]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
mm/swap: convert add_to_swap_cache() to take a folio
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
07f67a8d 29#include <linux/buffer_head.h> /* for buffer_heads_over_limit */
1da177e4 30#include <linux/mm_inline.h>
1da177e4
LT
31#include <linux/backing-dev.h>
32#include <linux/rmap.h>
33#include <linux/topology.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
3e7d3449 36#include <linux/compaction.h>
1da177e4
LT
37#include <linux/notifier.h>
38#include <linux/rwsem.h>
248a0301 39#include <linux/delay.h>
3218ae14 40#include <linux/kthread.h>
7dfb7103 41#include <linux/freezer.h>
66e1707b 42#include <linux/memcontrol.h>
26aa2d19 43#include <linux/migrate.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
91952440 46#include <linux/memory-tiers.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
bd74fdae
YZ
53#include <linux/pagewalk.h>
54#include <linux/shmem_fs.h>
354ed597 55#include <linux/ctype.h>
d6c3af7d 56#include <linux/debugfs.h>
1da177e4
LT
57
58#include <asm/tlbflush.h>
59#include <asm/div64.h>
60
61#include <linux/swapops.h>
117aad1e 62#include <linux/balloon_compaction.h>
c574bbe9 63#include <linux/sched/sysctl.h>
1da177e4 64
0f8053a5 65#include "internal.h"
014bb1de 66#include "swap.h"
0f8053a5 67
33906bc5
MG
68#define CREATE_TRACE_POINTS
69#include <trace/events/vmscan.h>
70
1da177e4 71struct scan_control {
22fba335
KM
72 /* How many pages shrink_list() should reclaim */
73 unsigned long nr_to_reclaim;
74
ee814fe2
JW
75 /*
76 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * are scanned.
78 */
79 nodemask_t *nodemask;
9e3b2f8c 80
f16015fb
JW
81 /*
82 * The memory cgroup that hit its limit and as a result is the
83 * primary target of this reclaim invocation.
84 */
85 struct mem_cgroup *target_mem_cgroup;
66e1707b 86
7cf111bc
JW
87 /*
88 * Scan pressure balancing between anon and file LRUs
89 */
90 unsigned long anon_cost;
91 unsigned long file_cost;
92
49fd9b6d 93 /* Can active folios be deactivated as part of reclaim? */
b91ac374
JW
94#define DEACTIVATE_ANON 1
95#define DEACTIVATE_FILE 2
96 unsigned int may_deactivate:2;
97 unsigned int force_deactivate:1;
98 unsigned int skipped_deactivate:1;
99
1276ad68 100 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
101 unsigned int may_writepage:1;
102
49fd9b6d 103 /* Can mapped folios be reclaimed? */
ee814fe2
JW
104 unsigned int may_unmap:1;
105
49fd9b6d 106 /* Can folios be swapped as part of reclaim? */
ee814fe2
JW
107 unsigned int may_swap:1;
108
73b73bac
YA
109 /* Proactive reclaim invoked by userspace through memory.reclaim */
110 unsigned int proactive:1;
111
d6622f63 112 /*
f56ce412
JW
113 * Cgroup memory below memory.low is protected as long as we
114 * don't threaten to OOM. If any cgroup is reclaimed at
115 * reduced force or passed over entirely due to its memory.low
116 * setting (memcg_low_skipped), and nothing is reclaimed as a
117 * result, then go back for one more cycle that reclaims the protected
118 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
119 */
120 unsigned int memcg_low_reclaim:1;
121 unsigned int memcg_low_skipped:1;
241994ed 122
ee814fe2
JW
123 unsigned int hibernation_mode:1;
124
125 /* One of the zones is ready for compaction */
126 unsigned int compaction_ready:1;
127
b91ac374
JW
128 /* There is easily reclaimable cold cache in the current node */
129 unsigned int cache_trim_mode:1;
130
49fd9b6d 131 /* The file folios on the current node are dangerously low */
53138cea
JW
132 unsigned int file_is_tiny:1;
133
26aa2d19
DH
134 /* Always discard instead of demoting to lower tier memory */
135 unsigned int no_demotion:1;
136
f76c8337
YZ
137#ifdef CONFIG_LRU_GEN
138 /* help kswapd make better choices among multiple memcgs */
139 unsigned int memcgs_need_aging:1;
140 unsigned long last_reclaimed;
141#endif
142
bb451fdf
GT
143 /* Allocation order */
144 s8 order;
145
146 /* Scan (total_size >> priority) pages at once */
147 s8 priority;
148
49fd9b6d 149 /* The highest zone to isolate folios for reclaim from */
bb451fdf
GT
150 s8 reclaim_idx;
151
152 /* This context's GFP mask */
153 gfp_t gfp_mask;
154
ee814fe2
JW
155 /* Incremented by the number of inactive pages that were scanned */
156 unsigned long nr_scanned;
157
158 /* Number of pages freed so far during a call to shrink_zones() */
159 unsigned long nr_reclaimed;
d108c772
AR
160
161 struct {
162 unsigned int dirty;
163 unsigned int unqueued_dirty;
164 unsigned int congested;
165 unsigned int writeback;
166 unsigned int immediate;
167 unsigned int file_taken;
168 unsigned int taken;
169 } nr;
e5ca8071
YS
170
171 /* for recording the reclaimed slab by now */
172 struct reclaim_state reclaim_state;
1da177e4
LT
173};
174
1da177e4 175#ifdef ARCH_HAS_PREFETCHW
166e3d32 176#define prefetchw_prev_lru_folio(_folio, _base, _field) \
1da177e4 177 do { \
166e3d32
MWO
178 if ((_folio)->lru.prev != _base) { \
179 struct folio *prev; \
1da177e4 180 \
166e3d32 181 prev = lru_to_folio(&(_folio->lru)); \
1da177e4
LT
182 prefetchw(&prev->_field); \
183 } \
184 } while (0)
185#else
166e3d32 186#define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
1da177e4
LT
187#endif
188
189/*
c843966c 190 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
191 */
192int vm_swappiness = 60;
1da177e4 193
0a432dcb
YS
194static void set_task_reclaim_state(struct task_struct *task,
195 struct reclaim_state *rs)
196{
197 /* Check for an overwrite */
198 WARN_ON_ONCE(rs && task->reclaim_state);
199
200 /* Check for the nulling of an already-nulled member */
201 WARN_ON_ONCE(!rs && !task->reclaim_state);
202
203 task->reclaim_state = rs;
204}
205
5035ebc6
RG
206LIST_HEAD(shrinker_list);
207DECLARE_RWSEM(shrinker_rwsem);
1da177e4 208
0a432dcb 209#ifdef CONFIG_MEMCG
a2fb1261 210static int shrinker_nr_max;
2bfd3637 211
3c6f17e6 212/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
213static inline int shrinker_map_size(int nr_items)
214{
215 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
216}
2bfd3637 217
3c6f17e6
YS
218static inline int shrinker_defer_size(int nr_items)
219{
220 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
221}
222
468ab843
YS
223static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
224 int nid)
225{
226 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
227 lockdep_is_held(&shrinker_rwsem));
228}
229
e4262c4f 230static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
231 int map_size, int defer_size,
232 int old_map_size, int old_defer_size)
2bfd3637 233{
e4262c4f 234 struct shrinker_info *new, *old;
2bfd3637
YS
235 struct mem_cgroup_per_node *pn;
236 int nid;
3c6f17e6 237 int size = map_size + defer_size;
2bfd3637 238
2bfd3637
YS
239 for_each_node(nid) {
240 pn = memcg->nodeinfo[nid];
468ab843 241 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
242 /* Not yet online memcg */
243 if (!old)
244 return 0;
245
246 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
247 if (!new)
248 return -ENOMEM;
249
3c6f17e6
YS
250 new->nr_deferred = (atomic_long_t *)(new + 1);
251 new->map = (void *)new->nr_deferred + defer_size;
252
253 /* map: set all old bits, clear all new bits */
254 memset(new->map, (int)0xff, old_map_size);
255 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
256 /* nr_deferred: copy old values, clear all new values */
257 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
258 memset((void *)new->nr_deferred + old_defer_size, 0,
259 defer_size - old_defer_size);
2bfd3637 260
e4262c4f 261 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 262 kvfree_rcu(old, rcu);
2bfd3637
YS
263 }
264
265 return 0;
266}
267
e4262c4f 268void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
269{
270 struct mem_cgroup_per_node *pn;
e4262c4f 271 struct shrinker_info *info;
2bfd3637
YS
272 int nid;
273
2bfd3637
YS
274 for_each_node(nid) {
275 pn = memcg->nodeinfo[nid];
e4262c4f
YS
276 info = rcu_dereference_protected(pn->shrinker_info, true);
277 kvfree(info);
278 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
279 }
280}
281
e4262c4f 282int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 283{
e4262c4f 284 struct shrinker_info *info;
2bfd3637 285 int nid, size, ret = 0;
3c6f17e6 286 int map_size, defer_size = 0;
2bfd3637 287
d27cf2aa 288 down_write(&shrinker_rwsem);
3c6f17e6
YS
289 map_size = shrinker_map_size(shrinker_nr_max);
290 defer_size = shrinker_defer_size(shrinker_nr_max);
291 size = map_size + defer_size;
2bfd3637 292 for_each_node(nid) {
e4262c4f
YS
293 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
294 if (!info) {
295 free_shrinker_info(memcg);
2bfd3637
YS
296 ret = -ENOMEM;
297 break;
298 }
3c6f17e6
YS
299 info->nr_deferred = (atomic_long_t *)(info + 1);
300 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 301 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 302 }
d27cf2aa 303 up_write(&shrinker_rwsem);
2bfd3637
YS
304
305 return ret;
306}
307
3c6f17e6
YS
308static inline bool need_expand(int nr_max)
309{
310 return round_up(nr_max, BITS_PER_LONG) >
311 round_up(shrinker_nr_max, BITS_PER_LONG);
312}
313
e4262c4f 314static int expand_shrinker_info(int new_id)
2bfd3637 315{
3c6f17e6 316 int ret = 0;
a2fb1261 317 int new_nr_max = new_id + 1;
3c6f17e6
YS
318 int map_size, defer_size = 0;
319 int old_map_size, old_defer_size = 0;
2bfd3637
YS
320 struct mem_cgroup *memcg;
321
3c6f17e6 322 if (!need_expand(new_nr_max))
a2fb1261 323 goto out;
2bfd3637 324
2bfd3637 325 if (!root_mem_cgroup)
d27cf2aa
YS
326 goto out;
327
328 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 329
3c6f17e6
YS
330 map_size = shrinker_map_size(new_nr_max);
331 defer_size = shrinker_defer_size(new_nr_max);
332 old_map_size = shrinker_map_size(shrinker_nr_max);
333 old_defer_size = shrinker_defer_size(shrinker_nr_max);
334
2bfd3637
YS
335 memcg = mem_cgroup_iter(NULL, NULL, NULL);
336 do {
3c6f17e6
YS
337 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
338 old_map_size, old_defer_size);
2bfd3637
YS
339 if (ret) {
340 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 341 goto out;
2bfd3637
YS
342 }
343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 344out:
2bfd3637 345 if (!ret)
a2fb1261 346 shrinker_nr_max = new_nr_max;
d27cf2aa 347
2bfd3637
YS
348 return ret;
349}
350
351void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
352{
353 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 354 struct shrinker_info *info;
2bfd3637
YS
355
356 rcu_read_lock();
e4262c4f 357 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
358 /* Pairs with smp mb in shrink_slab() */
359 smp_mb__before_atomic();
e4262c4f 360 set_bit(shrinker_id, info->map);
2bfd3637
YS
361 rcu_read_unlock();
362 }
363}
364
b4c2b231 365static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
366
367static int prealloc_memcg_shrinker(struct shrinker *shrinker)
368{
369 int id, ret = -ENOMEM;
370
476b30a0
YS
371 if (mem_cgroup_disabled())
372 return -ENOSYS;
373
b4c2b231
KT
374 down_write(&shrinker_rwsem);
375 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 376 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
377 if (id < 0)
378 goto unlock;
379
0a4465d3 380 if (id >= shrinker_nr_max) {
e4262c4f 381 if (expand_shrinker_info(id)) {
0a4465d3
KT
382 idr_remove(&shrinker_idr, id);
383 goto unlock;
384 }
0a4465d3 385 }
b4c2b231
KT
386 shrinker->id = id;
387 ret = 0;
388unlock:
389 up_write(&shrinker_rwsem);
390 return ret;
391}
392
393static void unregister_memcg_shrinker(struct shrinker *shrinker)
394{
395 int id = shrinker->id;
396
397 BUG_ON(id < 0);
398
41ca668a
YS
399 lockdep_assert_held(&shrinker_rwsem);
400
b4c2b231 401 idr_remove(&shrinker_idr, id);
b4c2b231 402}
b4c2b231 403
86750830
YS
404static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
405 struct mem_cgroup *memcg)
406{
407 struct shrinker_info *info;
408
409 info = shrinker_info_protected(memcg, nid);
410 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
411}
412
413static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
414 struct mem_cgroup *memcg)
415{
416 struct shrinker_info *info;
417
418 info = shrinker_info_protected(memcg, nid);
419 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
420}
421
a178015c
YS
422void reparent_shrinker_deferred(struct mem_cgroup *memcg)
423{
424 int i, nid;
425 long nr;
426 struct mem_cgroup *parent;
427 struct shrinker_info *child_info, *parent_info;
428
429 parent = parent_mem_cgroup(memcg);
430 if (!parent)
431 parent = root_mem_cgroup;
432
433 /* Prevent from concurrent shrinker_info expand */
434 down_read(&shrinker_rwsem);
435 for_each_node(nid) {
436 child_info = shrinker_info_protected(memcg, nid);
437 parent_info = shrinker_info_protected(parent, nid);
438 for (i = 0; i < shrinker_nr_max; i++) {
439 nr = atomic_long_read(&child_info->nr_deferred[i]);
440 atomic_long_add(nr, &parent_info->nr_deferred[i]);
441 }
442 }
443 up_read(&shrinker_rwsem);
444}
445
b5ead35e 446static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 447{
b5ead35e 448 return sc->target_mem_cgroup;
89b5fae5 449}
97c9341f
TH
450
451/**
b5ead35e 452 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
453 * @sc: scan_control in question
454 *
455 * The normal page dirty throttling mechanism in balance_dirty_pages() is
456 * completely broken with the legacy memcg and direct stalling in
49fd9b6d 457 * shrink_folio_list() is used for throttling instead, which lacks all the
97c9341f
TH
458 * niceties such as fairness, adaptive pausing, bandwidth proportional
459 * allocation and configurability.
460 *
461 * This function tests whether the vmscan currently in progress can assume
462 * that the normal dirty throttling mechanism is operational.
463 */
b5ead35e 464static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 465{
b5ead35e 466 if (!cgroup_reclaim(sc))
97c9341f
TH
467 return true;
468#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 469 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
470 return true;
471#endif
472 return false;
473}
91a45470 474#else
0a432dcb
YS
475static int prealloc_memcg_shrinker(struct shrinker *shrinker)
476{
476b30a0 477 return -ENOSYS;
0a432dcb
YS
478}
479
480static void unregister_memcg_shrinker(struct shrinker *shrinker)
481{
482}
483
86750830
YS
484static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
485 struct mem_cgroup *memcg)
486{
487 return 0;
488}
489
490static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
491 struct mem_cgroup *memcg)
492{
493 return 0;
494}
495
b5ead35e 496static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 497{
b5ead35e 498 return false;
89b5fae5 499}
97c9341f 500
b5ead35e 501static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
502{
503 return true;
504}
91a45470
KH
505#endif
506
86750830
YS
507static long xchg_nr_deferred(struct shrinker *shrinker,
508 struct shrink_control *sc)
509{
510 int nid = sc->nid;
511
512 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
513 nid = 0;
514
515 if (sc->memcg &&
516 (shrinker->flags & SHRINKER_MEMCG_AWARE))
517 return xchg_nr_deferred_memcg(nid, shrinker,
518 sc->memcg);
519
520 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
521}
522
523
524static long add_nr_deferred(long nr, struct shrinker *shrinker,
525 struct shrink_control *sc)
526{
527 int nid = sc->nid;
528
529 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
530 nid = 0;
531
532 if (sc->memcg &&
533 (shrinker->flags & SHRINKER_MEMCG_AWARE))
534 return add_nr_deferred_memcg(nr, nid, shrinker,
535 sc->memcg);
536
537 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
538}
539
26aa2d19
DH
540static bool can_demote(int nid, struct scan_control *sc)
541{
20b51af1
HY
542 if (!numa_demotion_enabled)
543 return false;
3f1509c5
JW
544 if (sc && sc->no_demotion)
545 return false;
26aa2d19
DH
546 if (next_demotion_node(nid) == NUMA_NO_NODE)
547 return false;
548
20b51af1 549 return true;
26aa2d19
DH
550}
551
a2a36488
KB
552static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
553 int nid,
554 struct scan_control *sc)
555{
556 if (memcg == NULL) {
557 /*
558 * For non-memcg reclaim, is there
559 * space in any swap device?
560 */
561 if (get_nr_swap_pages() > 0)
562 return true;
563 } else {
564 /* Is the memcg below its swap limit? */
565 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
566 return true;
567 }
568
569 /*
570 * The page can not be swapped.
571 *
572 * Can it be reclaimed from this node via demotion?
573 */
574 return can_demote(nid, sc);
575}
576
5a1c84b4 577/*
49fd9b6d 578 * This misses isolated folios which are not accounted for to save counters.
5a1c84b4 579 * As the data only determines if reclaim or compaction continues, it is
49fd9b6d 580 * not expected that isolated folios will be a dominating factor.
5a1c84b4
MG
581 */
582unsigned long zone_reclaimable_pages(struct zone *zone)
583{
584 unsigned long nr;
585
586 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
587 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 588 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
589 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
590 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
591
592 return nr;
593}
594
fd538803
MH
595/**
596 * lruvec_lru_size - Returns the number of pages on the given LRU list.
597 * @lruvec: lru vector
598 * @lru: lru to use
8b3a899a 599 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
fd538803 600 */
2091339d
YZ
601static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
602 int zone_idx)
c9f299d9 603{
de3b0150 604 unsigned long size = 0;
fd538803
MH
605 int zid;
606
8b3a899a 607 for (zid = 0; zid <= zone_idx; zid++) {
fd538803 608 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 609
fd538803
MH
610 if (!managed_zone(zone))
611 continue;
612
613 if (!mem_cgroup_disabled())
de3b0150 614 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 615 else
de3b0150 616 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 617 }
de3b0150 618 return size;
b4536f0c
MH
619}
620
1da177e4 621/*
1d3d4437 622 * Add a shrinker callback to be called from the vm.
1da177e4 623 */
e33c267a 624static int __prealloc_shrinker(struct shrinker *shrinker)
1da177e4 625{
476b30a0
YS
626 unsigned int size;
627 int err;
628
629 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
630 err = prealloc_memcg_shrinker(shrinker);
631 if (err != -ENOSYS)
632 return err;
1d3d4437 633
476b30a0
YS
634 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
635 }
636
637 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
638 if (shrinker->flags & SHRINKER_NUMA_AWARE)
639 size *= nr_node_ids;
640
641 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
642 if (!shrinker->nr_deferred)
643 return -ENOMEM;
b4c2b231 644
8e04944f
TH
645 return 0;
646}
647
e33c267a
RG
648#ifdef CONFIG_SHRINKER_DEBUG
649int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
650{
651 va_list ap;
652 int err;
653
654 va_start(ap, fmt);
655 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
656 va_end(ap);
657 if (!shrinker->name)
658 return -ENOMEM;
659
660 err = __prealloc_shrinker(shrinker);
14773bfa 661 if (err) {
e33c267a 662 kfree_const(shrinker->name);
14773bfa
TH
663 shrinker->name = NULL;
664 }
e33c267a
RG
665
666 return err;
667}
668#else
669int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
670{
671 return __prealloc_shrinker(shrinker);
672}
673#endif
674
8e04944f
TH
675void free_prealloced_shrinker(struct shrinker *shrinker)
676{
e33c267a
RG
677#ifdef CONFIG_SHRINKER_DEBUG
678 kfree_const(shrinker->name);
14773bfa 679 shrinker->name = NULL;
e33c267a 680#endif
41ca668a
YS
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
682 down_write(&shrinker_rwsem);
b4c2b231 683 unregister_memcg_shrinker(shrinker);
41ca668a 684 up_write(&shrinker_rwsem);
476b30a0 685 return;
41ca668a 686 }
b4c2b231 687
8e04944f
TH
688 kfree(shrinker->nr_deferred);
689 shrinker->nr_deferred = NULL;
690}
1d3d4437 691
8e04944f
TH
692void register_shrinker_prepared(struct shrinker *shrinker)
693{
8e1f936b
RR
694 down_write(&shrinker_rwsem);
695 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 696 shrinker->flags |= SHRINKER_REGISTERED;
5035ebc6 697 shrinker_debugfs_add(shrinker);
8e1f936b 698 up_write(&shrinker_rwsem);
8e04944f
TH
699}
700
e33c267a 701static int __register_shrinker(struct shrinker *shrinker)
8e04944f 702{
e33c267a 703 int err = __prealloc_shrinker(shrinker);
8e04944f
TH
704
705 if (err)
706 return err;
707 register_shrinker_prepared(shrinker);
1d3d4437 708 return 0;
1da177e4 709}
e33c267a
RG
710
711#ifdef CONFIG_SHRINKER_DEBUG
712int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
713{
714 va_list ap;
715 int err;
716
717 va_start(ap, fmt);
718 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
719 va_end(ap);
720 if (!shrinker->name)
721 return -ENOMEM;
722
723 err = __register_shrinker(shrinker);
14773bfa 724 if (err) {
e33c267a 725 kfree_const(shrinker->name);
14773bfa
TH
726 shrinker->name = NULL;
727 }
e33c267a
RG
728 return err;
729}
730#else
731int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
732{
733 return __register_shrinker(shrinker);
734}
735#endif
8e1f936b 736EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
737
738/*
739 * Remove one
740 */
8e1f936b 741void unregister_shrinker(struct shrinker *shrinker)
1da177e4 742{
41ca668a 743 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 744 return;
41ca668a 745
1da177e4
LT
746 down_write(&shrinker_rwsem);
747 list_del(&shrinker->list);
41ca668a
YS
748 shrinker->flags &= ~SHRINKER_REGISTERED;
749 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
750 unregister_memcg_shrinker(shrinker);
5035ebc6 751 shrinker_debugfs_remove(shrinker);
1da177e4 752 up_write(&shrinker_rwsem);
41ca668a 753
ae393321 754 kfree(shrinker->nr_deferred);
bb422a73 755 shrinker->nr_deferred = NULL;
1da177e4 756}
8e1f936b 757EXPORT_SYMBOL(unregister_shrinker);
1da177e4 758
880121be
CK
759/**
760 * synchronize_shrinkers - Wait for all running shrinkers to complete.
761 *
762 * This is equivalent to calling unregister_shrink() and register_shrinker(),
763 * but atomically and with less overhead. This is useful to guarantee that all
764 * shrinker invocations have seen an update, before freeing memory, similar to
765 * rcu.
766 */
767void synchronize_shrinkers(void)
768{
769 down_write(&shrinker_rwsem);
770 up_write(&shrinker_rwsem);
771}
772EXPORT_SYMBOL(synchronize_shrinkers);
773
1da177e4 774#define SHRINK_BATCH 128
1d3d4437 775
cb731d6c 776static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 777 struct shrinker *shrinker, int priority)
1d3d4437
GC
778{
779 unsigned long freed = 0;
780 unsigned long long delta;
781 long total_scan;
d5bc5fd3 782 long freeable;
1d3d4437
GC
783 long nr;
784 long new_nr;
1d3d4437
GC
785 long batch_size = shrinker->batch ? shrinker->batch
786 : SHRINK_BATCH;
5f33a080 787 long scanned = 0, next_deferred;
1d3d4437 788
d5bc5fd3 789 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
790 if (freeable == 0 || freeable == SHRINK_EMPTY)
791 return freeable;
1d3d4437
GC
792
793 /*
794 * copy the current shrinker scan count into a local variable
795 * and zero it so that other concurrent shrinker invocations
796 * don't also do this scanning work.
797 */
86750830 798 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 799
4b85afbd
JW
800 if (shrinker->seeks) {
801 delta = freeable >> priority;
802 delta *= 4;
803 do_div(delta, shrinker->seeks);
804 } else {
805 /*
806 * These objects don't require any IO to create. Trim
807 * them aggressively under memory pressure to keep
808 * them from causing refetches in the IO caches.
809 */
810 delta = freeable / 2;
811 }
172b06c3 812
18bb473e 813 total_scan = nr >> priority;
1d3d4437 814 total_scan += delta;
18bb473e 815 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
816
817 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 818 freeable, delta, total_scan, priority);
1d3d4437 819
0b1fb40a
VD
820 /*
821 * Normally, we should not scan less than batch_size objects in one
822 * pass to avoid too frequent shrinker calls, but if the slab has less
823 * than batch_size objects in total and we are really tight on memory,
824 * we will try to reclaim all available objects, otherwise we can end
825 * up failing allocations although there are plenty of reclaimable
826 * objects spread over several slabs with usage less than the
827 * batch_size.
828 *
829 * We detect the "tight on memory" situations by looking at the total
830 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 831 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
832 * scanning at high prio and therefore should try to reclaim as much as
833 * possible.
834 */
835 while (total_scan >= batch_size ||
d5bc5fd3 836 total_scan >= freeable) {
a0b02131 837 unsigned long ret;
0b1fb40a 838 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 839
0b1fb40a 840 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 841 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
842 ret = shrinker->scan_objects(shrinker, shrinkctl);
843 if (ret == SHRINK_STOP)
844 break;
845 freed += ret;
1d3d4437 846
d460acb5
CW
847 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
848 total_scan -= shrinkctl->nr_scanned;
849 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
850
851 cond_resched();
852 }
853
18bb473e
YS
854 /*
855 * The deferred work is increased by any new work (delta) that wasn't
856 * done, decreased by old deferred work that was done now.
857 *
858 * And it is capped to two times of the freeable items.
859 */
860 next_deferred = max_t(long, (nr + delta - scanned), 0);
861 next_deferred = min(next_deferred, (2 * freeable));
862
1d3d4437
GC
863 /*
864 * move the unused scan count back into the shrinker in a
86750830 865 * manner that handles concurrent updates.
1d3d4437 866 */
86750830 867 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 868
8efb4b59 869 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 870 return freed;
1495f230
YH
871}
872
0a432dcb 873#ifdef CONFIG_MEMCG
b0dedc49
KT
874static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
875 struct mem_cgroup *memcg, int priority)
876{
e4262c4f 877 struct shrinker_info *info;
b8e57efa
KT
878 unsigned long ret, freed = 0;
879 int i;
b0dedc49 880
0a432dcb 881 if (!mem_cgroup_online(memcg))
b0dedc49
KT
882 return 0;
883
884 if (!down_read_trylock(&shrinker_rwsem))
885 return 0;
886
468ab843 887 info = shrinker_info_protected(memcg, nid);
e4262c4f 888 if (unlikely(!info))
b0dedc49
KT
889 goto unlock;
890
e4262c4f 891 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
892 struct shrink_control sc = {
893 .gfp_mask = gfp_mask,
894 .nid = nid,
895 .memcg = memcg,
896 };
897 struct shrinker *shrinker;
898
899 shrinker = idr_find(&shrinker_idr, i);
41ca668a 900 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 901 if (!shrinker)
e4262c4f 902 clear_bit(i, info->map);
b0dedc49
KT
903 continue;
904 }
905
0a432dcb
YS
906 /* Call non-slab shrinkers even though kmem is disabled */
907 if (!memcg_kmem_enabled() &&
908 !(shrinker->flags & SHRINKER_NONSLAB))
909 continue;
910
b0dedc49 911 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 912 if (ret == SHRINK_EMPTY) {
e4262c4f 913 clear_bit(i, info->map);
f90280d6
KT
914 /*
915 * After the shrinker reported that it had no objects to
916 * free, but before we cleared the corresponding bit in
917 * the memcg shrinker map, a new object might have been
918 * added. To make sure, we have the bit set in this
919 * case, we invoke the shrinker one more time and reset
920 * the bit if it reports that it is not empty anymore.
921 * The memory barrier here pairs with the barrier in
2bfd3637 922 * set_shrinker_bit():
f90280d6
KT
923 *
924 * list_lru_add() shrink_slab_memcg()
925 * list_add_tail() clear_bit()
926 * <MB> <MB>
927 * set_bit() do_shrink_slab()
928 */
929 smp_mb__after_atomic();
930 ret = do_shrink_slab(&sc, shrinker, priority);
931 if (ret == SHRINK_EMPTY)
932 ret = 0;
933 else
2bfd3637 934 set_shrinker_bit(memcg, nid, i);
f90280d6 935 }
b0dedc49
KT
936 freed += ret;
937
938 if (rwsem_is_contended(&shrinker_rwsem)) {
939 freed = freed ? : 1;
940 break;
941 }
942 }
943unlock:
944 up_read(&shrinker_rwsem);
945 return freed;
946}
0a432dcb 947#else /* CONFIG_MEMCG */
b0dedc49
KT
948static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
949 struct mem_cgroup *memcg, int priority)
950{
951 return 0;
952}
0a432dcb 953#endif /* CONFIG_MEMCG */
b0dedc49 954
6b4f7799 955/**
cb731d6c 956 * shrink_slab - shrink slab caches
6b4f7799
JW
957 * @gfp_mask: allocation context
958 * @nid: node whose slab caches to target
cb731d6c 959 * @memcg: memory cgroup whose slab caches to target
9092c71b 960 * @priority: the reclaim priority
1da177e4 961 *
6b4f7799 962 * Call the shrink functions to age shrinkable caches.
1da177e4 963 *
6b4f7799
JW
964 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
965 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 966 *
aeed1d32
VD
967 * @memcg specifies the memory cgroup to target. Unaware shrinkers
968 * are called only if it is the root cgroup.
cb731d6c 969 *
9092c71b
JB
970 * @priority is sc->priority, we take the number of objects and >> by priority
971 * in order to get the scan target.
b15e0905 972 *
6b4f7799 973 * Returns the number of reclaimed slab objects.
1da177e4 974 */
cb731d6c
VD
975static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
976 struct mem_cgroup *memcg,
9092c71b 977 int priority)
1da177e4 978{
b8e57efa 979 unsigned long ret, freed = 0;
1da177e4
LT
980 struct shrinker *shrinker;
981
fa1e512f
YS
982 /*
983 * The root memcg might be allocated even though memcg is disabled
984 * via "cgroup_disable=memory" boot parameter. This could make
985 * mem_cgroup_is_root() return false, then just run memcg slab
986 * shrink, but skip global shrink. This may result in premature
987 * oom.
988 */
989 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 990 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 991
e830c63a 992 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 993 goto out;
1da177e4
LT
994
995 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
996 struct shrink_control sc = {
997 .gfp_mask = gfp_mask,
998 .nid = nid,
cb731d6c 999 .memcg = memcg,
6b4f7799 1000 };
ec97097b 1001
9b996468
KT
1002 ret = do_shrink_slab(&sc, shrinker, priority);
1003 if (ret == SHRINK_EMPTY)
1004 ret = 0;
1005 freed += ret;
e496612c
MK
1006 /*
1007 * Bail out if someone want to register a new shrinker to
55b65a57 1008 * prevent the registration from being stalled for long periods
e496612c
MK
1009 * by parallel ongoing shrinking.
1010 */
1011 if (rwsem_is_contended(&shrinker_rwsem)) {
1012 freed = freed ? : 1;
1013 break;
1014 }
1da177e4 1015 }
6b4f7799 1016
1da177e4 1017 up_read(&shrinker_rwsem);
f06590bd
MK
1018out:
1019 cond_resched();
24f7c6b9 1020 return freed;
1da177e4
LT
1021}
1022
e4b424b7 1023static void drop_slab_node(int nid)
cb731d6c
VD
1024{
1025 unsigned long freed;
1399af7e 1026 int shift = 0;
cb731d6c
VD
1027
1028 do {
1029 struct mem_cgroup *memcg = NULL;
1030
069c411d
CZ
1031 if (fatal_signal_pending(current))
1032 return;
1033
cb731d6c 1034 freed = 0;
aeed1d32 1035 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 1036 do {
9092c71b 1037 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c 1038 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1399af7e 1039 } while ((freed >> shift++) > 1);
cb731d6c
VD
1040}
1041
1042void drop_slab(void)
1043{
1044 int nid;
1045
1046 for_each_online_node(nid)
1047 drop_slab_node(nid);
1048}
1049
e0cd5e7f 1050static inline int is_page_cache_freeable(struct folio *folio)
1da177e4 1051{
ceddc3a5 1052 /*
49fd9b6d
MWO
1053 * A freeable page cache folio is referenced only by the caller
1054 * that isolated the folio, the page cache and optional filesystem
1055 * private data at folio->private.
ceddc3a5 1056 */
e0cd5e7f
MWO
1057 return folio_ref_count(folio) - folio_test_private(folio) ==
1058 1 + folio_nr_pages(folio);
1da177e4
LT
1059}
1060
1da177e4 1061/*
e0cd5e7f 1062 * We detected a synchronous write error writing a folio out. Probably
1da177e4
LT
1063 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1064 * fsync(), msync() or close().
1065 *
1066 * The tricky part is that after writepage we cannot touch the mapping: nothing
e0cd5e7f
MWO
1067 * prevents it from being freed up. But we have a ref on the folio and once
1068 * that folio is locked, the mapping is pinned.
1da177e4 1069 *
e0cd5e7f 1070 * We're allowed to run sleeping folio_lock() here because we know the caller has
1da177e4
LT
1071 * __GFP_FS.
1072 */
1073static void handle_write_error(struct address_space *mapping,
e0cd5e7f 1074 struct folio *folio, int error)
1da177e4 1075{
e0cd5e7f
MWO
1076 folio_lock(folio);
1077 if (folio_mapping(folio) == mapping)
3e9f45bd 1078 mapping_set_error(mapping, error);
e0cd5e7f 1079 folio_unlock(folio);
1da177e4
LT
1080}
1081
1b4e3f26
MG
1082static bool skip_throttle_noprogress(pg_data_t *pgdat)
1083{
1084 int reclaimable = 0, write_pending = 0;
1085 int i;
1086
1087 /*
1088 * If kswapd is disabled, reschedule if necessary but do not
1089 * throttle as the system is likely near OOM.
1090 */
1091 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1092 return true;
1093
1094 /*
49fd9b6d
MWO
1095 * If there are a lot of dirty/writeback folios then do not
1096 * throttle as throttling will occur when the folios cycle
1b4e3f26
MG
1097 * towards the end of the LRU if still under writeback.
1098 */
1099 for (i = 0; i < MAX_NR_ZONES; i++) {
1100 struct zone *zone = pgdat->node_zones + i;
1101
36c26128 1102 if (!managed_zone(zone))
1b4e3f26
MG
1103 continue;
1104
1105 reclaimable += zone_reclaimable_pages(zone);
1106 write_pending += zone_page_state_snapshot(zone,
1107 NR_ZONE_WRITE_PENDING);
1108 }
1109 if (2 * write_pending <= reclaimable)
1110 return true;
1111
1112 return false;
1113}
1114
c3f4a9a2 1115void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
8cd7c588
MG
1116{
1117 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
c3f4a9a2 1118 long timeout, ret;
8cd7c588
MG
1119 DEFINE_WAIT(wait);
1120
1121 /*
1122 * Do not throttle IO workers, kthreads other than kswapd or
1123 * workqueues. They may be required for reclaim to make
1124 * forward progress (e.g. journalling workqueues or kthreads).
1125 */
1126 if (!current_is_kswapd() &&
b485c6f1
MG
1127 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1128 cond_resched();
8cd7c588 1129 return;
b485c6f1 1130 }
8cd7c588 1131
c3f4a9a2
MG
1132 /*
1133 * These figures are pulled out of thin air.
1134 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1135 * parallel reclaimers which is a short-lived event so the timeout is
1136 * short. Failing to make progress or waiting on writeback are
1137 * potentially long-lived events so use a longer timeout. This is shaky
1138 * logic as a failure to make progress could be due to anything from
49fd9b6d 1139 * writeback to a slow device to excessive referenced folios at the tail
c3f4a9a2
MG
1140 * of the inactive LRU.
1141 */
1142 switch(reason) {
1143 case VMSCAN_THROTTLE_WRITEBACK:
1144 timeout = HZ/10;
1145
1146 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1147 WRITE_ONCE(pgdat->nr_reclaim_start,
1148 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1149 }
1150
1151 break;
1b4e3f26
MG
1152 case VMSCAN_THROTTLE_CONGESTED:
1153 fallthrough;
c3f4a9a2 1154 case VMSCAN_THROTTLE_NOPROGRESS:
1b4e3f26
MG
1155 if (skip_throttle_noprogress(pgdat)) {
1156 cond_resched();
1157 return;
1158 }
1159
1160 timeout = 1;
1161
c3f4a9a2
MG
1162 break;
1163 case VMSCAN_THROTTLE_ISOLATED:
1164 timeout = HZ/50;
1165 break;
1166 default:
1167 WARN_ON_ONCE(1);
1168 timeout = HZ;
1169 break;
8cd7c588
MG
1170 }
1171
1172 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1173 ret = schedule_timeout(timeout);
1174 finish_wait(wqh, &wait);
d818fca1 1175
c3f4a9a2 1176 if (reason == VMSCAN_THROTTLE_WRITEBACK)
d818fca1 1177 atomic_dec(&pgdat->nr_writeback_throttled);
8cd7c588
MG
1178
1179 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1180 jiffies_to_usecs(timeout - ret),
1181 reason);
1182}
1183
1184/*
49fd9b6d
MWO
1185 * Account for folios written if tasks are throttled waiting on dirty
1186 * folios to clean. If enough folios have been cleaned since throttling
8cd7c588
MG
1187 * started then wakeup the throttled tasks.
1188 */
512b7931 1189void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
8cd7c588
MG
1190 int nr_throttled)
1191{
1192 unsigned long nr_written;
1193
512b7931 1194 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
8cd7c588
MG
1195
1196 /*
1197 * This is an inaccurate read as the per-cpu deltas may not
1198 * be synchronised. However, given that the system is
1199 * writeback throttled, it is not worth taking the penalty
1200 * of getting an accurate count. At worst, the throttle
1201 * timeout guarantees forward progress.
1202 */
1203 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1204 READ_ONCE(pgdat->nr_reclaim_start);
1205
1206 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1207 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1208}
1209
04e62a29
CL
1210/* possible outcome of pageout() */
1211typedef enum {
49fd9b6d 1212 /* failed to write folio out, folio is locked */
04e62a29 1213 PAGE_KEEP,
49fd9b6d 1214 /* move folio to the active list, folio is locked */
04e62a29 1215 PAGE_ACTIVATE,
49fd9b6d 1216 /* folio has been sent to the disk successfully, folio is unlocked */
04e62a29 1217 PAGE_SUCCESS,
49fd9b6d 1218 /* folio is clean and locked */
04e62a29
CL
1219 PAGE_CLEAN,
1220} pageout_t;
1221
1da177e4 1222/*
49fd9b6d 1223 * pageout is called by shrink_folio_list() for each dirty folio.
1742f19f 1224 * Calls ->writepage().
1da177e4 1225 */
2282679f
N
1226static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1227 struct swap_iocb **plug)
1da177e4
LT
1228{
1229 /*
e0cd5e7f 1230 * If the folio is dirty, only perform writeback if that write
1da177e4
LT
1231 * will be non-blocking. To prevent this allocation from being
1232 * stalled by pagecache activity. But note that there may be
1233 * stalls if we need to run get_block(). We could test
1234 * PagePrivate for that.
1235 *
8174202b 1236 * If this process is currently in __generic_file_write_iter() against
e0cd5e7f 1237 * this folio's queue, we can perform writeback even if that
1da177e4
LT
1238 * will block.
1239 *
e0cd5e7f 1240 * If the folio is swapcache, write it back even if that would
1da177e4
LT
1241 * block, for some throttling. This happens by accident, because
1242 * swap_backing_dev_info is bust: it doesn't reflect the
1243 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4 1244 */
e0cd5e7f 1245 if (!is_page_cache_freeable(folio))
1da177e4
LT
1246 return PAGE_KEEP;
1247 if (!mapping) {
1248 /*
e0cd5e7f
MWO
1249 * Some data journaling orphaned folios can have
1250 * folio->mapping == NULL while being dirty with clean buffers.
1da177e4 1251 */
e0cd5e7f 1252 if (folio_test_private(folio)) {
68189fef 1253 if (try_to_free_buffers(folio)) {
e0cd5e7f
MWO
1254 folio_clear_dirty(folio);
1255 pr_info("%s: orphaned folio\n", __func__);
1da177e4
LT
1256 return PAGE_CLEAN;
1257 }
1258 }
1259 return PAGE_KEEP;
1260 }
1261 if (mapping->a_ops->writepage == NULL)
1262 return PAGE_ACTIVATE;
1da177e4 1263
e0cd5e7f 1264 if (folio_clear_dirty_for_io(folio)) {
1da177e4
LT
1265 int res;
1266 struct writeback_control wbc = {
1267 .sync_mode = WB_SYNC_NONE,
1268 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1269 .range_start = 0,
1270 .range_end = LLONG_MAX,
1da177e4 1271 .for_reclaim = 1,
2282679f 1272 .swap_plug = plug,
1da177e4
LT
1273 };
1274
e0cd5e7f
MWO
1275 folio_set_reclaim(folio);
1276 res = mapping->a_ops->writepage(&folio->page, &wbc);
1da177e4 1277 if (res < 0)
e0cd5e7f 1278 handle_write_error(mapping, folio, res);
994fc28c 1279 if (res == AOP_WRITEPAGE_ACTIVATE) {
e0cd5e7f 1280 folio_clear_reclaim(folio);
1da177e4
LT
1281 return PAGE_ACTIVATE;
1282 }
c661b078 1283
e0cd5e7f 1284 if (!folio_test_writeback(folio)) {
1da177e4 1285 /* synchronous write or broken a_ops? */
e0cd5e7f 1286 folio_clear_reclaim(folio);
1da177e4 1287 }
e0cd5e7f
MWO
1288 trace_mm_vmscan_write_folio(folio);
1289 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1da177e4
LT
1290 return PAGE_SUCCESS;
1291 }
1292
1293 return PAGE_CLEAN;
1294}
1295
a649fd92 1296/*
49fd9b6d 1297 * Same as remove_mapping, but if the folio is removed from the mapping, it
e286781d 1298 * gets returned with a refcount of 0.
a649fd92 1299 */
be7c07d6 1300static int __remove_mapping(struct address_space *mapping, struct folio *folio,
b910718a 1301 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1302{
bd4c82c2 1303 int refcount;
aae466b0 1304 void *shadow = NULL;
c4843a75 1305
be7c07d6
MWO
1306 BUG_ON(!folio_test_locked(folio));
1307 BUG_ON(mapping != folio_mapping(folio));
49d2e9cc 1308
be7c07d6 1309 if (!folio_test_swapcache(folio))
51b8c1fe 1310 spin_lock(&mapping->host->i_lock);
30472509 1311 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1312 /*
49fd9b6d 1313 * The non racy check for a busy folio.
0fd0e6b0
NP
1314 *
1315 * Must be careful with the order of the tests. When someone has
49fd9b6d
MWO
1316 * a ref to the folio, it may be possible that they dirty it then
1317 * drop the reference. So if the dirty flag is tested before the
1318 * refcount here, then the following race may occur:
0fd0e6b0
NP
1319 *
1320 * get_user_pages(&page);
1321 * [user mapping goes away]
1322 * write_to(page);
49fd9b6d
MWO
1323 * !folio_test_dirty(folio) [good]
1324 * folio_set_dirty(folio);
1325 * folio_put(folio);
1326 * !refcount(folio) [good, discard it]
0fd0e6b0
NP
1327 *
1328 * [oops, our write_to data is lost]
1329 *
1330 * Reversing the order of the tests ensures such a situation cannot
49fd9b6d
MWO
1331 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1332 * load is not satisfied before that of folio->_refcount.
0fd0e6b0 1333 *
49fd9b6d 1334 * Note that if the dirty flag is always set via folio_mark_dirty,
b93b0163 1335 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1336 */
be7c07d6
MWO
1337 refcount = 1 + folio_nr_pages(folio);
1338 if (!folio_ref_freeze(folio, refcount))
49d2e9cc 1339 goto cannot_free;
49fd9b6d 1340 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
be7c07d6
MWO
1341 if (unlikely(folio_test_dirty(folio))) {
1342 folio_ref_unfreeze(folio, refcount);
49d2e9cc 1343 goto cannot_free;
e286781d 1344 }
49d2e9cc 1345
be7c07d6
MWO
1346 if (folio_test_swapcache(folio)) {
1347 swp_entry_t swap = folio_swap_entry(folio);
ac35a490
YZ
1348
1349 /* get a shadow entry before mem_cgroup_swapout() clears folio_memcg() */
aae466b0 1350 if (reclaimed && !mapping_exiting(mapping))
8927f647 1351 shadow = workingset_eviction(folio, target_memcg);
ac35a490 1352 mem_cgroup_swapout(folio, swap);
ceff9d33 1353 __delete_from_swap_cache(folio, swap, shadow);
30472509 1354 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1355 put_swap_page(&folio->page, swap);
e286781d 1356 } else {
d2329aa0 1357 void (*free_folio)(struct folio *);
6072d13c 1358
d2329aa0 1359 free_folio = mapping->a_ops->free_folio;
a528910e
JW
1360 /*
1361 * Remember a shadow entry for reclaimed file cache in
1362 * order to detect refaults, thus thrashing, later on.
1363 *
1364 * But don't store shadows in an address space that is
238c3046 1365 * already exiting. This is not just an optimization,
a528910e
JW
1366 * inode reclaim needs to empty out the radix tree or
1367 * the nodes are lost. Don't plant shadows behind its
1368 * back.
f9fe48be
RZ
1369 *
1370 * We also don't store shadows for DAX mappings because the
49fd9b6d 1371 * only page cache folios found in these are zero pages
f9fe48be
RZ
1372 * covering holes, and because we don't want to mix DAX
1373 * exceptional entries and shadow exceptional entries in the
b93b0163 1374 * same address_space.
a528910e 1375 */
be7c07d6 1376 if (reclaimed && folio_is_file_lru(folio) &&
f9fe48be 1377 !mapping_exiting(mapping) && !dax_mapping(mapping))
8927f647
MWO
1378 shadow = workingset_eviction(folio, target_memcg);
1379 __filemap_remove_folio(folio, shadow);
30472509 1380 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
1381 if (mapping_shrinkable(mapping))
1382 inode_add_lru(mapping->host);
1383 spin_unlock(&mapping->host->i_lock);
6072d13c 1384
d2329aa0
MWO
1385 if (free_folio)
1386 free_folio(folio);
49d2e9cc
CL
1387 }
1388
49d2e9cc
CL
1389 return 1;
1390
1391cannot_free:
30472509 1392 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1393 if (!folio_test_swapcache(folio))
51b8c1fe 1394 spin_unlock(&mapping->host->i_lock);
49d2e9cc
CL
1395 return 0;
1396}
1397
5100da38
MWO
1398/**
1399 * remove_mapping() - Attempt to remove a folio from its mapping.
1400 * @mapping: The address space.
1401 * @folio: The folio to remove.
1402 *
1403 * If the folio is dirty, under writeback or if someone else has a ref
1404 * on it, removal will fail.
1405 * Return: The number of pages removed from the mapping. 0 if the folio
1406 * could not be removed.
1407 * Context: The caller should have a single refcount on the folio and
1408 * hold its lock.
e286781d 1409 */
5100da38 1410long remove_mapping(struct address_space *mapping, struct folio *folio)
e286781d 1411{
be7c07d6 1412 if (__remove_mapping(mapping, folio, false, NULL)) {
e286781d 1413 /*
5100da38 1414 * Unfreezing the refcount with 1 effectively
e286781d
NP
1415 * drops the pagecache ref for us without requiring another
1416 * atomic operation.
1417 */
be7c07d6 1418 folio_ref_unfreeze(folio, 1);
5100da38 1419 return folio_nr_pages(folio);
e286781d
NP
1420 }
1421 return 0;
1422}
1423
894bc310 1424/**
ca6d60f3
MWO
1425 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1426 * @folio: Folio to be returned to an LRU list.
894bc310 1427 *
ca6d60f3
MWO
1428 * Add previously isolated @folio to appropriate LRU list.
1429 * The folio may still be unevictable for other reasons.
894bc310 1430 *
ca6d60f3 1431 * Context: lru_lock must not be held, interrupts must be enabled.
894bc310 1432 */
ca6d60f3 1433void folio_putback_lru(struct folio *folio)
894bc310 1434{
ca6d60f3
MWO
1435 folio_add_lru(folio);
1436 folio_put(folio); /* drop ref from isolate */
894bc310
LS
1437}
1438
49fd9b6d
MWO
1439enum folio_references {
1440 FOLIOREF_RECLAIM,
1441 FOLIOREF_RECLAIM_CLEAN,
1442 FOLIOREF_KEEP,
1443 FOLIOREF_ACTIVATE,
dfc8d636
JW
1444};
1445
49fd9b6d 1446static enum folio_references folio_check_references(struct folio *folio,
dfc8d636
JW
1447 struct scan_control *sc)
1448{
d92013d1 1449 int referenced_ptes, referenced_folio;
dfc8d636 1450 unsigned long vm_flags;
dfc8d636 1451
b3ac0413
MWO
1452 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1453 &vm_flags);
d92013d1 1454 referenced_folio = folio_test_clear_referenced(folio);
dfc8d636 1455
dfc8d636 1456 /*
d92013d1
MWO
1457 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1458 * Let the folio, now marked Mlocked, be moved to the unevictable list.
dfc8d636
JW
1459 */
1460 if (vm_flags & VM_LOCKED)
49fd9b6d 1461 return FOLIOREF_ACTIVATE;
dfc8d636 1462
6d4675e6
MK
1463 /* rmap lock contention: rotate */
1464 if (referenced_ptes == -1)
49fd9b6d 1465 return FOLIOREF_KEEP;
6d4675e6 1466
64574746 1467 if (referenced_ptes) {
64574746 1468 /*
d92013d1 1469 * All mapped folios start out with page table
64574746 1470 * references from the instantiating fault, so we need
9030fb0b 1471 * to look twice if a mapped file/anon folio is used more
64574746
JW
1472 * than once.
1473 *
1474 * Mark it and spare it for another trip around the
1475 * inactive list. Another page table reference will
1476 * lead to its activation.
1477 *
d92013d1
MWO
1478 * Note: the mark is set for activated folios as well
1479 * so that recently deactivated but used folios are
64574746
JW
1480 * quickly recovered.
1481 */
d92013d1 1482 folio_set_referenced(folio);
64574746 1483
d92013d1 1484 if (referenced_folio || referenced_ptes > 1)
49fd9b6d 1485 return FOLIOREF_ACTIVATE;
64574746 1486
c909e993 1487 /*
d92013d1 1488 * Activate file-backed executable folios after first usage.
c909e993 1489 */
f19a27e3 1490 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
49fd9b6d 1491 return FOLIOREF_ACTIVATE;
c909e993 1492
49fd9b6d 1493 return FOLIOREF_KEEP;
64574746 1494 }
dfc8d636 1495
d92013d1 1496 /* Reclaim if clean, defer dirty folios to writeback */
f19a27e3 1497 if (referenced_folio && folio_is_file_lru(folio))
49fd9b6d 1498 return FOLIOREF_RECLAIM_CLEAN;
64574746 1499
49fd9b6d 1500 return FOLIOREF_RECLAIM;
dfc8d636
JW
1501}
1502
49fd9b6d 1503/* Check if a folio is dirty or under writeback */
e20c41b1 1504static void folio_check_dirty_writeback(struct folio *folio,
e2be15f6
MG
1505 bool *dirty, bool *writeback)
1506{
b4597226
MG
1507 struct address_space *mapping;
1508
e2be15f6 1509 /*
49fd9b6d 1510 * Anonymous folios are not handled by flushers and must be written
32a331a7 1511 * from reclaim context. Do not stall reclaim based on them.
49fd9b6d 1512 * MADV_FREE anonymous folios are put into inactive file list too.
32a331a7
ML
1513 * They could be mistakenly treated as file lru. So further anon
1514 * test is needed.
e2be15f6 1515 */
e20c41b1
MWO
1516 if (!folio_is_file_lru(folio) ||
1517 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
e2be15f6
MG
1518 *dirty = false;
1519 *writeback = false;
1520 return;
1521 }
1522
e20c41b1
MWO
1523 /* By default assume that the folio flags are accurate */
1524 *dirty = folio_test_dirty(folio);
1525 *writeback = folio_test_writeback(folio);
b4597226
MG
1526
1527 /* Verify dirty/writeback state if the filesystem supports it */
e20c41b1 1528 if (!folio_test_private(folio))
b4597226
MG
1529 return;
1530
e20c41b1 1531 mapping = folio_mapping(folio);
b4597226 1532 if (mapping && mapping->a_ops->is_dirty_writeback)
520f301c 1533 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
e2be15f6
MG
1534}
1535
32008027 1536static struct page *alloc_demote_page(struct page *page, unsigned long private)
26aa2d19 1537{
32008027
JG
1538 struct page *target_page;
1539 nodemask_t *allowed_mask;
1540 struct migration_target_control *mtc;
1541
1542 mtc = (struct migration_target_control *)private;
1543
1544 allowed_mask = mtc->nmask;
1545 /*
1546 * make sure we allocate from the target node first also trying to
1547 * demote or reclaim pages from the target node via kswapd if we are
1548 * low on free memory on target node. If we don't do this and if
1549 * we have free memory on the slower(lower) memtier, we would start
1550 * allocating pages from slower(lower) memory tiers without even forcing
1551 * a demotion of cold pages from the target memtier. This can result
1552 * in the kernel placing hot pages in slower(lower) memory tiers.
1553 */
1554 mtc->nmask = NULL;
1555 mtc->gfp_mask |= __GFP_THISNODE;
1556 target_page = alloc_migration_target(page, (unsigned long)mtc);
1557 if (target_page)
1558 return target_page;
26aa2d19 1559
32008027
JG
1560 mtc->gfp_mask &= ~__GFP_THISNODE;
1561 mtc->nmask = allowed_mask;
1562
1563 return alloc_migration_target(page, (unsigned long)mtc);
26aa2d19
DH
1564}
1565
1566/*
49fd9b6d
MWO
1567 * Take folios on @demote_folios and attempt to demote them to another node.
1568 * Folios which are not demoted are left on @demote_folios.
26aa2d19 1569 */
49fd9b6d 1570static unsigned int demote_folio_list(struct list_head *demote_folios,
26aa2d19
DH
1571 struct pglist_data *pgdat)
1572{
1573 int target_nid = next_demotion_node(pgdat->node_id);
1574 unsigned int nr_succeeded;
32008027
JG
1575 nodemask_t allowed_mask;
1576
1577 struct migration_target_control mtc = {
1578 /*
1579 * Allocate from 'node', or fail quickly and quietly.
1580 * When this happens, 'page' will likely just be discarded
1581 * instead of migrated.
1582 */
1583 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1584 __GFP_NOMEMALLOC | GFP_NOWAIT,
1585 .nid = target_nid,
1586 .nmask = &allowed_mask
1587 };
26aa2d19 1588
49fd9b6d 1589 if (list_empty(demote_folios))
26aa2d19
DH
1590 return 0;
1591
1592 if (target_nid == NUMA_NO_NODE)
1593 return 0;
1594
32008027
JG
1595 node_get_allowed_targets(pgdat, &allowed_mask);
1596
26aa2d19 1597 /* Demotion ignores all cpuset and mempolicy settings */
49fd9b6d 1598 migrate_pages(demote_folios, alloc_demote_page, NULL,
32008027
JG
1599 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1600 &nr_succeeded);
26aa2d19 1601
668e4147
YS
1602 if (current_is_kswapd())
1603 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1604 else
1605 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1606
26aa2d19
DH
1607 return nr_succeeded;
1608}
1609
c28a0e96 1610static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
d791ea67
N
1611{
1612 if (gfp_mask & __GFP_FS)
1613 return true;
c28a0e96 1614 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
d791ea67
N
1615 return false;
1616 /*
1617 * We can "enter_fs" for swap-cache with only __GFP_IO
1618 * providing this isn't SWP_FS_OPS.
1619 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1620 * but that will never affect SWP_FS_OPS, so the data_race
1621 * is safe.
1622 */
b98c359f 1623 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
d791ea67
N
1624}
1625
1da177e4 1626/*
49fd9b6d 1627 * shrink_folio_list() returns the number of reclaimed pages
1da177e4 1628 */
49fd9b6d
MWO
1629static unsigned int shrink_folio_list(struct list_head *folio_list,
1630 struct pglist_data *pgdat, struct scan_control *sc,
1631 struct reclaim_stat *stat, bool ignore_references)
1632{
1633 LIST_HEAD(ret_folios);
1634 LIST_HEAD(free_folios);
1635 LIST_HEAD(demote_folios);
730ec8c0
MS
1636 unsigned int nr_reclaimed = 0;
1637 unsigned int pgactivate = 0;
26aa2d19 1638 bool do_demote_pass;
2282679f 1639 struct swap_iocb *plug = NULL;
1da177e4 1640
060f005f 1641 memset(stat, 0, sizeof(*stat));
1da177e4 1642 cond_resched();
26aa2d19 1643 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1644
26aa2d19 1645retry:
49fd9b6d 1646 while (!list_empty(folio_list)) {
1da177e4 1647 struct address_space *mapping;
be7c07d6 1648 struct folio *folio;
49fd9b6d 1649 enum folio_references references = FOLIOREF_RECLAIM;
d791ea67 1650 bool dirty, writeback;
98879b3b 1651 unsigned int nr_pages;
1da177e4
LT
1652
1653 cond_resched();
1654
49fd9b6d 1655 folio = lru_to_folio(folio_list);
be7c07d6 1656 list_del(&folio->lru);
1da177e4 1657
c28a0e96 1658 if (!folio_trylock(folio))
1da177e4
LT
1659 goto keep;
1660
c28a0e96 1661 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1da177e4 1662
c28a0e96 1663 nr_pages = folio_nr_pages(folio);
98879b3b 1664
c28a0e96 1665 /* Account the number of base pages */
98879b3b 1666 sc->nr_scanned += nr_pages;
80e43426 1667
c28a0e96 1668 if (unlikely(!folio_evictable(folio)))
ad6b6704 1669 goto activate_locked;
894bc310 1670
1bee2c16 1671 if (!sc->may_unmap && folio_mapped(folio))
80e43426
CL
1672 goto keep_locked;
1673
018ee47f
YZ
1674 /* folio_update_gen() tried to promote this page? */
1675 if (lru_gen_enabled() && !ignore_references &&
1676 folio_mapped(folio) && folio_test_referenced(folio))
1677 goto keep_locked;
1678
e2be15f6 1679 /*
894befec 1680 * The number of dirty pages determines if a node is marked
8cd7c588 1681 * reclaim_congested. kswapd will stall and start writing
c28a0e96 1682 * folios if the tail of the LRU is all dirty unqueued folios.
e2be15f6 1683 */
e20c41b1 1684 folio_check_dirty_writeback(folio, &dirty, &writeback);
e2be15f6 1685 if (dirty || writeback)
c79b7b96 1686 stat->nr_dirty += nr_pages;
e2be15f6
MG
1687
1688 if (dirty && !writeback)
c79b7b96 1689 stat->nr_unqueued_dirty += nr_pages;
e2be15f6 1690
d04e8acd 1691 /*
c28a0e96
MWO
1692 * Treat this folio as congested if folios are cycling
1693 * through the LRU so quickly that the folios marked
1694 * for immediate reclaim are making it to the end of
1695 * the LRU a second time.
d04e8acd 1696 */
c28a0e96 1697 if (writeback && folio_test_reclaim(folio))
c79b7b96 1698 stat->nr_congested += nr_pages;
e2be15f6 1699
283aba9f 1700 /*
d33e4e14 1701 * If a folio at the tail of the LRU is under writeback, there
283aba9f
MG
1702 * are three cases to consider.
1703 *
c28a0e96
MWO
1704 * 1) If reclaim is encountering an excessive number
1705 * of folios under writeback and this folio has both
1706 * the writeback and reclaim flags set, then it
d33e4e14
MWO
1707 * indicates that folios are being queued for I/O but
1708 * are being recycled through the LRU before the I/O
1709 * can complete. Waiting on the folio itself risks an
1710 * indefinite stall if it is impossible to writeback
1711 * the folio due to I/O error or disconnected storage
1712 * so instead note that the LRU is being scanned too
1713 * quickly and the caller can stall after the folio
1714 * list has been processed.
283aba9f 1715 *
d33e4e14 1716 * 2) Global or new memcg reclaim encounters a folio that is
ecf5fc6e
MH
1717 * not marked for immediate reclaim, or the caller does not
1718 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
d33e4e14 1719 * not to fs). In this case mark the folio for immediate
97c9341f 1720 * reclaim and continue scanning.
283aba9f 1721 *
d791ea67 1722 * Require may_enter_fs() because we would wait on fs, which
d33e4e14
MWO
1723 * may not have submitted I/O yet. And the loop driver might
1724 * enter reclaim, and deadlock if it waits on a folio for
283aba9f
MG
1725 * which it is needed to do the write (loop masks off
1726 * __GFP_IO|__GFP_FS for this reason); but more thought
1727 * would probably show more reasons.
1728 *
d33e4e14
MWO
1729 * 3) Legacy memcg encounters a folio that already has the
1730 * reclaim flag set. memcg does not have any dirty folio
283aba9f 1731 * throttling so we could easily OOM just because too many
d33e4e14 1732 * folios are in writeback and there is nothing else to
283aba9f 1733 * reclaim. Wait for the writeback to complete.
c55e8d03 1734 *
d33e4e14
MWO
1735 * In cases 1) and 2) we activate the folios to get them out of
1736 * the way while we continue scanning for clean folios on the
c55e8d03
JW
1737 * inactive list and refilling from the active list. The
1738 * observation here is that waiting for disk writes is more
1739 * expensive than potentially causing reloads down the line.
1740 * Since they're marked for immediate reclaim, they won't put
1741 * memory pressure on the cache working set any longer than it
1742 * takes to write them to disk.
283aba9f 1743 */
d33e4e14 1744 if (folio_test_writeback(folio)) {
283aba9f
MG
1745 /* Case 1 above */
1746 if (current_is_kswapd() &&
d33e4e14 1747 folio_test_reclaim(folio) &&
599d0c95 1748 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
c79b7b96 1749 stat->nr_immediate += nr_pages;
c55e8d03 1750 goto activate_locked;
283aba9f
MG
1751
1752 /* Case 2 above */
b5ead35e 1753 } else if (writeback_throttling_sane(sc) ||
d33e4e14 1754 !folio_test_reclaim(folio) ||
c28a0e96 1755 !may_enter_fs(folio, sc->gfp_mask)) {
c3b94f44 1756 /*
d33e4e14 1757 * This is slightly racy -
c28a0e96
MWO
1758 * folio_end_writeback() might have
1759 * just cleared the reclaim flag, then
1760 * setting the reclaim flag here ends up
1761 * interpreted as the readahead flag - but
1762 * that does not matter enough to care.
1763 * What we do want is for this folio to
1764 * have the reclaim flag set next time
1765 * memcg reclaim reaches the tests above,
1766 * so it will then wait for writeback to
1767 * avoid OOM; and it's also appropriate
d33e4e14 1768 * in global reclaim.
c3b94f44 1769 */
d33e4e14 1770 folio_set_reclaim(folio);
c79b7b96 1771 stat->nr_writeback += nr_pages;
c55e8d03 1772 goto activate_locked;
283aba9f
MG
1773
1774 /* Case 3 above */
1775 } else {
d33e4e14
MWO
1776 folio_unlock(folio);
1777 folio_wait_writeback(folio);
1778 /* then go back and try same folio again */
49fd9b6d 1779 list_add_tail(&folio->lru, folio_list);
7fadc820 1780 continue;
e62e384e 1781 }
c661b078 1782 }
1da177e4 1783
8940b34a 1784 if (!ignore_references)
d92013d1 1785 references = folio_check_references(folio, sc);
02c6de8d 1786
dfc8d636 1787 switch (references) {
49fd9b6d 1788 case FOLIOREF_ACTIVATE:
1da177e4 1789 goto activate_locked;
49fd9b6d 1790 case FOLIOREF_KEEP:
98879b3b 1791 stat->nr_ref_keep += nr_pages;
64574746 1792 goto keep_locked;
49fd9b6d
MWO
1793 case FOLIOREF_RECLAIM:
1794 case FOLIOREF_RECLAIM_CLEAN:
c28a0e96 1795 ; /* try to reclaim the folio below */
dfc8d636 1796 }
1da177e4 1797
26aa2d19 1798 /*
c28a0e96 1799 * Before reclaiming the folio, try to relocate
26aa2d19
DH
1800 * its contents to another node.
1801 */
1802 if (do_demote_pass &&
c28a0e96 1803 (thp_migration_supported() || !folio_test_large(folio))) {
49fd9b6d 1804 list_add(&folio->lru, &demote_folios);
c28a0e96 1805 folio_unlock(folio);
26aa2d19
DH
1806 continue;
1807 }
1808
1da177e4
LT
1809 /*
1810 * Anonymous process memory has backing store?
1811 * Try to allocate it some swap space here.
c28a0e96 1812 * Lazyfree folio could be freed directly
1da177e4 1813 */
c28a0e96
MWO
1814 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1815 if (!folio_test_swapcache(folio)) {
bd4c82c2
HY
1816 if (!(sc->gfp_mask & __GFP_IO))
1817 goto keep_locked;
d4b4084a 1818 if (folio_maybe_dma_pinned(folio))
feb889fb 1819 goto keep_locked;
c28a0e96
MWO
1820 if (folio_test_large(folio)) {
1821 /* cannot split folio, skip it */
d4b4084a 1822 if (!can_split_folio(folio, NULL))
bd4c82c2
HY
1823 goto activate_locked;
1824 /*
c28a0e96 1825 * Split folios without a PMD map right
bd4c82c2
HY
1826 * away. Chances are some or all of the
1827 * tail pages can be freed without IO.
1828 */
d4b4084a 1829 if (!folio_entire_mapcount(folio) &&
346cf613 1830 split_folio_to_list(folio,
49fd9b6d 1831 folio_list))
bd4c82c2
HY
1832 goto activate_locked;
1833 }
09c02e56
MWO
1834 if (!add_to_swap(folio)) {
1835 if (!folio_test_large(folio))
98879b3b 1836 goto activate_locked_split;
bd4c82c2 1837 /* Fallback to swap normal pages */
346cf613 1838 if (split_folio_to_list(folio,
49fd9b6d 1839 folio_list))
bd4c82c2 1840 goto activate_locked;
fe490cc0
HY
1841#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1842 count_vm_event(THP_SWPOUT_FALLBACK);
1843#endif
09c02e56 1844 if (!add_to_swap(folio))
98879b3b 1845 goto activate_locked_split;
bd4c82c2 1846 }
bd4c82c2 1847 }
c28a0e96
MWO
1848 } else if (folio_test_swapbacked(folio) &&
1849 folio_test_large(folio)) {
1850 /* Split shmem folio */
49fd9b6d 1851 if (split_folio_to_list(folio, folio_list))
7751b2da 1852 goto keep_locked;
e2be15f6 1853 }
1da177e4 1854
98879b3b 1855 /*
c28a0e96
MWO
1856 * If the folio was split above, the tail pages will make
1857 * their own pass through this function and be accounted
1858 * then.
98879b3b 1859 */
c28a0e96 1860 if ((nr_pages > 1) && !folio_test_large(folio)) {
98879b3b
YS
1861 sc->nr_scanned -= (nr_pages - 1);
1862 nr_pages = 1;
1863 }
1864
1da177e4 1865 /*
1bee2c16 1866 * The folio is mapped into the page tables of one or more
1da177e4
LT
1867 * processes. Try to unmap it here.
1868 */
1bee2c16 1869 if (folio_mapped(folio)) {
013339df 1870 enum ttu_flags flags = TTU_BATCH_FLUSH;
1bee2c16 1871 bool was_swapbacked = folio_test_swapbacked(folio);
bd4c82c2 1872
1bee2c16 1873 if (folio_test_pmd_mappable(folio))
bd4c82c2 1874 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1875
869f7ee6 1876 try_to_unmap(folio, flags);
1bee2c16 1877 if (folio_mapped(folio)) {
98879b3b 1878 stat->nr_unmap_fail += nr_pages;
1bee2c16
MWO
1879 if (!was_swapbacked &&
1880 folio_test_swapbacked(folio))
1f318a9b 1881 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1882 goto activate_locked;
1da177e4
LT
1883 }
1884 }
1885
5441d490 1886 mapping = folio_mapping(folio);
49bd2bf9 1887 if (folio_test_dirty(folio)) {
ee72886d 1888 /*
49bd2bf9 1889 * Only kswapd can writeback filesystem folios
4eda4823 1890 * to avoid risk of stack overflow. But avoid
49bd2bf9 1891 * injecting inefficient single-folio I/O into
4eda4823 1892 * flusher writeback as much as possible: only
49bd2bf9
MWO
1893 * write folios when we've encountered many
1894 * dirty folios, and when we've already scanned
1895 * the rest of the LRU for clean folios and see
1896 * the same dirty folios again (with the reclaim
1897 * flag set).
ee72886d 1898 */
49bd2bf9
MWO
1899 if (folio_is_file_lru(folio) &&
1900 (!current_is_kswapd() ||
1901 !folio_test_reclaim(folio) ||
4eda4823 1902 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1903 /*
1904 * Immediately reclaim when written back.
49bd2bf9
MWO
1905 * Similar in principle to deactivate_page()
1906 * except we already have the folio isolated
49ea7eb6
MG
1907 * and know it's dirty
1908 */
49bd2bf9
MWO
1909 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1910 nr_pages);
1911 folio_set_reclaim(folio);
49ea7eb6 1912
c55e8d03 1913 goto activate_locked;
ee72886d
MG
1914 }
1915
49fd9b6d 1916 if (references == FOLIOREF_RECLAIM_CLEAN)
1da177e4 1917 goto keep_locked;
c28a0e96 1918 if (!may_enter_fs(folio, sc->gfp_mask))
1da177e4 1919 goto keep_locked;
52a8363e 1920 if (!sc->may_writepage)
1da177e4
LT
1921 goto keep_locked;
1922
d950c947 1923 /*
49bd2bf9
MWO
1924 * Folio is dirty. Flush the TLB if a writable entry
1925 * potentially exists to avoid CPU writes after I/O
d950c947
MG
1926 * starts and then write it out here.
1927 */
1928 try_to_unmap_flush_dirty();
2282679f 1929 switch (pageout(folio, mapping, &plug)) {
1da177e4
LT
1930 case PAGE_KEEP:
1931 goto keep_locked;
1932 case PAGE_ACTIVATE:
1933 goto activate_locked;
1934 case PAGE_SUCCESS:
c79b7b96 1935 stat->nr_pageout += nr_pages;
96f8bf4f 1936
49bd2bf9 1937 if (folio_test_writeback(folio))
41ac1999 1938 goto keep;
49bd2bf9 1939 if (folio_test_dirty(folio))
1da177e4 1940 goto keep;
7d3579e8 1941
1da177e4
LT
1942 /*
1943 * A synchronous write - probably a ramdisk. Go
49bd2bf9 1944 * ahead and try to reclaim the folio.
1da177e4 1945 */
49bd2bf9 1946 if (!folio_trylock(folio))
1da177e4 1947 goto keep;
49bd2bf9
MWO
1948 if (folio_test_dirty(folio) ||
1949 folio_test_writeback(folio))
1da177e4 1950 goto keep_locked;
49bd2bf9 1951 mapping = folio_mapping(folio);
01359eb2 1952 fallthrough;
1da177e4 1953 case PAGE_CLEAN:
49bd2bf9 1954 ; /* try to free the folio below */
1da177e4
LT
1955 }
1956 }
1957
1958 /*
0a36111c
MWO
1959 * If the folio has buffers, try to free the buffer
1960 * mappings associated with this folio. If we succeed
1961 * we try to free the folio as well.
1da177e4 1962 *
0a36111c
MWO
1963 * We do this even if the folio is dirty.
1964 * filemap_release_folio() does not perform I/O, but it
1965 * is possible for a folio to have the dirty flag set,
1966 * but it is actually clean (all its buffers are clean).
1967 * This happens if the buffers were written out directly,
1968 * with submit_bh(). ext3 will do this, as well as
1969 * the blockdev mapping. filemap_release_folio() will
1970 * discover that cleanness and will drop the buffers
1971 * and mark the folio clean - it can be freed.
1da177e4 1972 *
0a36111c
MWO
1973 * Rarely, folios can have buffers and no ->mapping.
1974 * These are the folios which were not successfully
1975 * invalidated in truncate_cleanup_folio(). We try to
1976 * drop those buffers here and if that worked, and the
1977 * folio is no longer mapped into process address space
1978 * (refcount == 1) it can be freed. Otherwise, leave
1979 * the folio on the LRU so it is swappable.
1da177e4 1980 */
0a36111c
MWO
1981 if (folio_has_private(folio)) {
1982 if (!filemap_release_folio(folio, sc->gfp_mask))
1da177e4 1983 goto activate_locked;
0a36111c
MWO
1984 if (!mapping && folio_ref_count(folio) == 1) {
1985 folio_unlock(folio);
1986 if (folio_put_testzero(folio))
e286781d
NP
1987 goto free_it;
1988 else {
1989 /*
1990 * rare race with speculative reference.
1991 * the speculative reference will free
0a36111c 1992 * this folio shortly, so we may
e286781d
NP
1993 * increment nr_reclaimed here (and
1994 * leave it off the LRU).
1995 */
9aafcffc 1996 nr_reclaimed += nr_pages;
e286781d
NP
1997 continue;
1998 }
1999 }
1da177e4
LT
2000 }
2001
64daa5d8 2002 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
802a3a92 2003 /* follow __remove_mapping for reference */
64daa5d8 2004 if (!folio_ref_freeze(folio, 1))
802a3a92 2005 goto keep_locked;
d17be2d9 2006 /*
64daa5d8 2007 * The folio has only one reference left, which is
d17be2d9 2008 * from the isolation. After the caller puts the
64daa5d8
MWO
2009 * folio back on the lru and drops the reference, the
2010 * folio will be freed anyway. It doesn't matter
2011 * which lru it goes on. So we don't bother checking
2012 * the dirty flag here.
d17be2d9 2013 */
64daa5d8
MWO
2014 count_vm_events(PGLAZYFREED, nr_pages);
2015 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
be7c07d6 2016 } else if (!mapping || !__remove_mapping(mapping, folio, true,
b910718a 2017 sc->target_mem_cgroup))
802a3a92 2018 goto keep_locked;
9a1ea439 2019
c28a0e96 2020 folio_unlock(folio);
e286781d 2021free_it:
98879b3b 2022 /*
c28a0e96
MWO
2023 * Folio may get swapped out as a whole, need to account
2024 * all pages in it.
98879b3b
YS
2025 */
2026 nr_reclaimed += nr_pages;
abe4c3b5
MG
2027
2028 /*
49fd9b6d 2029 * Is there need to periodically free_folio_list? It would
abe4c3b5
MG
2030 * appear not as the counts should be low
2031 */
c28a0e96 2032 if (unlikely(folio_test_large(folio)))
5375336c 2033 destroy_large_folio(folio);
7ae88534 2034 else
49fd9b6d 2035 list_add(&folio->lru, &free_folios);
1da177e4
LT
2036 continue;
2037
98879b3b
YS
2038activate_locked_split:
2039 /*
2040 * The tail pages that are failed to add into swap cache
2041 * reach here. Fixup nr_scanned and nr_pages.
2042 */
2043 if (nr_pages > 1) {
2044 sc->nr_scanned -= (nr_pages - 1);
2045 nr_pages = 1;
2046 }
1da177e4 2047activate_locked:
68a22394 2048 /* Not a candidate for swapping, so reclaim swap space. */
246b6480
MWO
2049 if (folio_test_swapcache(folio) &&
2050 (mem_cgroup_swap_full(&folio->page) ||
2051 folio_test_mlocked(folio)))
bdb0ed54 2052 folio_free_swap(folio);
246b6480
MWO
2053 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2054 if (!folio_test_mlocked(folio)) {
2055 int type = folio_is_file_lru(folio);
2056 folio_set_active(folio);
98879b3b 2057 stat->nr_activate[type] += nr_pages;
246b6480 2058 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
ad6b6704 2059 }
1da177e4 2060keep_locked:
c28a0e96 2061 folio_unlock(folio);
1da177e4 2062keep:
49fd9b6d 2063 list_add(&folio->lru, &ret_folios);
c28a0e96
MWO
2064 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2065 folio_test_unevictable(folio), folio);
1da177e4 2066 }
49fd9b6d 2067 /* 'folio_list' is always empty here */
26aa2d19 2068
c28a0e96 2069 /* Migrate folios selected for demotion */
49fd9b6d
MWO
2070 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2071 /* Folios that could not be demoted are still in @demote_folios */
2072 if (!list_empty(&demote_folios)) {
2073 /* Folios which weren't demoted go back on @folio_list for retry: */
2074 list_splice_init(&demote_folios, folio_list);
26aa2d19
DH
2075 do_demote_pass = false;
2076 goto retry;
2077 }
abe4c3b5 2078
98879b3b
YS
2079 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2080
49fd9b6d 2081 mem_cgroup_uncharge_list(&free_folios);
72b252ae 2082 try_to_unmap_flush();
49fd9b6d 2083 free_unref_page_list(&free_folios);
abe4c3b5 2084
49fd9b6d 2085 list_splice(&ret_folios, folio_list);
886cf190 2086 count_vm_events(PGACTIVATE, pgactivate);
060f005f 2087
2282679f
N
2088 if (plug)
2089 swap_write_unplug(plug);
05ff5137 2090 return nr_reclaimed;
1da177e4
LT
2091}
2092
730ec8c0 2093unsigned int reclaim_clean_pages_from_list(struct zone *zone,
49fd9b6d 2094 struct list_head *folio_list)
02c6de8d
MK
2095{
2096 struct scan_control sc = {
2097 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
2098 .may_unmap = 1,
2099 };
1f318a9b 2100 struct reclaim_stat stat;
730ec8c0 2101 unsigned int nr_reclaimed;
b8cecb93
MWO
2102 struct folio *folio, *next;
2103 LIST_HEAD(clean_folios);
2d2b8d2b 2104 unsigned int noreclaim_flag;
02c6de8d 2105
b8cecb93
MWO
2106 list_for_each_entry_safe(folio, next, folio_list, lru) {
2107 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2108 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2109 !folio_test_unevictable(folio)) {
2110 folio_clear_active(folio);
2111 list_move(&folio->lru, &clean_folios);
02c6de8d
MK
2112 }
2113 }
2114
2d2b8d2b
YZ
2115 /*
2116 * We should be safe here since we are only dealing with file pages and
2117 * we are not kswapd and therefore cannot write dirty file pages. But
2118 * call memalloc_noreclaim_save() anyway, just in case these conditions
2119 * change in the future.
2120 */
2121 noreclaim_flag = memalloc_noreclaim_save();
49fd9b6d 2122 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
013339df 2123 &stat, true);
2d2b8d2b
YZ
2124 memalloc_noreclaim_restore(noreclaim_flag);
2125
b8cecb93 2126 list_splice(&clean_folios, folio_list);
2da9f630
NP
2127 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2128 -(long)nr_reclaimed);
1f318a9b
JK
2129 /*
2130 * Since lazyfree pages are isolated from file LRU from the beginning,
2131 * they will rotate back to anonymous LRU in the end if it failed to
2132 * discard so isolated count will be mismatched.
2133 * Compensate the isolated count for both LRU lists.
2134 */
2135 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2136 stat.nr_lazyfree_fail);
2137 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 2138 -(long)stat.nr_lazyfree_fail);
1f318a9b 2139 return nr_reclaimed;
02c6de8d
MK
2140}
2141
7ee36a14
MG
2142/*
2143 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 2144 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
2145 */
2146static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 2147 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 2148{
7ee36a14
MG
2149 int zid;
2150
7ee36a14
MG
2151 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2152 if (!nr_zone_taken[zid])
2153 continue;
2154
a892cb6b 2155 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
2156 }
2157
7ee36a14
MG
2158}
2159
f611fab7 2160/*
15b44736
HD
2161 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2162 *
2163 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
2164 * shrink the lists perform better by taking out a batch of pages
2165 * and working on them outside the LRU lock.
2166 *
2167 * For pagecache intensive workloads, this function is the hottest
2168 * spot in the kernel (apart from copy_*_user functions).
2169 *
15b44736 2170 * Lru_lock must be held before calling this function.
1da177e4 2171 *
791b48b6 2172 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 2173 * @lruvec: The LRU vector to pull pages from.
1da177e4 2174 * @dst: The temp list to put pages on to.
f626012d 2175 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 2176 * @sc: The scan_control struct for this reclaim session
3cb99451 2177 * @lru: LRU list id for isolating
1da177e4
LT
2178 *
2179 * returns how many pages were moved onto *@dst.
2180 */
49fd9b6d 2181static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
5dc35979 2182 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 2183 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 2184 enum lru_list lru)
1da177e4 2185{
75b00af7 2186 struct list_head *src = &lruvec->lists[lru];
69e05944 2187 unsigned long nr_taken = 0;
599d0c95 2188 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 2189 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 2190 unsigned long skipped = 0;
791b48b6 2191 unsigned long scan, total_scan, nr_pages;
166e3d32 2192 LIST_HEAD(folios_skipped);
1da177e4 2193
98879b3b 2194 total_scan = 0;
791b48b6 2195 scan = 0;
98879b3b 2196 while (scan < nr_to_scan && !list_empty(src)) {
89f6c88a 2197 struct list_head *move_to = src;
166e3d32 2198 struct folio *folio;
5ad333eb 2199
166e3d32
MWO
2200 folio = lru_to_folio(src);
2201 prefetchw_prev_lru_folio(folio, src, flags);
1da177e4 2202
166e3d32 2203 nr_pages = folio_nr_pages(folio);
98879b3b
YS
2204 total_scan += nr_pages;
2205
166e3d32
MWO
2206 if (folio_zonenum(folio) > sc->reclaim_idx) {
2207 nr_skipped[folio_zonenum(folio)] += nr_pages;
2208 move_to = &folios_skipped;
89f6c88a 2209 goto move;
b2e18757
MG
2210 }
2211
791b48b6 2212 /*
166e3d32
MWO
2213 * Do not count skipped folios because that makes the function
2214 * return with no isolated folios if the LRU mostly contains
2215 * ineligible folios. This causes the VM to not reclaim any
2216 * folios, triggering a premature OOM.
2217 * Account all pages in a folio.
791b48b6 2218 */
98879b3b 2219 scan += nr_pages;
89f6c88a 2220
166e3d32 2221 if (!folio_test_lru(folio))
89f6c88a 2222 goto move;
166e3d32 2223 if (!sc->may_unmap && folio_mapped(folio))
89f6c88a
HD
2224 goto move;
2225
c2135f7c 2226 /*
166e3d32
MWO
2227 * Be careful not to clear the lru flag until after we're
2228 * sure the folio is not being freed elsewhere -- the
2229 * folio release code relies on it.
c2135f7c 2230 */
166e3d32 2231 if (unlikely(!folio_try_get(folio)))
89f6c88a 2232 goto move;
5ad333eb 2233
166e3d32
MWO
2234 if (!folio_test_clear_lru(folio)) {
2235 /* Another thread is already isolating this folio */
2236 folio_put(folio);
89f6c88a 2237 goto move;
5ad333eb 2238 }
c2135f7c
AS
2239
2240 nr_taken += nr_pages;
166e3d32 2241 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
89f6c88a
HD
2242 move_to = dst;
2243move:
166e3d32 2244 list_move(&folio->lru, move_to);
1da177e4
LT
2245 }
2246
b2e18757 2247 /*
166e3d32 2248 * Splice any skipped folios to the start of the LRU list. Note that
b2e18757
MG
2249 * this disrupts the LRU order when reclaiming for lower zones but
2250 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
166e3d32 2251 * scanning would soon rescan the same folios to skip and waste lots
b2cb6826 2252 * of cpu cycles.
b2e18757 2253 */
166e3d32 2254 if (!list_empty(&folios_skipped)) {
7cc30fcf
MG
2255 int zid;
2256
166e3d32 2257 list_splice(&folios_skipped, src);
7cc30fcf
MG
2258 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2259 if (!nr_skipped[zid])
2260 continue;
2261
2262 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2263 skipped += nr_skipped[zid];
7cc30fcf
MG
2264 }
2265 }
791b48b6 2266 *nr_scanned = total_scan;
1265e3a6 2267 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
89f6c88a
HD
2268 total_scan, skipped, nr_taken,
2269 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
b4536f0c 2270 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2271 return nr_taken;
2272}
2273
62695a84 2274/**
d1d8a3b4
MWO
2275 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2276 * @folio: Folio to isolate from its LRU list.
62695a84 2277 *
d1d8a3b4
MWO
2278 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2279 * corresponding to whatever LRU list the folio was on.
62695a84 2280 *
d1d8a3b4
MWO
2281 * The folio will have its LRU flag cleared. If it was found on the
2282 * active list, it will have the Active flag set. If it was found on the
2283 * unevictable list, it will have the Unevictable flag set. These flags
894bc310 2284 * may need to be cleared by the caller before letting the page go.
62695a84 2285 *
d1d8a3b4 2286 * Context:
a5d09bed 2287 *
49fd9b6d
MWO
2288 * (1) Must be called with an elevated refcount on the folio. This is a
2289 * fundamental difference from isolate_lru_folios() (which is called
62695a84 2290 * without a stable reference).
d1d8a3b4
MWO
2291 * (2) The lru_lock must not be held.
2292 * (3) Interrupts must be enabled.
2293 *
2294 * Return: 0 if the folio was removed from an LRU list.
2295 * -EBUSY if the folio was not on an LRU list.
62695a84 2296 */
d1d8a3b4 2297int folio_isolate_lru(struct folio *folio)
62695a84
NP
2298{
2299 int ret = -EBUSY;
2300
d1d8a3b4 2301 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
0c917313 2302
d1d8a3b4 2303 if (folio_test_clear_lru(folio)) {
fa9add64 2304 struct lruvec *lruvec;
62695a84 2305
d1d8a3b4 2306 folio_get(folio);
e809c3fe 2307 lruvec = folio_lruvec_lock_irq(folio);
d1d8a3b4 2308 lruvec_del_folio(lruvec, folio);
6168d0da 2309 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2310 ret = 0;
62695a84 2311 }
d25b5bd8 2312
62695a84
NP
2313 return ret;
2314}
2315
35cd7815 2316/*
d37dd5dc 2317 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2318 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2319 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2320 * the LRU list will go small and be scanned faster than necessary, leading to
2321 * unnecessary swapping, thrashing and OOM.
35cd7815 2322 */
599d0c95 2323static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2324 struct scan_control *sc)
2325{
2326 unsigned long inactive, isolated;
d818fca1 2327 bool too_many;
35cd7815
RR
2328
2329 if (current_is_kswapd())
2330 return 0;
2331
b5ead35e 2332 if (!writeback_throttling_sane(sc))
35cd7815
RR
2333 return 0;
2334
2335 if (file) {
599d0c95
MG
2336 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2337 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2338 } else {
599d0c95
MG
2339 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2340 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2341 }
2342
3cf23841
FW
2343 /*
2344 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2345 * won't get blocked by normal direct-reclaimers, forming a circular
2346 * deadlock.
2347 */
d0164adc 2348 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2349 inactive >>= 3;
2350
d818fca1
MG
2351 too_many = isolated > inactive;
2352
2353 /* Wake up tasks throttled due to too_many_isolated. */
2354 if (!too_many)
2355 wake_throttle_isolated(pgdat);
2356
2357 return too_many;
35cd7815
RR
2358}
2359
a222f341 2360/*
49fd9b6d 2361 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
ff00a170 2362 * On return, @list is reused as a list of folios to be freed by the caller.
a222f341
KT
2363 *
2364 * Returns the number of pages moved to the given lruvec.
2365 */
49fd9b6d
MWO
2366static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2367 struct list_head *list)
66635629 2368{
a222f341 2369 int nr_pages, nr_moved = 0;
ff00a170 2370 LIST_HEAD(folios_to_free);
66635629 2371
a222f341 2372 while (!list_empty(list)) {
ff00a170
MWO
2373 struct folio *folio = lru_to_folio(list);
2374
2375 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2376 list_del(&folio->lru);
2377 if (unlikely(!folio_evictable(folio))) {
6168d0da 2378 spin_unlock_irq(&lruvec->lru_lock);
ff00a170 2379 folio_putback_lru(folio);
6168d0da 2380 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2381 continue;
2382 }
fa9add64 2383
3d06afab 2384 /*
ff00a170 2385 * The folio_set_lru needs to be kept here for list integrity.
3d06afab 2386 * Otherwise:
49fd9b6d 2387 * #0 move_folios_to_lru #1 release_pages
ff00a170
MWO
2388 * if (!folio_put_testzero())
2389 * if (folio_put_testzero())
2390 * !lru //skip lru_lock
2391 * folio_set_lru()
2392 * list_add(&folio->lru,)
2393 * list_add(&folio->lru,)
3d06afab 2394 */
ff00a170 2395 folio_set_lru(folio);
a222f341 2396
ff00a170
MWO
2397 if (unlikely(folio_put_testzero(folio))) {
2398 __folio_clear_lru_flags(folio);
2bcf8879 2399
ff00a170 2400 if (unlikely(folio_test_large(folio))) {
6168d0da 2401 spin_unlock_irq(&lruvec->lru_lock);
5375336c 2402 destroy_large_folio(folio);
6168d0da 2403 spin_lock_irq(&lruvec->lru_lock);
2bcf8879 2404 } else
ff00a170 2405 list_add(&folio->lru, &folios_to_free);
3d06afab
AS
2406
2407 continue;
66635629 2408 }
3d06afab 2409
afca9157
AS
2410 /*
2411 * All pages were isolated from the same lruvec (and isolation
2412 * inhibits memcg migration).
2413 */
ff00a170
MWO
2414 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2415 lruvec_add_folio(lruvec, folio);
2416 nr_pages = folio_nr_pages(folio);
3d06afab 2417 nr_moved += nr_pages;
ff00a170 2418 if (folio_test_active(folio))
3d06afab 2419 workingset_age_nonresident(lruvec, nr_pages);
66635629 2420 }
66635629 2421
3f79768f
HD
2422 /*
2423 * To save our caller's stack, now use input list for pages to free.
2424 */
ff00a170 2425 list_splice(&folios_to_free, list);
a222f341
KT
2426
2427 return nr_moved;
66635629
MG
2428}
2429
399ba0b9 2430/*
5829f7db
ML
2431 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2432 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2433 * we should not throttle. Otherwise it is safe to do so.
399ba0b9
N
2434 */
2435static int current_may_throttle(void)
2436{
b9b1335e 2437 return !(current->flags & PF_LOCAL_THROTTLE);
399ba0b9
N
2438}
2439
1da177e4 2440/*
b2e18757 2441 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2442 * of reclaimed pages
1da177e4 2443 */
49fd9b6d
MWO
2444static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2445 struct lruvec *lruvec, struct scan_control *sc,
2446 enum lru_list lru)
1da177e4 2447{
49fd9b6d 2448 LIST_HEAD(folio_list);
e247dbce 2449 unsigned long nr_scanned;
730ec8c0 2450 unsigned int nr_reclaimed = 0;
e247dbce 2451 unsigned long nr_taken;
060f005f 2452 struct reclaim_stat stat;
497a6c1b 2453 bool file = is_file_lru(lru);
f46b7912 2454 enum vm_event_item item;
599d0c95 2455 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2456 bool stalled = false;
78dc583d 2457
599d0c95 2458 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2459 if (stalled)
2460 return 0;
2461
2462 /* wait a bit for the reclaimer. */
db73ee0d 2463 stalled = true;
c3f4a9a2 2464 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
35cd7815
RR
2465
2466 /* We are about to die and free our memory. Return now. */
2467 if (fatal_signal_pending(current))
2468 return SWAP_CLUSTER_MAX;
2469 }
2470
1da177e4 2471 lru_add_drain();
f80c0673 2472
6168d0da 2473 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2474
49fd9b6d 2475 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
a9e7c39f 2476 &nr_scanned, sc, lru);
95d918fc 2477
599d0c95 2478 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2479 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2480 if (!cgroup_reclaim(sc))
f46b7912
KT
2481 __count_vm_events(item, nr_scanned);
2482 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2483 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2484
6168d0da 2485 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2486
d563c050 2487 if (nr_taken == 0)
66635629 2488 return 0;
5ad333eb 2489
49fd9b6d 2490 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
c661b078 2491
6168d0da 2492 spin_lock_irq(&lruvec->lru_lock);
49fd9b6d 2493 move_folios_to_lru(lruvec, &folio_list);
497a6c1b
JW
2494
2495 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2496 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2497 if (!cgroup_reclaim(sc))
f46b7912
KT
2498 __count_vm_events(item, nr_reclaimed);
2499 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2500 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2501 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2502
75cc3c91 2503 lru_note_cost(lruvec, file, stat.nr_pageout);
49fd9b6d
MWO
2504 mem_cgroup_uncharge_list(&folio_list);
2505 free_unref_page_list(&folio_list);
e11da5b4 2506
1c610d5f 2507 /*
49fd9b6d 2508 * If dirty folios are scanned that are not queued for IO, it
1c610d5f 2509 * implies that flushers are not doing their job. This can
49fd9b6d 2510 * happen when memory pressure pushes dirty folios to the end of
1c610d5f
AR
2511 * the LRU before the dirty limits are breached and the dirty
2512 * data has expired. It can also happen when the proportion of
49fd9b6d 2513 * dirty folios grows not through writes but through memory
1c610d5f
AR
2514 * pressure reclaiming all the clean cache. And in some cases,
2515 * the flushers simply cannot keep up with the allocation
2516 * rate. Nudge the flusher threads in case they are asleep.
2517 */
2518 if (stat.nr_unqueued_dirty == nr_taken)
2519 wakeup_flusher_threads(WB_REASON_VMSCAN);
2520
d108c772
AR
2521 sc->nr.dirty += stat.nr_dirty;
2522 sc->nr.congested += stat.nr_congested;
2523 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2524 sc->nr.writeback += stat.nr_writeback;
2525 sc->nr.immediate += stat.nr_immediate;
2526 sc->nr.taken += nr_taken;
2527 if (file)
2528 sc->nr.file_taken += nr_taken;
8e950282 2529
599d0c95 2530 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2531 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2532 return nr_reclaimed;
1da177e4
LT
2533}
2534
15b44736 2535/*
07f67a8d 2536 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
15b44736 2537 *
07f67a8d 2538 * We move them the other way if the folio is referenced by one or more
15b44736
HD
2539 * processes.
2540 *
07f67a8d 2541 * If the folios are mostly unmapped, the processing is fast and it is
15b44736 2542 * appropriate to hold lru_lock across the whole operation. But if
07f67a8d
MWO
2543 * the folios are mapped, the processing is slow (folio_referenced()), so
2544 * we should drop lru_lock around each folio. It's impossible to balance
2545 * this, so instead we remove the folios from the LRU while processing them.
2546 * It is safe to rely on the active flag against the non-LRU folios in here
2547 * because nobody will play with that bit on a non-LRU folio.
15b44736 2548 *
07f67a8d
MWO
2549 * The downside is that we have to touch folio->_refcount against each folio.
2550 * But we had to alter folio->flags anyway.
15b44736 2551 */
f626012d 2552static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2553 struct lruvec *lruvec,
f16015fb 2554 struct scan_control *sc,
9e3b2f8c 2555 enum lru_list lru)
1da177e4 2556{
44c241f1 2557 unsigned long nr_taken;
f626012d 2558 unsigned long nr_scanned;
6fe6b7e3 2559 unsigned long vm_flags;
07f67a8d 2560 LIST_HEAD(l_hold); /* The folios which were snipped off */
8cab4754 2561 LIST_HEAD(l_active);
b69408e8 2562 LIST_HEAD(l_inactive);
9d998b4f
MH
2563 unsigned nr_deactivate, nr_activate;
2564 unsigned nr_rotated = 0;
3cb99451 2565 int file = is_file_lru(lru);
599d0c95 2566 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2567
2568 lru_add_drain();
f80c0673 2569
6168d0da 2570 spin_lock_irq(&lruvec->lru_lock);
925b7673 2571
49fd9b6d 2572 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2573 &nr_scanned, sc, lru);
89b5fae5 2574
599d0c95 2575 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2576
912c0572
SB
2577 if (!cgroup_reclaim(sc))
2578 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2579 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2580
6168d0da 2581 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2582
1da177e4 2583 while (!list_empty(&l_hold)) {
b3ac0413 2584 struct folio *folio;
b3ac0413 2585
1da177e4 2586 cond_resched();
b3ac0413
MWO
2587 folio = lru_to_folio(&l_hold);
2588 list_del(&folio->lru);
7e9cd484 2589
07f67a8d
MWO
2590 if (unlikely(!folio_evictable(folio))) {
2591 folio_putback_lru(folio);
894bc310
LS
2592 continue;
2593 }
2594
cc715d99 2595 if (unlikely(buffer_heads_over_limit)) {
36a3b14b
MWO
2596 if (folio_test_private(folio) && folio_trylock(folio)) {
2597 if (folio_test_private(folio))
07f67a8d
MWO
2598 filemap_release_folio(folio, 0);
2599 folio_unlock(folio);
cc715d99
MG
2600 }
2601 }
2602
6d4675e6 2603 /* Referenced or rmap lock contention: rotate */
b3ac0413 2604 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
6d4675e6 2605 &vm_flags) != 0) {
8cab4754 2606 /*
07f67a8d 2607 * Identify referenced, file-backed active folios and
8cab4754
WF
2608 * give them one more trip around the active list. So
2609 * that executable code get better chances to stay in
07f67a8d 2610 * memory under moderate memory pressure. Anon folios
8cab4754 2611 * are not likely to be evicted by use-once streaming
07f67a8d 2612 * IO, plus JVM can create lots of anon VM_EXEC folios,
8cab4754
WF
2613 * so we ignore them here.
2614 */
07f67a8d
MWO
2615 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2616 nr_rotated += folio_nr_pages(folio);
2617 list_add(&folio->lru, &l_active);
8cab4754
WF
2618 continue;
2619 }
2620 }
7e9cd484 2621
07f67a8d
MWO
2622 folio_clear_active(folio); /* we are de-activating */
2623 folio_set_workingset(folio);
2624 list_add(&folio->lru, &l_inactive);
1da177e4
LT
2625 }
2626
b555749a 2627 /*
07f67a8d 2628 * Move folios back to the lru list.
b555749a 2629 */
6168d0da 2630 spin_lock_irq(&lruvec->lru_lock);
556adecb 2631
49fd9b6d
MWO
2632 nr_activate = move_folios_to_lru(lruvec, &l_active);
2633 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
07f67a8d 2634 /* Keep all free folios in l_active list */
f372d89e 2635 list_splice(&l_inactive, &l_active);
9851ac13
KT
2636
2637 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2638 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2639
599d0c95 2640 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2641 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2642
f372d89e
KT
2643 mem_cgroup_uncharge_list(&l_active);
2644 free_unref_page_list(&l_active);
9d998b4f
MH
2645 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2646 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2647}
2648
49fd9b6d 2649static unsigned int reclaim_folio_list(struct list_head *folio_list,
1fe47c0b 2650 struct pglist_data *pgdat)
1a4e58cc 2651{
1a4e58cc 2652 struct reclaim_stat dummy_stat;
1fe47c0b
ML
2653 unsigned int nr_reclaimed;
2654 struct folio *folio;
1a4e58cc
MK
2655 struct scan_control sc = {
2656 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2657 .may_writepage = 1,
2658 .may_unmap = 1,
2659 .may_swap = 1,
26aa2d19 2660 .no_demotion = 1,
1a4e58cc
MK
2661 };
2662
49fd9b6d
MWO
2663 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2664 while (!list_empty(folio_list)) {
2665 folio = lru_to_folio(folio_list);
1fe47c0b
ML
2666 list_del(&folio->lru);
2667 folio_putback_lru(folio);
2668 }
2669
2670 return nr_reclaimed;
2671}
2672
a83f0551 2673unsigned long reclaim_pages(struct list_head *folio_list)
1fe47c0b 2674{
ed657e55 2675 int nid;
1fe47c0b 2676 unsigned int nr_reclaimed = 0;
a83f0551 2677 LIST_HEAD(node_folio_list);
1fe47c0b
ML
2678 unsigned int noreclaim_flag;
2679
a83f0551 2680 if (list_empty(folio_list))
1ae65e27
WY
2681 return nr_reclaimed;
2682
2d2b8d2b
YZ
2683 noreclaim_flag = memalloc_noreclaim_save();
2684
a83f0551 2685 nid = folio_nid(lru_to_folio(folio_list));
1ae65e27 2686 do {
a83f0551 2687 struct folio *folio = lru_to_folio(folio_list);
1a4e58cc 2688
a83f0551
MWO
2689 if (nid == folio_nid(folio)) {
2690 folio_clear_active(folio);
2691 list_move(&folio->lru, &node_folio_list);
1a4e58cc
MK
2692 continue;
2693 }
2694
49fd9b6d 2695 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
a83f0551
MWO
2696 nid = folio_nid(lru_to_folio(folio_list));
2697 } while (!list_empty(folio_list));
1a4e58cc 2698
49fd9b6d 2699 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
1a4e58cc 2700
2d2b8d2b
YZ
2701 memalloc_noreclaim_restore(noreclaim_flag);
2702
1a4e58cc
MK
2703 return nr_reclaimed;
2704}
2705
b91ac374
JW
2706static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2707 struct lruvec *lruvec, struct scan_control *sc)
2708{
2709 if (is_active_lru(lru)) {
2710 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2711 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2712 else
2713 sc->skipped_deactivate = 1;
2714 return 0;
2715 }
2716
2717 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2718}
2719
59dc76b0
RR
2720/*
2721 * The inactive anon list should be small enough that the VM never has
2722 * to do too much work.
14797e23 2723 *
59dc76b0
RR
2724 * The inactive file list should be small enough to leave most memory
2725 * to the established workingset on the scan-resistant active list,
2726 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2727 *
59dc76b0 2728 * Both inactive lists should also be large enough that each inactive
49fd9b6d 2729 * folio has a chance to be referenced again before it is reclaimed.
56e49d21 2730 *
2a2e4885
JW
2731 * If that fails and refaulting is observed, the inactive list grows.
2732 *
49fd9b6d 2733 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
3a50d14d 2734 * on this LRU, maintained by the pageout code. An inactive_ratio
49fd9b6d 2735 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
56e49d21 2736 *
59dc76b0
RR
2737 * total target max
2738 * memory ratio inactive
2739 * -------------------------------------
2740 * 10MB 1 5MB
2741 * 100MB 1 50MB
2742 * 1GB 3 250MB
2743 * 10GB 10 0.9GB
2744 * 100GB 31 3GB
2745 * 1TB 101 10GB
2746 * 10TB 320 32GB
56e49d21 2747 */
b91ac374 2748static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2749{
b91ac374 2750 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2751 unsigned long inactive, active;
2752 unsigned long inactive_ratio;
59dc76b0 2753 unsigned long gb;
e3790144 2754
b91ac374
JW
2755 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2756 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2757
b91ac374 2758 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2759 if (gb)
b91ac374
JW
2760 inactive_ratio = int_sqrt(10 * gb);
2761 else
2762 inactive_ratio = 1;
fd538803 2763
59dc76b0 2764 return inactive * inactive_ratio < active;
b39415b2
RR
2765}
2766
9a265114
JW
2767enum scan_balance {
2768 SCAN_EQUAL,
2769 SCAN_FRACT,
2770 SCAN_ANON,
2771 SCAN_FILE,
2772};
2773
f1e1a7be
YZ
2774static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2775{
2776 unsigned long file;
2777 struct lruvec *target_lruvec;
2778
ac35a490
YZ
2779 if (lru_gen_enabled())
2780 return;
2781
f1e1a7be
YZ
2782 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2783
2784 /*
2785 * Flush the memory cgroup stats, so that we read accurate per-memcg
2786 * lruvec stats for heuristics.
2787 */
2788 mem_cgroup_flush_stats();
2789
2790 /*
2791 * Determine the scan balance between anon and file LRUs.
2792 */
2793 spin_lock_irq(&target_lruvec->lru_lock);
2794 sc->anon_cost = target_lruvec->anon_cost;
2795 sc->file_cost = target_lruvec->file_cost;
2796 spin_unlock_irq(&target_lruvec->lru_lock);
2797
2798 /*
2799 * Target desirable inactive:active list ratios for the anon
2800 * and file LRU lists.
2801 */
2802 if (!sc->force_deactivate) {
2803 unsigned long refaults;
2804
2805 /*
2806 * When refaults are being observed, it means a new
2807 * workingset is being established. Deactivate to get
2808 * rid of any stale active pages quickly.
2809 */
2810 refaults = lruvec_page_state(target_lruvec,
2811 WORKINGSET_ACTIVATE_ANON);
2812 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2813 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2814 sc->may_deactivate |= DEACTIVATE_ANON;
2815 else
2816 sc->may_deactivate &= ~DEACTIVATE_ANON;
2817
2818 refaults = lruvec_page_state(target_lruvec,
2819 WORKINGSET_ACTIVATE_FILE);
2820 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2821 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2822 sc->may_deactivate |= DEACTIVATE_FILE;
2823 else
2824 sc->may_deactivate &= ~DEACTIVATE_FILE;
2825 } else
2826 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2827
2828 /*
2829 * If we have plenty of inactive file pages that aren't
2830 * thrashing, try to reclaim those first before touching
2831 * anonymous pages.
2832 */
2833 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2834 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2835 sc->cache_trim_mode = 1;
2836 else
2837 sc->cache_trim_mode = 0;
2838
2839 /*
2840 * Prevent the reclaimer from falling into the cache trap: as
2841 * cache pages start out inactive, every cache fault will tip
2842 * the scan balance towards the file LRU. And as the file LRU
2843 * shrinks, so does the window for rotation from references.
2844 * This means we have a runaway feedback loop where a tiny
2845 * thrashing file LRU becomes infinitely more attractive than
2846 * anon pages. Try to detect this based on file LRU size.
2847 */
2848 if (!cgroup_reclaim(sc)) {
2849 unsigned long total_high_wmark = 0;
2850 unsigned long free, anon;
2851 int z;
2852
2853 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2854 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2855 node_page_state(pgdat, NR_INACTIVE_FILE);
2856
2857 for (z = 0; z < MAX_NR_ZONES; z++) {
2858 struct zone *zone = &pgdat->node_zones[z];
2859
2860 if (!managed_zone(zone))
2861 continue;
2862
2863 total_high_wmark += high_wmark_pages(zone);
2864 }
2865
2866 /*
2867 * Consider anon: if that's low too, this isn't a
2868 * runaway file reclaim problem, but rather just
2869 * extreme pressure. Reclaim as per usual then.
2870 */
2871 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2872
2873 sc->file_is_tiny =
2874 file + free <= total_high_wmark &&
2875 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2876 anon >> sc->priority;
2877 }
2878}
2879
4f98a2fe
RR
2880/*
2881 * Determine how aggressively the anon and file LRU lists should be
02e458d8 2882 * scanned.
4f98a2fe 2883 *
49fd9b6d
MWO
2884 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2885 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
4f98a2fe 2886 */
afaf07a6
JW
2887static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2888 unsigned long *nr)
4f98a2fe 2889{
a2a36488 2890 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2891 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2892 unsigned long anon_cost, file_cost, total_cost;
33377678 2893 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2894 u64 fraction[ANON_AND_FILE];
9a265114 2895 u64 denominator = 0; /* gcc */
9a265114 2896 enum scan_balance scan_balance;
4f98a2fe 2897 unsigned long ap, fp;
4111304d 2898 enum lru_list lru;
76a33fc3 2899
49fd9b6d 2900 /* If we have no swap space, do not bother scanning anon folios. */
a2a36488 2901 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2902 scan_balance = SCAN_FILE;
76a33fc3
SL
2903 goto out;
2904 }
4f98a2fe 2905
10316b31
JW
2906 /*
2907 * Global reclaim will swap to prevent OOM even with no
2908 * swappiness, but memcg users want to use this knob to
2909 * disable swapping for individual groups completely when
2910 * using the memory controller's swap limit feature would be
2911 * too expensive.
2912 */
b5ead35e 2913 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2914 scan_balance = SCAN_FILE;
10316b31
JW
2915 goto out;
2916 }
2917
2918 /*
2919 * Do not apply any pressure balancing cleverness when the
2920 * system is close to OOM, scan both anon and file equally
2921 * (unless the swappiness setting disagrees with swapping).
2922 */
02695175 2923 if (!sc->priority && swappiness) {
9a265114 2924 scan_balance = SCAN_EQUAL;
10316b31
JW
2925 goto out;
2926 }
2927
62376251 2928 /*
53138cea 2929 * If the system is almost out of file pages, force-scan anon.
62376251 2930 */
b91ac374 2931 if (sc->file_is_tiny) {
53138cea
JW
2932 scan_balance = SCAN_ANON;
2933 goto out;
62376251
JW
2934 }
2935
7c5bd705 2936 /*
b91ac374
JW
2937 * If there is enough inactive page cache, we do not reclaim
2938 * anything from the anonymous working right now.
7c5bd705 2939 */
b91ac374 2940 if (sc->cache_trim_mode) {
9a265114 2941 scan_balance = SCAN_FILE;
7c5bd705
JW
2942 goto out;
2943 }
2944
9a265114 2945 scan_balance = SCAN_FRACT;
58c37f6e 2946 /*
314b57fb
JW
2947 * Calculate the pressure balance between anon and file pages.
2948 *
2949 * The amount of pressure we put on each LRU is inversely
2950 * proportional to the cost of reclaiming each list, as
2951 * determined by the share of pages that are refaulting, times
2952 * the relative IO cost of bringing back a swapped out
2953 * anonymous page vs reloading a filesystem page (swappiness).
2954 *
d483a5dd
JW
2955 * Although we limit that influence to ensure no list gets
2956 * left behind completely: at least a third of the pressure is
2957 * applied, before swappiness.
2958 *
314b57fb 2959 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2960 */
d483a5dd
JW
2961 total_cost = sc->anon_cost + sc->file_cost;
2962 anon_cost = total_cost + sc->anon_cost;
2963 file_cost = total_cost + sc->file_cost;
2964 total_cost = anon_cost + file_cost;
58c37f6e 2965
d483a5dd
JW
2966 ap = swappiness * (total_cost + 1);
2967 ap /= anon_cost + 1;
4f98a2fe 2968
d483a5dd
JW
2969 fp = (200 - swappiness) * (total_cost + 1);
2970 fp /= file_cost + 1;
4f98a2fe 2971
76a33fc3
SL
2972 fraction[0] = ap;
2973 fraction[1] = fp;
a4fe1631 2974 denominator = ap + fp;
76a33fc3 2975out:
688035f7
JW
2976 for_each_evictable_lru(lru) {
2977 int file = is_file_lru(lru);
9783aa99 2978 unsigned long lruvec_size;
f56ce412 2979 unsigned long low, min;
688035f7 2980 unsigned long scan;
9783aa99
CD
2981
2982 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2983 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2984 &min, &low);
9783aa99 2985
f56ce412 2986 if (min || low) {
9783aa99
CD
2987 /*
2988 * Scale a cgroup's reclaim pressure by proportioning
2989 * its current usage to its memory.low or memory.min
2990 * setting.
2991 *
2992 * This is important, as otherwise scanning aggression
2993 * becomes extremely binary -- from nothing as we
2994 * approach the memory protection threshold, to totally
2995 * nominal as we exceed it. This results in requiring
2996 * setting extremely liberal protection thresholds. It
2997 * also means we simply get no protection at all if we
2998 * set it too low, which is not ideal.
1bc63fb1
CD
2999 *
3000 * If there is any protection in place, we reduce scan
3001 * pressure by how much of the total memory used is
3002 * within protection thresholds.
9783aa99 3003 *
9de7ca46
CD
3004 * There is one special case: in the first reclaim pass,
3005 * we skip over all groups that are within their low
3006 * protection. If that fails to reclaim enough pages to
3007 * satisfy the reclaim goal, we come back and override
3008 * the best-effort low protection. However, we still
3009 * ideally want to honor how well-behaved groups are in
3010 * that case instead of simply punishing them all
3011 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
3012 * memory they are using, reducing the scan pressure
3013 * again by how much of the total memory used is under
3014 * hard protection.
9783aa99 3015 */
1bc63fb1 3016 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
3017 unsigned long protection;
3018
3019 /* memory.low scaling, make sure we retry before OOM */
3020 if (!sc->memcg_low_reclaim && low > min) {
3021 protection = low;
3022 sc->memcg_low_skipped = 1;
3023 } else {
3024 protection = min;
3025 }
1bc63fb1
CD
3026
3027 /* Avoid TOCTOU with earlier protection check */
3028 cgroup_size = max(cgroup_size, protection);
3029
3030 scan = lruvec_size - lruvec_size * protection /
32d4f4b7 3031 (cgroup_size + 1);
9783aa99
CD
3032
3033 /*
1bc63fb1 3034 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 3035 * reclaim moving forwards, avoiding decrementing
9de7ca46 3036 * sc->priority further than desirable.
9783aa99 3037 */
1bc63fb1 3038 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
3039 } else {
3040 scan = lruvec_size;
3041 }
3042
3043 scan >>= sc->priority;
6b4f7799 3044
688035f7
JW
3045 /*
3046 * If the cgroup's already been deleted, make sure to
3047 * scrape out the remaining cache.
3048 */
3049 if (!scan && !mem_cgroup_online(memcg))
9783aa99 3050 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 3051
688035f7
JW
3052 switch (scan_balance) {
3053 case SCAN_EQUAL:
3054 /* Scan lists relative to size */
3055 break;
3056 case SCAN_FRACT:
9a265114 3057 /*
688035f7
JW
3058 * Scan types proportional to swappiness and
3059 * their relative recent reclaim efficiency.
76073c64
GS
3060 * Make sure we don't miss the last page on
3061 * the offlined memory cgroups because of a
3062 * round-off error.
9a265114 3063 */
76073c64
GS
3064 scan = mem_cgroup_online(memcg) ?
3065 div64_u64(scan * fraction[file], denominator) :
3066 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 3067 denominator);
688035f7
JW
3068 break;
3069 case SCAN_FILE:
3070 case SCAN_ANON:
3071 /* Scan one type exclusively */
e072bff6 3072 if ((scan_balance == SCAN_FILE) != file)
688035f7 3073 scan = 0;
688035f7
JW
3074 break;
3075 default:
3076 /* Look ma, no brain */
3077 BUG();
9a265114 3078 }
688035f7 3079
688035f7 3080 nr[lru] = scan;
76a33fc3 3081 }
6e08a369 3082}
4f98a2fe 3083
2f368a9f
DH
3084/*
3085 * Anonymous LRU management is a waste if there is
3086 * ultimately no way to reclaim the memory.
3087 */
3088static bool can_age_anon_pages(struct pglist_data *pgdat,
3089 struct scan_control *sc)
3090{
3091 /* Aging the anon LRU is valuable if swap is present: */
3092 if (total_swap_pages > 0)
3093 return true;
3094
3095 /* Also valuable if anon pages can be demoted: */
3096 return can_demote(pgdat->node_id, sc);
3097}
3098
ec1c86b2
YZ
3099#ifdef CONFIG_LRU_GEN
3100
354ed597
YZ
3101#ifdef CONFIG_LRU_GEN_ENABLED
3102DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3103#define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3104#else
3105DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3106#define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3107#endif
3108
ec1c86b2
YZ
3109/******************************************************************************
3110 * shorthand helpers
3111 ******************************************************************************/
3112
ac35a490
YZ
3113#define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3114
3115#define DEFINE_MAX_SEQ(lruvec) \
3116 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3117
3118#define DEFINE_MIN_SEQ(lruvec) \
3119 unsigned long min_seq[ANON_AND_FILE] = { \
3120 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3121 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3122 }
3123
ec1c86b2
YZ
3124#define for_each_gen_type_zone(gen, type, zone) \
3125 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3126 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3127 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3128
bd74fdae 3129static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
ec1c86b2
YZ
3130{
3131 struct pglist_data *pgdat = NODE_DATA(nid);
3132
3133#ifdef CONFIG_MEMCG
3134 if (memcg) {
3135 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3136
3137 /* for hotadd_new_pgdat() */
3138 if (!lruvec->pgdat)
3139 lruvec->pgdat = pgdat;
3140
3141 return lruvec;
3142 }
3143#endif
3144 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3145
3146 return pgdat ? &pgdat->__lruvec : NULL;
3147}
3148
ac35a490
YZ
3149static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3150{
3151 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3152 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3153
3154 if (!can_demote(pgdat->node_id, sc) &&
3155 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3156 return 0;
3157
3158 return mem_cgroup_swappiness(memcg);
3159}
3160
3161static int get_nr_gens(struct lruvec *lruvec, int type)
3162{
3163 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3164}
3165
3166static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3167{
3168 /* see the comment on lru_gen_struct */
3169 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3170 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3171 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3172}
3173
bd74fdae
YZ
3174/******************************************************************************
3175 * mm_struct list
3176 ******************************************************************************/
3177
3178static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3179{
3180 static struct lru_gen_mm_list mm_list = {
3181 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3182 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3183 };
3184
3185#ifdef CONFIG_MEMCG
3186 if (memcg)
3187 return &memcg->mm_list;
3188#endif
3189 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3190
3191 return &mm_list;
3192}
3193
3194void lru_gen_add_mm(struct mm_struct *mm)
3195{
3196 int nid;
3197 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3198 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3199
3200 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3201#ifdef CONFIG_MEMCG
3202 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3203 mm->lru_gen.memcg = memcg;
3204#endif
3205 spin_lock(&mm_list->lock);
3206
3207 for_each_node_state(nid, N_MEMORY) {
3208 struct lruvec *lruvec = get_lruvec(memcg, nid);
3209
3210 if (!lruvec)
3211 continue;
3212
3213 /* the first addition since the last iteration */
3214 if (lruvec->mm_state.tail == &mm_list->fifo)
3215 lruvec->mm_state.tail = &mm->lru_gen.list;
3216 }
3217
3218 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3219
3220 spin_unlock(&mm_list->lock);
3221}
3222
3223void lru_gen_del_mm(struct mm_struct *mm)
3224{
3225 int nid;
3226 struct lru_gen_mm_list *mm_list;
3227 struct mem_cgroup *memcg = NULL;
3228
3229 if (list_empty(&mm->lru_gen.list))
3230 return;
3231
3232#ifdef CONFIG_MEMCG
3233 memcg = mm->lru_gen.memcg;
3234#endif
3235 mm_list = get_mm_list(memcg);
3236
3237 spin_lock(&mm_list->lock);
3238
3239 for_each_node(nid) {
3240 struct lruvec *lruvec = get_lruvec(memcg, nid);
3241
3242 if (!lruvec)
3243 continue;
3244
3245 /* where the last iteration ended (exclusive) */
3246 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3247 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3248
3249 /* where the current iteration continues (inclusive) */
3250 if (lruvec->mm_state.head != &mm->lru_gen.list)
3251 continue;
3252
3253 lruvec->mm_state.head = lruvec->mm_state.head->next;
3254 /* the deletion ends the current iteration */
3255 if (lruvec->mm_state.head == &mm_list->fifo)
3256 WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3257 }
3258
3259 list_del_init(&mm->lru_gen.list);
3260
3261 spin_unlock(&mm_list->lock);
3262
3263#ifdef CONFIG_MEMCG
3264 mem_cgroup_put(mm->lru_gen.memcg);
3265 mm->lru_gen.memcg = NULL;
3266#endif
3267}
3268
3269#ifdef CONFIG_MEMCG
3270void lru_gen_migrate_mm(struct mm_struct *mm)
3271{
3272 struct mem_cgroup *memcg;
3273 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3274
3275 VM_WARN_ON_ONCE(task->mm != mm);
3276 lockdep_assert_held(&task->alloc_lock);
3277
3278 /* for mm_update_next_owner() */
3279 if (mem_cgroup_disabled())
3280 return;
3281
3282 rcu_read_lock();
3283 memcg = mem_cgroup_from_task(task);
3284 rcu_read_unlock();
3285 if (memcg == mm->lru_gen.memcg)
3286 return;
3287
3288 VM_WARN_ON_ONCE(!mm->lru_gen.memcg);
3289 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3290
3291 lru_gen_del_mm(mm);
3292 lru_gen_add_mm(mm);
3293}
3294#endif
3295
3296/*
3297 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3298 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3299 * bits in a bitmap, k is the number of hash functions and n is the number of
3300 * inserted items.
3301 *
3302 * Page table walkers use one of the two filters to reduce their search space.
3303 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3304 * aging uses the double-buffering technique to flip to the other filter each
3305 * time it produces a new generation. For non-leaf entries that have enough
3306 * leaf entries, the aging carries them over to the next generation in
3307 * walk_pmd_range(); the eviction also report them when walking the rmap
3308 * in lru_gen_look_around().
3309 *
3310 * For future optimizations:
3311 * 1. It's not necessary to keep both filters all the time. The spare one can be
3312 * freed after the RCU grace period and reallocated if needed again.
3313 * 2. And when reallocating, it's worth scaling its size according to the number
3314 * of inserted entries in the other filter, to reduce the memory overhead on
3315 * small systems and false positives on large systems.
3316 * 3. Jenkins' hash function is an alternative to Knuth's.
3317 */
3318#define BLOOM_FILTER_SHIFT 15
3319
3320static inline int filter_gen_from_seq(unsigned long seq)
3321{
3322 return seq % NR_BLOOM_FILTERS;
3323}
3324
3325static void get_item_key(void *item, int *key)
3326{
3327 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3328
3329 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3330
3331 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3332 key[1] = hash >> BLOOM_FILTER_SHIFT;
3333}
3334
3335static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3336{
3337 unsigned long *filter;
3338 int gen = filter_gen_from_seq(seq);
3339
3340 filter = lruvec->mm_state.filters[gen];
3341 if (filter) {
3342 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3343 return;
3344 }
3345
3346 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3347 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3348 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3349}
3350
3351static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3352{
3353 int key[2];
3354 unsigned long *filter;
3355 int gen = filter_gen_from_seq(seq);
3356
3357 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3358 if (!filter)
3359 return;
3360
3361 get_item_key(item, key);
3362
3363 if (!test_bit(key[0], filter))
3364 set_bit(key[0], filter);
3365 if (!test_bit(key[1], filter))
3366 set_bit(key[1], filter);
3367}
3368
3369static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3370{
3371 int key[2];
3372 unsigned long *filter;
3373 int gen = filter_gen_from_seq(seq);
3374
3375 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3376 if (!filter)
3377 return true;
3378
3379 get_item_key(item, key);
3380
3381 return test_bit(key[0], filter) && test_bit(key[1], filter);
3382}
3383
3384static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3385{
3386 int i;
3387 int hist;
3388
3389 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3390
3391 if (walk) {
3392 hist = lru_hist_from_seq(walk->max_seq);
3393
3394 for (i = 0; i < NR_MM_STATS; i++) {
3395 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3396 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3397 walk->mm_stats[i] = 0;
3398 }
3399 }
3400
3401 if (NR_HIST_GENS > 1 && last) {
3402 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3403
3404 for (i = 0; i < NR_MM_STATS; i++)
3405 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3406 }
3407}
3408
3409static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3410{
3411 int type;
3412 unsigned long size = 0;
3413 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3414 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3415
3416 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3417 return true;
3418
3419 clear_bit(key, &mm->lru_gen.bitmap);
3420
3421 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3422 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3423 get_mm_counter(mm, MM_ANONPAGES) +
3424 get_mm_counter(mm, MM_SHMEMPAGES);
3425 }
3426
3427 if (size < MIN_LRU_BATCH)
3428 return true;
3429
3430 return !mmget_not_zero(mm);
3431}
3432
3433static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3434 struct mm_struct **iter)
3435{
3436 bool first = false;
3437 bool last = true;
3438 struct mm_struct *mm = NULL;
3439 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3440 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3441 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3442
3443 /*
3444 * There are four interesting cases for this page table walker:
3445 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3446 * there is nothing left to do.
3447 * 2. It's the first of the current generation, and it needs to reset
3448 * the Bloom filter for the next generation.
3449 * 3. It reaches the end of mm_list, and it needs to increment
3450 * mm_state->seq; the iteration is done.
3451 * 4. It's the last of the current generation, and it needs to reset the
3452 * mm stats counters for the next generation.
3453 */
3454 spin_lock(&mm_list->lock);
3455
3456 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3457 VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3458 VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3459
3460 if (walk->max_seq <= mm_state->seq) {
3461 if (!*iter)
3462 last = false;
3463 goto done;
3464 }
3465
3466 if (!mm_state->nr_walkers) {
3467 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3468
3469 mm_state->head = mm_list->fifo.next;
3470 first = true;
3471 }
3472
3473 while (!mm && mm_state->head != &mm_list->fifo) {
3474 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3475
3476 mm_state->head = mm_state->head->next;
3477
3478 /* force scan for those added after the last iteration */
3479 if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3480 mm_state->tail = mm_state->head;
3481 walk->force_scan = true;
3482 }
3483
3484 if (should_skip_mm(mm, walk))
3485 mm = NULL;
3486 }
3487
3488 if (mm_state->head == &mm_list->fifo)
3489 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3490done:
3491 if (*iter && !mm)
3492 mm_state->nr_walkers--;
3493 if (!*iter && mm)
3494 mm_state->nr_walkers++;
3495
3496 if (mm_state->nr_walkers)
3497 last = false;
3498
3499 if (*iter || last)
3500 reset_mm_stats(lruvec, walk, last);
3501
3502 spin_unlock(&mm_list->lock);
3503
3504 if (mm && first)
3505 reset_bloom_filter(lruvec, walk->max_seq + 1);
3506
3507 if (*iter)
3508 mmput_async(*iter);
3509
3510 *iter = mm;
3511
3512 return last;
3513}
3514
3515static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3516{
3517 bool success = false;
3518 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3519 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3520 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3521
3522 spin_lock(&mm_list->lock);
3523
3524 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3525
3526 if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3527 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3528
3529 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3530 reset_mm_stats(lruvec, NULL, true);
3531 success = true;
3532 }
3533
3534 spin_unlock(&mm_list->lock);
3535
3536 return success;
3537}
3538
ac35a490
YZ
3539/******************************************************************************
3540 * refault feedback loop
3541 ******************************************************************************/
3542
3543/*
3544 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3545 *
3546 * The P term is refaulted/(evicted+protected) from a tier in the generation
3547 * currently being evicted; the I term is the exponential moving average of the
3548 * P term over the generations previously evicted, using the smoothing factor
3549 * 1/2; the D term isn't supported.
3550 *
3551 * The setpoint (SP) is always the first tier of one type; the process variable
3552 * (PV) is either any tier of the other type or any other tier of the same
3553 * type.
3554 *
3555 * The error is the difference between the SP and the PV; the correction is to
3556 * turn off protection when SP>PV or turn on protection when SP<PV.
3557 *
3558 * For future optimizations:
3559 * 1. The D term may discount the other two terms over time so that long-lived
3560 * generations can resist stale information.
3561 */
3562struct ctrl_pos {
3563 unsigned long refaulted;
3564 unsigned long total;
3565 int gain;
3566};
3567
3568static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3569 struct ctrl_pos *pos)
3570{
3571 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3572 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3573
3574 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3575 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3576 pos->total = lrugen->avg_total[type][tier] +
3577 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3578 if (tier)
3579 pos->total += lrugen->protected[hist][type][tier - 1];
3580 pos->gain = gain;
3581}
3582
3583static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3584{
3585 int hist, tier;
3586 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3587 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3588 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3589
3590 lockdep_assert_held(&lruvec->lru_lock);
3591
3592 if (!carryover && !clear)
3593 return;
3594
3595 hist = lru_hist_from_seq(seq);
3596
3597 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3598 if (carryover) {
3599 unsigned long sum;
3600
3601 sum = lrugen->avg_refaulted[type][tier] +
3602 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3603 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3604
3605 sum = lrugen->avg_total[type][tier] +
3606 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3607 if (tier)
3608 sum += lrugen->protected[hist][type][tier - 1];
3609 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3610 }
3611
3612 if (clear) {
3613 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3614 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3615 if (tier)
3616 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3617 }
3618 }
3619}
3620
3621static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3622{
3623 /*
3624 * Return true if the PV has a limited number of refaults or a lower
3625 * refaulted/total than the SP.
3626 */
3627 return pv->refaulted < MIN_LRU_BATCH ||
3628 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3629 (sp->refaulted + 1) * pv->total * pv->gain;
3630}
3631
3632/******************************************************************************
3633 * the aging
3634 ******************************************************************************/
3635
018ee47f
YZ
3636/* promote pages accessed through page tables */
3637static int folio_update_gen(struct folio *folio, int gen)
3638{
3639 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3640
3641 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3642 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3643
3644 do {
3645 /* lru_gen_del_folio() has isolated this page? */
3646 if (!(old_flags & LRU_GEN_MASK)) {
49fd9b6d 3647 /* for shrink_folio_list() */
018ee47f
YZ
3648 new_flags = old_flags | BIT(PG_referenced);
3649 continue;
3650 }
3651
3652 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3653 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3654 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3655
3656 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3657}
3658
ac35a490
YZ
3659/* protect pages accessed multiple times through file descriptors */
3660static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3661{
3662 int type = folio_is_file_lru(folio);
3663 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3664 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3665 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3666
3667 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3668
3669 do {
018ee47f
YZ
3670 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3671 /* folio_update_gen() has promoted this page? */
3672 if (new_gen >= 0 && new_gen != old_gen)
3673 return new_gen;
3674
ac35a490
YZ
3675 new_gen = (old_gen + 1) % MAX_NR_GENS;
3676
3677 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3678 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3679 /* for folio_end_writeback() */
3680 if (reclaiming)
3681 new_flags |= BIT(PG_reclaim);
3682 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3683
3684 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3685
3686 return new_gen;
3687}
3688
bd74fdae
YZ
3689static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3690 int old_gen, int new_gen)
3691{
3692 int type = folio_is_file_lru(folio);
3693 int zone = folio_zonenum(folio);
3694 int delta = folio_nr_pages(folio);
3695
3696 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3697 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3698
3699 walk->batched++;
3700
3701 walk->nr_pages[old_gen][type][zone] -= delta;
3702 walk->nr_pages[new_gen][type][zone] += delta;
3703}
3704
3705static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3706{
3707 int gen, type, zone;
3708 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3709
3710 walk->batched = 0;
3711
3712 for_each_gen_type_zone(gen, type, zone) {
3713 enum lru_list lru = type * LRU_INACTIVE_FILE;
3714 int delta = walk->nr_pages[gen][type][zone];
3715
3716 if (!delta)
3717 continue;
3718
3719 walk->nr_pages[gen][type][zone] = 0;
3720 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3721 lrugen->nr_pages[gen][type][zone] + delta);
3722
3723 if (lru_gen_is_active(lruvec, gen))
3724 lru += LRU_ACTIVE;
3725 __update_lru_size(lruvec, lru, zone, delta);
3726 }
3727}
3728
3729static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3730{
3731 struct address_space *mapping;
3732 struct vm_area_struct *vma = args->vma;
3733 struct lru_gen_mm_walk *walk = args->private;
3734
3735 if (!vma_is_accessible(vma))
3736 return true;
3737
3738 if (is_vm_hugetlb_page(vma))
3739 return true;
3740
3741 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
3742 return true;
3743
3744 if (vma == get_gate_vma(vma->vm_mm))
3745 return true;
3746
3747 if (vma_is_anonymous(vma))
3748 return !walk->can_swap;
3749
3750 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3751 return true;
3752
3753 mapping = vma->vm_file->f_mapping;
3754 if (mapping_unevictable(mapping))
3755 return true;
3756
3757 if (shmem_mapping(mapping))
3758 return !walk->can_swap;
3759
3760 /* to exclude special mappings like dax, etc. */
3761 return !mapping->a_ops->read_folio;
3762}
3763
3764/*
3765 * Some userspace memory allocators map many single-page VMAs. Instead of
3766 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3767 * table to reduce zigzags and improve cache performance.
3768 */
3769static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3770 unsigned long *vm_start, unsigned long *vm_end)
3771{
3772 unsigned long start = round_up(*vm_end, size);
3773 unsigned long end = (start | ~mask) + 1;
78ba531f 3774 VMA_ITERATOR(vmi, args->mm, start);
bd74fdae
YZ
3775
3776 VM_WARN_ON_ONCE(mask & size);
3777 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3778
78ba531f 3779 for_each_vma(vmi, args->vma) {
bd74fdae
YZ
3780 if (end && end <= args->vma->vm_start)
3781 return false;
3782
78ba531f 3783 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
bd74fdae 3784 continue;
bd74fdae
YZ
3785
3786 *vm_start = max(start, args->vma->vm_start);
3787 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3788
3789 return true;
3790 }
3791
3792 return false;
3793}
3794
018ee47f
YZ
3795static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3796{
3797 unsigned long pfn = pte_pfn(pte);
3798
3799 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3800
3801 if (!pte_present(pte) || is_zero_pfn(pfn))
3802 return -1;
3803
3804 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3805 return -1;
3806
3807 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3808 return -1;
3809
3810 return pfn;
3811}
3812
bd74fdae
YZ
3813#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3814static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3815{
3816 unsigned long pfn = pmd_pfn(pmd);
3817
3818 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3819
3820 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3821 return -1;
3822
3823 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3824 return -1;
3825
3826 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3827 return -1;
3828
3829 return pfn;
3830}
3831#endif
3832
018ee47f 3833static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
bd74fdae 3834 struct pglist_data *pgdat, bool can_swap)
018ee47f
YZ
3835{
3836 struct folio *folio;
3837
3838 /* try to avoid unnecessary memory loads */
3839 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3840 return NULL;
3841
3842 folio = pfn_folio(pfn);
3843 if (folio_nid(folio) != pgdat->node_id)
3844 return NULL;
3845
3846 if (folio_memcg_rcu(folio) != memcg)
3847 return NULL;
3848
bd74fdae
YZ
3849 /* file VMAs can contain anon pages from COW */
3850 if (!folio_is_file_lru(folio) && !can_swap)
3851 return NULL;
3852
018ee47f
YZ
3853 return folio;
3854}
3855
bd74fdae
YZ
3856static bool suitable_to_scan(int total, int young)
3857{
3858 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3859
3860 /* suitable if the average number of young PTEs per cacheline is >=1 */
3861 return young * n >= total;
3862}
3863
3864static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3865 struct mm_walk *args)
3866{
3867 int i;
3868 pte_t *pte;
3869 spinlock_t *ptl;
3870 unsigned long addr;
3871 int total = 0;
3872 int young = 0;
3873 struct lru_gen_mm_walk *walk = args->private;
3874 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3875 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3876 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3877
3878 VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3879
3880 ptl = pte_lockptr(args->mm, pmd);
3881 if (!spin_trylock(ptl))
3882 return false;
3883
3884 arch_enter_lazy_mmu_mode();
3885
3886 pte = pte_offset_map(pmd, start & PMD_MASK);
3887restart:
3888 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3889 unsigned long pfn;
3890 struct folio *folio;
3891
3892 total++;
3893 walk->mm_stats[MM_LEAF_TOTAL]++;
3894
3895 pfn = get_pte_pfn(pte[i], args->vma, addr);
3896 if (pfn == -1)
3897 continue;
3898
3899 if (!pte_young(pte[i])) {
3900 walk->mm_stats[MM_LEAF_OLD]++;
3901 continue;
3902 }
3903
3904 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3905 if (!folio)
3906 continue;
3907
3908 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3909 VM_WARN_ON_ONCE(true);
3910
3911 young++;
3912 walk->mm_stats[MM_LEAF_YOUNG]++;
3913
3914 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3915 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3916 !folio_test_swapcache(folio)))
3917 folio_mark_dirty(folio);
3918
3919 old_gen = folio_update_gen(folio, new_gen);
3920 if (old_gen >= 0 && old_gen != new_gen)
3921 update_batch_size(walk, folio, old_gen, new_gen);
3922 }
3923
3924 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3925 goto restart;
3926
3927 pte_unmap(pte);
3928
3929 arch_leave_lazy_mmu_mode();
3930 spin_unlock(ptl);
3931
3932 return suitable_to_scan(total, young);
3933}
3934
3935#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3936static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3937 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3938{
3939 int i;
3940 pmd_t *pmd;
3941 spinlock_t *ptl;
3942 struct lru_gen_mm_walk *walk = args->private;
3943 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3944 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3945 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3946
3947 VM_WARN_ON_ONCE(pud_leaf(*pud));
3948
3949 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3950 if (*start == -1) {
3951 *start = next;
3952 return;
3953 }
3954
3955 i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
3956 if (i && i <= MIN_LRU_BATCH) {
3957 __set_bit(i - 1, bitmap);
3958 return;
3959 }
3960
3961 pmd = pmd_offset(pud, *start);
3962
3963 ptl = pmd_lockptr(args->mm, pmd);
3964 if (!spin_trylock(ptl))
3965 goto done;
3966
3967 arch_enter_lazy_mmu_mode();
3968
3969 do {
3970 unsigned long pfn;
3971 struct folio *folio;
3972 unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
3973
3974 pfn = get_pmd_pfn(pmd[i], vma, addr);
3975 if (pfn == -1)
3976 goto next;
3977
3978 if (!pmd_trans_huge(pmd[i])) {
354ed597
YZ
3979 if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) &&
3980 get_cap(LRU_GEN_NONLEAF_YOUNG))
bd74fdae
YZ
3981 pmdp_test_and_clear_young(vma, addr, pmd + i);
3982 goto next;
3983 }
3984
3985 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3986 if (!folio)
3987 goto next;
3988
3989 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3990 goto next;
3991
3992 walk->mm_stats[MM_LEAF_YOUNG]++;
3993
3994 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3995 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3996 !folio_test_swapcache(folio)))
3997 folio_mark_dirty(folio);
3998
3999 old_gen = folio_update_gen(folio, new_gen);
4000 if (old_gen >= 0 && old_gen != new_gen)
4001 update_batch_size(walk, folio, old_gen, new_gen);
4002next:
4003 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4004 } while (i <= MIN_LRU_BATCH);
4005
4006 arch_leave_lazy_mmu_mode();
4007 spin_unlock(ptl);
4008done:
4009 *start = -1;
4010 bitmap_zero(bitmap, MIN_LRU_BATCH);
4011}
4012#else
4013static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
4014 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4015{
4016}
4017#endif
4018
4019static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4020 struct mm_walk *args)
4021{
4022 int i;
4023 pmd_t *pmd;
4024 unsigned long next;
4025 unsigned long addr;
4026 struct vm_area_struct *vma;
4027 unsigned long pos = -1;
4028 struct lru_gen_mm_walk *walk = args->private;
4029 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4030
4031 VM_WARN_ON_ONCE(pud_leaf(*pud));
4032
4033 /*
4034 * Finish an entire PMD in two passes: the first only reaches to PTE
4035 * tables to avoid taking the PMD lock; the second, if necessary, takes
4036 * the PMD lock to clear the accessed bit in PMD entries.
4037 */
4038 pmd = pmd_offset(pud, start & PUD_MASK);
4039restart:
4040 /* walk_pte_range() may call get_next_vma() */
4041 vma = args->vma;
4042 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4043 pmd_t val = pmd_read_atomic(pmd + i);
4044
4045 /* for pmd_read_atomic() */
4046 barrier();
4047
4048 next = pmd_addr_end(addr, end);
4049
4050 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4051 walk->mm_stats[MM_LEAF_TOTAL]++;
4052 continue;
4053 }
4054
4055#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4056 if (pmd_trans_huge(val)) {
4057 unsigned long pfn = pmd_pfn(val);
4058 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4059
4060 walk->mm_stats[MM_LEAF_TOTAL]++;
4061
4062 if (!pmd_young(val)) {
4063 walk->mm_stats[MM_LEAF_OLD]++;
4064 continue;
4065 }
4066
4067 /* try to avoid unnecessary memory loads */
4068 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4069 continue;
4070
4071 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4072 continue;
4073 }
4074#endif
4075 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4076
4077#ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
354ed597
YZ
4078 if (get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4079 if (!pmd_young(val))
4080 continue;
bd74fdae 4081
354ed597
YZ
4082 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4083 }
bd74fdae
YZ
4084#endif
4085 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4086 continue;
4087
4088 walk->mm_stats[MM_NONLEAF_FOUND]++;
4089
4090 if (!walk_pte_range(&val, addr, next, args))
4091 continue;
4092
4093 walk->mm_stats[MM_NONLEAF_ADDED]++;
4094
4095 /* carry over to the next generation */
4096 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4097 }
4098
4099 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
4100
4101 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4102 goto restart;
4103}
4104
4105static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4106 struct mm_walk *args)
4107{
4108 int i;
4109 pud_t *pud;
4110 unsigned long addr;
4111 unsigned long next;
4112 struct lru_gen_mm_walk *walk = args->private;
4113
4114 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4115
4116 pud = pud_offset(p4d, start & P4D_MASK);
4117restart:
4118 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4119 pud_t val = READ_ONCE(pud[i]);
4120
4121 next = pud_addr_end(addr, end);
4122
4123 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4124 continue;
4125
4126 walk_pmd_range(&val, addr, next, args);
4127
4128 /* a racy check to curtail the waiting time */
4129 if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4130 return 1;
4131
4132 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4133 end = (addr | ~PUD_MASK) + 1;
4134 goto done;
4135 }
4136 }
4137
4138 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4139 goto restart;
4140
4141 end = round_up(end, P4D_SIZE);
4142done:
4143 if (!end || !args->vma)
4144 return 1;
4145
4146 walk->next_addr = max(end, args->vma->vm_start);
4147
4148 return -EAGAIN;
4149}
4150
4151static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4152{
4153 static const struct mm_walk_ops mm_walk_ops = {
4154 .test_walk = should_skip_vma,
4155 .p4d_entry = walk_pud_range,
4156 };
4157
4158 int err;
4159 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4160
4161 walk->next_addr = FIRST_USER_ADDRESS;
4162
4163 do {
4164 err = -EBUSY;
4165
4166 /* folio_update_gen() requires stable folio_memcg() */
4167 if (!mem_cgroup_trylock_pages(memcg))
4168 break;
4169
4170 /* the caller might be holding the lock for write */
4171 if (mmap_read_trylock(mm)) {
4172 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4173
4174 mmap_read_unlock(mm);
4175 }
4176
4177 mem_cgroup_unlock_pages();
4178
4179 if (walk->batched) {
4180 spin_lock_irq(&lruvec->lru_lock);
4181 reset_batch_size(lruvec, walk);
4182 spin_unlock_irq(&lruvec->lru_lock);
4183 }
4184
4185 cond_resched();
4186 } while (err == -EAGAIN);
4187}
4188
4189static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat)
4190{
4191 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4192
4193 if (pgdat && current_is_kswapd()) {
4194 VM_WARN_ON_ONCE(walk);
4195
4196 walk = &pgdat->mm_walk;
4197 } else if (!pgdat && !walk) {
4198 VM_WARN_ON_ONCE(current_is_kswapd());
4199
4200 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4201 }
4202
4203 current->reclaim_state->mm_walk = walk;
4204
4205 return walk;
4206}
4207
4208static void clear_mm_walk(void)
4209{
4210 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4211
4212 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4213 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4214
4215 current->reclaim_state->mm_walk = NULL;
4216
4217 if (!current_is_kswapd())
4218 kfree(walk);
4219}
4220
d6c3af7d 4221static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
ac35a490 4222{
d6c3af7d
YZ
4223 int zone;
4224 int remaining = MAX_LRU_BATCH;
ac35a490 4225 struct lru_gen_struct *lrugen = &lruvec->lrugen;
d6c3af7d
YZ
4226 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4227
4228 if (type == LRU_GEN_ANON && !can_swap)
4229 goto done;
4230
4231 /* prevent cold/hot inversion if force_scan is true */
4232 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4233 struct list_head *head = &lrugen->lists[old_gen][type][zone];
4234
4235 while (!list_empty(head)) {
4236 struct folio *folio = lru_to_folio(head);
4237
4238 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4239 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4240 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4241 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
ac35a490 4242
d6c3af7d
YZ
4243 new_gen = folio_inc_gen(lruvec, folio, false);
4244 list_move_tail(&folio->lru, &lrugen->lists[new_gen][type][zone]);
4245
4246 if (!--remaining)
4247 return false;
4248 }
4249 }
4250done:
ac35a490
YZ
4251 reset_ctrl_pos(lruvec, type, true);
4252 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
d6c3af7d
YZ
4253
4254 return true;
ac35a490
YZ
4255}
4256
4257static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4258{
4259 int gen, type, zone;
4260 bool success = false;
4261 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4262 DEFINE_MIN_SEQ(lruvec);
4263
4264 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4265
4266 /* find the oldest populated generation */
4267 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4268 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4269 gen = lru_gen_from_seq(min_seq[type]);
4270
4271 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4272 if (!list_empty(&lrugen->lists[gen][type][zone]))
4273 goto next;
4274 }
4275
4276 min_seq[type]++;
4277 }
4278next:
4279 ;
4280 }
4281
4282 /* see the comment on lru_gen_struct */
4283 if (can_swap) {
4284 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4285 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4286 }
4287
4288 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4289 if (min_seq[type] == lrugen->min_seq[type])
4290 continue;
4291
4292 reset_ctrl_pos(lruvec, type, true);
4293 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4294 success = true;
4295 }
4296
4297 return success;
4298}
4299
d6c3af7d 4300static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
ac35a490
YZ
4301{
4302 int prev, next;
4303 int type, zone;
4304 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4305
4306 spin_lock_irq(&lruvec->lru_lock);
4307
4308 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4309
ac35a490
YZ
4310 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4311 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4312 continue;
4313
d6c3af7d 4314 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
ac35a490 4315
d6c3af7d
YZ
4316 while (!inc_min_seq(lruvec, type, can_swap)) {
4317 spin_unlock_irq(&lruvec->lru_lock);
4318 cond_resched();
4319 spin_lock_irq(&lruvec->lru_lock);
4320 }
ac35a490
YZ
4321 }
4322
4323 /*
4324 * Update the active/inactive LRU sizes for compatibility. Both sides of
4325 * the current max_seq need to be covered, since max_seq+1 can overlap
4326 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4327 * overlap, cold/hot inversion happens.
4328 */
4329 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4330 next = lru_gen_from_seq(lrugen->max_seq + 1);
4331
4332 for (type = 0; type < ANON_AND_FILE; type++) {
4333 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4334 enum lru_list lru = type * LRU_INACTIVE_FILE;
4335 long delta = lrugen->nr_pages[prev][type][zone] -
4336 lrugen->nr_pages[next][type][zone];
4337
4338 if (!delta)
4339 continue;
4340
4341 __update_lru_size(lruvec, lru, zone, delta);
4342 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4343 }
4344 }
4345
4346 for (type = 0; type < ANON_AND_FILE; type++)
4347 reset_ctrl_pos(lruvec, type, false);
4348
1332a809 4349 WRITE_ONCE(lrugen->timestamps[next], jiffies);
ac35a490
YZ
4350 /* make sure preceding modifications appear */
4351 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
bd74fdae 4352
ac35a490
YZ
4353 spin_unlock_irq(&lruvec->lru_lock);
4354}
4355
bd74fdae 4356static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
d6c3af7d 4357 struct scan_control *sc, bool can_swap, bool force_scan)
bd74fdae
YZ
4358{
4359 bool success;
4360 struct lru_gen_mm_walk *walk;
4361 struct mm_struct *mm = NULL;
4362 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4363
4364 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4365
4366 /* see the comment in iterate_mm_list() */
4367 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4368 success = false;
4369 goto done;
4370 }
4371
4372 /*
4373 * If the hardware doesn't automatically set the accessed bit, fallback
4374 * to lru_gen_look_around(), which only clears the accessed bit in a
4375 * handful of PTEs. Spreading the work out over a period of time usually
4376 * is less efficient, but it avoids bursty page faults.
4377 */
d6c3af7d 4378 if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) {
bd74fdae
YZ
4379 success = iterate_mm_list_nowalk(lruvec, max_seq);
4380 goto done;
4381 }
4382
4383 walk = set_mm_walk(NULL);
4384 if (!walk) {
4385 success = iterate_mm_list_nowalk(lruvec, max_seq);
4386 goto done;
4387 }
4388
4389 walk->lruvec = lruvec;
4390 walk->max_seq = max_seq;
4391 walk->can_swap = can_swap;
d6c3af7d 4392 walk->force_scan = force_scan;
bd74fdae
YZ
4393
4394 do {
4395 success = iterate_mm_list(lruvec, walk, &mm);
4396 if (mm)
4397 walk_mm(lruvec, mm, walk);
4398
4399 cond_resched();
4400 } while (mm);
4401done:
4402 if (!success) {
4403 if (sc->priority <= DEF_PRIORITY - 2)
4404 wait_event_killable(lruvec->mm_state.wait,
4405 max_seq < READ_ONCE(lrugen->max_seq));
4406
4407 return max_seq < READ_ONCE(lrugen->max_seq);
4408 }
4409
4410 VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4411
d6c3af7d 4412 inc_max_seq(lruvec, can_swap, force_scan);
bd74fdae
YZ
4413 /* either this sees any waiters or they will see updated max_seq */
4414 if (wq_has_sleeper(&lruvec->mm_state.wait))
4415 wake_up_all(&lruvec->mm_state.wait);
4416
4417 wakeup_flusher_threads(WB_REASON_VMSCAN);
4418
4419 return true;
4420}
4421
ac35a490
YZ
4422static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq,
4423 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4424{
4425 int gen, type, zone;
4426 unsigned long old = 0;
4427 unsigned long young = 0;
4428 unsigned long total = 0;
4429 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4430 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4431
4432 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4433 unsigned long seq;
4434
4435 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4436 unsigned long size = 0;
4437
4438 gen = lru_gen_from_seq(seq);
4439
4440 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4441 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4442
4443 total += size;
4444 if (seq == max_seq)
4445 young += size;
4446 else if (seq + MIN_NR_GENS == max_seq)
4447 old += size;
4448 }
4449 }
4450
4451 /* try to scrape all its memory if this memcg was deleted */
4452 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4453
4454 /*
4455 * The aging tries to be lazy to reduce the overhead, while the eviction
4456 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4457 * ideal number of generations is MIN_NR_GENS+1.
4458 */
4459 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq)
4460 return true;
4461 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4462 return false;
4463
4464 /*
4465 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4466 * of the total number of pages for each generation. A reasonable range
4467 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4468 * aging cares about the upper bound of hot pages, while the eviction
4469 * cares about the lower bound of cold pages.
4470 */
4471 if (young * MIN_NR_GENS > total)
4472 return true;
4473 if (old * (MIN_NR_GENS + 2) < total)
4474 return true;
4475
4476 return false;
4477}
4478
1332a809 4479static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)
ac35a490
YZ
4480{
4481 bool need_aging;
4482 unsigned long nr_to_scan;
4483 int swappiness = get_swappiness(lruvec, sc);
4484 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4485 DEFINE_MAX_SEQ(lruvec);
4486 DEFINE_MIN_SEQ(lruvec);
4487
4488 VM_WARN_ON_ONCE(sc->memcg_low_reclaim);
4489
4490 mem_cgroup_calculate_protection(NULL, memcg);
4491
4492 if (mem_cgroup_below_min(memcg))
1332a809 4493 return false;
ac35a490
YZ
4494
4495 need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan);
1332a809
YZ
4496
4497 if (min_ttl) {
4498 int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4499 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4500
4501 if (time_is_after_jiffies(birth + min_ttl))
4502 return false;
4503
4504 /* the size is likely too small to be helpful */
4505 if (!nr_to_scan && sc->priority != DEF_PRIORITY)
4506 return false;
4507 }
4508
ac35a490 4509 if (need_aging)
d6c3af7d 4510 try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false);
1332a809
YZ
4511
4512 return true;
ac35a490
YZ
4513}
4514
1332a809
YZ
4515/* to protect the working set of the last N jiffies */
4516static unsigned long lru_gen_min_ttl __read_mostly;
4517
ac35a490
YZ
4518static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4519{
4520 struct mem_cgroup *memcg;
1332a809
YZ
4521 bool success = false;
4522 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
ac35a490
YZ
4523
4524 VM_WARN_ON_ONCE(!current_is_kswapd());
4525
f76c8337
YZ
4526 sc->last_reclaimed = sc->nr_reclaimed;
4527
4528 /*
4529 * To reduce the chance of going into the aging path, which can be
4530 * costly, optimistically skip it if the flag below was cleared in the
4531 * eviction path. This improves the overall performance when multiple
4532 * memcgs are available.
4533 */
4534 if (!sc->memcgs_need_aging) {
4535 sc->memcgs_need_aging = true;
4536 return;
4537 }
4538
bd74fdae
YZ
4539 set_mm_walk(pgdat);
4540
ac35a490
YZ
4541 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4542 do {
4543 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4544
1332a809
YZ
4545 if (age_lruvec(lruvec, sc, min_ttl))
4546 success = true;
ac35a490
YZ
4547
4548 cond_resched();
4549 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
bd74fdae
YZ
4550
4551 clear_mm_walk();
1332a809
YZ
4552
4553 /* check the order to exclude compaction-induced reclaim */
4554 if (success || !min_ttl || sc->order)
4555 return;
4556
4557 /*
4558 * The main goal is to OOM kill if every generation from all memcgs is
4559 * younger than min_ttl. However, another possibility is all memcgs are
4560 * either below min or empty.
4561 */
4562 if (mutex_trylock(&oom_lock)) {
4563 struct oom_control oc = {
4564 .gfp_mask = sc->gfp_mask,
4565 };
4566
4567 out_of_memory(&oc);
4568
4569 mutex_unlock(&oom_lock);
4570 }
ac35a490
YZ
4571}
4572
018ee47f 4573/*
49fd9b6d 4574 * This function exploits spatial locality when shrink_folio_list() walks the
bd74fdae
YZ
4575 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4576 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4577 * the PTE table to the Bloom filter. This forms a feedback loop between the
4578 * eviction and the aging.
018ee47f
YZ
4579 */
4580void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4581{
4582 int i;
4583 pte_t *pte;
4584 unsigned long start;
4585 unsigned long end;
4586 unsigned long addr;
bd74fdae
YZ
4587 struct lru_gen_mm_walk *walk;
4588 int young = 0;
018ee47f
YZ
4589 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4590 struct folio *folio = pfn_folio(pvmw->pfn);
4591 struct mem_cgroup *memcg = folio_memcg(folio);
4592 struct pglist_data *pgdat = folio_pgdat(folio);
4593 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4594 DEFINE_MAX_SEQ(lruvec);
4595 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4596
4597 lockdep_assert_held(pvmw->ptl);
4598 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4599
4600 if (spin_is_contended(pvmw->ptl))
4601 return;
4602
bd74fdae
YZ
4603 /* avoid taking the LRU lock under the PTL when possible */
4604 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4605
018ee47f
YZ
4606 start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4607 end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4608
4609 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4610 if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4611 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4612 else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4613 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4614 else {
4615 start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4616 end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4617 }
4618 }
4619
4620 pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4621
4622 rcu_read_lock();
4623 arch_enter_lazy_mmu_mode();
4624
4625 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4626 unsigned long pfn;
4627
4628 pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4629 if (pfn == -1)
4630 continue;
4631
4632 if (!pte_young(pte[i]))
4633 continue;
4634
bd74fdae 4635 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
018ee47f
YZ
4636 if (!folio)
4637 continue;
4638
4639 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4640 VM_WARN_ON_ONCE(true);
4641
bd74fdae
YZ
4642 young++;
4643
018ee47f
YZ
4644 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4645 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4646 !folio_test_swapcache(folio)))
4647 folio_mark_dirty(folio);
4648
4649 old_gen = folio_lru_gen(folio);
4650 if (old_gen < 0)
4651 folio_set_referenced(folio);
4652 else if (old_gen != new_gen)
4653 __set_bit(i, bitmap);
4654 }
4655
4656 arch_leave_lazy_mmu_mode();
4657 rcu_read_unlock();
4658
bd74fdae
YZ
4659 /* feedback from rmap walkers to page table walkers */
4660 if (suitable_to_scan(i, young))
4661 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4662
4663 if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
018ee47f
YZ
4664 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4665 folio = pfn_folio(pte_pfn(pte[i]));
4666 folio_activate(folio);
4667 }
4668 return;
4669 }
4670
4671 /* folio_update_gen() requires stable folio_memcg() */
4672 if (!mem_cgroup_trylock_pages(memcg))
4673 return;
4674
bd74fdae
YZ
4675 if (!walk) {
4676 spin_lock_irq(&lruvec->lru_lock);
4677 new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4678 }
018ee47f
YZ
4679
4680 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4681 folio = pfn_folio(pte_pfn(pte[i]));
4682 if (folio_memcg_rcu(folio) != memcg)
4683 continue;
4684
4685 old_gen = folio_update_gen(folio, new_gen);
4686 if (old_gen < 0 || old_gen == new_gen)
4687 continue;
4688
bd74fdae
YZ
4689 if (walk)
4690 update_batch_size(walk, folio, old_gen, new_gen);
4691 else
4692 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
018ee47f
YZ
4693 }
4694
bd74fdae
YZ
4695 if (!walk)
4696 spin_unlock_irq(&lruvec->lru_lock);
018ee47f
YZ
4697
4698 mem_cgroup_unlock_pages();
4699}
4700
ac35a490
YZ
4701/******************************************************************************
4702 * the eviction
4703 ******************************************************************************/
4704
4705static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4706{
4707 bool success;
4708 int gen = folio_lru_gen(folio);
4709 int type = folio_is_file_lru(folio);
4710 int zone = folio_zonenum(folio);
4711 int delta = folio_nr_pages(folio);
4712 int refs = folio_lru_refs(folio);
4713 int tier = lru_tier_from_refs(refs);
4714 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4715
4716 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4717
4718 /* unevictable */
4719 if (!folio_evictable(folio)) {
4720 success = lru_gen_del_folio(lruvec, folio, true);
4721 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4722 folio_set_unevictable(folio);
4723 lruvec_add_folio(lruvec, folio);
4724 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4725 return true;
4726 }
4727
4728 /* dirty lazyfree */
4729 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4730 success = lru_gen_del_folio(lruvec, folio, true);
4731 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4732 folio_set_swapbacked(folio);
4733 lruvec_add_folio_tail(lruvec, folio);
4734 return true;
4735 }
4736
018ee47f
YZ
4737 /* promoted */
4738 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4739 list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4740 return true;
4741 }
4742
ac35a490
YZ
4743 /* protected */
4744 if (tier > tier_idx) {
4745 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4746
4747 gen = folio_inc_gen(lruvec, folio, false);
4748 list_move_tail(&folio->lru, &lrugen->lists[gen][type][zone]);
4749
4750 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4751 lrugen->protected[hist][type][tier - 1] + delta);
4752 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4753 return true;
4754 }
4755
4756 /* waiting for writeback */
4757 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4758 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4759 gen = folio_inc_gen(lruvec, folio, true);
4760 list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4761 return true;
4762 }
4763
4764 return false;
4765}
4766
4767static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4768{
4769 bool success;
4770
4771 /* unmapping inhibited */
4772 if (!sc->may_unmap && folio_mapped(folio))
4773 return false;
4774
4775 /* swapping inhibited */
4776 if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
4777 (folio_test_dirty(folio) ||
4778 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4779 return false;
4780
4781 /* raced with release_pages() */
4782 if (!folio_try_get(folio))
4783 return false;
4784
4785 /* raced with another isolation */
4786 if (!folio_test_clear_lru(folio)) {
4787 folio_put(folio);
4788 return false;
4789 }
4790
4791 /* see the comment on MAX_NR_TIERS */
4792 if (!folio_test_referenced(folio))
4793 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4794
49fd9b6d 4795 /* for shrink_folio_list() */
ac35a490
YZ
4796 folio_clear_reclaim(folio);
4797 folio_clear_referenced(folio);
4798
4799 success = lru_gen_del_folio(lruvec, folio, true);
4800 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4801
4802 return true;
4803}
4804
4805static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4806 int type, int tier, struct list_head *list)
4807{
4808 int gen, zone;
4809 enum vm_event_item item;
4810 int sorted = 0;
4811 int scanned = 0;
4812 int isolated = 0;
4813 int remaining = MAX_LRU_BATCH;
4814 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4815 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4816
4817 VM_WARN_ON_ONCE(!list_empty(list));
4818
4819 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4820 return 0;
4821
4822 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4823
4824 for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4825 LIST_HEAD(moved);
4826 int skipped = 0;
4827 struct list_head *head = &lrugen->lists[gen][type][zone];
4828
4829 while (!list_empty(head)) {
4830 struct folio *folio = lru_to_folio(head);
4831 int delta = folio_nr_pages(folio);
4832
4833 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4834 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4835 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4836 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4837
4838 scanned += delta;
4839
4840 if (sort_folio(lruvec, folio, tier))
4841 sorted += delta;
4842 else if (isolate_folio(lruvec, folio, sc)) {
4843 list_add(&folio->lru, list);
4844 isolated += delta;
4845 } else {
4846 list_move(&folio->lru, &moved);
4847 skipped += delta;
4848 }
4849
4850 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4851 break;
4852 }
4853
4854 if (skipped) {
4855 list_splice(&moved, head);
4856 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4857 }
4858
4859 if (!remaining || isolated >= MIN_LRU_BATCH)
4860 break;
4861 }
4862
4863 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
4864 if (!cgroup_reclaim(sc)) {
4865 __count_vm_events(item, isolated);
4866 __count_vm_events(PGREFILL, sorted);
4867 }
4868 __count_memcg_events(memcg, item, isolated);
4869 __count_memcg_events(memcg, PGREFILL, sorted);
4870 __count_vm_events(PGSCAN_ANON + type, isolated);
4871
4872 /*
4873 * There might not be eligible pages due to reclaim_idx, may_unmap and
4874 * may_writepage. Check the remaining to prevent livelock if it's not
4875 * making progress.
4876 */
4877 return isolated || !remaining ? scanned : 0;
4878}
4879
4880static int get_tier_idx(struct lruvec *lruvec, int type)
4881{
4882 int tier;
4883 struct ctrl_pos sp, pv;
4884
4885 /*
4886 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4887 * This value is chosen because any other tier would have at least twice
4888 * as many refaults as the first tier.
4889 */
4890 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4891 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4892 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4893 if (!positive_ctrl_err(&sp, &pv))
4894 break;
4895 }
4896
4897 return tier - 1;
4898}
4899
4900static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4901{
4902 int type, tier;
4903 struct ctrl_pos sp, pv;
4904 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4905
4906 /*
4907 * Compare the first tier of anon with that of file to determine which
4908 * type to scan. Also need to compare other tiers of the selected type
4909 * with the first tier of the other type to determine the last tier (of
4910 * the selected type) to evict.
4911 */
4912 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4913 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4914 type = positive_ctrl_err(&sp, &pv);
4915
4916 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4917 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4918 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4919 if (!positive_ctrl_err(&sp, &pv))
4920 break;
4921 }
4922
4923 *tier_idx = tier - 1;
4924
4925 return type;
4926}
4927
4928static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4929 int *type_scanned, struct list_head *list)
4930{
4931 int i;
4932 int type;
4933 int scanned;
4934 int tier = -1;
4935 DEFINE_MIN_SEQ(lruvec);
4936
4937 /*
4938 * Try to make the obvious choice first. When anon and file are both
4939 * available from the same generation, interpret swappiness 1 as file
4940 * first and 200 as anon first.
4941 */
4942 if (!swappiness)
4943 type = LRU_GEN_FILE;
4944 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4945 type = LRU_GEN_ANON;
4946 else if (swappiness == 1)
4947 type = LRU_GEN_FILE;
4948 else if (swappiness == 200)
4949 type = LRU_GEN_ANON;
4950 else
4951 type = get_type_to_scan(lruvec, swappiness, &tier);
4952
4953 for (i = !swappiness; i < ANON_AND_FILE; i++) {
4954 if (tier < 0)
4955 tier = get_tier_idx(lruvec, type);
4956
4957 scanned = scan_folios(lruvec, sc, type, tier, list);
4958 if (scanned)
4959 break;
4960
4961 type = !type;
4962 tier = -1;
4963 }
4964
4965 *type_scanned = type;
4966
4967 return scanned;
4968}
4969
f76c8337
YZ
4970static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4971 bool *need_swapping)
ac35a490
YZ
4972{
4973 int type;
4974 int scanned;
4975 int reclaimed;
4976 LIST_HEAD(list);
4977 struct folio *folio;
4978 enum vm_event_item item;
4979 struct reclaim_stat stat;
bd74fdae 4980 struct lru_gen_mm_walk *walk;
ac35a490
YZ
4981 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4982 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4983
4984 spin_lock_irq(&lruvec->lru_lock);
4985
4986 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4987
4988 scanned += try_to_inc_min_seq(lruvec, swappiness);
4989
4990 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4991 scanned = 0;
4992
4993 spin_unlock_irq(&lruvec->lru_lock);
4994
4995 if (list_empty(&list))
4996 return scanned;
4997
49fd9b6d 4998 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
ac35a490
YZ
4999
5000 list_for_each_entry(folio, &list, lru) {
5001 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5002 if (folio_test_workingset(folio))
5003 folio_set_referenced(folio);
5004
5005 /* don't add rejected pages to the oldest generation */
5006 if (folio_test_reclaim(folio) &&
5007 (folio_test_dirty(folio) || folio_test_writeback(folio)))
5008 folio_clear_active(folio);
5009 else
5010 folio_set_active(folio);
5011 }
5012
5013 spin_lock_irq(&lruvec->lru_lock);
5014
49fd9b6d 5015 move_folios_to_lru(lruvec, &list);
ac35a490 5016
bd74fdae
YZ
5017 walk = current->reclaim_state->mm_walk;
5018 if (walk && walk->batched)
5019 reset_batch_size(lruvec, walk);
5020
ac35a490
YZ
5021 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
5022 if (!cgroup_reclaim(sc))
5023 __count_vm_events(item, reclaimed);
5024 __count_memcg_events(memcg, item, reclaimed);
5025 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5026
5027 spin_unlock_irq(&lruvec->lru_lock);
5028
5029 mem_cgroup_uncharge_list(&list);
5030 free_unref_page_list(&list);
5031
5032 sc->nr_reclaimed += reclaimed;
5033
f76c8337
YZ
5034 if (need_swapping && type == LRU_GEN_ANON)
5035 *need_swapping = true;
5036
ac35a490
YZ
5037 return scanned;
5038}
5039
bd74fdae
YZ
5040/*
5041 * For future optimizations:
5042 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5043 * reclaim.
5044 */
ac35a490 5045static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc,
f76c8337 5046 bool can_swap, bool *need_aging)
ac35a490 5047{
ac35a490
YZ
5048 unsigned long nr_to_scan;
5049 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5050 DEFINE_MAX_SEQ(lruvec);
5051 DEFINE_MIN_SEQ(lruvec);
5052
5053 if (mem_cgroup_below_min(memcg) ||
5054 (mem_cgroup_below_low(memcg) && !sc->memcg_low_reclaim))
5055 return 0;
5056
f76c8337
YZ
5057 *need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan);
5058 if (!*need_aging)
ac35a490
YZ
5059 return nr_to_scan;
5060
5061 /* skip the aging path at the default priority */
5062 if (sc->priority == DEF_PRIORITY)
5063 goto done;
5064
5065 /* leave the work to lru_gen_age_node() */
5066 if (current_is_kswapd())
5067 return 0;
5068
d6c3af7d 5069 if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false))
bd74fdae 5070 return nr_to_scan;
ac35a490
YZ
5071done:
5072 return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0;
5073}
5074
f76c8337
YZ
5075static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq,
5076 struct scan_control *sc, bool need_swapping)
5077{
5078 int i;
5079 DEFINE_MAX_SEQ(lruvec);
5080
5081 if (!current_is_kswapd()) {
5082 /* age each memcg once to ensure fairness */
5083 if (max_seq - seq > 1)
5084 return true;
5085
5086 /* over-swapping can increase allocation latency */
5087 if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping)
5088 return true;
5089
5090 /* give this thread a chance to exit and free its memory */
5091 if (fatal_signal_pending(current)) {
5092 sc->nr_reclaimed += MIN_LRU_BATCH;
5093 return true;
5094 }
5095
5096 if (cgroup_reclaim(sc))
5097 return false;
5098 } else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim)
5099 return false;
5100
5101 /* keep scanning at low priorities to ensure fairness */
5102 if (sc->priority > DEF_PRIORITY - 2)
5103 return false;
5104
5105 /*
5106 * A minimum amount of work was done under global memory pressure. For
5107 * kswapd, it may be overshooting. For direct reclaim, the target isn't
5108 * met, and yet the allocation may still succeed, since kswapd may have
5109 * caught up. In either case, it's better to stop now, and restart if
5110 * necessary.
5111 */
5112 for (i = 0; i <= sc->reclaim_idx; i++) {
5113 unsigned long wmark;
5114 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5115
5116 if (!managed_zone(zone))
5117 continue;
5118
5119 wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone);
5120 if (wmark > zone_page_state(zone, NR_FREE_PAGES))
5121 return false;
5122 }
5123
5124 sc->nr_reclaimed += MIN_LRU_BATCH;
5125
5126 return true;
5127}
5128
ac35a490
YZ
5129static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5130{
5131 struct blk_plug plug;
f76c8337
YZ
5132 bool need_aging = false;
5133 bool need_swapping = false;
ac35a490 5134 unsigned long scanned = 0;
f76c8337
YZ
5135 unsigned long reclaimed = sc->nr_reclaimed;
5136 DEFINE_MAX_SEQ(lruvec);
ac35a490
YZ
5137
5138 lru_add_drain();
5139
5140 blk_start_plug(&plug);
5141
bd74fdae
YZ
5142 set_mm_walk(lruvec_pgdat(lruvec));
5143
ac35a490
YZ
5144 while (true) {
5145 int delta;
5146 int swappiness;
5147 unsigned long nr_to_scan;
5148
5149 if (sc->may_swap)
5150 swappiness = get_swappiness(lruvec, sc);
5151 else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc))
5152 swappiness = 1;
5153 else
5154 swappiness = 0;
5155
f76c8337 5156 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging);
ac35a490 5157 if (!nr_to_scan)
f76c8337 5158 goto done;
ac35a490 5159
f76c8337 5160 delta = evict_folios(lruvec, sc, swappiness, &need_swapping);
ac35a490 5161 if (!delta)
f76c8337 5162 goto done;
ac35a490
YZ
5163
5164 scanned += delta;
5165 if (scanned >= nr_to_scan)
5166 break;
5167
f76c8337
YZ
5168 if (should_abort_scan(lruvec, max_seq, sc, need_swapping))
5169 break;
5170
ac35a490
YZ
5171 cond_resched();
5172 }
5173
f76c8337
YZ
5174 /* see the comment in lru_gen_age_node() */
5175 if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging)
5176 sc->memcgs_need_aging = false;
5177done:
bd74fdae
YZ
5178 clear_mm_walk();
5179
ac35a490
YZ
5180 blk_finish_plug(&plug);
5181}
5182
354ed597
YZ
5183/******************************************************************************
5184 * state change
5185 ******************************************************************************/
5186
5187static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5188{
5189 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5190
5191 if (lrugen->enabled) {
5192 enum lru_list lru;
5193
5194 for_each_evictable_lru(lru) {
5195 if (!list_empty(&lruvec->lists[lru]))
5196 return false;
5197 }
5198 } else {
5199 int gen, type, zone;
5200
5201 for_each_gen_type_zone(gen, type, zone) {
5202 if (!list_empty(&lrugen->lists[gen][type][zone]))
5203 return false;
5204 }
5205 }
5206
5207 return true;
5208}
5209
5210static bool fill_evictable(struct lruvec *lruvec)
5211{
5212 enum lru_list lru;
5213 int remaining = MAX_LRU_BATCH;
5214
5215 for_each_evictable_lru(lru) {
5216 int type = is_file_lru(lru);
5217 bool active = is_active_lru(lru);
5218 struct list_head *head = &lruvec->lists[lru];
5219
5220 while (!list_empty(head)) {
5221 bool success;
5222 struct folio *folio = lru_to_folio(head);
5223
5224 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5225 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5226 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5227 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5228
5229 lruvec_del_folio(lruvec, folio);
5230 success = lru_gen_add_folio(lruvec, folio, false);
5231 VM_WARN_ON_ONCE(!success);
5232
5233 if (!--remaining)
5234 return false;
5235 }
5236 }
5237
5238 return true;
5239}
5240
5241static bool drain_evictable(struct lruvec *lruvec)
5242{
5243 int gen, type, zone;
5244 int remaining = MAX_LRU_BATCH;
5245
5246 for_each_gen_type_zone(gen, type, zone) {
5247 struct list_head *head = &lruvec->lrugen.lists[gen][type][zone];
5248
5249 while (!list_empty(head)) {
5250 bool success;
5251 struct folio *folio = lru_to_folio(head);
5252
5253 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5254 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5255 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5256 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5257
5258 success = lru_gen_del_folio(lruvec, folio, false);
5259 VM_WARN_ON_ONCE(!success);
5260 lruvec_add_folio(lruvec, folio);
5261
5262 if (!--remaining)
5263 return false;
5264 }
5265 }
5266
5267 return true;
5268}
5269
5270static void lru_gen_change_state(bool enabled)
5271{
5272 static DEFINE_MUTEX(state_mutex);
5273
5274 struct mem_cgroup *memcg;
5275
5276 cgroup_lock();
5277 cpus_read_lock();
5278 get_online_mems();
5279 mutex_lock(&state_mutex);
5280
5281 if (enabled == lru_gen_enabled())
5282 goto unlock;
5283
5284 if (enabled)
5285 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5286 else
5287 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5288
5289 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5290 do {
5291 int nid;
5292
5293 for_each_node(nid) {
5294 struct lruvec *lruvec = get_lruvec(memcg, nid);
5295
5296 if (!lruvec)
5297 continue;
5298
5299 spin_lock_irq(&lruvec->lru_lock);
5300
5301 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5302 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5303
5304 lruvec->lrugen.enabled = enabled;
5305
5306 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5307 spin_unlock_irq(&lruvec->lru_lock);
5308 cond_resched();
5309 spin_lock_irq(&lruvec->lru_lock);
5310 }
5311
5312 spin_unlock_irq(&lruvec->lru_lock);
5313 }
5314
5315 cond_resched();
5316 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5317unlock:
5318 mutex_unlock(&state_mutex);
5319 put_online_mems();
5320 cpus_read_unlock();
5321 cgroup_unlock();
5322}
5323
5324/******************************************************************************
5325 * sysfs interface
5326 ******************************************************************************/
5327
1332a809
YZ
5328static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5329{
5330 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5331}
5332
07017acb 5333/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
1332a809
YZ
5334static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5335 const char *buf, size_t len)
5336{
5337 unsigned int msecs;
5338
5339 if (kstrtouint(buf, 0, &msecs))
5340 return -EINVAL;
5341
5342 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5343
5344 return len;
5345}
5346
5347static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5348 min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5349);
5350
354ed597
YZ
5351static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5352{
5353 unsigned int caps = 0;
5354
5355 if (get_cap(LRU_GEN_CORE))
5356 caps |= BIT(LRU_GEN_CORE);
5357
5358 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5359 caps |= BIT(LRU_GEN_MM_WALK);
5360
5361 if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) && get_cap(LRU_GEN_NONLEAF_YOUNG))
5362 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5363
5364 return snprintf(buf, PAGE_SIZE, "0x%04x\n", caps);
5365}
5366
07017acb 5367/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
354ed597
YZ
5368static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5369 const char *buf, size_t len)
5370{
5371 int i;
5372 unsigned int caps;
5373
5374 if (tolower(*buf) == 'n')
5375 caps = 0;
5376 else if (tolower(*buf) == 'y')
5377 caps = -1;
5378 else if (kstrtouint(buf, 0, &caps))
5379 return -EINVAL;
5380
5381 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5382 bool enabled = caps & BIT(i);
5383
5384 if (i == LRU_GEN_CORE)
5385 lru_gen_change_state(enabled);
5386 else if (enabled)
5387 static_branch_enable(&lru_gen_caps[i]);
5388 else
5389 static_branch_disable(&lru_gen_caps[i]);
5390 }
5391
5392 return len;
5393}
5394
5395static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5396 enabled, 0644, show_enabled, store_enabled
5397);
5398
5399static struct attribute *lru_gen_attrs[] = {
1332a809 5400 &lru_gen_min_ttl_attr.attr,
354ed597
YZ
5401 &lru_gen_enabled_attr.attr,
5402 NULL
5403};
5404
5405static struct attribute_group lru_gen_attr_group = {
5406 .name = "lru_gen",
5407 .attrs = lru_gen_attrs,
5408};
5409
d6c3af7d
YZ
5410/******************************************************************************
5411 * debugfs interface
5412 ******************************************************************************/
5413
5414static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5415{
5416 struct mem_cgroup *memcg;
5417 loff_t nr_to_skip = *pos;
5418
5419 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5420 if (!m->private)
5421 return ERR_PTR(-ENOMEM);
5422
5423 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5424 do {
5425 int nid;
5426
5427 for_each_node_state(nid, N_MEMORY) {
5428 if (!nr_to_skip--)
5429 return get_lruvec(memcg, nid);
5430 }
5431 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5432
5433 return NULL;
5434}
5435
5436static void lru_gen_seq_stop(struct seq_file *m, void *v)
5437{
5438 if (!IS_ERR_OR_NULL(v))
5439 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5440
5441 kvfree(m->private);
5442 m->private = NULL;
5443}
5444
5445static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5446{
5447 int nid = lruvec_pgdat(v)->node_id;
5448 struct mem_cgroup *memcg = lruvec_memcg(v);
5449
5450 ++*pos;
5451
5452 nid = next_memory_node(nid);
5453 if (nid == MAX_NUMNODES) {
5454 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5455 if (!memcg)
5456 return NULL;
5457
5458 nid = first_memory_node;
5459 }
5460
5461 return get_lruvec(memcg, nid);
5462}
5463
5464static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5465 unsigned long max_seq, unsigned long *min_seq,
5466 unsigned long seq)
5467{
5468 int i;
5469 int type, tier;
5470 int hist = lru_hist_from_seq(seq);
5471 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5472
5473 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5474 seq_printf(m, " %10d", tier);
5475 for (type = 0; type < ANON_AND_FILE; type++) {
5476 const char *s = " ";
5477 unsigned long n[3] = {};
5478
5479 if (seq == max_seq) {
5480 s = "RT ";
5481 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5482 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5483 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5484 s = "rep";
5485 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5486 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5487 if (tier)
5488 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5489 }
5490
5491 for (i = 0; i < 3; i++)
5492 seq_printf(m, " %10lu%c", n[i], s[i]);
5493 }
5494 seq_putc(m, '\n');
5495 }
5496
5497 seq_puts(m, " ");
5498 for (i = 0; i < NR_MM_STATS; i++) {
5499 const char *s = " ";
5500 unsigned long n = 0;
5501
5502 if (seq == max_seq && NR_HIST_GENS == 1) {
5503 s = "LOYNFA";
5504 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5505 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5506 s = "loynfa";
5507 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5508 }
5509
5510 seq_printf(m, " %10lu%c", n, s[i]);
5511 }
5512 seq_putc(m, '\n');
5513}
5514
07017acb 5515/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
d6c3af7d
YZ
5516static int lru_gen_seq_show(struct seq_file *m, void *v)
5517{
5518 unsigned long seq;
5519 bool full = !debugfs_real_fops(m->file)->write;
5520 struct lruvec *lruvec = v;
5521 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5522 int nid = lruvec_pgdat(lruvec)->node_id;
5523 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5524 DEFINE_MAX_SEQ(lruvec);
5525 DEFINE_MIN_SEQ(lruvec);
5526
5527 if (nid == first_memory_node) {
5528 const char *path = memcg ? m->private : "";
5529
5530#ifdef CONFIG_MEMCG
5531 if (memcg)
5532 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5533#endif
5534 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5535 }
5536
5537 seq_printf(m, " node %5d\n", nid);
5538
5539 if (!full)
5540 seq = min_seq[LRU_GEN_ANON];
5541 else if (max_seq >= MAX_NR_GENS)
5542 seq = max_seq - MAX_NR_GENS + 1;
5543 else
5544 seq = 0;
5545
5546 for (; seq <= max_seq; seq++) {
5547 int type, zone;
5548 int gen = lru_gen_from_seq(seq);
5549 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5550
5551 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5552
5553 for (type = 0; type < ANON_AND_FILE; type++) {
5554 unsigned long size = 0;
5555 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5556
5557 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5558 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5559
5560 seq_printf(m, " %10lu%c", size, mark);
5561 }
5562
5563 seq_putc(m, '\n');
5564
5565 if (full)
5566 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5567 }
5568
5569 return 0;
5570}
5571
5572static const struct seq_operations lru_gen_seq_ops = {
5573 .start = lru_gen_seq_start,
5574 .stop = lru_gen_seq_stop,
5575 .next = lru_gen_seq_next,
5576 .show = lru_gen_seq_show,
5577};
5578
5579static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5580 bool can_swap, bool force_scan)
5581{
5582 DEFINE_MAX_SEQ(lruvec);
5583 DEFINE_MIN_SEQ(lruvec);
5584
5585 if (seq < max_seq)
5586 return 0;
5587
5588 if (seq > max_seq)
5589 return -EINVAL;
5590
5591 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5592 return -ERANGE;
5593
5594 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5595
5596 return 0;
5597}
5598
5599static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5600 int swappiness, unsigned long nr_to_reclaim)
5601{
5602 DEFINE_MAX_SEQ(lruvec);
5603
5604 if (seq + MIN_NR_GENS > max_seq)
5605 return -EINVAL;
5606
5607 sc->nr_reclaimed = 0;
5608
5609 while (!signal_pending(current)) {
5610 DEFINE_MIN_SEQ(lruvec);
5611
5612 if (seq < min_seq[!swappiness])
5613 return 0;
5614
5615 if (sc->nr_reclaimed >= nr_to_reclaim)
5616 return 0;
5617
5618 if (!evict_folios(lruvec, sc, swappiness, NULL))
5619 return 0;
5620
5621 cond_resched();
5622 }
5623
5624 return -EINTR;
5625}
5626
5627static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5628 struct scan_control *sc, int swappiness, unsigned long opt)
5629{
5630 struct lruvec *lruvec;
5631 int err = -EINVAL;
5632 struct mem_cgroup *memcg = NULL;
5633
5634 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5635 return -EINVAL;
5636
5637 if (!mem_cgroup_disabled()) {
5638 rcu_read_lock();
5639 memcg = mem_cgroup_from_id(memcg_id);
5640#ifdef CONFIG_MEMCG
5641 if (memcg && !css_tryget(&memcg->css))
5642 memcg = NULL;
5643#endif
5644 rcu_read_unlock();
5645
5646 if (!memcg)
5647 return -EINVAL;
5648 }
5649
5650 if (memcg_id != mem_cgroup_id(memcg))
5651 goto done;
5652
5653 lruvec = get_lruvec(memcg, nid);
5654
5655 if (swappiness < 0)
5656 swappiness = get_swappiness(lruvec, sc);
5657 else if (swappiness > 200)
5658 goto done;
5659
5660 switch (cmd) {
5661 case '+':
5662 err = run_aging(lruvec, seq, sc, swappiness, opt);
5663 break;
5664 case '-':
5665 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5666 break;
5667 }
5668done:
5669 mem_cgroup_put(memcg);
5670
5671 return err;
5672}
5673
07017acb 5674/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
d6c3af7d
YZ
5675static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5676 size_t len, loff_t *pos)
5677{
5678 void *buf;
5679 char *cur, *next;
5680 unsigned int flags;
5681 struct blk_plug plug;
5682 int err = -EINVAL;
5683 struct scan_control sc = {
5684 .may_writepage = true,
5685 .may_unmap = true,
5686 .may_swap = true,
5687 .reclaim_idx = MAX_NR_ZONES - 1,
5688 .gfp_mask = GFP_KERNEL,
5689 };
5690
5691 buf = kvmalloc(len + 1, GFP_KERNEL);
5692 if (!buf)
5693 return -ENOMEM;
5694
5695 if (copy_from_user(buf, src, len)) {
5696 kvfree(buf);
5697 return -EFAULT;
5698 }
5699
5700 set_task_reclaim_state(current, &sc.reclaim_state);
5701 flags = memalloc_noreclaim_save();
5702 blk_start_plug(&plug);
5703 if (!set_mm_walk(NULL)) {
5704 err = -ENOMEM;
5705 goto done;
5706 }
5707
5708 next = buf;
5709 next[len] = '\0';
5710
5711 while ((cur = strsep(&next, ",;\n"))) {
5712 int n;
5713 int end;
5714 char cmd;
5715 unsigned int memcg_id;
5716 unsigned int nid;
5717 unsigned long seq;
5718 unsigned int swappiness = -1;
5719 unsigned long opt = -1;
5720
5721 cur = skip_spaces(cur);
5722 if (!*cur)
5723 continue;
5724
5725 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5726 &seq, &end, &swappiness, &end, &opt, &end);
5727 if (n < 4 || cur[end]) {
5728 err = -EINVAL;
5729 break;
5730 }
5731
5732 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5733 if (err)
5734 break;
5735 }
5736done:
5737 clear_mm_walk();
5738 blk_finish_plug(&plug);
5739 memalloc_noreclaim_restore(flags);
5740 set_task_reclaim_state(current, NULL);
5741
5742 kvfree(buf);
5743
5744 return err ? : len;
5745}
5746
5747static int lru_gen_seq_open(struct inode *inode, struct file *file)
5748{
5749 return seq_open(file, &lru_gen_seq_ops);
5750}
5751
5752static const struct file_operations lru_gen_rw_fops = {
5753 .open = lru_gen_seq_open,
5754 .read = seq_read,
5755 .write = lru_gen_seq_write,
5756 .llseek = seq_lseek,
5757 .release = seq_release,
5758};
5759
5760static const struct file_operations lru_gen_ro_fops = {
5761 .open = lru_gen_seq_open,
5762 .read = seq_read,
5763 .llseek = seq_lseek,
5764 .release = seq_release,
5765};
5766
ec1c86b2
YZ
5767/******************************************************************************
5768 * initialization
5769 ******************************************************************************/
5770
5771void lru_gen_init_lruvec(struct lruvec *lruvec)
5772{
1332a809 5773 int i;
ec1c86b2
YZ
5774 int gen, type, zone;
5775 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5776
5777 lrugen->max_seq = MIN_NR_GENS + 1;
354ed597 5778 lrugen->enabled = lru_gen_enabled();
ec1c86b2 5779
1332a809
YZ
5780 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5781 lrugen->timestamps[i] = jiffies;
5782
ec1c86b2
YZ
5783 for_each_gen_type_zone(gen, type, zone)
5784 INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]);
bd74fdae
YZ
5785
5786 lruvec->mm_state.seq = MIN_NR_GENS;
5787 init_waitqueue_head(&lruvec->mm_state.wait);
ec1c86b2
YZ
5788}
5789
5790#ifdef CONFIG_MEMCG
5791void lru_gen_init_memcg(struct mem_cgroup *memcg)
5792{
bd74fdae
YZ
5793 INIT_LIST_HEAD(&memcg->mm_list.fifo);
5794 spin_lock_init(&memcg->mm_list.lock);
ec1c86b2
YZ
5795}
5796
5797void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5798{
bd74fdae 5799 int i;
ec1c86b2
YZ
5800 int nid;
5801
5802 for_each_node(nid) {
5803 struct lruvec *lruvec = get_lruvec(memcg, nid);
5804
5805 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5806 sizeof(lruvec->lrugen.nr_pages)));
bd74fdae
YZ
5807
5808 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5809 bitmap_free(lruvec->mm_state.filters[i]);
5810 lruvec->mm_state.filters[i] = NULL;
5811 }
ec1c86b2
YZ
5812 }
5813}
5814#endif
5815
5816static int __init init_lru_gen(void)
5817{
5818 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5819 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5820
354ed597
YZ
5821 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5822 pr_err("lru_gen: failed to create sysfs group\n");
5823
d6c3af7d
YZ
5824 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5825 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5826
ec1c86b2
YZ
5827 return 0;
5828};
5829late_initcall(init_lru_gen);
5830
ac35a490
YZ
5831#else /* !CONFIG_LRU_GEN */
5832
5833static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5834{
5835}
5836
5837static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5838{
5839}
5840
ec1c86b2
YZ
5841#endif /* CONFIG_LRU_GEN */
5842
afaf07a6 5843static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
5844{
5845 unsigned long nr[NR_LRU_LISTS];
e82e0561 5846 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
5847 unsigned long nr_to_scan;
5848 enum lru_list lru;
5849 unsigned long nr_reclaimed = 0;
5850 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5851 struct blk_plug plug;
1a501907 5852 bool scan_adjusted;
9b4f98cd 5853
ac35a490
YZ
5854 if (lru_gen_enabled()) {
5855 lru_gen_shrink_lruvec(lruvec, sc);
5856 return;
5857 }
5858
afaf07a6 5859 get_scan_count(lruvec, sc, nr);
9b4f98cd 5860
e82e0561
MG
5861 /* Record the original scan target for proportional adjustments later */
5862 memcpy(targets, nr, sizeof(nr));
5863
1a501907
MG
5864 /*
5865 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5866 * event that can occur when there is little memory pressure e.g.
5867 * multiple streaming readers/writers. Hence, we do not abort scanning
5868 * when the requested number of pages are reclaimed when scanning at
5869 * DEF_PRIORITY on the assumption that the fact we are direct
5870 * reclaiming implies that kswapd is not keeping up and it is best to
5871 * do a batch of work at once. For memcg reclaim one check is made to
5872 * abort proportional reclaim if either the file or anon lru has already
5873 * dropped to zero at the first pass.
5874 */
b5ead35e 5875 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
5876 sc->priority == DEF_PRIORITY);
5877
9b4f98cd
JW
5878 blk_start_plug(&plug);
5879 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5880 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
5881 unsigned long nr_anon, nr_file, percentage;
5882 unsigned long nr_scanned;
5883
9b4f98cd
JW
5884 for_each_evictable_lru(lru) {
5885 if (nr[lru]) {
5886 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5887 nr[lru] -= nr_to_scan;
5888
5889 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 5890 lruvec, sc);
9b4f98cd
JW
5891 }
5892 }
e82e0561 5893
bd041733
MH
5894 cond_resched();
5895
e82e0561
MG
5896 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
5897 continue;
5898
e82e0561
MG
5899 /*
5900 * For kswapd and memcg, reclaim at least the number of pages
1a501907 5901 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
5902 * proportionally what was requested by get_scan_count(). We
5903 * stop reclaiming one LRU and reduce the amount scanning
5904 * proportional to the original scan target.
5905 */
5906 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5907 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5908
1a501907
MG
5909 /*
5910 * It's just vindictive to attack the larger once the smaller
5911 * has gone to zero. And given the way we stop scanning the
5912 * smaller below, this makes sure that we only make one nudge
5913 * towards proportionality once we've got nr_to_reclaim.
5914 */
5915 if (!nr_file || !nr_anon)
5916 break;
5917
e82e0561
MG
5918 if (nr_file > nr_anon) {
5919 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5920 targets[LRU_ACTIVE_ANON] + 1;
5921 lru = LRU_BASE;
5922 percentage = nr_anon * 100 / scan_target;
5923 } else {
5924 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5925 targets[LRU_ACTIVE_FILE] + 1;
5926 lru = LRU_FILE;
5927 percentage = nr_file * 100 / scan_target;
5928 }
5929
5930 /* Stop scanning the smaller of the LRU */
5931 nr[lru] = 0;
5932 nr[lru + LRU_ACTIVE] = 0;
5933
5934 /*
5935 * Recalculate the other LRU scan count based on its original
5936 * scan target and the percentage scanning already complete
5937 */
5938 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5939 nr_scanned = targets[lru] - nr[lru];
5940 nr[lru] = targets[lru] * (100 - percentage) / 100;
5941 nr[lru] -= min(nr[lru], nr_scanned);
5942
5943 lru += LRU_ACTIVE;
5944 nr_scanned = targets[lru] - nr[lru];
5945 nr[lru] = targets[lru] * (100 - percentage) / 100;
5946 nr[lru] -= min(nr[lru], nr_scanned);
5947
5948 scan_adjusted = true;
9b4f98cd
JW
5949 }
5950 blk_finish_plug(&plug);
5951 sc->nr_reclaimed += nr_reclaimed;
5952
5953 /*
5954 * Even if we did not try to evict anon pages at all, we want to
5955 * rebalance the anon lru active/inactive ratio.
5956 */
2f368a9f
DH
5957 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5958 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
5959 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5960 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
5961}
5962
23b9da55 5963/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 5964static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 5965{
d84da3f9 5966 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 5967 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 5968 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
5969 return true;
5970
5971 return false;
5972}
5973
3e7d3449 5974/*
23b9da55
MG
5975 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5976 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5977 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 5978 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 5979 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 5980 */
a9dd0a83 5981static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 5982 unsigned long nr_reclaimed,
3e7d3449
MG
5983 struct scan_control *sc)
5984{
5985 unsigned long pages_for_compaction;
5986 unsigned long inactive_lru_pages;
a9dd0a83 5987 int z;
3e7d3449
MG
5988
5989 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 5990 if (!in_reclaim_compaction(sc))
3e7d3449
MG
5991 return false;
5992
5ee04716
VB
5993 /*
5994 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5995 * number of pages that were scanned. This will return to the caller
5996 * with the risk reclaim/compaction and the resulting allocation attempt
5997 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5998 * allocations through requiring that the full LRU list has been scanned
5999 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6000 * scan, but that approximation was wrong, and there were corner cases
6001 * where always a non-zero amount of pages were scanned.
6002 */
6003 if (!nr_reclaimed)
6004 return false;
3e7d3449 6005
3e7d3449 6006 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
6007 for (z = 0; z <= sc->reclaim_idx; z++) {
6008 struct zone *zone = &pgdat->node_zones[z];
6aa303de 6009 if (!managed_zone(zone))
a9dd0a83
MG
6010 continue;
6011
6012 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 6013 case COMPACT_SUCCESS:
a9dd0a83
MG
6014 case COMPACT_CONTINUE:
6015 return false;
6016 default:
6017 /* check next zone */
6018 ;
6019 }
3e7d3449 6020 }
1c6c1597
HD
6021
6022 /*
6023 * If we have not reclaimed enough pages for compaction and the
6024 * inactive lists are large enough, continue reclaiming
6025 */
6026 pages_for_compaction = compact_gap(sc->order);
6027 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 6028 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
6029 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6030
5ee04716 6031 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
6032}
6033
0f6a5cff 6034static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 6035{
0f6a5cff 6036 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 6037 struct mem_cgroup *memcg;
1da177e4 6038
0f6a5cff 6039 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 6040 do {
afaf07a6 6041 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
6042 unsigned long reclaimed;
6043 unsigned long scanned;
5660048c 6044
e3336cab
XP
6045 /*
6046 * This loop can become CPU-bound when target memcgs
6047 * aren't eligible for reclaim - either because they
6048 * don't have any reclaimable pages, or because their
6049 * memory is explicitly protected. Avoid soft lockups.
6050 */
6051 cond_resched();
6052
45c7f7e1
CD
6053 mem_cgroup_calculate_protection(target_memcg, memcg);
6054
6055 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
6056 /*
6057 * Hard protection.
6058 * If there is no reclaimable memory, OOM.
6059 */
6060 continue;
45c7f7e1 6061 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
6062 /*
6063 * Soft protection.
6064 * Respect the protection only as long as
6065 * there is an unprotected supply
6066 * of reclaimable memory from other cgroups.
6067 */
6068 if (!sc->memcg_low_reclaim) {
6069 sc->memcg_low_skipped = 1;
bf8d5d52 6070 continue;
241994ed 6071 }
d2af3397 6072 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 6073 }
241994ed 6074
d2af3397
JW
6075 reclaimed = sc->nr_reclaimed;
6076 scanned = sc->nr_scanned;
afaf07a6
JW
6077
6078 shrink_lruvec(lruvec, sc);
70ddf637 6079
d2af3397
JW
6080 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6081 sc->priority);
6b4f7799 6082
d2af3397 6083 /* Record the group's reclaim efficiency */
73b73bac
YA
6084 if (!sc->proactive)
6085 vmpressure(sc->gfp_mask, memcg, false,
6086 sc->nr_scanned - scanned,
6087 sc->nr_reclaimed - reclaimed);
70ddf637 6088
0f6a5cff
JW
6089 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6090}
6091
6c9e0907 6092static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
6093{
6094 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 6095 unsigned long nr_reclaimed, nr_scanned;
1b05117d 6096 struct lruvec *target_lruvec;
0f6a5cff
JW
6097 bool reclaimable = false;
6098
1b05117d
JW
6099 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6100
0f6a5cff
JW
6101again:
6102 memset(&sc->nr, 0, sizeof(sc->nr));
6103
6104 nr_reclaimed = sc->nr_reclaimed;
6105 nr_scanned = sc->nr_scanned;
6106
f1e1a7be 6107 prepare_scan_count(pgdat, sc);
53138cea 6108
0f6a5cff 6109 shrink_node_memcgs(pgdat, sc);
2344d7e4 6110
d2af3397
JW
6111 if (reclaim_state) {
6112 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6113 reclaim_state->reclaimed_slab = 0;
6114 }
d108c772 6115
d2af3397 6116 /* Record the subtree's reclaim efficiency */
73b73bac
YA
6117 if (!sc->proactive)
6118 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6119 sc->nr_scanned - nr_scanned,
6120 sc->nr_reclaimed - nr_reclaimed);
d108c772 6121
d2af3397
JW
6122 if (sc->nr_reclaimed - nr_reclaimed)
6123 reclaimable = true;
d108c772 6124
d2af3397
JW
6125 if (current_is_kswapd()) {
6126 /*
6127 * If reclaim is isolating dirty pages under writeback,
6128 * it implies that the long-lived page allocation rate
6129 * is exceeding the page laundering rate. Either the
6130 * global limits are not being effective at throttling
6131 * processes due to the page distribution throughout
6132 * zones or there is heavy usage of a slow backing
6133 * device. The only option is to throttle from reclaim
6134 * context which is not ideal as there is no guarantee
6135 * the dirtying process is throttled in the same way
6136 * balance_dirty_pages() manages.
6137 *
6138 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6139 * count the number of pages under pages flagged for
6140 * immediate reclaim and stall if any are encountered
6141 * in the nr_immediate check below.
6142 */
6143 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6144 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 6145
d2af3397
JW
6146 /* Allow kswapd to start writing pages during reclaim.*/
6147 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6148 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 6149
d108c772 6150 /*
1eba09c1 6151 * If kswapd scans pages marked for immediate
d2af3397
JW
6152 * reclaim and under writeback (nr_immediate), it
6153 * implies that pages are cycling through the LRU
8cd7c588
MG
6154 * faster than they are written so forcibly stall
6155 * until some pages complete writeback.
d108c772 6156 */
d2af3397 6157 if (sc->nr.immediate)
c3f4a9a2 6158 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d2af3397
JW
6159 }
6160
6161 /*
8cd7c588
MG
6162 * Tag a node/memcg as congested if all the dirty pages were marked
6163 * for writeback and immediate reclaim (counted in nr.congested).
1b05117d 6164 *
d2af3397 6165 * Legacy memcg will stall in page writeback so avoid forcibly
8cd7c588 6166 * stalling in reclaim_throttle().
d2af3397 6167 */
1b05117d
JW
6168 if ((current_is_kswapd() ||
6169 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 6170 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 6171 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
6172
6173 /*
8cd7c588
MG
6174 * Stall direct reclaim for IO completions if the lruvec is
6175 * node is congested. Allow kswapd to continue until it
d2af3397
JW
6176 * starts encountering unqueued dirty pages or cycling through
6177 * the LRU too quickly.
6178 */
1b05117d
JW
6179 if (!current_is_kswapd() && current_may_throttle() &&
6180 !sc->hibernation_mode &&
6181 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
1b4e3f26 6182 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
d108c772 6183
d2af3397
JW
6184 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6185 sc))
6186 goto again;
2344d7e4 6187
c73322d0
JW
6188 /*
6189 * Kswapd gives up on balancing particular nodes after too
6190 * many failures to reclaim anything from them and goes to
6191 * sleep. On reclaim progress, reset the failure counter. A
6192 * successful direct reclaim run will revive a dormant kswapd.
6193 */
6194 if (reclaimable)
6195 pgdat->kswapd_failures = 0;
f16015fb
JW
6196}
6197
53853e2d 6198/*
fdd4c614
VB
6199 * Returns true if compaction should go ahead for a costly-order request, or
6200 * the allocation would already succeed without compaction. Return false if we
6201 * should reclaim first.
53853e2d 6202 */
4f588331 6203static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 6204{
31483b6a 6205 unsigned long watermark;
fdd4c614 6206 enum compact_result suitable;
fe4b1b24 6207
fdd4c614
VB
6208 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6209 if (suitable == COMPACT_SUCCESS)
6210 /* Allocation should succeed already. Don't reclaim. */
6211 return true;
6212 if (suitable == COMPACT_SKIPPED)
6213 /* Compaction cannot yet proceed. Do reclaim. */
6214 return false;
fe4b1b24 6215
53853e2d 6216 /*
fdd4c614
VB
6217 * Compaction is already possible, but it takes time to run and there
6218 * are potentially other callers using the pages just freed. So proceed
6219 * with reclaim to make a buffer of free pages available to give
6220 * compaction a reasonable chance of completing and allocating the page.
6221 * Note that we won't actually reclaim the whole buffer in one attempt
6222 * as the target watermark in should_continue_reclaim() is lower. But if
6223 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 6224 */
fdd4c614 6225 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 6226
fdd4c614 6227 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
6228}
6229
69392a40
MG
6230static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6231{
66ce520b
MG
6232 /*
6233 * If reclaim is making progress greater than 12% efficiency then
6234 * wake all the NOPROGRESS throttled tasks.
6235 */
6236 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
69392a40
MG
6237 wait_queue_head_t *wqh;
6238
6239 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6240 if (waitqueue_active(wqh))
6241 wake_up(wqh);
6242
6243 return;
6244 }
6245
6246 /*
1b4e3f26
MG
6247 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6248 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6249 * under writeback and marked for immediate reclaim at the tail of the
6250 * LRU.
69392a40 6251 */
1b4e3f26 6252 if (current_is_kswapd() || cgroup_reclaim(sc))
69392a40
MG
6253 return;
6254
6255 /* Throttle if making no progress at high prioities. */
1b4e3f26 6256 if (sc->priority == 1 && !sc->nr_reclaimed)
c3f4a9a2 6257 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
69392a40
MG
6258}
6259
1da177e4
LT
6260/*
6261 * This is the direct reclaim path, for page-allocating processes. We only
6262 * try to reclaim pages from zones which will satisfy the caller's allocation
6263 * request.
6264 *
1da177e4
LT
6265 * If a zone is deemed to be full of pinned pages then just give it a light
6266 * scan then give up on it.
6267 */
0a0337e0 6268static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 6269{
dd1a239f 6270 struct zoneref *z;
54a6eb5c 6271 struct zone *zone;
0608f43d
AM
6272 unsigned long nr_soft_reclaimed;
6273 unsigned long nr_soft_scanned;
619d0d76 6274 gfp_t orig_mask;
79dafcdc 6275 pg_data_t *last_pgdat = NULL;
1b4e3f26 6276 pg_data_t *first_pgdat = NULL;
1cfb419b 6277
cc715d99
MG
6278 /*
6279 * If the number of buffer_heads in the machine exceeds the maximum
6280 * allowed level, force direct reclaim to scan the highmem zone as
6281 * highmem pages could be pinning lowmem pages storing buffer_heads
6282 */
619d0d76 6283 orig_mask = sc->gfp_mask;
b2e18757 6284 if (buffer_heads_over_limit) {
cc715d99 6285 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 6286 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 6287 }
cc715d99 6288
d4debc66 6289 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 6290 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
6291 /*
6292 * Take care memory controller reclaiming has small influence
6293 * to global LRU.
6294 */
b5ead35e 6295 if (!cgroup_reclaim(sc)) {
344736f2
VD
6296 if (!cpuset_zone_allowed(zone,
6297 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 6298 continue;
65ec02cb 6299
0b06496a
JW
6300 /*
6301 * If we already have plenty of memory free for
6302 * compaction in this zone, don't free any more.
6303 * Even though compaction is invoked for any
6304 * non-zero order, only frequent costly order
6305 * reclamation is disruptive enough to become a
6306 * noticeable problem, like transparent huge
6307 * page allocations.
6308 */
6309 if (IS_ENABLED(CONFIG_COMPACTION) &&
6310 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 6311 compaction_ready(zone, sc)) {
0b06496a
JW
6312 sc->compaction_ready = true;
6313 continue;
e0887c19 6314 }
0b06496a 6315
79dafcdc
MG
6316 /*
6317 * Shrink each node in the zonelist once. If the
6318 * zonelist is ordered by zone (not the default) then a
6319 * node may be shrunk multiple times but in that case
6320 * the user prefers lower zones being preserved.
6321 */
6322 if (zone->zone_pgdat == last_pgdat)
6323 continue;
6324
0608f43d
AM
6325 /*
6326 * This steals pages from memory cgroups over softlimit
6327 * and returns the number of reclaimed pages and
6328 * scanned pages. This works for global memory pressure
6329 * and balancing, not for a memcg's limit.
6330 */
6331 nr_soft_scanned = 0;
ef8f2327 6332 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
6333 sc->order, sc->gfp_mask,
6334 &nr_soft_scanned);
6335 sc->nr_reclaimed += nr_soft_reclaimed;
6336 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 6337 /* need some check for avoid more shrink_zone() */
1cfb419b 6338 }
408d8544 6339
1b4e3f26
MG
6340 if (!first_pgdat)
6341 first_pgdat = zone->zone_pgdat;
6342
79dafcdc
MG
6343 /* See comment about same check for global reclaim above */
6344 if (zone->zone_pgdat == last_pgdat)
6345 continue;
6346 last_pgdat = zone->zone_pgdat;
970a39a3 6347 shrink_node(zone->zone_pgdat, sc);
1da177e4 6348 }
e0c23279 6349
80082938
MG
6350 if (first_pgdat)
6351 consider_reclaim_throttle(first_pgdat, sc);
1b4e3f26 6352
619d0d76
WY
6353 /*
6354 * Restore to original mask to avoid the impact on the caller if we
6355 * promoted it to __GFP_HIGHMEM.
6356 */
6357 sc->gfp_mask = orig_mask;
1da177e4 6358}
4f98a2fe 6359
b910718a 6360static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 6361{
b910718a
JW
6362 struct lruvec *target_lruvec;
6363 unsigned long refaults;
2a2e4885 6364
ac35a490
YZ
6365 if (lru_gen_enabled())
6366 return;
6367
b910718a 6368 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7 6369 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
e9c2dbc8 6370 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
170b04b7 6371 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
e9c2dbc8 6372 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
2a2e4885
JW
6373}
6374
1da177e4
LT
6375/*
6376 * This is the main entry point to direct page reclaim.
6377 *
6378 * If a full scan of the inactive list fails to free enough memory then we
6379 * are "out of memory" and something needs to be killed.
6380 *
6381 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6382 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
6383 * caller can't do much about. We kick the writeback threads and take explicit
6384 * naps in the hope that some of these pages can be written. But if the
6385 * allocating task holds filesystem locks which prevent writeout this might not
6386 * work, and the allocation attempt will fail.
a41f24ea
NA
6387 *
6388 * returns: 0, if no pages reclaimed
6389 * else, the number of pages reclaimed
1da177e4 6390 */
dac1d27b 6391static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 6392 struct scan_control *sc)
1da177e4 6393{
241994ed 6394 int initial_priority = sc->priority;
2a2e4885
JW
6395 pg_data_t *last_pgdat;
6396 struct zoneref *z;
6397 struct zone *zone;
241994ed 6398retry:
873b4771
KK
6399 delayacct_freepages_start();
6400
b5ead35e 6401 if (!cgroup_reclaim(sc))
7cc30fcf 6402 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 6403
9e3b2f8c 6404 do {
73b73bac
YA
6405 if (!sc->proactive)
6406 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6407 sc->priority);
66e1707b 6408 sc->nr_scanned = 0;
0a0337e0 6409 shrink_zones(zonelist, sc);
c6a8a8c5 6410
bb21c7ce 6411 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
6412 break;
6413
6414 if (sc->compaction_ready)
6415 break;
1da177e4 6416
0e50ce3b
MK
6417 /*
6418 * If we're getting trouble reclaiming, start doing
6419 * writepage even in laptop mode.
6420 */
6421 if (sc->priority < DEF_PRIORITY - 2)
6422 sc->may_writepage = 1;
0b06496a 6423 } while (--sc->priority >= 0);
bb21c7ce 6424
2a2e4885
JW
6425 last_pgdat = NULL;
6426 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6427 sc->nodemask) {
6428 if (zone->zone_pgdat == last_pgdat)
6429 continue;
6430 last_pgdat = zone->zone_pgdat;
1b05117d 6431
2a2e4885 6432 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
6433
6434 if (cgroup_reclaim(sc)) {
6435 struct lruvec *lruvec;
6436
6437 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6438 zone->zone_pgdat);
6439 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6440 }
2a2e4885
JW
6441 }
6442
873b4771
KK
6443 delayacct_freepages_end();
6444
bb21c7ce
KM
6445 if (sc->nr_reclaimed)
6446 return sc->nr_reclaimed;
6447
0cee34fd 6448 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 6449 if (sc->compaction_ready)
7335084d
MG
6450 return 1;
6451
b91ac374
JW
6452 /*
6453 * We make inactive:active ratio decisions based on the node's
6454 * composition of memory, but a restrictive reclaim_idx or a
6455 * memory.low cgroup setting can exempt large amounts of
6456 * memory from reclaim. Neither of which are very common, so
6457 * instead of doing costly eligibility calculations of the
6458 * entire cgroup subtree up front, we assume the estimates are
6459 * good, and retry with forcible deactivation if that fails.
6460 */
6461 if (sc->skipped_deactivate) {
6462 sc->priority = initial_priority;
6463 sc->force_deactivate = 1;
6464 sc->skipped_deactivate = 0;
6465 goto retry;
6466 }
6467
241994ed 6468 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 6469 if (sc->memcg_low_skipped) {
241994ed 6470 sc->priority = initial_priority;
b91ac374 6471 sc->force_deactivate = 0;
d6622f63
YX
6472 sc->memcg_low_reclaim = 1;
6473 sc->memcg_low_skipped = 0;
241994ed
JW
6474 goto retry;
6475 }
6476
bb21c7ce 6477 return 0;
1da177e4
LT
6478}
6479
c73322d0 6480static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
6481{
6482 struct zone *zone;
6483 unsigned long pfmemalloc_reserve = 0;
6484 unsigned long free_pages = 0;
6485 int i;
6486 bool wmark_ok;
6487
c73322d0
JW
6488 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6489 return true;
6490
5515061d
MG
6491 for (i = 0; i <= ZONE_NORMAL; i++) {
6492 zone = &pgdat->node_zones[i];
d450abd8
JW
6493 if (!managed_zone(zone))
6494 continue;
6495
6496 if (!zone_reclaimable_pages(zone))
675becce
MG
6497 continue;
6498
5515061d
MG
6499 pfmemalloc_reserve += min_wmark_pages(zone);
6500 free_pages += zone_page_state(zone, NR_FREE_PAGES);
6501 }
6502
675becce
MG
6503 /* If there are no reserves (unexpected config) then do not throttle */
6504 if (!pfmemalloc_reserve)
6505 return true;
6506
5515061d
MG
6507 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6508
6509 /* kswapd must be awake if processes are being throttled */
6510 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
6511 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6512 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 6513
5515061d
MG
6514 wake_up_interruptible(&pgdat->kswapd_wait);
6515 }
6516
6517 return wmark_ok;
6518}
6519
6520/*
6521 * Throttle direct reclaimers if backing storage is backed by the network
6522 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6523 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
6524 * when the low watermark is reached.
6525 *
6526 * Returns true if a fatal signal was delivered during throttling. If this
6527 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 6528 */
50694c28 6529static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
6530 nodemask_t *nodemask)
6531{
675becce 6532 struct zoneref *z;
5515061d 6533 struct zone *zone;
675becce 6534 pg_data_t *pgdat = NULL;
5515061d
MG
6535
6536 /*
6537 * Kernel threads should not be throttled as they may be indirectly
6538 * responsible for cleaning pages necessary for reclaim to make forward
6539 * progress. kjournald for example may enter direct reclaim while
6540 * committing a transaction where throttling it could forcing other
6541 * processes to block on log_wait_commit().
6542 */
6543 if (current->flags & PF_KTHREAD)
50694c28
MG
6544 goto out;
6545
6546 /*
6547 * If a fatal signal is pending, this process should not throttle.
6548 * It should return quickly so it can exit and free its memory
6549 */
6550 if (fatal_signal_pending(current))
6551 goto out;
5515061d 6552
675becce
MG
6553 /*
6554 * Check if the pfmemalloc reserves are ok by finding the first node
6555 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6556 * GFP_KERNEL will be required for allocating network buffers when
6557 * swapping over the network so ZONE_HIGHMEM is unusable.
6558 *
6559 * Throttling is based on the first usable node and throttled processes
6560 * wait on a queue until kswapd makes progress and wakes them. There
6561 * is an affinity then between processes waking up and where reclaim
6562 * progress has been made assuming the process wakes on the same node.
6563 * More importantly, processes running on remote nodes will not compete
6564 * for remote pfmemalloc reserves and processes on different nodes
6565 * should make reasonable progress.
6566 */
6567 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 6568 gfp_zone(gfp_mask), nodemask) {
675becce
MG
6569 if (zone_idx(zone) > ZONE_NORMAL)
6570 continue;
6571
6572 /* Throttle based on the first usable node */
6573 pgdat = zone->zone_pgdat;
c73322d0 6574 if (allow_direct_reclaim(pgdat))
675becce
MG
6575 goto out;
6576 break;
6577 }
6578
6579 /* If no zone was usable by the allocation flags then do not throttle */
6580 if (!pgdat)
50694c28 6581 goto out;
5515061d 6582
68243e76
MG
6583 /* Account for the throttling */
6584 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6585
5515061d
MG
6586 /*
6587 * If the caller cannot enter the filesystem, it's possible that it
6588 * is due to the caller holding an FS lock or performing a journal
6589 * transaction in the case of a filesystem like ext[3|4]. In this case,
6590 * it is not safe to block on pfmemalloc_wait as kswapd could be
6591 * blocked waiting on the same lock. Instead, throttle for up to a
6592 * second before continuing.
6593 */
2e786d9e 6594 if (!(gfp_mask & __GFP_FS))
5515061d 6595 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 6596 allow_direct_reclaim(pgdat), HZ);
2e786d9e
ML
6597 else
6598 /* Throttle until kswapd wakes the process */
6599 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6600 allow_direct_reclaim(pgdat));
50694c28 6601
50694c28
MG
6602 if (fatal_signal_pending(current))
6603 return true;
6604
6605out:
6606 return false;
5515061d
MG
6607}
6608
dac1d27b 6609unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 6610 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 6611{
33906bc5 6612 unsigned long nr_reclaimed;
66e1707b 6613 struct scan_control sc = {
ee814fe2 6614 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 6615 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 6616 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
6617 .order = order,
6618 .nodemask = nodemask,
6619 .priority = DEF_PRIORITY,
66e1707b 6620 .may_writepage = !laptop_mode,
a6dc60f8 6621 .may_unmap = 1,
2e2e4259 6622 .may_swap = 1,
66e1707b
BS
6623 };
6624
bb451fdf
GT
6625 /*
6626 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6627 * Confirm they are large enough for max values.
6628 */
6629 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6630 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6631 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6632
5515061d 6633 /*
50694c28
MG
6634 * Do not enter reclaim if fatal signal was delivered while throttled.
6635 * 1 is returned so that the page allocator does not OOM kill at this
6636 * point.
5515061d 6637 */
f2f43e56 6638 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
6639 return 1;
6640
1732d2b0 6641 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 6642 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 6643
3115cd91 6644 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
6645
6646 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 6647 set_task_reclaim_state(current, NULL);
33906bc5
MG
6648
6649 return nr_reclaimed;
66e1707b
BS
6650}
6651
c255a458 6652#ifdef CONFIG_MEMCG
66e1707b 6653
d2e5fb92 6654/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 6655unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 6656 gfp_t gfp_mask, bool noswap,
ef8f2327 6657 pg_data_t *pgdat,
0ae5e89c 6658 unsigned long *nr_scanned)
4e416953 6659{
afaf07a6 6660 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 6661 struct scan_control sc = {
b8f5c566 6662 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 6663 .target_mem_cgroup = memcg,
4e416953
BS
6664 .may_writepage = !laptop_mode,
6665 .may_unmap = 1,
b2e18757 6666 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 6667 .may_swap = !noswap,
4e416953 6668 };
0ae5e89c 6669
d2e5fb92
MH
6670 WARN_ON_ONCE(!current->reclaim_state);
6671
4e416953
BS
6672 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6673 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 6674
9e3b2f8c 6675 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 6676 sc.gfp_mask);
bdce6d9e 6677
4e416953
BS
6678 /*
6679 * NOTE: Although we can get the priority field, using it
6680 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 6681 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
6682 * will pick up pages from other mem cgroup's as well. We hack
6683 * the priority and make it zero.
6684 */
afaf07a6 6685 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
6686
6687 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6688
0ae5e89c 6689 *nr_scanned = sc.nr_scanned;
0308f7cf 6690
4e416953
BS
6691 return sc.nr_reclaimed;
6692}
6693
72835c86 6694unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 6695 unsigned long nr_pages,
a7885eb8 6696 gfp_t gfp_mask,
73b73bac 6697 unsigned int reclaim_options)
66e1707b 6698{
bdce6d9e 6699 unsigned long nr_reclaimed;
499118e9 6700 unsigned int noreclaim_flag;
66e1707b 6701 struct scan_control sc = {
b70a2a21 6702 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 6703 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 6704 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 6705 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
6706 .target_mem_cgroup = memcg,
6707 .priority = DEF_PRIORITY,
6708 .may_writepage = !laptop_mode,
6709 .may_unmap = 1,
73b73bac
YA
6710 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6711 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
a09ed5e0 6712 };
889976db 6713 /*
fa40d1ee
SB
6714 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6715 * equal pressure on all the nodes. This is based on the assumption that
6716 * the reclaim does not bail out early.
889976db 6717 */
fa40d1ee 6718 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 6719
fa40d1ee 6720 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 6721 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 6722 noreclaim_flag = memalloc_noreclaim_save();
eb414681 6723
3115cd91 6724 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 6725
499118e9 6726 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 6727 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 6728 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
6729
6730 return nr_reclaimed;
66e1707b
BS
6731}
6732#endif
6733
ac35a490 6734static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
f16015fb 6735{
b95a2f2d 6736 struct mem_cgroup *memcg;
b91ac374 6737 struct lruvec *lruvec;
f16015fb 6738
ac35a490
YZ
6739 if (lru_gen_enabled()) {
6740 lru_gen_age_node(pgdat, sc);
6741 return;
6742 }
6743
2f368a9f 6744 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
6745 return;
6746
b91ac374
JW
6747 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6748 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6749 return;
6750
b95a2f2d
JW
6751 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6752 do {
b91ac374
JW
6753 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6754 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6755 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
6756 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6757 } while (memcg);
f16015fb
JW
6758}
6759
97a225e6 6760static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
6761{
6762 int i;
6763 struct zone *zone;
6764
6765 /*
6766 * Check for watermark boosts top-down as the higher zones
6767 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 6768 * should not be checked at the same time as reclaim would
1c30844d
MG
6769 * start prematurely when there is no boosting and a lower
6770 * zone is balanced.
6771 */
97a225e6 6772 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
6773 zone = pgdat->node_zones + i;
6774 if (!managed_zone(zone))
6775 continue;
6776
6777 if (zone->watermark_boost)
6778 return true;
6779 }
6780
6781 return false;
6782}
6783
e716f2eb
MG
6784/*
6785 * Returns true if there is an eligible zone balanced for the request order
97a225e6 6786 * and highest_zoneidx
e716f2eb 6787 */
97a225e6 6788static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 6789{
e716f2eb
MG
6790 int i;
6791 unsigned long mark = -1;
6792 struct zone *zone;
60cefed4 6793
1c30844d
MG
6794 /*
6795 * Check watermarks bottom-up as lower zones are more likely to
6796 * meet watermarks.
6797 */
97a225e6 6798 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 6799 zone = pgdat->node_zones + i;
6256c6b4 6800
e716f2eb
MG
6801 if (!managed_zone(zone))
6802 continue;
6803
c574bbe9
HY
6804 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6805 mark = wmark_pages(zone, WMARK_PROMO);
6806 else
6807 mark = high_wmark_pages(zone);
97a225e6 6808 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
6809 return true;
6810 }
6811
6812 /*
36c26128 6813 * If a node has no managed zone within highest_zoneidx, it does not
e716f2eb
MG
6814 * need balancing by definition. This can happen if a zone-restricted
6815 * allocation tries to wake a remote kswapd.
6816 */
6817 if (mark == -1)
6818 return true;
6819
6820 return false;
60cefed4
JW
6821}
6822
631b6e08
MG
6823/* Clear pgdat state for congested, dirty or under writeback. */
6824static void clear_pgdat_congested(pg_data_t *pgdat)
6825{
1b05117d
JW
6826 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6827
6828 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
6829 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6830 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6831}
6832
5515061d
MG
6833/*
6834 * Prepare kswapd for sleeping. This verifies that there are no processes
6835 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6836 *
6837 * Returns true if kswapd is ready to sleep
6838 */
97a225e6
JK
6839static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6840 int highest_zoneidx)
f50de2d3 6841{
5515061d 6842 /*
9e5e3661 6843 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 6844 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
6845 * race between when kswapd checks the watermarks and a process gets
6846 * throttled. There is also a potential race if processes get
6847 * throttled, kswapd wakes, a large process exits thereby balancing the
6848 * zones, which causes kswapd to exit balance_pgdat() before reaching
6849 * the wake up checks. If kswapd is going to sleep, no process should
6850 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6851 * the wake up is premature, processes will wake kswapd and get
6852 * throttled again. The difference from wake ups in balance_pgdat() is
6853 * that here we are under prepare_to_wait().
5515061d 6854 */
9e5e3661
VB
6855 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6856 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 6857
c73322d0
JW
6858 /* Hopeless node, leave it to direct reclaim */
6859 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6860 return true;
6861
97a225e6 6862 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
6863 clear_pgdat_congested(pgdat);
6864 return true;
1d82de61
MG
6865 }
6866
333b0a45 6867 return false;
f50de2d3
MG
6868}
6869
75485363 6870/*
1d82de61
MG
6871 * kswapd shrinks a node of pages that are at or below the highest usable
6872 * zone that is currently unbalanced.
b8e83b94
MG
6873 *
6874 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
6875 * reclaim or if the lack of progress was due to pages under writeback.
6876 * This is used to determine if the scanning priority needs to be raised.
75485363 6877 */
1d82de61 6878static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 6879 struct scan_control *sc)
75485363 6880{
1d82de61
MG
6881 struct zone *zone;
6882 int z;
75485363 6883
1d82de61
MG
6884 /* Reclaim a number of pages proportional to the number of zones */
6885 sc->nr_to_reclaim = 0;
970a39a3 6886 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 6887 zone = pgdat->node_zones + z;
6aa303de 6888 if (!managed_zone(zone))
1d82de61 6889 continue;
7c954f6d 6890
1d82de61
MG
6891 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6892 }
7c954f6d
MG
6893
6894 /*
1d82de61
MG
6895 * Historically care was taken to put equal pressure on all zones but
6896 * now pressure is applied based on node LRU order.
7c954f6d 6897 */
970a39a3 6898 shrink_node(pgdat, sc);
283aba9f 6899
7c954f6d 6900 /*
1d82de61
MG
6901 * Fragmentation may mean that the system cannot be rebalanced for
6902 * high-order allocations. If twice the allocation size has been
6903 * reclaimed then recheck watermarks only at order-0 to prevent
6904 * excessive reclaim. Assume that a process requested a high-order
6905 * can direct reclaim/compact.
7c954f6d 6906 */
9861a62c 6907 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 6908 sc->order = 0;
7c954f6d 6909
b8e83b94 6910 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
6911}
6912
c49c2c47
MG
6913/* Page allocator PCP high watermark is lowered if reclaim is active. */
6914static inline void
6915update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6916{
6917 int i;
6918 struct zone *zone;
6919
6920 for (i = 0; i <= highest_zoneidx; i++) {
6921 zone = pgdat->node_zones + i;
6922
6923 if (!managed_zone(zone))
6924 continue;
6925
6926 if (active)
6927 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6928 else
6929 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6930 }
6931}
6932
6933static inline void
6934set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6935{
6936 update_reclaim_active(pgdat, highest_zoneidx, true);
6937}
6938
6939static inline void
6940clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6941{
6942 update_reclaim_active(pgdat, highest_zoneidx, false);
6943}
6944
1da177e4 6945/*
1d82de61
MG
6946 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6947 * that are eligible for use by the caller until at least one zone is
6948 * balanced.
1da177e4 6949 *
1d82de61 6950 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
6951 *
6952 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 6953 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 6954 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
6955 * or lower is eligible for reclaim until at least one usable zone is
6956 * balanced.
1da177e4 6957 */
97a225e6 6958static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 6959{
1da177e4 6960 int i;
0608f43d
AM
6961 unsigned long nr_soft_reclaimed;
6962 unsigned long nr_soft_scanned;
eb414681 6963 unsigned long pflags;
1c30844d
MG
6964 unsigned long nr_boost_reclaim;
6965 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6966 bool boosted;
1d82de61 6967 struct zone *zone;
179e9639
AM
6968 struct scan_control sc = {
6969 .gfp_mask = GFP_KERNEL,
ee814fe2 6970 .order = order,
a6dc60f8 6971 .may_unmap = 1,
179e9639 6972 };
93781325 6973
1732d2b0 6974 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 6975 psi_memstall_enter(&pflags);
4f3eaf45 6976 __fs_reclaim_acquire(_THIS_IP_);
93781325 6977
f8891e5e 6978 count_vm_event(PAGEOUTRUN);
1da177e4 6979
1c30844d
MG
6980 /*
6981 * Account for the reclaim boost. Note that the zone boost is left in
6982 * place so that parallel allocations that are near the watermark will
6983 * stall or direct reclaim until kswapd is finished.
6984 */
6985 nr_boost_reclaim = 0;
97a225e6 6986 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
6987 zone = pgdat->node_zones + i;
6988 if (!managed_zone(zone))
6989 continue;
6990
6991 nr_boost_reclaim += zone->watermark_boost;
6992 zone_boosts[i] = zone->watermark_boost;
6993 }
6994 boosted = nr_boost_reclaim;
6995
6996restart:
c49c2c47 6997 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 6998 sc.priority = DEF_PRIORITY;
9e3b2f8c 6999 do {
c73322d0 7000 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 7001 bool raise_priority = true;
1c30844d 7002 bool balanced;
93781325 7003 bool ret;
b8e83b94 7004
97a225e6 7005 sc.reclaim_idx = highest_zoneidx;
1da177e4 7006
86c79f6b 7007 /*
84c7a777
MG
7008 * If the number of buffer_heads exceeds the maximum allowed
7009 * then consider reclaiming from all zones. This has a dual
7010 * purpose -- on 64-bit systems it is expected that
7011 * buffer_heads are stripped during active rotation. On 32-bit
7012 * systems, highmem pages can pin lowmem memory and shrinking
7013 * buffers can relieve lowmem pressure. Reclaim may still not
7014 * go ahead if all eligible zones for the original allocation
7015 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
7016 */
7017 if (buffer_heads_over_limit) {
7018 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7019 zone = pgdat->node_zones + i;
6aa303de 7020 if (!managed_zone(zone))
86c79f6b 7021 continue;
cc715d99 7022
970a39a3 7023 sc.reclaim_idx = i;
e1dbeda6 7024 break;
1da177e4 7025 }
1da177e4 7026 }
dafcb73e 7027
86c79f6b 7028 /*
1c30844d
MG
7029 * If the pgdat is imbalanced then ignore boosting and preserve
7030 * the watermarks for a later time and restart. Note that the
7031 * zone watermarks will be still reset at the end of balancing
7032 * on the grounds that the normal reclaim should be enough to
7033 * re-evaluate if boosting is required when kswapd next wakes.
7034 */
97a225e6 7035 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
7036 if (!balanced && nr_boost_reclaim) {
7037 nr_boost_reclaim = 0;
7038 goto restart;
7039 }
7040
7041 /*
7042 * If boosting is not active then only reclaim if there are no
7043 * eligible zones. Note that sc.reclaim_idx is not used as
7044 * buffer_heads_over_limit may have adjusted it.
86c79f6b 7045 */
1c30844d 7046 if (!nr_boost_reclaim && balanced)
e716f2eb 7047 goto out;
e1dbeda6 7048
1c30844d
MG
7049 /* Limit the priority of boosting to avoid reclaim writeback */
7050 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7051 raise_priority = false;
7052
7053 /*
7054 * Do not writeback or swap pages for boosted reclaim. The
7055 * intent is to relieve pressure not issue sub-optimal IO
7056 * from reclaim context. If no pages are reclaimed, the
7057 * reclaim will be aborted.
7058 */
7059 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7060 sc.may_swap = !nr_boost_reclaim;
1c30844d 7061
1d82de61 7062 /*
ac35a490
YZ
7063 * Do some background aging, to give pages a chance to be
7064 * referenced before reclaiming. All pages are rotated
7065 * regardless of classzone as this is about consistent aging.
1d82de61 7066 */
ac35a490 7067 kswapd_age_node(pgdat, &sc);
1d82de61 7068
b7ea3c41
MG
7069 /*
7070 * If we're getting trouble reclaiming, start doing writepage
7071 * even in laptop mode.
7072 */
047d72c3 7073 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
7074 sc.may_writepage = 1;
7075
1d82de61
MG
7076 /* Call soft limit reclaim before calling shrink_node. */
7077 sc.nr_scanned = 0;
7078 nr_soft_scanned = 0;
ef8f2327 7079 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
7080 sc.gfp_mask, &nr_soft_scanned);
7081 sc.nr_reclaimed += nr_soft_reclaimed;
7082
1da177e4 7083 /*
1d82de61
MG
7084 * There should be no need to raise the scanning priority if
7085 * enough pages are already being scanned that that high
7086 * watermark would be met at 100% efficiency.
1da177e4 7087 */
970a39a3 7088 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 7089 raise_priority = false;
5515061d
MG
7090
7091 /*
7092 * If the low watermark is met there is no need for processes
7093 * to be throttled on pfmemalloc_wait as they should not be
7094 * able to safely make forward progress. Wake them
7095 */
7096 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 7097 allow_direct_reclaim(pgdat))
cfc51155 7098 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 7099
b8e83b94 7100 /* Check if kswapd should be suspending */
4f3eaf45 7101 __fs_reclaim_release(_THIS_IP_);
93781325 7102 ret = try_to_freeze();
4f3eaf45 7103 __fs_reclaim_acquire(_THIS_IP_);
93781325 7104 if (ret || kthread_should_stop())
b8e83b94 7105 break;
8357376d 7106
73ce02e9 7107 /*
b8e83b94
MG
7108 * Raise priority if scanning rate is too low or there was no
7109 * progress in reclaiming pages
73ce02e9 7110 */
c73322d0 7111 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
7112 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7113
7114 /*
7115 * If reclaim made no progress for a boost, stop reclaim as
7116 * IO cannot be queued and it could be an infinite loop in
7117 * extreme circumstances.
7118 */
7119 if (nr_boost_reclaim && !nr_reclaimed)
7120 break;
7121
c73322d0 7122 if (raise_priority || !nr_reclaimed)
b8e83b94 7123 sc.priority--;
1d82de61 7124 } while (sc.priority >= 1);
1da177e4 7125
c73322d0
JW
7126 if (!sc.nr_reclaimed)
7127 pgdat->kswapd_failures++;
7128
b8e83b94 7129out:
c49c2c47
MG
7130 clear_reclaim_active(pgdat, highest_zoneidx);
7131
1c30844d
MG
7132 /* If reclaim was boosted, account for the reclaim done in this pass */
7133 if (boosted) {
7134 unsigned long flags;
7135
97a225e6 7136 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
7137 if (!zone_boosts[i])
7138 continue;
7139
7140 /* Increments are under the zone lock */
7141 zone = pgdat->node_zones + i;
7142 spin_lock_irqsave(&zone->lock, flags);
7143 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7144 spin_unlock_irqrestore(&zone->lock, flags);
7145 }
7146
7147 /*
7148 * As there is now likely space, wakeup kcompact to defragment
7149 * pageblocks.
7150 */
97a225e6 7151 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
7152 }
7153
2a2e4885 7154 snapshot_refaults(NULL, pgdat);
4f3eaf45 7155 __fs_reclaim_release(_THIS_IP_);
eb414681 7156 psi_memstall_leave(&pflags);
1732d2b0 7157 set_task_reclaim_state(current, NULL);
e5ca8071 7158
0abdee2b 7159 /*
1d82de61
MG
7160 * Return the order kswapd stopped reclaiming at as
7161 * prepare_kswapd_sleep() takes it into account. If another caller
7162 * entered the allocator slow path while kswapd was awake, order will
7163 * remain at the higher level.
0abdee2b 7164 */
1d82de61 7165 return sc.order;
1da177e4
LT
7166}
7167
e716f2eb 7168/*
97a225e6
JK
7169 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7170 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7171 * not a valid index then either kswapd runs for first time or kswapd couldn't
7172 * sleep after previous reclaim attempt (node is still unbalanced). In that
7173 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 7174 */
97a225e6
JK
7175static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7176 enum zone_type prev_highest_zoneidx)
e716f2eb 7177{
97a225e6 7178 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 7179
97a225e6 7180 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
7181}
7182
38087d9b 7183static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 7184 unsigned int highest_zoneidx)
f0bc0a60
KM
7185{
7186 long remaining = 0;
7187 DEFINE_WAIT(wait);
7188
7189 if (freezing(current) || kthread_should_stop())
7190 return;
7191
7192 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7193
333b0a45
SG
7194 /*
7195 * Try to sleep for a short interval. Note that kcompactd will only be
7196 * woken if it is possible to sleep for a short interval. This is
7197 * deliberate on the assumption that if reclaim cannot keep an
7198 * eligible zone balanced that it's also unlikely that compaction will
7199 * succeed.
7200 */
97a225e6 7201 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
7202 /*
7203 * Compaction records what page blocks it recently failed to
7204 * isolate pages from and skips them in the future scanning.
7205 * When kswapd is going to sleep, it is reasonable to assume
7206 * that pages and compaction may succeed so reset the cache.
7207 */
7208 reset_isolation_suitable(pgdat);
7209
7210 /*
7211 * We have freed the memory, now we should compact it to make
7212 * allocation of the requested order possible.
7213 */
97a225e6 7214 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 7215
f0bc0a60 7216 remaining = schedule_timeout(HZ/10);
38087d9b
MG
7217
7218 /*
97a225e6 7219 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
7220 * order. The values will either be from a wakeup request or
7221 * the previous request that slept prematurely.
7222 */
7223 if (remaining) {
97a225e6
JK
7224 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7225 kswapd_highest_zoneidx(pgdat,
7226 highest_zoneidx));
5644e1fb
QC
7227
7228 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7229 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
7230 }
7231
f0bc0a60
KM
7232 finish_wait(&pgdat->kswapd_wait, &wait);
7233 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7234 }
7235
7236 /*
7237 * After a short sleep, check if it was a premature sleep. If not, then
7238 * go fully to sleep until explicitly woken up.
7239 */
d9f21d42 7240 if (!remaining &&
97a225e6 7241 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
7242 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7243
7244 /*
7245 * vmstat counters are not perfectly accurate and the estimated
7246 * value for counters such as NR_FREE_PAGES can deviate from the
7247 * true value by nr_online_cpus * threshold. To avoid the zone
7248 * watermarks being breached while under pressure, we reduce the
7249 * per-cpu vmstat threshold while kswapd is awake and restore
7250 * them before going back to sleep.
7251 */
7252 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
7253
7254 if (!kthread_should_stop())
7255 schedule();
7256
f0bc0a60
KM
7257 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7258 } else {
7259 if (remaining)
7260 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7261 else
7262 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7263 }
7264 finish_wait(&pgdat->kswapd_wait, &wait);
7265}
7266
1da177e4
LT
7267/*
7268 * The background pageout daemon, started as a kernel thread
4f98a2fe 7269 * from the init process.
1da177e4
LT
7270 *
7271 * This basically trickles out pages so that we have _some_
7272 * free memory available even if there is no other activity
7273 * that frees anything up. This is needed for things like routing
7274 * etc, where we otherwise might have all activity going on in
7275 * asynchronous contexts that cannot page things out.
7276 *
7277 * If there are applications that are active memory-allocators
7278 * (most normal use), this basically shouldn't matter.
7279 */
7280static int kswapd(void *p)
7281{
e716f2eb 7282 unsigned int alloc_order, reclaim_order;
97a225e6 7283 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 7284 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 7285 struct task_struct *tsk = current;
a70f7302 7286 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 7287
174596a0 7288 if (!cpumask_empty(cpumask))
c5f59f08 7289 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
7290
7291 /*
7292 * Tell the memory management that we're a "memory allocator",
7293 * and that if we need more memory we should get access to it
7294 * regardless (see "__alloc_pages()"). "kswapd" should
7295 * never get caught in the normal page freeing logic.
7296 *
7297 * (Kswapd normally doesn't need memory anyway, but sometimes
7298 * you need a small amount of memory in order to be able to
7299 * page out something else, and this flag essentially protects
7300 * us from recursively trying to free more memory as we're
7301 * trying to free the first piece of memory in the first place).
7302 */
b698f0a1 7303 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
83144186 7304 set_freezable();
1da177e4 7305
5644e1fb 7306 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 7307 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
8cd7c588 7308 atomic_set(&pgdat->nr_writeback_throttled, 0);
1da177e4 7309 for ( ; ; ) {
6f6313d4 7310 bool ret;
3e1d1d28 7311
5644e1fb 7312 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
7313 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7314 highest_zoneidx);
e716f2eb 7315
38087d9b
MG
7316kswapd_try_sleep:
7317 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 7318 highest_zoneidx);
215ddd66 7319
97a225e6 7320 /* Read the new order and highest_zoneidx */
2b47a24c 7321 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
7322 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7323 highest_zoneidx);
5644e1fb 7324 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 7325 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 7326
8fe23e05
DR
7327 ret = try_to_freeze();
7328 if (kthread_should_stop())
7329 break;
7330
7331 /*
7332 * We can speed up thawing tasks if we don't call balance_pgdat
7333 * after returning from the refrigerator
7334 */
38087d9b
MG
7335 if (ret)
7336 continue;
7337
7338 /*
7339 * Reclaim begins at the requested order but if a high-order
7340 * reclaim fails then kswapd falls back to reclaiming for
7341 * order-0. If that happens, kswapd will consider sleeping
7342 * for the order it finished reclaiming at (reclaim_order)
7343 * but kcompactd is woken to compact for the original
7344 * request (alloc_order).
7345 */
97a225e6 7346 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 7347 alloc_order);
97a225e6
JK
7348 reclaim_order = balance_pgdat(pgdat, alloc_order,
7349 highest_zoneidx);
38087d9b
MG
7350 if (reclaim_order < alloc_order)
7351 goto kswapd_try_sleep;
1da177e4 7352 }
b0a8cc58 7353
b698f0a1 7354 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
71abdc15 7355
1da177e4
LT
7356 return 0;
7357}
7358
7359/*
5ecd9d40
DR
7360 * A zone is low on free memory or too fragmented for high-order memory. If
7361 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7362 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7363 * has failed or is not needed, still wake up kcompactd if only compaction is
7364 * needed.
1da177e4 7365 */
5ecd9d40 7366void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 7367 enum zone_type highest_zoneidx)
1da177e4
LT
7368{
7369 pg_data_t *pgdat;
5644e1fb 7370 enum zone_type curr_idx;
1da177e4 7371
6aa303de 7372 if (!managed_zone(zone))
1da177e4
LT
7373 return;
7374
5ecd9d40 7375 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 7376 return;
5644e1fb 7377
88f5acf8 7378 pgdat = zone->zone_pgdat;
97a225e6 7379 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 7380
97a225e6
JK
7381 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7382 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
7383
7384 if (READ_ONCE(pgdat->kswapd_order) < order)
7385 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 7386
8d0986e2 7387 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 7388 return;
e1a55637 7389
5ecd9d40
DR
7390 /* Hopeless node, leave it to direct reclaim if possible */
7391 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
7392 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7393 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
7394 /*
7395 * There may be plenty of free memory available, but it's too
7396 * fragmented for high-order allocations. Wake up kcompactd
7397 * and rely on compaction_suitable() to determine if it's
7398 * needed. If it fails, it will defer subsequent attempts to
7399 * ratelimit its work.
7400 */
7401 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 7402 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 7403 return;
5ecd9d40 7404 }
88f5acf8 7405
97a225e6 7406 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 7407 gfp_flags);
8d0986e2 7408 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
7409}
7410
c6f37f12 7411#ifdef CONFIG_HIBERNATION
1da177e4 7412/*
7b51755c 7413 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
7414 * freed pages.
7415 *
7416 * Rather than trying to age LRUs the aim is to preserve the overall
7417 * LRU order by reclaiming preferentially
7418 * inactive > active > active referenced > active mapped
1da177e4 7419 */
7b51755c 7420unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 7421{
d6277db4 7422 struct scan_control sc = {
ee814fe2 7423 .nr_to_reclaim = nr_to_reclaim,
7b51755c 7424 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 7425 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 7426 .priority = DEF_PRIORITY,
d6277db4 7427 .may_writepage = 1,
ee814fe2
JW
7428 .may_unmap = 1,
7429 .may_swap = 1,
7b51755c 7430 .hibernation_mode = 1,
1da177e4 7431 };
a09ed5e0 7432 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 7433 unsigned long nr_reclaimed;
499118e9 7434 unsigned int noreclaim_flag;
1da177e4 7435
d92a8cfc 7436 fs_reclaim_acquire(sc.gfp_mask);
93781325 7437 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 7438 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 7439
3115cd91 7440 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 7441
1732d2b0 7442 set_task_reclaim_state(current, NULL);
499118e9 7443 memalloc_noreclaim_restore(noreclaim_flag);
93781325 7444 fs_reclaim_release(sc.gfp_mask);
d6277db4 7445
7b51755c 7446 return nr_reclaimed;
1da177e4 7447}
c6f37f12 7448#endif /* CONFIG_HIBERNATION */
1da177e4 7449
3218ae14
YG
7450/*
7451 * This kswapd start function will be called by init and node-hot-add.
3218ae14 7452 */
b87c517a 7453void kswapd_run(int nid)
3218ae14
YG
7454{
7455 pg_data_t *pgdat = NODE_DATA(nid);
3218ae14 7456
b4a0215e
KW
7457 pgdat_kswapd_lock(pgdat);
7458 if (!pgdat->kswapd) {
7459 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7460 if (IS_ERR(pgdat->kswapd)) {
7461 /* failure at boot is fatal */
7462 BUG_ON(system_state < SYSTEM_RUNNING);
7463 pr_err("Failed to start kswapd on node %d\n", nid);
7464 pgdat->kswapd = NULL;
7465 }
3218ae14 7466 }
b4a0215e 7467 pgdat_kswapd_unlock(pgdat);
3218ae14
YG
7468}
7469
8fe23e05 7470/*
d8adde17 7471 * Called by memory hotplug when all memory in a node is offlined. Caller must
e8da368a 7472 * be holding mem_hotplug_begin/done().
8fe23e05
DR
7473 */
7474void kswapd_stop(int nid)
7475{
b4a0215e
KW
7476 pg_data_t *pgdat = NODE_DATA(nid);
7477 struct task_struct *kswapd;
8fe23e05 7478
b4a0215e
KW
7479 pgdat_kswapd_lock(pgdat);
7480 kswapd = pgdat->kswapd;
d8adde17 7481 if (kswapd) {
8fe23e05 7482 kthread_stop(kswapd);
b4a0215e 7483 pgdat->kswapd = NULL;
d8adde17 7484 }
b4a0215e 7485 pgdat_kswapd_unlock(pgdat);
8fe23e05
DR
7486}
7487
1da177e4
LT
7488static int __init kswapd_init(void)
7489{
6b700b5b 7490 int nid;
69e05944 7491
1da177e4 7492 swap_setup();
48fb2e24 7493 for_each_node_state(nid, N_MEMORY)
3218ae14 7494 kswapd_run(nid);
1da177e4
LT
7495 return 0;
7496}
7497
7498module_init(kswapd_init)
9eeff239
CL
7499
7500#ifdef CONFIG_NUMA
7501/*
a5f5f91d 7502 * Node reclaim mode
9eeff239 7503 *
a5f5f91d 7504 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 7505 * the watermarks.
9eeff239 7506 */
a5f5f91d 7507int node_reclaim_mode __read_mostly;
9eeff239 7508
a92f7126 7509/*
a5f5f91d 7510 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
7511 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7512 * a zone.
7513 */
a5f5f91d 7514#define NODE_RECLAIM_PRIORITY 4
a92f7126 7515
9614634f 7516/*
a5f5f91d 7517 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
7518 * occur.
7519 */
7520int sysctl_min_unmapped_ratio = 1;
7521
0ff38490
CL
7522/*
7523 * If the number of slab pages in a zone grows beyond this percentage then
7524 * slab reclaim needs to occur.
7525 */
7526int sysctl_min_slab_ratio = 5;
7527
11fb9989 7528static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 7529{
11fb9989
MG
7530 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7531 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7532 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
7533
7534 /*
7535 * It's possible for there to be more file mapped pages than
7536 * accounted for by the pages on the file LRU lists because
7537 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7538 */
7539 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7540}
7541
7542/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 7543static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 7544{
d031a157
AM
7545 unsigned long nr_pagecache_reclaimable;
7546 unsigned long delta = 0;
90afa5de
MG
7547
7548 /*
95bbc0c7 7549 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 7550 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 7551 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
7552 * a better estimate
7553 */
a5f5f91d
MG
7554 if (node_reclaim_mode & RECLAIM_UNMAP)
7555 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 7556 else
a5f5f91d 7557 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
7558
7559 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
7560 if (!(node_reclaim_mode & RECLAIM_WRITE))
7561 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
7562
7563 /* Watch for any possible underflows due to delta */
7564 if (unlikely(delta > nr_pagecache_reclaimable))
7565 delta = nr_pagecache_reclaimable;
7566
7567 return nr_pagecache_reclaimable - delta;
7568}
7569
9eeff239 7570/*
a5f5f91d 7571 * Try to free up some pages from this node through reclaim.
9eeff239 7572 */
a5f5f91d 7573static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 7574{
7fb2d46d 7575 /* Minimum pages needed in order to stay on node */
69e05944 7576 const unsigned long nr_pages = 1 << order;
9eeff239 7577 struct task_struct *p = current;
499118e9 7578 unsigned int noreclaim_flag;
179e9639 7579 struct scan_control sc = {
62b726c1 7580 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 7581 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 7582 .order = order,
a5f5f91d
MG
7583 .priority = NODE_RECLAIM_PRIORITY,
7584 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7585 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 7586 .may_swap = 1,
f2f43e56 7587 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 7588 };
57f29762 7589 unsigned long pflags;
9eeff239 7590
132bb8cf
YS
7591 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7592 sc.gfp_mask);
7593
9eeff239 7594 cond_resched();
57f29762 7595 psi_memstall_enter(&pflags);
93781325 7596 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 7597 /*
95bbc0c7 7598 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 7599 */
499118e9 7600 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 7601 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 7602
d8ff6fde
ML
7603 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7604 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
0ff38490 7605 /*
894befec 7606 * Free memory by calling shrink node with increasing
0ff38490
CL
7607 * priorities until we have enough memory freed.
7608 */
0ff38490 7609 do {
970a39a3 7610 shrink_node(pgdat, &sc);
9e3b2f8c 7611 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 7612 }
c84db23c 7613
1732d2b0 7614 set_task_reclaim_state(p, NULL);
499118e9 7615 memalloc_noreclaim_restore(noreclaim_flag);
93781325 7616 fs_reclaim_release(sc.gfp_mask);
57f29762 7617 psi_memstall_leave(&pflags);
132bb8cf
YS
7618
7619 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7620
a79311c1 7621 return sc.nr_reclaimed >= nr_pages;
9eeff239 7622}
179e9639 7623
a5f5f91d 7624int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 7625{
d773ed6b 7626 int ret;
179e9639
AM
7627
7628 /*
a5f5f91d 7629 * Node reclaim reclaims unmapped file backed pages and
0ff38490 7630 * slab pages if we are over the defined limits.
34aa1330 7631 *
9614634f
CL
7632 * A small portion of unmapped file backed pages is needed for
7633 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
7634 * thrown out if the node is overallocated. So we do not reclaim
7635 * if less than a specified percentage of the node is used by
9614634f 7636 * unmapped file backed pages.
179e9639 7637 */
a5f5f91d 7638 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
7639 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7640 pgdat->min_slab_pages)
a5f5f91d 7641 return NODE_RECLAIM_FULL;
179e9639
AM
7642
7643 /*
d773ed6b 7644 * Do not scan if the allocation should not be delayed.
179e9639 7645 */
d0164adc 7646 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 7647 return NODE_RECLAIM_NOSCAN;
179e9639
AM
7648
7649 /*
a5f5f91d 7650 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
7651 * have associated processors. This will favor the local processor
7652 * over remote processors and spread off node memory allocations
7653 * as wide as possible.
7654 */
a5f5f91d
MG
7655 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7656 return NODE_RECLAIM_NOSCAN;
d773ed6b 7657
a5f5f91d
MG
7658 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7659 return NODE_RECLAIM_NOSCAN;
fa5e084e 7660
a5f5f91d
MG
7661 ret = __node_reclaim(pgdat, gfp_mask, order);
7662 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 7663
24cf7251
MG
7664 if (!ret)
7665 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7666
d773ed6b 7667 return ret;
179e9639 7668}
9eeff239 7669#endif
894bc310 7670
77414d19
MWO
7671void check_move_unevictable_pages(struct pagevec *pvec)
7672{
7673 struct folio_batch fbatch;
7674 unsigned i;
7675
7676 folio_batch_init(&fbatch);
7677 for (i = 0; i < pvec->nr; i++) {
7678 struct page *page = pvec->pages[i];
7679
7680 if (PageTransTail(page))
7681 continue;
7682 folio_batch_add(&fbatch, page_folio(page));
7683 }
7684 check_move_unevictable_folios(&fbatch);
7685}
7686EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
7687
89e004ea 7688/**
77414d19
MWO
7689 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7690 * lru list
7691 * @fbatch: Batch of lru folios to check.
89e004ea 7692 *
77414d19 7693 * Checks folios for evictability, if an evictable folio is in the unevictable
64e3d12f 7694 * lru list, moves it to the appropriate evictable lru list. This function
77414d19 7695 * should be only used for lru folios.
89e004ea 7696 */
77414d19 7697void check_move_unevictable_folios(struct folio_batch *fbatch)
89e004ea 7698{
6168d0da 7699 struct lruvec *lruvec = NULL;
24513264
HD
7700 int pgscanned = 0;
7701 int pgrescued = 0;
7702 int i;
89e004ea 7703
77414d19
MWO
7704 for (i = 0; i < fbatch->nr; i++) {
7705 struct folio *folio = fbatch->folios[i];
7706 int nr_pages = folio_nr_pages(folio);
8d8869ca 7707
8d8869ca 7708 pgscanned += nr_pages;
89e004ea 7709
77414d19
MWO
7710 /* block memcg migration while the folio moves between lrus */
7711 if (!folio_test_clear_lru(folio))
d25b5bd8
AS
7712 continue;
7713
0de340cb 7714 lruvec = folio_lruvec_relock_irq(folio, lruvec);
77414d19
MWO
7715 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7716 lruvec_del_folio(lruvec, folio);
7717 folio_clear_unevictable(folio);
7718 lruvec_add_folio(lruvec, folio);
8d8869ca 7719 pgrescued += nr_pages;
89e004ea 7720 }
77414d19 7721 folio_set_lru(folio);
24513264 7722 }
89e004ea 7723
6168d0da 7724 if (lruvec) {
24513264
HD
7725 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7726 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 7727 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
7728 } else if (pgscanned) {
7729 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 7730 }
89e004ea 7731}
77414d19 7732EXPORT_SYMBOL_GPL(check_move_unevictable_folios);