, shrinkctl);
561 if (ret == SHRINK_STOP)
562 break;
563 freed += ret;
1d3d4437 564
d460acb5
CW
565 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
566 total_scan -= shrinkctl->nr_scanned;
567 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
568
569 cond_resched();
570 }
571
5f33a080
SL
572 if (next_deferred >= scanned)
573 next_deferred -= scanned;
574 else
575 next_deferred = 0;
1d3d4437
GC
576 /*
577 * move the unused scan count back into the shrinker in a
578 * manner that handles concurrent updates. If we exhausted the
579 * scan, there is no need to do an update.
580 */
5f33a080
SL
581 if (next_deferred > 0)
582 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
583 &shrinker->nr_deferred[nid]);
584 else
585 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
586
df9024a8 587 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 588 return freed;
1495f230
YH
589}
590
0a432dcb 591#ifdef CONFIG_MEMCG
b0dedc49
KT
592static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
593 struct mem_cgroup *memcg, int priority)
594{
595 struct memcg_shrinker_map *map;
b8e57efa
KT
596 unsigned long ret, freed = 0;
597 int i;
b0dedc49 598
0a432dcb 599 if (!mem_cgroup_online(memcg))
b0dedc49
KT
600 return 0;
601
602 if (!down_read_trylock(&shrinker_rwsem))
603 return 0;
604
605 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
606 true);
607 if (unlikely(!map))
608 goto unlock;
609
610 for_each_set_bit(i, map->map, shrinker_nr_max) {
611 struct shrink_control sc = {
612 .gfp_mask = gfp_mask,
613 .nid = nid,
614 .memcg = memcg,
615 };
616 struct shrinker *shrinker;
617
618 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
619 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
620 if (!shrinker)
621 clear_bit(i, map->map);
b0dedc49
KT
622 continue;
623 }
624
0a432dcb
YS
625 /* Call non-slab shrinkers even though kmem is disabled */
626 if (!memcg_kmem_enabled() &&
627 !(shrinker->flags & SHRINKER_NONSLAB))
628 continue;
629
b0dedc49 630 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6
KT
631 if (ret == SHRINK_EMPTY) {
632 clear_bit(i, map->map);
633 /*
634 * After the shrinker reported that it had no objects to
635 * free, but before we cleared the corresponding bit in
636 * the memcg shrinker map, a new object might have been
637 * added. To make sure, we have the bit set in this
638 * case, we invoke the shrinker one more time and reset
639 * the bit if it reports that it is not empty anymore.
640 * The memory barrier here pairs with the barrier in
641 * memcg_set_shrinker_bit():
642 *
643 * list_lru_add() shrink_slab_memcg()
644 * list_add_tail() clear_bit()
645 * <MB> <MB>
646 * set_bit() do_shrink_slab()
647 */
648 smp_mb__after_atomic();
649 ret = do_shrink_slab(&sc, shrinker, priority);
650 if (ret == SHRINK_EMPTY)
651 ret = 0;
652 else
653 memcg_set_shrinker_bit(memcg, nid, i);
654 }
b0dedc49
KT
655 freed += ret;
656
657 if (rwsem_is_contended(&shrinker_rwsem)) {
658 freed = freed ? : 1;
659 break;
660 }
661 }
662unlock:
663 up_read(&shrinker_rwsem);
664 return freed;
665}
0a432dcb 666#else /* CONFIG_MEMCG */
b0dedc49
KT
667static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
668 struct mem_cgroup *memcg, int priority)
669{
670 return 0;
671}
0a432dcb 672#endif /* CONFIG_MEMCG */
b0dedc49 673
6b4f7799 674/**
cb731d6c 675 * shrink_slab - shrink slab caches
6b4f7799
JW
676 * @gfp_mask: allocation context
677 * @nid: node whose slab caches to target
cb731d6c 678 * @memcg: memory cgroup whose slab caches to target
9092c71b 679 * @priority: the reclaim priority
1da177e4 680 *
6b4f7799 681 * Call the shrink functions to age shrinkable caches.
1da177e4 682 *
6b4f7799
JW
683 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
684 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 685 *
aeed1d32
VD
686 * @memcg specifies the memory cgroup to target. Unaware shrinkers
687 * are called only if it is the root cgroup.
cb731d6c 688 *
9092c71b
JB
689 * @priority is sc->priority, we take the number of objects and >> by priority
690 * in order to get the scan target.
b15e0905 691 *
6b4f7799 692 * Returns the number of reclaimed slab objects.
1da177e4 693 */
cb731d6c
VD
694static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
695 struct mem_cgroup *memcg,
9092c71b 696 int priority)
1da177e4 697{
b8e57efa 698 unsigned long ret, freed = 0;
1da177e4
LT
699 struct shrinker *shrinker;
700
fa1e512f
YS
701 /*
702 * The root memcg might be allocated even though memcg is disabled
703 * via "cgroup_disable=memory" boot parameter. This could make
704 * mem_cgroup_is_root() return false, then just run memcg slab
705 * shrink, but skip global shrink. This may result in premature
706 * oom.
707 */
708 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 709 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 710
e830c63a 711 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 712 goto out;
1da177e4
LT
713
714 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
715 struct shrink_control sc = {
716 .gfp_mask = gfp_mask,
717 .nid = nid,
cb731d6c 718 .memcg = memcg,
6b4f7799 719 };
ec97097b 720
9b996468
KT
721 ret = do_shrink_slab(&sc, shrinker, priority);
722 if (ret == SHRINK_EMPTY)
723 ret = 0;
724 freed += ret;
e496612c
MK
725 /*
726 * Bail out if someone want to register a new shrinker to
727 * prevent the regsitration from being stalled for long periods
728 * by parallel ongoing shrinking.
729 */
730 if (rwsem_is_contended(&shrinker_rwsem)) {
731 freed = freed ? : 1;
732 break;
733 }
1da177e4 734 }
6b4f7799 735
1da177e4 736 up_read(&shrinker_rwsem);
f06590bd
MK
737out:
738 cond_resched();
24f7c6b9 739 return freed;
1da177e4
LT
740}
741
cb731d6c
VD
742void drop_slab_node(int nid)
743{
744 unsigned long freed;
745
746 do {
747 struct mem_cgroup *memcg = NULL;
748
749 freed = 0;
aeed1d32 750 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 751 do {
9092c71b 752 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
753 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
754 } while (freed > 10);
755}
756
757void drop_slab(void)
758{
759 int nid;
760
761 for_each_online_node(nid)
762 drop_slab_node(nid);
763}
764
1da177e4
LT
765static inline int is_page_cache_freeable(struct page *page)
766{
ceddc3a5
JW
767 /*
768 * A freeable page cache page is referenced only by the caller
67891fff
MW
769 * that isolated the page, the page cache and optional buffer
770 * heads at page->private.
ceddc3a5 771 */
67891fff 772 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
bd4c82c2 773 HPAGE_PMD_NR : 1;
67891fff 774 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
775}
776
703c2708 777static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 778{
930d9152 779 if (current->flags & PF_SWAPWRITE)
1da177e4 780 return 1;
703c2708 781 if (!inode_write_congested(inode))
1da177e4 782 return 1;
703c2708 783 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
784 return 1;
785 return 0;
786}
787
788/*
789 * We detected a synchronous write error writing a page out. Probably
790 * -ENOSPC. We need to propagate that into the address_space for a subsequent
791 * fsync(), msync() or close().
792 *
793 * The tricky part is that after writepage we cannot touch the mapping: nothing
794 * prevents it from being freed up. But we have a ref on the page and once
795 * that page is locked, the mapping is pinned.
796 *
797 * We're allowed to run sleeping lock_page() here because we know the caller has
798 * __GFP_FS.
799 */
800static void handle_write_error(struct address_space *mapping,
801 struct page *page, int error)
802{
7eaceacc 803 lock_page(page);
3e9f45bd
GC
804 if (page_mapping(page) == mapping)
805 mapping_set_error(mapping, error);
1da177e4
LT
806 unlock_page(page);
807}
808
04e62a29
CL
809/* possible outcome of pageout() */
810typedef enum {
811 /* failed to write page out, page is locked */
812 PAGE_KEEP,
813 /* move page to the active list, page is locked */
814 PAGE_ACTIVATE,
815 /* page has been sent to the disk successfully, page is unlocked */
816 PAGE_SUCCESS,
817 /* page is clean and locked */
818 PAGE_CLEAN,
819} pageout_t;
820
1da177e4 821/*
1742f19f
AM
822 * pageout is called by shrink_page_list() for each dirty page.
823 * Calls ->writepage().
1da177e4 824 */
c661b078 825static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 826 struct scan_control *sc)
1da177e4
LT
827{
828 /*
829 * If the page is dirty, only perform writeback if that write
830 * will be non-blocking. To prevent this allocation from being
831 * stalled by pagecache activity. But note that there may be
832 * stalls if we need to run get_block(). We could test
833 * PagePrivate for that.
834 *
8174202b 835 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
836 * this page's queue, we can perform writeback even if that
837 * will block.
838 *
839 * If the page is swapcache, write it back even if that would
840 * block, for some throttling. This happens by accident, because
841 * swap_backing_dev_info is bust: it doesn't reflect the
842 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
843 */
844 if (!is_page_cache_freeable(page))
845 return PAGE_KEEP;
846 if (!mapping) {
847 /*
848 * Some data journaling orphaned pages can have
849 * page->mapping == NULL while being dirty with clean buffers.
850 */
266cf658 851 if (page_has_private(page)) {
1da177e4
LT
852 if (try_to_free_buffers(page)) {
853 ClearPageDirty(page);
b1de0d13 854 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
855 return PAGE_CLEAN;
856 }
857 }
858 return PAGE_KEEP;
859 }
860 if (mapping->a_ops->writepage == NULL)
861 return PAGE_ACTIVATE;
703c2708 862 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
863 return PAGE_KEEP;
864
865 if (clear_page_dirty_for_io(page)) {
866 int res;
867 struct writeback_control wbc = {
868 .sync_mode = WB_SYNC_NONE,
869 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
870 .range_start = 0,
871 .range_end = LLONG_MAX,
1da177e4
LT
872 .for_reclaim = 1,
873 };
874
875 SetPageReclaim(page);
876 res = mapping->a_ops->writepage(page, &wbc);
877 if (res < 0)
878 handle_write_error(mapping, page, res);
994fc28c 879 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
880 ClearPageReclaim(page);
881 return PAGE_ACTIVATE;
882 }
c661b078 883
1da177e4
LT
884 if (!PageWriteback(page)) {
885 /* synchronous write or broken a_ops? */
886 ClearPageReclaim(page);
887 }
3aa23851 888 trace_mm_vmscan_writepage(page);
c4a25635 889 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
890 return PAGE_SUCCESS;
891 }
892
893 return PAGE_CLEAN;
894}
895
a649fd92 896/*
e286781d
NP
897 * Same as remove_mapping, but if the page is removed from the mapping, it
898 * gets returned with a refcount of 0.
a649fd92 899 */
a528910e
JW
900static int __remove_mapping(struct address_space *mapping, struct page *page,
901 bool reclaimed)
49d2e9cc 902{
c4843a75 903 unsigned long flags;
bd4c82c2 904 int refcount;
c4843a75 905
28e4d965
NP
906 BUG_ON(!PageLocked(page));
907 BUG_ON(mapping != page_mapping(page));
49d2e9cc 908
b93b0163 909 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 910 /*
0fd0e6b0
NP
911 * The non racy check for a busy page.
912 *
913 * Must be careful with the order of the tests. When someone has
914 * a ref to the page, it may be possible that they dirty it then
915 * drop the reference. So if PageDirty is tested before page_count
916 * here, then the following race may occur:
917 *
918 * get_user_pages(&page);
919 * [user mapping goes away]
920 * write_to(page);
921 * !PageDirty(page) [good]
922 * SetPageDirty(page);
923 * put_page(page);
924 * !page_count(page) [good, discard it]
925 *
926 * [oops, our write_to data is lost]
927 *
928 * Reversing the order of the tests ensures such a situation cannot
929 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 930 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
931 *
932 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 933 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 934 */
bd4c82c2
HY
935 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
936 refcount = 1 + HPAGE_PMD_NR;
937 else
938 refcount = 2;
939 if (!page_ref_freeze(page, refcount))
49d2e9cc 940 goto cannot_free;
1c4c3b99 941 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 942 if (unlikely(PageDirty(page))) {
bd4c82c2 943 page_ref_unfreeze(page, refcount);
49d2e9cc 944 goto cannot_free;
e286781d 945 }
49d2e9cc
CL
946
947 if (PageSwapCache(page)) {
948 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 949 mem_cgroup_swapout(page, swap);
4e17ec25 950 __delete_from_swap_cache(page, swap);
b93b0163 951 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 952 put_swap_page(page, swap);
e286781d 953 } else {
6072d13c 954 void (*freepage)(struct page *);
a528910e 955 void *shadow = NULL;
6072d13c
LT
956
957 freepage = mapping->a_ops->freepage;
a528910e
JW
958 /*
959 * Remember a shadow entry for reclaimed file cache in
960 * order to detect refaults, thus thrashing, later on.
961 *
962 * But don't store shadows in an address space that is
963 * already exiting. This is not just an optizimation,
964 * inode reclaim needs to empty out the radix tree or
965 * the nodes are lost. Don't plant shadows behind its
966 * back.
f9fe48be
RZ
967 *
968 * We also don't store shadows for DAX mappings because the
969 * only page cache pages found in these are zero pages
970 * covering holes, and because we don't want to mix DAX
971 * exceptional entries and shadow exceptional entries in the
b93b0163 972 * same address_space.
a528910e
JW
973 */
974 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 975 !mapping_exiting(mapping) && !dax_mapping(mapping))
a7ca12f9 976 shadow = workingset_eviction(page);
62cccb8c 977 __delete_from_page_cache(page, shadow);
b93b0163 978 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
979
980 if (freepage != NULL)
981 freepage(page);
49d2e9cc
CL
982 }
983
49d2e9cc
CL
984 return 1;
985
986cannot_free:
b93b0163 987 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
988 return 0;
989}
990
e286781d
NP
991/*
992 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
993 * someone else has a ref on the page, abort and return 0. If it was
994 * successfully detached, return 1. Assumes the caller has a single ref on
995 * this page.
996 */
997int remove_mapping(struct address_space *mapping, struct page *page)
998{
a528910e 999 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
1000 /*
1001 * Unfreezing the refcount with 1 rather than 2 effectively
1002 * drops the pagecache ref for us without requiring another
1003 * atomic operation.
1004 */
fe896d18 1005 page_ref_unfreeze(page, 1);
e286781d
NP
1006 return 1;
1007 }
1008 return 0;
1009}
1010
894bc310
LS
1011/**
1012 * putback_lru_page - put previously isolated page onto appropriate LRU list
1013 * @page: page to be put back to appropriate lru list
1014 *
1015 * Add previously isolated @page to appropriate LRU list.
1016 * Page may still be unevictable for other reasons.
1017 *
1018 * lru_lock must not be held, interrupts must be enabled.
1019 */
894bc310
LS
1020void putback_lru_page(struct page *page)
1021{
9c4e6b1a 1022 lru_cache_add(page);
894bc310
LS
1023 put_page(page); /* drop ref from isolate */
1024}
1025
dfc8d636
JW
1026enum page_references {
1027 PAGEREF_RECLAIM,
1028 PAGEREF_RECLAIM_CLEAN,
64574746 1029 PAGEREF_KEEP,
dfc8d636
JW
1030 PAGEREF_ACTIVATE,
1031};
1032
1033static enum page_references page_check_references(struct page *page,
1034 struct scan_control *sc)
1035{
64574746 1036 int referenced_ptes, referenced_page;
dfc8d636 1037 unsigned long vm_flags;
dfc8d636 1038
c3ac9a8a
JW
1039 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1040 &vm_flags);
64574746 1041 referenced_page = TestClearPageReferenced(page);
dfc8d636 1042
dfc8d636
JW
1043 /*
1044 * Mlock lost the isolation race with us. Let try_to_unmap()
1045 * move the page to the unevictable list.
1046 */
1047 if (vm_flags & VM_LOCKED)
1048 return PAGEREF_RECLAIM;
1049
64574746 1050 if (referenced_ptes) {
e4898273 1051 if (PageSwapBacked(page))
64574746
JW
1052 return PAGEREF_ACTIVATE;
1053 /*
1054 * All mapped pages start out with page table
1055 * references from the instantiating fault, so we need
1056 * to look twice if a mapped file page is used more
1057 * than once.
1058 *
1059 * Mark it and spare it for another trip around the
1060 * inactive list. Another page table reference will
1061 * lead to its activation.
1062 *
1063 * Note: the mark is set for activated pages as well
1064 * so that recently deactivated but used pages are
1065 * quickly recovered.
1066 */
1067 SetPageReferenced(page);
1068
34dbc67a 1069 if (referenced_page || referenced_ptes > 1)
64574746
JW
1070 return PAGEREF_ACTIVATE;
1071
c909e993
KK
1072 /*
1073 * Activate file-backed executable pages after first usage.
1074 */
1075 if (vm_flags & VM_EXEC)
1076 return PAGEREF_ACTIVATE;
1077
64574746
JW
1078 return PAGEREF_KEEP;
1079 }
dfc8d636
JW
1080
1081 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1082 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1083 return PAGEREF_RECLAIM_CLEAN;
1084
1085 return PAGEREF_RECLAIM;
dfc8d636
JW
1086}
1087
e2be15f6
MG
1088/* Check if a page is dirty or under writeback */
1089static void page_check_dirty_writeback(struct page *page,
1090 bool *dirty, bool *writeback)
1091{
b4597226
MG
1092 struct address_space *mapping;
1093
e2be15f6
MG
1094 /*
1095 * Anonymous pages are not handled by flushers and must be written
1096 * from reclaim context. Do not stall reclaim based on them
1097 */
802a3a92
SL
1098 if (!page_is_file_cache(page) ||
1099 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1100 *dirty = false;
1101 *writeback = false;
1102 return;
1103 }
1104
1105 /* By default assume that the page flags are accurate */
1106 *dirty = PageDirty(page);
1107 *writeback = PageWriteback(page);
b4597226
MG
1108
1109 /* Verify dirty/writeback state if the filesystem supports it */
1110 if (!page_has_private(page))
1111 return;
1112
1113 mapping = page_mapping(page);
1114 if (mapping && mapping->a_ops->is_dirty_writeback)
1115 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1116}
1117
1da177e4 1118/*
1742f19f 1119 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1120 */
1742f19f 1121static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 1122 struct pglist_data *pgdat,
f84f6e2b 1123 struct scan_control *sc,
02c6de8d 1124 enum ttu_flags ttu_flags,
3c710c1a 1125 struct reclaim_stat *stat,
8940b34a 1126 bool ignore_references)
1da177e4
LT
1127{
1128 LIST_HEAD(ret_pages);
abe4c3b5 1129 LIST_HEAD(free_pages);
3c710c1a 1130 unsigned nr_reclaimed = 0;
886cf190 1131 unsigned pgactivate = 0;
1da177e4 1132
060f005f 1133 memset(stat, 0, sizeof(*stat));
1da177e4
LT
1134 cond_resched();
1135
1da177e4
LT
1136 while (!list_empty(page_list)) {
1137 struct address_space *mapping;
1138 struct page *page;
1139 int may_enter_fs;
8940b34a 1140 enum page_references references = PAGEREF_RECLAIM;
e2be15f6 1141 bool dirty, writeback;
98879b3b 1142 unsigned int nr_pages;
1da177e4
LT
1143
1144 cond_resched();
1145
1146 page = lru_to_page(page_list);
1147 list_del(&page->lru);
1148
529ae9aa 1149 if (!trylock_page(page))
1da177e4
LT
1150 goto keep;
1151
309381fe 1152 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1153
d8c6546b 1154 nr_pages = compound_nr(page);
98879b3b
YS
1155
1156 /* Account the number of base pages even though THP */
1157 sc->nr_scanned += nr_pages;
80e43426 1158
39b5f29a 1159 if (unlikely(!page_evictable(page)))
ad6b6704 1160 goto activate_locked;
894bc310 1161
a6dc60f8 1162 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1163 goto keep_locked;
1164
c661b078
AW
1165 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1166 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1167
e2be15f6 1168 /*
894befec 1169 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1170 * reclaim_congested which affects wait_iff_congested. kswapd
1171 * will stall and start writing pages if the tail of the LRU
1172 * is all dirty unqueued pages.
1173 */
1174 page_check_dirty_writeback(page, &dirty, &writeback);
1175 if (dirty || writeback)
060f005f 1176 stat->nr_dirty++;
e2be15f6
MG
1177
1178 if (dirty && !writeback)
060f005f 1179 stat->nr_unqueued_dirty++;
e2be15f6 1180
d04e8acd
MG
1181 /*
1182 * Treat this page as congested if the underlying BDI is or if
1183 * pages are cycling through the LRU so quickly that the
1184 * pages marked for immediate reclaim are making it to the
1185 * end of the LRU a second time.
1186 */
e2be15f6 1187 mapping = page_mapping(page);
1da58ee2 1188 if (((dirty || writeback) && mapping &&
703c2708 1189 inode_write_congested(mapping->host)) ||
d04e8acd 1190 (writeback && PageReclaim(page)))
060f005f 1191 stat->nr_congested++;
e2be15f6 1192
283aba9f
MG
1193 /*
1194 * If a page at the tail of the LRU is under writeback, there
1195 * are three cases to consider.
1196 *
1197 * 1) If reclaim is encountering an excessive number of pages
1198 * under writeback and this page is both under writeback and
1199 * PageReclaim then it indicates that pages are being queued
1200 * for IO but are being recycled through the LRU before the
1201 * IO can complete. Waiting on the page itself risks an
1202 * indefinite stall if it is impossible to writeback the
1203 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1204 * note that the LRU is being scanned too quickly and the
1205 * caller can stall after page list has been processed.
283aba9f 1206 *
97c9341f 1207 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1208 * not marked for immediate reclaim, or the caller does not
1209 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1210 * not to fs). In this case mark the page for immediate
97c9341f 1211 * reclaim and continue scanning.
283aba9f 1212 *
ecf5fc6e
MH
1213 * Require may_enter_fs because we would wait on fs, which
1214 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1215 * enter reclaim, and deadlock if it waits on a page for
1216 * which it is needed to do the write (loop masks off
1217 * __GFP_IO|__GFP_FS for this reason); but more thought
1218 * would probably show more reasons.
1219 *
7fadc820 1220 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1221 * PageReclaim. memcg does not have any dirty pages
1222 * throttling so we could easily OOM just because too many
1223 * pages are in writeback and there is nothing else to
1224 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1225 *
1226 * In cases 1) and 2) we activate the pages to get them out of
1227 * the way while we continue scanning for clean pages on the
1228 * inactive list and refilling from the active list. The
1229 * observation here is that waiting for disk writes is more
1230 * expensive than potentially causing reloads down the line.
1231 * Since they're marked for immediate reclaim, they won't put
1232 * memory pressure on the cache working set any longer than it
1233 * takes to write them to disk.
283aba9f 1234 */
c661b078 1235 if (PageWriteback(page)) {
283aba9f
MG
1236 /* Case 1 above */
1237 if (current_is_kswapd() &&
1238 PageReclaim(page) &&
599d0c95 1239 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1240 stat->nr_immediate++;
c55e8d03 1241 goto activate_locked;
283aba9f
MG
1242
1243 /* Case 2 above */
97c9341f 1244 } else if (sane_reclaim(sc) ||
ecf5fc6e 1245 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1246 /*
1247 * This is slightly racy - end_page_writeback()
1248 * might have just cleared PageReclaim, then
1249 * setting PageReclaim here end up interpreted
1250 * as PageReadahead - but that does not matter
1251 * enough to care. What we do want is for this
1252 * page to have PageReclaim set next time memcg
1253 * reclaim reaches the tests above, so it will
1254 * then wait_on_page_writeback() to avoid OOM;
1255 * and it's also appropriate in global reclaim.
1256 */
1257 SetPageReclaim(page);
060f005f 1258 stat->nr_writeback++;
c55e8d03 1259 goto activate_locked;
283aba9f
MG
1260
1261 /* Case 3 above */
1262 } else {
7fadc820 1263 unlock_page(page);
283aba9f 1264 wait_on_page_writeback(page);
7fadc820
HD
1265 /* then go back and try same page again */
1266 list_add_tail(&page->lru, page_list);
1267 continue;
e62e384e 1268 }
c661b078 1269 }
1da177e4 1270
8940b34a 1271 if (!ignore_references)
02c6de8d
MK
1272 references = page_check_references(page, sc);
1273
dfc8d636
JW
1274 switch (references) {
1275 case PAGEREF_ACTIVATE:
1da177e4 1276 goto activate_locked;
64574746 1277 case PAGEREF_KEEP:
98879b3b 1278 stat->nr_ref_keep += nr_pages;
64574746 1279 goto keep_locked;
dfc8d636
JW
1280 case PAGEREF_RECLAIM:
1281 case PAGEREF_RECLAIM_CLEAN:
1282 ; /* try to reclaim the page below */
1283 }
1da177e4 1284
1da177e4
LT
1285 /*
1286 * Anonymous process memory has backing store?
1287 * Try to allocate it some swap space here.
802a3a92 1288 * Lazyfree page could be freed directly
1da177e4 1289 */
bd4c82c2
HY
1290 if (PageAnon(page) && PageSwapBacked(page)) {
1291 if (!PageSwapCache(page)) {
1292 if (!(sc->gfp_mask & __GFP_IO))
1293 goto keep_locked;
1294 if (PageTransHuge(page)) {
1295 /* cannot split THP, skip it */
1296 if (!can_split_huge_page(page, NULL))
1297 goto activate_locked;
1298 /*
1299 * Split pages without a PMD map right
1300 * away. Chances are some or all of the
1301 * tail pages can be freed without IO.
1302 */
1303 if (!compound_mapcount(page) &&
1304 split_huge_page_to_list(page,
1305 page_list))
1306 goto activate_locked;
1307 }
1308 if (!add_to_swap(page)) {
1309 if (!PageTransHuge(page))
98879b3b 1310 goto activate_locked_split;
bd4c82c2
HY
1311 /* Fallback to swap normal pages */
1312 if (split_huge_page_to_list(page,
1313 page_list))
1314 goto activate_locked;
fe490cc0
HY
1315#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1316 count_vm_event(THP_SWPOUT_FALLBACK);
1317#endif
bd4c82c2 1318 if (!add_to_swap(page))
98879b3b 1319 goto activate_locked_split;
bd4c82c2 1320 }
0f074658 1321
bd4c82c2 1322 may_enter_fs = 1;
1da177e4 1323
bd4c82c2
HY
1324 /* Adding to swap updated mapping */
1325 mapping = page_mapping(page);
1326 }
7751b2da
KS
1327 } else if (unlikely(PageTransHuge(page))) {
1328 /* Split file THP */
1329 if (split_huge_page_to_list(page, page_list))
1330 goto keep_locked;
e2be15f6 1331 }
1da177e4 1332
98879b3b
YS
1333 /*
1334 * THP may get split above, need minus tail pages and update
1335 * nr_pages to avoid accounting tail pages twice.
1336 *
1337 * The tail pages that are added into swap cache successfully
1338 * reach here.
1339 */
1340 if ((nr_pages > 1) && !PageTransHuge(page)) {
1341 sc->nr_scanned -= (nr_pages - 1);
1342 nr_pages = 1;
1343 }
1344
1da177e4
LT
1345 /*
1346 * The page is mapped into the page tables of one or more
1347 * processes. Try to unmap it here.
1348 */
802a3a92 1349 if (page_mapped(page)) {
bd4c82c2
HY
1350 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1351
1352 if (unlikely(PageTransHuge(page)))
1353 flags |= TTU_SPLIT_HUGE_PMD;
1354 if (!try_to_unmap(page, flags)) {
98879b3b 1355 stat->nr_unmap_fail += nr_pages;
1da177e4 1356 goto activate_locked;
1da177e4
LT
1357 }
1358 }
1359
1360 if (PageDirty(page)) {
ee72886d 1361 /*
4eda4823
JW
1362 * Only kswapd can writeback filesystem pages
1363 * to avoid risk of stack overflow. But avoid
1364 * injecting inefficient single-page IO into
1365 * flusher writeback as much as possible: only
1366 * write pages when we've encountered many
1367 * dirty pages, and when we've already scanned
1368 * the rest of the LRU for clean pages and see
1369 * the same dirty pages again (PageReclaim).
ee72886d 1370 */
f84f6e2b 1371 if (page_is_file_cache(page) &&
4eda4823
JW
1372 (!current_is_kswapd() || !PageReclaim(page) ||
1373 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1374 /*
1375 * Immediately reclaim when written back.
1376 * Similar in principal to deactivate_page()
1377 * except we already have the page isolated
1378 * and know it's dirty
1379 */
c4a25635 1380 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1381 SetPageReclaim(page);
1382
c55e8d03 1383 goto activate_locked;
ee72886d
MG
1384 }
1385
dfc8d636 1386 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1387 goto keep_locked;
4dd4b920 1388 if (!may_enter_fs)
1da177e4 1389 goto keep_locked;
52a8363e 1390 if (!sc->may_writepage)
1da177e4
LT
1391 goto keep_locked;
1392
d950c947
MG
1393 /*
1394 * Page is dirty. Flush the TLB if a writable entry
1395 * potentially exists to avoid CPU writes after IO
1396 * starts and then write it out here.
1397 */
1398 try_to_unmap_flush_dirty();
7d3579e8 1399 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1400 case PAGE_KEEP:
1401 goto keep_locked;
1402 case PAGE_ACTIVATE:
1403 goto activate_locked;
1404 case PAGE_SUCCESS:
7d3579e8 1405 if (PageWriteback(page))
41ac1999 1406 goto keep;
7d3579e8 1407 if (PageDirty(page))
1da177e4 1408 goto keep;
7d3579e8 1409
1da177e4
LT
1410 /*
1411 * A synchronous write - probably a ramdisk. Go
1412 * ahead and try to reclaim the page.
1413 */
529ae9aa 1414 if (!trylock_page(page))
1da177e4
LT
1415 goto keep;
1416 if (PageDirty(page) || PageWriteback(page))
1417 goto keep_locked;
1418 mapping = page_mapping(page);
1419 case PAGE_CLEAN:
1420 ; /* try to free the page below */
1421 }
1422 }
1423
1424 /*
1425 * If the page has buffers, try to free the buffer mappings
1426 * associated with this page. If we succeed we try to free
1427 * the page as well.
1428 *
1429 * We do this even if the page is PageDirty().
1430 * try_to_release_page() does not perform I/O, but it is
1431 * possible for a page to have PageDirty set, but it is actually
1432 * clean (all its buffers are clean). This happens if the
1433 * buffers were written out directly, with submit_bh(). ext3
894bc310 1434 * will do this, as well as the blockdev mapping.
1da177e4
LT
1435 * try_to_release_page() will discover that cleanness and will
1436 * drop the buffers and mark the page clean - it can be freed.
1437 *
1438 * Rarely, pages can have buffers and no ->mapping. These are
1439 * the pages which were not successfully invalidated in
1440 * truncate_complete_page(). We try to drop those buffers here
1441 * and if that worked, and the page is no longer mapped into
1442 * process address space (page_count == 1) it can be freed.
1443 * Otherwise, leave the page on the LRU so it is swappable.
1444 */
266cf658 1445 if (page_has_private(page)) {
1da177e4
LT
1446 if (!try_to_release_page(page, sc->gfp_mask))
1447 goto activate_locked;
e286781d
NP
1448 if (!mapping && page_count(page) == 1) {
1449 unlock_page(page);
1450 if (put_page_testzero(page))
1451 goto free_it;
1452 else {
1453 /*
1454 * rare race with speculative reference.
1455 * the speculative reference will free
1456 * this page shortly, so we may
1457 * increment nr_reclaimed here (and
1458 * leave it off the LRU).
1459 */
1460 nr_reclaimed++;
1461 continue;
1462 }
1463 }
1da177e4
LT
1464 }
1465
802a3a92
SL
1466 if (PageAnon(page) && !PageSwapBacked(page)) {
1467 /* follow __remove_mapping for reference */
1468 if (!page_ref_freeze(page, 1))
1469 goto keep_locked;
1470 if (PageDirty(page)) {
1471 page_ref_unfreeze(page, 1);
1472 goto keep_locked;
1473 }
1da177e4 1474
802a3a92 1475 count_vm_event(PGLAZYFREED);
2262185c 1476 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1477 } else if (!mapping || !__remove_mapping(mapping, page, true))
1478 goto keep_locked;
9a1ea439
HD
1479
1480 unlock_page(page);
e286781d 1481free_it:
98879b3b
YS
1482 /*
1483 * THP may get swapped out in a whole, need account
1484 * all base pages.
1485 */
1486 nr_reclaimed += nr_pages;
abe4c3b5
MG
1487
1488 /*
1489 * Is there need to periodically free_page_list? It would
1490 * appear not as the counts should be low
1491 */
7ae88534 1492 if (unlikely(PageTransHuge(page)))
bd4c82c2 1493 (*get_compound_page_dtor(page))(page);
7ae88534 1494 else
bd4c82c2 1495 list_add(&page->lru, &free_pages);
1da177e4
LT
1496 continue;
1497
98879b3b
YS
1498activate_locked_split:
1499 /*
1500 * The tail pages that are failed to add into swap cache
1501 * reach here. Fixup nr_scanned and nr_pages.
1502 */
1503 if (nr_pages > 1) {
1504 sc->nr_scanned -= (nr_pages - 1);
1505 nr_pages = 1;
1506 }
1da177e4 1507activate_locked:
68a22394 1508 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1509 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1510 PageMlocked(page)))
a2c43eed 1511 try_to_free_swap(page);
309381fe 1512 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1513 if (!PageMlocked(page)) {
886cf190 1514 int type = page_is_file_cache(page);
ad6b6704 1515 SetPageActive(page);
98879b3b 1516 stat->nr_activate[type] += nr_pages;
2262185c 1517 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1518 }
1da177e4
LT
1519keep_locked:
1520 unlock_page(page);
1521keep:
1522 list_add(&page->lru, &ret_pages);
309381fe 1523 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1524 }
abe4c3b5 1525
98879b3b
YS
1526 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1527
747db954 1528 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1529 try_to_unmap_flush();
2d4894b5 1530 free_unref_page_list(&free_pages);
abe4c3b5 1531
1da177e4 1532 list_splice(&ret_pages, page_list);
886cf190 1533 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1534
05ff5137 1535 return nr_reclaimed;
1da177e4
LT
1536}
1537
02c6de8d
MK
1538unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1539 struct list_head *page_list)
1540{
1541 struct scan_control sc = {
1542 .gfp_mask = GFP_KERNEL,
1543 .priority = DEF_PRIORITY,
1544 .may_unmap = 1,
1545 };
060f005f 1546 struct reclaim_stat dummy_stat;
3c710c1a 1547 unsigned long ret;
02c6de8d
MK
1548 struct page *page, *next;
1549 LIST_HEAD(clean_pages);
1550
1551 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1552 if (page_is_file_cache(page) && !PageDirty(page) &&
a58f2cef 1553 !__PageMovable(page) && !PageUnevictable(page)) {
02c6de8d
MK
1554 ClearPageActive(page);
1555 list_move(&page->lru, &clean_pages);
1556 }
1557 }
1558
599d0c95 1559 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
060f005f 1560 TTU_IGNORE_ACCESS, &dummy_stat, true);
02c6de8d 1561 list_splice(&clean_pages, page_list);
599d0c95 1562 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1563 return ret;
1564}
1565
5ad333eb
AW
1566/*
1567 * Attempt to remove the specified page from its LRU. Only take this page
1568 * if it is of the appropriate PageActive status. Pages which are being
1569 * freed elsewhere are also ignored.
1570 *
1571 * page: page to consider
1572 * mode: one of the LRU isolation modes defined above
1573 *
1574 * returns 0 on success, -ve errno on failure.
1575 */
f3fd4a61 1576int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1577{
1578 int ret = -EINVAL;
1579
1580 /* Only take pages on the LRU. */
1581 if (!PageLRU(page))
1582 return ret;
1583
e46a2879
MK
1584 /* Compaction should not handle unevictable pages but CMA can do so */
1585 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1586 return ret;
1587
5ad333eb 1588 ret = -EBUSY;
08e552c6 1589
c8244935
MG
1590 /*
1591 * To minimise LRU disruption, the caller can indicate that it only
1592 * wants to isolate pages it will be able to operate on without
1593 * blocking - clean pages for the most part.
1594 *
c8244935
MG
1595 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1596 * that it is possible to migrate without blocking
1597 */
1276ad68 1598 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1599 /* All the caller can do on PageWriteback is block */
1600 if (PageWriteback(page))
1601 return ret;
1602
1603 if (PageDirty(page)) {
1604 struct address_space *mapping;
69d763fc 1605 bool migrate_dirty;
c8244935 1606
c8244935
MG
1607 /*
1608 * Only pages without mappings or that have a
1609 * ->migratepage callback are possible to migrate
69d763fc
MG
1610 * without blocking. However, we can be racing with
1611 * truncation so it's necessary to lock the page
1612 * to stabilise the mapping as truncation holds
1613 * the page lock until after the page is removed
1614 * from the page cache.
c8244935 1615 */
69d763fc
MG
1616 if (!trylock_page(page))
1617 return ret;
1618
c8244935 1619 mapping = page_mapping(page);
145e1a71 1620 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1621 unlock_page(page);
1622 if (!migrate_dirty)
c8244935
MG
1623 return ret;
1624 }
1625 }
39deaf85 1626
f80c0673
MK
1627 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1628 return ret;
1629
5ad333eb
AW
1630 if (likely(get_page_unless_zero(page))) {
1631 /*
1632 * Be careful not to clear PageLRU until after we're
1633 * sure the page is not being freed elsewhere -- the
1634 * page release code relies on it.
1635 */
1636 ClearPageLRU(page);
1637 ret = 0;
1638 }
1639
1640 return ret;
1641}
1642
7ee36a14
MG
1643
1644/*
1645 * Update LRU sizes after isolating pages. The LRU size updates must
1646 * be complete before mem_cgroup_update_lru_size due to a santity check.
1647 */
1648static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1649 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1650{
7ee36a14
MG
1651 int zid;
1652
7ee36a14
MG
1653 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1654 if (!nr_zone_taken[zid])
1655 continue;
1656
1657 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1658#ifdef CONFIG_MEMCG
b4536f0c 1659 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1660#endif
b4536f0c
MH
1661 }
1662
7ee36a14
MG
1663}
1664
f4b7e272
AR
1665/**
1666 * pgdat->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1667 * shrink the lists perform better by taking out a batch of pages
1668 * and working on them outside the LRU lock.
1669 *
1670 * For pagecache intensive workloads, this function is the hottest
1671 * spot in the kernel (apart from copy_*_user functions).
1672 *
1673 * Appropriate locks must be held before calling this function.
1674 *
791b48b6 1675 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1676 * @lruvec: The LRU vector to pull pages from.
1da177e4 1677 * @dst: The temp list to put pages on to.
f626012d 1678 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1679 * @sc: The scan_control struct for this reclaim session
5ad333eb 1680 * @mode: One of the LRU isolation modes
3cb99451 1681 * @lru: LRU list id for isolating
1da177e4
LT
1682 *
1683 * returns how many pages were moved onto *@dst.
1684 */
69e05944 1685static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1686 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1687 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1688 enum lru_list lru)
1da177e4 1689{
75b00af7 1690 struct list_head *src = &lruvec->lists[lru];
69e05944 1691 unsigned long nr_taken = 0;
599d0c95 1692 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1693 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1694 unsigned long skipped = 0;
791b48b6 1695 unsigned long scan, total_scan, nr_pages;
b2e18757 1696 LIST_HEAD(pages_skipped);
a9e7c39f 1697 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1698
98879b3b 1699 total_scan = 0;
791b48b6 1700 scan = 0;
98879b3b 1701 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1702 struct page *page;
5ad333eb 1703
1da177e4
LT
1704 page = lru_to_page(src);
1705 prefetchw_prev_lru_page(page, src, flags);
1706
309381fe 1707 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1708
d8c6546b 1709 nr_pages = compound_nr(page);
98879b3b
YS
1710 total_scan += nr_pages;
1711
b2e18757
MG
1712 if (page_zonenum(page) > sc->reclaim_idx) {
1713 list_move(&page->lru, &pages_skipped);
98879b3b 1714 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1715 continue;
1716 }
1717
791b48b6
MK
1718 /*
1719 * Do not count skipped pages because that makes the function
1720 * return with no isolated pages if the LRU mostly contains
1721 * ineligible pages. This causes the VM to not reclaim any
1722 * pages, triggering a premature OOM.
98879b3b
YS
1723 *
1724 * Account all tail pages of THP. This would not cause
1725 * premature OOM since __isolate_lru_page() returns -EBUSY
1726 * only when the page is being freed somewhere else.
791b48b6 1727 */
98879b3b 1728 scan += nr_pages;
f3fd4a61 1729 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1730 case 0:
599d0c95
MG
1731 nr_taken += nr_pages;
1732 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1733 list_move(&page->lru, dst);
5ad333eb
AW
1734 break;
1735
1736 case -EBUSY:
1737 /* else it is being freed elsewhere */
1738 list_move(&page->lru, src);
1739 continue;
46453a6e 1740
5ad333eb
AW
1741 default:
1742 BUG();
1743 }
1da177e4
LT
1744 }
1745
b2e18757
MG
1746 /*
1747 * Splice any skipped pages to the start of the LRU list. Note that
1748 * this disrupts the LRU order when reclaiming for lower zones but
1749 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1750 * scanning would soon rescan the same pages to skip and put the
1751 * system at risk of premature OOM.
1752 */
7cc30fcf
MG
1753 if (!list_empty(&pages_skipped)) {
1754 int zid;
1755
3db65812 1756 list_splice(&pages_skipped, src);
7cc30fcf
MG
1757 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1758 if (!nr_skipped[zid])
1759 continue;
1760
1761 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1762 skipped += nr_skipped[zid];
7cc30fcf
MG
1763 }
1764 }
791b48b6 1765 *nr_scanned = total_scan;
1265e3a6 1766 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1767 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1768 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1769 return nr_taken;
1770}
1771
62695a84
NP
1772/**
1773 * isolate_lru_page - tries to isolate a page from its LRU list
1774 * @page: page to isolate from its LRU list
1775 *
1776 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1777 * vmstat statistic corresponding to whatever LRU list the page was on.
1778 *
1779 * Returns 0 if the page was removed from an LRU list.
1780 * Returns -EBUSY if the page was not on an LRU list.
1781 *
1782 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1783 * the active list, it will have PageActive set. If it was found on
1784 * the unevictable list, it will have the PageUnevictable bit set. That flag
1785 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1786 *
1787 * The vmstat statistic corresponding to the list on which the page was
1788 * found will be decremented.
1789 *
1790 * Restrictions:
a5d09bed 1791 *
62695a84
NP
1792 * (1) Must be called with an elevated refcount on the page. This is a
1793 * fundamentnal difference from isolate_lru_pages (which is called
1794 * without a stable reference).
1795 * (2) the lru_lock must not be held.
1796 * (3) interrupts must be enabled.
1797 */
1798int isolate_lru_page(struct page *page)
1799{
1800 int ret = -EBUSY;
1801
309381fe 1802 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1803 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1804
62695a84 1805 if (PageLRU(page)) {
f4b7e272 1806 pg_data_t *pgdat = page_pgdat(page);
fa9add64 1807 struct lruvec *lruvec;
62695a84 1808
f4b7e272
AR
1809 spin_lock_irq(&pgdat->lru_lock);
1810 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0c917313 1811 if (PageLRU(page)) {
894bc310 1812 int lru = page_lru(page);
0c917313 1813 get_page(page);
62695a84 1814 ClearPageLRU(page);
fa9add64
HD
1815 del_page_from_lru_list(page, lruvec, lru);
1816 ret = 0;
62695a84 1817 }
f4b7e272 1818 spin_unlock_irq(&pgdat->lru_lock);
62695a84
NP
1819 }
1820 return ret;
1821}
1822
35cd7815 1823/*
d37dd5dc
FW
1824 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1825 * then get resheduled. When there are massive number of tasks doing page
1826 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1827 * the LRU list will go small and be scanned faster than necessary, leading to
1828 * unnecessary swapping, thrashing and OOM.
35cd7815 1829 */
599d0c95 1830static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1831 struct scan_control *sc)
1832{
1833 unsigned long inactive, isolated;
1834
1835 if (current_is_kswapd())
1836 return 0;
1837
97c9341f 1838 if (!sane_reclaim(sc))
35cd7815
RR
1839 return 0;
1840
1841 if (file) {
599d0c95
MG
1842 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1843 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1844 } else {
599d0c95
MG
1845 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1846 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1847 }
1848
3cf23841
FW
1849 /*
1850 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1851 * won't get blocked by normal direct-reclaimers, forming a circular
1852 * deadlock.
1853 */
d0164adc 1854 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1855 inactive >>= 3;
1856
35cd7815
RR
1857 return isolated > inactive;
1858}
1859
a222f341
KT
1860/*
1861 * This moves pages from @list to corresponding LRU list.
1862 *
1863 * We move them the other way if the page is referenced by one or more
1864 * processes, from rmap.
1865 *
1866 * If the pages are mostly unmapped, the processing is fast and it is
1867 * appropriate to hold zone_lru_lock across the whole operation. But if
1868 * the pages are mapped, the processing is slow (page_referenced()) so we
1869 * should drop zone_lru_lock around each page. It's impossible to balance
1870 * this, so instead we remove the pages from the LRU while processing them.
1871 * It is safe to rely on PG_active against the non-LRU pages in here because
1872 * nobody will play with that bit on a non-LRU page.
1873 *
1874 * The downside is that we have to touch page->_refcount against each page.
1875 * But we had to alter page->flags anyway.
1876 *
1877 * Returns the number of pages moved to the given lruvec.
1878 */
1879
1880static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1881 struct list_head *list)
66635629 1882{
599d0c95 1883 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
a222f341 1884 int nr_pages, nr_moved = 0;
3f79768f 1885 LIST_HEAD(pages_to_free);
a222f341
KT
1886 struct page *page;
1887 enum lru_list lru;
66635629 1888
a222f341
KT
1889 while (!list_empty(list)) {
1890 page = lru_to_page(list);
309381fe 1891 VM_BUG_ON_PAGE(PageLRU(page), page);
39b5f29a 1892 if (unlikely(!page_evictable(page))) {
a222f341 1893 list_del(&page->lru);
599d0c95 1894 spin_unlock_irq(&pgdat->lru_lock);
66635629 1895 putback_lru_page(page);
599d0c95 1896 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1897 continue;
1898 }
599d0c95 1899 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1900
7a608572 1901 SetPageLRU(page);
66635629 1902 lru = page_lru(page);
a222f341
KT
1903
1904 nr_pages = hpage_nr_pages(page);
1905 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1906 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1907
2bcf8879
HD
1908 if (put_page_testzero(page)) {
1909 __ClearPageLRU(page);
1910 __ClearPageActive(page);
fa9add64 1911 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1912
1913 if (unlikely(PageCompound(page))) {
599d0c95 1914 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 1915 (*get_compound_page_dtor(page))(page);
599d0c95 1916 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1917 } else
1918 list_add(&page->lru, &pages_to_free);
a222f341
KT
1919 } else {
1920 nr_moved += nr_pages;
66635629
MG
1921 }
1922 }
66635629 1923
3f79768f
HD
1924 /*
1925 * To save our caller's stack, now use input list for pages to free.
1926 */
a222f341
KT
1927 list_splice(&pages_to_free, list);
1928
1929 return nr_moved;
66635629
MG
1930}
1931
399ba0b9
N
1932/*
1933 * If a kernel thread (such as nfsd for loop-back mounts) services
1934 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1935 * In that case we should only throttle if the backing device it is
1936 * writing to is congested. In other cases it is safe to throttle.
1937 */
1938static int current_may_throttle(void)
1939{
1940 return !(current->flags & PF_LESS_THROTTLE) ||
1941 current->backing_dev_info == NULL ||
1942 bdi_write_congested(current->backing_dev_info);
1943}
1944
1da177e4 1945/*
b2e18757 1946 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1947 * of reclaimed pages
1da177e4 1948 */
66635629 1949static noinline_for_stack unsigned long
1a93be0e 1950shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1951 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1952{
1953 LIST_HEAD(page_list);
e247dbce 1954 unsigned long nr_scanned;
05ff5137 1955 unsigned long nr_reclaimed = 0;
e247dbce 1956 unsigned long nr_taken;
060f005f 1957 struct reclaim_stat stat;
3cb99451 1958 int file = is_file_lru(lru);
f46b7912 1959 enum vm_event_item item;
599d0c95 1960 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1961 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1962 bool stalled = false;
78dc583d 1963
599d0c95 1964 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1965 if (stalled)
1966 return 0;
1967
1968 /* wait a bit for the reclaimer. */
1969 msleep(100);
1970 stalled = true;
35cd7815
RR
1971
1972 /* We are about to die and free our memory. Return now. */
1973 if (fatal_signal_pending(current))
1974 return SWAP_CLUSTER_MAX;
1975 }
1976
1da177e4 1977 lru_add_drain();
f80c0673 1978
599d0c95 1979 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1980
5dc35979 1981 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 1982 &nr_scanned, sc, lru);
95d918fc 1983
599d0c95 1984 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1985 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1986
f46b7912
KT
1987 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1988 if (global_reclaim(sc))
1989 __count_vm_events(item, nr_scanned);
1990 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
599d0c95 1991 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1992
d563c050 1993 if (nr_taken == 0)
66635629 1994 return 0;
5ad333eb 1995
a128ca71 1996 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1997 &stat, false);
c661b078 1998
599d0c95 1999 spin_lock_irq(&pgdat->lru_lock);
3f79768f 2000
f46b7912
KT
2001 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2002 if (global_reclaim(sc))
2003 __count_vm_events(item, nr_reclaimed);
2004 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
b17f18af
KT
2005 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2006 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
a74609fa 2007
a222f341 2008 move_pages_to_lru(lruvec, &page_list);
3f79768f 2009
599d0c95 2010 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 2011
599d0c95 2012 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 2013
747db954 2014 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2015 free_unref_page_list(&page_list);
e11da5b4 2016
1c610d5f
AR
2017 /*
2018 * If dirty pages are scanned that are not queued for IO, it
2019 * implies that flushers are not doing their job. This can
2020 * happen when memory pressure pushes dirty pages to the end of
2021 * the LRU before the dirty limits are breached and the dirty
2022 * data has expired. It can also happen when the proportion of
2023 * dirty pages grows not through writes but through memory
2024 * pressure reclaiming all the clean cache. And in some cases,
2025 * the flushers simply cannot keep up with the allocation
2026 * rate. Nudge the flusher threads in case they are asleep.
2027 */
2028 if (stat.nr_unqueued_dirty == nr_taken)
2029 wakeup_flusher_threads(WB_REASON_VMSCAN);
2030
d108c772
AR
2031 sc->nr.dirty += stat.nr_dirty;
2032 sc->nr.congested += stat.nr_congested;
2033 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2034 sc->nr.writeback += stat.nr_writeback;
2035 sc->nr.immediate += stat.nr_immediate;
2036 sc->nr.taken += nr_taken;
2037 if (file)
2038 sc->nr.file_taken += nr_taken;
8e950282 2039
599d0c95 2040 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2041 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2042 return nr_reclaimed;
1da177e4
LT
2043}
2044
f626012d 2045static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2046 struct lruvec *lruvec,
f16015fb 2047 struct scan_control *sc,
9e3b2f8c 2048 enum lru_list lru)
1da177e4 2049{
44c241f1 2050 unsigned long nr_taken;
f626012d 2051 unsigned long nr_scanned;
6fe6b7e3 2052 unsigned long vm_flags;
1da177e4 2053 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2054 LIST_HEAD(l_active);
b69408e8 2055 LIST_HEAD(l_inactive);
1da177e4 2056 struct page *page;
1a93be0e 2057 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
2058 unsigned nr_deactivate, nr_activate;
2059 unsigned nr_rotated = 0;
3cb99451 2060 int file = is_file_lru(lru);
599d0c95 2061 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2062
2063 lru_add_drain();
f80c0673 2064
599d0c95 2065 spin_lock_irq(&pgdat->lru_lock);
925b7673 2066
5dc35979 2067 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2068 &nr_scanned, sc, lru);
89b5fae5 2069
599d0c95 2070 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2071 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2072
599d0c95 2073 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2074 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2075
599d0c95 2076 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2077
1da177e4
LT
2078 while (!list_empty(&l_hold)) {
2079 cond_resched();
2080 page = lru_to_page(&l_hold);
2081 list_del(&page->lru);
7e9cd484 2082
39b5f29a 2083 if (unlikely(!page_evictable(page))) {
894bc310
LS
2084 putback_lru_page(page);
2085 continue;
2086 }
2087
cc715d99
MG
2088 if (unlikely(buffer_heads_over_limit)) {
2089 if (page_has_private(page) && trylock_page(page)) {
2090 if (page_has_private(page))
2091 try_to_release_page(page, 0);
2092 unlock_page(page);
2093 }
2094 }
2095
c3ac9a8a
JW
2096 if (page_referenced(page, 0, sc->target_mem_cgroup,
2097 &vm_flags)) {
9992af10 2098 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2099 /*
2100 * Identify referenced, file-backed active pages and
2101 * give them one more trip around the active list. So
2102 * that executable code get better chances to stay in
2103 * memory under moderate memory pressure. Anon pages
2104 * are not likely to be evicted by use-once streaming
2105 * IO, plus JVM can create lots of anon VM_EXEC pages,
2106 * so we ignore them here.
2107 */
41e20983 2108 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2109 list_add(&page->lru, &l_active);
2110 continue;
2111 }
2112 }
7e9cd484 2113
5205e56e 2114 ClearPageActive(page); /* we are de-activating */
1899ad18 2115 SetPageWorkingset(page);
1da177e4
LT
2116 list_add(&page->lru, &l_inactive);
2117 }
2118
b555749a 2119 /*
8cab4754 2120 * Move pages back to the lru list.
b555749a 2121 */
599d0c95 2122 spin_lock_irq(&pgdat->lru_lock);
556adecb 2123 /*
8cab4754
WF
2124 * Count referenced pages from currently used mappings as rotated,
2125 * even though only some of them are actually re-activated. This
2126 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2127 * get_scan_count.
7e9cd484 2128 */
b7c46d15 2129 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2130
a222f341
KT
2131 nr_activate = move_pages_to_lru(lruvec, &l_active);
2132 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2133 /* Keep all free pages in l_active list */
2134 list_splice(&l_inactive, &l_active);
9851ac13
KT
2135
2136 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2137 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2138
599d0c95
MG
2139 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2140 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2141
f372d89e
KT
2142 mem_cgroup_uncharge_list(&l_active);
2143 free_unref_page_list(&l_active);
9d998b4f
MH
2144 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2145 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2146}
2147
1a4e58cc
MK
2148unsigned long reclaim_pages(struct list_head *page_list)
2149{
2150 int nid = -1;
2151 unsigned long nr_reclaimed = 0;
2152 LIST_HEAD(node_page_list);
2153 struct reclaim_stat dummy_stat;
2154 struct page *page;
2155 struct scan_control sc = {
2156 .gfp_mask = GFP_KERNEL,
2157 .priority = DEF_PRIORITY,
2158 .may_writepage = 1,
2159 .may_unmap = 1,
2160 .may_swap = 1,
2161 };
2162
2163 while (!list_empty(page_list)) {
2164 page = lru_to_page(page_list);
2165 if (nid == -1) {
2166 nid = page_to_nid(page);
2167 INIT_LIST_HEAD(&node_page_list);
2168 }
2169
2170 if (nid == page_to_nid(page)) {
2171 ClearPageActive(page);
2172 list_move(&page->lru, &node_page_list);
2173 continue;
2174 }
2175
2176 nr_reclaimed += shrink_page_list(&node_page_list,
2177 NODE_DATA(nid),
2178 &sc, 0,
2179 &dummy_stat, false);
2180 while (!list_empty(&node_page_list)) {
2181 page = lru_to_page(&node_page_list);
2182 list_del(&page->lru);
2183 putback_lru_page(page);
2184 }
2185
2186 nid = -1;
2187 }
2188
2189 if (!list_empty(&node_page_list)) {
2190 nr_reclaimed += shrink_page_list(&node_page_list,
2191 NODE_DATA(nid),
2192 &sc, 0,
2193 &dummy_stat, false);
2194 while (!list_empty(&node_page_list)) {
2195 page = lru_to_page(&node_page_list);
2196 list_del(&page->lru);
2197 putback_lru_page(page);
2198 }
2199 }
2200
2201 return nr_reclaimed;
2202}
2203
59dc76b0
RR
2204/*
2205 * The inactive anon list should be small enough that the VM never has
2206 * to do too much work.
14797e23 2207 *
59dc76b0
RR
2208 * The inactive file list should be small enough to leave most memory
2209 * to the established workingset on the scan-resistant active list,
2210 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2211 *
59dc76b0
RR
2212 * Both inactive lists should also be large enough that each inactive
2213 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2214 *
2a2e4885
JW
2215 * If that fails and refaulting is observed, the inactive list grows.
2216 *
59dc76b0 2217 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2218 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2219 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2220 *
59dc76b0
RR
2221 * total target max
2222 * memory ratio inactive
2223 * -------------------------------------
2224 * 10MB 1 5MB
2225 * 100MB 1 50MB
2226 * 1GB 3 250MB
2227 * 10GB 10 0.9GB
2228 * 100GB 31 3GB
2229 * 1TB 101 10GB
2230 * 10TB 320 32GB
56e49d21 2231 */
f8d1a311 2232static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2c012a4a 2233 struct scan_control *sc, bool trace)
56e49d21 2234{
fd538803 2235 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2236 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2237 enum lru_list inactive_lru = file * LRU_FILE;
2238 unsigned long inactive, active;
2239 unsigned long inactive_ratio;
2240 unsigned long refaults;
59dc76b0 2241 unsigned long gb;
e3790144 2242
59dc76b0
RR
2243 /*
2244 * If we don't have swap space, anonymous page deactivation
2245 * is pointless.
2246 */
2247 if (!file && !total_swap_pages)
2248 return false;
56e49d21 2249
fd538803
MH
2250 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2251 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2252
2a2e4885
JW
2253 /*
2254 * When refaults are being observed, it means a new workingset
2255 * is being established. Disable active list protection to get
2256 * rid of the stale workingset quickly.
2257 */
205b20cc 2258 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2c012a4a 2259 if (file && lruvec->refaults != refaults) {
2a2e4885
JW
2260 inactive_ratio = 0;
2261 } else {
2262 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2263 if (gb)
2264 inactive_ratio = int_sqrt(10 * gb);
2265 else
2266 inactive_ratio = 1;
2267 }
59dc76b0 2268
2c012a4a 2269 if (trace)
2a2e4885
JW
2270 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2271 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2272 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2273 inactive_ratio, file);
fd538803 2274
59dc76b0 2275 return inactive * inactive_ratio < active;
b39415b2
RR
2276}
2277
4f98a2fe 2278static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
3b991208 2279 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 2280{
b39415b2 2281 if (is_active_lru(lru)) {
3b991208 2282 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
1a93be0e 2283 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2284 return 0;
2285 }
2286
1a93be0e 2287 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2288}
2289
9a265114
JW
2290enum scan_balance {
2291 SCAN_EQUAL,
2292 SCAN_FRACT,
2293 SCAN_ANON,
2294 SCAN_FILE,
2295};
2296
4f98a2fe
RR
2297/*
2298 * Determine how aggressively the anon and file LRU lists should be
2299 * scanned. The relative value of each set of LRU lists is determined
2300 * by looking at the fraction of the pages scanned we did rotate back
2301 * onto the active list instead of evict.
2302 *
be7bd59d
WL
2303 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2304 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2305 */
33377678 2306static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2307 struct scan_control *sc, unsigned long *nr,
2308 unsigned long *lru_pages)
4f98a2fe 2309{
33377678 2310 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2311 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2312 u64 fraction[2];
2313 u64 denominator = 0; /* gcc */
599d0c95 2314 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2315 unsigned long anon_prio, file_prio;
9a265114 2316 enum scan_balance scan_balance;
0bf1457f 2317 unsigned long anon, file;
4f98a2fe 2318 unsigned long ap, fp;
4111304d 2319 enum lru_list lru;
76a33fc3
SL
2320
2321 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2322 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2323 scan_balance = SCAN_FILE;
76a33fc3
SL
2324 goto out;
2325 }
4f98a2fe 2326
10316b31
JW
2327 /*
2328 * Global reclaim will swap to prevent OOM even with no
2329 * swappiness, but memcg users want to use this knob to
2330 * disable swapping for individual groups completely when
2331 * using the memory controller's swap limit feature would be
2332 * too expensive.
2333 */
02695175 2334 if (!global_reclaim(sc) && !swappiness) {
9a265114 2335 scan_balance = SCAN_FILE;
10316b31
JW
2336 goto out;
2337 }
2338
2339 /*
2340 * Do not apply any pressure balancing cleverness when the
2341 * system is close to OOM, scan both anon and file equally
2342 * (unless the swappiness setting disagrees with swapping).
2343 */
02695175 2344 if (!sc->priority && swappiness) {
9a265114 2345 scan_balance = SCAN_EQUAL;
10316b31
JW
2346 goto out;
2347 }
2348
62376251
JW
2349 /*
2350 * Prevent the reclaimer from falling into the cache trap: as
2351 * cache pages start out inactive, every cache fault will tip
2352 * the scan balance towards the file LRU. And as the file LRU
2353 * shrinks, so does the window for rotation from references.
2354 * This means we have a runaway feedback loop where a tiny
2355 * thrashing file LRU becomes infinitely more attractive than
2356 * anon pages. Try to detect this based on file LRU size.
2357 */
2358 if (global_reclaim(sc)) {
599d0c95
MG
2359 unsigned long pgdatfile;
2360 unsigned long pgdatfree;
2361 int z;
2362 unsigned long total_high_wmark = 0;
2ab051e1 2363
599d0c95
MG
2364 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2365 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2366 node_page_state(pgdat, NR_INACTIVE_FILE);
2367
2368 for (z = 0; z < MAX_NR_ZONES; z++) {
2369 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2370 if (!managed_zone(zone))
599d0c95
MG
2371 continue;
2372
2373 total_high_wmark += high_wmark_pages(zone);
2374 }
62376251 2375
599d0c95 2376 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2377 /*
2378 * Force SCAN_ANON if there are enough inactive
2379 * anonymous pages on the LRU in eligible zones.
2380 * Otherwise, the small LRU gets thrashed.
2381 */
3b991208 2382 if (!inactive_list_is_low(lruvec, false, sc, false) &&
06226226
DR
2383 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2384 >> sc->priority) {
2385 scan_balance = SCAN_ANON;
2386 goto out;
2387 }
62376251
JW
2388 }
2389 }
2390
7c5bd705 2391 /*
316bda0e
VD
2392 * If there is enough inactive page cache, i.e. if the size of the
2393 * inactive list is greater than that of the active list *and* the
2394 * inactive list actually has some pages to scan on this priority, we
2395 * do not reclaim anything from the anonymous working set right now.
2396 * Without the second condition we could end up never scanning an
2397 * lruvec even if it has plenty of old anonymous pages unless the
2398 * system is under heavy pressure.
7c5bd705 2399 */
3b991208 2400 if (!inactive_list_is_low(lruvec, true, sc, false) &&
71ab6cfe 2401 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2402 scan_balance = SCAN_FILE;
7c5bd705
JW
2403 goto out;
2404 }
2405
9a265114
JW
2406 scan_balance = SCAN_FRACT;
2407
58c37f6e
KM
2408 /*
2409 * With swappiness at 100, anonymous and file have the same priority.
2410 * This scanning priority is essentially the inverse of IO cost.
2411 */
02695175 2412 anon_prio = swappiness;
75b00af7 2413 file_prio = 200 - anon_prio;
58c37f6e 2414
4f98a2fe
RR
2415 /*
2416 * OK, so we have swap space and a fair amount of page cache
2417 * pages. We use the recently rotated / recently scanned
2418 * ratios to determine how valuable each cache is.
2419 *
2420 * Because workloads change over time (and to avoid overflow)
2421 * we keep these statistics as a floating average, which ends
2422 * up weighing recent references more than old ones.
2423 *
2424 * anon in [0], file in [1]
2425 */
2ab051e1 2426
fd538803
MH
2427 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2428 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2429 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2430 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2431
599d0c95 2432 spin_lock_irq(&pgdat->lru_lock);
6e901571 2433 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2434 reclaim_stat->recent_scanned[0] /= 2;
2435 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2436 }
2437
6e901571 2438 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2439 reclaim_stat->recent_scanned[1] /= 2;
2440 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2441 }
2442
4f98a2fe 2443 /*
00d8089c
RR
2444 * The amount of pressure on anon vs file pages is inversely
2445 * proportional to the fraction of recently scanned pages on
2446 * each list that were recently referenced and in active use.
4f98a2fe 2447 */
fe35004f 2448 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2449 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2450
fe35004f 2451 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2452 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2453 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2454
76a33fc3
SL
2455 fraction[0] = ap;
2456 fraction[1] = fp;
2457 denominator = ap + fp + 1;
2458out:
688035f7
JW
2459 *lru_pages = 0;
2460 for_each_evictable_lru(lru) {
2461 int file = is_file_lru(lru);
9783aa99 2462 unsigned long lruvec_size;
688035f7 2463 unsigned long scan;
9de7ca46 2464 unsigned long min, low;
9783aa99
CD
2465
2466 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
9de7ca46 2467 mem_cgroup_protection(memcg, &min, &low);
9783aa99 2468
9de7ca46 2469 if (min || low) {
9783aa99
CD
2470 /*
2471 * Scale a cgroup's reclaim pressure by proportioning
2472 * its current usage to its memory.low or memory.min
2473 * setting.
2474 *
2475 * This is important, as otherwise scanning aggression
2476 * becomes extremely binary -- from nothing as we
2477 * approach the memory protection threshold, to totally
2478 * nominal as we exceed it. This results in requiring
2479 * setting extremely liberal protection thresholds. It
2480 * also means we simply get no protection at all if we
2481 * set it too low, which is not ideal.
2482 */
2483 unsigned long cgroup_size = mem_cgroup_size(memcg);
9783aa99
CD
2484
2485 /*
9de7ca46
CD
2486 * If there is any protection in place, we adjust scan
2487 * pressure in proportion to how much a group's current
2488 * usage exceeds that, in percent.
9783aa99 2489 *
9de7ca46
CD
2490 * There is one special case: in the first reclaim pass,
2491 * we skip over all groups that are within their low
2492 * protection. If that fails to reclaim enough pages to
2493 * satisfy the reclaim goal, we come back and override
2494 * the best-effort low protection. However, we still
2495 * ideally want to honor how well-behaved groups are in
2496 * that case instead of simply punishing them all
2497 * equally. As such, we reclaim them based on how much
2498 * of their best-effort protection they are using. Usage
2499 * below memory.min is excluded from consideration when
2500 * calculating utilisation, as it isn't ever
2501 * reclaimable, so it might as well not exist for our
2502 * purposes.
9783aa99 2503 */
9de7ca46
CD
2504 if (sc->memcg_low_reclaim && low > min) {
2505 /*
2506 * Reclaim according to utilisation between min
2507 * and low
2508 */
2509 scan = lruvec_size * (cgroup_size - min) /
2510 (low - min);
2511 } else {
2512 /* Reclaim according to protection overage */
2513 scan = lruvec_size * cgroup_size /
2514 max(min, low) - lruvec_size;
2515 }
9783aa99
CD
2516
2517 /*
2518 * Don't allow the scan target to exceed the lruvec
2519 * size, which otherwise could happen if we have >200%
2520 * overage in the normal case, or >100% overage when
2521 * sc->memcg_low_reclaim is set.
2522 *
2523 * This is important because other cgroups without
2524 * memory.low have their scan target initially set to
2525 * their lruvec size, so allowing values >100% of the
2526 * lruvec size here could result in penalising cgroups
2527 * with memory.low set even *more* than their peers in
2528 * some cases in the case of large overages.
2529 *
2530 * Also, minimally target SWAP_CLUSTER_MAX pages to keep
9de7ca46
CD
2531 * reclaim moving forwards, avoiding decremeting
2532 * sc->priority further than desirable.
9783aa99
CD
2533 */
2534 scan = clamp(scan, SWAP_CLUSTER_MAX, lruvec_size);
2535 } else {
2536 scan = lruvec_size;
2537 }
2538
2539 scan >>= sc->priority;
6b4f7799 2540
688035f7
JW
2541 /*
2542 * If the cgroup's already been deleted, make sure to
2543 * scrape out the remaining cache.
2544 */
2545 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2546 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2547
688035f7
JW
2548 switch (scan_balance) {
2549 case SCAN_EQUAL:
2550 /* Scan lists relative to size */
2551 break;
2552 case SCAN_FRACT:
9a265114 2553 /*
688035f7
JW
2554 * Scan types proportional to swappiness and
2555 * their relative recent reclaim efficiency.
68600f62
RG
2556 * Make sure we don't miss the last page
2557 * because of a round-off error.
9a265114 2558 */
68600f62
RG
2559 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2560 denominator);
688035f7
JW
2561 break;
2562 case SCAN_FILE:
2563 case SCAN_ANON:
2564 /* Scan one type exclusively */
2565 if ((scan_balance == SCAN_FILE) != file) {
9783aa99 2566 lruvec_size = 0;
688035f7
JW
2567 scan = 0;
2568 }
2569 break;
2570 default:
2571 /* Look ma, no brain */
2572 BUG();
9a265114 2573 }
688035f7 2574
9783aa99 2575 *lru_pages += lruvec_size;
688035f7 2576 nr[lru] = scan;
76a33fc3 2577 }
6e08a369 2578}
4f98a2fe 2579
9b4f98cd 2580/*
a9dd0a83 2581 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2582 */
a9dd0a83 2583static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2584 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2585{
ef8f2327 2586 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2587 unsigned long nr[NR_LRU_LISTS];
e82e0561 2588 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2589 unsigned long nr_to_scan;
2590 enum lru_list lru;
2591 unsigned long nr_reclaimed = 0;
2592 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2593 struct blk_plug plug;
1a501907 2594 bool scan_adjusted;
9b4f98cd 2595
33377678 2596 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2597
e82e0561
MG
2598 /* Record the original scan target for proportional adjustments later */
2599 memcpy(targets, nr, sizeof(nr));
2600
1a501907
MG
2601 /*
2602 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2603 * event that can occur when there is little memory pressure e.g.
2604 * multiple streaming readers/writers. Hence, we do not abort scanning
2605 * when the requested number of pages are reclaimed when scanning at
2606 * DEF_PRIORITY on the assumption that the fact we are direct
2607 * reclaiming implies that kswapd is not keeping up and it is best to
2608 * do a batch of work at once. For memcg reclaim one check is made to
2609 * abort proportional reclaim if either the file or anon lru has already
2610 * dropped to zero at the first pass.
2611 */
2612 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2613 sc->priority == DEF_PRIORITY);
2614
9b4f98cd
JW
2615 blk_start_plug(&plug);
2616 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2617 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2618 unsigned long nr_anon, nr_file, percentage;
2619 unsigned long nr_scanned;
2620
9b4f98cd
JW
2621 for_each_evictable_lru(lru) {
2622 if (nr[lru]) {
2623 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2624 nr[lru] -= nr_to_scan;
2625
2626 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2627 lruvec, sc);
9b4f98cd
JW
2628 }
2629 }
e82e0561 2630
bd041733
MH
2631 cond_resched();
2632
e82e0561
MG
2633 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2634 continue;
2635
e82e0561
MG
2636 /*
2637 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2638 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2639 * proportionally what was requested by get_scan_count(). We
2640 * stop reclaiming one LRU and reduce the amount scanning
2641 * proportional to the original scan target.
2642 */
2643 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2644 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2645
1a501907
MG
2646 /*
2647 * It's just vindictive to attack the larger once the smaller
2648 * has gone to zero. And given the way we stop scanning the
2649 * smaller below, this makes sure that we only make one nudge
2650 * towards proportionality once we've got nr_to_reclaim.
2651 */
2652 if (!nr_file || !nr_anon)
2653 break;
2654
e82e0561
MG
2655 if (nr_file > nr_anon) {
2656 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2657 targets[LRU_ACTIVE_ANON] + 1;
2658 lru = LRU_BASE;
2659 percentage = nr_anon * 100 / scan_target;
2660 } else {
2661 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2662 targets[LRU_ACTIVE_FILE] + 1;
2663 lru = LRU_FILE;
2664 percentage = nr_file * 100 / scan_target;
2665 }
2666
2667 /* Stop scanning the smaller of the LRU */
2668 nr[lru] = 0;
2669 nr[lru + LRU_ACTIVE] = 0;
2670
2671 /*
2672 * Recalculate the other LRU scan count based on its original
2673 * scan target and the percentage scanning already complete
2674 */
2675 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2676 nr_scanned = targets[lru] - nr[lru];
2677 nr[lru] = targets[lru] * (100 - percentage) / 100;
2678 nr[lru] -= min(nr[lru], nr_scanned);
2679
2680 lru += LRU_ACTIVE;
2681 nr_scanned = targets[lru] - nr[lru];
2682 nr[lru] = targets[lru] * (100 - percentage) / 100;
2683 nr[lru] -= min(nr[lru], nr_scanned);
2684
2685 scan_adjusted = true;
9b4f98cd
JW
2686 }
2687 blk_finish_plug(&plug);
2688 sc->nr_reclaimed += nr_reclaimed;
2689
2690 /*
2691 * Even if we did not try to evict anon pages at all, we want to
2692 * rebalance the anon lru active/inactive ratio.
2693 */
3b991208 2694 if (inactive_list_is_low(lruvec, false, sc, true))
9b4f98cd
JW
2695 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2696 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2697}
2698
23b9da55 2699/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2700static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2701{
d84da3f9 2702 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2703 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2704 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2705 return true;
2706
2707 return false;
2708}
2709
3e7d3449 2710/*
23b9da55
MG
2711 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2712 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2713 * true if more pages should be reclaimed such that when the page allocator
2714 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2715 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2716 */
a9dd0a83 2717static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 2718 unsigned long nr_reclaimed,
3e7d3449
MG
2719 struct scan_control *sc)
2720{
2721 unsigned long pages_for_compaction;
2722 unsigned long inactive_lru_pages;
a9dd0a83 2723 int z;
3e7d3449
MG
2724
2725 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2726 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2727 return false;
2728
5ee04716
VB
2729 /*
2730 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2731 * number of pages that were scanned. This will return to the caller
2732 * with the risk reclaim/compaction and the resulting allocation attempt
2733 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2734 * allocations through requiring that the full LRU list has been scanned
2735 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2736 * scan, but that approximation was wrong, and there were corner cases
2737 * where always a non-zero amount of pages were scanned.
2738 */
2739 if (!nr_reclaimed)
2740 return false;
3e7d3449 2741
3e7d3449 2742 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2743 for (z = 0; z <= sc->reclaim_idx; z++) {
2744 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2745 if (!managed_zone(zone))
a9dd0a83
MG
2746 continue;
2747
2748 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2749 case COMPACT_SUCCESS:
a9dd0a83
MG
2750 case COMPACT_CONTINUE:
2751 return false;
2752 default:
2753 /* check next zone */
2754 ;
2755 }
3e7d3449 2756 }
1c6c1597
HD
2757
2758 /*
2759 * If we have not reclaimed enough pages for compaction and the
2760 * inactive lists are large enough, continue reclaiming
2761 */
2762 pages_for_compaction = compact_gap(sc->order);
2763 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2764 if (get_nr_swap_pages() > 0)
2765 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2766
5ee04716 2767 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
2768}
2769
e3c1ac58
AR
2770static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2771{
2772 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2773 (memcg && memcg_congested(pgdat, memcg));
2774}
2775
970a39a3 2776static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2777{
cb731d6c 2778 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2779 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2780 bool reclaimable = false;
1da177e4 2781
9b4f98cd
JW
2782 do {
2783 struct mem_cgroup *root = sc->target_mem_cgroup;
a9dd0a83 2784 unsigned long node_lru_pages = 0;
694fbc0f 2785 struct mem_cgroup *memcg;
3e7d3449 2786
d108c772
AR
2787 memset(&sc->nr, 0, sizeof(sc->nr));
2788
9b4f98cd
JW
2789 nr_reclaimed = sc->nr_reclaimed;
2790 nr_scanned = sc->nr_scanned;
1da177e4 2791
1ba6fc9a 2792 memcg = mem_cgroup_iter(root, NULL, NULL);
694fbc0f 2793 do {
6b4f7799 2794 unsigned long lru_pages;
8e8ae645 2795 unsigned long reclaimed;
cb731d6c 2796 unsigned long scanned;
5660048c 2797
bf8d5d52
RG
2798 switch (mem_cgroup_protected(root, memcg)) {
2799 case MEMCG_PROT_MIN:
2800 /*
2801 * Hard protection.
2802 * If there is no reclaimable memory, OOM.
2803 */
2804 continue;
2805 case MEMCG_PROT_LOW:
2806 /*
2807 * Soft protection.
2808 * Respect the protection only as long as
2809 * there is an unprotected supply
2810 * of reclaimable memory from other cgroups.
2811 */
d6622f63
YX
2812 if (!sc->memcg_low_reclaim) {
2813 sc->memcg_low_skipped = 1;
241994ed 2814 continue;
d6622f63 2815 }
e27be240 2816 memcg_memory_event(memcg, MEMCG_LOW);
bf8d5d52
RG
2817 break;
2818 case MEMCG_PROT_NONE:
9783aa99
CD
2819 /*
2820 * All protection thresholds breached. We may
2821 * still choose to vary the scan pressure
2822 * applied based on by how much the cgroup in
2823 * question has exceeded its protection
2824 * thresholds (see get_scan_count).
2825 */
bf8d5d52 2826 break;
241994ed
JW
2827 }
2828
8e8ae645 2829 reclaimed = sc->nr_reclaimed;
cb731d6c 2830 scanned = sc->nr_scanned;
a9dd0a83
MG
2831 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2832 node_lru_pages += lru_pages;
f16015fb 2833
28360f39
MG
2834 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2835 sc->priority);
cb731d6c 2836
8e8ae645
JW
2837 /* Record the group's reclaim efficiency */
2838 vmpressure(sc->gfp_mask, memcg, false,
2839 sc->nr_scanned - scanned,
2840 sc->nr_reclaimed - reclaimed);
2841
1ba6fc9a 2842 } while ((memcg = mem_cgroup_iter(root, memcg, NULL)));
70ddf637 2843
cb731d6c
VD
2844 if (reclaim_state) {
2845 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2846 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2847 }
2848
8e8ae645
JW
2849 /* Record the subtree's reclaim efficiency */
2850 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2851 sc->nr_scanned - nr_scanned,
2852 sc->nr_reclaimed - nr_reclaimed);
2853
2344d7e4
JW
2854 if (sc->nr_reclaimed - nr_reclaimed)
2855 reclaimable = true;
2856
e3c1ac58
AR
2857 if (current_is_kswapd()) {
2858 /*
2859 * If reclaim is isolating dirty pages under writeback,
2860 * it implies that the long-lived page allocation rate
2861 * is exceeding the page laundering rate. Either the
2862 * global limits are not being effective at throttling
2863 * processes due to the page distribution throughout
2864 * zones or there is heavy usage of a slow backing
2865 * device. The only option is to throttle from reclaim
2866 * context which is not ideal as there is no guarantee
2867 * the dirtying process is throttled in the same way
2868 * balance_dirty_pages() manages.
2869 *
2870 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2871 * count the number of pages under pages flagged for
2872 * immediate reclaim and stall if any are encountered
2873 * in the nr_immediate check below.
2874 */
2875 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2876 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2877
d108c772
AR
2878 /*
2879 * Tag a node as congested if all the dirty pages
2880 * scanned were backed by a congested BDI and
2881 * wait_iff_congested will stall.
2882 */
2883 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2884 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2885
2886 /* Allow kswapd to start writing pages during reclaim.*/
2887 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2888 set_bit(PGDAT_DIRTY, &pgdat->flags);
2889
2890 /*
2891 * If kswapd scans pages marked marked for immediate
2892 * reclaim and under writeback (nr_immediate), it
2893 * implies that pages are cycling through the LRU
2894 * faster than they are written so also forcibly stall.
2895 */
2896 if (sc->nr.immediate)
2897 congestion_wait(BLK_RW_ASYNC, HZ/10);
2898 }
2899
e3c1ac58
AR
2900 /*
2901 * Legacy memcg will stall in page writeback so avoid forcibly
2902 * stalling in wait_iff_congested().
2903 */
2904 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2905 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2906 set_memcg_congestion(pgdat, root, true);
2907
d108c772
AR
2908 /*
2909 * Stall direct reclaim for IO completions if underlying BDIs
2910 * and node is congested. Allow kswapd to continue until it
2911 * starts encountering unqueued dirty pages or cycling through
2912 * the LRU too quickly.
2913 */
2914 if (!sc->hibernation_mode && !current_is_kswapd() &&
e3c1ac58
AR
2915 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2916 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2917
a9dd0a83 2918 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
5ee04716 2919 sc));
2344d7e4 2920
c73322d0
JW
2921 /*
2922 * Kswapd gives up on balancing particular nodes after too
2923 * many failures to reclaim anything from them and goes to
2924 * sleep. On reclaim progress, reset the failure counter. A
2925 * successful direct reclaim run will revive a dormant kswapd.
2926 */
2927 if (reclaimable)
2928 pgdat->kswapd_failures = 0;
2929
2344d7e4 2930 return reclaimable;
f16015fb
JW
2931}
2932
53853e2d 2933/*
fdd4c614
VB
2934 * Returns true if compaction should go ahead for a costly-order request, or
2935 * the allocation would already succeed without compaction. Return false if we
2936 * should reclaim first.
53853e2d 2937 */
4f588331 2938static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2939{
31483b6a 2940 unsigned long watermark;
fdd4c614 2941 enum compact_result suitable;
fe4b1b24 2942
fdd4c614
VB
2943 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2944 if (suitable == COMPACT_SUCCESS)
2945 /* Allocation should succeed already. Don't reclaim. */
2946 return true;
2947 if (suitable == COMPACT_SKIPPED)
2948 /* Compaction cannot yet proceed. Do reclaim. */
2949 return false;
fe4b1b24 2950
53853e2d 2951 /*
fdd4c614
VB
2952 * Compaction is already possible, but it takes time to run and there
2953 * are potentially other callers using the pages just freed. So proceed
2954 * with reclaim to make a buffer of free pages available to give
2955 * compaction a reasonable chance of completing and allocating the page.
2956 * Note that we won't actually reclaim the whole buffer in one attempt
2957 * as the target watermark in should_continue_reclaim() is lower. But if
2958 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2959 */
fdd4c614 2960 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2961
fdd4c614 2962 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2963}
2964
1da177e4
LT
2965/*
2966 * This is the direct reclaim path, for page-allocating processes. We only
2967 * try to reclaim pages from zones which will satisfy the caller's allocation
2968 * request.
2969 *
1da177e4
LT
2970 * If a zone is deemed to be full of pinned pages then just give it a light
2971 * scan then give up on it.
2972 */
0a0337e0 2973static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2974{
dd1a239f 2975 struct zoneref *z;
54a6eb5c 2976 struct zone *zone;
0608f43d
AM
2977 unsigned long nr_soft_reclaimed;
2978 unsigned long nr_soft_scanned;
619d0d76 2979 gfp_t orig_mask;
79dafcdc 2980 pg_data_t *last_pgdat = NULL;
1cfb419b 2981
cc715d99
MG
2982 /*
2983 * If the number of buffer_heads in the machine exceeds the maximum
2984 * allowed level, force direct reclaim to scan the highmem zone as
2985 * highmem pages could be pinning lowmem pages storing buffer_heads
2986 */
619d0d76 2987 orig_mask = sc->gfp_mask;
b2e18757 2988 if (buffer_heads_over_limit) {
cc715d99 2989 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2990 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2991 }
cc715d99 2992
d4debc66 2993 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2994 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2995 /*
2996 * Take care memory controller reclaiming has small influence
2997 * to global LRU.
2998 */
89b5fae5 2999 if (global_reclaim(sc)) {
344736f2
VD
3000 if (!cpuset_zone_allowed(zone,
3001 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3002 continue;
65ec02cb 3003
0b06496a
JW
3004 /*
3005 * If we already have plenty of memory free for
3006 * compaction in this zone, don't free any more.
3007 * Even though compaction is invoked for any
3008 * non-zero order, only frequent costly order
3009 * reclamation is disruptive enough to become a
3010 * noticeable problem, like transparent huge
3011 * page allocations.
3012 */
3013 if (IS_ENABLED(CONFIG_COMPACTION) &&
3014 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3015 compaction_ready(zone, sc)) {
0b06496a
JW
3016 sc->compaction_ready = true;
3017 continue;
e0887c19 3018 }
0b06496a 3019
79dafcdc
MG
3020 /*
3021 * Shrink each node in the zonelist once. If the
3022 * zonelist is ordered by zone (not the default) then a
3023 * node may be shrunk multiple times but in that case
3024 * the user prefers lower zones being preserved.
3025 */
3026 if (zone->zone_pgdat == last_pgdat)
3027 continue;
3028
0608f43d
AM
3029 /*
3030 * This steals pages from memory cgroups over softlimit
3031 * and returns the number of reclaimed pages and
3032 * scanned pages. This works for global memory pressure
3033 * and balancing, not for a memcg's limit.
3034 */
3035 nr_soft_scanned = 0;
ef8f2327 3036 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3037 sc->order, sc->gfp_mask,
3038 &nr_soft_scanned);
3039 sc->nr_reclaimed += nr_soft_reclaimed;
3040 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3041 /* need some check for avoid more shrink_zone() */
1cfb419b 3042 }
408d8544 3043
79dafcdc
MG
3044 /* See comment about same check for global reclaim above */
3045 if (zone->zone_pgdat == last_pgdat)
3046 continue;
3047 last_pgdat = zone->zone_pgdat;
970a39a3 3048 shrink_node(zone->zone_pgdat, sc);
1da177e4 3049 }
e0c23279 3050
619d0d76
WY
3051 /*
3052 * Restore to original mask to avoid the impact on the caller if we
3053 * promoted it to __GFP_HIGHMEM.
3054 */
3055 sc->gfp_mask = orig_mask;
1da177e4 3056}
4f98a2fe 3057
2a2e4885
JW
3058static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
3059{
3060 struct mem_cgroup *memcg;
3061
3062 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
3063 do {
3064 unsigned long refaults;
3065 struct lruvec *lruvec;
3066
2a2e4885 3067 lruvec = mem_cgroup_lruvec(pgdat, memcg);
205b20cc 3068 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2a2e4885
JW
3069 lruvec->refaults = refaults;
3070 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3071}
3072
1da177e4
LT
3073/*
3074 * This is the main entry point to direct page reclaim.
3075 *
3076 * If a full scan of the inactive list fails to free enough memory then we
3077 * are "out of memory" and something needs to be killed.
3078 *
3079 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3080 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3081 * caller can't do much about. We kick the writeback threads and take explicit
3082 * naps in the hope that some of these pages can be written. But if the
3083 * allocating task holds filesystem locks which prevent writeout this might not
3084 * work, and the allocation attempt will fail.
a41f24ea
NA
3085 *
3086 * returns: 0, if no pages reclaimed
3087 * else, the number of pages reclaimed
1da177e4 3088 */
dac1d27b 3089static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3090 struct scan_control *sc)
1da177e4 3091{
241994ed 3092 int initial_priority = sc->priority;
2a2e4885
JW
3093 pg_data_t *last_pgdat;
3094 struct zoneref *z;
3095 struct zone *zone;
241994ed 3096retry:
873b4771
KK
3097 delayacct_freepages_start();
3098
89b5fae5 3099 if (global_reclaim(sc))
7cc30fcf 3100 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3101
9e3b2f8c 3102 do {
70ddf637
AV
3103 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3104 sc->priority);
66e1707b 3105 sc->nr_scanned = 0;
0a0337e0 3106 shrink_zones(zonelist, sc);
c6a8a8c5 3107
bb21c7ce 3108 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3109 break;
3110
3111 if (sc->compaction_ready)
3112 break;
1da177e4 3113
0e50ce3b
MK
3114 /*
3115 * If we're getting trouble reclaiming, start doing
3116 * writepage even in laptop mode.
3117 */
3118 if (sc->priority < DEF_PRIORITY - 2)
3119 sc->may_writepage = 1;
0b06496a 3120 } while (--sc->priority >= 0);
bb21c7ce 3121
2a2e4885
JW
3122 last_pgdat = NULL;
3123 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3124 sc->nodemask) {
3125 if (zone->zone_pgdat == last_pgdat)
3126 continue;
3127 last_pgdat = zone->zone_pgdat;
3128 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
e3c1ac58 3129 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2a2e4885
JW
3130 }
3131
873b4771
KK
3132 delayacct_freepages_end();
3133
bb21c7ce
KM
3134 if (sc->nr_reclaimed)
3135 return sc->nr_reclaimed;
3136
0cee34fd 3137 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3138 if (sc->compaction_ready)
7335084d
MG
3139 return 1;
3140
241994ed 3141 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3142 if (sc->memcg_low_skipped) {
241994ed 3143 sc->priority = initial_priority;
d6622f63
YX
3144 sc->memcg_low_reclaim = 1;
3145 sc->memcg_low_skipped = 0;
241994ed
JW
3146 goto retry;
3147 }
3148
bb21c7ce 3149 return 0;
1da177e4
LT
3150}
3151
c73322d0 3152static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3153{
3154 struct zone *zone;
3155 unsigned long pfmemalloc_reserve = 0;
3156 unsigned long free_pages = 0;
3157 int i;
3158 bool wmark_ok;
3159
c73322d0
JW
3160 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3161 return true;
3162
5515061d
MG
3163 for (i = 0; i <= ZONE_NORMAL; i++) {
3164 zone = &pgdat->node_zones[i];
d450abd8
JW
3165 if (!managed_zone(zone))
3166 continue;
3167
3168 if (!zone_reclaimable_pages(zone))
675becce
MG
3169 continue;
3170
5515061d
MG
3171 pfmemalloc_reserve += min_wmark_pages(zone);
3172 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3173 }
3174
675becce
MG
3175 /* If there are no reserves (unexpected config) then do not throttle */
3176 if (!pfmemalloc_reserve)
3177 return true;
3178
5515061d
MG
3179 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3180
3181 /* kswapd must be awake if processes are being throttled */
3182 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 3183 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
3184 (enum zone_type)ZONE_NORMAL);
3185 wake_up_interruptible(&pgdat->kswapd_wait);
3186 }
3187
3188 return wmark_ok;
3189}
3190
3191/*
3192 * Throttle direct reclaimers if backing storage is backed by the network
3193 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3194 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3195 * when the low watermark is reached.
3196 *
3197 * Returns true if a fatal signal was delivered during throttling. If this
3198 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3199 */
50694c28 3200static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3201 nodemask_t *nodemask)
3202{
675becce 3203 struct zoneref *z;
5515061d 3204 struct zone *zone;
675becce 3205 pg_data_t *pgdat = NULL;
5515061d
MG
3206
3207 /*
3208 * Kernel threads should not be throttled as they may be indirectly
3209 * responsible for cleaning pages necessary for reclaim to make forward
3210 * progress. kjournald for example may enter direct reclaim while
3211 * committing a transaction where throttling it could forcing other
3212 * processes to block on log_wait_commit().
3213 */
3214 if (current->flags & PF_KTHREAD)
50694c28
MG
3215 goto out;
3216
3217 /*
3218 * If a fatal signal is pending, this process should not throttle.
3219 * It should return quickly so it can exit and free its memory
3220 */
3221 if (fatal_signal_pending(current))
3222 goto out;
5515061d 3223
675becce
MG
3224 /*
3225 * Check if the pfmemalloc reserves are ok by finding the first node
3226 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3227 * GFP_KERNEL will be required for allocating network buffers when
3228 * swapping over the network so ZONE_HIGHMEM is unusable.
3229 *
3230 * Throttling is based on the first usable node and throttled processes
3231 * wait on a queue until kswapd makes progress and wakes them. There
3232 * is an affinity then between processes waking up and where reclaim
3233 * progress has been made assuming the process wakes on the same node.
3234 * More importantly, processes running on remote nodes will not compete
3235 * for remote pfmemalloc reserves and processes on different nodes
3236 * should make reasonable progress.
3237 */
3238 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3239 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3240 if (zone_idx(zone) > ZONE_NORMAL)
3241 continue;
3242
3243 /* Throttle based on the first usable node */
3244 pgdat = zone->zone_pgdat;
c73322d0 3245 if (allow_direct_reclaim(pgdat))
675becce
MG
3246 goto out;
3247 break;
3248 }
3249
3250 /* If no zone was usable by the allocation flags then do not throttle */
3251 if (!pgdat)
50694c28 3252 goto out;
5515061d 3253
68243e76
MG
3254 /* Account for the throttling */
3255 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3256
5515061d
MG
3257 /*
3258 * If the caller cannot enter the filesystem, it's possible that it
3259 * is due to the caller holding an FS lock or performing a journal
3260 * transaction in the case of a filesystem like ext[3|4]. In this case,
3261 * it is not safe to block on pfmemalloc_wait as kswapd could be
3262 * blocked waiting on the same lock. Instead, throttle for up to a
3263 * second before continuing.
3264 */
3265 if (!(gfp_mask & __GFP_FS)) {
3266 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3267 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3268
3269 goto check_pending;
5515061d
MG
3270 }
3271
3272 /* Throttle until kswapd wakes the process */
3273 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3274 allow_direct_reclaim(pgdat));
50694c28
MG
3275
3276check_pending:
3277 if (fatal_signal_pending(current))
3278 return true;
3279
3280out:
3281 return false;
5515061d
MG
3282}
3283
dac1d27b 3284unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3285 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3286{
33906bc5 3287 unsigned long nr_reclaimed;
66e1707b 3288 struct scan_control sc = {
ee814fe2 3289 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3290 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3291 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3292 .order = order,
3293 .nodemask = nodemask,
3294 .priority = DEF_PRIORITY,
66e1707b 3295 .may_writepage = !laptop_mode,
a6dc60f8 3296 .may_unmap = 1,
2e2e4259 3297 .may_swap = 1,
66e1707b
BS
3298 };
3299
bb451fdf
GT
3300 /*
3301 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3302 * Confirm they are large enough for max values.
3303 */
3304 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3305 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3306 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3307
5515061d 3308 /*
50694c28
MG
3309 * Do not enter reclaim if fatal signal was delivered while throttled.
3310 * 1 is returned so that the page allocator does not OOM kill at this
3311 * point.
5515061d 3312 */
f2f43e56 3313 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3314 return 1;
3315
1732d2b0 3316 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3317 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3318
3115cd91 3319 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3320
3321 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3322 set_task_reclaim_state(current, NULL);
33906bc5
MG
3323
3324 return nr_reclaimed;
66e1707b
BS
3325}
3326
c255a458 3327#ifdef CONFIG_MEMCG
66e1707b 3328
d2e5fb92 3329/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3330unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3331 gfp_t gfp_mask, bool noswap,
ef8f2327 3332 pg_data_t *pgdat,
0ae5e89c 3333 unsigned long *nr_scanned)
4e416953
BS
3334{
3335 struct scan_control sc = {
b8f5c566 3336 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3337 .target_mem_cgroup = memcg,
4e416953
BS
3338 .may_writepage = !laptop_mode,
3339 .may_unmap = 1,
b2e18757 3340 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3341 .may_swap = !noswap,
4e416953 3342 };
6b4f7799 3343 unsigned long lru_pages;
0ae5e89c 3344
d2e5fb92
MH
3345 WARN_ON_ONCE(!current->reclaim_state);
3346
4e416953
BS
3347 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3348 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3349
9e3b2f8c 3350 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3351 sc.gfp_mask);
bdce6d9e 3352
4e416953
BS
3353 /*
3354 * NOTE: Although we can get the priority field, using it
3355 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3356 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3357 * will pick up pages from other mem cgroup's as well. We hack
3358 * the priority and make it zero.
3359 */
ef8f2327 3360 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3361
3362 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3363
0ae5e89c 3364 *nr_scanned = sc.nr_scanned;
0308f7cf 3365
4e416953
BS
3366 return sc.nr_reclaimed;
3367}
3368
72835c86 3369unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3370 unsigned long nr_pages,
a7885eb8 3371 gfp_t gfp_mask,
b70a2a21 3372 bool may_swap)
66e1707b 3373{
4e416953 3374 struct zonelist *zonelist;
bdce6d9e 3375 unsigned long nr_reclaimed;
eb414681 3376 unsigned long pflags;
889976db 3377 int nid;
499118e9 3378 unsigned int noreclaim_flag;
66e1707b 3379 struct scan_control sc = {
b70a2a21 3380 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3381 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3382 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3383 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3384 .target_mem_cgroup = memcg,
3385 .priority = DEF_PRIORITY,
3386 .may_writepage = !laptop_mode,
3387 .may_unmap = 1,
b70a2a21 3388 .may_swap = may_swap,
a09ed5e0 3389 };
66e1707b 3390
1732d2b0 3391 set_task_reclaim_state(current, &sc.reclaim_state);
889976db
YH
3392 /*
3393 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3394 * take care of from where we get pages. So the node where we start the
3395 * scan does not need to be the current node.
3396 */
72835c86 3397 nid = mem_cgroup_select_victim_node(memcg);
889976db 3398
c9634cf0 3399 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e 3400
3481c37f 3401 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
bdce6d9e 3402
eb414681 3403 psi_memstall_enter(&pflags);
499118e9 3404 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3405
3115cd91 3406 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3407
499118e9 3408 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3409 psi_memstall_leave(&pflags);
bdce6d9e
KM
3410
3411 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3412 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3413
3414 return nr_reclaimed;
66e1707b
BS
3415}
3416#endif
3417
1d82de61 3418static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3419 struct scan_control *sc)
f16015fb 3420{
b95a2f2d 3421 struct mem_cgroup *memcg;
f16015fb 3422
b95a2f2d
JW
3423 if (!total_swap_pages)
3424 return;
3425
3426 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3427 do {
ef8f2327 3428 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3429
3b991208 3430 if (inactive_list_is_low(lruvec, false, sc, true))
1a93be0e 3431 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3432 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3433
3434 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3435 } while (memcg);
f16015fb
JW
3436}
3437
1c30844d
MG
3438static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3439{
3440 int i;
3441 struct zone *zone;
3442
3443 /*
3444 * Check for watermark boosts top-down as the higher zones
3445 * are more likely to be boosted. Both watermarks and boosts
3446 * should not be checked at the time time as reclaim would
3447 * start prematurely when there is no boosting and a lower
3448 * zone is balanced.
3449 */
3450 for (i = classzone_idx; i >= 0; i--) {
3451 zone = pgdat->node_zones + i;
3452 if (!managed_zone(zone))
3453 continue;
3454
3455 if (zone->watermark_boost)
3456 return true;
3457 }
3458
3459 return false;
3460}
3461
e716f2eb
MG
3462/*
3463 * Returns true if there is an eligible zone balanced for the request order
3464 * and classzone_idx
3465 */
3466static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3467{
e716f2eb
MG
3468 int i;
3469 unsigned long mark = -1;
3470 struct zone *zone;
60cefed4 3471
1c30844d
MG
3472 /*
3473 * Check watermarks bottom-up as lower zones are more likely to
3474 * meet watermarks.
3475 */
e716f2eb
MG
3476 for (i = 0; i <= classzone_idx; i++) {
3477 zone = pgdat->node_zones + i;
6256c6b4 3478
e716f2eb
MG
3479 if (!managed_zone(zone))
3480 continue;
3481
3482 mark = high_wmark_pages(zone);
3483 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3484 return true;
3485 }
3486
3487 /*
3488 * If a node has no populated zone within classzone_idx, it does not
3489 * need balancing by definition. This can happen if a zone-restricted
3490 * allocation tries to wake a remote kswapd.
3491 */
3492 if (mark == -1)
3493 return true;
3494
3495 return false;
60cefed4
JW
3496}
3497
631b6e08
MG
3498/* Clear pgdat state for congested, dirty or under writeback. */
3499static void clear_pgdat_congested(pg_data_t *pgdat)
3500{
3501 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3502 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3503 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3504}
3505
5515061d
MG
3506/*
3507 * Prepare kswapd for sleeping. This verifies that there are no processes
3508 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3509 *
3510 * Returns true if kswapd is ready to sleep
3511 */
d9f21d42 3512static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3513{
5515061d 3514 /*
9e5e3661 3515 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3516 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3517 * race between when kswapd checks the watermarks and a process gets
3518 * throttled. There is also a potential race if processes get
3519 * throttled, kswapd wakes, a large process exits thereby balancing the
3520 * zones, which causes kswapd to exit balance_pgdat() before reaching
3521 * the wake up checks. If kswapd is going to sleep, no process should
3522 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3523 * the wake up is premature, processes will wake kswapd and get
3524 * throttled again. The difference from wake ups in balance_pgdat() is
3525 * that here we are under prepare_to_wait().
5515061d 3526 */
9e5e3661
VB
3527 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3528 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3529
c73322d0
JW
3530 /* Hopeless node, leave it to direct reclaim */
3531 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3532 return true;
3533
e716f2eb
MG
3534 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3535 clear_pgdat_congested(pgdat);
3536 return true;
1d82de61
MG
3537 }
3538
333b0a45 3539 return false;
f50de2d3
MG
3540}
3541
75485363 3542/*
1d82de61
MG
3543 * kswapd shrinks a node of pages that are at or below the highest usable
3544 * zone that is currently unbalanced.
b8e83b94
MG
3545 *
3546 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3547 * reclaim or if the lack of progress was due to pages under writeback.
3548 * This is used to determine if the scanning priority needs to be raised.
75485363 3549 */
1d82de61 3550static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3551 struct scan_control *sc)
75485363 3552{
1d82de61
MG
3553 struct zone *zone;
3554 int z;
75485363 3555
1d82de61
MG
3556 /* Reclaim a number of pages proportional to the number of zones */
3557 sc->nr_to_reclaim = 0;
970a39a3 3558 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3559 zone = pgdat->node_zones + z;
6aa303de 3560 if (!managed_zone(zone))
1d82de61 3561 continue;
7c954f6d 3562
1d82de61
MG
3563 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3564 }
7c954f6d
MG
3565
3566 /*
1d82de61
MG
3567 * Historically care was taken to put equal pressure on all zones but
3568 * now pressure is applied based on node LRU order.
7c954f6d 3569 */
970a39a3 3570 shrink_node(pgdat, sc);
283aba9f 3571
7c954f6d 3572 /*
1d82de61
MG
3573 * Fragmentation may mean that the system cannot be rebalanced for
3574 * high-order allocations. If twice the allocation size has been
3575 * reclaimed then recheck watermarks only at order-0 to prevent
3576 * excessive reclaim. Assume that a process requested a high-order
3577 * can direct reclaim/compact.
7c954f6d 3578 */
9861a62c 3579 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3580 sc->order = 0;
7c954f6d 3581
b8e83b94 3582 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3583}
3584
1da177e4 3585/*
1d82de61
MG
3586 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3587 * that are eligible for use by the caller until at least one zone is
3588 * balanced.
1da177e4 3589 *
1d82de61 3590 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3591 *
3592 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3593 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3594 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3595 * or lower is eligible for reclaim until at least one usable zone is
3596 * balanced.
1da177e4 3597 */
accf6242 3598static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3599{
1da177e4 3600 int i;
0608f43d
AM
3601 unsigned long nr_soft_reclaimed;
3602 unsigned long nr_soft_scanned;
eb414681 3603 unsigned long pflags;
1c30844d
MG
3604 unsigned long nr_boost_reclaim;
3605 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3606 bool boosted;
1d82de61 3607 struct zone *zone;
179e9639
AM
3608 struct scan_control sc = {
3609 .gfp_mask = GFP_KERNEL,
ee814fe2 3610 .order = order,
a6dc60f8 3611 .may_unmap = 1,
179e9639 3612 };
93781325 3613
1732d2b0 3614 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 3615 psi_memstall_enter(&pflags);
93781325
OS
3616 __fs_reclaim_acquire();
3617
f8891e5e 3618 count_vm_event(PAGEOUTRUN);
1da177e4 3619
1c30844d
MG
3620 /*
3621 * Account for the reclaim boost. Note that the zone boost is left in
3622 * place so that parallel allocations that are near the watermark will
3623 * stall or direct reclaim until kswapd is finished.
3624 */
3625 nr_boost_reclaim = 0;
3626 for (i = 0; i <= classzone_idx; i++) {
3627 zone = pgdat->node_zones + i;
3628 if (!managed_zone(zone))
3629 continue;
3630
3631 nr_boost_reclaim += zone->watermark_boost;
3632 zone_boosts[i] = zone->watermark_boost;
3633 }
3634 boosted = nr_boost_reclaim;
3635
3636restart:
3637 sc.priority = DEF_PRIORITY;
9e3b2f8c 3638 do {
c73322d0 3639 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3640 bool raise_priority = true;
1c30844d 3641 bool balanced;
93781325 3642 bool ret;
b8e83b94 3643
84c7a777 3644 sc.reclaim_idx = classzone_idx;
1da177e4 3645
86c79f6b 3646 /*
84c7a777
MG
3647 * If the number of buffer_heads exceeds the maximum allowed
3648 * then consider reclaiming from all zones. This has a dual
3649 * purpose -- on 64-bit systems it is expected that
3650 * buffer_heads are stripped during active rotation. On 32-bit
3651 * systems, highmem pages can pin lowmem memory and shrinking
3652 * buffers can relieve lowmem pressure. Reclaim may still not
3653 * go ahead if all eligible zones for the original allocation
3654 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3655 */
3656 if (buffer_heads_over_limit) {
3657 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3658 zone = pgdat->node_zones + i;
6aa303de 3659 if (!managed_zone(zone))
86c79f6b 3660 continue;
cc715d99 3661
970a39a3 3662 sc.reclaim_idx = i;
e1dbeda6 3663 break;
1da177e4 3664 }
1da177e4 3665 }
dafcb73e 3666
86c79f6b 3667 /*
1c30844d
MG
3668 * If the pgdat is imbalanced then ignore boosting and preserve
3669 * the watermarks for a later time and restart. Note that the
3670 * zone watermarks will be still reset at the end of balancing
3671 * on the grounds that the normal reclaim should be enough to
3672 * re-evaluate if boosting is required when kswapd next wakes.
3673 */
3674 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3675 if (!balanced && nr_boost_reclaim) {
3676 nr_boost_reclaim = 0;
3677 goto restart;
3678 }
3679
3680 /*
3681 * If boosting is not active then only reclaim if there are no
3682 * eligible zones. Note that sc.reclaim_idx is not used as
3683 * buffer_heads_over_limit may have adjusted it.
86c79f6b 3684 */
1c30844d 3685 if (!nr_boost_reclaim && balanced)
e716f2eb 3686 goto out;
e1dbeda6 3687
1c30844d
MG
3688 /* Limit the priority of boosting to avoid reclaim writeback */
3689 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3690 raise_priority = false;
3691
3692 /*
3693 * Do not writeback or swap pages for boosted reclaim. The
3694 * intent is to relieve pressure not issue sub-optimal IO
3695 * from reclaim context. If no pages are reclaimed, the
3696 * reclaim will be aborted.
3697 */
3698 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3699 sc.may_swap = !nr_boost_reclaim;
1c30844d 3700
1d82de61
MG
3701 /*
3702 * Do some background aging of the anon list, to give
3703 * pages a chance to be referenced before reclaiming. All
3704 * pages are rotated regardless of classzone as this is
3705 * about consistent aging.
3706 */
ef8f2327 3707 age_active_anon(pgdat, &sc);
1d82de61 3708
b7ea3c41
MG
3709 /*
3710 * If we're getting trouble reclaiming, start doing writepage
3711 * even in laptop mode.
3712 */
047d72c3 3713 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3714 sc.may_writepage = 1;
3715
1d82de61
MG
3716 /* Call soft limit reclaim before calling shrink_node. */
3717 sc.nr_scanned = 0;
3718 nr_soft_scanned = 0;
ef8f2327 3719 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3720 sc.gfp_mask, &nr_soft_scanned);
3721 sc.nr_reclaimed += nr_soft_reclaimed;
3722
1da177e4 3723 /*
1d82de61
MG
3724 * There should be no need to raise the scanning priority if
3725 * enough pages are already being scanned that that high
3726 * watermark would be met at 100% efficiency.
1da177e4 3727 */
970a39a3 3728 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3729 raise_priority = false;
5515061d
MG
3730
3731 /*
3732 * If the low watermark is met there is no need for processes
3733 * to be throttled on pfmemalloc_wait as they should not be
3734 * able to safely make forward progress. Wake them
3735 */
3736 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3737 allow_direct_reclaim(pgdat))
cfc51155 3738 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3739
b8e83b94 3740 /* Check if kswapd should be suspending */
93781325
OS
3741 __fs_reclaim_release();
3742 ret = try_to_freeze();
3743 __fs_reclaim_acquire();
3744 if (ret || kthread_should_stop())
b8e83b94 3745 break;
8357376d 3746
73ce02e9 3747 /*
b8e83b94
MG
3748 * Raise priority if scanning rate is too low or there was no
3749 * progress in reclaiming pages
73ce02e9 3750 */
c73322d0 3751 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
3752 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3753
3754 /*
3755 * If reclaim made no progress for a boost, stop reclaim as
3756 * IO cannot be queued and it could be an infinite loop in
3757 * extreme circumstances.
3758 */
3759 if (nr_boost_reclaim && !nr_reclaimed)
3760 break;
3761
c73322d0 3762 if (raise_priority || !nr_reclaimed)
b8e83b94 3763 sc.priority--;
1d82de61 3764 } while (sc.priority >= 1);
1da177e4 3765
c73322d0
JW
3766 if (!sc.nr_reclaimed)
3767 pgdat->kswapd_failures++;
3768
b8e83b94 3769out:
1c30844d
MG
3770 /* If reclaim was boosted, account for the reclaim done in this pass */
3771 if (boosted) {
3772 unsigned long flags;
3773
3774 for (i = 0; i <= classzone_idx; i++) {
3775 if (!zone_boosts[i])
3776 continue;
3777
3778 /* Increments are under the zone lock */
3779 zone = pgdat->node_zones + i;
3780 spin_lock_irqsave(&zone->lock, flags);
3781 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3782 spin_unlock_irqrestore(&zone->lock, flags);
3783 }
3784
3785 /*
3786 * As there is now likely space, wakeup kcompact to defragment
3787 * pageblocks.
3788 */
3789 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3790 }
3791
2a2e4885 3792 snapshot_refaults(NULL, pgdat);
93781325 3793 __fs_reclaim_release();
eb414681 3794 psi_memstall_leave(&pflags);
1732d2b0 3795 set_task_reclaim_state(current, NULL);
e5ca8071 3796
0abdee2b 3797 /*
1d82de61
MG
3798 * Return the order kswapd stopped reclaiming at as
3799 * prepare_kswapd_sleep() takes it into account. If another caller
3800 * entered the allocator slow path while kswapd was awake, order will
3801 * remain at the higher level.
0abdee2b 3802 */
1d82de61 3803 return sc.order;
1da177e4
LT
3804}
3805
e716f2eb 3806/*
dffcac2c
SB
3807 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3808 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3809 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3810 * after previous reclaim attempt (node is still unbalanced). In that case
3811 * return the zone index of the previous kswapd reclaim cycle.
e716f2eb
MG
3812 */
3813static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
dffcac2c 3814 enum zone_type prev_classzone_idx)
e716f2eb
MG
3815{
3816 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
dffcac2c
SB
3817 return prev_classzone_idx;
3818 return pgdat->kswapd_classzone_idx;
e716f2eb
MG
3819}
3820
38087d9b
MG
3821static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3822 unsigned int classzone_idx)
f0bc0a60
KM
3823{
3824 long remaining = 0;
3825 DEFINE_WAIT(wait);
3826
3827 if (freezing(current) || kthread_should_stop())
3828 return;
3829
3830 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3831
333b0a45
SG
3832 /*
3833 * Try to sleep for a short interval. Note that kcompactd will only be
3834 * woken if it is possible to sleep for a short interval. This is
3835 * deliberate on the assumption that if reclaim cannot keep an
3836 * eligible zone balanced that it's also unlikely that compaction will
3837 * succeed.
3838 */
d9f21d42 3839 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3840 /*
3841 * Compaction records what page blocks it recently failed to
3842 * isolate pages from and skips them in the future scanning.
3843 * When kswapd is going to sleep, it is reasonable to assume
3844 * that pages and compaction may succeed so reset the cache.
3845 */
3846 reset_isolation_suitable(pgdat);
3847
3848 /*
3849 * We have freed the memory, now we should compact it to make
3850 * allocation of the requested order possible.
3851 */
38087d9b 3852 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3853
f0bc0a60 3854 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3855
3856 /*
3857 * If woken prematurely then reset kswapd_classzone_idx and
3858 * order. The values will either be from a wakeup request or
3859 * the previous request that slept prematurely.
3860 */
3861 if (remaining) {
e716f2eb 3862 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3863 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3864 }
3865
f0bc0a60
KM
3866 finish_wait(&pgdat->kswapd_wait, &wait);
3867 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3868 }
3869
3870 /*
3871 * After a short sleep, check if it was a premature sleep. If not, then
3872 * go fully to sleep until explicitly woken up.
3873 */
d9f21d42
MG
3874 if (!remaining &&
3875 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3876 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3877
3878 /*
3879 * vmstat counters are not perfectly accurate and the estimated
3880 * value for counters such as NR_FREE_PAGES can deviate from the
3881 * true value by nr_online_cpus * threshold. To avoid the zone
3882 * watermarks being breached while under pressure, we reduce the
3883 * per-cpu vmstat threshold while kswapd is awake and restore
3884 * them before going back to sleep.
3885 */
3886 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3887
3888 if (!kthread_should_stop())
3889 schedule();
3890
f0bc0a60
KM
3891 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3892 } else {
3893 if (remaining)
3894 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3895 else
3896 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3897 }
3898 finish_wait(&pgdat->kswapd_wait, &wait);
3899}
3900
1da177e4
LT
3901/*
3902 * The background pageout daemon, started as a kernel thread
4f98a2fe 3903 * from the init process.
1da177e4
LT
3904 *
3905 * This basically trickles out pages so that we have _some_
3906 * free memory available even if there is no other activity
3907 * that frees anything up. This is needed for things like routing
3908 * etc, where we otherwise might have all activity going on in
3909 * asynchronous contexts that cannot page things out.
3910 *
3911 * If there are applications that are active memory-allocators
3912 * (most normal use), this basically shouldn't matter.
3913 */
3914static int kswapd(void *p)
3915{
e716f2eb
MG
3916 unsigned int alloc_order, reclaim_order;
3917 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3918 pg_data_t *pgdat = (pg_data_t*)p;
3919 struct task_struct *tsk = current;
a70f7302 3920 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3921
174596a0 3922 if (!cpumask_empty(cpumask))
c5f59f08 3923 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3924
3925 /*
3926 * Tell the memory management that we're a "memory allocator",
3927 * and that if we need more memory we should get access to it
3928 * regardless (see "__alloc_pages()"). "kswapd" should
3929 * never get caught in the normal page freeing logic.
3930 *
3931 * (Kswapd normally doesn't need memory anyway, but sometimes
3932 * you need a small amount of memory in order to be able to
3933 * page out something else, and this flag essentially protects
3934 * us from recursively trying to free more memory as we're
3935 * trying to free the first piece of memory in the first place).
3936 */
930d9152 3937 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3938 set_freezable();
1da177e4 3939
e716f2eb
MG
3940 pgdat->kswapd_order = 0;
3941 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3942 for ( ; ; ) {
6f6313d4 3943 bool ret;
3e1d1d28 3944
e716f2eb
MG
3945 alloc_order = reclaim_order = pgdat->kswapd_order;
3946 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3947
38087d9b
MG
3948kswapd_try_sleep:
3949 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3950 classzone_idx);
215ddd66 3951
38087d9b
MG
3952 /* Read the new order and classzone_idx */
3953 alloc_order = reclaim_order = pgdat->kswapd_order;
dffcac2c 3954 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b 3955 pgdat->kswapd_order = 0;
e716f2eb 3956 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3957
8fe23e05
DR
3958 ret = try_to_freeze();
3959 if (kthread_should_stop())
3960 break;
3961
3962 /*
3963 * We can speed up thawing tasks if we don't call balance_pgdat
3964 * after returning from the refrigerator
3965 */
38087d9b
MG
3966 if (ret)
3967 continue;
3968
3969 /*
3970 * Reclaim begins at the requested order but if a high-order
3971 * reclaim fails then kswapd falls back to reclaiming for
3972 * order-0. If that happens, kswapd will consider sleeping
3973 * for the order it finished reclaiming at (reclaim_order)
3974 * but kcompactd is woken to compact for the original
3975 * request (alloc_order).
3976 */
e5146b12
MG
3977 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3978 alloc_order);
38087d9b
MG
3979 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3980 if (reclaim_order < alloc_order)
3981 goto kswapd_try_sleep;
1da177e4 3982 }
b0a8cc58 3983
71abdc15 3984 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 3985
1da177e4
LT
3986 return 0;
3987}
3988
3989/*
5ecd9d40
DR
3990 * A zone is low on free memory or too fragmented for high-order memory. If
3991 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3992 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3993 * has failed or is not needed, still wake up kcompactd if only compaction is
3994 * needed.
1da177e4 3995 */
5ecd9d40
DR
3996void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3997 enum zone_type classzone_idx)
1da177e4
LT
3998{
3999 pg_data_t *pgdat;
4000
6aa303de 4001 if (!managed_zone(zone))
1da177e4
LT
4002 return;
4003
5ecd9d40 4004 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4005 return;
88f5acf8 4006 pgdat = zone->zone_pgdat;
dffcac2c
SB
4007
4008 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
4009 pgdat->kswapd_classzone_idx = classzone_idx;
4010 else
4011 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
4012 classzone_idx);
38087d9b 4013 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 4014 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4015 return;
e1a55637 4016
5ecd9d40
DR
4017 /* Hopeless node, leave it to direct reclaim if possible */
4018 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
1c30844d
MG
4019 (pgdat_balanced(pgdat, order, classzone_idx) &&
4020 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
5ecd9d40
DR
4021 /*
4022 * There may be plenty of free memory available, but it's too
4023 * fragmented for high-order allocations. Wake up kcompactd
4024 * and rely on compaction_suitable() to determine if it's
4025 * needed. If it fails, it will defer subsequent attempts to
4026 * ratelimit its work.
4027 */
4028 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4029 wakeup_kcompactd(pgdat, order, classzone_idx);
e716f2eb 4030 return;
5ecd9d40 4031 }
88f5acf8 4032
5ecd9d40
DR
4033 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
4034 gfp_flags);
8d0986e2 4035 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4036}
4037
c6f37f12 4038#ifdef CONFIG_HIBERNATION
1da177e4 4039/*
7b51755c 4040 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4041 * freed pages.
4042 *
4043 * Rather than trying to age LRUs the aim is to preserve the overall
4044 * LRU order by reclaiming preferentially
4045 * inactive > active > active referenced > active mapped
1da177e4 4046 */
7b51755c 4047unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4048{
d6277db4 4049 struct scan_control sc = {
ee814fe2 4050 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4051 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4052 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4053 .priority = DEF_PRIORITY,
d6277db4 4054 .may_writepage = 1,
ee814fe2
JW
4055 .may_unmap = 1,
4056 .may_swap = 1,
7b51755c 4057 .hibernation_mode = 1,
1da177e4 4058 };
a09ed5e0 4059 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4060 unsigned long nr_reclaimed;
499118e9 4061 unsigned int noreclaim_flag;
1da177e4 4062
d92a8cfc 4063 fs_reclaim_acquire(sc.gfp_mask);
93781325 4064 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4065 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4066
3115cd91 4067 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4068
1732d2b0 4069 set_task_reclaim_state(current, NULL);
499118e9 4070 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4071 fs_reclaim_release(sc.gfp_mask);
d6277db4 4072
7b51755c 4073 return nr_reclaimed;
1da177e4 4074}
c6f37f12 4075#endif /* CONFIG_HIBERNATION */
1da177e4 4076
1da177e4
LT
4077/* It's optimal to keep kswapds on the same CPUs as their memory, but
4078 not required for correctness. So if the last cpu in a node goes
4079 away, we get changed to run anywhere: as the first one comes back,
4080 restore their cpu bindings. */
517bbed9 4081static int kswapd_cpu_online(unsigned int cpu)
1da177e4 4082{
58c0a4a7 4083 int nid;
1da177e4 4084
517bbed9
SAS
4085 for_each_node_state(nid, N_MEMORY) {
4086 pg_data_t *pgdat = NODE_DATA(nid);
4087 const struct cpumask *mask;
a70f7302 4088
517bbed9 4089 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 4090
517bbed9
SAS
4091 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4092 /* One of our CPUs online: restore mask */
4093 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 4094 }
517bbed9 4095 return 0;
1da177e4 4096}
1da177e4 4097
3218ae14
YG
4098/*
4099 * This kswapd start function will be called by init and node-hot-add.
4100 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4101 */
4102int kswapd_run(int nid)
4103{
4104 pg_data_t *pgdat = NODE_DATA(nid);
4105 int ret = 0;
4106
4107 if (pgdat->kswapd)
4108 return 0;
4109
4110 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4111 if (IS_ERR(pgdat->kswapd)) {
4112 /* failure at boot is fatal */
c6202adf 4113 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
4114 pr_err("Failed to start kswapd on node %d\n", nid);
4115 ret = PTR_ERR(pgdat->kswapd);
d72515b8 4116 pgdat->kswapd = NULL;
3218ae14
YG
4117 }
4118 return ret;
4119}
4120
8fe23e05 4121/*
d8adde17 4122 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4123 * hold mem_hotplug_begin/end().
8fe23e05
DR
4124 */
4125void kswapd_stop(int nid)
4126{
4127 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4128
d8adde17 4129 if (kswapd) {
8fe23e05 4130 kthread_stop(kswapd);
d8adde17
JL
4131 NODE_DATA(nid)->kswapd = NULL;
4132 }
8fe23e05
DR
4133}
4134
1da177e4
LT
4135static int __init kswapd_init(void)
4136{
517bbed9 4137 int nid, ret;
69e05944 4138
1da177e4 4139 swap_setup();
48fb2e24 4140 for_each_node_state(nid, N_MEMORY)
3218ae14 4141 kswapd_run(nid);
517bbed9
SAS
4142 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4143 "mm/vmscan:online", kswapd_cpu_online,
4144 NULL);
4145 WARN_ON(ret < 0);
1da177e4
LT
4146 return 0;
4147}
4148
4149module_init(kswapd_init)
9eeff239
CL
4150
4151#ifdef CONFIG_NUMA
4152/*
a5f5f91d 4153 * Node reclaim mode
9eeff239 4154 *
a5f5f91d 4155 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4156 * the watermarks.
9eeff239 4157 */
a5f5f91d 4158int node_reclaim_mode __read_mostly;
9eeff239 4159
1b2ffb78 4160#define RECLAIM_OFF 0
7d03431c 4161#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 4162#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 4163#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 4164
a92f7126 4165/*
a5f5f91d 4166 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4167 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4168 * a zone.
4169 */
a5f5f91d 4170#define NODE_RECLAIM_PRIORITY 4
a92f7126 4171
9614634f 4172/*
a5f5f91d 4173 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4174 * occur.
4175 */
4176int sysctl_min_unmapped_ratio = 1;
4177
0ff38490
CL
4178/*
4179 * If the number of slab pages in a zone grows beyond this percentage then
4180 * slab reclaim needs to occur.
4181 */
4182int sysctl_min_slab_ratio = 5;
4183
11fb9989 4184static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4185{
11fb9989
MG
4186 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4187 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4188 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4189
4190 /*
4191 * It's possible for there to be more file mapped pages than
4192 * accounted for by the pages on the file LRU lists because
4193 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4194 */
4195 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4196}
4197
4198/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4199static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4200{
d031a157
AM
4201 unsigned long nr_pagecache_reclaimable;
4202 unsigned long delta = 0;
90afa5de
MG
4203
4204 /*
95bbc0c7 4205 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4206 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4207 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4208 * a better estimate
4209 */
a5f5f91d
MG
4210 if (node_reclaim_mode & RECLAIM_UNMAP)
4211 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4212 else
a5f5f91d 4213 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4214
4215 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4216 if (!(node_reclaim_mode & RECLAIM_WRITE))
4217 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4218
4219 /* Watch for any possible underflows due to delta */
4220 if (unlikely(delta > nr_pagecache_reclaimable))
4221 delta = nr_pagecache_reclaimable;
4222
4223 return nr_pagecache_reclaimable - delta;
4224}
4225
9eeff239 4226/*
a5f5f91d 4227 * Try to free up some pages from this node through reclaim.
9eeff239 4228 */
a5f5f91d 4229static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4230{
7fb2d46d 4231 /* Minimum pages needed in order to stay on node */
69e05944 4232 const unsigned long nr_pages = 1 << order;
9eeff239 4233 struct task_struct *p = current;
499118e9 4234 unsigned int noreclaim_flag;
179e9639 4235 struct scan_control sc = {
62b726c1 4236 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4237 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4238 .order = order,
a5f5f91d
MG
4239 .priority = NODE_RECLAIM_PRIORITY,
4240 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4241 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4242 .may_swap = 1,
f2f43e56 4243 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4244 };
9eeff239 4245
132bb8cf
YS
4246 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4247 sc.gfp_mask);
4248
9eeff239 4249 cond_resched();
93781325 4250 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4251 /*
95bbc0c7 4252 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4253 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4254 * and RECLAIM_UNMAP.
d4f7796e 4255 */
499118e9
VB
4256 noreclaim_flag = memalloc_noreclaim_save();
4257 p->flags |= PF_SWAPWRITE;
1732d2b0 4258 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4259
a5f5f91d 4260 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4261 /*
894befec 4262 * Free memory by calling shrink node with increasing
0ff38490
CL
4263 * priorities until we have enough memory freed.
4264 */
0ff38490 4265 do {
970a39a3 4266 shrink_node(pgdat, &sc);
9e3b2f8c 4267 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4268 }
c84db23c 4269
1732d2b0 4270 set_task_reclaim_state(p, NULL);
499118e9
VB
4271 current->flags &= ~PF_SWAPWRITE;
4272 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4273 fs_reclaim_release(sc.gfp_mask);
132bb8cf
YS
4274
4275 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4276
a79311c1 4277 return sc.nr_reclaimed >= nr_pages;
9eeff239 4278}
179e9639 4279
a5f5f91d 4280int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4281{
d773ed6b 4282 int ret;
179e9639
AM
4283
4284 /*
a5f5f91d 4285 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4286 * slab pages if we are over the defined limits.
34aa1330 4287 *
9614634f
CL
4288 * A small portion of unmapped file backed pages is needed for
4289 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4290 * thrown out if the node is overallocated. So we do not reclaim
4291 * if less than a specified percentage of the node is used by
9614634f 4292 * unmapped file backed pages.
179e9639 4293 */
a5f5f91d 4294 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 4295 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 4296 return NODE_RECLAIM_FULL;
179e9639
AM
4297
4298 /*
d773ed6b 4299 * Do not scan if the allocation should not be delayed.
179e9639 4300 */
d0164adc 4301 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4302 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4303
4304 /*
a5f5f91d 4305 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4306 * have associated processors. This will favor the local processor
4307 * over remote processors and spread off node memory allocations
4308 * as wide as possible.
4309 */
a5f5f91d
MG
4310 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4311 return NODE_RECLAIM_NOSCAN;
d773ed6b 4312
a5f5f91d
MG
4313 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4314 return NODE_RECLAIM_NOSCAN;
fa5e084e 4315
a5f5f91d
MG
4316 ret = __node_reclaim(pgdat, gfp_mask, order);
4317 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4318
24cf7251
MG
4319 if (!ret)
4320 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4321
d773ed6b 4322 return ret;
179e9639 4323}
9eeff239 4324#endif
894bc310 4325
894bc310
LS
4326/*
4327 * page_evictable - test whether a page is evictable
4328 * @page: the page to test
894bc310
LS
4329 *
4330 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 4331 * lists vs unevictable list.
894bc310
LS
4332 *
4333 * Reasons page might not be evictable:
ba9ddf49 4334 * (1) page's mapping marked unevictable
b291f000 4335 * (2) page is part of an mlocked VMA
ba9ddf49 4336 *
894bc310 4337 */
39b5f29a 4338int page_evictable(struct page *page)
894bc310 4339{
e92bb4dd
HY
4340 int ret;
4341
4342 /* Prevent address_space of inode and swap cache from being freed */
4343 rcu_read_lock();
4344 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4345 rcu_read_unlock();
4346 return ret;
894bc310 4347}
89e004ea
LS
4348
4349/**
64e3d12f
KHY
4350 * check_move_unevictable_pages - check pages for evictability and move to
4351 * appropriate zone lru list
4352 * @pvec: pagevec with lru pages to check
89e004ea 4353 *
64e3d12f
KHY
4354 * Checks pages for evictability, if an evictable page is in the unevictable
4355 * lru list, moves it to the appropriate evictable lru list. This function
4356 * should be only used for lru pages.
89e004ea 4357 */
64e3d12f 4358void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4359{
925b7673 4360 struct lruvec *lruvec;
785b99fe 4361 struct pglist_data *pgdat = NULL;
24513264
HD
4362 int pgscanned = 0;
4363 int pgrescued = 0;
4364 int i;
89e004ea 4365
64e3d12f
KHY
4366 for (i = 0; i < pvec->nr; i++) {
4367 struct page *page = pvec->pages[i];
785b99fe 4368 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4369
24513264 4370 pgscanned++;
785b99fe
MG
4371 if (pagepgdat != pgdat) {
4372 if (pgdat)
4373 spin_unlock_irq(&pgdat->lru_lock);
4374 pgdat = pagepgdat;
4375 spin_lock_irq(&pgdat->lru_lock);
24513264 4376 }
785b99fe 4377 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4378
24513264
HD
4379 if (!PageLRU(page) || !PageUnevictable(page))
4380 continue;
89e004ea 4381
39b5f29a 4382 if (page_evictable(page)) {
24513264
HD
4383 enum lru_list lru = page_lru_base_type(page);
4384
309381fe 4385 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4386 ClearPageUnevictable(page);
fa9add64
HD
4387 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4388 add_page_to_lru_list(page, lruvec, lru);
24513264 4389 pgrescued++;
89e004ea 4390 }
24513264 4391 }
89e004ea 4392
785b99fe 4393 if (pgdat) {
24513264
HD
4394 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4395 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4396 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4397 }
89e004ea 4398}
64e3d12f 4399EXPORT_SYMBOL_GPL(check_move_unevictable_pages);