]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/vmscan.c
mm: vmscan: fix force-scanning small targets without swap
[thirdparty/kernel/stable.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
ee64fc93 57/*
f3a310bc
MG
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
ee64fc93
MG
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
f3a310bc 65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
3e7d3449 66 * order-0 pages and then compact the zone
ee64fc93 67 */
f3a310bc
MG
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
7d3579e8 74
1da177e4 75struct scan_control {
1da177e4
LT
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
a79311c1
RR
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
22fba335
KM
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
7b51755c
KM
85 unsigned long hibernation_mode;
86
1da177e4 87 /* This context's GFP mask */
6daa0e28 88 gfp_t gfp_mask;
1da177e4
LT
89
90 int may_writepage;
91
a6dc60f8
JW
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
f1fd1067 94
2e2e4259
KM
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
5ad333eb 98 int order;
66e1707b 99
5f53e762 100 /*
415b54e3
NK
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
5f53e762 103 */
f3a310bc 104 reclaim_mode_t reclaim_mode;
5f53e762 105
66e1707b
BS
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup *mem_cgroup;
82f9d486 108 struct memcg_scanrecord *memcg_record;
66e1707b 109
327c0e96
KH
110 /*
111 * Nodemask of nodes allowed by the caller. If NULL, all nodes
112 * are scanned.
113 */
114 nodemask_t *nodemask;
1da177e4
LT
115};
116
1da177e4
LT
117#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118
119#ifdef ARCH_HAS_PREFETCH
120#define prefetch_prev_lru_page(_page, _base, _field) \
121 do { \
122 if ((_page)->lru.prev != _base) { \
123 struct page *prev; \
124 \
125 prev = lru_to_page(&(_page->lru)); \
126 prefetch(&prev->_field); \
127 } \
128 } while (0)
129#else
130#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131#endif
132
133#ifdef ARCH_HAS_PREFETCHW
134#define prefetchw_prev_lru_page(_page, _base, _field) \
135 do { \
136 if ((_page)->lru.prev != _base) { \
137 struct page *prev; \
138 \
139 prev = lru_to_page(&(_page->lru)); \
140 prefetchw(&prev->_field); \
141 } \
142 } while (0)
143#else
144#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145#endif
146
147/*
148 * From 0 .. 100. Higher means more swappy.
149 */
150int vm_swappiness = 60;
bd1e22b8 151long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
152
153static LIST_HEAD(shrinker_list);
154static DECLARE_RWSEM(shrinker_rwsem);
155
00f0b825 156#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 157#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 158#else
e72e2bd6 159#define scanning_global_lru(sc) (1)
91a45470
KH
160#endif
161
6e901571
KM
162static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163 struct scan_control *sc)
164{
e72e2bd6 165 if (!scanning_global_lru(sc))
3e2f41f1
KM
166 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
167
6e901571
KM
168 return &zone->reclaim_stat;
169}
170
0b217676
VL
171static unsigned long zone_nr_lru_pages(struct zone *zone,
172 struct scan_control *sc, enum lru_list lru)
c9f299d9 173{
e72e2bd6 174 if (!scanning_global_lru(sc))
bb2a0de9
KH
175 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
176 zone_to_nid(zone), zone_idx(zone), BIT(lru));
a3d8e054 177
c9f299d9
KM
178 return zone_page_state(zone, NR_LRU_BASE + lru);
179}
180
181
1da177e4
LT
182/*
183 * Add a shrinker callback to be called from the vm
184 */
8e1f936b 185void register_shrinker(struct shrinker *shrinker)
1da177e4 186{
8e1f936b
RR
187 shrinker->nr = 0;
188 down_write(&shrinker_rwsem);
189 list_add_tail(&shrinker->list, &shrinker_list);
190 up_write(&shrinker_rwsem);
1da177e4 191}
8e1f936b 192EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
193
194/*
195 * Remove one
196 */
8e1f936b 197void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
198{
199 down_write(&shrinker_rwsem);
200 list_del(&shrinker->list);
201 up_write(&shrinker_rwsem);
1da177e4 202}
8e1f936b 203EXPORT_SYMBOL(unregister_shrinker);
1da177e4 204
1495f230
YH
205static inline int do_shrinker_shrink(struct shrinker *shrinker,
206 struct shrink_control *sc,
207 unsigned long nr_to_scan)
208{
209 sc->nr_to_scan = nr_to_scan;
210 return (*shrinker->shrink)(shrinker, sc);
211}
212
1da177e4
LT
213#define SHRINK_BATCH 128
214/*
215 * Call the shrink functions to age shrinkable caches
216 *
217 * Here we assume it costs one seek to replace a lru page and that it also
218 * takes a seek to recreate a cache object. With this in mind we age equal
219 * percentages of the lru and ageable caches. This should balance the seeks
220 * generated by these structures.
221 *
183ff22b 222 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
223 * slab to avoid swapping.
224 *
225 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226 *
227 * `lru_pages' represents the number of on-LRU pages in all the zones which
228 * are eligible for the caller's allocation attempt. It is used for balancing
229 * slab reclaim versus page reclaim.
b15e0905 230 *
231 * Returns the number of slab objects which we shrunk.
1da177e4 232 */
a09ed5e0 233unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 234 unsigned long nr_pages_scanned,
a09ed5e0 235 unsigned long lru_pages)
1da177e4
LT
236{
237 struct shrinker *shrinker;
69e05944 238 unsigned long ret = 0;
1da177e4 239
1495f230
YH
240 if (nr_pages_scanned == 0)
241 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 242
f06590bd
MK
243 if (!down_read_trylock(&shrinker_rwsem)) {
244 /* Assume we'll be able to shrink next time */
245 ret = 1;
246 goto out;
247 }
1da177e4
LT
248
249 list_for_each_entry(shrinker, &shrinker_list, list) {
250 unsigned long long delta;
251 unsigned long total_scan;
7f8275d0 252 unsigned long max_pass;
09576073 253 int shrink_ret = 0;
acf92b48
DC
254 long nr;
255 long new_nr;
e9299f50
DC
256 long batch_size = shrinker->batch ? shrinker->batch
257 : SHRINK_BATCH;
1da177e4 258
acf92b48
DC
259 /*
260 * copy the current shrinker scan count into a local variable
261 * and zero it so that other concurrent shrinker invocations
262 * don't also do this scanning work.
263 */
264 do {
265 nr = shrinker->nr;
266 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
267
268 total_scan = nr;
1495f230
YH
269 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
270 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 271 delta *= max_pass;
1da177e4 272 do_div(delta, lru_pages + 1);
acf92b48
DC
273 total_scan += delta;
274 if (total_scan < 0) {
88c3bd70
DR
275 printk(KERN_ERR "shrink_slab: %pF negative objects to "
276 "delete nr=%ld\n",
acf92b48
DC
277 shrinker->shrink, total_scan);
278 total_scan = max_pass;
ea164d73
AA
279 }
280
3567b59a
DC
281 /*
282 * We need to avoid excessive windup on filesystem shrinkers
283 * due to large numbers of GFP_NOFS allocations causing the
284 * shrinkers to return -1 all the time. This results in a large
285 * nr being built up so when a shrink that can do some work
286 * comes along it empties the entire cache due to nr >>>
287 * max_pass. This is bad for sustaining a working set in
288 * memory.
289 *
290 * Hence only allow the shrinker to scan the entire cache when
291 * a large delta change is calculated directly.
292 */
293 if (delta < max_pass / 4)
294 total_scan = min(total_scan, max_pass / 2);
295
ea164d73
AA
296 /*
297 * Avoid risking looping forever due to too large nr value:
298 * never try to free more than twice the estimate number of
299 * freeable entries.
300 */
acf92b48
DC
301 if (total_scan > max_pass * 2)
302 total_scan = max_pass * 2;
1da177e4 303
acf92b48 304 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
305 nr_pages_scanned, lru_pages,
306 max_pass, delta, total_scan);
307
e9299f50 308 while (total_scan >= batch_size) {
b15e0905 309 int nr_before;
1da177e4 310
1495f230
YH
311 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 313 batch_size);
1da177e4
LT
314 if (shrink_ret == -1)
315 break;
b15e0905 316 if (shrink_ret < nr_before)
317 ret += nr_before - shrink_ret;
e9299f50
DC
318 count_vm_events(SLABS_SCANNED, batch_size);
319 total_scan -= batch_size;
1da177e4
LT
320
321 cond_resched();
322 }
323
acf92b48
DC
324 /*
325 * move the unused scan count back into the shrinker in a
326 * manner that handles concurrent updates. If we exhausted the
327 * scan, there is no need to do an update.
328 */
329 do {
330 nr = shrinker->nr;
331 new_nr = total_scan + nr;
332 if (total_scan <= 0)
333 break;
334 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
335
336 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
337 }
338 up_read(&shrinker_rwsem);
f06590bd
MK
339out:
340 cond_resched();
b15e0905 341 return ret;
1da177e4
LT
342}
343
f3a310bc 344static void set_reclaim_mode(int priority, struct scan_control *sc,
7d3579e8
KM
345 bool sync)
346{
f3a310bc 347 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
7d3579e8
KM
348
349 /*
3e7d3449
MG
350 * Initially assume we are entering either lumpy reclaim or
351 * reclaim/compaction.Depending on the order, we will either set the
352 * sync mode or just reclaim order-0 pages later.
7d3579e8 353 */
3e7d3449 354 if (COMPACTION_BUILD)
f3a310bc 355 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
3e7d3449 356 else
f3a310bc 357 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
7d3579e8
KM
358
359 /*
3e7d3449
MG
360 * Avoid using lumpy reclaim or reclaim/compaction if possible by
361 * restricting when its set to either costly allocations or when
362 * under memory pressure
7d3579e8
KM
363 */
364 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
f3a310bc 365 sc->reclaim_mode |= syncmode;
7d3579e8 366 else if (sc->order && priority < DEF_PRIORITY - 2)
f3a310bc 367 sc->reclaim_mode |= syncmode;
7d3579e8 368 else
f3a310bc 369 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
370}
371
f3a310bc 372static void reset_reclaim_mode(struct scan_control *sc)
7d3579e8 373{
f3a310bc 374 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
375}
376
1da177e4
LT
377static inline int is_page_cache_freeable(struct page *page)
378{
ceddc3a5
JW
379 /*
380 * A freeable page cache page is referenced only by the caller
381 * that isolated the page, the page cache radix tree and
382 * optional buffer heads at page->private.
383 */
edcf4748 384 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
385}
386
7d3579e8
KM
387static int may_write_to_queue(struct backing_dev_info *bdi,
388 struct scan_control *sc)
1da177e4 389{
930d9152 390 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
391 return 1;
392 if (!bdi_write_congested(bdi))
393 return 1;
394 if (bdi == current->backing_dev_info)
395 return 1;
7d3579e8
KM
396
397 /* lumpy reclaim for hugepage often need a lot of write */
398 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
399 return 1;
1da177e4
LT
400 return 0;
401}
402
403/*
404 * We detected a synchronous write error writing a page out. Probably
405 * -ENOSPC. We need to propagate that into the address_space for a subsequent
406 * fsync(), msync() or close().
407 *
408 * The tricky part is that after writepage we cannot touch the mapping: nothing
409 * prevents it from being freed up. But we have a ref on the page and once
410 * that page is locked, the mapping is pinned.
411 *
412 * We're allowed to run sleeping lock_page() here because we know the caller has
413 * __GFP_FS.
414 */
415static void handle_write_error(struct address_space *mapping,
416 struct page *page, int error)
417{
7eaceacc 418 lock_page(page);
3e9f45bd
GC
419 if (page_mapping(page) == mapping)
420 mapping_set_error(mapping, error);
1da177e4
LT
421 unlock_page(page);
422}
423
04e62a29
CL
424/* possible outcome of pageout() */
425typedef enum {
426 /* failed to write page out, page is locked */
427 PAGE_KEEP,
428 /* move page to the active list, page is locked */
429 PAGE_ACTIVATE,
430 /* page has been sent to the disk successfully, page is unlocked */
431 PAGE_SUCCESS,
432 /* page is clean and locked */
433 PAGE_CLEAN,
434} pageout_t;
435
1da177e4 436/*
1742f19f
AM
437 * pageout is called by shrink_page_list() for each dirty page.
438 * Calls ->writepage().
1da177e4 439 */
c661b078 440static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 441 struct scan_control *sc)
1da177e4
LT
442{
443 /*
444 * If the page is dirty, only perform writeback if that write
445 * will be non-blocking. To prevent this allocation from being
446 * stalled by pagecache activity. But note that there may be
447 * stalls if we need to run get_block(). We could test
448 * PagePrivate for that.
449 *
6aceb53b 450 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
451 * this page's queue, we can perform writeback even if that
452 * will block.
453 *
454 * If the page is swapcache, write it back even if that would
455 * block, for some throttling. This happens by accident, because
456 * swap_backing_dev_info is bust: it doesn't reflect the
457 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
458 */
459 if (!is_page_cache_freeable(page))
460 return PAGE_KEEP;
461 if (!mapping) {
462 /*
463 * Some data journaling orphaned pages can have
464 * page->mapping == NULL while being dirty with clean buffers.
465 */
266cf658 466 if (page_has_private(page)) {
1da177e4
LT
467 if (try_to_free_buffers(page)) {
468 ClearPageDirty(page);
d40cee24 469 printk("%s: orphaned page\n", __func__);
1da177e4
LT
470 return PAGE_CLEAN;
471 }
472 }
473 return PAGE_KEEP;
474 }
475 if (mapping->a_ops->writepage == NULL)
476 return PAGE_ACTIVATE;
0e093d99 477 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
478 return PAGE_KEEP;
479
480 if (clear_page_dirty_for_io(page)) {
481 int res;
482 struct writeback_control wbc = {
483 .sync_mode = WB_SYNC_NONE,
484 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
485 .range_start = 0,
486 .range_end = LLONG_MAX,
1da177e4
LT
487 .for_reclaim = 1,
488 };
489
490 SetPageReclaim(page);
491 res = mapping->a_ops->writepage(page, &wbc);
492 if (res < 0)
493 handle_write_error(mapping, page, res);
994fc28c 494 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
495 ClearPageReclaim(page);
496 return PAGE_ACTIVATE;
497 }
c661b078
AW
498
499 /*
500 * Wait on writeback if requested to. This happens when
501 * direct reclaiming a large contiguous area and the
502 * first attempt to free a range of pages fails.
503 */
7d3579e8 504 if (PageWriteback(page) &&
f3a310bc 505 (sc->reclaim_mode & RECLAIM_MODE_SYNC))
c661b078
AW
506 wait_on_page_writeback(page);
507
1da177e4
LT
508 if (!PageWriteback(page)) {
509 /* synchronous write or broken a_ops? */
510 ClearPageReclaim(page);
511 }
755f0225 512 trace_mm_vmscan_writepage(page,
f3a310bc 513 trace_reclaim_flags(page, sc->reclaim_mode));
e129b5c2 514 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
515 return PAGE_SUCCESS;
516 }
517
518 return PAGE_CLEAN;
519}
520
a649fd92 521/*
e286781d
NP
522 * Same as remove_mapping, but if the page is removed from the mapping, it
523 * gets returned with a refcount of 0.
a649fd92 524 */
e286781d 525static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 526{
28e4d965
NP
527 BUG_ON(!PageLocked(page));
528 BUG_ON(mapping != page_mapping(page));
49d2e9cc 529
19fd6231 530 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 531 /*
0fd0e6b0
NP
532 * The non racy check for a busy page.
533 *
534 * Must be careful with the order of the tests. When someone has
535 * a ref to the page, it may be possible that they dirty it then
536 * drop the reference. So if PageDirty is tested before page_count
537 * here, then the following race may occur:
538 *
539 * get_user_pages(&page);
540 * [user mapping goes away]
541 * write_to(page);
542 * !PageDirty(page) [good]
543 * SetPageDirty(page);
544 * put_page(page);
545 * !page_count(page) [good, discard it]
546 *
547 * [oops, our write_to data is lost]
548 *
549 * Reversing the order of the tests ensures such a situation cannot
550 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
551 * load is not satisfied before that of page->_count.
552 *
553 * Note that if SetPageDirty is always performed via set_page_dirty,
554 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 555 */
e286781d 556 if (!page_freeze_refs(page, 2))
49d2e9cc 557 goto cannot_free;
e286781d
NP
558 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
559 if (unlikely(PageDirty(page))) {
560 page_unfreeze_refs(page, 2);
49d2e9cc 561 goto cannot_free;
e286781d 562 }
49d2e9cc
CL
563
564 if (PageSwapCache(page)) {
565 swp_entry_t swap = { .val = page_private(page) };
566 __delete_from_swap_cache(page);
19fd6231 567 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 568 swapcache_free(swap, page);
e286781d 569 } else {
6072d13c
LT
570 void (*freepage)(struct page *);
571
572 freepage = mapping->a_ops->freepage;
573
e64a782f 574 __delete_from_page_cache(page);
19fd6231 575 spin_unlock_irq(&mapping->tree_lock);
e767e056 576 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
577
578 if (freepage != NULL)
579 freepage(page);
49d2e9cc
CL
580 }
581
49d2e9cc
CL
582 return 1;
583
584cannot_free:
19fd6231 585 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
586 return 0;
587}
588
e286781d
NP
589/*
590 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
591 * someone else has a ref on the page, abort and return 0. If it was
592 * successfully detached, return 1. Assumes the caller has a single ref on
593 * this page.
594 */
595int remove_mapping(struct address_space *mapping, struct page *page)
596{
597 if (__remove_mapping(mapping, page)) {
598 /*
599 * Unfreezing the refcount with 1 rather than 2 effectively
600 * drops the pagecache ref for us without requiring another
601 * atomic operation.
602 */
603 page_unfreeze_refs(page, 1);
604 return 1;
605 }
606 return 0;
607}
608
894bc310
LS
609/**
610 * putback_lru_page - put previously isolated page onto appropriate LRU list
611 * @page: page to be put back to appropriate lru list
612 *
613 * Add previously isolated @page to appropriate LRU list.
614 * Page may still be unevictable for other reasons.
615 *
616 * lru_lock must not be held, interrupts must be enabled.
617 */
894bc310
LS
618void putback_lru_page(struct page *page)
619{
620 int lru;
621 int active = !!TestClearPageActive(page);
bbfd28ee 622 int was_unevictable = PageUnevictable(page);
894bc310
LS
623
624 VM_BUG_ON(PageLRU(page));
625
626redo:
627 ClearPageUnevictable(page);
628
629 if (page_evictable(page, NULL)) {
630 /*
631 * For evictable pages, we can use the cache.
632 * In event of a race, worst case is we end up with an
633 * unevictable page on [in]active list.
634 * We know how to handle that.
635 */
401a8e1c 636 lru = active + page_lru_base_type(page);
894bc310
LS
637 lru_cache_add_lru(page, lru);
638 } else {
639 /*
640 * Put unevictable pages directly on zone's unevictable
641 * list.
642 */
643 lru = LRU_UNEVICTABLE;
644 add_page_to_unevictable_list(page);
6a7b9548
JW
645 /*
646 * When racing with an mlock clearing (page is
647 * unlocked), make sure that if the other thread does
648 * not observe our setting of PG_lru and fails
649 * isolation, we see PG_mlocked cleared below and move
650 * the page back to the evictable list.
651 *
652 * The other side is TestClearPageMlocked().
653 */
654 smp_mb();
894bc310 655 }
894bc310
LS
656
657 /*
658 * page's status can change while we move it among lru. If an evictable
659 * page is on unevictable list, it never be freed. To avoid that,
660 * check after we added it to the list, again.
661 */
662 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
663 if (!isolate_lru_page(page)) {
664 put_page(page);
665 goto redo;
666 }
667 /* This means someone else dropped this page from LRU
668 * So, it will be freed or putback to LRU again. There is
669 * nothing to do here.
670 */
671 }
672
bbfd28ee
LS
673 if (was_unevictable && lru != LRU_UNEVICTABLE)
674 count_vm_event(UNEVICTABLE_PGRESCUED);
675 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
676 count_vm_event(UNEVICTABLE_PGCULLED);
677
894bc310
LS
678 put_page(page); /* drop ref from isolate */
679}
680
dfc8d636
JW
681enum page_references {
682 PAGEREF_RECLAIM,
683 PAGEREF_RECLAIM_CLEAN,
64574746 684 PAGEREF_KEEP,
dfc8d636
JW
685 PAGEREF_ACTIVATE,
686};
687
688static enum page_references page_check_references(struct page *page,
689 struct scan_control *sc)
690{
64574746 691 int referenced_ptes, referenced_page;
dfc8d636 692 unsigned long vm_flags;
dfc8d636 693
64574746
JW
694 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
695 referenced_page = TestClearPageReferenced(page);
dfc8d636
JW
696
697 /* Lumpy reclaim - ignore references */
f3a310bc 698 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
dfc8d636
JW
699 return PAGEREF_RECLAIM;
700
701 /*
702 * Mlock lost the isolation race with us. Let try_to_unmap()
703 * move the page to the unevictable list.
704 */
705 if (vm_flags & VM_LOCKED)
706 return PAGEREF_RECLAIM;
707
64574746
JW
708 if (referenced_ptes) {
709 if (PageAnon(page))
710 return PAGEREF_ACTIVATE;
711 /*
712 * All mapped pages start out with page table
713 * references from the instantiating fault, so we need
714 * to look twice if a mapped file page is used more
715 * than once.
716 *
717 * Mark it and spare it for another trip around the
718 * inactive list. Another page table reference will
719 * lead to its activation.
720 *
721 * Note: the mark is set for activated pages as well
722 * so that recently deactivated but used pages are
723 * quickly recovered.
724 */
725 SetPageReferenced(page);
726
727 if (referenced_page)
728 return PAGEREF_ACTIVATE;
729
730 return PAGEREF_KEEP;
731 }
dfc8d636
JW
732
733 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 734 if (referenced_page && !PageSwapBacked(page))
64574746
JW
735 return PAGEREF_RECLAIM_CLEAN;
736
737 return PAGEREF_RECLAIM;
dfc8d636
JW
738}
739
abe4c3b5
MG
740static noinline_for_stack void free_page_list(struct list_head *free_pages)
741{
742 struct pagevec freed_pvec;
743 struct page *page, *tmp;
744
745 pagevec_init(&freed_pvec, 1);
746
747 list_for_each_entry_safe(page, tmp, free_pages, lru) {
748 list_del(&page->lru);
749 if (!pagevec_add(&freed_pvec, page)) {
750 __pagevec_free(&freed_pvec);
751 pagevec_reinit(&freed_pvec);
752 }
753 }
754
755 pagevec_free(&freed_pvec);
756}
757
1da177e4 758/*
1742f19f 759 * shrink_page_list() returns the number of reclaimed pages
1da177e4 760 */
1742f19f 761static unsigned long shrink_page_list(struct list_head *page_list,
0e093d99 762 struct zone *zone,
7d3579e8 763 struct scan_control *sc)
1da177e4
LT
764{
765 LIST_HEAD(ret_pages);
abe4c3b5 766 LIST_HEAD(free_pages);
1da177e4 767 int pgactivate = 0;
0e093d99
MG
768 unsigned long nr_dirty = 0;
769 unsigned long nr_congested = 0;
05ff5137 770 unsigned long nr_reclaimed = 0;
1da177e4
LT
771
772 cond_resched();
773
1da177e4 774 while (!list_empty(page_list)) {
dfc8d636 775 enum page_references references;
1da177e4
LT
776 struct address_space *mapping;
777 struct page *page;
778 int may_enter_fs;
1da177e4
LT
779
780 cond_resched();
781
782 page = lru_to_page(page_list);
783 list_del(&page->lru);
784
529ae9aa 785 if (!trylock_page(page))
1da177e4
LT
786 goto keep;
787
725d704e 788 VM_BUG_ON(PageActive(page));
0e093d99 789 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
790
791 sc->nr_scanned++;
80e43426 792
b291f000
NP
793 if (unlikely(!page_evictable(page, NULL)))
794 goto cull_mlocked;
894bc310 795
a6dc60f8 796 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
797 goto keep_locked;
798
1da177e4
LT
799 /* Double the slab pressure for mapped and swapcache pages */
800 if (page_mapped(page) || PageSwapCache(page))
801 sc->nr_scanned++;
802
c661b078
AW
803 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
804 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
805
806 if (PageWriteback(page)) {
807 /*
808 * Synchronous reclaim is performed in two passes,
809 * first an asynchronous pass over the list to
810 * start parallel writeback, and a second synchronous
811 * pass to wait for the IO to complete. Wait here
812 * for any page for which writeback has already
813 * started.
814 */
f3a310bc 815 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
7d3579e8 816 may_enter_fs)
c661b078 817 wait_on_page_writeback(page);
7d3579e8
KM
818 else {
819 unlock_page(page);
820 goto keep_lumpy;
821 }
c661b078 822 }
1da177e4 823
dfc8d636
JW
824 references = page_check_references(page, sc);
825 switch (references) {
826 case PAGEREF_ACTIVATE:
1da177e4 827 goto activate_locked;
64574746
JW
828 case PAGEREF_KEEP:
829 goto keep_locked;
dfc8d636
JW
830 case PAGEREF_RECLAIM:
831 case PAGEREF_RECLAIM_CLEAN:
832 ; /* try to reclaim the page below */
833 }
1da177e4 834
1da177e4
LT
835 /*
836 * Anonymous process memory has backing store?
837 * Try to allocate it some swap space here.
838 */
b291f000 839 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
840 if (!(sc->gfp_mask & __GFP_IO))
841 goto keep_locked;
ac47b003 842 if (!add_to_swap(page))
1da177e4 843 goto activate_locked;
63eb6b93 844 may_enter_fs = 1;
b291f000 845 }
1da177e4
LT
846
847 mapping = page_mapping(page);
1da177e4
LT
848
849 /*
850 * The page is mapped into the page tables of one or more
851 * processes. Try to unmap it here.
852 */
853 if (page_mapped(page) && mapping) {
14fa31b8 854 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
855 case SWAP_FAIL:
856 goto activate_locked;
857 case SWAP_AGAIN:
858 goto keep_locked;
b291f000
NP
859 case SWAP_MLOCK:
860 goto cull_mlocked;
1da177e4
LT
861 case SWAP_SUCCESS:
862 ; /* try to free the page below */
863 }
864 }
865
866 if (PageDirty(page)) {
0e093d99
MG
867 nr_dirty++;
868
dfc8d636 869 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 870 goto keep_locked;
4dd4b920 871 if (!may_enter_fs)
1da177e4 872 goto keep_locked;
52a8363e 873 if (!sc->may_writepage)
1da177e4
LT
874 goto keep_locked;
875
876 /* Page is dirty, try to write it out here */
7d3579e8 877 switch (pageout(page, mapping, sc)) {
1da177e4 878 case PAGE_KEEP:
0e093d99 879 nr_congested++;
1da177e4
LT
880 goto keep_locked;
881 case PAGE_ACTIVATE:
882 goto activate_locked;
883 case PAGE_SUCCESS:
7d3579e8
KM
884 if (PageWriteback(page))
885 goto keep_lumpy;
886 if (PageDirty(page))
1da177e4 887 goto keep;
7d3579e8 888
1da177e4
LT
889 /*
890 * A synchronous write - probably a ramdisk. Go
891 * ahead and try to reclaim the page.
892 */
529ae9aa 893 if (!trylock_page(page))
1da177e4
LT
894 goto keep;
895 if (PageDirty(page) || PageWriteback(page))
896 goto keep_locked;
897 mapping = page_mapping(page);
898 case PAGE_CLEAN:
899 ; /* try to free the page below */
900 }
901 }
902
903 /*
904 * If the page has buffers, try to free the buffer mappings
905 * associated with this page. If we succeed we try to free
906 * the page as well.
907 *
908 * We do this even if the page is PageDirty().
909 * try_to_release_page() does not perform I/O, but it is
910 * possible for a page to have PageDirty set, but it is actually
911 * clean (all its buffers are clean). This happens if the
912 * buffers were written out directly, with submit_bh(). ext3
894bc310 913 * will do this, as well as the blockdev mapping.
1da177e4
LT
914 * try_to_release_page() will discover that cleanness and will
915 * drop the buffers and mark the page clean - it can be freed.
916 *
917 * Rarely, pages can have buffers and no ->mapping. These are
918 * the pages which were not successfully invalidated in
919 * truncate_complete_page(). We try to drop those buffers here
920 * and if that worked, and the page is no longer mapped into
921 * process address space (page_count == 1) it can be freed.
922 * Otherwise, leave the page on the LRU so it is swappable.
923 */
266cf658 924 if (page_has_private(page)) {
1da177e4
LT
925 if (!try_to_release_page(page, sc->gfp_mask))
926 goto activate_locked;
e286781d
NP
927 if (!mapping && page_count(page) == 1) {
928 unlock_page(page);
929 if (put_page_testzero(page))
930 goto free_it;
931 else {
932 /*
933 * rare race with speculative reference.
934 * the speculative reference will free
935 * this page shortly, so we may
936 * increment nr_reclaimed here (and
937 * leave it off the LRU).
938 */
939 nr_reclaimed++;
940 continue;
941 }
942 }
1da177e4
LT
943 }
944
e286781d 945 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 946 goto keep_locked;
1da177e4 947
a978d6f5
NP
948 /*
949 * At this point, we have no other references and there is
950 * no way to pick any more up (removed from LRU, removed
951 * from pagecache). Can use non-atomic bitops now (and
952 * we obviously don't have to worry about waking up a process
953 * waiting on the page lock, because there are no references.
954 */
955 __clear_page_locked(page);
e286781d 956free_it:
05ff5137 957 nr_reclaimed++;
abe4c3b5
MG
958
959 /*
960 * Is there need to periodically free_page_list? It would
961 * appear not as the counts should be low
962 */
963 list_add(&page->lru, &free_pages);
1da177e4
LT
964 continue;
965
b291f000 966cull_mlocked:
63d6c5ad
HD
967 if (PageSwapCache(page))
968 try_to_free_swap(page);
b291f000
NP
969 unlock_page(page);
970 putback_lru_page(page);
f3a310bc 971 reset_reclaim_mode(sc);
b291f000
NP
972 continue;
973
1da177e4 974activate_locked:
68a22394
RR
975 /* Not a candidate for swapping, so reclaim swap space. */
976 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 977 try_to_free_swap(page);
894bc310 978 VM_BUG_ON(PageActive(page));
1da177e4
LT
979 SetPageActive(page);
980 pgactivate++;
981keep_locked:
982 unlock_page(page);
983keep:
f3a310bc 984 reset_reclaim_mode(sc);
7d3579e8 985keep_lumpy:
1da177e4 986 list_add(&page->lru, &ret_pages);
b291f000 987 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 988 }
abe4c3b5 989
0e093d99
MG
990 /*
991 * Tag a zone as congested if all the dirty pages encountered were
992 * backed by a congested BDI. In this case, reclaimers should just
993 * back off and wait for congestion to clear because further reclaim
994 * will encounter the same problem
995 */
d6c438b6 996 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
0e093d99
MG
997 zone_set_flag(zone, ZONE_CONGESTED);
998
abe4c3b5
MG
999 free_page_list(&free_pages);
1000
1da177e4 1001 list_splice(&ret_pages, page_list);
f8891e5e 1002 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 1003 return nr_reclaimed;
1da177e4
LT
1004}
1005
5ad333eb
AW
1006/*
1007 * Attempt to remove the specified page from its LRU. Only take this page
1008 * if it is of the appropriate PageActive status. Pages which are being
1009 * freed elsewhere are also ignored.
1010 *
1011 * page: page to consider
1012 * mode: one of the LRU isolation modes defined above
1013 *
1014 * returns 0 on success, -ve errno on failure.
1015 */
4f98a2fe 1016int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
1017{
1018 int ret = -EINVAL;
1019
1020 /* Only take pages on the LRU. */
1021 if (!PageLRU(page))
1022 return ret;
1023
1024 /*
1025 * When checking the active state, we need to be sure we are
1026 * dealing with comparible boolean values. Take the logical not
1027 * of each.
1028 */
1029 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
1030 return ret;
1031
6c0b1351 1032 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
4f98a2fe
RR
1033 return ret;
1034
894bc310
LS
1035 /*
1036 * When this function is being called for lumpy reclaim, we
1037 * initially look into all LRU pages, active, inactive and
1038 * unevictable; only give shrink_page_list evictable pages.
1039 */
1040 if (PageUnevictable(page))
1041 return ret;
1042
5ad333eb 1043 ret = -EBUSY;
08e552c6 1044
5ad333eb
AW
1045 if (likely(get_page_unless_zero(page))) {
1046 /*
1047 * Be careful not to clear PageLRU until after we're
1048 * sure the page is not being freed elsewhere -- the
1049 * page release code relies on it.
1050 */
1051 ClearPageLRU(page);
1052 ret = 0;
1053 }
1054
1055 return ret;
1056}
1057
1da177e4
LT
1058/*
1059 * zone->lru_lock is heavily contended. Some of the functions that
1060 * shrink the lists perform better by taking out a batch of pages
1061 * and working on them outside the LRU lock.
1062 *
1063 * For pagecache intensive workloads, this function is the hottest
1064 * spot in the kernel (apart from copy_*_user functions).
1065 *
1066 * Appropriate locks must be held before calling this function.
1067 *
1068 * @nr_to_scan: The number of pages to look through on the list.
1069 * @src: The LRU list to pull pages off.
1070 * @dst: The temp list to put pages on to.
1071 * @scanned: The number of pages that were scanned.
5ad333eb
AW
1072 * @order: The caller's attempted allocation order
1073 * @mode: One of the LRU isolation modes
4f98a2fe 1074 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
1075 *
1076 * returns how many pages were moved onto *@dst.
1077 */
69e05944
AM
1078static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1079 struct list_head *src, struct list_head *dst,
4f98a2fe 1080 unsigned long *scanned, int order, int mode, int file)
1da177e4 1081{
69e05944 1082 unsigned long nr_taken = 0;
a8a94d15
MG
1083 unsigned long nr_lumpy_taken = 0;
1084 unsigned long nr_lumpy_dirty = 0;
1085 unsigned long nr_lumpy_failed = 0;
c9b02d97 1086 unsigned long scan;
1da177e4 1087
c9b02d97 1088 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
1089 struct page *page;
1090 unsigned long pfn;
1091 unsigned long end_pfn;
1092 unsigned long page_pfn;
1093 int zone_id;
1094
1da177e4
LT
1095 page = lru_to_page(src);
1096 prefetchw_prev_lru_page(page, src, flags);
1097
725d704e 1098 VM_BUG_ON(!PageLRU(page));
8d438f96 1099
4f98a2fe 1100 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
1101 case 0:
1102 list_move(&page->lru, dst);
2ffebca6 1103 mem_cgroup_del_lru(page);
2c888cfb 1104 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1105 break;
1106
1107 case -EBUSY:
1108 /* else it is being freed elsewhere */
1109 list_move(&page->lru, src);
2ffebca6 1110 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 1111 continue;
46453a6e 1112
5ad333eb
AW
1113 default:
1114 BUG();
1115 }
1116
1117 if (!order)
1118 continue;
1119
1120 /*
1121 * Attempt to take all pages in the order aligned region
1122 * surrounding the tag page. Only take those pages of
1123 * the same active state as that tag page. We may safely
1124 * round the target page pfn down to the requested order
25985edc 1125 * as the mem_map is guaranteed valid out to MAX_ORDER,
5ad333eb
AW
1126 * where that page is in a different zone we will detect
1127 * it from its zone id and abort this block scan.
1128 */
1129 zone_id = page_zone_id(page);
1130 page_pfn = page_to_pfn(page);
1131 pfn = page_pfn & ~((1 << order) - 1);
1132 end_pfn = pfn + (1 << order);
1133 for (; pfn < end_pfn; pfn++) {
1134 struct page *cursor_page;
1135
1136 /* The target page is in the block, ignore it. */
1137 if (unlikely(pfn == page_pfn))
1138 continue;
1139
1140 /* Avoid holes within the zone. */
1141 if (unlikely(!pfn_valid_within(pfn)))
1142 break;
1143
1144 cursor_page = pfn_to_page(pfn);
4f98a2fe 1145
5ad333eb
AW
1146 /* Check that we have not crossed a zone boundary. */
1147 if (unlikely(page_zone_id(cursor_page) != zone_id))
08fc468f 1148 break;
de2e7567
MK
1149
1150 /*
1151 * If we don't have enough swap space, reclaiming of
1152 * anon page which don't already have a swap slot is
1153 * pointless.
1154 */
1155 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
08fc468f
KM
1156 !PageSwapCache(cursor_page))
1157 break;
de2e7567 1158
ee993b13 1159 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 1160 list_move(&cursor_page->lru, dst);
cb4cbcf6 1161 mem_cgroup_del_lru(cursor_page);
2c888cfb 1162 nr_taken += hpage_nr_pages(page);
a8a94d15
MG
1163 nr_lumpy_taken++;
1164 if (PageDirty(cursor_page))
1165 nr_lumpy_dirty++;
5ad333eb 1166 scan++;
a8a94d15 1167 } else {
d179e84b
AA
1168 /*
1169 * Check if the page is freed already.
1170 *
1171 * We can't use page_count() as that
1172 * requires compound_head and we don't
1173 * have a pin on the page here. If a
1174 * page is tail, we may or may not
1175 * have isolated the head, so assume
1176 * it's not free, it'd be tricky to
1177 * track the head status without a
1178 * page pin.
1179 */
1180 if (!PageTail(cursor_page) &&
1181 !atomic_read(&cursor_page->_count))
08fc468f
KM
1182 continue;
1183 break;
5ad333eb
AW
1184 }
1185 }
08fc468f
KM
1186
1187 /* If we break out of the loop above, lumpy reclaim failed */
1188 if (pfn < end_pfn)
1189 nr_lumpy_failed++;
1da177e4
LT
1190 }
1191
1192 *scanned = scan;
a8a94d15
MG
1193
1194 trace_mm_vmscan_lru_isolate(order,
1195 nr_to_scan, scan,
1196 nr_taken,
1197 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1198 mode);
1da177e4
LT
1199 return nr_taken;
1200}
1201
66e1707b
BS
1202static unsigned long isolate_pages_global(unsigned long nr,
1203 struct list_head *dst,
1204 unsigned long *scanned, int order,
1205 int mode, struct zone *z,
4f98a2fe 1206 int active, int file)
66e1707b 1207{
4f98a2fe 1208 int lru = LRU_BASE;
66e1707b 1209 if (active)
4f98a2fe
RR
1210 lru += LRU_ACTIVE;
1211 if (file)
1212 lru += LRU_FILE;
1213 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 1214 mode, file);
66e1707b
BS
1215}
1216
5ad333eb
AW
1217/*
1218 * clear_active_flags() is a helper for shrink_active_list(), clearing
1219 * any active bits from the pages in the list.
1220 */
4f98a2fe
RR
1221static unsigned long clear_active_flags(struct list_head *page_list,
1222 unsigned int *count)
5ad333eb
AW
1223{
1224 int nr_active = 0;
4f98a2fe 1225 int lru;
5ad333eb
AW
1226 struct page *page;
1227
4f98a2fe 1228 list_for_each_entry(page, page_list, lru) {
2c888cfb 1229 int numpages = hpage_nr_pages(page);
401a8e1c 1230 lru = page_lru_base_type(page);
5ad333eb 1231 if (PageActive(page)) {
4f98a2fe 1232 lru += LRU_ACTIVE;
5ad333eb 1233 ClearPageActive(page);
2c888cfb 1234 nr_active += numpages;
5ad333eb 1235 }
1489fa14 1236 if (count)
2c888cfb 1237 count[lru] += numpages;
4f98a2fe 1238 }
5ad333eb
AW
1239
1240 return nr_active;
1241}
1242
62695a84
NP
1243/**
1244 * isolate_lru_page - tries to isolate a page from its LRU list
1245 * @page: page to isolate from its LRU list
1246 *
1247 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1248 * vmstat statistic corresponding to whatever LRU list the page was on.
1249 *
1250 * Returns 0 if the page was removed from an LRU list.
1251 * Returns -EBUSY if the page was not on an LRU list.
1252 *
1253 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1254 * the active list, it will have PageActive set. If it was found on
1255 * the unevictable list, it will have the PageUnevictable bit set. That flag
1256 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1257 *
1258 * The vmstat statistic corresponding to the list on which the page was
1259 * found will be decremented.
1260 *
1261 * Restrictions:
1262 * (1) Must be called with an elevated refcount on the page. This is a
1263 * fundamentnal difference from isolate_lru_pages (which is called
1264 * without a stable reference).
1265 * (2) the lru_lock must not be held.
1266 * (3) interrupts must be enabled.
1267 */
1268int isolate_lru_page(struct page *page)
1269{
1270 int ret = -EBUSY;
1271
0c917313
KK
1272 VM_BUG_ON(!page_count(page));
1273
62695a84
NP
1274 if (PageLRU(page)) {
1275 struct zone *zone = page_zone(page);
1276
1277 spin_lock_irq(&zone->lru_lock);
0c917313 1278 if (PageLRU(page)) {
894bc310 1279 int lru = page_lru(page);
62695a84 1280 ret = 0;
0c917313 1281 get_page(page);
62695a84 1282 ClearPageLRU(page);
4f98a2fe 1283
4f98a2fe 1284 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1285 }
1286 spin_unlock_irq(&zone->lru_lock);
1287 }
1288 return ret;
1289}
1290
35cd7815
RR
1291/*
1292 * Are there way too many processes in the direct reclaim path already?
1293 */
1294static int too_many_isolated(struct zone *zone, int file,
1295 struct scan_control *sc)
1296{
1297 unsigned long inactive, isolated;
1298
1299 if (current_is_kswapd())
1300 return 0;
1301
1302 if (!scanning_global_lru(sc))
1303 return 0;
1304
1305 if (file) {
1306 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1307 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1308 } else {
1309 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1310 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1311 }
1312
1313 return isolated > inactive;
1314}
1315
66635629
MG
1316/*
1317 * TODO: Try merging with migrations version of putback_lru_pages
1318 */
1319static noinline_for_stack void
1489fa14 1320putback_lru_pages(struct zone *zone, struct scan_control *sc,
66635629
MG
1321 unsigned long nr_anon, unsigned long nr_file,
1322 struct list_head *page_list)
1323{
1324 struct page *page;
1325 struct pagevec pvec;
1489fa14 1326 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
66635629
MG
1327
1328 pagevec_init(&pvec, 1);
1329
1330 /*
1331 * Put back any unfreeable pages.
1332 */
1333 spin_lock(&zone->lru_lock);
1334 while (!list_empty(page_list)) {
1335 int lru;
1336 page = lru_to_page(page_list);
1337 VM_BUG_ON(PageLRU(page));
1338 list_del(&page->lru);
1339 if (unlikely(!page_evictable(page, NULL))) {
1340 spin_unlock_irq(&zone->lru_lock);
1341 putback_lru_page(page);
1342 spin_lock_irq(&zone->lru_lock);
1343 continue;
1344 }
7a608572 1345 SetPageLRU(page);
66635629 1346 lru = page_lru(page);
7a608572 1347 add_page_to_lru_list(zone, page, lru);
66635629
MG
1348 if (is_active_lru(lru)) {
1349 int file = is_file_lru(lru);
9992af10
RR
1350 int numpages = hpage_nr_pages(page);
1351 reclaim_stat->recent_rotated[file] += numpages;
82f9d486
KH
1352 if (!scanning_global_lru(sc))
1353 sc->memcg_record->nr_rotated[file] += numpages;
66635629
MG
1354 }
1355 if (!pagevec_add(&pvec, page)) {
1356 spin_unlock_irq(&zone->lru_lock);
1357 __pagevec_release(&pvec);
1358 spin_lock_irq(&zone->lru_lock);
1359 }
1360 }
1361 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1362 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1363
1364 spin_unlock_irq(&zone->lru_lock);
1365 pagevec_release(&pvec);
1366}
1367
1489fa14
MG
1368static noinline_for_stack void update_isolated_counts(struct zone *zone,
1369 struct scan_control *sc,
1370 unsigned long *nr_anon,
1371 unsigned long *nr_file,
1372 struct list_head *isolated_list)
1373{
1374 unsigned long nr_active;
1375 unsigned int count[NR_LRU_LISTS] = { 0, };
1376 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1377
1378 nr_active = clear_active_flags(isolated_list, count);
1379 __count_vm_events(PGDEACTIVATE, nr_active);
1380
1381 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1382 -count[LRU_ACTIVE_FILE]);
1383 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1384 -count[LRU_INACTIVE_FILE]);
1385 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1386 -count[LRU_ACTIVE_ANON]);
1387 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1388 -count[LRU_INACTIVE_ANON]);
1389
1390 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1391 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1392 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1393 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1394
1395 reclaim_stat->recent_scanned[0] += *nr_anon;
1396 reclaim_stat->recent_scanned[1] += *nr_file;
82f9d486
KH
1397 if (!scanning_global_lru(sc)) {
1398 sc->memcg_record->nr_scanned[0] += *nr_anon;
1399 sc->memcg_record->nr_scanned[1] += *nr_file;
1400 }
1489fa14
MG
1401}
1402
e31f3698
WF
1403/*
1404 * Returns true if the caller should wait to clean dirty/writeback pages.
1405 *
1406 * If we are direct reclaiming for contiguous pages and we do not reclaim
1407 * everything in the list, try again and wait for writeback IO to complete.
1408 * This will stall high-order allocations noticeably. Only do that when really
1409 * need to free the pages under high memory pressure.
1410 */
1411static inline bool should_reclaim_stall(unsigned long nr_taken,
1412 unsigned long nr_freed,
1413 int priority,
1414 struct scan_control *sc)
1415{
1416 int lumpy_stall_priority;
1417
1418 /* kswapd should not stall on sync IO */
1419 if (current_is_kswapd())
1420 return false;
1421
1422 /* Only stall on lumpy reclaim */
f3a310bc 1423 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
e31f3698
WF
1424 return false;
1425
1426 /* If we have relaimed everything on the isolated list, no stall */
1427 if (nr_freed == nr_taken)
1428 return false;
1429
1430 /*
1431 * For high-order allocations, there are two stall thresholds.
1432 * High-cost allocations stall immediately where as lower
1433 * order allocations such as stacks require the scanning
1434 * priority to be much higher before stalling.
1435 */
1436 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1437 lumpy_stall_priority = DEF_PRIORITY;
1438 else
1439 lumpy_stall_priority = DEF_PRIORITY / 3;
1440
1441 return priority <= lumpy_stall_priority;
1442}
1443
1da177e4 1444/*
1742f19f
AM
1445 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1446 * of reclaimed pages
1da177e4 1447 */
66635629
MG
1448static noinline_for_stack unsigned long
1449shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1450 struct scan_control *sc, int priority, int file)
1da177e4
LT
1451{
1452 LIST_HEAD(page_list);
e247dbce 1453 unsigned long nr_scanned;
05ff5137 1454 unsigned long nr_reclaimed = 0;
e247dbce 1455 unsigned long nr_taken;
e247dbce
KM
1456 unsigned long nr_anon;
1457 unsigned long nr_file;
78dc583d 1458
35cd7815 1459 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1460 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1461
1462 /* We are about to die and free our memory. Return now. */
1463 if (fatal_signal_pending(current))
1464 return SWAP_CLUSTER_MAX;
1465 }
1466
f3a310bc 1467 set_reclaim_mode(priority, sc, false);
1da177e4
LT
1468 lru_add_drain();
1469 spin_lock_irq(&zone->lru_lock);
b35ea17b 1470
e247dbce
KM
1471 if (scanning_global_lru(sc)) {
1472 nr_taken = isolate_pages_global(nr_to_scan,
1473 &page_list, &nr_scanned, sc->order,
f3a310bc 1474 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
3e7d3449 1475 ISOLATE_BOTH : ISOLATE_INACTIVE,
e247dbce
KM
1476 zone, 0, file);
1477 zone->pages_scanned += nr_scanned;
1478 if (current_is_kswapd())
1479 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1480 nr_scanned);
1481 else
1482 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1483 nr_scanned);
1484 } else {
1485 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1486 &page_list, &nr_scanned, sc->order,
f3a310bc 1487 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
3e7d3449 1488 ISOLATE_BOTH : ISOLATE_INACTIVE,
e247dbce
KM
1489 zone, sc->mem_cgroup,
1490 0, file);
1491 /*
1492 * mem_cgroup_isolate_pages() keeps track of
1493 * scanned pages on its own.
1494 */
1495 }
b35ea17b 1496
66635629
MG
1497 if (nr_taken == 0) {
1498 spin_unlock_irq(&zone->lru_lock);
1499 return 0;
1500 }
5ad333eb 1501
1489fa14 1502 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1da177e4 1503
e247dbce 1504 spin_unlock_irq(&zone->lru_lock);
c661b078 1505
0e093d99 1506 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
c661b078 1507
e31f3698
WF
1508 /* Check if we should syncronously wait for writeback */
1509 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
f3a310bc 1510 set_reclaim_mode(priority, sc, true);
0e093d99 1511 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
e247dbce 1512 }
b35ea17b 1513
82f9d486
KH
1514 if (!scanning_global_lru(sc))
1515 sc->memcg_record->nr_freed[file] += nr_reclaimed;
1516
e247dbce
KM
1517 local_irq_disable();
1518 if (current_is_kswapd())
1519 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1520 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
a74609fa 1521
1489fa14 1522 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
e11da5b4
MG
1523
1524 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1525 zone_idx(zone),
1526 nr_scanned, nr_reclaimed,
1527 priority,
f3a310bc 1528 trace_shrink_flags(file, sc->reclaim_mode));
05ff5137 1529 return nr_reclaimed;
1da177e4
LT
1530}
1531
1532/*
1533 * This moves pages from the active list to the inactive list.
1534 *
1535 * We move them the other way if the page is referenced by one or more
1536 * processes, from rmap.
1537 *
1538 * If the pages are mostly unmapped, the processing is fast and it is
1539 * appropriate to hold zone->lru_lock across the whole operation. But if
1540 * the pages are mapped, the processing is slow (page_referenced()) so we
1541 * should drop zone->lru_lock around each page. It's impossible to balance
1542 * this, so instead we remove the pages from the LRU while processing them.
1543 * It is safe to rely on PG_active against the non-LRU pages in here because
1544 * nobody will play with that bit on a non-LRU page.
1545 *
1546 * The downside is that we have to touch page->_count against each page.
1547 * But we had to alter page->flags anyway.
1548 */
1cfb419b 1549
3eb4140f
WF
1550static void move_active_pages_to_lru(struct zone *zone,
1551 struct list_head *list,
1552 enum lru_list lru)
1553{
1554 unsigned long pgmoved = 0;
1555 struct pagevec pvec;
1556 struct page *page;
1557
1558 pagevec_init(&pvec, 1);
1559
1560 while (!list_empty(list)) {
1561 page = lru_to_page(list);
3eb4140f
WF
1562
1563 VM_BUG_ON(PageLRU(page));
1564 SetPageLRU(page);
1565
3eb4140f
WF
1566 list_move(&page->lru, &zone->lru[lru].list);
1567 mem_cgroup_add_lru_list(page, lru);
2c888cfb 1568 pgmoved += hpage_nr_pages(page);
3eb4140f
WF
1569
1570 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1571 spin_unlock_irq(&zone->lru_lock);
1572 if (buffer_heads_over_limit)
1573 pagevec_strip(&pvec);
1574 __pagevec_release(&pvec);
1575 spin_lock_irq(&zone->lru_lock);
1576 }
1577 }
1578 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1579 if (!is_active_lru(lru))
1580 __count_vm_events(PGDEACTIVATE, pgmoved);
1581}
1cfb419b 1582
1742f19f 1583static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1584 struct scan_control *sc, int priority, int file)
1da177e4 1585{
44c241f1 1586 unsigned long nr_taken;
69e05944 1587 unsigned long pgscanned;
6fe6b7e3 1588 unsigned long vm_flags;
1da177e4 1589 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1590 LIST_HEAD(l_active);
b69408e8 1591 LIST_HEAD(l_inactive);
1da177e4 1592 struct page *page;
6e901571 1593 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1594 unsigned long nr_rotated = 0;
1da177e4
LT
1595
1596 lru_add_drain();
1597 spin_lock_irq(&zone->lru_lock);
e72e2bd6 1598 if (scanning_global_lru(sc)) {
8b25c6d2
JW
1599 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1600 &pgscanned, sc->order,
1601 ISOLATE_ACTIVE, zone,
1602 1, file);
1cfb419b 1603 zone->pages_scanned += pgscanned;
8b25c6d2
JW
1604 } else {
1605 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1606 &pgscanned, sc->order,
1607 ISOLATE_ACTIVE, zone,
1608 sc->mem_cgroup, 1, file);
1609 /*
1610 * mem_cgroup_isolate_pages() keeps track of
1611 * scanned pages on its own.
1612 */
4f98a2fe 1613 }
8b25c6d2 1614
b7c46d15 1615 reclaim_stat->recent_scanned[file] += nr_taken;
82f9d486
KH
1616 if (!scanning_global_lru(sc))
1617 sc->memcg_record->nr_scanned[file] += nr_taken;
1cfb419b 1618
3eb4140f 1619 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1620 if (file)
44c241f1 1621 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1622 else
44c241f1 1623 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1624 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1625 spin_unlock_irq(&zone->lru_lock);
1626
1da177e4
LT
1627 while (!list_empty(&l_hold)) {
1628 cond_resched();
1629 page = lru_to_page(&l_hold);
1630 list_del(&page->lru);
7e9cd484 1631
894bc310
LS
1632 if (unlikely(!page_evictable(page, NULL))) {
1633 putback_lru_page(page);
1634 continue;
1635 }
1636
64574746 1637 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
9992af10 1638 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1639 /*
1640 * Identify referenced, file-backed active pages and
1641 * give them one more trip around the active list. So
1642 * that executable code get better chances to stay in
1643 * memory under moderate memory pressure. Anon pages
1644 * are not likely to be evicted by use-once streaming
1645 * IO, plus JVM can create lots of anon VM_EXEC pages,
1646 * so we ignore them here.
1647 */
41e20983 1648 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1649 list_add(&page->lru, &l_active);
1650 continue;
1651 }
1652 }
7e9cd484 1653
5205e56e 1654 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1655 list_add(&page->lru, &l_inactive);
1656 }
1657
b555749a 1658 /*
8cab4754 1659 * Move pages back to the lru list.
b555749a 1660 */
2a1dc509 1661 spin_lock_irq(&zone->lru_lock);
556adecb 1662 /*
8cab4754
WF
1663 * Count referenced pages from currently used mappings as rotated,
1664 * even though only some of them are actually re-activated. This
1665 * helps balance scan pressure between file and anonymous pages in
1666 * get_scan_ratio.
7e9cd484 1667 */
b7c46d15 1668 reclaim_stat->recent_rotated[file] += nr_rotated;
82f9d486
KH
1669 if (!scanning_global_lru(sc))
1670 sc->memcg_record->nr_rotated[file] += nr_rotated;
556adecb 1671
3eb4140f
WF
1672 move_active_pages_to_lru(zone, &l_active,
1673 LRU_ACTIVE + file * LRU_FILE);
1674 move_active_pages_to_lru(zone, &l_inactive,
1675 LRU_BASE + file * LRU_FILE);
a731286d 1676 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1677 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1678}
1679
74e3f3c3 1680#ifdef CONFIG_SWAP
14797e23 1681static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1682{
1683 unsigned long active, inactive;
1684
1685 active = zone_page_state(zone, NR_ACTIVE_ANON);
1686 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1687
1688 if (inactive * zone->inactive_ratio < active)
1689 return 1;
1690
1691 return 0;
1692}
1693
14797e23
KM
1694/**
1695 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1696 * @zone: zone to check
1697 * @sc: scan control of this context
1698 *
1699 * Returns true if the zone does not have enough inactive anon pages,
1700 * meaning some active anon pages need to be deactivated.
1701 */
1702static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1703{
1704 int low;
1705
74e3f3c3
MK
1706 /*
1707 * If we don't have swap space, anonymous page deactivation
1708 * is pointless.
1709 */
1710 if (!total_swap_pages)
1711 return 0;
1712
e72e2bd6 1713 if (scanning_global_lru(sc))
14797e23
KM
1714 low = inactive_anon_is_low_global(zone);
1715 else
c772be93 1716 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1717 return low;
1718}
74e3f3c3
MK
1719#else
1720static inline int inactive_anon_is_low(struct zone *zone,
1721 struct scan_control *sc)
1722{
1723 return 0;
1724}
1725#endif
14797e23 1726
56e49d21
RR
1727static int inactive_file_is_low_global(struct zone *zone)
1728{
1729 unsigned long active, inactive;
1730
1731 active = zone_page_state(zone, NR_ACTIVE_FILE);
1732 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1733
1734 return (active > inactive);
1735}
1736
1737/**
1738 * inactive_file_is_low - check if file pages need to be deactivated
1739 * @zone: zone to check
1740 * @sc: scan control of this context
1741 *
1742 * When the system is doing streaming IO, memory pressure here
1743 * ensures that active file pages get deactivated, until more
1744 * than half of the file pages are on the inactive list.
1745 *
1746 * Once we get to that situation, protect the system's working
1747 * set from being evicted by disabling active file page aging.
1748 *
1749 * This uses a different ratio than the anonymous pages, because
1750 * the page cache uses a use-once replacement algorithm.
1751 */
1752static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1753{
1754 int low;
1755
1756 if (scanning_global_lru(sc))
1757 low = inactive_file_is_low_global(zone);
1758 else
1759 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1760 return low;
1761}
1762
b39415b2
RR
1763static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1764 int file)
1765{
1766 if (file)
1767 return inactive_file_is_low(zone, sc);
1768 else
1769 return inactive_anon_is_low(zone, sc);
1770}
1771
4f98a2fe 1772static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1773 struct zone *zone, struct scan_control *sc, int priority)
1774{
4f98a2fe
RR
1775 int file = is_file_lru(lru);
1776
b39415b2
RR
1777 if (is_active_lru(lru)) {
1778 if (inactive_list_is_low(zone, sc, file))
1779 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1780 return 0;
1781 }
1782
33c120ed 1783 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1784}
1785
1f4c025b
KH
1786static int vmscan_swappiness(struct scan_control *sc)
1787{
1788 if (scanning_global_lru(sc))
1789 return vm_swappiness;
1790 return mem_cgroup_swappiness(sc->mem_cgroup);
1791}
1792
4f98a2fe
RR
1793/*
1794 * Determine how aggressively the anon and file LRU lists should be
1795 * scanned. The relative value of each set of LRU lists is determined
1796 * by looking at the fraction of the pages scanned we did rotate back
1797 * onto the active list instead of evict.
1798 *
76a33fc3 1799 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1800 */
76a33fc3
SL
1801static void get_scan_count(struct zone *zone, struct scan_control *sc,
1802 unsigned long *nr, int priority)
4f98a2fe
RR
1803{
1804 unsigned long anon, file, free;
1805 unsigned long anon_prio, file_prio;
1806 unsigned long ap, fp;
6e901571 1807 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
76a33fc3
SL
1808 u64 fraction[2], denominator;
1809 enum lru_list l;
1810 int noswap = 0;
a4d3e9e7 1811 bool force_scan = false;
4508378b 1812 unsigned long nr_force_scan[2];
246e87a9 1813
a4d3e9e7
JW
1814 /* kswapd does zone balancing and needs to scan this zone */
1815 if (scanning_global_lru(sc) && current_is_kswapd())
1816 force_scan = true;
1817 /* memcg may have small limit and need to avoid priority drop */
1818 if (!scanning_global_lru(sc))
1819 force_scan = true;
76a33fc3
SL
1820
1821 /* If we have no swap space, do not bother scanning anon pages. */
1822 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1823 noswap = 1;
1824 fraction[0] = 0;
1825 fraction[1] = 1;
1826 denominator = 1;
4508378b
KH
1827 nr_force_scan[0] = 0;
1828 nr_force_scan[1] = SWAP_CLUSTER_MAX;
76a33fc3
SL
1829 goto out;
1830 }
4f98a2fe 1831
a4d3e9e7
JW
1832 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1833 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1834 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1835 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1836
e72e2bd6 1837 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1838 free = zone_page_state(zone, NR_FREE_PAGES);
1839 /* If we have very few page cache pages,
1840 force-scan anon pages. */
41858966 1841 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1842 fraction[0] = 1;
1843 fraction[1] = 0;
1844 denominator = 1;
4508378b
KH
1845 nr_force_scan[0] = SWAP_CLUSTER_MAX;
1846 nr_force_scan[1] = 0;
76a33fc3 1847 goto out;
eeee9a8c 1848 }
4f98a2fe
RR
1849 }
1850
58c37f6e
KM
1851 /*
1852 * With swappiness at 100, anonymous and file have the same priority.
1853 * This scanning priority is essentially the inverse of IO cost.
1854 */
1f4c025b
KH
1855 anon_prio = vmscan_swappiness(sc);
1856 file_prio = 200 - vmscan_swappiness(sc);
58c37f6e 1857
4f98a2fe
RR
1858 /*
1859 * OK, so we have swap space and a fair amount of page cache
1860 * pages. We use the recently rotated / recently scanned
1861 * ratios to determine how valuable each cache is.
1862 *
1863 * Because workloads change over time (and to avoid overflow)
1864 * we keep these statistics as a floating average, which ends
1865 * up weighing recent references more than old ones.
1866 *
1867 * anon in [0], file in [1]
1868 */
58c37f6e 1869 spin_lock_irq(&zone->lru_lock);
6e901571 1870 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1871 reclaim_stat->recent_scanned[0] /= 2;
1872 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1873 }
1874
6e901571 1875 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1876 reclaim_stat->recent_scanned[1] /= 2;
1877 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1878 }
1879
4f98a2fe 1880 /*
00d8089c
RR
1881 * The amount of pressure on anon vs file pages is inversely
1882 * proportional to the fraction of recently scanned pages on
1883 * each list that were recently referenced and in active use.
4f98a2fe 1884 */
6e901571
KM
1885 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1886 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1887
6e901571
KM
1888 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1889 fp /= reclaim_stat->recent_rotated[1] + 1;
58c37f6e 1890 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1891
76a33fc3
SL
1892 fraction[0] = ap;
1893 fraction[1] = fp;
1894 denominator = ap + fp + 1;
4508378b
KH
1895 if (force_scan) {
1896 unsigned long scan = SWAP_CLUSTER_MAX;
1897 nr_force_scan[0] = div64_u64(scan * ap, denominator);
1898 nr_force_scan[1] = div64_u64(scan * fp, denominator);
1899 }
76a33fc3
SL
1900out:
1901 for_each_evictable_lru(l) {
1902 int file = is_file_lru(l);
1903 unsigned long scan;
6e08a369 1904
76a33fc3
SL
1905 scan = zone_nr_lru_pages(zone, sc, l);
1906 if (priority || noswap) {
1907 scan >>= priority;
1908 scan = div64_u64(scan * fraction[file], denominator);
1909 }
246e87a9
KH
1910
1911 /*
1912 * If zone is small or memcg is small, nr[l] can be 0.
1913 * This results no-scan on this priority and priority drop down.
1914 * For global direct reclaim, it can visit next zone and tend
1915 * not to have problems. For global kswapd, it's for zone
1916 * balancing and it need to scan a small amounts. When using
1917 * memcg, priority drop can cause big latency. So, it's better
1918 * to scan small amount. See may_noscan above.
1919 */
4508378b
KH
1920 if (!scan && force_scan)
1921 scan = nr_force_scan[file];
246e87a9 1922 nr[l] = scan;
76a33fc3 1923 }
6e08a369 1924}
4f98a2fe 1925
3e7d3449
MG
1926/*
1927 * Reclaim/compaction depends on a number of pages being freed. To avoid
1928 * disruption to the system, a small number of order-0 pages continue to be
1929 * rotated and reclaimed in the normal fashion. However, by the time we get
1930 * back to the allocator and call try_to_compact_zone(), we ensure that
1931 * there are enough free pages for it to be likely successful
1932 */
1933static inline bool should_continue_reclaim(struct zone *zone,
1934 unsigned long nr_reclaimed,
1935 unsigned long nr_scanned,
1936 struct scan_control *sc)
1937{
1938 unsigned long pages_for_compaction;
1939 unsigned long inactive_lru_pages;
1940
1941 /* If not in reclaim/compaction mode, stop */
f3a310bc 1942 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
3e7d3449
MG
1943 return false;
1944
2876592f
MG
1945 /* Consider stopping depending on scan and reclaim activity */
1946 if (sc->gfp_mask & __GFP_REPEAT) {
1947 /*
1948 * For __GFP_REPEAT allocations, stop reclaiming if the
1949 * full LRU list has been scanned and we are still failing
1950 * to reclaim pages. This full LRU scan is potentially
1951 * expensive but a __GFP_REPEAT caller really wants to succeed
1952 */
1953 if (!nr_reclaimed && !nr_scanned)
1954 return false;
1955 } else {
1956 /*
1957 * For non-__GFP_REPEAT allocations which can presumably
1958 * fail without consequence, stop if we failed to reclaim
1959 * any pages from the last SWAP_CLUSTER_MAX number of
1960 * pages that were scanned. This will return to the
1961 * caller faster at the risk reclaim/compaction and
1962 * the resulting allocation attempt fails
1963 */
1964 if (!nr_reclaimed)
1965 return false;
1966 }
3e7d3449
MG
1967
1968 /*
1969 * If we have not reclaimed enough pages for compaction and the
1970 * inactive lists are large enough, continue reclaiming
1971 */
1972 pages_for_compaction = (2UL << sc->order);
1973 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1974 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1975 if (sc->nr_reclaimed < pages_for_compaction &&
1976 inactive_lru_pages > pages_for_compaction)
1977 return true;
1978
1979 /* If compaction would go ahead or the allocation would succeed, stop */
1980 switch (compaction_suitable(zone, sc->order)) {
1981 case COMPACT_PARTIAL:
1982 case COMPACT_CONTINUE:
1983 return false;
1984 default:
1985 return true;
1986 }
1987}
1988
1da177e4
LT
1989/*
1990 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1991 */
a79311c1 1992static void shrink_zone(int priority, struct zone *zone,
05ff5137 1993 struct scan_control *sc)
1da177e4 1994{
b69408e8 1995 unsigned long nr[NR_LRU_LISTS];
8695949a 1996 unsigned long nr_to_scan;
b69408e8 1997 enum lru_list l;
f0fdc5e8 1998 unsigned long nr_reclaimed, nr_scanned;
22fba335 1999 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
e0f79b8f 2000
3e7d3449
MG
2001restart:
2002 nr_reclaimed = 0;
f0fdc5e8 2003 nr_scanned = sc->nr_scanned;
76a33fc3 2004 get_scan_count(zone, sc, nr, priority);
1da177e4 2005
556adecb
RR
2006 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2007 nr[LRU_INACTIVE_FILE]) {
894bc310 2008 for_each_evictable_lru(l) {
b69408e8 2009 if (nr[l]) {
ece74b2e
KM
2010 nr_to_scan = min_t(unsigned long,
2011 nr[l], SWAP_CLUSTER_MAX);
b69408e8 2012 nr[l] -= nr_to_scan;
1da177e4 2013
01dbe5c9
KM
2014 nr_reclaimed += shrink_list(l, nr_to_scan,
2015 zone, sc, priority);
b69408e8 2016 }
1da177e4 2017 }
a79311c1
RR
2018 /*
2019 * On large memory systems, scan >> priority can become
2020 * really large. This is fine for the starting priority;
2021 * we want to put equal scanning pressure on each zone.
2022 * However, if the VM has a harder time of freeing pages,
2023 * with multiple processes reclaiming pages, the total
2024 * freeing target can get unreasonably large.
2025 */
338fde90 2026 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 2027 break;
1da177e4 2028 }
3e7d3449 2029 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 2030
556adecb
RR
2031 /*
2032 * Even if we did not try to evict anon pages at all, we want to
2033 * rebalance the anon lru active/inactive ratio.
2034 */
74e3f3c3 2035 if (inactive_anon_is_low(zone, sc))
556adecb
RR
2036 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2037
3e7d3449
MG
2038 /* reclaim/compaction might need reclaim to continue */
2039 if (should_continue_reclaim(zone, nr_reclaimed,
2040 sc->nr_scanned - nr_scanned, sc))
2041 goto restart;
2042
232ea4d6 2043 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
2044}
2045
2046/*
2047 * This is the direct reclaim path, for page-allocating processes. We only
2048 * try to reclaim pages from zones which will satisfy the caller's allocation
2049 * request.
2050 *
41858966
MG
2051 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2052 * Because:
1da177e4
LT
2053 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2054 * allocation or
41858966
MG
2055 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2056 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2057 * zone defense algorithm.
1da177e4 2058 *
1da177e4
LT
2059 * If a zone is deemed to be full of pinned pages then just give it a light
2060 * scan then give up on it.
2061 */
ac34a1a3 2062static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 2063 struct scan_control *sc)
1da177e4 2064{
dd1a239f 2065 struct zoneref *z;
54a6eb5c 2066 struct zone *zone;
d149e3b2
YH
2067 unsigned long nr_soft_reclaimed;
2068 unsigned long nr_soft_scanned;
1cfb419b 2069
d4debc66
MG
2070 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2071 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2072 if (!populated_zone(zone))
1da177e4 2073 continue;
1cfb419b
KH
2074 /*
2075 * Take care memory controller reclaiming has small influence
2076 * to global LRU.
2077 */
e72e2bd6 2078 if (scanning_global_lru(sc)) {
1cfb419b
KH
2079 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2080 continue;
93e4a89a 2081 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2082 continue; /* Let kswapd poll it */
ac34a1a3
KH
2083 /*
2084 * This steals pages from memory cgroups over softlimit
2085 * and returns the number of reclaimed pages and
2086 * scanned pages. This works for global memory pressure
2087 * and balancing, not for a memcg's limit.
2088 */
2089 nr_soft_scanned = 0;
2090 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2091 sc->order, sc->gfp_mask,
2092 &nr_soft_scanned);
2093 sc->nr_reclaimed += nr_soft_reclaimed;
2094 sc->nr_scanned += nr_soft_scanned;
2095 /* need some check for avoid more shrink_zone() */
1cfb419b 2096 }
408d8544 2097
a79311c1 2098 shrink_zone(priority, zone, sc);
1da177e4 2099 }
d1908362
MK
2100}
2101
2102static bool zone_reclaimable(struct zone *zone)
2103{
2104 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2105}
2106
929bea7c 2107/* All zones in zonelist are unreclaimable? */
d1908362
MK
2108static bool all_unreclaimable(struct zonelist *zonelist,
2109 struct scan_control *sc)
2110{
2111 struct zoneref *z;
2112 struct zone *zone;
d1908362
MK
2113
2114 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2115 gfp_zone(sc->gfp_mask), sc->nodemask) {
2116 if (!populated_zone(zone))
2117 continue;
2118 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2119 continue;
929bea7c
KM
2120 if (!zone->all_unreclaimable)
2121 return false;
d1908362
MK
2122 }
2123
929bea7c 2124 return true;
1da177e4 2125}
4f98a2fe 2126
1da177e4
LT
2127/*
2128 * This is the main entry point to direct page reclaim.
2129 *
2130 * If a full scan of the inactive list fails to free enough memory then we
2131 * are "out of memory" and something needs to be killed.
2132 *
2133 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2134 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2135 * caller can't do much about. We kick the writeback threads and take explicit
2136 * naps in the hope that some of these pages can be written. But if the
2137 * allocating task holds filesystem locks which prevent writeout this might not
2138 * work, and the allocation attempt will fail.
a41f24ea
NA
2139 *
2140 * returns: 0, if no pages reclaimed
2141 * else, the number of pages reclaimed
1da177e4 2142 */
dac1d27b 2143static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2144 struct scan_control *sc,
2145 struct shrink_control *shrink)
1da177e4
LT
2146{
2147 int priority;
69e05944 2148 unsigned long total_scanned = 0;
1da177e4 2149 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2150 struct zoneref *z;
54a6eb5c 2151 struct zone *zone;
22fba335 2152 unsigned long writeback_threshold;
1da177e4 2153
c0ff7453 2154 get_mems_allowed();
873b4771
KK
2155 delayacct_freepages_start();
2156
e72e2bd6 2157 if (scanning_global_lru(sc))
1cfb419b 2158 count_vm_event(ALLOCSTALL);
1da177e4
LT
2159
2160 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2161 sc->nr_scanned = 0;
f7b7fd8f 2162 if (!priority)
a433658c 2163 disable_swap_token(sc->mem_cgroup);
ac34a1a3 2164 shrink_zones(priority, zonelist, sc);
66e1707b
BS
2165 /*
2166 * Don't shrink slabs when reclaiming memory from
2167 * over limit cgroups
2168 */
e72e2bd6 2169 if (scanning_global_lru(sc)) {
c6a8a8c5 2170 unsigned long lru_pages = 0;
d4debc66
MG
2171 for_each_zone_zonelist(zone, z, zonelist,
2172 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2173 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2174 continue;
2175
2176 lru_pages += zone_reclaimable_pages(zone);
2177 }
2178
1495f230 2179 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2180 if (reclaim_state) {
a79311c1 2181 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2182 reclaim_state->reclaimed_slab = 0;
2183 }
1da177e4 2184 }
66e1707b 2185 total_scanned += sc->nr_scanned;
bb21c7ce 2186 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2187 goto out;
1da177e4
LT
2188
2189 /*
2190 * Try to write back as many pages as we just scanned. This
2191 * tends to cause slow streaming writers to write data to the
2192 * disk smoothly, at the dirtying rate, which is nice. But
2193 * that's undesirable in laptop mode, where we *want* lumpy
2194 * writeout. So in laptop mode, write out the whole world.
2195 */
22fba335
KM
2196 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2197 if (total_scanned > writeback_threshold) {
03ba3782 2198 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 2199 sc->may_writepage = 1;
1da177e4
LT
2200 }
2201
2202 /* Take a nap, wait for some writeback to complete */
7b51755c 2203 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2204 priority < DEF_PRIORITY - 2) {
2205 struct zone *preferred_zone;
2206
2207 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2208 &cpuset_current_mems_allowed,
2209 &preferred_zone);
0e093d99
MG
2210 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2211 }
1da177e4 2212 }
bb21c7ce 2213
1da177e4 2214out:
873b4771 2215 delayacct_freepages_end();
c0ff7453 2216 put_mems_allowed();
873b4771 2217
bb21c7ce
KM
2218 if (sc->nr_reclaimed)
2219 return sc->nr_reclaimed;
2220
929bea7c
KM
2221 /*
2222 * As hibernation is going on, kswapd is freezed so that it can't mark
2223 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2224 * check.
2225 */
2226 if (oom_killer_disabled)
2227 return 0;
2228
bb21c7ce 2229 /* top priority shrink_zones still had more to do? don't OOM, then */
d1908362 2230 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2231 return 1;
2232
2233 return 0;
1da177e4
LT
2234}
2235
dac1d27b 2236unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2237 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2238{
33906bc5 2239 unsigned long nr_reclaimed;
66e1707b
BS
2240 struct scan_control sc = {
2241 .gfp_mask = gfp_mask,
2242 .may_writepage = !laptop_mode,
22fba335 2243 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2244 .may_unmap = 1,
2e2e4259 2245 .may_swap = 1,
66e1707b
BS
2246 .order = order,
2247 .mem_cgroup = NULL,
327c0e96 2248 .nodemask = nodemask,
66e1707b 2249 };
a09ed5e0
YH
2250 struct shrink_control shrink = {
2251 .gfp_mask = sc.gfp_mask,
2252 };
66e1707b 2253
33906bc5
MG
2254 trace_mm_vmscan_direct_reclaim_begin(order,
2255 sc.may_writepage,
2256 gfp_mask);
2257
a09ed5e0 2258 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2259
2260 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2261
2262 return nr_reclaimed;
66e1707b
BS
2263}
2264
00f0b825 2265#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2266
4e416953 2267unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
82f9d486
KH
2268 gfp_t gfp_mask, bool noswap,
2269 struct zone *zone,
2270 struct memcg_scanrecord *rec,
2271 unsigned long *scanned)
4e416953
BS
2272{
2273 struct scan_control sc = {
0ae5e89c 2274 .nr_scanned = 0,
b8f5c566 2275 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2276 .may_writepage = !laptop_mode,
2277 .may_unmap = 1,
2278 .may_swap = !noswap,
4e416953
BS
2279 .order = 0,
2280 .mem_cgroup = mem,
82f9d486 2281 .memcg_record = rec,
4e416953 2282 };
f51bdd2e 2283 ktime_t start, end;
0ae5e89c 2284
4e416953
BS
2285 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2286 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2287
2288 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2289 sc.may_writepage,
2290 sc.gfp_mask);
2291
f51bdd2e 2292 start = ktime_get();
4e416953
BS
2293 /*
2294 * NOTE: Although we can get the priority field, using it
2295 * here is not a good idea, since it limits the pages we can scan.
2296 * if we don't reclaim here, the shrink_zone from balance_pgdat
2297 * will pick up pages from other mem cgroup's as well. We hack
2298 * the priority and make it zero.
2299 */
2300 shrink_zone(0, zone, &sc);
f51bdd2e 2301 end = ktime_get();
82f9d486
KH
2302
2303 if (rec)
f51bdd2e 2304 rec->elapsed += ktime_to_ns(ktime_sub(end, start));
82f9d486 2305 *scanned = sc.nr_scanned;
bdce6d9e
KM
2306
2307 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2308
4e416953
BS
2309 return sc.nr_reclaimed;
2310}
2311
e1a1cd59 2312unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8 2313 gfp_t gfp_mask,
82f9d486
KH
2314 bool noswap,
2315 struct memcg_scanrecord *rec)
66e1707b 2316{
4e416953 2317 struct zonelist *zonelist;
bdce6d9e 2318 unsigned long nr_reclaimed;
f51bdd2e 2319 ktime_t start, end;
889976db 2320 int nid;
66e1707b 2321 struct scan_control sc = {
66e1707b 2322 .may_writepage = !laptop_mode,
a6dc60f8 2323 .may_unmap = 1,
2e2e4259 2324 .may_swap = !noswap,
22fba335 2325 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b
BS
2326 .order = 0,
2327 .mem_cgroup = mem_cont,
82f9d486 2328 .memcg_record = rec,
327c0e96 2329 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2330 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2331 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2332 };
2333 struct shrink_control shrink = {
2334 .gfp_mask = sc.gfp_mask,
66e1707b 2335 };
66e1707b 2336
f51bdd2e 2337 start = ktime_get();
889976db
YH
2338 /*
2339 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2340 * take care of from where we get pages. So the node where we start the
2341 * scan does not need to be the current node.
2342 */
2343 nid = mem_cgroup_select_victim_node(mem_cont);
2344
2345 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2346
2347 trace_mm_vmscan_memcg_reclaim_begin(0,
2348 sc.may_writepage,
2349 sc.gfp_mask);
2350
a09ed5e0 2351 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
f51bdd2e 2352 end = ktime_get();
82f9d486 2353 if (rec)
f51bdd2e 2354 rec->elapsed += ktime_to_ns(ktime_sub(end, start));
bdce6d9e
KM
2355
2356 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2357
2358 return nr_reclaimed;
66e1707b
BS
2359}
2360#endif
2361
1741c877
MG
2362/*
2363 * pgdat_balanced is used when checking if a node is balanced for high-order
2364 * allocations. Only zones that meet watermarks and are in a zone allowed
2365 * by the callers classzone_idx are added to balanced_pages. The total of
2366 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2367 * for the node to be considered balanced. Forcing all zones to be balanced
2368 * for high orders can cause excessive reclaim when there are imbalanced zones.
2369 * The choice of 25% is due to
2370 * o a 16M DMA zone that is balanced will not balance a zone on any
2371 * reasonable sized machine
2372 * o On all other machines, the top zone must be at least a reasonable
25985edc 2373 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2374 * would need to be at least 256M for it to be balance a whole node.
2375 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2376 * to balance a node on its own. These seemed like reasonable ratios.
2377 */
2378static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2379 int classzone_idx)
2380{
2381 unsigned long present_pages = 0;
2382 int i;
2383
2384 for (i = 0; i <= classzone_idx; i++)
2385 present_pages += pgdat->node_zones[i].present_pages;
2386
4746efde
SL
2387 /* A special case here: if zone has no page, we think it's balanced */
2388 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2389}
2390
f50de2d3 2391/* is kswapd sleeping prematurely? */
dc83edd9
MG
2392static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2393 int classzone_idx)
f50de2d3 2394{
bb3ab596 2395 int i;
1741c877
MG
2396 unsigned long balanced = 0;
2397 bool all_zones_ok = true;
f50de2d3
MG
2398
2399 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2400 if (remaining)
dc83edd9 2401 return true;
f50de2d3 2402
0abdee2b 2403 /* Check the watermark levels */
08951e54 2404 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2405 struct zone *zone = pgdat->node_zones + i;
2406
2407 if (!populated_zone(zone))
2408 continue;
2409
355b09c4
MG
2410 /*
2411 * balance_pgdat() skips over all_unreclaimable after
2412 * DEF_PRIORITY. Effectively, it considers them balanced so
2413 * they must be considered balanced here as well if kswapd
2414 * is to sleep
2415 */
2416 if (zone->all_unreclaimable) {
2417 balanced += zone->present_pages;
de3fab39 2418 continue;
355b09c4 2419 }
de3fab39 2420
88f5acf8 2421 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2422 i, 0))
1741c877
MG
2423 all_zones_ok = false;
2424 else
2425 balanced += zone->present_pages;
bb3ab596 2426 }
f50de2d3 2427
1741c877
MG
2428 /*
2429 * For high-order requests, the balanced zones must contain at least
2430 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2431 * must be balanced
2432 */
2433 if (order)
afc7e326 2434 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2435 else
2436 return !all_zones_ok;
f50de2d3
MG
2437}
2438
1da177e4
LT
2439/*
2440 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2441 * they are all at high_wmark_pages(zone).
1da177e4 2442 *
0abdee2b 2443 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2444 *
2445 * There is special handling here for zones which are full of pinned pages.
2446 * This can happen if the pages are all mlocked, or if they are all used by
2447 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2448 * What we do is to detect the case where all pages in the zone have been
2449 * scanned twice and there has been zero successful reclaim. Mark the zone as
2450 * dead and from now on, only perform a short scan. Basically we're polling
2451 * the zone for when the problem goes away.
2452 *
2453 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2454 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2455 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2456 * lower zones regardless of the number of free pages in the lower zones. This
2457 * interoperates with the page allocator fallback scheme to ensure that aging
2458 * of pages is balanced across the zones.
1da177e4 2459 */
99504748 2460static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2461 int *classzone_idx)
1da177e4 2462{
1da177e4 2463 int all_zones_ok;
1741c877 2464 unsigned long balanced;
1da177e4
LT
2465 int priority;
2466 int i;
99504748 2467 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2468 unsigned long total_scanned;
1da177e4 2469 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2470 unsigned long nr_soft_reclaimed;
2471 unsigned long nr_soft_scanned;
179e9639
AM
2472 struct scan_control sc = {
2473 .gfp_mask = GFP_KERNEL,
a6dc60f8 2474 .may_unmap = 1,
2e2e4259 2475 .may_swap = 1,
22fba335
KM
2476 /*
2477 * kswapd doesn't want to be bailed out while reclaim. because
2478 * we want to put equal scanning pressure on each zone.
2479 */
2480 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2481 .order = order,
66e1707b 2482 .mem_cgroup = NULL,
179e9639 2483 };
a09ed5e0
YH
2484 struct shrink_control shrink = {
2485 .gfp_mask = sc.gfp_mask,
2486 };
1da177e4
LT
2487loop_again:
2488 total_scanned = 0;
a79311c1 2489 sc.nr_reclaimed = 0;
c0bbbc73 2490 sc.may_writepage = !laptop_mode;
f8891e5e 2491 count_vm_event(PAGEOUTRUN);
1da177e4 2492
1da177e4 2493 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2494 unsigned long lru_pages = 0;
bb3ab596 2495 int has_under_min_watermark_zone = 0;
1da177e4 2496
f7b7fd8f
RR
2497 /* The swap token gets in the way of swapout... */
2498 if (!priority)
a433658c 2499 disable_swap_token(NULL);
f7b7fd8f 2500
1da177e4 2501 all_zones_ok = 1;
1741c877 2502 balanced = 0;
1da177e4 2503
d6277db4
RW
2504 /*
2505 * Scan in the highmem->dma direction for the highest
2506 * zone which needs scanning
2507 */
2508 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2509 struct zone *zone = pgdat->node_zones + i;
1da177e4 2510
d6277db4
RW
2511 if (!populated_zone(zone))
2512 continue;
1da177e4 2513
93e4a89a 2514 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2515 continue;
1da177e4 2516
556adecb
RR
2517 /*
2518 * Do some background aging of the anon list, to give
2519 * pages a chance to be referenced before reclaiming.
2520 */
14797e23 2521 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2522 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2523 &sc, priority, 0);
2524
88f5acf8 2525 if (!zone_watermark_ok_safe(zone, order,
41858966 2526 high_wmark_pages(zone), 0, 0)) {
d6277db4 2527 end_zone = i;
e1dbeda6 2528 break;
439423f6
SL
2529 } else {
2530 /* If balanced, clear the congested flag */
2531 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2532 }
1da177e4 2533 }
e1dbeda6
AM
2534 if (i < 0)
2535 goto out;
2536
1da177e4
LT
2537 for (i = 0; i <= end_zone; i++) {
2538 struct zone *zone = pgdat->node_zones + i;
2539
adea02a1 2540 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2541 }
2542
2543 /*
2544 * Now scan the zone in the dma->highmem direction, stopping
2545 * at the last zone which needs scanning.
2546 *
2547 * We do this because the page allocator works in the opposite
2548 * direction. This prevents the page allocator from allocating
2549 * pages behind kswapd's direction of progress, which would
2550 * cause too much scanning of the lower zones.
2551 */
2552 for (i = 0; i <= end_zone; i++) {
2553 struct zone *zone = pgdat->node_zones + i;
b15e0905 2554 int nr_slab;
8afdcece 2555 unsigned long balance_gap;
1da177e4 2556
f3fe6512 2557 if (!populated_zone(zone))
1da177e4
LT
2558 continue;
2559
93e4a89a 2560 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2561 continue;
2562
1da177e4 2563 sc.nr_scanned = 0;
4e416953 2564
0ae5e89c 2565 nr_soft_scanned = 0;
4e416953
BS
2566 /*
2567 * Call soft limit reclaim before calling shrink_zone.
4e416953 2568 */
0ae5e89c
YH
2569 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2570 order, sc.gfp_mask,
2571 &nr_soft_scanned);
2572 sc.nr_reclaimed += nr_soft_reclaimed;
2573 total_scanned += nr_soft_scanned;
00918b6a 2574
32a4330d 2575 /*
8afdcece
MG
2576 * We put equal pressure on every zone, unless
2577 * one zone has way too many pages free
2578 * already. The "too many pages" is defined
2579 * as the high wmark plus a "gap" where the
2580 * gap is either the low watermark or 1%
2581 * of the zone, whichever is smaller.
32a4330d 2582 */
8afdcece
MG
2583 balance_gap = min(low_wmark_pages(zone),
2584 (zone->present_pages +
2585 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2586 KSWAPD_ZONE_BALANCE_GAP_RATIO);
88f5acf8 2587 if (!zone_watermark_ok_safe(zone, order,
8afdcece 2588 high_wmark_pages(zone) + balance_gap,
d7868dae 2589 end_zone, 0)) {
a79311c1 2590 shrink_zone(priority, zone, &sc);
5a03b051 2591
d7868dae
MG
2592 reclaim_state->reclaimed_slab = 0;
2593 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2594 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2595 total_scanned += sc.nr_scanned;
2596
2597 if (nr_slab == 0 && !zone_reclaimable(zone))
2598 zone->all_unreclaimable = 1;
2599 }
2600
1da177e4
LT
2601 /*
2602 * If we've done a decent amount of scanning and
2603 * the reclaim ratio is low, start doing writepage
2604 * even in laptop mode
2605 */
2606 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2607 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2608 sc.may_writepage = 1;
bb3ab596 2609
215ddd66
MG
2610 if (zone->all_unreclaimable) {
2611 if (end_zone && end_zone == i)
2612 end_zone--;
d7868dae 2613 continue;
215ddd66 2614 }
d7868dae 2615
88f5acf8 2616 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2617 high_wmark_pages(zone), end_zone, 0)) {
2618 all_zones_ok = 0;
2619 /*
2620 * We are still under min water mark. This
2621 * means that we have a GFP_ATOMIC allocation
2622 * failure risk. Hurry up!
2623 */
88f5acf8 2624 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2625 min_wmark_pages(zone), end_zone, 0))
2626 has_under_min_watermark_zone = 1;
0e093d99
MG
2627 } else {
2628 /*
2629 * If a zone reaches its high watermark,
2630 * consider it to be no longer congested. It's
2631 * possible there are dirty pages backed by
2632 * congested BDIs but as pressure is relieved,
2633 * spectulatively avoid congestion waits
2634 */
2635 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2636 if (i <= *classzone_idx)
1741c877 2637 balanced += zone->present_pages;
45973d74 2638 }
bb3ab596 2639
1da177e4 2640 }
dc83edd9 2641 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2642 break; /* kswapd: all done */
2643 /*
2644 * OK, kswapd is getting into trouble. Take a nap, then take
2645 * another pass across the zones.
2646 */
bb3ab596
KM
2647 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2648 if (has_under_min_watermark_zone)
2649 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2650 else
2651 congestion_wait(BLK_RW_ASYNC, HZ/10);
2652 }
1da177e4
LT
2653
2654 /*
2655 * We do this so kswapd doesn't build up large priorities for
2656 * example when it is freeing in parallel with allocators. It
2657 * matches the direct reclaim path behaviour in terms of impact
2658 * on zone->*_priority.
2659 */
a79311c1 2660 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2661 break;
2662 }
2663out:
99504748
MG
2664
2665 /*
2666 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2667 * high-order: Balanced zones must make up at least 25% of the node
2668 * for the node to be balanced
99504748 2669 */
dc83edd9 2670 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2671 cond_resched();
8357376d
RW
2672
2673 try_to_freeze();
2674
73ce02e9
KM
2675 /*
2676 * Fragmentation may mean that the system cannot be
2677 * rebalanced for high-order allocations in all zones.
2678 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2679 * it means the zones have been fully scanned and are still
2680 * not balanced. For high-order allocations, there is
2681 * little point trying all over again as kswapd may
2682 * infinite loop.
2683 *
2684 * Instead, recheck all watermarks at order-0 as they
2685 * are the most important. If watermarks are ok, kswapd will go
2686 * back to sleep. High-order users can still perform direct
2687 * reclaim if they wish.
2688 */
2689 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2690 order = sc.order = 0;
2691
1da177e4
LT
2692 goto loop_again;
2693 }
2694
99504748
MG
2695 /*
2696 * If kswapd was reclaiming at a higher order, it has the option of
2697 * sleeping without all zones being balanced. Before it does, it must
2698 * ensure that the watermarks for order-0 on *all* zones are met and
2699 * that the congestion flags are cleared. The congestion flag must
2700 * be cleared as kswapd is the only mechanism that clears the flag
2701 * and it is potentially going to sleep here.
2702 */
2703 if (order) {
2704 for (i = 0; i <= end_zone; i++) {
2705 struct zone *zone = pgdat->node_zones + i;
2706
2707 if (!populated_zone(zone))
2708 continue;
2709
2710 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2711 continue;
2712
2713 /* Confirm the zone is balanced for order-0 */
2714 if (!zone_watermark_ok(zone, 0,
2715 high_wmark_pages(zone), 0, 0)) {
2716 order = sc.order = 0;
2717 goto loop_again;
2718 }
2719
2720 /* If balanced, clear the congested flag */
2721 zone_clear_flag(zone, ZONE_CONGESTED);
2722 }
2723 }
2724
0abdee2b
MG
2725 /*
2726 * Return the order we were reclaiming at so sleeping_prematurely()
2727 * makes a decision on the order we were last reclaiming at. However,
2728 * if another caller entered the allocator slow path while kswapd
2729 * was awake, order will remain at the higher level
2730 */
dc83edd9 2731 *classzone_idx = end_zone;
0abdee2b 2732 return order;
1da177e4
LT
2733}
2734
dc83edd9 2735static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2736{
2737 long remaining = 0;
2738 DEFINE_WAIT(wait);
2739
2740 if (freezing(current) || kthread_should_stop())
2741 return;
2742
2743 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2744
2745 /* Try to sleep for a short interval */
dc83edd9 2746 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2747 remaining = schedule_timeout(HZ/10);
2748 finish_wait(&pgdat->kswapd_wait, &wait);
2749 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2750 }
2751
2752 /*
2753 * After a short sleep, check if it was a premature sleep. If not, then
2754 * go fully to sleep until explicitly woken up.
2755 */
dc83edd9 2756 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2757 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2758
2759 /*
2760 * vmstat counters are not perfectly accurate and the estimated
2761 * value for counters such as NR_FREE_PAGES can deviate from the
2762 * true value by nr_online_cpus * threshold. To avoid the zone
2763 * watermarks being breached while under pressure, we reduce the
2764 * per-cpu vmstat threshold while kswapd is awake and restore
2765 * them before going back to sleep.
2766 */
2767 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2768 schedule();
2769 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2770 } else {
2771 if (remaining)
2772 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2773 else
2774 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2775 }
2776 finish_wait(&pgdat->kswapd_wait, &wait);
2777}
2778
1da177e4
LT
2779/*
2780 * The background pageout daemon, started as a kernel thread
4f98a2fe 2781 * from the init process.
1da177e4
LT
2782 *
2783 * This basically trickles out pages so that we have _some_
2784 * free memory available even if there is no other activity
2785 * that frees anything up. This is needed for things like routing
2786 * etc, where we otherwise might have all activity going on in
2787 * asynchronous contexts that cannot page things out.
2788 *
2789 * If there are applications that are active memory-allocators
2790 * (most normal use), this basically shouldn't matter.
2791 */
2792static int kswapd(void *p)
2793{
215ddd66
MG
2794 unsigned long order, new_order;
2795 int classzone_idx, new_classzone_idx;
1da177e4
LT
2796 pg_data_t *pgdat = (pg_data_t*)p;
2797 struct task_struct *tsk = current;
f0bc0a60 2798
1da177e4
LT
2799 struct reclaim_state reclaim_state = {
2800 .reclaimed_slab = 0,
2801 };
a70f7302 2802 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2803
cf40bd16
NP
2804 lockdep_set_current_reclaim_state(GFP_KERNEL);
2805
174596a0 2806 if (!cpumask_empty(cpumask))
c5f59f08 2807 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2808 current->reclaim_state = &reclaim_state;
2809
2810 /*
2811 * Tell the memory management that we're a "memory allocator",
2812 * and that if we need more memory we should get access to it
2813 * regardless (see "__alloc_pages()"). "kswapd" should
2814 * never get caught in the normal page freeing logic.
2815 *
2816 * (Kswapd normally doesn't need memory anyway, but sometimes
2817 * you need a small amount of memory in order to be able to
2818 * page out something else, and this flag essentially protects
2819 * us from recursively trying to free more memory as we're
2820 * trying to free the first piece of memory in the first place).
2821 */
930d9152 2822 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2823 set_freezable();
1da177e4 2824
215ddd66
MG
2825 order = new_order = 0;
2826 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
1da177e4 2827 for ( ; ; ) {
8fe23e05 2828 int ret;
3e1d1d28 2829
215ddd66
MG
2830 /*
2831 * If the last balance_pgdat was unsuccessful it's unlikely a
2832 * new request of a similar or harder type will succeed soon
2833 * so consider going to sleep on the basis we reclaimed at
2834 */
2835 if (classzone_idx >= new_classzone_idx && order == new_order) {
2836 new_order = pgdat->kswapd_max_order;
2837 new_classzone_idx = pgdat->classzone_idx;
2838 pgdat->kswapd_max_order = 0;
2839 pgdat->classzone_idx = pgdat->nr_zones - 1;
2840 }
2841
99504748 2842 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2843 /*
2844 * Don't sleep if someone wants a larger 'order'
99504748 2845 * allocation or has tigher zone constraints
1da177e4
LT
2846 */
2847 order = new_order;
99504748 2848 classzone_idx = new_classzone_idx;
1da177e4 2849 } else {
dc83edd9 2850 kswapd_try_to_sleep(pgdat, order, classzone_idx);
1da177e4 2851 order = pgdat->kswapd_max_order;
99504748 2852 classzone_idx = pgdat->classzone_idx;
4d40502e 2853 pgdat->kswapd_max_order = 0;
215ddd66 2854 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2855 }
1da177e4 2856
8fe23e05
DR
2857 ret = try_to_freeze();
2858 if (kthread_should_stop())
2859 break;
2860
2861 /*
2862 * We can speed up thawing tasks if we don't call balance_pgdat
2863 * after returning from the refrigerator
2864 */
33906bc5
MG
2865 if (!ret) {
2866 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
dc83edd9 2867 order = balance_pgdat(pgdat, order, &classzone_idx);
33906bc5 2868 }
1da177e4
LT
2869 }
2870 return 0;
2871}
2872
2873/*
2874 * A zone is low on free memory, so wake its kswapd task to service it.
2875 */
99504748 2876void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2877{
2878 pg_data_t *pgdat;
2879
f3fe6512 2880 if (!populated_zone(zone))
1da177e4
LT
2881 return;
2882
88f5acf8 2883 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2884 return;
88f5acf8 2885 pgdat = zone->zone_pgdat;
99504748 2886 if (pgdat->kswapd_max_order < order) {
1da177e4 2887 pgdat->kswapd_max_order = order;
99504748
MG
2888 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2889 }
8d0986e2 2890 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2891 return;
88f5acf8
MG
2892 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2893 return;
2894
2895 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2896 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2897}
2898
adea02a1
WF
2899/*
2900 * The reclaimable count would be mostly accurate.
2901 * The less reclaimable pages may be
2902 * - mlocked pages, which will be moved to unevictable list when encountered
2903 * - mapped pages, which may require several travels to be reclaimed
2904 * - dirty pages, which is not "instantly" reclaimable
2905 */
2906unsigned long global_reclaimable_pages(void)
4f98a2fe 2907{
adea02a1
WF
2908 int nr;
2909
2910 nr = global_page_state(NR_ACTIVE_FILE) +
2911 global_page_state(NR_INACTIVE_FILE);
2912
2913 if (nr_swap_pages > 0)
2914 nr += global_page_state(NR_ACTIVE_ANON) +
2915 global_page_state(NR_INACTIVE_ANON);
2916
2917 return nr;
2918}
2919
2920unsigned long zone_reclaimable_pages(struct zone *zone)
2921{
2922 int nr;
2923
2924 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2925 zone_page_state(zone, NR_INACTIVE_FILE);
2926
2927 if (nr_swap_pages > 0)
2928 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2929 zone_page_state(zone, NR_INACTIVE_ANON);
2930
2931 return nr;
4f98a2fe
RR
2932}
2933
c6f37f12 2934#ifdef CONFIG_HIBERNATION
1da177e4 2935/*
7b51755c 2936 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2937 * freed pages.
2938 *
2939 * Rather than trying to age LRUs the aim is to preserve the overall
2940 * LRU order by reclaiming preferentially
2941 * inactive > active > active referenced > active mapped
1da177e4 2942 */
7b51755c 2943unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2944{
d6277db4 2945 struct reclaim_state reclaim_state;
d6277db4 2946 struct scan_control sc = {
7b51755c
KM
2947 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2948 .may_swap = 1,
2949 .may_unmap = 1,
d6277db4 2950 .may_writepage = 1,
7b51755c
KM
2951 .nr_to_reclaim = nr_to_reclaim,
2952 .hibernation_mode = 1,
7b51755c 2953 .order = 0,
1da177e4 2954 };
a09ed5e0
YH
2955 struct shrink_control shrink = {
2956 .gfp_mask = sc.gfp_mask,
2957 };
2958 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2959 struct task_struct *p = current;
2960 unsigned long nr_reclaimed;
1da177e4 2961
7b51755c
KM
2962 p->flags |= PF_MEMALLOC;
2963 lockdep_set_current_reclaim_state(sc.gfp_mask);
2964 reclaim_state.reclaimed_slab = 0;
2965 p->reclaim_state = &reclaim_state;
d6277db4 2966
a09ed5e0 2967 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2968
7b51755c
KM
2969 p->reclaim_state = NULL;
2970 lockdep_clear_current_reclaim_state();
2971 p->flags &= ~PF_MEMALLOC;
d6277db4 2972
7b51755c 2973 return nr_reclaimed;
1da177e4 2974}
c6f37f12 2975#endif /* CONFIG_HIBERNATION */
1da177e4 2976
1da177e4
LT
2977/* It's optimal to keep kswapds on the same CPUs as their memory, but
2978 not required for correctness. So if the last cpu in a node goes
2979 away, we get changed to run anywhere: as the first one comes back,
2980 restore their cpu bindings. */
9c7b216d 2981static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2982 unsigned long action, void *hcpu)
1da177e4 2983{
58c0a4a7 2984 int nid;
1da177e4 2985
8bb78442 2986 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2987 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2988 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2989 const struct cpumask *mask;
2990
2991 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2992
3e597945 2993 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2994 /* One of our CPUs online: restore mask */
c5f59f08 2995 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2996 }
2997 }
2998 return NOTIFY_OK;
2999}
1da177e4 3000
3218ae14
YG
3001/*
3002 * This kswapd start function will be called by init and node-hot-add.
3003 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3004 */
3005int kswapd_run(int nid)
3006{
3007 pg_data_t *pgdat = NODE_DATA(nid);
3008 int ret = 0;
3009
3010 if (pgdat->kswapd)
3011 return 0;
3012
3013 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3014 if (IS_ERR(pgdat->kswapd)) {
3015 /* failure at boot is fatal */
3016 BUG_ON(system_state == SYSTEM_BOOTING);
3017 printk("Failed to start kswapd on node %d\n",nid);
3018 ret = -1;
3019 }
3020 return ret;
3021}
3022
8fe23e05
DR
3023/*
3024 * Called by memory hotplug when all memory in a node is offlined.
3025 */
3026void kswapd_stop(int nid)
3027{
3028 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3029
3030 if (kswapd)
3031 kthread_stop(kswapd);
3032}
3033
1da177e4
LT
3034static int __init kswapd_init(void)
3035{
3218ae14 3036 int nid;
69e05944 3037
1da177e4 3038 swap_setup();
9422ffba 3039 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3040 kswapd_run(nid);
1da177e4
LT
3041 hotcpu_notifier(cpu_callback, 0);
3042 return 0;
3043}
3044
3045module_init(kswapd_init)
9eeff239
CL
3046
3047#ifdef CONFIG_NUMA
3048/*
3049 * Zone reclaim mode
3050 *
3051 * If non-zero call zone_reclaim when the number of free pages falls below
3052 * the watermarks.
9eeff239
CL
3053 */
3054int zone_reclaim_mode __read_mostly;
3055
1b2ffb78 3056#define RECLAIM_OFF 0
7d03431c 3057#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3058#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3059#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3060
a92f7126
CL
3061/*
3062 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3063 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3064 * a zone.
3065 */
3066#define ZONE_RECLAIM_PRIORITY 4
3067
9614634f
CL
3068/*
3069 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3070 * occur.
3071 */
3072int sysctl_min_unmapped_ratio = 1;
3073
0ff38490
CL
3074/*
3075 * If the number of slab pages in a zone grows beyond this percentage then
3076 * slab reclaim needs to occur.
3077 */
3078int sysctl_min_slab_ratio = 5;
3079
90afa5de
MG
3080static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3081{
3082 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3083 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3084 zone_page_state(zone, NR_ACTIVE_FILE);
3085
3086 /*
3087 * It's possible for there to be more file mapped pages than
3088 * accounted for by the pages on the file LRU lists because
3089 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3090 */
3091 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3092}
3093
3094/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3095static long zone_pagecache_reclaimable(struct zone *zone)
3096{
3097 long nr_pagecache_reclaimable;
3098 long delta = 0;
3099
3100 /*
3101 * If RECLAIM_SWAP is set, then all file pages are considered
3102 * potentially reclaimable. Otherwise, we have to worry about
3103 * pages like swapcache and zone_unmapped_file_pages() provides
3104 * a better estimate
3105 */
3106 if (zone_reclaim_mode & RECLAIM_SWAP)
3107 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3108 else
3109 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3110
3111 /* If we can't clean pages, remove dirty pages from consideration */
3112 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3113 delta += zone_page_state(zone, NR_FILE_DIRTY);
3114
3115 /* Watch for any possible underflows due to delta */
3116 if (unlikely(delta > nr_pagecache_reclaimable))
3117 delta = nr_pagecache_reclaimable;
3118
3119 return nr_pagecache_reclaimable - delta;
3120}
3121
9eeff239
CL
3122/*
3123 * Try to free up some pages from this zone through reclaim.
3124 */
179e9639 3125static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3126{
7fb2d46d 3127 /* Minimum pages needed in order to stay on node */
69e05944 3128 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3129 struct task_struct *p = current;
3130 struct reclaim_state reclaim_state;
8695949a 3131 int priority;
179e9639
AM
3132 struct scan_control sc = {
3133 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3134 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3135 .may_swap = 1,
22fba335
KM
3136 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3137 SWAP_CLUSTER_MAX),
179e9639 3138 .gfp_mask = gfp_mask,
bd2f6199 3139 .order = order,
179e9639 3140 };
a09ed5e0
YH
3141 struct shrink_control shrink = {
3142 .gfp_mask = sc.gfp_mask,
3143 };
15748048 3144 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3145
9eeff239 3146 cond_resched();
d4f7796e
CL
3147 /*
3148 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3149 * and we also need to be able to write out pages for RECLAIM_WRITE
3150 * and RECLAIM_SWAP.
3151 */
3152 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3153 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3154 reclaim_state.reclaimed_slab = 0;
3155 p->reclaim_state = &reclaim_state;
c84db23c 3156
90afa5de 3157 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3158 /*
3159 * Free memory by calling shrink zone with increasing
3160 * priorities until we have enough memory freed.
3161 */
3162 priority = ZONE_RECLAIM_PRIORITY;
3163 do {
a79311c1 3164 shrink_zone(priority, zone, &sc);
0ff38490 3165 priority--;
a79311c1 3166 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3167 }
c84db23c 3168
15748048
KM
3169 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3170 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3171 /*
7fb2d46d 3172 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3173 * many pages were freed in this zone. So we take the current
3174 * number of slab pages and shake the slab until it is reduced
3175 * by the same nr_pages that we used for reclaiming unmapped
3176 * pages.
2a16e3f4 3177 *
0ff38490
CL
3178 * Note that shrink_slab will free memory on all zones and may
3179 * take a long time.
2a16e3f4 3180 */
4dc4b3d9
KM
3181 for (;;) {
3182 unsigned long lru_pages = zone_reclaimable_pages(zone);
3183
3184 /* No reclaimable slab or very low memory pressure */
1495f230 3185 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3186 break;
3187
3188 /* Freed enough memory */
3189 nr_slab_pages1 = zone_page_state(zone,
3190 NR_SLAB_RECLAIMABLE);
3191 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3192 break;
3193 }
83e33a47
CL
3194
3195 /*
3196 * Update nr_reclaimed by the number of slab pages we
3197 * reclaimed from this zone.
3198 */
15748048
KM
3199 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3200 if (nr_slab_pages1 < nr_slab_pages0)
3201 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3202 }
3203
9eeff239 3204 p->reclaim_state = NULL;
d4f7796e 3205 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3206 lockdep_clear_current_reclaim_state();
a79311c1 3207 return sc.nr_reclaimed >= nr_pages;
9eeff239 3208}
179e9639
AM
3209
3210int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3211{
179e9639 3212 int node_id;
d773ed6b 3213 int ret;
179e9639
AM
3214
3215 /*
0ff38490
CL
3216 * Zone reclaim reclaims unmapped file backed pages and
3217 * slab pages if we are over the defined limits.
34aa1330 3218 *
9614634f
CL
3219 * A small portion of unmapped file backed pages is needed for
3220 * file I/O otherwise pages read by file I/O will be immediately
3221 * thrown out if the zone is overallocated. So we do not reclaim
3222 * if less than a specified percentage of the zone is used by
3223 * unmapped file backed pages.
179e9639 3224 */
90afa5de
MG
3225 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3226 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3227 return ZONE_RECLAIM_FULL;
179e9639 3228
93e4a89a 3229 if (zone->all_unreclaimable)
fa5e084e 3230 return ZONE_RECLAIM_FULL;
d773ed6b 3231
179e9639 3232 /*
d773ed6b 3233 * Do not scan if the allocation should not be delayed.
179e9639 3234 */
d773ed6b 3235 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3236 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3237
3238 /*
3239 * Only run zone reclaim on the local zone or on zones that do not
3240 * have associated processors. This will favor the local processor
3241 * over remote processors and spread off node memory allocations
3242 * as wide as possible.
3243 */
89fa3024 3244 node_id = zone_to_nid(zone);
37c0708d 3245 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3246 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3247
3248 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3249 return ZONE_RECLAIM_NOSCAN;
3250
d773ed6b
DR
3251 ret = __zone_reclaim(zone, gfp_mask, order);
3252 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3253
24cf7251
MG
3254 if (!ret)
3255 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3256
d773ed6b 3257 return ret;
179e9639 3258}
9eeff239 3259#endif
894bc310 3260
894bc310
LS
3261/*
3262 * page_evictable - test whether a page is evictable
3263 * @page: the page to test
3264 * @vma: the VMA in which the page is or will be mapped, may be NULL
3265 *
3266 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3267 * lists vs unevictable list. The vma argument is !NULL when called from the
3268 * fault path to determine how to instantate a new page.
894bc310
LS
3269 *
3270 * Reasons page might not be evictable:
ba9ddf49 3271 * (1) page's mapping marked unevictable
b291f000 3272 * (2) page is part of an mlocked VMA
ba9ddf49 3273 *
894bc310
LS
3274 */
3275int page_evictable(struct page *page, struct vm_area_struct *vma)
3276{
3277
ba9ddf49
LS
3278 if (mapping_unevictable(page_mapping(page)))
3279 return 0;
3280
b291f000
NP
3281 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3282 return 0;
894bc310
LS
3283
3284 return 1;
3285}
89e004ea
LS
3286
3287/**
3288 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3289 * @page: page to check evictability and move to appropriate lru list
3290 * @zone: zone page is in
3291 *
3292 * Checks a page for evictability and moves the page to the appropriate
3293 * zone lru list.
3294 *
3295 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3296 * have PageUnevictable set.
3297 */
3298static void check_move_unevictable_page(struct page *page, struct zone *zone)
3299{
3300 VM_BUG_ON(PageActive(page));
3301
3302retry:
3303 ClearPageUnevictable(page);
3304 if (page_evictable(page, NULL)) {
401a8e1c 3305 enum lru_list l = page_lru_base_type(page);
af936a16 3306
89e004ea
LS
3307 __dec_zone_state(zone, NR_UNEVICTABLE);
3308 list_move(&page->lru, &zone->lru[l].list);
08e552c6 3309 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
3310 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3311 __count_vm_event(UNEVICTABLE_PGRESCUED);
3312 } else {
3313 /*
3314 * rotate unevictable list
3315 */
3316 SetPageUnevictable(page);
3317 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 3318 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
3319 if (page_evictable(page, NULL))
3320 goto retry;
3321 }
3322}
3323
3324/**
3325 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3326 * @mapping: struct address_space to scan for evictable pages
3327 *
3328 * Scan all pages in mapping. Check unevictable pages for
3329 * evictability and move them to the appropriate zone lru list.
3330 */
3331void scan_mapping_unevictable_pages(struct address_space *mapping)
3332{
3333 pgoff_t next = 0;
3334 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3335 PAGE_CACHE_SHIFT;
3336 struct zone *zone;
3337 struct pagevec pvec;
3338
3339 if (mapping->nrpages == 0)
3340 return;
3341
3342 pagevec_init(&pvec, 0);
3343 while (next < end &&
3344 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3345 int i;
3346 int pg_scanned = 0;
3347
3348 zone = NULL;
3349
3350 for (i = 0; i < pagevec_count(&pvec); i++) {
3351 struct page *page = pvec.pages[i];
3352 pgoff_t page_index = page->index;
3353 struct zone *pagezone = page_zone(page);
3354
3355 pg_scanned++;
3356 if (page_index > next)
3357 next = page_index;
3358 next++;
3359
3360 if (pagezone != zone) {
3361 if (zone)
3362 spin_unlock_irq(&zone->lru_lock);
3363 zone = pagezone;
3364 spin_lock_irq(&zone->lru_lock);
3365 }
3366
3367 if (PageLRU(page) && PageUnevictable(page))
3368 check_move_unevictable_page(page, zone);
3369 }
3370 if (zone)
3371 spin_unlock_irq(&zone->lru_lock);
3372 pagevec_release(&pvec);
3373
3374 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3375 }
3376
3377}
af936a16
LS
3378
3379/**
3380 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3381 * @zone - zone of which to scan the unevictable list
3382 *
3383 * Scan @zone's unevictable LRU lists to check for pages that have become
3384 * evictable. Move those that have to @zone's inactive list where they
3385 * become candidates for reclaim, unless shrink_inactive_zone() decides
3386 * to reactivate them. Pages that are still unevictable are rotated
3387 * back onto @zone's unevictable list.
3388 */
3389#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 3390static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
3391{
3392 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3393 unsigned long scan;
3394 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3395
3396 while (nr_to_scan > 0) {
3397 unsigned long batch_size = min(nr_to_scan,
3398 SCAN_UNEVICTABLE_BATCH_SIZE);
3399
3400 spin_lock_irq(&zone->lru_lock);
3401 for (scan = 0; scan < batch_size; scan++) {
3402 struct page *page = lru_to_page(l_unevictable);
3403
3404 if (!trylock_page(page))
3405 continue;
3406
3407 prefetchw_prev_lru_page(page, l_unevictable, flags);
3408
3409 if (likely(PageLRU(page) && PageUnevictable(page)))
3410 check_move_unevictable_page(page, zone);
3411
3412 unlock_page(page);
3413 }
3414 spin_unlock_irq(&zone->lru_lock);
3415
3416 nr_to_scan -= batch_size;
3417 }
3418}
3419
3420
3421/**
3422 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3423 *
3424 * A really big hammer: scan all zones' unevictable LRU lists to check for
3425 * pages that have become evictable. Move those back to the zones'
3426 * inactive list where they become candidates for reclaim.
3427 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3428 * and we add swap to the system. As such, it runs in the context of a task
3429 * that has possibly/probably made some previously unevictable pages
3430 * evictable.
3431 */
ff30153b 3432static void scan_all_zones_unevictable_pages(void)
af936a16
LS
3433{
3434 struct zone *zone;
3435
3436 for_each_zone(zone) {
3437 scan_zone_unevictable_pages(zone);
3438 }
3439}
3440
3441/*
3442 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3443 * all nodes' unevictable lists for evictable pages
3444 */
3445unsigned long scan_unevictable_pages;
3446
3447int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3448 void __user *buffer,
af936a16
LS
3449 size_t *length, loff_t *ppos)
3450{
8d65af78 3451 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3452
3453 if (write && *(unsigned long *)table->data)
3454 scan_all_zones_unevictable_pages();
3455
3456 scan_unevictable_pages = 0;
3457 return 0;
3458}
3459
e4455abb 3460#ifdef CONFIG_NUMA
af936a16
LS
3461/*
3462 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3463 * a specified node's per zone unevictable lists for evictable pages.
3464 */
3465
3466static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3467 struct sysdev_attribute *attr,
3468 char *buf)
3469{
3470 return sprintf(buf, "0\n"); /* always zero; should fit... */
3471}
3472
3473static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3474 struct sysdev_attribute *attr,
3475 const char *buf, size_t count)
3476{
3477 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3478 struct zone *zone;
3479 unsigned long res;
3480 unsigned long req = strict_strtoul(buf, 10, &res);
3481
3482 if (!req)
3483 return 1; /* zero is no-op */
3484
3485 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3486 if (!populated_zone(zone))
3487 continue;
3488 scan_zone_unevictable_pages(zone);
3489 }
3490 return 1;
3491}
3492
3493
3494static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3495 read_scan_unevictable_node,
3496 write_scan_unevictable_node);
3497
3498int scan_unevictable_register_node(struct node *node)
3499{
3500 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3501}
3502
3503void scan_unevictable_unregister_node(struct node *node)
3504{
3505 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3506}
e4455abb 3507#endif